aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-01-17 14:27:29 +0000
committerdos-reis <gdr@axiomatics.org>2008-01-17 14:27:29 +0000
commit15dcc4936996a27019112ff58e9202a81d792047 (patch)
tree1e49da404b12b46c30989feac07e26f87f4810ba /src
parentf5ba07e55ec584939b62a3887c2ff7ebf8083759 (diff)
downloadopen-axiom-15dcc4936996a27019112ff58e9202a81d792047.tar.gz
Fix SF/1849734
* interp/i-spec1.boot (upand): Don't insist on having operands of type Boolean. (upor): Likewise. * algebra/mkrecord.spad.pamphlet (Pair): New domain constructor. * algebra/exposed.lsp.pamphlet: Expose Pair, PropositionalLogic, PropositionalFormula. * algebra/boolean.spad.pamphlet (PropositionalFormula): New domain constructor. * algebra/Makefile.pamphlet (axiom_algebra_layer_4): Include PAIR.o. (axiom_algebra_layer_19): Include PROPFRML.o * share/algebra: Update databases. * testsuite/interpreter/1849734.input: New.
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog17
-rw-r--r--src/algebra/Makefile.in8
-rw-r--r--src/algebra/Makefile.pamphlet8
-rw-r--r--src/algebra/boolean.spad.pamphlet230
-rw-r--r--src/algebra/exposed.lsp.pamphlet3
-rw-r--r--src/algebra/mkrecord.spad.pamphlet57
-rw-r--r--src/interp/i-spec1.boot12
-rw-r--r--src/share/algebra/browse.daase2126
-rw-r--r--src/share/algebra/category.daase2225
-rw-r--r--src/share/algebra/compress.daase1277
-rw-r--r--src/share/algebra/interp.daase9310
-rw-r--r--src/share/algebra/operation.daase29804
-rw-r--r--src/testsuite/interpreter/1849734.input6
13 files changed, 22706 insertions, 22377 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 1d9d9d9a..bd454cb0 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,20 @@
+2008-01-17 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ Fix SF/1849734
+ * interp/i-spec1.boot (upand): Don't insist on having operands of
+ type Boolean.
+ (upor): Likewise.
+ * algebra/mkrecord.spad.pamphlet (Pair): New domain constructor.
+ * algebra/exposed.lsp.pamphlet: Expose Pair, PropositionalLogic,
+ PropositionalFormula.
+ * algebra/boolean.spad.pamphlet (PropositionalFormula): New domain
+ constructor.
+ * algebra/Makefile.pamphlet (axiom_algebra_layer_4): Include
+ PAIR.o.
+ (axiom_algebra_layer_19): Include PROPFRML.o
+ * share/algebra: Update databases.
+ * testsuite/interpreter/1849734.input: New.
+
2008-01-16 Gabriel Dos Reis <gdr@cs.tamu.edu>
Fix SF/1848975
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 7fe8dd8f..4a806873 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -391,7 +391,7 @@ axiom_algebra_layer_1 = \
PATAB.o PLOT1.o PPCURVE.o PSCURVE.o \
REAL.o RESLATC.o RETRACT.o RETRACT-.o \
SEGBIND2.o SEGCAT.o STREAM1.o STREAM2.o \
- STREAM3.o
+ STREAM3.o
axiom_algebra_layer_1_nrlibs = \
$(axiom_algebra_layer_1:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -433,7 +433,7 @@ axiom_algebra_layer_4 = \
REPDB.o RFDIST.o RIDIST.o RMODULE.o \
SEXCAT.o SGROUP.o SGROUP-.o SPACEC.o \
SPLNODE.o STEP.o SUCH.o TEX1.o \
- UDVO.o YSTREAM.o
+ UDVO.o YSTREAM.o PAIR.o
axiom_algebra_layer_4_nrlibs = \
$(axiom_algebra_layer_4:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -453,7 +453,7 @@ axiom_algebra_layer_5 = \
ODVAR.o OPQUERY.o ORDFIN.o ORDMON.o \
PATMATCH.o PERMCAT.o PDRING.o PDRING-.o \
SDVAR.o SUP2.o TRIGCAT.o TRIGCAT-.o \
- ULS2.o UP2.o
+ ULS2.o UP2.o
axiom_algebra_layer_5_nrlibs = \
$(axiom_algebra_layer_5:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -732,7 +732,7 @@ axiom_algebra_layer_19 = \
SET.o SPECOUT.o SQMATRIX.o SWITCH.o \
SYMS.o SYMTAB.o SYSSOLP.o UTSCAT.o \
UTSCAT-.o VARIABLE.o WFFINTBS.o SPADPRSR.o \
- PARSER.o
+ PARSER.o PROPFRML.o
axiom_algebra_layer_19_nrlibs = \
$(axiom_algebra_layer_19:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index 70a3f05c..2e8dc2be 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -233,7 +233,7 @@ axiom_algebra_layer_1 = \
PATAB.o PLOT1.o PPCURVE.o PSCURVE.o \
REAL.o RESLATC.o RETRACT.o RETRACT-.o \
SEGBIND2.o SEGCAT.o STREAM1.o STREAM2.o \
- STREAM3.o
+ STREAM3.o
axiom_algebra_layer_1_nrlibs = \
$(axiom_algebra_layer_1:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -308,7 +308,7 @@ axiom_algebra_layer_4 = \
REPDB.o RFDIST.o RIDIST.o RMODULE.o \
SEXCAT.o SGROUP.o SGROUP-.o SPACEC.o \
SPLNODE.o STEP.o SUCH.o TEX1.o \
- UDVO.o YSTREAM.o
+ UDVO.o YSTREAM.o PAIR.o
axiom_algebra_layer_4_nrlibs = \
$(axiom_algebra_layer_4:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -339,7 +339,7 @@ axiom_algebra_layer_5 = \
ODVAR.o OPQUERY.o ORDFIN.o ORDMON.o \
PATMATCH.o PERMCAT.o PDRING.o PDRING-.o \
SDVAR.o SUP2.o TRIGCAT.o TRIGCAT-.o \
- ULS2.o UP2.o
+ ULS2.o UP2.o
axiom_algebra_layer_5_nrlibs = \
$(axiom_algebra_layer_5:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -997,7 +997,7 @@ axiom_algebra_layer_19 = \
SET.o SPECOUT.o SQMATRIX.o SWITCH.o \
SYMS.o SYMTAB.o SYSSOLP.o UTSCAT.o \
UTSCAT-.o VARIABLE.o WFFINTBS.o SPADPRSR.o \
- PARSER.o
+ PARSER.o PROPFRML.o
axiom_algebra_layer_19_nrlibs = \
$(axiom_algebra_layer_19:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet
index 85b2c056..4fe76ef3 100644
--- a/src/algebra/boolean.spad.pamphlet
+++ b/src/algebra/boolean.spad.pamphlet
@@ -1,4 +1,4 @@
-\documentclass{article}
+documentclass{article}
\usepackage{axiom}
\title{src/algebra boolean.spad}
@@ -33,6 +33,233 @@ PropositionalLogic(): Category == with
++ equiv(p,q) returns the logical equivalence of `p', `q'.
@
+\section{domain PROPFRML PropositionalFormula}
+<<domain PROPFRML PropositionalFormula>>=
+)set mess autoload on
+)abbrev domain PROPFRML PropositionalFormula
+++ Author: Gabriel Dos Reis
+++ Date Created: Januray 14, 2008
+++ Date Last Modified: January 16, 2008
+++ Description: This domain implements propositional formula build
+++ over a term domain, that itself belongs to PropositionalLogic
+PropositionalFormula(T: PropositionalLogic): PropositionalLogic with
+ if T has CoercibleTo OutputForm then CoercibleTo OutputForm
+ coerce: T -> %
+ ++ coerce(t) turns the term `t' into a propositional formula
+ coerce: Symbol -> %
+ ++ coerce(t) turns the term `t' into a propositional variable.
+-- variables: % -> Set Symbol
+ ++ variables(p) returns the set of propositional variables
+ ++ appearing in the proposition `p'.
+
+ term?: % -> Boolean
+ term: % -> T
+
+ variable?: % -> Boolean
+ variable: % -> Symbol
+
+ not?: % -> Boolean
+ notOperand: % -> %
+
+ and?: % -> Boolean
+ andOperands: % -> Pair(%, %)
+
+ or?: % -> Boolean
+ orOperands: % -> Pair(%,%)
+
+ implies?: % -> Boolean
+ impliesOperands: % -> Pair(%,%)
+
+ equiv?: % -> Boolean
+ equivOperands: % -> Pair(%,%)
+
+ == add
+ FORMULA ==> Union(base: T, var: Symbol, unForm: %,
+ binForm: Record(op: Symbol, lhs: %, rhs: %))
+
+ per(f: FORMULA): % ==
+ f pretend %
+
+ rep(p: %): FORMULA ==
+ p pretend FORMULA
+
+ coerce(t: T): % ==
+ per [t]$FORMULA
+
+ coerce(s: Symbol): % ==
+ per [s]$FORMULA
+
+ not p ==
+ per [p]$FORMULA
+
+ binaryForm(o: Symbol, l: %, r: %): % ==
+ per [[o, l, r]$Record(op: Symbol, lhs: %, rhs: %)]$FORMULA
+
+ p and q ==
+ binaryForm('_and, p, q)
+
+ p or q ==
+ binaryForm('_or, p, q)
+
+ implies(p,q) ==
+ binaryForm('implies, p, q)
+
+ equiv(p,q) ==
+ binaryForm('equiv, p, q)
+
+-- variables p ==
+-- p' := rep p
+-- p' case base => empty()$Set(Symbol)
+-- p' case var => { p'.var }
+-- p' case unForm => variables(p'.unForm)
+-- p'' := p'.binForm
+-- union(variables(p''.lhs), variables(p''.rhs))$Set(Symbol)
+
+ -- returns true if the proposition `p' is a formula of kind
+ -- indicated by `o'.
+ isBinaryNode?(p: %, o: Symbol): Boolean ==
+ p' := rep p
+ p' case binForm and p'.binForm.op = o
+
+ -- returns the operands of a binary formula node
+ binaryOperands(p: %): Pair(%,%) ==
+ p' := (rep p).binForm
+ pair(p'.lhs,p'.rhs)$Pair(%,%)
+
+ term? p ==
+ rep p case base
+
+ term p ==
+ term? p => (rep p).base
+ userError "formula is not a term"
+
+ variable? p ==
+ rep p case var
+
+ variable p ==
+ variable? p => (rep p).var
+ userError "formula is not a variable"
+
+ not? p ==
+ rep p case unForm
+
+ notOperand p ==
+ not? p => (rep p).unForm
+ userError "formula is not a logical negation"
+
+ and? p ==
+ isBinaryNode?(p,'_and)
+
+ andOperands p ==
+ and? p => binaryOperands p
+ userError "formula is not a conjunction formula"
+
+ or? p ==
+ isBinaryNode?(p,'_or)
+
+ orOperands p ==
+ or? p => binaryOperands p
+ userError "formula is not a disjunction formula"
+
+ implies? p ==
+ isBinaryNode?(p, 'implies)
+
+ impliesOperands p ==
+ implies? p => binaryOperands p
+ userError "formula is not an implication formula"
+
+ equiv? p ==
+ isBinaryNode?(p,'equiv)
+
+ equivOperands p ==
+ equiv? p => binaryOperands p
+ userError "formula is not an equivalence equivalence"
+
+ -- Unparsing grammar.
+ --
+ -- Ideally, the following syntax would the external form
+ -- Formula:
+ -- EquivFormula
+ --
+ -- EquivFormula:
+ -- ImpliesFormula
+ -- ImpliesFormula <=> EquivFormula
+ --
+ -- ImpliesFormula:
+ -- OrFormula
+ -- OrFormula => ImpliesFormula
+ --
+ -- OrFormula:
+ -- AndFormula
+ -- AndFormula or OrFormula
+ --
+ -- AndFormula
+ -- NotFormula
+ -- NotFormula and AndFormula
+ --
+ -- NotFormula:
+ -- PrimaryFormula
+ -- not NotFormula
+ --
+ -- PrimaryFormula:
+ -- Term
+ -- ( Formula )
+ --
+ -- Note: Since the token '=>' already means a construct different
+ -- from what we would like to have as a notation for
+ -- propositional logic, we will output the formula `p => q'
+ -- as implies(p,q), which looks like a function call.
+ -- Similarly, we do not have the token `<=>' for logical
+ -- equivalence; so we unparser `p <=> q' as equiv(p,q).
+ --
+ -- So, we modify the nonterminal PrimaryFormula to read
+ -- PrimaryFormula:
+ -- Term
+ -- implies(Formula, Formula)
+ -- equiv(Formula, Formula)
+ if T has CoercibleTo OutputForm then
+ formula: % -> OutputForm
+ coerce(p: %): OutputForm ==
+ formula p
+
+ primaryFormula(p: %): OutputForm ==
+ term? p => term(p)::OutputForm
+ variable? p => variable(p)::OutputForm
+ if rep p case binForm then
+ p' := (rep p).binForm
+ p'.op = 'implies or p'.op = 'equiv =>
+ return elt(outputForm p'.op,
+ [formula p'.lhs, formula p'.rhs])$OutputForm
+ paren(formula p)$OutputForm
+
+ notFormula(p: %): OutputForm ==
+ not? p =>
+ elt(outputForm '_not, [notFormula((rep p).'unForm)])$OutputForm
+ primaryFormula p
+
+ andFormula(p: %): OutputForm ==
+ and? p =>
+ p' := (rep p).binForm
+ -- ??? idealy, we should be using `and$OutputForm' but
+ -- ??? a bug in the compiler currently prevents that.
+ infix(outputForm '_and, notFormula p'.lhs,
+ andFormula p'.rhs)$OutputForm
+ notFormula p
+
+ orFormula(p: %): OutputForm ==
+ or? p =>
+ p' := (rep p).binForm
+ -- ??? idealy, we should be using `or$OutputForm' but
+ -- ??? a bug in the compiler currently prevents that.
+ infix(outputForm '_or, andFormula p'.lhs,
+ orFormula p'.rhs)$OutputForm
+ andFormula p
+
+ formula p ==
+ -- Note: this should be equivFormula, but see the explanation above.
+ orFormula p
+
+@
\section{domain REF Reference}
<<domain REF Reference>>=
@@ -503,6 +730,7 @@ Bits(): Exports == Implementation where
<<domain IBITS IndexedBits>>
<<domain BITS Bits>>
<<category PROPLOG PropositionalLogic>>
+<<domain PROPFRML PropositionalFormula>>
@
\eject
\begin{thebibliography}{99}
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index 94b05ddb..be4f8464 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -254,6 +254,7 @@
(|OrthogonalPolynomialFunctions| . ORTHPOL)
(|OutputPackage| . OUT)
(|PadeApproximantPackage| . PADEPAC)
+ (|Pair| . PAIR)
(|Palette| . PALETTE)
(|PartialFraction| . PFR)
(|PatternFunctions2| . PATTERN2)
@@ -289,6 +290,7 @@
(|PrimeField| . PF)
(|PrimitiveArrayFunctions2| . PRIMARR2)
(|PrintPackage| . PRINT)
+ (|PropositionalFormula| . PROPFRML)
(|QuadraticForm| . QFORM)
(|QuasiComponentPackage| . QCMPACK)
(|Quaternion| . QUAT)
@@ -663,6 +665,7 @@
(|PrimitiveFunctionCategory| . PRIMCAT)
(|PrincipalIdealDomain| . PID)
(|PriorityQueueAggregate| . PRQAGG)
+ (|PropositionalLogic| . PROPLOG)
(|QuaternionCategory| . QUATCAT)
(|QueueAggregate| . QUAGG)
(|QuotientFieldCategory| . QFCAT)
diff --git a/src/algebra/mkrecord.spad.pamphlet b/src/algebra/mkrecord.spad.pamphlet
index 2fe15855..0087800c 100644
--- a/src/algebra/mkrecord.spad.pamphlet
+++ b/src/algebra/mkrecord.spad.pamphlet
@@ -25,10 +25,64 @@ MakeRecord(S: Type, T: Type): public == private where
[s,t]$Record(part1: S, part2: T)
@
+
+\section{domain PAIR Pair}
+<<domain PAIR Pair>>=
+)abbrev domain PAIR Pair
+++ Author: Gabriel Dos Reis
+++ Date Created: January 16, 2008
+++ Date Last Modified: January 16, 2008
+++ Description: This domain provides a very simple representation
+++ of the notion of `pair of objects'. It does not try to achieve
+++ all possible imaginable things.
+Pair(S: Type, T: Type): Public == Private where
+ Public ==> Type with
+
+ if S has CoercibleTo OutputForm and T has CoercibleTo OutputForm then
+ CoercibleTo OutputForm
+
+ if S has SetCategory and T has SetCategory then SetCategory
+
+ pair: (S,T) -> %
+ ++ pair(s,t) returns a pair object composed of `s' and `t'.
+ construct: (S,T) -> %
+ ++ construct(s,t) is same as pair(s,t), with syntactic sugar.
+ first: % -> S
+ ++ first(p) extracts the first component of `p'.
+ second: % -> T
+ ++ second(p) extracts the second components of `p'.
+
+ Private ==> add
+ Rep := Record(fst: S, snd: T)
+
+ pair(s,t) ==
+ [s,t]$Rep
+
+ construct(s,t) ==
+ pair(s,t)
+
+ first x ==
+ x.fst
+
+ second x ==
+ x.snd
+
+ if S has CoercibleTo OutputForm and T has CoercibleTo OutputForm then
+ coerce x ==
+ paren([first(x)::OutputForm, second(x)::OutputForm])$OutputForm
+
+ if S has SetCategory and T has SetCategory then
+ x = y ==
+ first(x) = first(y) and second(x) = second(y)
+@
+
+
\section{License}
<<license>>=
---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
--All rights reserved.
+-- Copyright (C) 2007-2008, Gabriel Dos Reis.
+-- All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
@@ -62,6 +116,7 @@ MakeRecord(S: Type, T: Type): public == private where
<<license>>
<<package MKRECORD MakeRecord>>
+<<domain PAIR Pair>>
@
\eject
\begin{thebibliography}{99}
diff --git a/src/interp/i-spec1.boot b/src/interp/i-spec1.boot
index 574d5b75..064c7e58 100644
--- a/src/interp/i-spec1.boot
+++ b/src/interp/i-spec1.boot
@@ -246,7 +246,7 @@ upand x ==
putTarget(term1,$Boolean)
putTarget(term2,$Boolean)
ms := bottomUp term1
- ms isnt [=$Boolean] => throwKeyedMsgSP("S2IS0054",[1,'"_"and_""],term1)
+ ms isnt [=$Boolean] => nil
$genValue =>
BooleanEquality(objValUnwrap(getValue term1),
getConstantFromDomain('(false),$Boolean)) =>
@@ -254,12 +254,12 @@ upand x ==
putModeSet(x,ms)
-- first term is true, so look at the second one
ms := bottomUp term2
- ms isnt [=$Boolean] => throwKeyedMsgSP("S2IS0054",[2,'"_"and_""],term2)
+ ms isnt [=$Boolean] => nil
putValue(x,getValue term2)
putModeSet(x,ms)
ms := bottomUp term2
- ms isnt [=$Boolean] => throwKeyedMsgSP("S2IS0054",[2,'"_"and_""],term2)
+ ms isnt [=$Boolean] => nil
-- generate an IF expression and let the rest of the code handle it
cond := [mkAtreeNode "=",mkAtree "false",term1]
putTarget(cond,$Boolean)
@@ -276,7 +276,7 @@ upor x ==
putTarget(term1,$Boolean)
putTarget(term2,$Boolean)
ms := bottomUp term1
- ms isnt [=$Boolean] => throwKeyedMsgSP("S2IS0054",[1,'"_"or_""],term1)
+ ms isnt [=$Boolean] => nil
$genValue =>
BooleanEquality(objValUnwrap(getValue term1),
getConstantFromDomain('(true),$Boolean)) =>
@@ -284,12 +284,12 @@ upor x ==
putModeSet(x,ms)
-- first term is false, so look at the second one
ms := bottomUp term2
- ms isnt [=$Boolean] => throwKeyedMsgSP("S2IS0054",[2,'"_"or_""],term2)
+ ms isnt [=$Boolean] => nil
putValue(x,getValue term2)
putModeSet(x,ms)
ms := bottomUp term2
- ms isnt [=$Boolean] => throwKeyedMsgSP("S2IS0054",[2,'"_"or_""],term2)
+ ms isnt [=$Boolean] => nil
-- generate an IF expression and let the rest of the code handle it
cond := [mkAtreeNode "=",mkAtree "true",term1]
putTarget(cond,$Boolean)
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index d64b8402..cab36da4 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2225717 . 3409435990)
+(2226437 . 3409486832)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4189 . T) (-4187 . T) (-4186 . T) ((-4194 "*") . T) (-4185 . T) (-4190 . T) (-4184 . T) (-2181 . T))
+((-4192 . T) (-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4188 . T) (-4193 . T) (-4187 . T) (-2169 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1725)
+(-31 R -4057)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))))
+((|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4192)))
+((|HasAttribute| |#1| (QUOTE -4195)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1725 UP UPUP -1673)
+(-39 -4057 UP UPUP -2263)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4185 |has| (-377 |#2|) (-333)) (-4190 |has| (-377 |#2|) (-333)) (-4184 |has| (-377 |#2|) (-333)) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3747 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3747 (|HasCategory| (-377 |#2|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
-(-40 R -1725)
+((-4188 |has| (-377 |#2|) (-333)) (-4193 |has| (-377 |#2|) (-333)) (-4187 |has| (-377 |#2|) (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3786 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3786 (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-40 R -4057)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -102,31 +102,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-278))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4189 |has| |#1| (-509)) (-4187 . T) (-4186 . T))
+((-4192 |has| |#1| (-509)) (-4190 . T) (-4189 . T))
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (-3747 (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-3786 (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (LIST (QUOTE -954) (QUOTE (-517)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1725)
+(-53 |Base| R -4057)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-59 -2989)
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-59 -2981)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -2989)
+(-60 -2981)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -2989)
+(-61 -2981)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2989)
+(-62 -2981)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -2989)
+(-63 -2981)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2989)
+(-64 -2981)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2989)
+(-65 -2981)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2989)
+(-66 -2981)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -2989)
+(-67 -2981)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -2989)
+(-68 -2981)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2989)
+(-69 -2981)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -2989)
+(-70 -2981)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -2989)
+(-71 -2981)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -2989)
+(-72 -2981)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -2989)
+(-75 -2981)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -2989)
+(-76 -2981)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -2989)
+(-77 -2981)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -2989)
+(-78 -2981)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -2989)
+(-79 -2981)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2989)
+(-80 -2981)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2989)
+(-81 -2981)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -2989)
+(-82 -2981)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2989)
+(-83 -2981)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2989)
+(-84 -2981)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2989)
+(-85 -2981)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2989)
+(-86 -2981)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -2989)
+(-87 -2981)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,8 +286,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4192 . T))
+((-4195 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4192 . T) ((-4194 "*") . T) (-4193 . T) (-4189 . T) (-4187 . T) (-4186 . T) (-4185 . T) (-4190 . T) (-4184 . T) (-4183 . T) (-4182 . T) (-4181 . T) (-4180 . T) (-4188 . T) (-4191 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4179 . T))
+((-4195 . T) ((-4197 "*") . T) (-4196 . T) (-4192 . T) (-4190 . T) (-4189 . T) (-4188 . T) (-4193 . T) (-4187 . T) (-4186 . T) (-4185 . T) (-4184 . T) (-4183 . T) (-4191 . T) (-4194 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4182 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4194 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4197 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4192 . T))
+((-4195 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,26 +338,26 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-939))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1052))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1076)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3747 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-104)
((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
(-105)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1005))) (-12 (|HasCategory| (-107) (QUOTE (-1005))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1006))) (-12 (|HasCategory| (-107) (QUOTE (-1006))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787)))))
(-106 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
(-107)
-((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,{}b)} returns the logical implication of Boolean \\spad{a} and \\spad{b}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical inclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of Boolean \\spad{a} and \\spad{b}.")) (|not| (($ $) "\\spad{not n} returns the negation of \\spad{n}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
+((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
(-108 A)
@@ -368,25 +368,25 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-110 -1725 UP)
+(-110 -4057 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-111 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-111 |#1|) (QUOTE (-832))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-939))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1052))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3747 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-832)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-111 |#1|) (QUOTE (-833))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-940))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1053))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3786 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-833)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
(-113 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)))
+((|HasAttribute| |#1| (QUOTE -4196)))
(-114 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-115 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -394,15 +394,15 @@ NIL
NIL
(-116 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-117 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-118)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
(-119 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -410,16 +410,16 @@ NIL
NIL
(-120 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-123)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -430,20 +430,20 @@ NIL
NIL
(-125)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4194 "*") . T))
+(((-4197 "*") . T))
NIL
-(-126 |minix| -3136 S T$)
+(-126 |minix| -3124 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-127 |minix| -3136 R)
+(-127 |minix| -3124 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-128)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4192 . T) (-4182 . T) (-4193 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1005))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3747 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4195 . T) (-4185 . T) (-4196 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3786 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))))
(-129 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -458,7 +458,7 @@ NIL
NIL
(-132)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-133 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -466,9 +466,9 @@ NIL
NIL
(-134)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4189 . T))
+((-4192 . T))
NIL
-(-135 -1725 UP UPUP)
+(-135 -4057 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -479,14 +479,14 @@ NIL
(-137 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasAttribute| |#1| (QUOTE -4192)))
+((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasAttribute| |#1| (QUOTE -4195)))
(-138 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-139 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4187 . T) (-4186 . T) (-4189 . T))
+((-4190 . T) (-4189 . T) (-4192 . T))
NIL
(-140)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -500,7 +500,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-143 R -1725)
+(-143 R -4057)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -527,10 +527,10 @@ NIL
(-149 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasAttribute| |#2| (QUOTE -4191)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-921))) (|HasCategory| |#2| (QUOTE (-1098))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4191)) (|HasAttribute| |#2| (QUOTE -4194)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
(-150 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4185 -3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4188 |has| |#1| (-6 -4188)) (-4191 |has| |#1| (-6 -4191)) (-3883 . T) (-2181 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 -3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4191 |has| |#1| (-6 -4191)) (-4194 |has| |#1| (-6 -4194)) (-3913 . T) (-2169 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-151 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -542,8 +542,8 @@ NIL
NIL
(-153 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4185 -3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4188 |has| |#1| (-6 -4188)) (-4191 |has| |#1| (-6 -4191)) (-3883 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1097))) (-12 (|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-972))) (-12 (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-502))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3747 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-207))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1097)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-832))))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-832))))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasAttribute| |#1| (QUOTE -4191)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076))))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-319)))))
+((-4188 -3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4191 |has| |#1| (-6 -4191)) (-4194 |has| |#1| (-6 -4194)) (-3913 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1098))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3786 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-207))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1098)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-833))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-833))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4191)) (|HasAttribute| |#1| (QUOTE -4194)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-319)))))
(-154 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -554,11 +554,11 @@ NIL
NIL
(-156)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-157 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4194 "*") . T) (-4185 . T) (-4190 . T) (-4184 . T) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") . T) (-4188 . T) (-4193 . T) (-4187 . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-158 R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
@@ -571,7 +571,7 @@ NIL
(-160 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-875 |#2|) (LIST (QUOTE -809) (|devaluate| |#1|))))
+((|HasCategory| (-876 |#2|) (LIST (QUOTE -810) (|devaluate| |#1|))))
(-161 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -584,7 +584,7 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-164 R -1725)
+(-164 R -4057)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -688,19 +688,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-190 -1725 UP UPUP R)
+(-190 -4057 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-191 -1725 FP)
+(-191 -4057 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-192)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-939))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1052))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1076)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3747 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
-(-193 R -1725)
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-193 R -4057)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -714,19 +714,19 @@ NIL
NIL
(-196 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-197 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4189 . T))
+((-4192 . T))
NIL
-(-198 R -1725)
+(-198 R -4057)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-199)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2204 . T) (-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-200)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -734,23 +734,23 @@ NIL
NIL
(-201 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4194 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4197 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-202 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-203 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
(-204 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))))
+((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))))
(-205 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-206 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -758,36 +758,36 @@ NIL
NIL
(-207)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-208 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4192)))
+((|HasAttribute| |#1| (QUOTE -4195)))
(-209 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
(-210)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-211 S -3136 R)
+(-211 S -3124 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4189)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1005))))
-(-212 -3136 R)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4192)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-1006))))
+(-212 -3124 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4186 |has| |#2| (-963)) (-4187 |has| |#2| (-963)) (-4189 |has| |#2| (-6 -4189)) ((-4194 "*") |has| |#2| (-156)) (-4192 . T) (-2181 . T))
+((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T) (-2169 . T))
NIL
-(-213 -3136 A B)
+(-213 -3124 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-214 -3136 R)
+(-214 -3124 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4186 |has| |#2| (-963)) (-4187 |has| |#2| (-963)) (-4189 |has| |#2| (-6 -4189)) ((-4194 "*") |has| |#2| (-156)) (-4192 . T))
-((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3747 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (|HasCategory| |#2| (QUOTE (-963))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005)))) (|HasAttribute| |#2| (QUOTE -4189)) (|HasCategory| |#2| (QUOTE (-123))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-25))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1005)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005))))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3747 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3786 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#2| (QUOTE (-964))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -4192)) (|HasCategory| |#2| (QUOTE (-123))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-25))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-215)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -798,47 +798,47 @@ NIL
NIL
(-217)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4185 . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-218 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-219 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-220 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-221 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4194 "*") |has| |#2| (-156)) (-4185 |has| |#2| (-509)) (-4190 |has| |#2| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4190)) (|HasCategory| |#2| (QUOTE (-421))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-222)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 12,{} 2007. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reify| (((|Syntax|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-223 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4189 -3747 (-3993 (|has| |#4| (-963)) (|has| |#4| (-207))) (-3993 (|has| |#4| (-963)) (|has| |#4| (-823 (-1076)))) (|has| |#4| (-6 -4189)) (-3993 (|has| |#4| (-963)) (|has| |#4| (-579 (-517))))) (-4186 |has| |#4| (-963)) (-4187 |has| |#4| (-963)) ((-4194 "*") |has| |#4| (-156)) (-4192 . T))
-((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3747 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3747 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-963)))) (-3747 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3747 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#4| (QUOTE (-207))) (-3747 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517)))))) (-3747 (|HasCategory| |#4| (QUOTE (-963))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1005)))) (-3747 (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1005))))) (-3747 (|HasAttribute| |#4| (QUOTE -4189)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3747 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4192 -3786 (-4024 (|has| |#4| (-964)) (|has| |#4| (-207))) (-4024 (|has| |#4| (-964)) (|has| |#4| (-824 (-1077)))) (|has| |#4| (-6 -4192)) (-4024 (|has| |#4| (-964)) (|has| |#4| (-579 (-517))))) (-4189 |has| |#4| (-964)) (-4190 |has| |#4| (-964)) ((-4197 "*") |has| |#4| (-156)) (-4195 . T))
+((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3786 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3786 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-964)))) (-3786 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3786 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-964)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#4| (QUOTE (-207))) (-3786 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-964)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-964)))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517)))))) (-3786 (|HasCategory| |#4| (QUOTE (-964))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1006)))) (-3786 (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-964)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1006))))) (-3786 (|HasAttribute| |#4| (QUOTE -4192)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-964)))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3786 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
(-224 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4189 -3747 (-3993 (|has| |#3| (-963)) (|has| |#3| (-207))) (-3993 (|has| |#3| (-963)) (|has| |#3| (-823 (-1076)))) (|has| |#3| (-6 -4189)) (-3993 (|has| |#3| (-963)) (|has| |#3| (-579 (-517))))) (-4186 |has| |#3| (-963)) (-4187 |has| |#3| (-963)) ((-4194 "*") |has| |#3| (-156)) (-4192 . T))
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3747 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963)))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-207))) (-3747 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517)))))) (-3747 (|HasCategory| |#3| (QUOTE (-963))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1005)))) (-3747 (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1005))))) (-3747 (|HasAttribute| |#3| (QUOTE -4189)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3747 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4192 -3786 (-4024 (|has| |#3| (-964)) (|has| |#3| (-207))) (-4024 (|has| |#3| (-964)) (|has| |#3| (-824 (-1077)))) (|has| |#3| (-6 -4192)) (-4024 (|has| |#3| (-964)) (|has| |#3| (-579 (-517))))) (-4189 |has| |#3| (-964)) (-4190 |has| |#3| (-964)) ((-4197 "*") |has| |#3| (-156)) (-4195 . T))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3786 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-207))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-3786 (|HasCategory| |#3| (QUOTE (-964))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006)))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006))))) (-3786 (|HasAttribute| |#3| (QUOTE -4192)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3786 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))))
(-225 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-207))))
(-226 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
(-227 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
(-228)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -878,8 +878,8 @@ NIL
NIL
(-237 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-238 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -924,11 +924,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-249 R -1725)
+(-249 R -4057)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-250 R -1725)
+(-250 R -4057)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -943,10 +943,10 @@ NIL
(-253 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))))
+((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))))
(-254 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
(-255 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -967,18 +967,18 @@ NIL
(-259 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)))
+((|HasAttribute| |#1| (QUOTE -4196)))
(-260 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-261 S R |Mod| -1769 -2662 |exactQuo|)
+(-261 S R |Mod| -2563 -3824 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-262)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4185 . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-263 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
@@ -990,21 +990,21 @@ NIL
NIL
(-265 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4189 -3747 (|has| |#1| (-963)) (|has| |#1| (-442))) (-4186 |has| |#1| (-963)) (-4187 |has| |#1| (-963)))
-((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3747 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-963)))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3747 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1017))) (-3747 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-21))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-963)))) (-3747 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-963)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1005)))))
+((-4192 -3786 (|has| |#1| (-964)) (|has| |#1| (-442))) (-4189 |has| |#1| (-964)) (-4190 |has| |#1| (-964)))
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1006)))))
(-266 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-267)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-268 -1725 S)
+(-268 -4057 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-269 E -1725)
+(-269 E -4057)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1019,7 +1019,7 @@ NIL
(-272 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-963))))
+((|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-964))))
(-273)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1042,7 +1042,7 @@ NIL
NIL
(-278)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-279 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1052,7 +1052,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-281 -1725)
+(-281 -4057)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1062,8 +1062,8 @@ NIL
NIL
(-283 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3747 (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| $ (QUOTE (-132)))) (-3747 (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1143 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| $ (QUOTE (-132))))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-940))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-1053))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3786 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| $ (QUOTE (-132)))) (-3786 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| $ (QUOTE (-132))))))
(-284 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1074,9 +1074,9 @@ NIL
NIL
(-286 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4189 -3747 (-3993 (|has| |#1| (-963)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3747 (-3993 (|has| |#1| (-963)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-963)) (|has| |#1| (-442)))) (|has| |#1| (-963)) (|has| |#1| (-442))) (-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) ((-4194 "*") |has| |#1| (-509)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-509)) (-4184 |has| |#1| (-509)))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-963))) (-3747 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3747 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-21))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-963)))) (-3747 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-963)))) (-3747 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1017))) (-3747 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1017)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1017)))) (-3747 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (LIST (QUOTE -954) (QUOTE (-517)))))
-(-287 R -1725)
+((-4192 -3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-964)) (|has| |#1| (-442)))) (|has| |#1| (-964)) (|has| |#1| (-442))) (-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) ((-4197 "*") |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-509)) (-4187 |has| |#1| (-509)))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-964))) (-3786 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1018))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3786 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517)))))
+(-287 R -4057)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1086,8 +1086,8 @@ NIL
NIL
(-289 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
(-290 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1098,7 +1098,7 @@ NIL
NIL
(-292 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
((|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-724))))
(-293 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1114,19 +1114,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
(-296 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-297 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-298 S -1725)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-298 S -4057)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))))
-(-299 -1725)
+(-299 -4057)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-300)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1144,54 +1144,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-304 S -1725 UP UPUP R)
+(-304 S -4057 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-305 -1725 UP UPUP R)
+(-305 -4057 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-306 -1725 UP UPUP R)
+(-306 -4057 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-307 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
(-308 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-309 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (LIST (QUOTE -954) (QUOTE (-517)))))
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517)))))
(-310 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-311 S -1725 UP UPUP)
+(-311 S -4057 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-333))))
-(-312 -1725 UP UPUP)
+(-312 -4057 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4185 |has| (-377 |#2|) (-333)) (-4190 |has| (-377 |#2|) (-333)) (-4184 |has| (-377 |#2|) (-333)) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 |has| (-377 |#2|) (-333)) (-4193 |has| (-377 |#2|) (-333)) (-4187 |has| (-377 |#2|) (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-313 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-833 |#1|) (QUOTE (-134))) (|HasCategory| (-833 |#1|) (QUOTE (-338))) (|HasCategory| (-833 |#1|) (QUOTE (-132))) (-3747 (|HasCategory| (-833 |#1|) (QUOTE (-132))) (|HasCategory| (-833 |#1|) (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-834 |#1|) (QUOTE (-134))) (|HasCategory| (-834 |#1|) (QUOTE (-338))) (|HasCategory| (-834 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-834 |#1|) (QUOTE (-132))) (|HasCategory| (-834 |#1|) (QUOTE (-338)))))
(-314 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-315 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-316 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1206,33 +1206,33 @@ NIL
NIL
(-319)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-320 R UP -1725)
+(-320 R UP -4057)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-321 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-833 |#1|) (QUOTE (-134))) (|HasCategory| (-833 |#1|) (QUOTE (-338))) (|HasCategory| (-833 |#1|) (QUOTE (-132))) (-3747 (|HasCategory| (-833 |#1|) (QUOTE (-132))) (|HasCategory| (-833 |#1|) (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-834 |#1|) (QUOTE (-134))) (|HasCategory| (-834 |#1|) (QUOTE (-338))) (|HasCategory| (-834 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-834 |#1|) (QUOTE (-132))) (|HasCategory| (-834 |#1|) (QUOTE (-338)))))
(-322 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-323 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-324 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-833 |#1|) (QUOTE (-134))) (|HasCategory| (-833 |#1|) (QUOTE (-338))) (|HasCategory| (-833 |#1|) (QUOTE (-132))) (-3747 (|HasCategory| (-833 |#1|) (QUOTE (-132))) (|HasCategory| (-833 |#1|) (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-834 |#1|) (QUOTE (-134))) (|HasCategory| (-834 |#1|) (QUOTE (-338))) (|HasCategory| (-834 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-834 |#1|) (QUOTE (-132))) (|HasCategory| (-834 |#1|) (QUOTE (-338)))))
(-325 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
-(-326 -1725 GF)
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-326 -4057 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1240,21 +1240,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-328 -1725 FP FPP)
+(-328 -4057 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-329 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-330 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-331 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-332 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1262,7 +1262,7 @@ NIL
NIL
(-333)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-334 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1278,7 +1278,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-509))))
(-337 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4189 |has| |#1| (-509)) (-4187 . T) (-4186 . T))
+((-4192 |has| |#1| (-509)) (-4190 . T) (-4189 . T))
NIL
(-338)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1290,7 +1290,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-333))))
(-340 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-341 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1299,14 +1299,14 @@ NIL
(-342 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))))
+((|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))))
(-343 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4192 . T) (-2181 . T))
+((-4195 . T) (-2169 . T))
NIL
(-344 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4187 . T) (-4186 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4190 . T) (-4189 . T))
NIL
(-345 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1318,7 +1318,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))))
(-347 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4189 . T))
+((-4192 . T))
NIL
(-348 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1326,7 +1326,7 @@ NIL
NIL
(-349)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4175 . T) (-4183 . T) (-2204 . T) (-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4178 . T) (-4186 . T) (-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-350 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1334,23 +1334,23 @@ NIL
NIL
(-351 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
((|HasCategory| |#1| (QUOTE (-156))))
(-352 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
(-353)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-354)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2181 . T))
+((-2169 . T))
NIL
(-355 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
((|HasCategory| |#1| (QUOTE (-156))))
(-356 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1358,7 +1358,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-779))))
(-357)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-358)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1370,13 +1370,13 @@ NIL
NIL
(-360 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
(-361)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-362 -1725 UP UPUP R)
+(-362 -4057 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1390,27 +1390,27 @@ NIL
NIL
(-365)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-366)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2181 . T))
+((-2169 . T))
NIL
(-367)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-368 -2989 |returnType| |arguments| |symbols|)
+(-368 -2981 |returnType| |arguments| |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-369 -1725 UP)
+(-369 -4057 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-370 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-2181 . T))
+((-2169 . T))
NIL
(-371 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1418,15 +1418,15 @@ NIL
NIL
(-372)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-373 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4175)) (|HasAttribute| |#1| (QUOTE -4183)))
+((|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4186)))
(-374)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2204 . T) (-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-375 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1438,20 +1438,20 @@ NIL
NIL
(-377 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4179 -12 (|has| |#1| (-6 -4190)) (|has| |#1| (-421)) (|has| |#1| (-6 -4179))) (-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4190)) (|HasAttribute| |#1| (QUOTE -4179)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3747 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+((-4182 -12 (|has| |#1| (-6 -4193)) (|has| |#1| (-421)) (|has| |#1| (-6 -4182))) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4193)) (|HasAttribute| |#1| (QUOTE -4182)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3786 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-378 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-379 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-380 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))
+((|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))
(-381 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1460,14 +1460,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-383 R -1725 UP A)
+(-383 R -4057 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4189 . T))
+((-4192 . T))
NIL
-(-384 R -1725 UP A |ibasis|)
+(-384 R -4057 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -954) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -955) (|devaluate| |#2|))))
(-385 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1478,12 +1478,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-387 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4189 |has| |#1| (-509)) (-4187 . T) (-4186 . T))
+((-4192 |has| |#1| (-509)) (-4190 . T) (-4189 . T))
NIL
(-388 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1115)))))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1116)))))
(-389 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1510,37 +1510,37 @@ NIL
((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
(-395 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4192 . T) (-4182 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4185 . T) (-4196 . T) (-2169 . T))
NIL
-(-396 R -1725)
+(-396 R -4057)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-397 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4179 -12 (|has| |#1| (-6 -4179)) (|has| |#2| (-6 -4179))) (-4186 . T) (-4187 . T) (-4189 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4179)) (|HasAttribute| |#2| (QUOTE -4179))))
-(-398 R -1725)
+((-4182 -12 (|has| |#1| (-6 -4182)) (|has| |#2| (-6 -4182))) (-4189 . T) (-4190 . T) (-4192 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4182)) (|HasAttribute| |#2| (QUOTE -4182))))
+(-398 R -4057)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-399 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))))
+((|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))))
(-400 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4189 -3747 (|has| |#1| (-963)) (|has| |#1| (-442))) (-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) ((-4194 "*") |has| |#1| (-509)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-509)) (-4184 |has| |#1| (-509)) (-2181 . T))
+((-4192 -3786 (|has| |#1| (-964)) (|has| |#1| (-442))) (-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) ((-4197 "*") |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-509)) (-4187 |has| |#1| (-509)) (-2169 . T))
NIL
-(-401 R -1725)
+(-401 R -4057)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-402 R -1725)
+(-402 R -4057)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-403 R -1725)
+(-403 R -4057)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1548,10 +1548,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-405 R -1725 UP)
+(-405 R -4057 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-47)))))
+((|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-47)))))
(-406)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1566,17 +1566,17 @@ NIL
NIL
(-409)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-410)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2181 . T))
+((-2169 . T))
NIL
(-411 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-412 R UP -1725)
+(-412 R UP -4057)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1614,16 +1614,16 @@ NIL
NIL
(-421)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-422 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4189 |has| (-377 (-875 |#1|)) (-509)) (-4187 . T) (-4186 . T))
-((|HasCategory| (-377 (-875 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-875 |#1|)) (QUOTE (-509))))
+((-4192 |has| (-377 (-876 |#1|)) (-509)) (-4190 . T) (-4189 . T))
+((|HasCategory| (-377 (-876 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-876 |#1|)) (QUOTE (-509))))
(-423 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4194 "*") |has| |#2| (-156)) (-4185 |has| |#2| (-509)) (-4190 |has| |#2| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4190)) (|HasCategory| |#2| (QUOTE (-421))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-424 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1650,7 +1650,7 @@ NIL
NIL
(-430 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
(-431 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1658,8 +1658,8 @@ NIL
NIL
(-432 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1005))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
(-433 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1688,7 +1688,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-440 |lv| -1725 R)
+(-440 |lv| -4057 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1698,45 +1698,45 @@ NIL
NIL
(-442)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-443 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
(-444 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-445 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1005))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
(-446)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-447 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-448)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-449 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4194 "*") |has| |#2| (-156)) (-4185 |has| |#2| (-509)) (-4190 |has| |#2| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4190)) (|HasCategory| |#2| (QUOTE (-421))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-450 -3136 S)
+(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-450 -3124 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4186 |has| |#2| (-963)) (-4187 |has| |#2| (-963)) (-4189 |has| |#2| (-6 -4189)) ((-4194 "*") |has| |#2| (-156)) (-4192 . T))
-((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3747 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (|HasCategory| |#2| (QUOTE (-963))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005)))) (|HasAttribute| |#2| (QUOTE -4189)) (|HasCategory| |#2| (QUOTE (-123))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-25))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1005)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005))))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3747 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3786 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#2| (QUOTE (-964))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -4192)) (|HasCategory| |#2| (QUOTE (-123))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-25))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-451 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-452 -1725 UP UPUP R)
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-452 -4057 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1746,15 +1746,15 @@ NIL
NIL
(-454)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-939))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1052))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1076)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3747 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-455 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4192)) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
+((|HasAttribute| |#1| (QUOTE -4195)) (|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
(-456 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-457 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
@@ -1764,34 +1764,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-459 -1725 UP |AlExt| |AlPol|)
+(-459 -4057 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-460)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (LIST (QUOTE -954) (QUOTE (-517)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517)))))
(-461 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-462 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-463 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-464 R UP -1725)
+(-464 R UP -4057)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-465 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1005))) (-12 (|HasCategory| (-107) (QUOTE (-1005))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1006))) (-12 (|HasCategory| (-107) (QUOTE (-1006))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787)))))
(-466 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1804,10 +1804,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-469 -1725 |Expon| |VarSet| |DPoly|)
+(-469 -4057 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1076)))))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1077)))))
(-470 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1850,32 +1850,32 @@ NIL
((|HasCategory| |#2| (QUOTE (-724))))
(-480 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-481 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3747 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
(-482 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-483 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-484 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4193)))
+((|HasAttribute| |#3| (QUOTE -4196)))
(-485 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4193)))
+((|HasAttribute| |#7| (QUOTE -4196)))
(-486 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4194 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4197 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-487 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
@@ -1888,7 +1888,7 @@ NIL
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-490 K -1725 |Par|)
+(-490 K -4057 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -1908,7 +1908,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-495 K -1725 |Par|)
+(-495 K -4057 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -1938,17 +1938,17 @@ NIL
NIL
(-502)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4190 . T) (-4191 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-503 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-504 R -1725)
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-504 R -4057)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-505 R0 -1725 UP UPUP R)
+(-505 R0 -4057 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -1958,7 +1958,7 @@ NIL
NIL
(-507 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2204 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-508 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -1966,9 +1966,9 @@ NIL
NIL
(-509)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-510 R -1725)
+(-510 R -4057)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -1980,7 +1980,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-513 R -1725 L)
+(-513 R -4057 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
@@ -1988,31 +1988,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-515 -1725 UP UPUP R)
+(-515 -4057 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-516 -1725 UP)
+(-516 -4057 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-517)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4174 . T) (-4180 . T) (-4184 . T) (-4179 . T) (-4190 . T) (-4191 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4177 . T) (-4183 . T) (-4187 . T) (-4182 . T) (-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-518)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-519 R -1725 L)
+(-519 R -4057 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
-(-520 R -1725)
+(-520 R -4057)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
-(-521 -1725 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
+(-521 -4057 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2020,54 +2020,54 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-523 -1725)
+(-523 -4057)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-524 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2204 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-525)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-526 R -1725)
+(-526 R -4057)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
-(-527 -1725 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
+(-527 -4057 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-528 R -1725)
+(-528 R -4057)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
(-529 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-530 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
(-531)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-532 R -1725)
+(-532 R -4057)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-533 E -1725)
+(-533 E -4057)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-534 -1725)
+(-534 -4057)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4187 . T) (-4186 . T))
-((|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-1076)))))
+((-4190 . T) (-4189 . T))
+((|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-1077)))))
(-535 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2090,19 +2090,19 @@ NIL
NIL
(-540 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1005))) (-3747 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1005)))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3747 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006))) (-3786 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006)))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3786 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
(-541 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-542 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))))
(-543 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4187 |has| |#1| (-509)) (-4186 |has| |#1| (-509)) ((-4194 "*") |has| |#1| (-509)) (-4185 |has| |#1| (-509)) (-4189 . T))
+((-4190 |has| |#1| (-509)) (-4189 |has| |#1| (-509)) ((-4197 "*") |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4192 . T))
((|HasCategory| |#1| (QUOTE (-509))))
(-544 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2112,7 +2112,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-546 R -1725 FG)
+(-546 R -4057 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2122,31 +2122,31 @@ NIL
NIL
(-548 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-549 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4192)) (|HasCategory| |#3| (QUOTE (-1005))))
+((|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4195)) (|HasCategory| |#3| (QUOTE (-1006))))
(-550 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-551 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4189 -3747 (-3993 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4187 . T) (-4186 . T))
-((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+((-4192 -3786 (-4024 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4190 . T) (-4189 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
(-552 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1059) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (QUOTE (-1059))) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1060) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1060))) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))))
(-553 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-554 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
(-555 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2155,7 +2155,7 @@ NIL
(-556 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))))
(-557 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2164,7 +2164,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-559 -1725 UP)
+(-559 -4057 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2174,20 +2174,20 @@ NIL
NIL
(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-562 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
((|HasCategory| |#1| (QUOTE (-777))))
-(-563 R -1725)
+(-563 R -4057)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-564 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4187 . T) (-4186 . T) ((-4194 "*") . T) (-4185 . T) (-4189 . T))
-((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))))
+((-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4188 . T) (-4192 . T))
+((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))
(-565 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2198,7 +2198,7 @@ NIL
NIL
(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2208,30 +2208,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-570 R -1725)
+(-570 R -4057)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-571 |lv| -1725)
+(-571 |lv| -4057)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4193 . T))
-((|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1059) (QUOTE (-779))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1005))) (-12 (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (QUOTE (-1059))) (LIST (QUOTE |:|) (QUOTE -1859) (QUOTE (-51))))))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-51) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T))
+((|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1060) (QUOTE (-779))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (-12 (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1060))) (LIST (QUOTE |:|) (QUOTE -1846) (QUOTE (-51))))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
(-573 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-574 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4187 . T) (-4186 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4190 . T) (-4189 . T))
NIL
(-575 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4189 -3747 (-3993 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4187 . T) (-4186 . T))
-((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+((-4192 -3786 (-4024 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4190 . T) (-4189 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2246,7 +2246,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))) (-2479 (|HasCategory| |#1| (QUOTE (-333)))))
(-579 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-580 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2262,12 +2262,12 @@ NIL
NIL
(-583 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-584 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-585 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2279,39 +2279,39 @@ NIL
(-587 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)))
+((|HasAttribute| |#1| (QUOTE -4196)))
(-588 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-589 R -1725 L)
+(-589 R -4057 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-590 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-591 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-592 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-593 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-594 -1725 UP)
+(-594 -4057 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-595 A -2669)
+(-595 A -2903)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-596 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
@@ -2326,7 +2326,7 @@ NIL
NIL
(-599 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
((|HasCategory| |#1| (QUOTE (-723))))
(-600 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2334,7 +2334,7 @@ NIL
NIL
(-601 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4187 . T) (-4186 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4190 . T) (-4189 . T))
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-156))))
(-602 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2342,13 +2342,13 @@ NIL
NIL
(-603 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-604 -1725)
+(-604 -4057)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-605 -1725 |Row| |Col| M)
+(-605 -4057 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2358,8 +2358,8 @@ NIL
NIL
(-607 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4189 . T) (-4192 . T) (-4186 . T) (-4187 . T))
-((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4194 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3747 (|HasAttribute| |#2| (QUOTE (-4194 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3747 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156))))
+((-4192 . T) (-4195 . T) (-4189 . T) (-4190 . T))
+((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3786 (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156))))
(-608 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
@@ -2370,12 +2370,12 @@ NIL
NIL
(-610 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-2181 . T))
+((-2169 . T))
NIL
(-611 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-612 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
@@ -2411,10 +2411,10 @@ NIL
(-620 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4194 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
+((|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
(-621 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
(-622 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2422,13 +2422,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))))
(-623 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4194 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4197 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-624 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-625 S -1725 FLAF FLAS)
+(-625 S -4057 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2438,11 +2438,11 @@ NIL
NIL
(-627)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4185 . T) (-4190 |has| (-632) (-333)) (-4184 |has| (-632) (-333)) (-3883 . T) (-4191 |has| (-632) (-6 -4191)) (-4188 |has| (-632) (-6 -4188)) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3747 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1076)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-939))) (|HasCategory| (-632) (QUOTE (-1097))) (-12 (|HasCategory| (-632) (QUOTE (-920))) (|HasCategory| (-632) (QUOTE (-1097)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-972))) (-12 (|HasCategory| (-632) (QUOTE (-972))) (|HasCategory| (-632) (QUOTE (-1097)))) (-3747 (|HasCategory| (-632) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3747 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-832))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4191)) (|HasAttribute| (-632) (QUOTE -4188)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-832))))) (-3747 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-832)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-832))))) (-3747 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-319)))))
+((-4188 . T) (-4193 |has| (-632) (-333)) (-4187 |has| (-632) (-333)) (-3913 . T) (-4194 |has| (-632) (-6 -4194)) (-4191 |has| (-632) (-6 -4191)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3786 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-940))) (|HasCategory| (-632) (QUOTE (-1098))) (-12 (|HasCategory| (-632) (QUOTE (-921))) (|HasCategory| (-632) (QUOTE (-1098)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-973))) (-12 (|HasCategory| (-632) (QUOTE (-973))) (|HasCategory| (-632) (QUOTE (-1098)))) (-3786 (|HasCategory| (-632) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3786 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-833))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4194)) (|HasAttribute| (-632) (QUOTE -4191)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-833))))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-833)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-833))))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-319)))))
(-628 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
(-629 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2452,13 +2452,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-631 OV E -1725 PG)
+(-631 OV E -4057 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-632)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2204 . T) (-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-633 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2466,7 +2466,7 @@ NIL
NIL
(-634)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4191 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4194 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-635 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2488,7 +2488,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-640 S -3342 I)
+(-640 S -3348 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2498,31 +2498,31 @@ NIL
NIL
(-642 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-643 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-644 R |Mod| -1769 -2662 |exactQuo|)
+(-644 R |Mod| -2563 -3824 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-645 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-646 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-647 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) (-4189 . T))
+((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
-(-648 R |Mod| -1769 -2662 |exactQuo|)
+(-648 R |Mod| -2563 -3824 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4189 . T))
+((-4192 . T))
NIL
(-649 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2530,11 +2530,11 @@ NIL
NIL
(-650 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
-(-651 -1725)
+(-651 -4057)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-652 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2558,7 +2558,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))))
(-657 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4185 |has| |#1| (-333)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 |has| |#1| (-333)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-658 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2568,7 +2568,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-660 -1725 UP)
+(-660 -4057 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2586,8 +2586,8 @@ NIL
NIL
(-664 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4194 "*") |has| |#2| (-156)) (-4185 |has| |#2| (-509)) (-4190 |has| |#2| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4190)) (|HasCategory| |#2| (QUOTE (-421))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-665 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2602,16 +2602,16 @@ NIL
NIL
(-668 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) (-4189 . T))
+((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T))
((-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-779))))
(-669 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4182 . T) (-4193 . T) (-2181 . T))
+((-4185 . T) (-4196 . T) (-2169 . T))
NIL
(-670 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4192 . T) (-4182 . T) (-4193 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
+((-4195 . T) (-4185 . T) (-4196 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
(-671)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2622,7 +2622,7 @@ NIL
NIL
(-673 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4187 . T) (-4186 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
(-674 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2638,7 +2638,7 @@ NIL
NIL
(-677 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
(-678)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2720,15 +2720,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-698 -1725)
+(-698 -4057)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-699 P -1725)
+(-699 P -4057)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-700 UP -1725)
+(-700 UP -4057)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2742,9 +2742,9 @@ NIL
NIL
(-703)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4194 "*") . T))
+(((-4197 "*") . T))
NIL
-(-704 R -1725)
+(-704 R -4057)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -2764,7 +2764,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-709 -1725 |ExtF| |SUEx| |ExtP| |n|)
+(-709 -4057 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2778,28 +2778,28 @@ NIL
NIL
(-712 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076)))) (-2479 (|HasCategory| |#1| (QUOTE (-502)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1076)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-517))))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (QUOTE (-502)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-517))))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-713 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-714 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-715 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
(-716 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
(-717 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-156))))
+((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-156))))
(-718)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -2843,28 +2843,28 @@ NIL
(-728 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
(-729 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-730 -3747 R OS S)
+(-730 -3786 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-731 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-917 |#1|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-917 |#1|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (-3747 (|HasCategory| (-917 |#1|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (-3747 (|HasCategory| (-917 |#1|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))))
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))))
(-732)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-733 R -1725 L)
+(-733 R -4057 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-734 R -1725)
+(-734 R -4057)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2872,7 +2872,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-736 R -1725)
+(-736 R -4057)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -2880,11 +2880,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-738 -1725 UP UPUP R)
+(-738 -4057 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-739 -1725 UP L LQ)
+(-739 -4057 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -2892,41 +2892,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-741 -1725 UP L LQ)
+(-741 -4057 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-742 -1725 UP)
+(-742 -4057 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-743 -1725 L UP A LO)
+(-743 -4057 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-744 -1725 UP)
+(-744 -4057 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-745 -1725 LO)
+(-745 -4057 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-746 -1725 LODO)
+(-746 -4057 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-747 -3136 S |f|)
+(-747 -3124 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4186 |has| |#2| (-963)) (-4187 |has| |#2| (-963)) (-4189 |has| |#2| (-6 -4189)) ((-4194 "*") |has| |#2| (-156)) (-4192 . T))
-((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3747 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (|HasCategory| |#2| (QUOTE (-963))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005)))) (|HasAttribute| |#2| (QUOTE -4189)) (|HasCategory| |#2| (QUOTE (-123))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-25))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1005)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-963)))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005))))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3747 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3786 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#2| (QUOTE (-964))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -4192)) (|HasCategory| |#2| (QUOTE (-123))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-25))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-748 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1076)) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1076)) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1076)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1076)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1076)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-749 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4194 "*") |has| |#2| (-333)) (-4185 |has| |#2| (-333)) (-4190 |has| |#2| (-333)) (-4184 |has| |#2| (-333)) (-4189 . T) (-4187 . T) (-4186 . T))
+(((-4197 "*") |has| |#2| (-333)) (-4188 |has| |#2| (-333)) (-4193 |has| |#2| (-333)) (-4187 |has| |#2| (-333)) (-4192 . T) (-4190 . T) (-4189 . T))
((|HasCategory| |#2| (QUOTE (-333))))
(-750 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -2938,7 +2938,7 @@ NIL
NIL
(-752)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-753)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -2966,7 +2966,7 @@ NIL
NIL
(-759 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-207))))
(-760)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -2978,7 +2978,7 @@ NIL
NIL
(-762 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4192 . T) (-4182 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4185 . T) (-4196 . T) (-2169 . T))
NIL
(-763)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -2990,11 +2990,11 @@ NIL
NIL
(-765 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4189 |has| |#1| (-777)))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3747 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3747 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+((-4192 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
(-766 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) (-4189 . T))
+((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
(-767)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3018,13 +3018,13 @@ NIL
NIL
(-772 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4189 |has| |#1| (-777)))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3747 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3747 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+((-4192 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
(-773)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-774 -3136 S)
+(-774 -3124 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3038,7 +3038,7 @@ NIL
NIL
(-777)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4189 . T))
+((-4192 . T))
NIL
(-778 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3054,20 +3054,20 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
(-781 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-782 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
-(-783 R |sigma| -1857)
+(-783 R |sigma| -1844)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
-(-784 |x| R |sigma| -1857)
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+(-784 |x| R |sigma| -1844)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333))))
+((-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333))))
(-785 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
@@ -3090,7 +3090,7 @@ NIL
NIL
(-790 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) (-4189 . T))
+((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
(-791 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3102,1567 +3102,1571 @@ NIL
NIL
(-793 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-794 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
(-795 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-794 |#1|) (QUOTE (-832))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-939))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1052))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3747 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-832)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-794 |#1|) (QUOTE (-833))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-940))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1053))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3786 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-833)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
(-796 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3747 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-797)
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3786 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-797 S T$)
+((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
+NIL
+((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))))
+(-798)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-798)
+(-799)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-799 CF1 CF2)
+(-800 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-800 |ComponentFunction|)
+(-801 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-801 CF1 CF2)
+(-802 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-802 |ComponentFunction|)
+(-803 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-803)
+(-804)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-804 CF1 CF2)
+(-805 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-805 |ComponentFunction|)
+(-806 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-806)
+(-807)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-807 R)
+(-808 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-808 R S L)
+(-809 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-809 S)
+(-810 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-810 |Base| |Subject| |Pat|)
+(-811 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076)))) (-12 (-2479 (|HasCategory| |#2| (QUOTE (-963)))) (-2479 (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076)))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (-2479 (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076)))))))
-(-811 R A B)
+((|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))) (-12 (-2479 (|HasCategory| |#2| (QUOTE (-964)))) (-2479 (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (-2479 (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))))))
+(-812 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-812 R S)
+(-813 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-813 R -3342)
+(-814 R -3348)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-814 R S)
+(-815 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-815 R)
+(-816 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-816 |VarSet|)
+(-817 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-817 UP R)
+(-818 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-818)
+(-819)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-819 UP -1725)
+(-820 UP -4057)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-820)
+(-821)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-821)
+(-822)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-822 A S)
+(-823 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-823 S)
+(-824 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4189 . T))
+((-4192 . T))
NIL
-(-824 S)
+(-825 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-825 |n| R)
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-826 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-826 S)
+(-827 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4189 . T))
+((-4192 . T))
NIL
-(-827 S)
+(-828 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-828 S)
+(-829 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4189 . T))
-((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3747 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
-(-829 R E |VarSet| S)
+((-4192 . T))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3786 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
+(-830 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-830 R S)
+(-831 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-831 S)
+(-832 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-132))))
-(-832)
+(-833)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-833 |p|)
+(-834 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
-(-834 R0 -1725 UP UPUP R)
+(-835 R0 -4057 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-835 UP UPUP R)
+(-836 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-836 UP UPUP)
+(-837 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-837 R)
+(-838 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-838 R)
+(-839 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-839 E OV R P)
+(-840 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-840)
+(-841)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-841 -1725)
+(-842 -4057)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-842 R)
+(-843 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-843)
+(-844)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-844)
+(-845)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4194 "*") . T))
+(((-4197 "*") . T))
NIL
-(-845 -1725 P)
+(-846 -4057 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-846 |xx| -1725)
+(-847 |xx| -4057)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-847 R |Var| |Expon| GR)
+(-848 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-848 S)
+(-849 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-849)
+(-850)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-850)
+(-851)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-851)
+(-852)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-852 R -1725)
+(-853 R -4057)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-853)
+(-854)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-854 S A B)
+(-855 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-855 S R -1725)
+(-856 S R -4057)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-856 I)
+(-857 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-857 S E)
+(-858 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-858 S R L)
+(-859 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-859 S E V R P)
+(-860 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -809) (|devaluate| |#1|))))
-(-860 R -1725 -3342)
+((|HasCategory| |#3| (LIST (QUOTE -810) (|devaluate| |#1|))))
+(-861 R -4057 -3348)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-861 -3342)
+(-862 -3348)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-862 S R Q)
+(-863 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-863 S)
+(-864 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-864 S R P)
+(-865 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-865)
+(-866)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-866 R)
+(-867 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-867 |lv| R)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-868 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-868 |TheField| |ThePols|)
+(-869 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-869 R S)
+(-870 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-870 |x| R)
+(-871 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-871 S R E |VarSet|)
+(-872 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-832))) (|HasAttribute| |#2| (QUOTE -4190)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
-(-872 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-833))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
+(-873 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
-(-873 E V R P -1725)
+(-874 E V R P -4057)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-874 E |Vars| R P S)
+(-875 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-875 R)
+(-876 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-876 E V R P -1725)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-877 E V R P -4057)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-421))))
-(-877)
+(-878)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-878 R L)
+(-879 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-879 A B)
+(-880 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-880 S)
+(-881 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-881)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-882)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-882 -1725)
+(-883 -4057)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-883 I)
+(-884 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-884)
+(-885)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-885 R E)
+(-886 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)))
-(-886 A B)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)))
+(-887 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4189 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
-((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
-(-887)
+((-4192 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
+((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
+(-888)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-888 S)
+(-889 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
-(-889 R |polR|)
+(-890 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-421))))
-(-890)
+(-891)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-891 S |Coef| |Expon| |Var|)
+(-892 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-892 |Coef| |Expon| |Var|)
+(-893 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-893)
+(-894)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-894 S R E |VarSet| P)
+(-895 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-509))))
-(-895 R E |VarSet| P)
+(-896 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4192 . T) (-2181 . T))
+((-4195 . T) (-2169 . T))
NIL
-(-896 R E V P)
+(-897 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-421))))
-(-897 K)
+(-898 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-898 |VarSet| E RC P)
+(-899 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-899 R)
+(-900 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-900 R1 R2)
+(-901 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-901 R)
+(-902 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-902 K)
+(-903 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-903 R E OV PPR)
+(-904 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-904 K R UP -1725)
+(-905 K R UP -4057)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-905 |vl| |nv|)
+(-906 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-906 R |Var| |Expon| |Dpoly|)
+(-907 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))))
-(-907 R E V P TS)
+(-908 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-908)
+(-909)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-909 A B R S)
+(-910 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-910 A S)
+(-911 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1052))))
-(-911 S)
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1053))))
+(-912 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2181 . T) (-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2169 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-912 |n| K)
+(-913 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-913 S)
+(-914 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
-(-914 S R)
+(-915 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262))))
-(-915 R)
+((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262))))
+(-916 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4185 |has| |#1| (-262)) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 |has| |#1| (-262)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-916 QR R QS S)
+(-917 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-917 R)
+(-918 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4185 |has| |#1| (-262)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3747 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-502))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
-(-918 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4188 |has| |#1| (-262)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3786 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
(-919 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-920 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-920)
+(-921)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-921 -1725 UP UPUP |radicnd| |n|)
+(-922 -4057 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4185 |has| (-377 |#2|) (-333)) (-4190 |has| (-377 |#2|) (-333)) (-4184 |has| (-377 |#2|) (-333)) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3747 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3747 (|HasCategory| (-377 |#2|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
-(-922 |bb|)
+((-4188 |has| (-377 |#2|) (-333)) (-4193 |has| (-377 |#2|) (-333)) (-4187 |has| (-377 |#2|) (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3786 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3786 (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-923 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-939))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1052))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1076)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3747 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
-(-923)
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-924)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-924)
+(-925)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-925 RP)
+(-926 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-926 S)
+(-927 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-927 A S)
+(-928 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-1005))))
-(-928 S)
+((|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (QUOTE (-1006))))
+(-929 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-929 S)
+(-930 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-930)
+(-931)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4185 . T) (-4190 . T) (-4184 . T) (-4187 . T) (-4186 . T) ((-4194 "*") . T) (-4189 . T))
+((-4188 . T) (-4193 . T) (-4187 . T) (-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4192 . T))
NIL
-(-931 R -1725)
+(-932 R -4057)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-932 R -1725)
+(-933 R -4057)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-933 -1725 UP)
+(-934 -4057 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-934 -1725 UP)
+(-935 -4057 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-935 S)
+(-936 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-936 F1 UP UPUP R F2)
+(-937 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-937 |Pol|)
+(-938 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-938 |Pol|)
+(-939 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-939)
+(-940)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-940)
+(-941)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-941 |TheField|)
+(-942 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4185 . T) (-4190 . T) (-4184 . T) (-4187 . T) (-4186 . T) ((-4194 "*") . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -954) (QUOTE (-517)))) (-3747 (|HasCategory| (-377 (-517)) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517))))))
-(-942 -1725 L)
+((-4188 . T) (-4193 . T) (-4187 . T) (-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (|HasCategory| (-377 (-517)) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))))
+(-943 -4057 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-943 S)
+(-944 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1005))))
-(-944 R E V P)
+((|HasCategory| |#1| (QUOTE (-1006))))
+(-945 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1005))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-945 R)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-946 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4194 "*"))))
-(-946 R)
+((|HasAttribute| |#1| (QUOTE (-4197 "*"))))
+(-947 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-278))))
-(-947 S)
+(-948 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-948)
+(-949)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-949 S)
+(-950 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-950 S)
+(-951 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-951 -1725 |Expon| |VarSet| |FPol| |LFPol|)
+(-952 -4057 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-952)
+(-953)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (QUOTE (-1076))) (LIST (QUOTE |:|) (QUOTE -1859) (QUOTE (-51))))))) (|HasCategory| (-1076) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-51) (QUOTE (-1005)))) (-12 (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
-(-953 A S)
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1077))) (LIST (QUOTE |:|) (QUOTE -1846) (QUOTE (-51))))))) (|HasCategory| (-1077) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-1006)))) (-12 (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
+(-954 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-954 S)
+(-955 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-955 Q R)
+(-956 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-956)
+(-957)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-957 UP)
+(-958 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-958 R)
+(-959 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-959 R)
+(-960 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-960 R |ls|)
+(-961 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1005))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))))
-(-961)
+((-4196 . T) (-4195 . T))
+((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1006))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))))
+(-962)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-962 S)
+(-963 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-963)
+(-964)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4189 . T))
+((-4192 . T))
NIL
-(-964 |xx| -1725)
+(-965 |xx| -4057)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-965 S |m| |n| R |Row| |Col|)
+(-966 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-278))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-509))) (|HasCategory| |#4| (QUOTE (-156))))
-(-966 |m| |n| R |Row| |Col|)
+(-967 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4192 . T) (-2181 . T) (-4187 . T) (-4186 . T))
+((-4195 . T) (-2169 . T) (-4190 . T) (-4189 . T))
NIL
-(-967 |m| |n| R)
+(-968 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4192 . T) (-4187 . T) (-4186 . T))
-((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3747 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
-(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4195 . T) (-4190 . T) (-4189 . T))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3786 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
+(-969 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-969 R)
+(-970 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-970)
+(-971)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-971 S)
+(-972 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-972)
+(-973)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-973 |TheField| |ThePolDom|)
+(-974 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-974)
+(-975)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4180 . T) (-4184 . T) (-4179 . T) (-4190 . T) (-4191 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4183 . T) (-4187 . T) (-4182 . T) (-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-975)
+(-976)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (QUOTE (-1076))) (LIST (QUOTE |:|) (QUOTE -1859) (QUOTE (-51))))))) (|HasCategory| (-1076) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-51) (QUOTE (-1005)))) (-12 (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
-(-976 S R E V)
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1077))) (LIST (QUOTE |:|) (QUOTE -1846) (QUOTE (-51))))))) (|HasCategory| (-1077) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-1006)))) (-12 (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
+(-977 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1076)))))
-(-977 R E V)
+((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1077)))))
+(-978 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
-(-978 S |TheField| |ThePols|)
+(-979 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-979 |TheField| |ThePols|)
+(-980 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-980 R E V P TS)
+(-981 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-981 S R E V P)
+(-982 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-982 R E V P)
+(-983 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-983 R E V P TS)
+(-984 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-984 |f|)
+(-985 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-985 |Base| R -1725)
+(-986 |Base| R -4057)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-986 |Base| R -1725)
+(-987 |Base| R -4057)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-987 R |ls|)
+(-988 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-988 UP SAE UPA)
+(-989 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-989 R UP M)
+(-990 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4185 |has| |#1| (-333)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076))))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
-(-990 UP SAE UPA)
+((-4188 |has| |#1| (-333)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
+(-991 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-991)
+(-992)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-992 S)
+(-993 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-993 R)
+(-994 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-994 R)
+(-995 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-995 (-1076)) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-995 (-1076)) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-995 (-1076)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-995 (-1076)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-995 (-1076)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-995 S)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-996 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-996 R S)
+(-997 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-997 R S)
+(-998 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-998 S)
+(-999 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1005))))
-(-999 S)
+((|HasCategory| |#1| (QUOTE (-1006))))
+(-1000 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-1000 S)
+(-1001 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1005))))
-(-1001 S L)
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1006))))
+(-1002 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-1002 A S)
+(-1003 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1003 S)
+(-1004 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4182 . T) (-2181 . T))
+((-4185 . T) (-2169 . T))
NIL
-(-1004 S)
+(-1005 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1005)
+(-1006)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1006 |m| |n|)
+(-1007 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1007 S)
+(-1008 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4192 . T) (-4182 . T) (-4193 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1008 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4195 . T) (-4185 . T) (-4196 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1009 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1009)
+(-1010)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1010 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1011 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1011 R FS)
+(-1012 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1012 R E V P TS)
+(-1013 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1013 R E V P TS)
+(-1014 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1014 R E V P)
+(-1015 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-1015)
+(-1016)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1016 S)
+(-1017 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1017)
+(-1018)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1018 |dimtot| |dim1| S)
+(-1019 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4186 |has| |#3| (-963)) (-4187 |has| |#3| (-963)) (-4189 |has| |#3| (-6 -4189)) ((-4194 "*") |has| |#3| (-156)) (-4192 . T))
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3747 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963)))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3747 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-207))) (-3747 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963)))) (-3747 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-3747 (|HasCategory| |#3| (QUOTE (-963))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1005)))) (|HasAttribute| |#3| (QUOTE -4189)) (|HasCategory| |#3| (QUOTE (-123))) (-3747 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-25))) (-3747 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1005)))) (-3747 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-963)))) (-3747 (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1005))))) (-3747 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3747 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#3| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1005)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1076))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (LIST (QUOTE -954) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1019 R |x|)
+((-4189 |has| |#3| (-964)) (-4190 |has| |#3| (-964)) (-4192 |has| |#3| (-6 -4192)) ((-4197 "*") |has| |#3| (-156)) (-4195 . T))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3786 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-207))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#3| (QUOTE (-964))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006)))) (|HasAttribute| |#3| (QUOTE -4192)) (|HasCategory| |#3| (QUOTE (-123))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-25))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-1006)))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3786 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1020 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-421))))
-(-1020 R -1725)
+(-1021 R -4057)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1021 R)
+(-1022 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1022)
+(-1023)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1023)
+(-1024)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4180 . T) (-4184 . T) (-4179 . T) (-4190 . T) (-4191 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4183 . T) (-4187 . T) (-4182 . T) (-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1024 S)
+(-1025 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4192 . T) (-4193 . T) (-2181 . T))
+((-4195 . T) (-4196 . T) (-2169 . T))
NIL
-(-1025 S |ndim| R |Row| |Col|)
+(-1026 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4194 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
-(-1026 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4197 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
+(-1027 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2181 . T) (-4192 . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-2169 . T) (-4195 . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1027 R |Row| |Col| M)
+(-1028 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1028 R |VarSet|)
+(-1029 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1029 |Coef| |Var| SMP)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1030 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1030 R E V P)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1031 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-1031 UP -1725)
+(-1032 UP -4057)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1032 R)
+(-1033 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1033 R)
+(-1034 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1034 R)
+(-1035 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1035 S A)
+(-1036 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
((|HasCategory| |#1| (QUOTE (-779))))
-(-1036 R)
+(-1037 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1037 R)
+(-1038 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1038)
+(-1039)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1039)
+(-1040)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1040)
+(-1041)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1041 V C)
+(-1042 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1042 V C)
+(-1043 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-1041 |#1| |#2|) (QUOTE (-1005))) (-12 (|HasCategory| (-1041 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1041) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1041 |#1| |#2|) (QUOTE (-1005)))) (|HasCategory| (-1041 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-1041 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-1041 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1041) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1041 |#1| |#2|) (QUOTE (-1005))))))
-(-1043 |ndim| R)
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-1042 |#1| |#2|) (QUOTE (-1006))) (-12 (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1042) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1042 |#1| |#2|) (QUOTE (-1006)))) (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1042) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1042 |#1| |#2|) (QUOTE (-1006))))))
+(-1044 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4189 . T) (-4181 |has| |#2| (-6 (-4194 "*"))) (-4192 . T) (-4186 . T) (-4187 . T))
-((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4194 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-333))) (-3747 (|HasAttribute| |#2| (QUOTE (-4194 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3747 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156))))
-(-1044 S)
+((-4192 . T) (-4184 |has| |#2| (-6 (-4197 "*"))) (-4195 . T) (-4189 . T) (-4190 . T))
+((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156))))
+(-1045 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1045)
+(-1046)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-1046 R E V P TS)
+(-1047 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1047 R E V P)
+(-1048 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1005))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1048 S)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1049 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1049 A S)
+((-4195 . T) (-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1050 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1050 S)
+(-1051 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-1051 |Key| |Ent| |dent|)
+(-1052 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1052)
+((-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1053)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1053 |Coef|)
+(-1054 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1054 S)
+(-1055 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1055 A B)
+(-1056 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1056 A B C)
+(-1057 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1057 S)
+(-1058 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4193 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1058)
+((-4196 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1059)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-1059)
+(-1060)
NIL
-((-4193 . T) (-4192 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1005))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3747 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1005))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1060 |Entry|)
+((-4196 . T) (-4195 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3786 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1061 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (QUOTE (-1059))) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#1|)))))) (|HasCategory| (-1059) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1005)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1061 A)
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1060))) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#1|)))))) (|HasCategory| (-1060) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1062 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
-(-1062 |Coef|)
+(-1063 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1063 |Coef|)
+(-1064 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1064 R UP)
+(-1065 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-278))))
-(-1065 |n| R)
+(-1066 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1066 S1 S2)
+(-1067 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1067 |Coef| |var| |cen|)
+(-1068 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4194 "*") -3747 (-3993 (|has| |#1| (-333)) (|has| (-1074 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-3993 (|has| |#1| (-333)) (|has| (-1074 |#1| |#2| |#3|) (-832)))) (-4185 -3747 (-3993 (|has| |#1| (-333)) (|has| (-1074 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-3993 (|has| |#1| (-333)) (|has| (-1074 |#1| |#2| |#3|) (-832)))) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))) (-3747 (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1068 R -1725)
+(((-4197 "*") -3786 (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-833)))) (-4188 -3786 (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1069 R -4057)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1069 R)
+(-1070 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1070 R S)
+(-1071 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1071 E OV R P)
+(-1072 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1072 R)
+(-1073 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#1| (QUOTE (-421))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1073 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-1074 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
+(-1075 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1017))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
-(-1075)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1018))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
+(-1076)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1076)
+(-1077)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1077 R)
+(-1078 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1078 R)
+(-1079 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-6 -4190)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-890) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4190)))
-(-1079)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-891) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)))
+(-1080)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1080)
+(-1081)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1081)
-((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
+(-1082)
+((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1082 R)
+(-1083 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1083 S)
+(-1084 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1084 S)
+(-1085 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1085 |Key| |Entry|)
+(-1086 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4192 . T) (-4193 . T))
-((|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (-12 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2585) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1859) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1005))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3747 (|HasCategory| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1086 R)
+((-4195 . T) (-4196 . T))
+((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1087 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1087 S |Key| |Entry|)
+(-1088 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1088 |Key| |Entry|)
+(-1089 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4193 . T) (-2181 . T))
+((-4196 . T) (-2169 . T))
NIL
-(-1089 |Key| |Entry|)
+(-1090 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1090)
+(-1091)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1091 S)
+(-1092 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1092)
+(-1093)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1093)
+(-1094)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1094 R)
+(-1095 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1095)
+(-1096)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1096 S)
+(-1097 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1097)
+(-1098)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1098 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (QUOTE (-1005))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-1099 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1100 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1100)
+(-1101)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1101 R -1725)
+(-1102 R -4057)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1102 R |Row| |Col| M)
+(-1103 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1103 R -1725)
+(-1104 R -4057)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -809) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -809) (|devaluate| |#1|)))))
-(-1104 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -810) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -810) (|devaluate| |#1|)))))
+(-1105 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-338))))
-(-1105 R E V P)
+(-1106 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-1106 |Coef|)
+(-1107 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1107 |Curve|)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1108 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1108)
+(-1109)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1109 S)
+(-1110 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1110 -1725)
+((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1111 -4057)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1111)
+(-1112)
((|constructor| (NIL "The fundamental Type.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-1112 S)
+(-1113 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-779))))
-(-1113)
+(-1114)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1114 S)
+(-1115 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1115)
+(-1116)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1116 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1117 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1117 |Coef|)
+(-1118 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1118 S |Coef| UTS)
+(-1119 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
-(-1119 |Coef| UTS)
+(-1120 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-2181 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-2169 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1120 |Coef| UTS)
+(-1121 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-939)))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-832))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3747 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3747 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1076)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
-(-1121 |Coef| |var| |cen|)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-940)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-833))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
+(-1122 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4194 "*") -3747 (-3993 (|has| |#1| (-333)) (|has| (-1149 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-3993 (|has| |#1| (-333)) (|has| (-1149 |#1| |#2| |#3|) (-832)))) (-4185 -3747 (-3993 (|has| |#1| (-333)) (|has| (-1149 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-3993 (|has| |#1| (-333)) (|has| (-1149 |#1| |#2| |#3|) (-832)))) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1076)) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))) (-3747 (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1122 ZP)
+(((-4197 "*") -3786 (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-833)))) (-4188 -3786 (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1123 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1123 R S)
+(-1124 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-1124 S)
+(-1125 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1005))))
-(-1125 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1006))))
+(-1126 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1126 R Q UP)
+(-1127 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1127 R UP)
+(-1128 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1128 R UP)
+(-1129 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1129 R U)
+(-1130 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1130 |x| R)
+(-1131 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4194 "*") |has| |#2| (-156)) (-4185 |has| |#2| (-509)) (-4188 |has| |#2| (-333)) (-4190 |has| |#2| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-991) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (-3747 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4190)) (|HasCategory| |#2| (QUOTE (-421))) (-3747 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3747 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-1131 R PR S PS)
+(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4191 |has| |#2| (-333)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-1132 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1132 S R)
+(-1133 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1052))))
-(-1133 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1053))))
+(-1134 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4190 |has| |#1| (-6 -4190)) (-4187 . T) (-4186 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
-(-1134 S |Coef| |Expon|)
+(-1135 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1017))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2271) (LIST (|devaluate| |#2|) (QUOTE (-1076))))))
-(-1135 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2262) (LIST (|devaluate| |#2|) (QUOTE (-1077))))))
+(-1136 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1136 RC P)
+(-1137 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1137 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1138 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1138 |Coef|)
+(-1139 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1139 S |Coef| ULS)
+(-1140 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1140 |Coef| ULS)
+(-1141 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1141 |Coef| ULS)
+(-1142 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
-(-1142 |Coef| |var| |cen|)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
+(-1143 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4190 |has| |#1| (-333)) (-4184 |has| |#1| (-333)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3747 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
-(-1143 R FE |var| |cen|)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
+(-1144 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4194 "*") |has| (-1142 |#2| |#3| |#4|) (-156)) (-4185 |has| (-1142 |#2| |#3| |#4|) (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| (-1142 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1142 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1142 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1142 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1142 |#2| |#3| |#4|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1142 |#2| |#3| |#4|) (LIST (QUOTE -954) (QUOTE (-517)))) (|HasCategory| (-1142 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1142 |#2| |#3| |#4|) (QUOTE (-421))) (-3747 (|HasCategory| (-1142 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1142 |#2| |#3| |#4|) (LIST (QUOTE -954) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1142 |#2| |#3| |#4|) (QUOTE (-509))))
-(-1144 A S)
+(((-4197 "*") |has| (-1143 |#2| |#3| |#4|) (-156)) (-4188 |has| (-1143 |#2| |#3| |#4|) (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-421))) (-3786 (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-509))))
+(-1145 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4193)))
-(-1145 S)
+((|HasAttribute| |#1| (QUOTE -4196)))
+(-1146 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-1146 |Coef1| |Coef2| UTS1 UTS2)
+(-1147 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1147 S |Coef|)
+(-1148 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasSignature| |#2| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2356) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1076))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
-(-1148 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-882))) (|HasCategory| |#2| (QUOTE (-1098))) (|HasSignature| |#2| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3296) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1077))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
+(-1149 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1149 |Coef| |var| |cen|)
+(-1150 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4194 "*") |has| |#1| (-156)) (-4185 |has| |#1| (-509)) (-4186 . T) (-4187 . T) (-4189 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3747 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1076)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1017))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (|devaluate| |#1|) (QUOTE (-1076)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3747 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2356) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1076))))) (|HasSignature| |#1| (LIST (QUOTE -2097) (LIST (LIST (QUOTE -583) (QUOTE (-1076))) (|devaluate| |#1|)))))))
-(-1150 |Coef| UTS)
+(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1018))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))))
+(-1151 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1151 -1725 UP L UTS)
+(-1152 -4057 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-509))))
-(-1152)
+(-1153)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-2181 . T))
+((-2169 . T))
NIL
-(-1153 |sym|)
+(-1154 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1154 S R)
+(-1155 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1155 R)
+((|HasCategory| |#2| (QUOTE (-921))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1156 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4193 . T) (-4192 . T) (-2181 . T))
+((-4196 . T) (-4195 . T) (-2169 . T))
NIL
-(-1156 A B)
+(-1157 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1157 R)
+(-1158 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005))) (-3747 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3747 (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1158)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1159)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1159)
+(-1160)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1160)
+(-1161)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1161)
+(-1162)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1162)
+(-1163)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1163 A S)
+(-1164 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1164 S)
+(-1165 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4187 . T) (-4186 . T))
+((-4190 . T) (-4189 . T))
NIL
-(-1165 R)
+(-1166 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1166 K R UP -1725)
+(-1167 K R UP -4057)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1167 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1168 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4187 |has| |#1| (-156)) (-4186 |has| |#1| (-156)) (-4189 . T))
+((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1168 R E V P)
+(-1169 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4193 . T) (-4192 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1005))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1169 R)
+((-4196 . T) (-4195 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1170 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4186 . T) (-4187 . T) (-4189 . T))
+((-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1170 |vl| R)
+(-1171 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4189 . T) (-4185 |has| |#2| (-6 -4185)) (-4187 . T) (-4186 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4185)))
-(-1171 R |VarSet| XPOLY)
+((-4192 . T) (-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4188)))
+(-1172 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1172 |vl| R)
+(-1173 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4185 |has| |#2| (-6 -4185)) (-4187 . T) (-4186 . T) (-4189 . T))
+((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
-(-1173 S -1725)
+(-1174 S -4057)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))))
-(-1174 -1725)
+(-1175 -4057)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4184 . T) (-4190 . T) (-4185 . T) ((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
-(-1175 |VarSet| R)
+(-1176 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4185 |has| |#2| (-6 -4185)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4185)))
-(-1176 |vl| R)
+((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4188)))
+(-1177 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4185 |has| |#2| (-6 -4185)) (-4187 . T) (-4186 . T) (-4189 . T))
+((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T))
NIL
-(-1177 R)
+(-1178 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4185 |has| |#1| (-6 -4185)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4185)))
-(-1178 R E)
+((-4188 |has| |#1| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4188)))
+(-1179 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4189 . T) (-4190 |has| |#1| (-6 -4190)) (-4185 |has| |#1| (-6 -4185)) (-4187 . T) (-4186 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4189)) (|HasAttribute| |#1| (QUOTE -4190)) (|HasAttribute| |#1| (QUOTE -4185)))
-(-1179 |VarSet| R)
+((-4192 . T) (-4193 |has| |#1| (-6 -4193)) (-4188 |has| |#1| (-6 -4188)) (-4190 . T) (-4189 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4192)) (|HasAttribute| |#1| (QUOTE -4193)) (|HasAttribute| |#1| (QUOTE -4188)))
+(-1180 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4185 |has| |#2| (-6 -4185)) (-4187 . T) (-4186 . T) (-4189 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4185)))
-(-1180 A)
+((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4188)))
+(-1181 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1181 R |ls| |ls2|)
+(-1182 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1182 R)
+(-1183 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1183 |p|)
+(-1184 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4194 "*") . T) (-4186 . T) (-4187 . T) (-4189 . T))
+(((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T))
NIL
NIL
NIL
@@ -4684,4 +4688,4 @@ NIL
NIL
NIL
NIL
-((-1188 NIL 2225697 2225702 2225707 2225712) (-3 NIL 2225677 2225682 2225687 2225692) (-2 NIL 2225657 2225662 2225667 2225672) (-1 NIL 2225637 2225642 2225647 2225652) (0 NIL 2225617 2225622 2225627 2225632) (-1183 "ZMOD.spad" 2225426 2225439 2225555 2225612) (-1182 "ZLINDEP.spad" 2224470 2224481 2225416 2225421) (-1181 "ZDSOLVE.spad" 2214319 2214341 2224460 2224465) (-1180 "YSTREAM.spad" 2213812 2213823 2214309 2214314) (-1179 "XRPOLY.spad" 2213032 2213052 2213668 2213737) (-1178 "XPR.spad" 2210761 2210774 2212750 2212849) (-1177 "XPOLY.spad" 2210316 2210327 2210617 2210686) (-1176 "XPOLYC.spad" 2209633 2209649 2210242 2210311) (-1175 "XPBWPOLY.spad" 2208070 2208090 2209413 2209482) (-1174 "XF.spad" 2206531 2206546 2207972 2208065) (-1173 "XF.spad" 2204972 2204989 2206415 2206420) (-1172 "XFALG.spad" 2201996 2202012 2204898 2204967) (-1171 "XEXPPKG.spad" 2201247 2201273 2201986 2201991) (-1170 "XDPOLY.spad" 2200861 2200877 2201103 2201172) (-1169 "XALG.spad" 2200459 2200470 2200817 2200856) (-1168 "WUTSET.spad" 2196298 2196315 2200105 2200132) (-1167 "WP.spad" 2195312 2195356 2196156 2196223) (-1166 "WFFINTBS.spad" 2192875 2192897 2195302 2195307) (-1165 "WEIER.spad" 2191089 2191100 2192865 2192870) (-1164 "VSPACE.spad" 2190762 2190773 2191057 2191084) (-1163 "VSPACE.spad" 2190455 2190468 2190752 2190757) (-1162 "VOID.spad" 2190045 2190054 2190445 2190450) (-1161 "VIEW.spad" 2187667 2187676 2190035 2190040) (-1160 "VIEWDEF.spad" 2182864 2182873 2187657 2187662) (-1159 "VIEW3D.spad" 2166699 2166708 2182854 2182859) (-1158 "VIEW2D.spad" 2154436 2154445 2166689 2166694) (-1157 "VECTOR.spad" 2153113 2153124 2153364 2153391) (-1156 "VECTOR2.spad" 2151740 2151753 2153103 2153108) (-1155 "VECTCAT.spad" 2149628 2149639 2151696 2151735) (-1154 "VECTCAT.spad" 2147337 2147350 2149407 2149412) (-1153 "VARIABLE.spad" 2147117 2147132 2147327 2147332) (-1152 "UTYPE.spad" 2146751 2146760 2147097 2147112) (-1151 "UTSODETL.spad" 2146044 2146068 2146707 2146712) (-1150 "UTSODE.spad" 2144232 2144252 2146034 2146039) (-1149 "UTS.spad" 2139021 2139049 2142699 2142796) (-1148 "UTSCAT.spad" 2136472 2136488 2138919 2139016) (-1147 "UTSCAT.spad" 2133567 2133585 2136016 2136021) (-1146 "UTS2.spad" 2133160 2133195 2133557 2133562) (-1145 "URAGG.spad" 2127782 2127793 2133140 2133155) (-1144 "URAGG.spad" 2122378 2122391 2127738 2127743) (-1143 "UPXSSING.spad" 2120024 2120050 2121462 2121595) (-1142 "UPXS.spad" 2117051 2117079 2118156 2118305) (-1141 "UPXSCONS.spad" 2114808 2114828 2115183 2115332) (-1140 "UPXSCCA.spad" 2113266 2113286 2114654 2114803) (-1139 "UPXSCCA.spad" 2111866 2111888 2113256 2113261) (-1138 "UPXSCAT.spad" 2110447 2110463 2111712 2111861) (-1137 "UPXS2.spad" 2109988 2110041 2110437 2110442) (-1136 "UPSQFREE.spad" 2108400 2108414 2109978 2109983) (-1135 "UPSCAT.spad" 2105993 2106017 2108298 2108395) (-1134 "UPSCAT.spad" 2103292 2103318 2105599 2105604) (-1133 "UPOLYC.spad" 2098270 2098281 2103134 2103287) (-1132 "UPOLYC.spad" 2093140 2093153 2098006 2098011) (-1131 "UPOLYC2.spad" 2092609 2092628 2093130 2093135) (-1130 "UP.spad" 2089659 2089674 2090167 2090320) (-1129 "UPMP.spad" 2088549 2088562 2089649 2089654) (-1128 "UPDIVP.spad" 2088112 2088126 2088539 2088544) (-1127 "UPDECOMP.spad" 2086349 2086363 2088102 2088107) (-1126 "UPCDEN.spad" 2085556 2085572 2086339 2086344) (-1125 "UP2.spad" 2084918 2084939 2085546 2085551) (-1124 "UNISEG.spad" 2084271 2084282 2084837 2084842) (-1123 "UNISEG2.spad" 2083764 2083777 2084227 2084232) (-1122 "UNIFACT.spad" 2082865 2082877 2083754 2083759) (-1121 "ULS.spad" 2073424 2073452 2074517 2074946) (-1120 "ULSCONS.spad" 2067467 2067487 2067839 2067988) (-1119 "ULSCCAT.spad" 2065064 2065084 2067287 2067462) (-1118 "ULSCCAT.spad" 2062795 2062817 2065020 2065025) (-1117 "ULSCAT.spad" 2061011 2061027 2062641 2062790) (-1116 "ULS2.spad" 2060523 2060576 2061001 2061006) (-1115 "UFD.spad" 2059588 2059597 2060449 2060518) (-1114 "UFD.spad" 2058715 2058726 2059578 2059583) (-1113 "UDVO.spad" 2057562 2057571 2058705 2058710) (-1112 "UDPO.spad" 2054989 2055000 2057518 2057523) (-1111 "TYPE.spad" 2054911 2054920 2054969 2054984) (-1110 "TWOFACT.spad" 2053561 2053576 2054901 2054906) (-1109 "TUPLE.spad" 2052947 2052958 2053460 2053465) (-1108 "TUBETOOL.spad" 2049784 2049793 2052937 2052942) (-1107 "TUBE.spad" 2048425 2048442 2049774 2049779) (-1106 "TS.spad" 2047014 2047030 2047990 2048087) (-1105 "TSETCAT.spad" 2034129 2034146 2046970 2047009) (-1104 "TSETCAT.spad" 2021242 2021261 2034085 2034090) (-1103 "TRMANIP.spad" 2015608 2015625 2020948 2020953) (-1102 "TRIMAT.spad" 2014567 2014592 2015598 2015603) (-1101 "TRIGMNIP.spad" 2013084 2013101 2014557 2014562) (-1100 "TRIGCAT.spad" 2012596 2012605 2013074 2013079) (-1099 "TRIGCAT.spad" 2012106 2012117 2012586 2012591) (-1098 "TREE.spad" 2010677 2010688 2011713 2011740) (-1097 "TRANFUN.spad" 2010508 2010517 2010667 2010672) (-1096 "TRANFUN.spad" 2010337 2010348 2010498 2010503) (-1095 "TOPSP.spad" 2010011 2010020 2010327 2010332) (-1094 "TOOLSIGN.spad" 2009674 2009685 2010001 2010006) (-1093 "TEXTFILE.spad" 2008231 2008240 2009664 2009669) (-1092 "TEX.spad" 2005248 2005257 2008221 2008226) (-1091 "TEX1.spad" 2004804 2004815 2005238 2005243) (-1090 "TEMUTL.spad" 2004359 2004368 2004794 2004799) (-1089 "TBCMPPK.spad" 2002452 2002475 2004349 2004354) (-1088 "TBAGG.spad" 2001476 2001499 2002420 2002447) (-1087 "TBAGG.spad" 2000520 2000545 2001466 2001471) (-1086 "TANEXP.spad" 1999896 1999907 2000510 2000515) (-1085 "TABLE.spad" 1998307 1998330 1998577 1998604) (-1084 "TABLEAU.spad" 1997788 1997799 1998297 1998302) (-1083 "TABLBUMP.spad" 1994571 1994582 1997778 1997783) (-1082 "SYSSOLP.spad" 1992044 1992055 1994561 1994566) (-1081 "syntax.spad" 1988426 1988435 1992034 1992039) (-1080 "SYMTAB.spad" 1986482 1986491 1988416 1988421) (-1079 "SYMS.spad" 1982467 1982476 1986472 1986477) (-1078 "SYMPOLY.spad" 1981477 1981488 1981559 1981686) (-1077 "SYMFUNC.spad" 1980952 1980963 1981467 1981472) (-1076 "SYMBOL.spad" 1978288 1978297 1980942 1980947) (-1075 "SWITCH.spad" 1975045 1975054 1978278 1978283) (-1074 "SUTS.spad" 1971944 1971972 1973512 1973609) (-1073 "SUPXS.spad" 1968958 1968986 1970076 1970225) (-1072 "SUP.spad" 1965735 1965746 1966516 1966669) (-1071 "SUPFRACF.spad" 1964840 1964858 1965725 1965730) (-1070 "SUP2.spad" 1964230 1964243 1964830 1964835) (-1069 "SUMRF.spad" 1963196 1963207 1964220 1964225) (-1068 "SUMFS.spad" 1962829 1962846 1963186 1963191) (-1067 "SULS.spad" 1953375 1953403 1954481 1954910) (-1066 "SUCH.spad" 1953055 1953070 1953365 1953370) (-1065 "SUBSPACE.spad" 1945062 1945077 1953045 1953050) (-1064 "SUBRESP.spad" 1944222 1944236 1945018 1945023) (-1063 "STTF.spad" 1940321 1940337 1944212 1944217) (-1062 "STTFNC.spad" 1936789 1936805 1940311 1940316) (-1061 "STTAYLOR.spad" 1929187 1929198 1936670 1936675) (-1060 "STRTBL.spad" 1927692 1927709 1927841 1927868) (-1059 "STRING.spad" 1927101 1927110 1927115 1927142) (-1058 "STRICAT.spad" 1926877 1926886 1927057 1927096) (-1057 "STREAM.spad" 1923645 1923656 1926402 1926417) (-1056 "STREAM3.spad" 1923190 1923205 1923635 1923640) (-1055 "STREAM2.spad" 1922258 1922271 1923180 1923185) (-1054 "STREAM1.spad" 1921962 1921973 1922248 1922253) (-1053 "STINPROD.spad" 1920868 1920884 1921952 1921957) (-1052 "STEP.spad" 1920069 1920078 1920858 1920863) (-1051 "STBL.spad" 1918595 1918623 1918762 1918777) (-1050 "STAGG.spad" 1917660 1917671 1918575 1918590) (-1049 "STAGG.spad" 1916733 1916746 1917650 1917655) (-1048 "STACK.spad" 1916084 1916095 1916340 1916367) (-1047 "SREGSET.spad" 1913788 1913805 1915730 1915757) (-1046 "SRDCMPK.spad" 1912333 1912353 1913778 1913783) (-1045 "SRAGG.spad" 1907418 1907427 1912289 1912328) (-1044 "SRAGG.spad" 1902535 1902546 1907408 1907413) (-1043 "SQMATRIX.spad" 1900161 1900179 1901069 1901156) (-1042 "SPLTREE.spad" 1894713 1894726 1899597 1899624) (-1041 "SPLNODE.spad" 1891301 1891314 1894703 1894708) (-1040 "SPFCAT.spad" 1890078 1890087 1891291 1891296) (-1039 "SPECOUT.spad" 1888628 1888637 1890068 1890073) (-1038 "spad-parser.spad" 1888093 1888102 1888618 1888623) (-1037 "SPACEC.spad" 1872106 1872117 1888083 1888088) (-1036 "SPACE3.spad" 1871882 1871893 1872096 1872101) (-1035 "SORTPAK.spad" 1871427 1871440 1871838 1871843) (-1034 "SOLVETRA.spad" 1869184 1869195 1871417 1871422) (-1033 "SOLVESER.spad" 1867704 1867715 1869174 1869179) (-1032 "SOLVERAD.spad" 1863714 1863725 1867694 1867699) (-1031 "SOLVEFOR.spad" 1862134 1862152 1863704 1863709) (-1030 "SNTSCAT.spad" 1861722 1861739 1862090 1862129) (-1029 "SMTS.spad" 1859982 1860008 1861287 1861384) (-1028 "SMP.spad" 1857424 1857444 1857814 1857941) (-1027 "SMITH.spad" 1856267 1856292 1857414 1857419) (-1026 "SMATCAT.spad" 1854365 1854395 1856199 1856262) (-1025 "SMATCAT.spad" 1852407 1852439 1854243 1854248) (-1024 "SKAGG.spad" 1851356 1851367 1852363 1852402) (-1023 "SINT.spad" 1849664 1849673 1851222 1851351) (-1022 "SIMPAN.spad" 1849392 1849401 1849654 1849659) (-1021 "SIGNRF.spad" 1848500 1848511 1849382 1849387) (-1020 "SIGNEF.spad" 1847769 1847786 1848490 1848495) (-1019 "SHP.spad" 1845687 1845702 1847725 1847730) (-1018 "SHDP.spad" 1837077 1837104 1837586 1837715) (-1017 "SGROUP.spad" 1836543 1836552 1837067 1837072) (-1016 "SGROUP.spad" 1836007 1836018 1836533 1836538) (-1015 "SGCF.spad" 1828888 1828897 1835997 1836002) (-1014 "SFRTCAT.spad" 1827804 1827821 1828844 1828883) (-1013 "SFRGCD.spad" 1826867 1826887 1827794 1827799) (-1012 "SFQCMPK.spad" 1821504 1821524 1826857 1826862) (-1011 "SFORT.spad" 1820939 1820953 1821494 1821499) (-1010 "SEXOF.spad" 1820782 1820822 1820929 1820934) (-1009 "SEX.spad" 1820674 1820683 1820772 1820777) (-1008 "SEXCAT.spad" 1817778 1817818 1820664 1820669) (-1007 "SET.spad" 1816078 1816089 1817199 1817238) (-1006 "SETMN.spad" 1814512 1814529 1816068 1816073) (-1005 "SETCAT.spad" 1813997 1814006 1814502 1814507) (-1004 "SETCAT.spad" 1813480 1813491 1813987 1813992) (-1003 "SETAGG.spad" 1810003 1810014 1813448 1813475) (-1002 "SETAGG.spad" 1806546 1806559 1809993 1809998) (-1001 "SEGXCAT.spad" 1805658 1805671 1806526 1806541) (-1000 "SEG.spad" 1805471 1805482 1805577 1805582) (-999 "SEGCAT.spad" 1804291 1804301 1805451 1805466) (-998 "SEGBIND.spad" 1803364 1803374 1804246 1804251) (-997 "SEGBIND2.spad" 1803061 1803073 1803354 1803359) (-996 "SEG2.spad" 1802487 1802499 1803017 1803022) (-995 "SDVAR.spad" 1801764 1801774 1802477 1802482) (-994 "SDPOL.spad" 1799163 1799173 1799453 1799580) (-993 "SCPKG.spad" 1797243 1797253 1799153 1799158) (-992 "SCACHE.spad" 1795926 1795936 1797233 1797238) (-991 "SAOS.spad" 1795799 1795807 1795916 1795921) (-990 "SAERFFC.spad" 1795513 1795532 1795789 1795794) (-989 "SAE.spad" 1793692 1793707 1794302 1794437) (-988 "SAEFACT.spad" 1793394 1793413 1793682 1793687) (-987 "RURPK.spad" 1791036 1791051 1793384 1793389) (-986 "RULESET.spad" 1790478 1790501 1791026 1791031) (-985 "RULE.spad" 1788683 1788706 1790468 1790473) (-984 "RULECOLD.spad" 1788536 1788548 1788673 1788678) (-983 "RSETGCD.spad" 1784915 1784934 1788526 1788531) (-982 "RSETCAT.spad" 1774688 1774704 1784871 1784910) (-981 "RSETCAT.spad" 1764493 1764511 1774678 1774683) (-980 "RSDCMPK.spad" 1762946 1762965 1764483 1764488) (-979 "RRCC.spad" 1761331 1761360 1762936 1762941) (-978 "RRCC.spad" 1759714 1759745 1761321 1761326) (-977 "RPOLCAT.spad" 1739075 1739089 1759582 1759709) (-976 "RPOLCAT.spad" 1718151 1718167 1738660 1738665) (-975 "ROUTINE.spad" 1714015 1714023 1716798 1716825) (-974 "ROMAN.spad" 1713248 1713256 1713881 1714010) (-973 "ROIRC.spad" 1712329 1712360 1713238 1713243) (-972 "RNS.spad" 1711233 1711241 1712231 1712324) (-971 "RNS.spad" 1710223 1710233 1711223 1711228) (-970 "RNG.spad" 1709959 1709967 1710213 1710218) (-969 "RMODULE.spad" 1709598 1709608 1709949 1709954) (-968 "RMCAT2.spad" 1709007 1709063 1709588 1709593) (-967 "RMATRIX.spad" 1707687 1707705 1708174 1708213) (-966 "RMATCAT.spad" 1703209 1703239 1707631 1707682) (-965 "RMATCAT.spad" 1698633 1698665 1703057 1703062) (-964 "RINTERP.spad" 1698522 1698541 1698623 1698628) (-963 "RING.spad" 1697880 1697888 1698502 1698517) (-962 "RING.spad" 1697246 1697256 1697870 1697875) (-961 "RIDIST.spad" 1696631 1696639 1697236 1697241) (-960 "RGCHAIN.spad" 1695211 1695226 1696116 1696143) (-959 "RF.spad" 1692826 1692836 1695201 1695206) (-958 "RFFACTOR.spad" 1692289 1692299 1692816 1692821) (-957 "RFFACT.spad" 1692025 1692036 1692279 1692284) (-956 "RFDIST.spad" 1691014 1691022 1692015 1692020) (-955 "RETSOL.spad" 1690432 1690444 1691004 1691009) (-954 "RETRACT.spad" 1689782 1689792 1690422 1690427) (-953 "RETRACT.spad" 1689130 1689142 1689772 1689777) (-952 "RESULT.spad" 1687191 1687199 1687777 1687804) (-951 "RESRING.spad" 1686539 1686585 1687129 1687186) (-950 "RESLATC.spad" 1685864 1685874 1686529 1686534) (-949 "REPSQ.spad" 1685594 1685604 1685854 1685859) (-948 "REP.spad" 1683147 1683155 1685584 1685589) (-947 "REPDB.spad" 1682853 1682863 1683137 1683142) (-946 "REP2.spad" 1672426 1672436 1682695 1682700) (-945 "REP1.spad" 1666417 1666427 1672376 1672381) (-944 "REGSET.spad" 1664215 1664231 1666063 1666090) (-943 "REF.spad" 1663545 1663555 1664170 1664175) (-942 "REDORDER.spad" 1662722 1662738 1663535 1663540) (-941 "RECLOS.spad" 1661512 1661531 1662215 1662308) (-940 "REALSOLV.spad" 1660645 1660653 1661502 1661507) (-939 "REAL.spad" 1660518 1660526 1660635 1660640) (-938 "REAL0Q.spad" 1657801 1657815 1660508 1660513) (-937 "REAL0.spad" 1654630 1654644 1657791 1657796) (-936 "RDIV.spad" 1654282 1654306 1654620 1654625) (-935 "RDIST.spad" 1653846 1653856 1654272 1654277) (-934 "RDETRS.spad" 1652643 1652660 1653836 1653841) (-933 "RDETR.spad" 1650751 1650768 1652633 1652638) (-932 "RDEEFS.spad" 1649825 1649841 1650741 1650746) (-931 "RDEEF.spad" 1648822 1648838 1649815 1649820) (-930 "RCFIELD.spad" 1646006 1646014 1648724 1648817) (-929 "RCFIELD.spad" 1643276 1643286 1645996 1646001) (-928 "RCAGG.spad" 1641179 1641189 1643256 1643271) (-927 "RCAGG.spad" 1639019 1639031 1641098 1641103) (-926 "RATRET.spad" 1638380 1638390 1639009 1639014) (-925 "RATFACT.spad" 1638073 1638084 1638370 1638375) (-924 "RANDSRC.spad" 1637393 1637401 1638063 1638068) (-923 "RADUTIL.spad" 1637148 1637156 1637383 1637388) (-922 "RADIX.spad" 1633941 1633954 1635618 1635711) (-921 "RADFF.spad" 1632358 1632394 1632476 1632632) (-920 "RADCAT.spad" 1631952 1631960 1632348 1632353) (-919 "RADCAT.spad" 1631544 1631554 1631942 1631947) (-918 "QUEUE.spad" 1630887 1630897 1631151 1631178) (-917 "QUAT.spad" 1629473 1629483 1629815 1629880) (-916 "QUATCT2.spad" 1629092 1629110 1629463 1629468) (-915 "QUATCAT.spad" 1627257 1627267 1629022 1629087) (-914 "QUATCAT.spad" 1625174 1625186 1626941 1626946) (-913 "QUAGG.spad" 1623988 1623998 1625130 1625169) (-912 "QFORM.spad" 1623451 1623465 1623978 1623983) (-911 "QFCAT.spad" 1622142 1622152 1623341 1623446) (-910 "QFCAT.spad" 1620439 1620451 1621640 1621645) (-909 "QFCAT2.spad" 1620130 1620146 1620429 1620434) (-908 "QEQUAT.spad" 1619687 1619695 1620120 1620125) (-907 "QCMPACK.spad" 1614434 1614453 1619677 1619682) (-906 "QALGSET.spad" 1610509 1610541 1614348 1614353) (-905 "QALGSET2.spad" 1608505 1608523 1610499 1610504) (-904 "PWFFINTB.spad" 1605815 1605836 1608495 1608500) (-903 "PUSHVAR.spad" 1605144 1605163 1605805 1605810) (-902 "PTRANFN.spad" 1601270 1601280 1605134 1605139) (-901 "PTPACK.spad" 1598358 1598368 1601260 1601265) (-900 "PTFUNC2.spad" 1598179 1598193 1598348 1598353) (-899 "PTCAT.spad" 1597261 1597271 1598135 1598174) (-898 "PSQFR.spad" 1596568 1596592 1597251 1597256) (-897 "PSEUDLIN.spad" 1595426 1595436 1596558 1596563) (-896 "PSETPK.spad" 1580859 1580875 1595304 1595309) (-895 "PSETCAT.spad" 1574767 1574790 1580827 1580854) (-894 "PSETCAT.spad" 1568661 1568686 1574723 1574728) (-893 "PSCURVE.spad" 1567644 1567652 1568651 1568656) (-892 "PSCAT.spad" 1566411 1566440 1567542 1567639) (-891 "PSCAT.spad" 1565268 1565299 1566401 1566406) (-890 "PRTITION.spad" 1564111 1564119 1565258 1565263) (-889 "PRS.spad" 1553673 1553690 1564067 1564072) (-888 "PRQAGG.spad" 1553092 1553102 1553629 1553668) (-887 "PROPLOG.spad" 1552495 1552503 1553082 1553087) (-886 "PRODUCT.spad" 1550175 1550187 1550461 1550516) (-885 "PR.spad" 1548564 1548576 1549269 1549396) (-884 "PRINT.spad" 1548316 1548324 1548554 1548559) (-883 "PRIMES.spad" 1546567 1546577 1548306 1548311) (-882 "PRIMELT.spad" 1544548 1544562 1546557 1546562) (-881 "PRIMCAT.spad" 1544171 1544179 1544538 1544543) (-880 "PRIMARR.spad" 1543176 1543186 1543354 1543381) (-879 "PRIMARR2.spad" 1541899 1541911 1543166 1543171) (-878 "PREASSOC.spad" 1541271 1541283 1541889 1541894) (-877 "PPCURVE.spad" 1540408 1540416 1541261 1541266) (-876 "POLYROOT.spad" 1539180 1539202 1540364 1540369) (-875 "POLY.spad" 1536480 1536490 1536997 1537124) (-874 "POLYLIFT.spad" 1535741 1535764 1536470 1536475) (-873 "POLYCATQ.spad" 1533843 1533865 1535731 1535736) (-872 "POLYCAT.spad" 1527249 1527270 1533711 1533838) (-871 "POLYCAT.spad" 1519957 1519980 1526421 1526426) (-870 "POLY2UP.spad" 1519405 1519419 1519947 1519952) (-869 "POLY2.spad" 1519000 1519012 1519395 1519400) (-868 "POLUTIL.spad" 1517941 1517970 1518956 1518961) (-867 "POLTOPOL.spad" 1516689 1516704 1517931 1517936) (-866 "POINT.spad" 1515530 1515540 1515617 1515644) (-865 "PNTHEORY.spad" 1512196 1512204 1515520 1515525) (-864 "PMTOOLS.spad" 1510953 1510967 1512186 1512191) (-863 "PMSYM.spad" 1510498 1510508 1510943 1510948) (-862 "PMQFCAT.spad" 1510085 1510099 1510488 1510493) (-861 "PMPRED.spad" 1509554 1509568 1510075 1510080) (-860 "PMPREDFS.spad" 1508998 1509020 1509544 1509549) (-859 "PMPLCAT.spad" 1508068 1508086 1508930 1508935) (-858 "PMLSAGG.spad" 1507649 1507663 1508058 1508063) (-857 "PMKERNEL.spad" 1507216 1507228 1507639 1507644) (-856 "PMINS.spad" 1506792 1506802 1507206 1507211) (-855 "PMFS.spad" 1506365 1506383 1506782 1506787) (-854 "PMDOWN.spad" 1505651 1505665 1506355 1506360) (-853 "PMASS.spad" 1504663 1504671 1505641 1505646) (-852 "PMASSFS.spad" 1503632 1503648 1504653 1504658) (-851 "PLOTTOOL.spad" 1503412 1503420 1503622 1503627) (-850 "PLOT.spad" 1498243 1498251 1503402 1503407) (-849 "PLOT3D.spad" 1494663 1494671 1498233 1498238) (-848 "PLOT1.spad" 1493804 1493814 1494653 1494658) (-847 "PLEQN.spad" 1481020 1481047 1493794 1493799) (-846 "PINTERP.spad" 1480636 1480655 1481010 1481015) (-845 "PINTERPA.spad" 1480418 1480434 1480626 1480631) (-844 "PI.spad" 1480025 1480033 1480392 1480413) (-843 "PID.spad" 1478981 1478989 1479951 1480020) (-842 "PICOERCE.spad" 1478638 1478648 1478971 1478976) (-841 "PGROEB.spad" 1477235 1477249 1478628 1478633) (-840 "PGE.spad" 1468488 1468496 1477225 1477230) (-839 "PGCD.spad" 1467370 1467387 1468478 1468483) (-838 "PFRPAC.spad" 1466513 1466523 1467360 1467365) (-837 "PFR.spad" 1463170 1463180 1466415 1466508) (-836 "PFOTOOLS.spad" 1462428 1462444 1463160 1463165) (-835 "PFOQ.spad" 1461798 1461816 1462418 1462423) (-834 "PFO.spad" 1461217 1461244 1461788 1461793) (-833 "PF.spad" 1460791 1460803 1461022 1461115) (-832 "PFECAT.spad" 1458457 1458465 1460717 1460786) (-831 "PFECAT.spad" 1456151 1456161 1458413 1458418) (-830 "PFBRU.spad" 1454021 1454033 1456141 1456146) (-829 "PFBR.spad" 1451559 1451582 1454011 1454016) (-828 "PERM.spad" 1447240 1447250 1451389 1451404) (-827 "PERMGRP.spad" 1441976 1441986 1447230 1447235) (-826 "PERMCAT.spad" 1440528 1440538 1441956 1441971) (-825 "PERMAN.spad" 1439060 1439074 1440518 1440523) (-824 "PENDTREE.spad" 1438333 1438343 1438689 1438694) (-823 "PDRING.spad" 1436824 1436834 1438313 1438328) (-822 "PDRING.spad" 1435323 1435335 1436814 1436819) (-821 "PDEPROB.spad" 1434280 1434288 1435313 1435318) (-820 "PDEPACK.spad" 1428282 1428290 1434270 1434275) (-819 "PDECOMP.spad" 1427744 1427761 1428272 1428277) (-818 "PDECAT.spad" 1426098 1426106 1427734 1427739) (-817 "PCOMP.spad" 1425949 1425962 1426088 1426093) (-816 "PBWLB.spad" 1424531 1424548 1425939 1425944) (-815 "PATTERN.spad" 1418962 1418972 1424521 1424526) (-814 "PATTERN2.spad" 1418698 1418710 1418952 1418957) (-813 "PATTERN1.spad" 1417000 1417016 1418688 1418693) (-812 "PATRES.spad" 1414547 1414559 1416990 1416995) (-811 "PATRES2.spad" 1414209 1414223 1414537 1414542) (-810 "PATMATCH.spad" 1412371 1412402 1413922 1413927) (-809 "PATMAB.spad" 1411796 1411806 1412361 1412366) (-808 "PATLRES.spad" 1410880 1410894 1411786 1411791) (-807 "PATAB.spad" 1410644 1410654 1410870 1410875) (-806 "PARTPERM.spad" 1408006 1408014 1410634 1410639) (-805 "PARSURF.spad" 1407434 1407462 1407996 1408001) (-804 "PARSU2.spad" 1407229 1407245 1407424 1407429) (-803 "script-parser.spad" 1406749 1406757 1407219 1407224) (-802 "PARSCURV.spad" 1406177 1406205 1406739 1406744) (-801 "PARSC2.spad" 1405966 1405982 1406167 1406172) (-800 "PARPCURV.spad" 1405424 1405452 1405956 1405961) (-799 "PARPC2.spad" 1405213 1405229 1405414 1405419) (-798 "PAN2EXPR.spad" 1404625 1404633 1405203 1405208) (-797 "PALETTE.spad" 1403595 1403603 1404615 1404620) (-796 "PADICRC.spad" 1400928 1400946 1402103 1402196) (-795 "PADICRAT.spad" 1398946 1398958 1399167 1399260) (-794 "PADIC.spad" 1398641 1398653 1398872 1398941) (-793 "PADICCT.spad" 1397182 1397194 1398567 1398636) (-792 "PADEPAC.spad" 1395861 1395880 1397172 1397177) (-791 "PADE.spad" 1394601 1394617 1395851 1395856) (-790 "OWP.spad" 1393585 1393615 1394459 1394526) (-789 "OVAR.spad" 1393366 1393389 1393575 1393580) (-788 "OUT.spad" 1392450 1392458 1393356 1393361) (-787 "OUTFORM.spad" 1381864 1381872 1392440 1392445) (-786 "OSI.spad" 1381339 1381347 1381854 1381859) (-785 "ORTHPOL.spad" 1379800 1379810 1381256 1381261) (-784 "OREUP.spad" 1379160 1379188 1379482 1379521) (-783 "ORESUP.spad" 1378461 1378485 1378842 1378881) (-782 "OREPCTO.spad" 1376280 1376292 1378381 1378386) (-781 "OREPCAT.spad" 1370337 1370347 1376236 1376275) (-780 "OREPCAT.spad" 1364284 1364296 1370185 1370190) (-779 "ORDSET.spad" 1363450 1363458 1364274 1364279) (-778 "ORDSET.spad" 1362614 1362624 1363440 1363445) (-777 "ORDRING.spad" 1362004 1362012 1362594 1362609) (-776 "ORDRING.spad" 1361402 1361412 1361994 1361999) (-775 "ORDMON.spad" 1361257 1361265 1361392 1361397) (-774 "ORDFUNS.spad" 1360383 1360399 1361247 1361252) (-773 "ORDFIN.spad" 1360317 1360325 1360373 1360378) (-772 "ORDCOMP.spad" 1358785 1358795 1359867 1359896) (-771 "ORDCOMP2.spad" 1358070 1358082 1358775 1358780) (-770 "OPTPROB.spad" 1356650 1356658 1358060 1358065) (-769 "OPTPACK.spad" 1349035 1349043 1356640 1356645) (-768 "OPTCAT.spad" 1346710 1346718 1349025 1349030) (-767 "OPQUERY.spad" 1346259 1346267 1346700 1346705) (-766 "OP.spad" 1346001 1346011 1346081 1346148) (-765 "ONECOMP.spad" 1344749 1344759 1345551 1345580) (-764 "ONECOMP2.spad" 1344167 1344179 1344739 1344744) (-763 "OMSERVER.spad" 1343169 1343177 1344157 1344162) (-762 "OMSAGG.spad" 1342945 1342955 1343113 1343164) (-761 "OMPKG.spad" 1341557 1341565 1342935 1342940) (-760 "OM.spad" 1340522 1340530 1341547 1341552) (-759 "OMLO.spad" 1339947 1339959 1340408 1340447) (-758 "OMEXPR.spad" 1339781 1339791 1339937 1339942) (-757 "OMERR.spad" 1339324 1339332 1339771 1339776) (-756 "OMERRK.spad" 1338358 1338366 1339314 1339319) (-755 "OMENC.spad" 1337702 1337710 1338348 1338353) (-754 "OMDEV.spad" 1331991 1331999 1337692 1337697) (-753 "OMCONN.spad" 1331400 1331408 1331981 1331986) (-752 "OINTDOM.spad" 1331163 1331171 1331326 1331395) (-751 "OFMONOID.spad" 1327350 1327360 1331153 1331158) (-750 "ODVAR.spad" 1326611 1326621 1327340 1327345) (-749 "ODR.spad" 1326059 1326085 1326423 1326572) (-748 "ODPOL.spad" 1323408 1323418 1323748 1323875) (-747 "ODP.spad" 1314934 1314954 1315307 1315436) (-746 "ODETOOLS.spad" 1313517 1313536 1314924 1314929) (-745 "ODESYS.spad" 1311167 1311184 1313507 1313512) (-744 "ODERTRIC.spad" 1307108 1307125 1311124 1311129) (-743 "ODERED.spad" 1306495 1306519 1307098 1307103) (-742 "ODERAT.spad" 1304046 1304063 1306485 1306490) (-741 "ODEPRRIC.spad" 1300937 1300959 1304036 1304041) (-740 "ODEPROB.spad" 1300136 1300144 1300927 1300932) (-739 "ODEPRIM.spad" 1297410 1297432 1300126 1300131) (-738 "ODEPAL.spad" 1296786 1296810 1297400 1297405) (-737 "ODEPACK.spad" 1283388 1283396 1296776 1296781) (-736 "ODEINT.spad" 1282819 1282835 1283378 1283383) (-735 "ODEIFTBL.spad" 1280214 1280222 1282809 1282814) (-734 "ODEEF.spad" 1275581 1275597 1280204 1280209) (-733 "ODECONST.spad" 1275100 1275118 1275571 1275576) (-732 "ODECAT.spad" 1273696 1273704 1275090 1275095) (-731 "OCT.spad" 1271843 1271853 1272559 1272598) (-730 "OCTCT2.spad" 1271487 1271508 1271833 1271838) (-729 "OC.spad" 1269261 1269271 1271443 1271482) (-728 "OC.spad" 1266761 1266773 1268945 1268950) (-727 "OCAMON.spad" 1266609 1266617 1266751 1266756) (-726 "OASGP.spad" 1266424 1266432 1266599 1266604) (-725 "OAMONS.spad" 1265944 1265952 1266414 1266419) (-724 "OAMON.spad" 1265805 1265813 1265934 1265939) (-723 "OAGROUP.spad" 1265667 1265675 1265795 1265800) (-722 "NUMTUBE.spad" 1265254 1265270 1265657 1265662) (-721 "NUMQUAD.spad" 1253116 1253124 1265244 1265249) (-720 "NUMODE.spad" 1244252 1244260 1253106 1253111) (-719 "NUMINT.spad" 1241810 1241818 1244242 1244247) (-718 "NUMFMT.spad" 1240650 1240658 1241800 1241805) (-717 "NUMERIC.spad" 1232723 1232733 1240456 1240461) (-716 "NTSCAT.spad" 1231213 1231229 1232679 1232718) (-715 "NTPOLFN.spad" 1230758 1230768 1231130 1231135) (-714 "NSUP.spad" 1223776 1223786 1228316 1228469) (-713 "NSUP2.spad" 1223168 1223180 1223766 1223771) (-712 "NSMP.spad" 1219367 1219386 1219675 1219802) (-711 "NREP.spad" 1217739 1217753 1219357 1219362) (-710 "NPCOEF.spad" 1216985 1217005 1217729 1217734) (-709 "NORMRETR.spad" 1216583 1216622 1216975 1216980) (-708 "NORMPK.spad" 1214485 1214504 1216573 1216578) (-707 "NORMMA.spad" 1214173 1214199 1214475 1214480) (-706 "NONE.spad" 1213914 1213922 1214163 1214168) (-705 "NONE1.spad" 1213590 1213600 1213904 1213909) (-704 "NODE1.spad" 1213059 1213075 1213580 1213585) (-703 "NNI.spad" 1211946 1211954 1213033 1213054) (-702 "NLINSOL.spad" 1210568 1210578 1211936 1211941) (-701 "NIPROB.spad" 1209051 1209059 1210558 1210563) (-700 "NFINTBAS.spad" 1206511 1206528 1209041 1209046) (-699 "NCODIV.spad" 1204709 1204725 1206501 1206506) (-698 "NCNTFRAC.spad" 1204351 1204365 1204699 1204704) (-697 "NCEP.spad" 1202511 1202525 1204341 1204346) (-696 "NASRING.spad" 1202107 1202115 1202501 1202506) (-695 "NASRING.spad" 1201701 1201711 1202097 1202102) (-694 "NARNG.spad" 1201045 1201053 1201691 1201696) (-693 "NARNG.spad" 1200387 1200397 1201035 1201040) (-692 "NAGSP.spad" 1199460 1199468 1200377 1200382) (-691 "NAGS.spad" 1188985 1188993 1199450 1199455) (-690 "NAGF07.spad" 1187378 1187386 1188975 1188980) (-689 "NAGF04.spad" 1181610 1181618 1187368 1187373) (-688 "NAGF02.spad" 1175419 1175427 1181600 1181605) (-687 "NAGF01.spad" 1171022 1171030 1175409 1175414) (-686 "NAGE04.spad" 1164482 1164490 1171012 1171017) (-685 "NAGE02.spad" 1154824 1154832 1164472 1164477) (-684 "NAGE01.spad" 1150708 1150716 1154814 1154819) (-683 "NAGD03.spad" 1148628 1148636 1150698 1150703) (-682 "NAGD02.spad" 1141159 1141167 1148618 1148623) (-681 "NAGD01.spad" 1135272 1135280 1141149 1141154) (-680 "NAGC06.spad" 1131059 1131067 1135262 1135267) (-679 "NAGC05.spad" 1129528 1129536 1131049 1131054) (-678 "NAGC02.spad" 1128783 1128791 1129518 1129523) (-677 "NAALG.spad" 1128318 1128328 1128751 1128778) (-676 "NAALG.spad" 1127873 1127885 1128308 1128313) (-675 "MULTSQFR.spad" 1124831 1124848 1127863 1127868) (-674 "MULTFACT.spad" 1124214 1124231 1124821 1124826) (-673 "MTSCAT.spad" 1122248 1122269 1124112 1124209) (-672 "MTHING.spad" 1121905 1121915 1122238 1122243) (-671 "MSYSCMD.spad" 1121339 1121347 1121895 1121900) (-670 "MSET.spad" 1119281 1119291 1121045 1121084) (-669 "MSETAGG.spad" 1119114 1119124 1119237 1119276) (-668 "MRING.spad" 1116085 1116097 1118822 1118889) (-667 "MRF2.spad" 1115653 1115667 1116075 1116080) (-666 "MRATFAC.spad" 1115199 1115216 1115643 1115648) (-665 "MPRFF.spad" 1113229 1113248 1115189 1115194) (-664 "MPOLY.spad" 1110667 1110682 1111026 1111153) (-663 "MPCPF.spad" 1109931 1109950 1110657 1110662) (-662 "MPC3.spad" 1109746 1109786 1109921 1109926) (-661 "MPC2.spad" 1109388 1109421 1109736 1109741) (-660 "MONOTOOL.spad" 1107723 1107740 1109378 1109383) (-659 "MONOID.spad" 1106897 1106905 1107713 1107718) (-658 "MONOID.spad" 1106069 1106079 1106887 1106892) (-657 "MONOGEN.spad" 1104815 1104828 1105929 1106064) (-656 "MONOGEN.spad" 1103583 1103598 1104699 1104704) (-655 "MONADWU.spad" 1101597 1101605 1103573 1103578) (-654 "MONADWU.spad" 1099609 1099619 1101587 1101592) (-653 "MONAD.spad" 1098753 1098761 1099599 1099604) (-652 "MONAD.spad" 1097895 1097905 1098743 1098748) (-651 "MOEBIUS.spad" 1096581 1096595 1097875 1097890) (-650 "MODULE.spad" 1096451 1096461 1096549 1096576) (-649 "MODULE.spad" 1096341 1096353 1096441 1096446) (-648 "MODRING.spad" 1095672 1095711 1096321 1096336) (-647 "MODOP.spad" 1094331 1094343 1095494 1095561) (-646 "MODMONOM.spad" 1093863 1093881 1094321 1094326) (-645 "MODMON.spad" 1090573 1090589 1091349 1091502) (-644 "MODFIELD.spad" 1089931 1089970 1090475 1090568) (-643 "MMAP.spad" 1089671 1089705 1089921 1089926) (-642 "MLO.spad" 1088098 1088108 1089627 1089666) (-641 "MLIFT.spad" 1086670 1086687 1088088 1088093) (-640 "MKUCFUNC.spad" 1086203 1086221 1086660 1086665) (-639 "MKRECORD.spad" 1085805 1085818 1086193 1086198) (-638 "MKFUNC.spad" 1085186 1085196 1085795 1085800) (-637 "MKFLCFN.spad" 1084142 1084152 1085176 1085181) (-636 "MKCHSET.spad" 1083918 1083928 1084132 1084137) (-635 "MKBCFUNC.spad" 1083403 1083421 1083908 1083913) (-634 "MINT.spad" 1082842 1082850 1083305 1083398) (-633 "MHROWRED.spad" 1081343 1081353 1082832 1082837) (-632 "MFLOAT.spad" 1079788 1079796 1081233 1081338) (-631 "MFINFACT.spad" 1079188 1079210 1079778 1079783) (-630 "MESH.spad" 1076920 1076928 1079178 1079183) (-629 "MDDFACT.spad" 1075113 1075123 1076910 1076915) (-628 "MDAGG.spad" 1074388 1074398 1075081 1075108) (-627 "MCMPLX.spad" 1070368 1070376 1070982 1071183) (-626 "MCDEN.spad" 1069576 1069588 1070358 1070363) (-625 "MCALCFN.spad" 1066678 1066704 1069566 1069571) (-624 "MATSTOR.spad" 1063954 1063964 1066668 1066673) (-623 "MATRIX.spad" 1062658 1062668 1063142 1063169) (-622 "MATLIN.spad" 1059984 1060008 1062542 1062547) (-621 "MATCAT.spad" 1051557 1051579 1059940 1059979) (-620 "MATCAT.spad" 1043014 1043038 1051399 1051404) (-619 "MATCAT2.spad" 1042282 1042330 1043004 1043009) (-618 "MAPPKG3.spad" 1041181 1041195 1042272 1042277) (-617 "MAPPKG2.spad" 1040515 1040527 1041171 1041176) (-616 "MAPPKG1.spad" 1039333 1039343 1040505 1040510) (-615 "MAPHACK3.spad" 1039141 1039155 1039323 1039328) (-614 "MAPHACK2.spad" 1038906 1038918 1039131 1039136) (-613 "MAPHACK1.spad" 1038536 1038546 1038896 1038901) (-612 "MAGMA.spad" 1036326 1036343 1038526 1038531) (-611 "M3D.spad" 1034024 1034034 1035706 1035711) (-610 "LZSTAGG.spad" 1031242 1031252 1034004 1034019) (-609 "LZSTAGG.spad" 1028468 1028480 1031232 1031237) (-608 "LWORD.spad" 1025173 1025190 1028458 1028463) (-607 "LSQM.spad" 1023401 1023415 1023799 1023850) (-606 "LSPP.spad" 1022934 1022951 1023391 1023396) (-605 "LSMP.spad" 1021774 1021802 1022924 1022929) (-604 "LSMP1.spad" 1019578 1019592 1021764 1021769) (-603 "LSAGG.spad" 1019235 1019245 1019534 1019573) (-602 "LSAGG.spad" 1018924 1018936 1019225 1019230) (-601 "LPOLY.spad" 1017878 1017897 1018780 1018849) (-600 "LPEFRAC.spad" 1017135 1017145 1017868 1017873) (-599 "LO.spad" 1016536 1016550 1017069 1017096) (-598 "LOGIC.spad" 1016138 1016146 1016526 1016531) (-597 "LOGIC.spad" 1015738 1015748 1016128 1016133) (-596 "LODOOPS.spad" 1014656 1014668 1015728 1015733) (-595 "LODO.spad" 1014042 1014058 1014338 1014377) (-594 "LODOF.spad" 1013086 1013103 1013999 1014004) (-593 "LODOCAT.spad" 1011744 1011754 1013042 1013081) (-592 "LODOCAT.spad" 1010400 1010412 1011700 1011705) (-591 "LODO2.spad" 1009675 1009687 1010082 1010121) (-590 "LODO1.spad" 1009077 1009087 1009357 1009396) (-589 "LODEEF.spad" 1007849 1007867 1009067 1009072) (-588 "LNAGG.spad" 1003641 1003651 1007829 1007844) (-587 "LNAGG.spad" 999407 999419 1003597 1003602) (-586 "LMOPS.spad" 996143 996160 999397 999402) (-585 "LMODULE.spad" 995785 995795 996133 996138) (-584 "LMDICT.spad" 995068 995078 995336 995363) (-583 "LIST.spad" 992786 992796 994215 994242) (-582 "LIST3.spad" 992077 992091 992776 992781) (-581 "LIST2.spad" 990717 990729 992067 992072) (-580 "LIST2MAP.spad" 987594 987606 990707 990712) (-579 "LINEXP.spad" 987026 987036 987574 987589) (-578 "LINDEP.spad" 985803 985815 986938 986943) (-577 "LIMITRF.spad" 983717 983727 985793 985798) (-576 "LIMITPS.spad" 982600 982613 983707 983712) (-575 "LIE.spad" 980614 980626 981890 982035) (-574 "LIECAT.spad" 980090 980100 980540 980609) (-573 "LIECAT.spad" 979594 979606 980046 980051) (-572 "LIB.spad" 977642 977650 978253 978268) (-571 "LGROBP.spad" 974995 975014 977632 977637) (-570 "LF.spad" 973914 973930 974985 974990) (-569 "LFCAT.spad" 972933 972941 973904 973909) (-568 "LEXTRIPK.spad" 968436 968451 972923 972928) (-567 "LEXP.spad" 966439 966466 968416 968431) (-566 "LEADCDET.spad" 964823 964840 966429 966434) (-565 "LAZM3PK.spad" 963527 963549 964813 964818) (-564 "LAUPOL.spad" 962218 962231 963122 963191) (-563 "LAPLACE.spad" 961791 961807 962208 962213) (-562 "LA.spad" 961231 961245 961713 961752) (-561 "LALG.spad" 961007 961017 961211 961226) (-560 "LALG.spad" 960791 960803 960997 961002) (-559 "KOVACIC.spad" 959504 959521 960781 960786) (-558 "KONVERT.spad" 959226 959236 959494 959499) (-557 "KOERCE.spad" 958963 958973 959216 959221) (-556 "KERNEL.spad" 957498 957508 958747 958752) (-555 "KERNEL2.spad" 957201 957213 957488 957493) (-554 "KDAGG.spad" 956292 956314 957169 957196) (-553 "KDAGG.spad" 955403 955427 956282 956287) (-552 "KAFILE.spad" 954366 954382 954601 954628) (-551 "JORDAN.spad" 952193 952205 953656 953801) (-550 "IXAGG.spad" 950306 950330 952173 952188) (-549 "IXAGG.spad" 948284 948310 950153 950158) (-548 "IVECTOR.spad" 947057 947072 947212 947239) (-547 "ITUPLE.spad" 946202 946212 947047 947052) (-546 "ITRIGMNP.spad" 945013 945032 946192 946197) (-545 "ITFUN3.spad" 944507 944521 945003 945008) (-544 "ITFUN2.spad" 944237 944249 944497 944502) (-543 "ITAYLOR.spad" 942029 942044 944073 944198) (-542 "ISUPS.spad" 934440 934455 941003 941100) (-541 "ISUMP.spad" 933937 933953 934430 934435) (-540 "ISTRING.spad" 932940 932953 933106 933133) (-539 "IRURPK.spad" 931653 931672 932930 932935) (-538 "IRSN.spad" 929613 929621 931643 931648) (-537 "IRRF2F.spad" 928088 928098 929569 929574) (-536 "IRREDFFX.spad" 927689 927700 928078 928083) (-535 "IROOT.spad" 926020 926030 927679 927684) (-534 "IR.spad" 923810 923824 925876 925903) (-533 "IR2.spad" 922830 922846 923800 923805) (-532 "IR2F.spad" 922030 922046 922820 922825) (-531 "IPRNTPK.spad" 921790 921798 922020 922025) (-530 "IPF.spad" 921355 921367 921595 921688) (-529 "IPADIC.spad" 921116 921142 921281 921350) (-528 "INVLAPLA.spad" 920761 920777 921106 921111) (-527 "INTTR.spad" 914007 914024 920751 920756) (-526 "INTTOOLS.spad" 911719 911735 913582 913587) (-525 "INTSLPE.spad" 911025 911033 911709 911714) (-524 "INTRVL.spad" 910591 910601 910939 911020) (-523 "INTRF.spad" 908955 908969 910581 910586) (-522 "INTRET.spad" 908387 908397 908945 908950) (-521 "INTRAT.spad" 907062 907079 908377 908382) (-520 "INTPM.spad" 905425 905441 906705 906710) (-519 "INTPAF.spad" 903193 903211 905357 905362) (-518 "INTPACK.spad" 893503 893511 903183 903188) (-517 "INT.spad" 892864 892872 893357 893498) (-516 "INTHERTR.spad" 892130 892147 892854 892859) (-515 "INTHERAL.spad" 891796 891820 892120 892125) (-514 "INTHEORY.spad" 888209 888217 891786 891791) (-513 "INTG0.spad" 881672 881690 888141 888146) (-512 "INTFTBL.spad" 875701 875709 881662 881667) (-511 "INTFACT.spad" 874760 874770 875691 875696) (-510 "INTEF.spad" 873075 873091 874750 874755) (-509 "INTDOM.spad" 871690 871698 873001 873070) (-508 "INTDOM.spad" 870367 870377 871680 871685) (-507 "INTCAT.spad" 868620 868630 870281 870362) (-506 "INTBIT.spad" 868123 868131 868610 868615) (-505 "INTALG.spad" 867305 867332 868113 868118) (-504 "INTAF.spad" 866797 866813 867295 867300) (-503 "INTABL.spad" 865315 865346 865478 865505) (-502 "INS.spad" 862711 862719 865217 865310) (-501 "INS.spad" 860193 860203 862701 862706) (-500 "INPSIGN.spad" 859627 859640 860183 860188) (-499 "INPRODPF.spad" 858693 858712 859617 859622) (-498 "INPRODFF.spad" 857751 857775 858683 858688) (-497 "INNMFACT.spad" 856722 856739 857741 857746) (-496 "INMODGCD.spad" 856206 856236 856712 856717) (-495 "INFSP.spad" 854491 854513 856196 856201) (-494 "INFPROD0.spad" 853541 853560 854481 854486) (-493 "INFORM.spad" 850809 850817 853531 853536) (-492 "INFORM1.spad" 850434 850444 850799 850804) (-491 "INFINITY.spad" 849986 849994 850424 850429) (-490 "INEP.spad" 848518 848540 849976 849981) (-489 "INDE.spad" 848424 848441 848508 848513) (-488 "INCRMAPS.spad" 847845 847855 848414 848419) (-487 "INBFF.spad" 843615 843626 847835 847840) (-486 "IMATRIX.spad" 842560 842586 843072 843099) (-485 "IMATQF.spad" 841654 841698 842516 842521) (-484 "IMATLIN.spad" 840259 840283 841610 841615) (-483 "ILIST.spad" 838915 838930 839442 839469) (-482 "IIARRAY2.spad" 838303 838341 838522 838549) (-481 "IFF.spad" 837713 837729 837984 838077) (-480 "IFARRAY.spad" 835200 835215 836896 836923) (-479 "IFAMON.spad" 835062 835079 835156 835161) (-478 "IEVALAB.spad" 834451 834463 835052 835057) (-477 "IEVALAB.spad" 833838 833852 834441 834446) (-476 "IDPO.spad" 833636 833648 833828 833833) (-475 "IDPOAMS.spad" 833392 833404 833626 833631) (-474 "IDPOAM.spad" 833112 833124 833382 833387) (-473 "IDPC.spad" 832046 832058 833102 833107) (-472 "IDPAM.spad" 831791 831803 832036 832041) (-471 "IDPAG.spad" 831538 831550 831781 831786) (-470 "IDECOMP.spad" 828775 828793 831528 831533) (-469 "IDEAL.spad" 823698 823737 828710 828715) (-468 "ICDEN.spad" 822849 822865 823688 823693) (-467 "ICARD.spad" 822038 822046 822839 822844) (-466 "IBPTOOLS.spad" 820631 820648 822028 822033) (-465 "IBITS.spad" 819830 819843 820267 820294) (-464 "IBATOOL.spad" 816705 816724 819820 819825) (-463 "IBACHIN.spad" 815192 815207 816695 816700) (-462 "IARRAY2.spad" 814180 814206 814799 814826) (-461 "IARRAY1.spad" 813225 813240 813363 813390) (-460 "IAN.spad" 811440 811448 813043 813136) (-459 "IALGFACT.spad" 811041 811074 811430 811435) (-458 "HYPCAT.spad" 810465 810473 811031 811036) (-457 "HYPCAT.spad" 809887 809897 810455 810460) (-456 "HOAGG.spad" 807145 807155 809867 809882) (-455 "HOAGG.spad" 804188 804200 806912 806917) (-454 "HEXADEC.spad" 802060 802068 802658 802751) (-453 "HEUGCD.spad" 801075 801086 802050 802055) (-452 "HELLFDIV.spad" 800665 800689 801065 801070) (-451 "HEAP.spad" 800057 800067 800272 800299) (-450 "HDP.spad" 791579 791595 791956 792085) (-449 "HDMP.spad" 788758 788773 789376 789503) (-448 "HB.spad" 786995 787003 788748 788753) (-447 "HASHTBL.spad" 785465 785496 785676 785703) (-446 "HACKPI.spad" 784948 784956 785367 785460) (-445 "GTSET.spad" 783887 783903 784594 784621) (-444 "GSTBL.spad" 782406 782441 782580 782595) (-443 "GSERIES.spad" 779573 779600 780538 780687) (-442 "GROUP.spad" 778747 778755 779553 779568) (-441 "GROUP.spad" 777929 777939 778737 778742) (-440 "GROEBSOL.spad" 776417 776438 777919 777924) (-439 "GRMOD.spad" 774988 775000 776407 776412) (-438 "GRMOD.spad" 773557 773571 774978 774983) (-437 "GRIMAGE.spad" 766162 766170 773547 773552) (-436 "GRDEF.spad" 764541 764549 766152 766157) (-435 "GRAY.spad" 763000 763008 764531 764536) (-434 "GRALG.spad" 762047 762059 762990 762995) (-433 "GRALG.spad" 761092 761106 762037 762042) (-432 "GPOLSET.spad" 760546 760569 760774 760801) (-431 "GOSPER.spad" 759811 759829 760536 760541) (-430 "GMODPOL.spad" 758949 758976 759779 759806) (-429 "GHENSEL.spad" 758018 758032 758939 758944) (-428 "GENUPS.spad" 754119 754132 758008 758013) (-427 "GENUFACT.spad" 753696 753706 754109 754114) (-426 "GENPGCD.spad" 753280 753297 753686 753691) (-425 "GENMFACT.spad" 752732 752751 753270 753275) (-424 "GENEEZ.spad" 750671 750684 752722 752727) (-423 "GDMP.spad" 747692 747709 748468 748595) (-422 "GCNAALG.spad" 741587 741614 747486 747553) (-421 "GCDDOM.spad" 740759 740767 741513 741582) (-420 "GCDDOM.spad" 739993 740003 740749 740754) (-419 "GB.spad" 737511 737549 739949 739954) (-418 "GBINTERN.spad" 733531 733569 737501 737506) (-417 "GBF.spad" 729288 729326 733521 733526) (-416 "GBEUCLID.spad" 727162 727200 729278 729283) (-415 "GAUSSFAC.spad" 726459 726467 727152 727157) (-414 "GALUTIL.spad" 724781 724791 726415 726420) (-413 "GALPOLYU.spad" 723227 723240 724771 724776) (-412 "GALFACTU.spad" 721392 721411 723217 723222) (-411 "GALFACT.spad" 711525 711536 721382 721387) (-410 "FVFUN.spad" 708538 708546 711505 711520) (-409 "FVC.spad" 707580 707588 708518 708533) (-408 "FUNCTION.spad" 707429 707441 707570 707575) (-407 "FT.spad" 705641 705649 707419 707424) (-406 "FTEM.spad" 704804 704812 705631 705636) (-405 "FSUPFACT.spad" 703705 703724 704741 704746) (-404 "FST.spad" 701791 701799 703695 703700) (-403 "FSRED.spad" 701269 701285 701781 701786) (-402 "FSPRMELT.spad" 700093 700109 701226 701231) (-401 "FSPECF.spad" 698170 698186 700083 700088) (-400 "FS.spad" 692221 692231 697934 698165) (-399 "FS.spad" 686063 686075 691778 691783) (-398 "FSINT.spad" 685721 685737 686053 686058) (-397 "FSERIES.spad" 684908 684920 685541 685640) (-396 "FSCINT.spad" 684221 684237 684898 684903) (-395 "FSAGG.spad" 683326 683336 684165 684216) (-394 "FSAGG.spad" 682405 682417 683246 683251) (-393 "FSAGG2.spad" 681104 681120 682395 682400) (-392 "FS2UPS.spad" 675493 675527 681094 681099) (-391 "FS2.spad" 675138 675154 675483 675488) (-390 "FS2EXPXP.spad" 674261 674284 675128 675133) (-389 "FRUTIL.spad" 673203 673213 674251 674256) (-388 "FR.spad" 666900 666910 672230 672299) (-387 "FRNAALG.spad" 661987 661997 666842 666895) (-386 "FRNAALG.spad" 657086 657098 661943 661948) (-385 "FRNAAF2.spad" 656540 656558 657076 657081) (-384 "FRMOD.spad" 655935 655965 656472 656477) (-383 "FRIDEAL.spad" 655130 655151 655915 655930) (-382 "FRIDEAL2.spad" 654732 654764 655120 655125) (-381 "FRETRCT.spad" 654243 654253 654722 654727) (-380 "FRETRCT.spad" 653622 653634 654103 654108) (-379 "FRAMALG.spad" 651950 651963 653578 653617) (-378 "FRAMALG.spad" 650310 650325 651940 651945) (-377 "FRAC.spad" 647413 647423 647816 647989) (-376 "FRAC2.spad" 647016 647028 647403 647408) (-375 "FR2.spad" 646350 646362 647006 647011) (-374 "FPS.spad" 643159 643167 646240 646345) (-373 "FPS.spad" 639996 640006 643079 643084) (-372 "FPC.spad" 639038 639046 639898 639991) (-371 "FPC.spad" 638166 638176 639028 639033) (-370 "FPATMAB.spad" 637918 637928 638146 638161) (-369 "FPARFRAC.spad" 636391 636408 637908 637913) (-368 "FORTRAN.spad" 634891 634940 636381 636386) (-367 "FORT.spad" 633820 633828 634881 634886) (-366 "FORTFN.spad" 630980 630988 633800 633815) (-365 "FORTCAT.spad" 630654 630662 630960 630975) (-364 "FORMULA.spad" 627992 628000 630644 630649) (-363 "FORMULA1.spad" 627471 627481 627982 627987) (-362 "FORDER.spad" 627162 627186 627461 627466) (-361 "FOP.spad" 626363 626371 627152 627157) (-360 "FNLA.spad" 625787 625809 626331 626358) (-359 "FNCAT.spad" 624115 624123 625777 625782) (-358 "FNAME.spad" 624007 624015 624105 624110) (-357 "FMTC.spad" 623805 623813 623933 624002) (-356 "FMONOID.spad" 620860 620870 623761 623766) (-355 "FM.spad" 620555 620567 620794 620821) (-354 "FMFUN.spad" 617575 617583 620535 620550) (-353 "FMC.spad" 616617 616625 617555 617570) (-352 "FMCAT.spad" 614271 614289 616585 616612) (-351 "FM1.spad" 613628 613640 614205 614232) (-350 "FLOATRP.spad" 611349 611363 613618 613623) (-349 "FLOAT.spad" 604513 604521 611215 611344) (-348 "FLOATCP.spad" 601930 601944 604503 604508) (-347 "FLINEXP.spad" 601642 601652 601910 601925) (-346 "FLINEXP.spad" 601308 601320 601578 601583) (-345 "FLASORT.spad" 600628 600640 601298 601303) (-344 "FLALG.spad" 598274 598293 600554 600623) (-343 "FLAGG.spad" 595280 595290 598242 598269) (-342 "FLAGG.spad" 592199 592211 595163 595168) (-341 "FLAGG2.spad" 590880 590896 592189 592194) (-340 "FINRALG.spad" 588909 588922 590836 590875) (-339 "FINRALG.spad" 586864 586879 588793 588798) (-338 "FINITE.spad" 586016 586024 586854 586859) (-337 "FINAALG.spad" 574997 575007 585958 586011) (-336 "FINAALG.spad" 563990 564002 574953 574958) (-335 "FILE.spad" 563573 563583 563980 563985) (-334 "FILECAT.spad" 562091 562108 563563 563568) (-333 "FIELD.spad" 561497 561505 561993 562086) (-332 "FIELD.spad" 560989 560999 561487 561492) (-331 "FGROUP.spad" 559598 559608 560969 560984) (-330 "FGLMICPK.spad" 558385 558400 559588 559593) (-329 "FFX.spad" 557760 557775 558101 558194) (-328 "FFSLPE.spad" 557249 557270 557750 557755) (-327 "FFPOLY.spad" 548501 548512 557239 557244) (-326 "FFPOLY2.spad" 547561 547578 548491 548496) (-325 "FFP.spad" 546958 546978 547277 547370) (-324 "FF.spad" 546406 546422 546639 546732) (-323 "FFNBX.spad" 544918 544938 546122 546215) (-322 "FFNBP.spad" 543431 543448 544634 544727) (-321 "FFNB.spad" 541896 541917 543112 543205) (-320 "FFINTBAS.spad" 539310 539329 541886 541891) (-319 "FFIELDC.spad" 536885 536893 539212 539305) (-318 "FFIELDC.spad" 534546 534556 536875 536880) (-317 "FFHOM.spad" 533294 533311 534536 534541) (-316 "FFF.spad" 530729 530740 533284 533289) (-315 "FFCGX.spad" 529576 529596 530445 530538) (-314 "FFCGP.spad" 528465 528485 529292 529385) (-313 "FFCG.spad" 527257 527278 528146 528239) (-312 "FFCAT.spad" 520158 520180 527096 527252) (-311 "FFCAT.spad" 513138 513162 520078 520083) (-310 "FFCAT2.spad" 512883 512923 513128 513133) (-309 "FEXPR.spad" 504596 504642 512643 512682) (-308 "FEVALAB.spad" 504302 504312 504586 504591) (-307 "FEVALAB.spad" 503793 503805 504079 504084) (-306 "FDIV.spad" 503235 503259 503783 503788) (-305 "FDIVCAT.spad" 501277 501301 503225 503230) (-304 "FDIVCAT.spad" 499317 499343 501267 501272) (-303 "FDIV2.spad" 498971 499011 499307 499312) (-302 "FCPAK1.spad" 497524 497532 498961 498966) (-301 "FCOMP.spad" 496903 496913 497514 497519) (-300 "FC.spad" 486728 486736 496893 496898) (-299 "FAXF.spad" 479663 479677 486630 486723) (-298 "FAXF.spad" 472650 472666 479619 479624) (-297 "FARRAY.spad" 470796 470806 471833 471860) (-296 "FAMR.spad" 468916 468928 470694 470791) (-295 "FAMR.spad" 467020 467034 468800 468805) (-294 "FAMONOID.spad" 466670 466680 466974 466979) (-293 "FAMONC.spad" 464892 464904 466660 466665) (-292 "FAGROUP.spad" 464498 464508 464788 464815) (-291 "FACUTIL.spad" 462694 462711 464488 464493) (-290 "FACTFUNC.spad" 461870 461880 462684 462689) (-289 "EXPUPXS.spad" 458703 458726 460002 460151) (-288 "EXPRTUBE.spad" 455931 455939 458693 458698) (-287 "EXPRODE.spad" 452803 452819 455921 455926) (-286 "EXPR.spad" 448105 448115 448819 449222) (-285 "EXPR2UPS.spad" 444197 444210 448095 448100) (-284 "EXPR2.spad" 443900 443912 444187 444192) (-283 "EXPEXPAN.spad" 440841 440866 441475 441568) (-282 "EXIT.spad" 440512 440520 440831 440836) (-281 "EVALCYC.spad" 439970 439984 440502 440507) (-280 "EVALAB.spad" 439534 439544 439960 439965) (-279 "EVALAB.spad" 439096 439108 439524 439529) (-278 "EUCDOM.spad" 436638 436646 439022 439091) (-277 "EUCDOM.spad" 434242 434252 436628 436633) (-276 "ESTOOLS.spad" 426082 426090 434232 434237) (-275 "ESTOOLS2.spad" 425683 425697 426072 426077) (-274 "ESTOOLS1.spad" 425368 425379 425673 425678) (-273 "ES.spad" 417915 417923 425358 425363) (-272 "ES.spad" 410370 410380 417815 417820) (-271 "ESCONT.spad" 407143 407151 410360 410365) (-270 "ESCONT1.spad" 406892 406904 407133 407138) (-269 "ES2.spad" 406387 406403 406882 406887) (-268 "ES1.spad" 405953 405969 406377 406382) (-267 "ERROR.spad" 403274 403282 405943 405948) (-266 "EQTBL.spad" 401746 401768 401955 401982) (-265 "EQ.spad" 396630 396640 399429 399538) (-264 "EQ2.spad" 396346 396358 396620 396625) (-263 "EP.spad" 392660 392670 396336 396341) (-262 "ENTIRER.spad" 392328 392336 392604 392655) (-261 "EMR.spad" 391529 391570 392254 392323) (-260 "ELTAGG.spad" 389769 389788 391519 391524) (-259 "ELTAGG.spad" 387973 387994 389725 389730) (-258 "ELTAB.spad" 387420 387438 387963 387968) (-257 "ELFUTS.spad" 386799 386818 387410 387415) (-256 "ELEMFUN.spad" 386488 386496 386789 386794) (-255 "ELEMFUN.spad" 386175 386185 386478 386483) (-254 "ELAGG.spad" 384106 384116 386143 386170) (-253 "ELAGG.spad" 381986 381998 384025 384030) (-252 "EFUPXS.spad" 378762 378792 381942 381947) (-251 "EFULS.spad" 375598 375621 378718 378723) (-250 "EFSTRUC.spad" 373553 373569 375588 375593) (-249 "EF.spad" 368319 368335 373543 373548) (-248 "EAB.spad" 366595 366603 368309 368314) (-247 "E04UCFA.spad" 366131 366139 366585 366590) (-246 "E04NAFA.spad" 365708 365716 366121 366126) (-245 "E04MBFA.spad" 365288 365296 365698 365703) (-244 "E04JAFA.spad" 364824 364832 365278 365283) (-243 "E04GCFA.spad" 364360 364368 364814 364819) (-242 "E04FDFA.spad" 363896 363904 364350 364355) (-241 "E04DGFA.spad" 363432 363440 363886 363891) (-240 "E04AGNT.spad" 359274 359282 363422 363427) (-239 "DVARCAT.spad" 355959 355969 359264 359269) (-238 "DVARCAT.spad" 352642 352654 355949 355954) (-237 "DSMP.spad" 350076 350090 350381 350508) (-236 "DROPT.spad" 344021 344029 350066 350071) (-235 "DROPT1.spad" 343684 343694 344011 344016) (-234 "DROPT0.spad" 338511 338519 343674 343679) (-233 "DRAWPT.spad" 336666 336674 338501 338506) (-232 "DRAW.spad" 329266 329279 336656 336661) (-231 "DRAWHACK.spad" 328574 328584 329256 329261) (-230 "DRAWCX.spad" 326016 326024 328564 328569) (-229 "DRAWCURV.spad" 325553 325568 326006 326011) (-228 "DRAWCFUN.spad" 314725 314733 325543 325548) (-227 "DQAGG.spad" 312881 312891 314681 314720) (-226 "DPOLCAT.spad" 308222 308238 312749 312876) (-225 "DPOLCAT.spad" 303649 303667 308178 308183) (-224 "DPMO.spad" 297636 297652 297774 298070) (-223 "DPMM.spad" 291636 291654 291761 292057) (-222 "domain.spad" 291152 291160 291626 291631) (-221 "DMP.spad" 288377 288392 288949 289076) (-220 "DLP.spad" 287725 287735 288367 288372) (-219 "DLIST.spad" 286137 286147 286908 286935) (-218 "DLAGG.spad" 284538 284548 286117 286132) (-217 "DIVRING.spad" 283985 283993 284482 284533) (-216 "DIVRING.spad" 283476 283486 283975 283980) (-215 "DISPLAY.spad" 281656 281664 283466 283471) (-214 "DIRPROD.spad" 272915 272931 273555 273684) (-213 "DIRPROD2.spad" 271723 271741 272905 272910) (-212 "DIRPCAT.spad" 270655 270671 271577 271718) (-211 "DIRPCAT.spad" 269327 269345 270251 270256) (-210 "DIOSP.spad" 268152 268160 269317 269322) (-209 "DIOPS.spad" 267124 267134 268120 268147) (-208 "DIOPS.spad" 266082 266094 267080 267085) (-207 "DIFRING.spad" 265374 265382 266062 266077) (-206 "DIFRING.spad" 264674 264684 265364 265369) (-205 "DIFEXT.spad" 263833 263843 264654 264669) (-204 "DIFEXT.spad" 262909 262921 263732 263737) (-203 "DIAGG.spad" 262527 262537 262877 262904) (-202 "DIAGG.spad" 262165 262177 262517 262522) (-201 "DHMATRIX.spad" 260469 260479 261622 261649) (-200 "DFSFUN.spad" 253877 253885 260459 260464) (-199 "DFLOAT.spad" 250400 250408 253767 253872) (-198 "DFINTTLS.spad" 248609 248625 250390 250395) (-197 "DERHAM.spad" 246519 246551 248589 248604) (-196 "DEQUEUE.spad" 245837 245847 246126 246153) (-195 "DEGRED.spad" 245452 245466 245827 245832) (-194 "DEFINTRF.spad" 242977 242987 245442 245447) (-193 "DEFINTEF.spad" 241473 241489 242967 242972) (-192 "DECIMAL.spad" 239357 239365 239943 240036) (-191 "DDFACT.spad" 237156 237173 239347 239352) (-190 "DBLRESP.spad" 236754 236778 237146 237151) (-189 "DBASE.spad" 235326 235336 236744 236749) (-188 "D03FAFA.spad" 235154 235162 235316 235321) (-187 "D03EEFA.spad" 234974 234982 235144 235149) (-186 "D03AGNT.spad" 234054 234062 234964 234969) (-185 "D02EJFA.spad" 233516 233524 234044 234049) (-184 "D02CJFA.spad" 232994 233002 233506 233511) (-183 "D02BHFA.spad" 232484 232492 232984 232989) (-182 "D02BBFA.spad" 231974 231982 232474 232479) (-181 "D02AGNT.spad" 226778 226786 231964 231969) (-180 "D01WGTS.spad" 225097 225105 226768 226773) (-179 "D01TRNS.spad" 225074 225082 225087 225092) (-178 "D01GBFA.spad" 224596 224604 225064 225069) (-177 "D01FCFA.spad" 224118 224126 224586 224591) (-176 "D01ASFA.spad" 223586 223594 224108 224113) (-175 "D01AQFA.spad" 223032 223040 223576 223581) (-174 "D01APFA.spad" 222456 222464 223022 223027) (-173 "D01ANFA.spad" 221950 221958 222446 222451) (-172 "D01AMFA.spad" 221460 221468 221940 221945) (-171 "D01ALFA.spad" 221000 221008 221450 221455) (-170 "D01AKFA.spad" 220526 220534 220990 220995) (-169 "D01AJFA.spad" 220049 220057 220516 220521) (-168 "D01AGNT.spad" 216108 216116 220039 220044) (-167 "CYCLOTOM.spad" 215614 215622 216098 216103) (-166 "CYCLES.spad" 212446 212454 215604 215609) (-165 "CVMP.spad" 211863 211873 212436 212441) (-164 "CTRIGMNP.spad" 210353 210369 211853 211858) (-163 "CSTTOOLS.spad" 209596 209609 210343 210348) (-162 "CRFP.spad" 203300 203313 209586 209591) (-161 "CRAPACK.spad" 202343 202353 203290 203295) (-160 "CPMATCH.spad" 201843 201858 202268 202273) (-159 "CPIMA.spad" 201548 201567 201833 201838) (-158 "COORDSYS.spad" 196441 196451 201538 201543) (-157 "CONTFRAC.spad" 192053 192063 196343 196436) (-156 "COMRING.spad" 191727 191735 191991 192048) (-155 "COMPPROP.spad" 191241 191249 191717 191722) (-154 "COMPLPAT.spad" 191008 191023 191231 191236) (-153 "COMPLEX.spad" 185041 185051 185285 185546) (-152 "COMPLEX2.spad" 184754 184766 185031 185036) (-151 "COMPFACT.spad" 184356 184370 184744 184749) (-150 "COMPCAT.spad" 182412 182422 184078 184351) (-149 "COMPCAT.spad" 180175 180187 181843 181848) (-148 "COMMUPC.spad" 179921 179939 180165 180170) (-147 "COMMONOP.spad" 179454 179462 179911 179916) (-146 "COMM.spad" 179263 179271 179444 179449) (-145 "COMBOPC.spad" 178168 178176 179253 179258) (-144 "COMBINAT.spad" 176913 176923 178158 178163) (-143 "COMBF.spad" 174281 174297 176903 176908) (-142 "COLOR.spad" 173118 173126 174271 174276) (-141 "CMPLXRT.spad" 172827 172844 173108 173113) (-140 "CLIP.spad" 168919 168927 172817 172822) (-139 "CLIF.spad" 167558 167574 168875 168914) (-138 "CLAGG.spad" 164033 164043 167538 167553) (-137 "CLAGG.spad" 160389 160401 163896 163901) (-136 "CINTSLPE.spad" 159714 159727 160379 160384) (-135 "CHVAR.spad" 157792 157814 159704 159709) (-134 "CHARZ.spad" 157707 157715 157772 157787) (-133 "CHARPOL.spad" 157215 157225 157697 157702) (-132 "CHARNZ.spad" 156968 156976 157195 157210) (-131 "CHAR.spad" 154858 154866 156958 156963) (-130 "CFCAT.spad" 154174 154182 154848 154853) (-129 "CDEN.spad" 153332 153346 154164 154169) (-128 "CCLASS.spad" 151481 151489 152743 152782) (-127 "CARTEN.spad" 146584 146608 151471 151476) (-126 "CARTEN2.spad" 145970 145997 146574 146579) (-125 "CARD.spad" 143259 143267 145944 145965) (-124 "CACHSET.spad" 142881 142889 143249 143254) (-123 "CABMON.spad" 142434 142442 142871 142876) (-122 "BTREE.spad" 141503 141513 142041 142068) (-121 "BTOURN.spad" 140506 140516 141110 141137) (-120 "BTCAT.spad" 139882 139892 140462 140501) (-119 "BTCAT.spad" 139290 139302 139872 139877) (-118 "BTAGG.spad" 138306 138314 139246 139285) (-117 "BTAGG.spad" 137354 137364 138296 138301) (-116 "BSTREE.spad" 136089 136099 136961 136988) (-115 "BRILL.spad" 134284 134295 136079 136084) (-114 "BRAGG.spad" 133198 133208 134264 134279) (-113 "BRAGG.spad" 132086 132098 133154 133159) (-112 "BPADICRT.spad" 130070 130082 130325 130418) (-111 "BPADIC.spad" 129734 129746 129996 130065) (-110 "BOUNDZRO.spad" 129390 129407 129724 129729) (-109 "BOP.spad" 124854 124862 129380 129385) (-108 "BOP1.spad" 122240 122250 124810 124815) (-107 "BOOLEAN.spad" 121098 121106 122230 122235) (-106 "BMODULE.spad" 120810 120822 121066 121093) (-105 "BITS.spad" 120229 120237 120446 120473) (-104 "BINFILE.spad" 119572 119580 120219 120224) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-1189 NIL 2226417 2226422 2226427 2226432) (-3 NIL 2226397 2226402 2226407 2226412) (-2 NIL 2226377 2226382 2226387 2226392) (-1 NIL 2226357 2226362 2226367 2226372) (0 NIL 2226337 2226342 2226347 2226352) (-1184 "ZMOD.spad" 2226146 2226159 2226275 2226332) (-1183 "ZLINDEP.spad" 2225190 2225201 2226136 2226141) (-1182 "ZDSOLVE.spad" 2215039 2215061 2225180 2225185) (-1181 "YSTREAM.spad" 2214532 2214543 2215029 2215034) (-1180 "XRPOLY.spad" 2213752 2213772 2214388 2214457) (-1179 "XPR.spad" 2211481 2211494 2213470 2213569) (-1178 "XPOLY.spad" 2211036 2211047 2211337 2211406) (-1177 "XPOLYC.spad" 2210353 2210369 2210962 2211031) (-1176 "XPBWPOLY.spad" 2208790 2208810 2210133 2210202) (-1175 "XF.spad" 2207251 2207266 2208692 2208785) (-1174 "XF.spad" 2205692 2205709 2207135 2207140) (-1173 "XFALG.spad" 2202716 2202732 2205618 2205687) (-1172 "XEXPPKG.spad" 2201967 2201993 2202706 2202711) (-1171 "XDPOLY.spad" 2201581 2201597 2201823 2201892) (-1170 "XALG.spad" 2201179 2201190 2201537 2201576) (-1169 "WUTSET.spad" 2197018 2197035 2200825 2200852) (-1168 "WP.spad" 2196032 2196076 2196876 2196943) (-1167 "WFFINTBS.spad" 2193595 2193617 2196022 2196027) (-1166 "WEIER.spad" 2191809 2191820 2193585 2193590) (-1165 "VSPACE.spad" 2191482 2191493 2191777 2191804) (-1164 "VSPACE.spad" 2191175 2191188 2191472 2191477) (-1163 "VOID.spad" 2190765 2190774 2191165 2191170) (-1162 "VIEW.spad" 2188387 2188396 2190755 2190760) (-1161 "VIEWDEF.spad" 2183584 2183593 2188377 2188382) (-1160 "VIEW3D.spad" 2167419 2167428 2183574 2183579) (-1159 "VIEW2D.spad" 2155156 2155165 2167409 2167414) (-1158 "VECTOR.spad" 2153833 2153844 2154084 2154111) (-1157 "VECTOR2.spad" 2152460 2152473 2153823 2153828) (-1156 "VECTCAT.spad" 2150348 2150359 2152416 2152455) (-1155 "VECTCAT.spad" 2148057 2148070 2150127 2150132) (-1154 "VARIABLE.spad" 2147837 2147852 2148047 2148052) (-1153 "UTYPE.spad" 2147471 2147480 2147817 2147832) (-1152 "UTSODETL.spad" 2146764 2146788 2147427 2147432) (-1151 "UTSODE.spad" 2144952 2144972 2146754 2146759) (-1150 "UTS.spad" 2139741 2139769 2143419 2143516) (-1149 "UTSCAT.spad" 2137192 2137208 2139639 2139736) (-1148 "UTSCAT.spad" 2134287 2134305 2136736 2136741) (-1147 "UTS2.spad" 2133880 2133915 2134277 2134282) (-1146 "URAGG.spad" 2128502 2128513 2133860 2133875) (-1145 "URAGG.spad" 2123098 2123111 2128458 2128463) (-1144 "UPXSSING.spad" 2120744 2120770 2122182 2122315) (-1143 "UPXS.spad" 2117771 2117799 2118876 2119025) (-1142 "UPXSCONS.spad" 2115528 2115548 2115903 2116052) (-1141 "UPXSCCA.spad" 2113986 2114006 2115374 2115523) (-1140 "UPXSCCA.spad" 2112586 2112608 2113976 2113981) (-1139 "UPXSCAT.spad" 2111167 2111183 2112432 2112581) (-1138 "UPXS2.spad" 2110708 2110761 2111157 2111162) (-1137 "UPSQFREE.spad" 2109120 2109134 2110698 2110703) (-1136 "UPSCAT.spad" 2106713 2106737 2109018 2109115) (-1135 "UPSCAT.spad" 2104012 2104038 2106319 2106324) (-1134 "UPOLYC.spad" 2098990 2099001 2103854 2104007) (-1133 "UPOLYC.spad" 2093860 2093873 2098726 2098731) (-1132 "UPOLYC2.spad" 2093329 2093348 2093850 2093855) (-1131 "UP.spad" 2090379 2090394 2090887 2091040) (-1130 "UPMP.spad" 2089269 2089282 2090369 2090374) (-1129 "UPDIVP.spad" 2088832 2088846 2089259 2089264) (-1128 "UPDECOMP.spad" 2087069 2087083 2088822 2088827) (-1127 "UPCDEN.spad" 2086276 2086292 2087059 2087064) (-1126 "UP2.spad" 2085638 2085659 2086266 2086271) (-1125 "UNISEG.spad" 2084991 2085002 2085557 2085562) (-1124 "UNISEG2.spad" 2084484 2084497 2084947 2084952) (-1123 "UNIFACT.spad" 2083585 2083597 2084474 2084479) (-1122 "ULS.spad" 2074144 2074172 2075237 2075666) (-1121 "ULSCONS.spad" 2068187 2068207 2068559 2068708) (-1120 "ULSCCAT.spad" 2065784 2065804 2068007 2068182) (-1119 "ULSCCAT.spad" 2063515 2063537 2065740 2065745) (-1118 "ULSCAT.spad" 2061731 2061747 2063361 2063510) (-1117 "ULS2.spad" 2061243 2061296 2061721 2061726) (-1116 "UFD.spad" 2060308 2060317 2061169 2061238) (-1115 "UFD.spad" 2059435 2059446 2060298 2060303) (-1114 "UDVO.spad" 2058282 2058291 2059425 2059430) (-1113 "UDPO.spad" 2055709 2055720 2058238 2058243) (-1112 "TYPE.spad" 2055631 2055640 2055689 2055704) (-1111 "TWOFACT.spad" 2054281 2054296 2055621 2055626) (-1110 "TUPLE.spad" 2053667 2053678 2054180 2054185) (-1109 "TUBETOOL.spad" 2050504 2050513 2053657 2053662) (-1108 "TUBE.spad" 2049145 2049162 2050494 2050499) (-1107 "TS.spad" 2047734 2047750 2048710 2048807) (-1106 "TSETCAT.spad" 2034849 2034866 2047690 2047729) (-1105 "TSETCAT.spad" 2021962 2021981 2034805 2034810) (-1104 "TRMANIP.spad" 2016328 2016345 2021668 2021673) (-1103 "TRIMAT.spad" 2015287 2015312 2016318 2016323) (-1102 "TRIGMNIP.spad" 2013804 2013821 2015277 2015282) (-1101 "TRIGCAT.spad" 2013316 2013325 2013794 2013799) (-1100 "TRIGCAT.spad" 2012826 2012837 2013306 2013311) (-1099 "TREE.spad" 2011397 2011408 2012433 2012460) (-1098 "TRANFUN.spad" 2011228 2011237 2011387 2011392) (-1097 "TRANFUN.spad" 2011057 2011068 2011218 2011223) (-1096 "TOPSP.spad" 2010731 2010740 2011047 2011052) (-1095 "TOOLSIGN.spad" 2010394 2010405 2010721 2010726) (-1094 "TEXTFILE.spad" 2008951 2008960 2010384 2010389) (-1093 "TEX.spad" 2005968 2005977 2008941 2008946) (-1092 "TEX1.spad" 2005524 2005535 2005958 2005963) (-1091 "TEMUTL.spad" 2005079 2005088 2005514 2005519) (-1090 "TBCMPPK.spad" 2003172 2003195 2005069 2005074) (-1089 "TBAGG.spad" 2002196 2002219 2003140 2003167) (-1088 "TBAGG.spad" 2001240 2001265 2002186 2002191) (-1087 "TANEXP.spad" 2000616 2000627 2001230 2001235) (-1086 "TABLE.spad" 1999027 1999050 1999297 1999324) (-1085 "TABLEAU.spad" 1998508 1998519 1999017 1999022) (-1084 "TABLBUMP.spad" 1995291 1995302 1998498 1998503) (-1083 "SYSSOLP.spad" 1992764 1992775 1995281 1995286) (-1082 "syntax.spad" 1989049 1989058 1992754 1992759) (-1081 "SYMTAB.spad" 1987105 1987114 1989039 1989044) (-1080 "SYMS.spad" 1983090 1983099 1987095 1987100) (-1079 "SYMPOLY.spad" 1982100 1982111 1982182 1982309) (-1078 "SYMFUNC.spad" 1981575 1981586 1982090 1982095) (-1077 "SYMBOL.spad" 1978911 1978920 1981565 1981570) (-1076 "SWITCH.spad" 1975668 1975677 1978901 1978906) (-1075 "SUTS.spad" 1972567 1972595 1974135 1974232) (-1074 "SUPXS.spad" 1969581 1969609 1970699 1970848) (-1073 "SUP.spad" 1966358 1966369 1967139 1967292) (-1072 "SUPFRACF.spad" 1965463 1965481 1966348 1966353) (-1071 "SUP2.spad" 1964853 1964866 1965453 1965458) (-1070 "SUMRF.spad" 1963819 1963830 1964843 1964848) (-1069 "SUMFS.spad" 1963452 1963469 1963809 1963814) (-1068 "SULS.spad" 1953998 1954026 1955104 1955533) (-1067 "SUCH.spad" 1953678 1953693 1953988 1953993) (-1066 "SUBSPACE.spad" 1945685 1945700 1953668 1953673) (-1065 "SUBRESP.spad" 1944845 1944859 1945641 1945646) (-1064 "STTF.spad" 1940944 1940960 1944835 1944840) (-1063 "STTFNC.spad" 1937412 1937428 1940934 1940939) (-1062 "STTAYLOR.spad" 1929810 1929821 1937293 1937298) (-1061 "STRTBL.spad" 1928315 1928332 1928464 1928491) (-1060 "STRING.spad" 1927724 1927733 1927738 1927765) (-1059 "STRICAT.spad" 1927500 1927509 1927680 1927719) (-1058 "STREAM.spad" 1924268 1924279 1927025 1927040) (-1057 "STREAM3.spad" 1923813 1923828 1924258 1924263) (-1056 "STREAM2.spad" 1922881 1922894 1923803 1923808) (-1055 "STREAM1.spad" 1922585 1922596 1922871 1922876) (-1054 "STINPROD.spad" 1921491 1921507 1922575 1922580) (-1053 "STEP.spad" 1920692 1920701 1921481 1921486) (-1052 "STBL.spad" 1919218 1919246 1919385 1919400) (-1051 "STAGG.spad" 1918283 1918294 1919198 1919213) (-1050 "STAGG.spad" 1917356 1917369 1918273 1918278) (-1049 "STACK.spad" 1916707 1916718 1916963 1916990) (-1048 "SREGSET.spad" 1914411 1914428 1916353 1916380) (-1047 "SRDCMPK.spad" 1912956 1912976 1914401 1914406) (-1046 "SRAGG.spad" 1908041 1908050 1912912 1912951) (-1045 "SRAGG.spad" 1903158 1903169 1908031 1908036) (-1044 "SQMATRIX.spad" 1900784 1900802 1901692 1901779) (-1043 "SPLTREE.spad" 1895336 1895349 1900220 1900247) (-1042 "SPLNODE.spad" 1891924 1891937 1895326 1895331) (-1041 "SPFCAT.spad" 1890701 1890710 1891914 1891919) (-1040 "SPECOUT.spad" 1889251 1889260 1890691 1890696) (-1039 "spad-parser.spad" 1888716 1888725 1889241 1889246) (-1038 "SPACEC.spad" 1872729 1872740 1888706 1888711) (-1037 "SPACE3.spad" 1872505 1872516 1872719 1872724) (-1036 "SORTPAK.spad" 1872050 1872063 1872461 1872466) (-1035 "SOLVETRA.spad" 1869807 1869818 1872040 1872045) (-1034 "SOLVESER.spad" 1868327 1868338 1869797 1869802) (-1033 "SOLVERAD.spad" 1864337 1864348 1868317 1868322) (-1032 "SOLVEFOR.spad" 1862757 1862775 1864327 1864332) (-1031 "SNTSCAT.spad" 1862345 1862362 1862713 1862752) (-1030 "SMTS.spad" 1860605 1860631 1861910 1862007) (-1029 "SMP.spad" 1858047 1858067 1858437 1858564) (-1028 "SMITH.spad" 1856890 1856915 1858037 1858042) (-1027 "SMATCAT.spad" 1854988 1855018 1856822 1856885) (-1026 "SMATCAT.spad" 1853030 1853062 1854866 1854871) (-1025 "SKAGG.spad" 1851979 1851990 1852986 1853025) (-1024 "SINT.spad" 1850287 1850296 1851845 1851974) (-1023 "SIMPAN.spad" 1850015 1850024 1850277 1850282) (-1022 "SIGNRF.spad" 1849123 1849134 1850005 1850010) (-1021 "SIGNEF.spad" 1848392 1848409 1849113 1849118) (-1020 "SHP.spad" 1846310 1846325 1848348 1848353) (-1019 "SHDP.spad" 1837700 1837727 1838209 1838338) (-1018 "SGROUP.spad" 1837166 1837175 1837690 1837695) (-1017 "SGROUP.spad" 1836630 1836641 1837156 1837161) (-1016 "SGCF.spad" 1829511 1829520 1836620 1836625) (-1015 "SFRTCAT.spad" 1828427 1828444 1829467 1829506) (-1014 "SFRGCD.spad" 1827490 1827510 1828417 1828422) (-1013 "SFQCMPK.spad" 1822127 1822147 1827480 1827485) (-1012 "SFORT.spad" 1821562 1821576 1822117 1822122) (-1011 "SEXOF.spad" 1821405 1821445 1821552 1821557) (-1010 "SEX.spad" 1821297 1821306 1821395 1821400) (-1009 "SEXCAT.spad" 1818401 1818441 1821287 1821292) (-1008 "SET.spad" 1816701 1816712 1817822 1817861) (-1007 "SETMN.spad" 1815135 1815152 1816691 1816696) (-1006 "SETCAT.spad" 1814620 1814629 1815125 1815130) (-1005 "SETCAT.spad" 1814103 1814114 1814610 1814615) (-1004 "SETAGG.spad" 1810626 1810637 1814071 1814098) (-1003 "SETAGG.spad" 1807169 1807182 1810616 1810621) (-1002 "SEGXCAT.spad" 1806281 1806294 1807149 1807164) (-1001 "SEG.spad" 1806094 1806105 1806200 1806205) (-1000 "SEGCAT.spad" 1804913 1804924 1806074 1806089) (-999 "SEGBIND.spad" 1803986 1803996 1804868 1804873) (-998 "SEGBIND2.spad" 1803683 1803695 1803976 1803981) (-997 "SEG2.spad" 1803109 1803121 1803639 1803644) (-996 "SDVAR.spad" 1802386 1802396 1803099 1803104) (-995 "SDPOL.spad" 1799785 1799795 1800075 1800202) (-994 "SCPKG.spad" 1797865 1797875 1799775 1799780) (-993 "SCACHE.spad" 1796548 1796558 1797855 1797860) (-992 "SAOS.spad" 1796421 1796429 1796538 1796543) (-991 "SAERFFC.spad" 1796135 1796154 1796411 1796416) (-990 "SAE.spad" 1794314 1794329 1794924 1795059) (-989 "SAEFACT.spad" 1794016 1794035 1794304 1794309) (-988 "RURPK.spad" 1791658 1791673 1794006 1794011) (-987 "RULESET.spad" 1791100 1791123 1791648 1791653) (-986 "RULE.spad" 1789305 1789328 1791090 1791095) (-985 "RULECOLD.spad" 1789158 1789170 1789295 1789300) (-984 "RSETGCD.spad" 1785537 1785556 1789148 1789153) (-983 "RSETCAT.spad" 1775310 1775326 1785493 1785532) (-982 "RSETCAT.spad" 1765115 1765133 1775300 1775305) (-981 "RSDCMPK.spad" 1763568 1763587 1765105 1765110) (-980 "RRCC.spad" 1761953 1761982 1763558 1763563) (-979 "RRCC.spad" 1760336 1760367 1761943 1761948) (-978 "RPOLCAT.spad" 1739697 1739711 1760204 1760331) (-977 "RPOLCAT.spad" 1718773 1718789 1739282 1739287) (-976 "ROUTINE.spad" 1714637 1714645 1717420 1717447) (-975 "ROMAN.spad" 1713870 1713878 1714503 1714632) (-974 "ROIRC.spad" 1712951 1712982 1713860 1713865) (-973 "RNS.spad" 1711855 1711863 1712853 1712946) (-972 "RNS.spad" 1710845 1710855 1711845 1711850) (-971 "RNG.spad" 1710581 1710589 1710835 1710840) (-970 "RMODULE.spad" 1710220 1710230 1710571 1710576) (-969 "RMCAT2.spad" 1709629 1709685 1710210 1710215) (-968 "RMATRIX.spad" 1708309 1708327 1708796 1708835) (-967 "RMATCAT.spad" 1703831 1703861 1708253 1708304) (-966 "RMATCAT.spad" 1699255 1699287 1703679 1703684) (-965 "RINTERP.spad" 1699144 1699163 1699245 1699250) (-964 "RING.spad" 1698502 1698510 1699124 1699139) (-963 "RING.spad" 1697868 1697878 1698492 1698497) (-962 "RIDIST.spad" 1697253 1697261 1697858 1697863) (-961 "RGCHAIN.spad" 1695833 1695848 1696738 1696765) (-960 "RF.spad" 1693448 1693458 1695823 1695828) (-959 "RFFACTOR.spad" 1692911 1692921 1693438 1693443) (-958 "RFFACT.spad" 1692647 1692658 1692901 1692906) (-957 "RFDIST.spad" 1691636 1691644 1692637 1692642) (-956 "RETSOL.spad" 1691054 1691066 1691626 1691631) (-955 "RETRACT.spad" 1690404 1690414 1691044 1691049) (-954 "RETRACT.spad" 1689752 1689764 1690394 1690399) (-953 "RESULT.spad" 1687813 1687821 1688399 1688426) (-952 "RESRING.spad" 1687161 1687207 1687751 1687808) (-951 "RESLATC.spad" 1686486 1686496 1687151 1687156) (-950 "REPSQ.spad" 1686216 1686226 1686476 1686481) (-949 "REP.spad" 1683769 1683777 1686206 1686211) (-948 "REPDB.spad" 1683475 1683485 1683759 1683764) (-947 "REP2.spad" 1673048 1673058 1683317 1683322) (-946 "REP1.spad" 1667039 1667049 1672998 1673003) (-945 "REGSET.spad" 1664837 1664853 1666685 1666712) (-944 "REF.spad" 1664167 1664177 1664792 1664797) (-943 "REDORDER.spad" 1663344 1663360 1664157 1664162) (-942 "RECLOS.spad" 1662134 1662153 1662837 1662930) (-941 "REALSOLV.spad" 1661267 1661275 1662124 1662129) (-940 "REAL.spad" 1661140 1661148 1661257 1661262) (-939 "REAL0Q.spad" 1658423 1658437 1661130 1661135) (-938 "REAL0.spad" 1655252 1655266 1658413 1658418) (-937 "RDIV.spad" 1654904 1654928 1655242 1655247) (-936 "RDIST.spad" 1654468 1654478 1654894 1654899) (-935 "RDETRS.spad" 1653265 1653282 1654458 1654463) (-934 "RDETR.spad" 1651373 1651390 1653255 1653260) (-933 "RDEEFS.spad" 1650447 1650463 1651363 1651368) (-932 "RDEEF.spad" 1649444 1649460 1650437 1650442) (-931 "RCFIELD.spad" 1646628 1646636 1649346 1649439) (-930 "RCFIELD.spad" 1643898 1643908 1646618 1646623) (-929 "RCAGG.spad" 1641801 1641811 1643878 1643893) (-928 "RCAGG.spad" 1639641 1639653 1641720 1641725) (-927 "RATRET.spad" 1639002 1639012 1639631 1639636) (-926 "RATFACT.spad" 1638695 1638706 1638992 1638997) (-925 "RANDSRC.spad" 1638015 1638023 1638685 1638690) (-924 "RADUTIL.spad" 1637770 1637778 1638005 1638010) (-923 "RADIX.spad" 1634563 1634576 1636240 1636333) (-922 "RADFF.spad" 1632980 1633016 1633098 1633254) (-921 "RADCAT.spad" 1632574 1632582 1632970 1632975) (-920 "RADCAT.spad" 1632166 1632176 1632564 1632569) (-919 "QUEUE.spad" 1631509 1631519 1631773 1631800) (-918 "QUAT.spad" 1630095 1630105 1630437 1630502) (-917 "QUATCT2.spad" 1629714 1629732 1630085 1630090) (-916 "QUATCAT.spad" 1627879 1627889 1629644 1629709) (-915 "QUATCAT.spad" 1625796 1625808 1627563 1627568) (-914 "QUAGG.spad" 1624610 1624620 1625752 1625791) (-913 "QFORM.spad" 1624073 1624087 1624600 1624605) (-912 "QFCAT.spad" 1622764 1622774 1623963 1624068) (-911 "QFCAT.spad" 1621061 1621073 1622262 1622267) (-910 "QFCAT2.spad" 1620752 1620768 1621051 1621056) (-909 "QEQUAT.spad" 1620309 1620317 1620742 1620747) (-908 "QCMPACK.spad" 1615056 1615075 1620299 1620304) (-907 "QALGSET.spad" 1611131 1611163 1614970 1614975) (-906 "QALGSET2.spad" 1609127 1609145 1611121 1611126) (-905 "PWFFINTB.spad" 1606437 1606458 1609117 1609122) (-904 "PUSHVAR.spad" 1605766 1605785 1606427 1606432) (-903 "PTRANFN.spad" 1601892 1601902 1605756 1605761) (-902 "PTPACK.spad" 1598980 1598990 1601882 1601887) (-901 "PTFUNC2.spad" 1598801 1598815 1598970 1598975) (-900 "PTCAT.spad" 1597883 1597893 1598757 1598796) (-899 "PSQFR.spad" 1597190 1597214 1597873 1597878) (-898 "PSEUDLIN.spad" 1596048 1596058 1597180 1597185) (-897 "PSETPK.spad" 1581481 1581497 1595926 1595931) (-896 "PSETCAT.spad" 1575389 1575412 1581449 1581476) (-895 "PSETCAT.spad" 1569283 1569308 1575345 1575350) (-894 "PSCURVE.spad" 1568266 1568274 1569273 1569278) (-893 "PSCAT.spad" 1567033 1567062 1568164 1568261) (-892 "PSCAT.spad" 1565890 1565921 1567023 1567028) (-891 "PRTITION.spad" 1564733 1564741 1565880 1565885) (-890 "PRS.spad" 1554295 1554312 1564689 1564694) (-889 "PRQAGG.spad" 1553714 1553724 1554251 1554290) (-888 "PROPLOG.spad" 1553117 1553125 1553704 1553709) (-887 "PRODUCT.spad" 1550797 1550809 1551083 1551138) (-886 "PR.spad" 1549186 1549198 1549891 1550018) (-885 "PRINT.spad" 1548938 1548946 1549176 1549181) (-884 "PRIMES.spad" 1547189 1547199 1548928 1548933) (-883 "PRIMELT.spad" 1545170 1545184 1547179 1547184) (-882 "PRIMCAT.spad" 1544793 1544801 1545160 1545165) (-881 "PRIMARR.spad" 1543798 1543808 1543976 1544003) (-880 "PRIMARR2.spad" 1542521 1542533 1543788 1543793) (-879 "PREASSOC.spad" 1541893 1541905 1542511 1542516) (-878 "PPCURVE.spad" 1541030 1541038 1541883 1541888) (-877 "POLYROOT.spad" 1539802 1539824 1540986 1540991) (-876 "POLY.spad" 1537102 1537112 1537619 1537746) (-875 "POLYLIFT.spad" 1536363 1536386 1537092 1537097) (-874 "POLYCATQ.spad" 1534465 1534487 1536353 1536358) (-873 "POLYCAT.spad" 1527871 1527892 1534333 1534460) (-872 "POLYCAT.spad" 1520579 1520602 1527043 1527048) (-871 "POLY2UP.spad" 1520027 1520041 1520569 1520574) (-870 "POLY2.spad" 1519622 1519634 1520017 1520022) (-869 "POLUTIL.spad" 1518563 1518592 1519578 1519583) (-868 "POLTOPOL.spad" 1517311 1517326 1518553 1518558) (-867 "POINT.spad" 1516152 1516162 1516239 1516266) (-866 "PNTHEORY.spad" 1512818 1512826 1516142 1516147) (-865 "PMTOOLS.spad" 1511575 1511589 1512808 1512813) (-864 "PMSYM.spad" 1511120 1511130 1511565 1511570) (-863 "PMQFCAT.spad" 1510707 1510721 1511110 1511115) (-862 "PMPRED.spad" 1510176 1510190 1510697 1510702) (-861 "PMPREDFS.spad" 1509620 1509642 1510166 1510171) (-860 "PMPLCAT.spad" 1508690 1508708 1509552 1509557) (-859 "PMLSAGG.spad" 1508271 1508285 1508680 1508685) (-858 "PMKERNEL.spad" 1507838 1507850 1508261 1508266) (-857 "PMINS.spad" 1507414 1507424 1507828 1507833) (-856 "PMFS.spad" 1506987 1507005 1507404 1507409) (-855 "PMDOWN.spad" 1506273 1506287 1506977 1506982) (-854 "PMASS.spad" 1505285 1505293 1506263 1506268) (-853 "PMASSFS.spad" 1504254 1504270 1505275 1505280) (-852 "PLOTTOOL.spad" 1504034 1504042 1504244 1504249) (-851 "PLOT.spad" 1498865 1498873 1504024 1504029) (-850 "PLOT3D.spad" 1495285 1495293 1498855 1498860) (-849 "PLOT1.spad" 1494426 1494436 1495275 1495280) (-848 "PLEQN.spad" 1481642 1481669 1494416 1494421) (-847 "PINTERP.spad" 1481258 1481277 1481632 1481637) (-846 "PINTERPA.spad" 1481040 1481056 1481248 1481253) (-845 "PI.spad" 1480647 1480655 1481014 1481035) (-844 "PID.spad" 1479603 1479611 1480573 1480642) (-843 "PICOERCE.spad" 1479260 1479270 1479593 1479598) (-842 "PGROEB.spad" 1477857 1477871 1479250 1479255) (-841 "PGE.spad" 1469110 1469118 1477847 1477852) (-840 "PGCD.spad" 1467992 1468009 1469100 1469105) (-839 "PFRPAC.spad" 1467135 1467145 1467982 1467987) (-838 "PFR.spad" 1463792 1463802 1467037 1467130) (-837 "PFOTOOLS.spad" 1463050 1463066 1463782 1463787) (-836 "PFOQ.spad" 1462420 1462438 1463040 1463045) (-835 "PFO.spad" 1461839 1461866 1462410 1462415) (-834 "PF.spad" 1461413 1461425 1461644 1461737) (-833 "PFECAT.spad" 1459079 1459087 1461339 1461408) (-832 "PFECAT.spad" 1456773 1456783 1459035 1459040) (-831 "PFBRU.spad" 1454643 1454655 1456763 1456768) (-830 "PFBR.spad" 1452181 1452204 1454633 1454638) (-829 "PERM.spad" 1447862 1447872 1452011 1452026) (-828 "PERMGRP.spad" 1442598 1442608 1447852 1447857) (-827 "PERMCAT.spad" 1441150 1441160 1442578 1442593) (-826 "PERMAN.spad" 1439682 1439696 1441140 1441145) (-825 "PENDTREE.spad" 1438955 1438965 1439311 1439316) (-824 "PDRING.spad" 1437446 1437456 1438935 1438950) (-823 "PDRING.spad" 1435945 1435957 1437436 1437441) (-822 "PDEPROB.spad" 1434902 1434910 1435935 1435940) (-821 "PDEPACK.spad" 1428904 1428912 1434892 1434897) (-820 "PDECOMP.spad" 1428366 1428383 1428894 1428899) (-819 "PDECAT.spad" 1426720 1426728 1428356 1428361) (-818 "PCOMP.spad" 1426571 1426584 1426710 1426715) (-817 "PBWLB.spad" 1425153 1425170 1426561 1426566) (-816 "PATTERN.spad" 1419584 1419594 1425143 1425148) (-815 "PATTERN2.spad" 1419320 1419332 1419574 1419579) (-814 "PATTERN1.spad" 1417622 1417638 1419310 1419315) (-813 "PATRES.spad" 1415169 1415181 1417612 1417617) (-812 "PATRES2.spad" 1414831 1414845 1415159 1415164) (-811 "PATMATCH.spad" 1412993 1413024 1414544 1414549) (-810 "PATMAB.spad" 1412418 1412428 1412983 1412988) (-809 "PATLRES.spad" 1411502 1411516 1412408 1412413) (-808 "PATAB.spad" 1411266 1411276 1411492 1411497) (-807 "PARTPERM.spad" 1408628 1408636 1411256 1411261) (-806 "PARSURF.spad" 1408056 1408084 1408618 1408623) (-805 "PARSU2.spad" 1407851 1407867 1408046 1408051) (-804 "script-parser.spad" 1407371 1407379 1407841 1407846) (-803 "PARSCURV.spad" 1406799 1406827 1407361 1407366) (-802 "PARSC2.spad" 1406588 1406604 1406789 1406794) (-801 "PARPCURV.spad" 1406046 1406074 1406578 1406583) (-800 "PARPC2.spad" 1405835 1405851 1406036 1406041) (-799 "PAN2EXPR.spad" 1405247 1405255 1405825 1405830) (-798 "PALETTE.spad" 1404217 1404225 1405237 1405242) (-797 "PAIR.spad" 1403200 1403213 1403805 1403810) (-796 "PADICRC.spad" 1400533 1400551 1401708 1401801) (-795 "PADICRAT.spad" 1398551 1398563 1398772 1398865) (-794 "PADIC.spad" 1398246 1398258 1398477 1398546) (-793 "PADICCT.spad" 1396787 1396799 1398172 1398241) (-792 "PADEPAC.spad" 1395466 1395485 1396777 1396782) (-791 "PADE.spad" 1394206 1394222 1395456 1395461) (-790 "OWP.spad" 1393190 1393220 1394064 1394131) (-789 "OVAR.spad" 1392971 1392994 1393180 1393185) (-788 "OUT.spad" 1392055 1392063 1392961 1392966) (-787 "OUTFORM.spad" 1381469 1381477 1392045 1392050) (-786 "OSI.spad" 1380944 1380952 1381459 1381464) (-785 "ORTHPOL.spad" 1379405 1379415 1380861 1380866) (-784 "OREUP.spad" 1378765 1378793 1379087 1379126) (-783 "ORESUP.spad" 1378066 1378090 1378447 1378486) (-782 "OREPCTO.spad" 1375885 1375897 1377986 1377991) (-781 "OREPCAT.spad" 1369942 1369952 1375841 1375880) (-780 "OREPCAT.spad" 1363889 1363901 1369790 1369795) (-779 "ORDSET.spad" 1363055 1363063 1363879 1363884) (-778 "ORDSET.spad" 1362219 1362229 1363045 1363050) (-777 "ORDRING.spad" 1361609 1361617 1362199 1362214) (-776 "ORDRING.spad" 1361007 1361017 1361599 1361604) (-775 "ORDMON.spad" 1360862 1360870 1360997 1361002) (-774 "ORDFUNS.spad" 1359988 1360004 1360852 1360857) (-773 "ORDFIN.spad" 1359922 1359930 1359978 1359983) (-772 "ORDCOMP.spad" 1358390 1358400 1359472 1359501) (-771 "ORDCOMP2.spad" 1357675 1357687 1358380 1358385) (-770 "OPTPROB.spad" 1356255 1356263 1357665 1357670) (-769 "OPTPACK.spad" 1348640 1348648 1356245 1356250) (-768 "OPTCAT.spad" 1346315 1346323 1348630 1348635) (-767 "OPQUERY.spad" 1345864 1345872 1346305 1346310) (-766 "OP.spad" 1345606 1345616 1345686 1345753) (-765 "ONECOMP.spad" 1344354 1344364 1345156 1345185) (-764 "ONECOMP2.spad" 1343772 1343784 1344344 1344349) (-763 "OMSERVER.spad" 1342774 1342782 1343762 1343767) (-762 "OMSAGG.spad" 1342550 1342560 1342718 1342769) (-761 "OMPKG.spad" 1341162 1341170 1342540 1342545) (-760 "OM.spad" 1340127 1340135 1341152 1341157) (-759 "OMLO.spad" 1339552 1339564 1340013 1340052) (-758 "OMEXPR.spad" 1339386 1339396 1339542 1339547) (-757 "OMERR.spad" 1338929 1338937 1339376 1339381) (-756 "OMERRK.spad" 1337963 1337971 1338919 1338924) (-755 "OMENC.spad" 1337307 1337315 1337953 1337958) (-754 "OMDEV.spad" 1331596 1331604 1337297 1337302) (-753 "OMCONN.spad" 1331005 1331013 1331586 1331591) (-752 "OINTDOM.spad" 1330768 1330776 1330931 1331000) (-751 "OFMONOID.spad" 1326955 1326965 1330758 1330763) (-750 "ODVAR.spad" 1326216 1326226 1326945 1326950) (-749 "ODR.spad" 1325664 1325690 1326028 1326177) (-748 "ODPOL.spad" 1323013 1323023 1323353 1323480) (-747 "ODP.spad" 1314539 1314559 1314912 1315041) (-746 "ODETOOLS.spad" 1313122 1313141 1314529 1314534) (-745 "ODESYS.spad" 1310772 1310789 1313112 1313117) (-744 "ODERTRIC.spad" 1306713 1306730 1310729 1310734) (-743 "ODERED.spad" 1306100 1306124 1306703 1306708) (-742 "ODERAT.spad" 1303651 1303668 1306090 1306095) (-741 "ODEPRRIC.spad" 1300542 1300564 1303641 1303646) (-740 "ODEPROB.spad" 1299741 1299749 1300532 1300537) (-739 "ODEPRIM.spad" 1297015 1297037 1299731 1299736) (-738 "ODEPAL.spad" 1296391 1296415 1297005 1297010) (-737 "ODEPACK.spad" 1282993 1283001 1296381 1296386) (-736 "ODEINT.spad" 1282424 1282440 1282983 1282988) (-735 "ODEIFTBL.spad" 1279819 1279827 1282414 1282419) (-734 "ODEEF.spad" 1275186 1275202 1279809 1279814) (-733 "ODECONST.spad" 1274705 1274723 1275176 1275181) (-732 "ODECAT.spad" 1273301 1273309 1274695 1274700) (-731 "OCT.spad" 1271448 1271458 1272164 1272203) (-730 "OCTCT2.spad" 1271092 1271113 1271438 1271443) (-729 "OC.spad" 1268866 1268876 1271048 1271087) (-728 "OC.spad" 1266366 1266378 1268550 1268555) (-727 "OCAMON.spad" 1266214 1266222 1266356 1266361) (-726 "OASGP.spad" 1266029 1266037 1266204 1266209) (-725 "OAMONS.spad" 1265549 1265557 1266019 1266024) (-724 "OAMON.spad" 1265410 1265418 1265539 1265544) (-723 "OAGROUP.spad" 1265272 1265280 1265400 1265405) (-722 "NUMTUBE.spad" 1264859 1264875 1265262 1265267) (-721 "NUMQUAD.spad" 1252721 1252729 1264849 1264854) (-720 "NUMODE.spad" 1243857 1243865 1252711 1252716) (-719 "NUMINT.spad" 1241415 1241423 1243847 1243852) (-718 "NUMFMT.spad" 1240255 1240263 1241405 1241410) (-717 "NUMERIC.spad" 1232328 1232338 1240061 1240066) (-716 "NTSCAT.spad" 1230818 1230834 1232284 1232323) (-715 "NTPOLFN.spad" 1230363 1230373 1230735 1230740) (-714 "NSUP.spad" 1223381 1223391 1227921 1228074) (-713 "NSUP2.spad" 1222773 1222785 1223371 1223376) (-712 "NSMP.spad" 1218972 1218991 1219280 1219407) (-711 "NREP.spad" 1217344 1217358 1218962 1218967) (-710 "NPCOEF.spad" 1216590 1216610 1217334 1217339) (-709 "NORMRETR.spad" 1216188 1216227 1216580 1216585) (-708 "NORMPK.spad" 1214090 1214109 1216178 1216183) (-707 "NORMMA.spad" 1213778 1213804 1214080 1214085) (-706 "NONE.spad" 1213519 1213527 1213768 1213773) (-705 "NONE1.spad" 1213195 1213205 1213509 1213514) (-704 "NODE1.spad" 1212664 1212680 1213185 1213190) (-703 "NNI.spad" 1211551 1211559 1212638 1212659) (-702 "NLINSOL.spad" 1210173 1210183 1211541 1211546) (-701 "NIPROB.spad" 1208656 1208664 1210163 1210168) (-700 "NFINTBAS.spad" 1206116 1206133 1208646 1208651) (-699 "NCODIV.spad" 1204314 1204330 1206106 1206111) (-698 "NCNTFRAC.spad" 1203956 1203970 1204304 1204309) (-697 "NCEP.spad" 1202116 1202130 1203946 1203951) (-696 "NASRING.spad" 1201712 1201720 1202106 1202111) (-695 "NASRING.spad" 1201306 1201316 1201702 1201707) (-694 "NARNG.spad" 1200650 1200658 1201296 1201301) (-693 "NARNG.spad" 1199992 1200002 1200640 1200645) (-692 "NAGSP.spad" 1199065 1199073 1199982 1199987) (-691 "NAGS.spad" 1188590 1188598 1199055 1199060) (-690 "NAGF07.spad" 1186983 1186991 1188580 1188585) (-689 "NAGF04.spad" 1181215 1181223 1186973 1186978) (-688 "NAGF02.spad" 1175024 1175032 1181205 1181210) (-687 "NAGF01.spad" 1170627 1170635 1175014 1175019) (-686 "NAGE04.spad" 1164087 1164095 1170617 1170622) (-685 "NAGE02.spad" 1154429 1154437 1164077 1164082) (-684 "NAGE01.spad" 1150313 1150321 1154419 1154424) (-683 "NAGD03.spad" 1148233 1148241 1150303 1150308) (-682 "NAGD02.spad" 1140764 1140772 1148223 1148228) (-681 "NAGD01.spad" 1134877 1134885 1140754 1140759) (-680 "NAGC06.spad" 1130664 1130672 1134867 1134872) (-679 "NAGC05.spad" 1129133 1129141 1130654 1130659) (-678 "NAGC02.spad" 1128388 1128396 1129123 1129128) (-677 "NAALG.spad" 1127923 1127933 1128356 1128383) (-676 "NAALG.spad" 1127478 1127490 1127913 1127918) (-675 "MULTSQFR.spad" 1124436 1124453 1127468 1127473) (-674 "MULTFACT.spad" 1123819 1123836 1124426 1124431) (-673 "MTSCAT.spad" 1121853 1121874 1123717 1123814) (-672 "MTHING.spad" 1121510 1121520 1121843 1121848) (-671 "MSYSCMD.spad" 1120944 1120952 1121500 1121505) (-670 "MSET.spad" 1118886 1118896 1120650 1120689) (-669 "MSETAGG.spad" 1118719 1118729 1118842 1118881) (-668 "MRING.spad" 1115690 1115702 1118427 1118494) (-667 "MRF2.spad" 1115258 1115272 1115680 1115685) (-666 "MRATFAC.spad" 1114804 1114821 1115248 1115253) (-665 "MPRFF.spad" 1112834 1112853 1114794 1114799) (-664 "MPOLY.spad" 1110272 1110287 1110631 1110758) (-663 "MPCPF.spad" 1109536 1109555 1110262 1110267) (-662 "MPC3.spad" 1109351 1109391 1109526 1109531) (-661 "MPC2.spad" 1108993 1109026 1109341 1109346) (-660 "MONOTOOL.spad" 1107328 1107345 1108983 1108988) (-659 "MONOID.spad" 1106502 1106510 1107318 1107323) (-658 "MONOID.spad" 1105674 1105684 1106492 1106497) (-657 "MONOGEN.spad" 1104420 1104433 1105534 1105669) (-656 "MONOGEN.spad" 1103188 1103203 1104304 1104309) (-655 "MONADWU.spad" 1101202 1101210 1103178 1103183) (-654 "MONADWU.spad" 1099214 1099224 1101192 1101197) (-653 "MONAD.spad" 1098358 1098366 1099204 1099209) (-652 "MONAD.spad" 1097500 1097510 1098348 1098353) (-651 "MOEBIUS.spad" 1096186 1096200 1097480 1097495) (-650 "MODULE.spad" 1096056 1096066 1096154 1096181) (-649 "MODULE.spad" 1095946 1095958 1096046 1096051) (-648 "MODRING.spad" 1095277 1095316 1095926 1095941) (-647 "MODOP.spad" 1093936 1093948 1095099 1095166) (-646 "MODMONOM.spad" 1093468 1093486 1093926 1093931) (-645 "MODMON.spad" 1090178 1090194 1090954 1091107) (-644 "MODFIELD.spad" 1089536 1089575 1090080 1090173) (-643 "MMAP.spad" 1089276 1089310 1089526 1089531) (-642 "MLO.spad" 1087703 1087713 1089232 1089271) (-641 "MLIFT.spad" 1086275 1086292 1087693 1087698) (-640 "MKUCFUNC.spad" 1085808 1085826 1086265 1086270) (-639 "MKRECORD.spad" 1085410 1085423 1085798 1085803) (-638 "MKFUNC.spad" 1084791 1084801 1085400 1085405) (-637 "MKFLCFN.spad" 1083747 1083757 1084781 1084786) (-636 "MKCHSET.spad" 1083523 1083533 1083737 1083742) (-635 "MKBCFUNC.spad" 1083008 1083026 1083513 1083518) (-634 "MINT.spad" 1082447 1082455 1082910 1083003) (-633 "MHROWRED.spad" 1080948 1080958 1082437 1082442) (-632 "MFLOAT.spad" 1079393 1079401 1080838 1080943) (-631 "MFINFACT.spad" 1078793 1078815 1079383 1079388) (-630 "MESH.spad" 1076525 1076533 1078783 1078788) (-629 "MDDFACT.spad" 1074718 1074728 1076515 1076520) (-628 "MDAGG.spad" 1073993 1074003 1074686 1074713) (-627 "MCMPLX.spad" 1069973 1069981 1070587 1070788) (-626 "MCDEN.spad" 1069181 1069193 1069963 1069968) (-625 "MCALCFN.spad" 1066283 1066309 1069171 1069176) (-624 "MATSTOR.spad" 1063559 1063569 1066273 1066278) (-623 "MATRIX.spad" 1062263 1062273 1062747 1062774) (-622 "MATLIN.spad" 1059589 1059613 1062147 1062152) (-621 "MATCAT.spad" 1051162 1051184 1059545 1059584) (-620 "MATCAT.spad" 1042619 1042643 1051004 1051009) (-619 "MATCAT2.spad" 1041887 1041935 1042609 1042614) (-618 "MAPPKG3.spad" 1040786 1040800 1041877 1041882) (-617 "MAPPKG2.spad" 1040120 1040132 1040776 1040781) (-616 "MAPPKG1.spad" 1038938 1038948 1040110 1040115) (-615 "MAPHACK3.spad" 1038746 1038760 1038928 1038933) (-614 "MAPHACK2.spad" 1038511 1038523 1038736 1038741) (-613 "MAPHACK1.spad" 1038141 1038151 1038501 1038506) (-612 "MAGMA.spad" 1035931 1035948 1038131 1038136) (-611 "M3D.spad" 1033629 1033639 1035311 1035316) (-610 "LZSTAGG.spad" 1030847 1030857 1033609 1033624) (-609 "LZSTAGG.spad" 1028073 1028085 1030837 1030842) (-608 "LWORD.spad" 1024778 1024795 1028063 1028068) (-607 "LSQM.spad" 1023006 1023020 1023404 1023455) (-606 "LSPP.spad" 1022539 1022556 1022996 1023001) (-605 "LSMP.spad" 1021379 1021407 1022529 1022534) (-604 "LSMP1.spad" 1019183 1019197 1021369 1021374) (-603 "LSAGG.spad" 1018840 1018850 1019139 1019178) (-602 "LSAGG.spad" 1018529 1018541 1018830 1018835) (-601 "LPOLY.spad" 1017483 1017502 1018385 1018454) (-600 "LPEFRAC.spad" 1016740 1016750 1017473 1017478) (-599 "LO.spad" 1016141 1016155 1016674 1016701) (-598 "LOGIC.spad" 1015743 1015751 1016131 1016136) (-597 "LOGIC.spad" 1015343 1015353 1015733 1015738) (-596 "LODOOPS.spad" 1014261 1014273 1015333 1015338) (-595 "LODO.spad" 1013647 1013663 1013943 1013982) (-594 "LODOF.spad" 1012691 1012708 1013604 1013609) (-593 "LODOCAT.spad" 1011349 1011359 1012647 1012686) (-592 "LODOCAT.spad" 1010005 1010017 1011305 1011310) (-591 "LODO2.spad" 1009280 1009292 1009687 1009726) (-590 "LODO1.spad" 1008682 1008692 1008962 1009001) (-589 "LODEEF.spad" 1007454 1007472 1008672 1008677) (-588 "LNAGG.spad" 1003246 1003256 1007434 1007449) (-587 "LNAGG.spad" 999012 999024 1003202 1003207) (-586 "LMOPS.spad" 995748 995765 999002 999007) (-585 "LMODULE.spad" 995390 995400 995738 995743) (-584 "LMDICT.spad" 994673 994683 994941 994968) (-583 "LIST.spad" 992391 992401 993820 993847) (-582 "LIST3.spad" 991682 991696 992381 992386) (-581 "LIST2.spad" 990322 990334 991672 991677) (-580 "LIST2MAP.spad" 987199 987211 990312 990317) (-579 "LINEXP.spad" 986631 986641 987179 987194) (-578 "LINDEP.spad" 985408 985420 986543 986548) (-577 "LIMITRF.spad" 983322 983332 985398 985403) (-576 "LIMITPS.spad" 982205 982218 983312 983317) (-575 "LIE.spad" 980219 980231 981495 981640) (-574 "LIECAT.spad" 979695 979705 980145 980214) (-573 "LIECAT.spad" 979199 979211 979651 979656) (-572 "LIB.spad" 977247 977255 977858 977873) (-571 "LGROBP.spad" 974600 974619 977237 977242) (-570 "LF.spad" 973519 973535 974590 974595) (-569 "LFCAT.spad" 972538 972546 973509 973514) (-568 "LEXTRIPK.spad" 968041 968056 972528 972533) (-567 "LEXP.spad" 966044 966071 968021 968036) (-566 "LEADCDET.spad" 964428 964445 966034 966039) (-565 "LAZM3PK.spad" 963132 963154 964418 964423) (-564 "LAUPOL.spad" 961823 961836 962727 962796) (-563 "LAPLACE.spad" 961396 961412 961813 961818) (-562 "LA.spad" 960836 960850 961318 961357) (-561 "LALG.spad" 960612 960622 960816 960831) (-560 "LALG.spad" 960396 960408 960602 960607) (-559 "KOVACIC.spad" 959109 959126 960386 960391) (-558 "KONVERT.spad" 958831 958841 959099 959104) (-557 "KOERCE.spad" 958568 958578 958821 958826) (-556 "KERNEL.spad" 957103 957113 958352 958357) (-555 "KERNEL2.spad" 956806 956818 957093 957098) (-554 "KDAGG.spad" 955897 955919 956774 956801) (-553 "KDAGG.spad" 955008 955032 955887 955892) (-552 "KAFILE.spad" 953971 953987 954206 954233) (-551 "JORDAN.spad" 951798 951810 953261 953406) (-550 "IXAGG.spad" 949911 949935 951778 951793) (-549 "IXAGG.spad" 947889 947915 949758 949763) (-548 "IVECTOR.spad" 946662 946677 946817 946844) (-547 "ITUPLE.spad" 945807 945817 946652 946657) (-546 "ITRIGMNP.spad" 944618 944637 945797 945802) (-545 "ITFUN3.spad" 944112 944126 944608 944613) (-544 "ITFUN2.spad" 943842 943854 944102 944107) (-543 "ITAYLOR.spad" 941634 941649 943678 943803) (-542 "ISUPS.spad" 934045 934060 940608 940705) (-541 "ISUMP.spad" 933542 933558 934035 934040) (-540 "ISTRING.spad" 932545 932558 932711 932738) (-539 "IRURPK.spad" 931258 931277 932535 932540) (-538 "IRSN.spad" 929218 929226 931248 931253) (-537 "IRRF2F.spad" 927693 927703 929174 929179) (-536 "IRREDFFX.spad" 927294 927305 927683 927688) (-535 "IROOT.spad" 925625 925635 927284 927289) (-534 "IR.spad" 923415 923429 925481 925508) (-533 "IR2.spad" 922435 922451 923405 923410) (-532 "IR2F.spad" 921635 921651 922425 922430) (-531 "IPRNTPK.spad" 921395 921403 921625 921630) (-530 "IPF.spad" 920960 920972 921200 921293) (-529 "IPADIC.spad" 920721 920747 920886 920955) (-528 "INVLAPLA.spad" 920366 920382 920711 920716) (-527 "INTTR.spad" 913612 913629 920356 920361) (-526 "INTTOOLS.spad" 911324 911340 913187 913192) (-525 "INTSLPE.spad" 910630 910638 911314 911319) (-524 "INTRVL.spad" 910196 910206 910544 910625) (-523 "INTRF.spad" 908560 908574 910186 910191) (-522 "INTRET.spad" 907992 908002 908550 908555) (-521 "INTRAT.spad" 906667 906684 907982 907987) (-520 "INTPM.spad" 905030 905046 906310 906315) (-519 "INTPAF.spad" 902798 902816 904962 904967) (-518 "INTPACK.spad" 893108 893116 902788 902793) (-517 "INT.spad" 892469 892477 892962 893103) (-516 "INTHERTR.spad" 891735 891752 892459 892464) (-515 "INTHERAL.spad" 891401 891425 891725 891730) (-514 "INTHEORY.spad" 887814 887822 891391 891396) (-513 "INTG0.spad" 881277 881295 887746 887751) (-512 "INTFTBL.spad" 875306 875314 881267 881272) (-511 "INTFACT.spad" 874365 874375 875296 875301) (-510 "INTEF.spad" 872680 872696 874355 874360) (-509 "INTDOM.spad" 871295 871303 872606 872675) (-508 "INTDOM.spad" 869972 869982 871285 871290) (-507 "INTCAT.spad" 868225 868235 869886 869967) (-506 "INTBIT.spad" 867728 867736 868215 868220) (-505 "INTALG.spad" 866910 866937 867718 867723) (-504 "INTAF.spad" 866402 866418 866900 866905) (-503 "INTABL.spad" 864920 864951 865083 865110) (-502 "INS.spad" 862316 862324 864822 864915) (-501 "INS.spad" 859798 859808 862306 862311) (-500 "INPSIGN.spad" 859232 859245 859788 859793) (-499 "INPRODPF.spad" 858298 858317 859222 859227) (-498 "INPRODFF.spad" 857356 857380 858288 858293) (-497 "INNMFACT.spad" 856327 856344 857346 857351) (-496 "INMODGCD.spad" 855811 855841 856317 856322) (-495 "INFSP.spad" 854096 854118 855801 855806) (-494 "INFPROD0.spad" 853146 853165 854086 854091) (-493 "INFORM.spad" 850414 850422 853136 853141) (-492 "INFORM1.spad" 850039 850049 850404 850409) (-491 "INFINITY.spad" 849591 849599 850029 850034) (-490 "INEP.spad" 848123 848145 849581 849586) (-489 "INDE.spad" 848029 848046 848113 848118) (-488 "INCRMAPS.spad" 847450 847460 848019 848024) (-487 "INBFF.spad" 843220 843231 847440 847445) (-486 "IMATRIX.spad" 842165 842191 842677 842704) (-485 "IMATQF.spad" 841259 841303 842121 842126) (-484 "IMATLIN.spad" 839864 839888 841215 841220) (-483 "ILIST.spad" 838520 838535 839047 839074) (-482 "IIARRAY2.spad" 837908 837946 838127 838154) (-481 "IFF.spad" 837318 837334 837589 837682) (-480 "IFARRAY.spad" 834805 834820 836501 836528) (-479 "IFAMON.spad" 834667 834684 834761 834766) (-478 "IEVALAB.spad" 834056 834068 834657 834662) (-477 "IEVALAB.spad" 833443 833457 834046 834051) (-476 "IDPO.spad" 833241 833253 833433 833438) (-475 "IDPOAMS.spad" 832997 833009 833231 833236) (-474 "IDPOAM.spad" 832717 832729 832987 832992) (-473 "IDPC.spad" 831651 831663 832707 832712) (-472 "IDPAM.spad" 831396 831408 831641 831646) (-471 "IDPAG.spad" 831143 831155 831386 831391) (-470 "IDECOMP.spad" 828380 828398 831133 831138) (-469 "IDEAL.spad" 823303 823342 828315 828320) (-468 "ICDEN.spad" 822454 822470 823293 823298) (-467 "ICARD.spad" 821643 821651 822444 822449) (-466 "IBPTOOLS.spad" 820236 820253 821633 821638) (-465 "IBITS.spad" 819435 819448 819872 819899) (-464 "IBATOOL.spad" 816310 816329 819425 819430) (-463 "IBACHIN.spad" 814797 814812 816300 816305) (-462 "IARRAY2.spad" 813785 813811 814404 814431) (-461 "IARRAY1.spad" 812830 812845 812968 812995) (-460 "IAN.spad" 811045 811053 812648 812741) (-459 "IALGFACT.spad" 810646 810679 811035 811040) (-458 "HYPCAT.spad" 810070 810078 810636 810641) (-457 "HYPCAT.spad" 809492 809502 810060 810065) (-456 "HOAGG.spad" 806750 806760 809472 809487) (-455 "HOAGG.spad" 803793 803805 806517 806522) (-454 "HEXADEC.spad" 801665 801673 802263 802356) (-453 "HEUGCD.spad" 800680 800691 801655 801660) (-452 "HELLFDIV.spad" 800270 800294 800670 800675) (-451 "HEAP.spad" 799662 799672 799877 799904) (-450 "HDP.spad" 791184 791200 791561 791690) (-449 "HDMP.spad" 788363 788378 788981 789108) (-448 "HB.spad" 786600 786608 788353 788358) (-447 "HASHTBL.spad" 785070 785101 785281 785308) (-446 "HACKPI.spad" 784553 784561 784972 785065) (-445 "GTSET.spad" 783492 783508 784199 784226) (-444 "GSTBL.spad" 782011 782046 782185 782200) (-443 "GSERIES.spad" 779178 779205 780143 780292) (-442 "GROUP.spad" 778352 778360 779158 779173) (-441 "GROUP.spad" 777534 777544 778342 778347) (-440 "GROEBSOL.spad" 776022 776043 777524 777529) (-439 "GRMOD.spad" 774593 774605 776012 776017) (-438 "GRMOD.spad" 773162 773176 774583 774588) (-437 "GRIMAGE.spad" 765767 765775 773152 773157) (-436 "GRDEF.spad" 764146 764154 765757 765762) (-435 "GRAY.spad" 762605 762613 764136 764141) (-434 "GRALG.spad" 761652 761664 762595 762600) (-433 "GRALG.spad" 760697 760711 761642 761647) (-432 "GPOLSET.spad" 760151 760174 760379 760406) (-431 "GOSPER.spad" 759416 759434 760141 760146) (-430 "GMODPOL.spad" 758554 758581 759384 759411) (-429 "GHENSEL.spad" 757623 757637 758544 758549) (-428 "GENUPS.spad" 753724 753737 757613 757618) (-427 "GENUFACT.spad" 753301 753311 753714 753719) (-426 "GENPGCD.spad" 752885 752902 753291 753296) (-425 "GENMFACT.spad" 752337 752356 752875 752880) (-424 "GENEEZ.spad" 750276 750289 752327 752332) (-423 "GDMP.spad" 747297 747314 748073 748200) (-422 "GCNAALG.spad" 741192 741219 747091 747158) (-421 "GCDDOM.spad" 740364 740372 741118 741187) (-420 "GCDDOM.spad" 739598 739608 740354 740359) (-419 "GB.spad" 737116 737154 739554 739559) (-418 "GBINTERN.spad" 733136 733174 737106 737111) (-417 "GBF.spad" 728893 728931 733126 733131) (-416 "GBEUCLID.spad" 726767 726805 728883 728888) (-415 "GAUSSFAC.spad" 726064 726072 726757 726762) (-414 "GALUTIL.spad" 724386 724396 726020 726025) (-413 "GALPOLYU.spad" 722832 722845 724376 724381) (-412 "GALFACTU.spad" 720997 721016 722822 722827) (-411 "GALFACT.spad" 711130 711141 720987 720992) (-410 "FVFUN.spad" 708143 708151 711110 711125) (-409 "FVC.spad" 707185 707193 708123 708138) (-408 "FUNCTION.spad" 707034 707046 707175 707180) (-407 "FT.spad" 705246 705254 707024 707029) (-406 "FTEM.spad" 704409 704417 705236 705241) (-405 "FSUPFACT.spad" 703310 703329 704346 704351) (-404 "FST.spad" 701396 701404 703300 703305) (-403 "FSRED.spad" 700874 700890 701386 701391) (-402 "FSPRMELT.spad" 699698 699714 700831 700836) (-401 "FSPECF.spad" 697775 697791 699688 699693) (-400 "FS.spad" 691826 691836 697539 697770) (-399 "FS.spad" 685668 685680 691383 691388) (-398 "FSINT.spad" 685326 685342 685658 685663) (-397 "FSERIES.spad" 684513 684525 685146 685245) (-396 "FSCINT.spad" 683826 683842 684503 684508) (-395 "FSAGG.spad" 682931 682941 683770 683821) (-394 "FSAGG.spad" 682010 682022 682851 682856) (-393 "FSAGG2.spad" 680709 680725 682000 682005) (-392 "FS2UPS.spad" 675098 675132 680699 680704) (-391 "FS2.spad" 674743 674759 675088 675093) (-390 "FS2EXPXP.spad" 673866 673889 674733 674738) (-389 "FRUTIL.spad" 672808 672818 673856 673861) (-388 "FR.spad" 666505 666515 671835 671904) (-387 "FRNAALG.spad" 661592 661602 666447 666500) (-386 "FRNAALG.spad" 656691 656703 661548 661553) (-385 "FRNAAF2.spad" 656145 656163 656681 656686) (-384 "FRMOD.spad" 655540 655570 656077 656082) (-383 "FRIDEAL.spad" 654735 654756 655520 655535) (-382 "FRIDEAL2.spad" 654337 654369 654725 654730) (-381 "FRETRCT.spad" 653848 653858 654327 654332) (-380 "FRETRCT.spad" 653227 653239 653708 653713) (-379 "FRAMALG.spad" 651555 651568 653183 653222) (-378 "FRAMALG.spad" 649915 649930 651545 651550) (-377 "FRAC.spad" 647018 647028 647421 647594) (-376 "FRAC2.spad" 646621 646633 647008 647013) (-375 "FR2.spad" 645955 645967 646611 646616) (-374 "FPS.spad" 642764 642772 645845 645950) (-373 "FPS.spad" 639601 639611 642684 642689) (-372 "FPC.spad" 638643 638651 639503 639596) (-371 "FPC.spad" 637771 637781 638633 638638) (-370 "FPATMAB.spad" 637523 637533 637751 637766) (-369 "FPARFRAC.spad" 635996 636013 637513 637518) (-368 "FORTRAN.spad" 634496 634545 635986 635991) (-367 "FORT.spad" 633425 633433 634486 634491) (-366 "FORTFN.spad" 630585 630593 633405 633420) (-365 "FORTCAT.spad" 630259 630267 630565 630580) (-364 "FORMULA.spad" 627597 627605 630249 630254) (-363 "FORMULA1.spad" 627076 627086 627587 627592) (-362 "FORDER.spad" 626767 626791 627066 627071) (-361 "FOP.spad" 625968 625976 626757 626762) (-360 "FNLA.spad" 625392 625414 625936 625963) (-359 "FNCAT.spad" 623720 623728 625382 625387) (-358 "FNAME.spad" 623612 623620 623710 623715) (-357 "FMTC.spad" 623410 623418 623538 623607) (-356 "FMONOID.spad" 620465 620475 623366 623371) (-355 "FM.spad" 620160 620172 620399 620426) (-354 "FMFUN.spad" 617180 617188 620140 620155) (-353 "FMC.spad" 616222 616230 617160 617175) (-352 "FMCAT.spad" 613876 613894 616190 616217) (-351 "FM1.spad" 613233 613245 613810 613837) (-350 "FLOATRP.spad" 610954 610968 613223 613228) (-349 "FLOAT.spad" 604118 604126 610820 610949) (-348 "FLOATCP.spad" 601535 601549 604108 604113) (-347 "FLINEXP.spad" 601247 601257 601515 601530) (-346 "FLINEXP.spad" 600913 600925 601183 601188) (-345 "FLASORT.spad" 600233 600245 600903 600908) (-344 "FLALG.spad" 597879 597898 600159 600228) (-343 "FLAGG.spad" 594885 594895 597847 597874) (-342 "FLAGG.spad" 591804 591816 594768 594773) (-341 "FLAGG2.spad" 590485 590501 591794 591799) (-340 "FINRALG.spad" 588514 588527 590441 590480) (-339 "FINRALG.spad" 586469 586484 588398 588403) (-338 "FINITE.spad" 585621 585629 586459 586464) (-337 "FINAALG.spad" 574602 574612 585563 585616) (-336 "FINAALG.spad" 563595 563607 574558 574563) (-335 "FILE.spad" 563178 563188 563585 563590) (-334 "FILECAT.spad" 561696 561713 563168 563173) (-333 "FIELD.spad" 561102 561110 561598 561691) (-332 "FIELD.spad" 560594 560604 561092 561097) (-331 "FGROUP.spad" 559203 559213 560574 560589) (-330 "FGLMICPK.spad" 557990 558005 559193 559198) (-329 "FFX.spad" 557365 557380 557706 557799) (-328 "FFSLPE.spad" 556854 556875 557355 557360) (-327 "FFPOLY.spad" 548106 548117 556844 556849) (-326 "FFPOLY2.spad" 547166 547183 548096 548101) (-325 "FFP.spad" 546563 546583 546882 546975) (-324 "FF.spad" 546011 546027 546244 546337) (-323 "FFNBX.spad" 544523 544543 545727 545820) (-322 "FFNBP.spad" 543036 543053 544239 544332) (-321 "FFNB.spad" 541501 541522 542717 542810) (-320 "FFINTBAS.spad" 538915 538934 541491 541496) (-319 "FFIELDC.spad" 536490 536498 538817 538910) (-318 "FFIELDC.spad" 534151 534161 536480 536485) (-317 "FFHOM.spad" 532899 532916 534141 534146) (-316 "FFF.spad" 530334 530345 532889 532894) (-315 "FFCGX.spad" 529181 529201 530050 530143) (-314 "FFCGP.spad" 528070 528090 528897 528990) (-313 "FFCG.spad" 526862 526883 527751 527844) (-312 "FFCAT.spad" 519763 519785 526701 526857) (-311 "FFCAT.spad" 512743 512767 519683 519688) (-310 "FFCAT2.spad" 512488 512528 512733 512738) (-309 "FEXPR.spad" 504201 504247 512248 512287) (-308 "FEVALAB.spad" 503907 503917 504191 504196) (-307 "FEVALAB.spad" 503398 503410 503684 503689) (-306 "FDIV.spad" 502840 502864 503388 503393) (-305 "FDIVCAT.spad" 500882 500906 502830 502835) (-304 "FDIVCAT.spad" 498922 498948 500872 500877) (-303 "FDIV2.spad" 498576 498616 498912 498917) (-302 "FCPAK1.spad" 497129 497137 498566 498571) (-301 "FCOMP.spad" 496508 496518 497119 497124) (-300 "FC.spad" 486333 486341 496498 496503) (-299 "FAXF.spad" 479268 479282 486235 486328) (-298 "FAXF.spad" 472255 472271 479224 479229) (-297 "FARRAY.spad" 470401 470411 471438 471465) (-296 "FAMR.spad" 468521 468533 470299 470396) (-295 "FAMR.spad" 466625 466639 468405 468410) (-294 "FAMONOID.spad" 466275 466285 466579 466584) (-293 "FAMONC.spad" 464497 464509 466265 466270) (-292 "FAGROUP.spad" 464103 464113 464393 464420) (-291 "FACUTIL.spad" 462299 462316 464093 464098) (-290 "FACTFUNC.spad" 461475 461485 462289 462294) (-289 "EXPUPXS.spad" 458308 458331 459607 459756) (-288 "EXPRTUBE.spad" 455536 455544 458298 458303) (-287 "EXPRODE.spad" 452408 452424 455526 455531) (-286 "EXPR.spad" 447710 447720 448424 448827) (-285 "EXPR2UPS.spad" 443802 443815 447700 447705) (-284 "EXPR2.spad" 443505 443517 443792 443797) (-283 "EXPEXPAN.spad" 440446 440471 441080 441173) (-282 "EXIT.spad" 440117 440125 440436 440441) (-281 "EVALCYC.spad" 439575 439589 440107 440112) (-280 "EVALAB.spad" 439139 439149 439565 439570) (-279 "EVALAB.spad" 438701 438713 439129 439134) (-278 "EUCDOM.spad" 436243 436251 438627 438696) (-277 "EUCDOM.spad" 433847 433857 436233 436238) (-276 "ESTOOLS.spad" 425687 425695 433837 433842) (-275 "ESTOOLS2.spad" 425288 425302 425677 425682) (-274 "ESTOOLS1.spad" 424973 424984 425278 425283) (-273 "ES.spad" 417520 417528 424963 424968) (-272 "ES.spad" 409975 409985 417420 417425) (-271 "ESCONT.spad" 406748 406756 409965 409970) (-270 "ESCONT1.spad" 406497 406509 406738 406743) (-269 "ES2.spad" 405992 406008 406487 406492) (-268 "ES1.spad" 405558 405574 405982 405987) (-267 "ERROR.spad" 402879 402887 405548 405553) (-266 "EQTBL.spad" 401351 401373 401560 401587) (-265 "EQ.spad" 396235 396245 399034 399143) (-264 "EQ2.spad" 395951 395963 396225 396230) (-263 "EP.spad" 392265 392275 395941 395946) (-262 "ENTIRER.spad" 391933 391941 392209 392260) (-261 "EMR.spad" 391134 391175 391859 391928) (-260 "ELTAGG.spad" 389374 389393 391124 391129) (-259 "ELTAGG.spad" 387578 387599 389330 389335) (-258 "ELTAB.spad" 387025 387043 387568 387573) (-257 "ELFUTS.spad" 386404 386423 387015 387020) (-256 "ELEMFUN.spad" 386093 386101 386394 386399) (-255 "ELEMFUN.spad" 385780 385790 386083 386088) (-254 "ELAGG.spad" 383711 383721 385748 385775) (-253 "ELAGG.spad" 381591 381603 383630 383635) (-252 "EFUPXS.spad" 378367 378397 381547 381552) (-251 "EFULS.spad" 375203 375226 378323 378328) (-250 "EFSTRUC.spad" 373158 373174 375193 375198) (-249 "EF.spad" 367924 367940 373148 373153) (-248 "EAB.spad" 366200 366208 367914 367919) (-247 "E04UCFA.spad" 365736 365744 366190 366195) (-246 "E04NAFA.spad" 365313 365321 365726 365731) (-245 "E04MBFA.spad" 364893 364901 365303 365308) (-244 "E04JAFA.spad" 364429 364437 364883 364888) (-243 "E04GCFA.spad" 363965 363973 364419 364424) (-242 "E04FDFA.spad" 363501 363509 363955 363960) (-241 "E04DGFA.spad" 363037 363045 363491 363496) (-240 "E04AGNT.spad" 358879 358887 363027 363032) (-239 "DVARCAT.spad" 355564 355574 358869 358874) (-238 "DVARCAT.spad" 352247 352259 355554 355559) (-237 "DSMP.spad" 349681 349695 349986 350113) (-236 "DROPT.spad" 343626 343634 349671 349676) (-235 "DROPT1.spad" 343289 343299 343616 343621) (-234 "DROPT0.spad" 338116 338124 343279 343284) (-233 "DRAWPT.spad" 336271 336279 338106 338111) (-232 "DRAW.spad" 328871 328884 336261 336266) (-231 "DRAWHACK.spad" 328179 328189 328861 328866) (-230 "DRAWCX.spad" 325621 325629 328169 328174) (-229 "DRAWCURV.spad" 325158 325173 325611 325616) (-228 "DRAWCFUN.spad" 314330 314338 325148 325153) (-227 "DQAGG.spad" 312486 312496 314286 314325) (-226 "DPOLCAT.spad" 307827 307843 312354 312481) (-225 "DPOLCAT.spad" 303254 303272 307783 307788) (-224 "DPMO.spad" 297241 297257 297379 297675) (-223 "DPMM.spad" 291241 291259 291366 291662) (-222 "domain.spad" 290757 290765 291231 291236) (-221 "DMP.spad" 287982 287997 288554 288681) (-220 "DLP.spad" 287330 287340 287972 287977) (-219 "DLIST.spad" 285742 285752 286513 286540) (-218 "DLAGG.spad" 284143 284153 285722 285737) (-217 "DIVRING.spad" 283590 283598 284087 284138) (-216 "DIVRING.spad" 283081 283091 283580 283585) (-215 "DISPLAY.spad" 281261 281269 283071 283076) (-214 "DIRPROD.spad" 272520 272536 273160 273289) (-213 "DIRPROD2.spad" 271328 271346 272510 272515) (-212 "DIRPCAT.spad" 270260 270276 271182 271323) (-211 "DIRPCAT.spad" 268932 268950 269856 269861) (-210 "DIOSP.spad" 267757 267765 268922 268927) (-209 "DIOPS.spad" 266729 266739 267725 267752) (-208 "DIOPS.spad" 265687 265699 266685 266690) (-207 "DIFRING.spad" 264979 264987 265667 265682) (-206 "DIFRING.spad" 264279 264289 264969 264974) (-205 "DIFEXT.spad" 263438 263448 264259 264274) (-204 "DIFEXT.spad" 262514 262526 263337 263342) (-203 "DIAGG.spad" 262132 262142 262482 262509) (-202 "DIAGG.spad" 261770 261782 262122 262127) (-201 "DHMATRIX.spad" 260074 260084 261227 261254) (-200 "DFSFUN.spad" 253482 253490 260064 260069) (-199 "DFLOAT.spad" 250005 250013 253372 253477) (-198 "DFINTTLS.spad" 248214 248230 249995 250000) (-197 "DERHAM.spad" 246124 246156 248194 248209) (-196 "DEQUEUE.spad" 245442 245452 245731 245758) (-195 "DEGRED.spad" 245057 245071 245432 245437) (-194 "DEFINTRF.spad" 242582 242592 245047 245052) (-193 "DEFINTEF.spad" 241078 241094 242572 242577) (-192 "DECIMAL.spad" 238962 238970 239548 239641) (-191 "DDFACT.spad" 236761 236778 238952 238957) (-190 "DBLRESP.spad" 236359 236383 236751 236756) (-189 "DBASE.spad" 234931 234941 236349 236354) (-188 "D03FAFA.spad" 234759 234767 234921 234926) (-187 "D03EEFA.spad" 234579 234587 234749 234754) (-186 "D03AGNT.spad" 233659 233667 234569 234574) (-185 "D02EJFA.spad" 233121 233129 233649 233654) (-184 "D02CJFA.spad" 232599 232607 233111 233116) (-183 "D02BHFA.spad" 232089 232097 232589 232594) (-182 "D02BBFA.spad" 231579 231587 232079 232084) (-181 "D02AGNT.spad" 226383 226391 231569 231574) (-180 "D01WGTS.spad" 224702 224710 226373 226378) (-179 "D01TRNS.spad" 224679 224687 224692 224697) (-178 "D01GBFA.spad" 224201 224209 224669 224674) (-177 "D01FCFA.spad" 223723 223731 224191 224196) (-176 "D01ASFA.spad" 223191 223199 223713 223718) (-175 "D01AQFA.spad" 222637 222645 223181 223186) (-174 "D01APFA.spad" 222061 222069 222627 222632) (-173 "D01ANFA.spad" 221555 221563 222051 222056) (-172 "D01AMFA.spad" 221065 221073 221545 221550) (-171 "D01ALFA.spad" 220605 220613 221055 221060) (-170 "D01AKFA.spad" 220131 220139 220595 220600) (-169 "D01AJFA.spad" 219654 219662 220121 220126) (-168 "D01AGNT.spad" 215713 215721 219644 219649) (-167 "CYCLOTOM.spad" 215219 215227 215703 215708) (-166 "CYCLES.spad" 212051 212059 215209 215214) (-165 "CVMP.spad" 211468 211478 212041 212046) (-164 "CTRIGMNP.spad" 209958 209974 211458 211463) (-163 "CSTTOOLS.spad" 209201 209214 209948 209953) (-162 "CRFP.spad" 202905 202918 209191 209196) (-161 "CRAPACK.spad" 201948 201958 202895 202900) (-160 "CPMATCH.spad" 201448 201463 201873 201878) (-159 "CPIMA.spad" 201153 201172 201438 201443) (-158 "COORDSYS.spad" 196046 196056 201143 201148) (-157 "CONTFRAC.spad" 191658 191668 195948 196041) (-156 "COMRING.spad" 191332 191340 191596 191653) (-155 "COMPPROP.spad" 190846 190854 191322 191327) (-154 "COMPLPAT.spad" 190613 190628 190836 190841) (-153 "COMPLEX.spad" 184646 184656 184890 185151) (-152 "COMPLEX2.spad" 184359 184371 184636 184641) (-151 "COMPFACT.spad" 183961 183975 184349 184354) (-150 "COMPCAT.spad" 182017 182027 183683 183956) (-149 "COMPCAT.spad" 179780 179792 181448 181453) (-148 "COMMUPC.spad" 179526 179544 179770 179775) (-147 "COMMONOP.spad" 179059 179067 179516 179521) (-146 "COMM.spad" 178868 178876 179049 179054) (-145 "COMBOPC.spad" 177773 177781 178858 178863) (-144 "COMBINAT.spad" 176518 176528 177763 177768) (-143 "COMBF.spad" 173886 173902 176508 176513) (-142 "COLOR.spad" 172723 172731 173876 173881) (-141 "CMPLXRT.spad" 172432 172449 172713 172718) (-140 "CLIP.spad" 168524 168532 172422 172427) (-139 "CLIF.spad" 167163 167179 168480 168519) (-138 "CLAGG.spad" 163638 163648 167143 167158) (-137 "CLAGG.spad" 159994 160006 163501 163506) (-136 "CINTSLPE.spad" 159319 159332 159984 159989) (-135 "CHVAR.spad" 157397 157419 159309 159314) (-134 "CHARZ.spad" 157312 157320 157377 157392) (-133 "CHARPOL.spad" 156820 156830 157302 157307) (-132 "CHARNZ.spad" 156573 156581 156800 156815) (-131 "CHAR.spad" 154463 154471 156563 156568) (-130 "CFCAT.spad" 153779 153787 154453 154458) (-129 "CDEN.spad" 152937 152951 153769 153774) (-128 "CCLASS.spad" 151086 151094 152348 152387) (-127 "CARTEN.spad" 146189 146213 151076 151081) (-126 "CARTEN2.spad" 145575 145602 146179 146184) (-125 "CARD.spad" 142864 142872 145549 145570) (-124 "CACHSET.spad" 142486 142494 142854 142859) (-123 "CABMON.spad" 142039 142047 142476 142481) (-122 "BTREE.spad" 141108 141118 141646 141673) (-121 "BTOURN.spad" 140111 140121 140715 140742) (-120 "BTCAT.spad" 139487 139497 140067 140106) (-119 "BTCAT.spad" 138895 138907 139477 139482) (-118 "BTAGG.spad" 137911 137919 138851 138890) (-117 "BTAGG.spad" 136959 136969 137901 137906) (-116 "BSTREE.spad" 135694 135704 136566 136593) (-115 "BRILL.spad" 133889 133900 135684 135689) (-114 "BRAGG.spad" 132803 132813 133869 133884) (-113 "BRAGG.spad" 131691 131703 132759 132764) (-112 "BPADICRT.spad" 129675 129687 129930 130023) (-111 "BPADIC.spad" 129339 129351 129601 129670) (-110 "BOUNDZRO.spad" 128995 129012 129329 129334) (-109 "BOP.spad" 124459 124467 128985 128990) (-108 "BOP1.spad" 121845 121855 124415 124420) (-107 "BOOLEAN.spad" 121098 121106 121835 121840) (-106 "BMODULE.spad" 120810 120822 121066 121093) (-105 "BITS.spad" 120229 120237 120446 120473) (-104 "BINFILE.spad" 119572 119580 120219 120224) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 37cf87c3..9a35ec0f 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,15 +1,15 @@
-(142085 . 3409435995)
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(142311 . 3409486837)
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((|#2| |#2|) . T))
((((-517)) . T))
-((($ $) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))))
+((($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((($) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(|has| |#1| (-832))
+((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(|has| |#1| (-833))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -18,33 +18,33 @@
((($) . T))
(((|#2| |#2|) . T))
((((-131)) . T))
-((((-493)) . T) (((-1059)) . T) (((-199)) . T) (((-349)) . T) (((-815 (-349))) . T))
+((((-493)) . T) (((-1060)) . T) (((-199)) . T) (((-349)) . T) (((-816 (-349))) . T))
(((|#1|) . T))
((((-199)) . T) (((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((($ $) . T) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
-(-3747 (|has| |#1| (-752)) (|has| |#1| (-779)))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((($ $) . T) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+(-3786 (|has| |#1| (-752)) (|has| |#1| (-779)))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-777))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-787)) . T))
-((((-787)) |has| |#1| (-1005)))
+((((-787)) |has| |#1| (-1006)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(((|#2| (-450 (-3535 |#1|) (-703))) . T))
-(((|#1| (-489 (-1076))) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(((|#2| (-450 (-3573 |#1|) (-703))) . T))
+(((|#1| (-489 (-1077))) . T))
(((#0=(-794 |#1|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(|has| |#4| (-338))
(|has| |#3| (-338))
(((|#1|) . T))
@@ -54,110 +54,110 @@
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-509))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
((($) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
((((-787)) . T))
((((-377 (-517))) . T) (($) . T))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1|) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1| |#2|) . T))
((((-787)) . T))
(((|#1|) . T))
-(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
((($ $) . T))
(((|#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
((($) . T))
(|has| |#1| (-338))
(((|#1|) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
(((|#1| |#1|) . T))
(|has| |#1| (-509))
-(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1076) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1076) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1077) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1077) |#2|))))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(|has| |#1| (-1005))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(|has| |#1| (-1005))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(|has| |#1| (-1006))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(|has| |#1| (-1006))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(|has| |#1| (-777))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3747 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3747 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3786 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1005))
-(|has| |#1| (-1005))
-(((|#1| (-1076) (-995 (-1076)) (-489 (-995 (-1076)))) . T))
+(|has| |#1| (-1006))
+(|has| |#1| (-1006))
+(((|#1| (-1077) (-996 (-1077)) (-489 (-996 (-1077)))) . T))
((((-517) |#1|) . T))
((((-517)) . T))
((((-517)) . T))
-((((-833 |#1|)) . T))
+((((-834 |#1|)) . T))
(((|#1| (-489 |#2|)) . T))
((((-517)) . T))
((((-517)) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#1| (-703)) . T))
(|has| |#2| (-725))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
(|has| |#2| (-777))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1059) |#1|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-1060) |#1|) . T))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#3| (-703)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(|has| |#1| (-1005))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-1006))
((((-377 (-517))) . T) (((-517)) . T))
-((((-1076) |#2|) |has| |#2| (-478 (-1076) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
+((((-1077) |#2|) |has| |#2| (-478 (-1077) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
((((-377 (-517))) . T) (((-517)) . T))
(((|#1|) . T) (($) . T))
((((-517)) . T))
((((-517)) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
((((-517)) . T))
((((-517)) . T))
-(((#0=(-632) (-1072 #0#)) . T))
+(((#0=(-632) (-1073 #0#)) . T))
((((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((((-517) |#1|) . T))
@@ -167,18 +167,18 @@
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-((((-1059) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+((((-1060) |#1|) . T))
(((|#3| |#3|) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963))) ((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) ((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -186,65 +186,66 @@
((((-787)) . T))
((((-517) |#1|) . T))
((((-787)) . T))
-((((-153 (-199))) |has| |#1| (-939)) (((-153 (-349))) |has| |#1| (-939)) (((-493)) |has| |#1| (-558 (-493))) (((-1072 |#1|)) . T) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-153 (-199))) |has| |#1| (-940)) (((-153 (-349))) |has| |#1| (-940)) (((-493)) |has| |#1| (-558 (-493))) (((-1073 |#1|)) . T) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))))
(|has| |#1| (-333))
-(-12 (|has| |#4| (-207)) (|has| |#4| (-963)))
-(-12 (|has| |#3| (-207)) (|has| |#3| (-963)))
-(-3747 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-963)))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-12 (|has| |#4| (-207)) (|has| |#4| (-964)))
+(-12 (|has| |#3| (-207)) (|has| |#3| (-964)))
+(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
((((-787)) . T))
(((|#1|) . T))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-(((|#2|) . T) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1|) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(|has| |#1| (-509))
((((-632)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-920)) (|has| |#1| (-1097)))
+(-12 (|has| |#1| (-921)) (|has| |#1| (-1098)))
(((|#2|) . T) (($) . T) (((-377 (-517))) . T))
+(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(((|#4| |#4|) -3747 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-963))) (($ $) |has| |#4| (-156)))
-(((|#3| |#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-963))) (($ $) |has| |#3| (-156)))
+(((|#4| |#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-964))) (($ $) |has| |#4| (-156)))
+(((|#3| |#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($ $) |has| |#3| (-156)))
(((|#1|) . T))
(((|#2|) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
+((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517)))))
((((-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-787)) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))))
+((((-493)) |has| |#1| (-558 (-493))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))))
((((-787)) . T))
-(((|#4|) -3747 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-963))) (($) |has| |#4| (-156)))
-(((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-963))) (($) |has| |#3| (-156)))
+(((|#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-964))) (($) |has| |#4| (-156)))
+(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($) |has| |#3| (-156)))
((((-787)) . T))
-((((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
+((((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((((-377 $) (-377 $)) |has| |#2| (-509)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T))
(((|#1|) . T))
-(|has| |#2| (-832))
-((((-1059) (-51)) . T))
+(|has| |#2| (-833))
+((((-1060) (-51)) . T))
((((-517)) |has| #0=(-377 |#2|) (-579 (-517))) ((#0#) . T))
-((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-815 (-349))) . T))
+((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-816 (-349))) . T))
((((-787)) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
(((|#1|) |has| |#1| (-156)))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-787)) . T))
@@ -253,74 +254,74 @@
((((-377 (-517))) . T) (($) . T))
((((-787)) . T))
(|has| |#1| (-779))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#1|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-207))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1| (-489 (-750 (-1076)))) . T))
-(((|#1| (-890)) . T))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| (-489 (-750 (-1077)))) . T))
+(((|#1| (-891)) . T))
(((#0=(-794 |#1|) $) |has| #0# (-258 #0# #0#)))
((((-517) |#4|) . T))
((((-517) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1052))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
-(|has| (-1143 |#1| |#2| |#3| |#4|) (-132))
-(|has| (-1143 |#1| |#2| |#3| |#4|) (-134))
+(|has| |#1| (-1053))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
+(|has| (-1144 |#1| |#2| |#3| |#4|) (-132))
+(|has| (-1144 |#1| |#2| |#3| |#4|) (-134))
(|has| |#1| (-132))
(|has| |#1| (-134))
(((|#1|) |has| |#1| (-156)))
-((((-1076)) -12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963))))
+((((-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964))))
(((|#2|) . T))
-(|has| |#1| (-1005))
-((((-1059) |#1|) . T))
+(|has| |#1| (-1006))
+((((-1060) |#1|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(|has| |#2| (-338))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-963)))
+(((|#2|) |has| |#2| (-964)))
((((-787)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((#0=(-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) #0#) |has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((#0=(-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) #0#) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))))
((((-517) |#1|) . T))
((((-787)) . T))
-((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349))))) (((-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517))))))
+((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349))))) (((-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517))))))
((((-787)) . T))
((((-787)) . T))
((($) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
((((-787)) . T))
-(|has| (-1142 |#2| |#3| |#4|) (-134))
-(|has| (-1142 |#2| |#3| |#4|) (-132))
-(((|#2|) |has| |#2| (-1005)) (((-517)) -12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (((-377 (-517))) -12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005))))
+(|has| (-1143 |#2| |#3| |#4|) (-134))
+(|has| (-1143 |#2| |#3| |#4|) (-132))
+(((|#2|) |has| |#2| (-1006)) (((-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (((-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006))))
(((|#1|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#1|) . T))
(((|#1|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
(((|#1|) . T))
((((-517) |#1|) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-787)) |has| |#1| (-1005)))
-(-3747 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)) (|has| |#1| (-1017)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-833 |#1|)) . T))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-787)) |has| |#1| (-1006)))
+(-3786 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-834 |#1|)) . T))
((((-377 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-517) |#1|)))
((((-377 (-517))) . T) (($) . T))
@@ -330,100 +331,100 @@
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
(|has| |#1| (-333))
-(-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(|has| |#1| (-15 * (|#1| (-703) |#1|)))
((((-517)) . T))
-((((-1043 |#2| (-377 (-875 |#1|)))) . T) (((-377 (-875 |#1|))) . T))
+((((-1044 |#2| (-377 (-876 |#1|)))) . T) (((-377 (-876 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
(((|#1|) . T))
((((-517) |#1|) . T))
(((|#2|) . T))
-(-3747 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1|) . T))
-((((-1076)) -12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-1077)) -12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-(-3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
-(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))))
+(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($ $) |has| |#1| (-509)))
-(((#0=(-632) (-1072 #0#)) . T))
+(((#0=(-632) (-1073 #0#)) . T))
((((-787)) . T))
-((((-787)) . T) (((-1157 |#4|)) . T))
-((((-787)) . T) (((-1157 |#3|)) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((((-787)) . T) (((-1158 |#4|)) . T))
+((((-787)) . T) (((-1158 |#3|)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)))
((((-787)) . T))
((($) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1149 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
-(((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-(((|#3|) |has| |#3| (-963)))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(|has| |#1| (-1005))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1150 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+(((|#3|) |has| |#3| (-964)))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#1| (-1006))
(((|#2| (-751 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-333))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-991) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-833 |#1|)) . T))
+(((#0=(-992) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-834 |#1|)) . T))
((((-131)) . T))
((((-131)) . T))
-(((|#3|) |has| |#3| (-1005)) (((-517)) -12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005))) (((-377 (-517))) -12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005))))
+(((|#3|) |has| |#3| (-1006)) (((-517)) -12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (((-377 (-517))) -12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#1|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
(|has| |#1| (-333))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
(|has| |#2| (-752))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-777))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-493)) |has| |#1| (-558 (-493))))
(((|#1| |#2|) . T))
-((((-1076)) -12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076)))))
-((((-1059) |#1|) . T))
+((((-1077)) -12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077)))))
+((((-1060) |#1|) . T))
(((|#1| |#2| |#3| (-489 |#3|)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
((((-787)) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
(|has| |#1| (-338))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((((-517)) . T))
((((-517)) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
((((-787)) . T))
((((-787)) . T))
-(-12 (|has| |#2| (-207)) (|has| |#2| (-963)))
-((((-1076) #0=(-794 |#1|)) |has| #0# (-478 (-1076) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-964)))
+((((-1077) #0=(-794 |#1|)) |has| #0# (-478 (-1077) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
(((|#1|) . T))
((((-517) |#4|) . T))
((((-517) |#3|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
((((-377 (-517))) . T) (((-517)) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-517)) . T) (((-377 (-517))) . T))
@@ -435,7 +436,7 @@
(((|#1|) . T))
(((|#1|) . T))
(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
+(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-509)))
((((-517) |#4|) . T))
@@ -447,39 +448,39 @@
(((|#1|) . T))
((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1076) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1077) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-156)))
-((($) -3747 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(((|#2| |#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))) (($ $) |has| |#2| (-156)))
+((($) -3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(((|#2| |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($ $) |has| |#2| (-156)))
((((-131)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
((((-787)) . T))
-(((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))) (($) |has| |#2| (-156)))
+(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($) |has| |#2| (-156)))
(((|#1|) . T))
((((-787)) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(|has| $ (-134))
((((-517) |#1|) . T))
-((($) -3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))))
+((($) -3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))))
(|has| |#1| (-333))
-(-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(|has| |#1| (-15 * (|#1| (-703) |#1|)))
(((|#1|) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
(((|#2| (-489 (-789 |#1|))) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((((-530 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
@@ -487,7 +488,7 @@
(((|#4|) . T))
(((|#3|) . T))
((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-((((-1076)) -12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963))))
+((((-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964))))
(((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
@@ -496,31 +497,31 @@
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1074 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
-(((|#2|) |has| |#2| (-963)))
-(|has| |#1| (-1005))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
-(((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1075 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((|#2|) |has| |#2| (-964)))
+(|has| |#1| (-1006))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T))
-(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
-(((#0=(-991) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
+(((#0=(-992) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
((($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#2|) |has| |#1| (-333)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1005)) (((-517)) -12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (((-377 (-517))) -12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005))))
+(((|#2|) |has| |#2| (-1006)) (((-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (((-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006))))
((((-517) |#1|) . T))
(((|#1| (-377 (-517))) . T))
((((-377 |#2|) |#3|) . T))
@@ -531,30 +532,30 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-132))
(|has| |#1| (-134))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
(((|#2| |#3| (-789 |#1|)) . T))
-((((-1076)) |has| |#2| (-823 (-1076))))
+((((-1077)) |has| |#2| (-824 (-1077))))
(((|#1|) . T))
(((|#1| (-489 |#2|) |#2|) . T))
-(((|#1| (-703) (-991)) . T))
+(((|#1| (-703) (-992)) . T))
((((-377 (-517))) |has| |#2| (-333)) (($) . T))
-(((|#1| (-489 (-995 (-1076))) (-995 (-1076))) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(((|#1| (-489 (-996 (-1077))) (-996 (-1077))) . T))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(|has| |#2| (-725))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#2| (-777))
-((((-816 |#1|)) . T) (((-751 |#1|)) . T))
-((((-751 (-1076))) . T))
+((((-817 |#1|)) . T) (((-751 |#1|)) . T))
+((((-751 (-1077))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -563,108 +564,108 @@
((((-583 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
-((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
(|has| |#1| (-207))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-((((-1149 |#1| |#2| |#3|) $) -12 (|has| (-1149 |#1| |#2| |#3|) (-258 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+((((-1150 |#1| |#2| |#3|) $) -12 (|has| (-1150 |#1| |#2| |#3|) (-258 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1041 |#1| |#2|)) |has| (-1041 |#1| |#2|) (-280 (-1041 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#2|) . T) (((-517)) |has| |#2| (-954 (-517))) (((-377 (-517))) |has| |#2| (-954 (-377 (-517)))))
-(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+((((-1042 |#1| |#2|)) |has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517)))))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((|#2|) . T))
-((((-787)) -3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005))) (((-1157 |#2|)) . T))
+((((-787)) -3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) (((-1158 |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
((((-517)) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-517) (-131)) . T))
-((($) -3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963))) ((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963)))
+((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) ((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964)))
(((|#1|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964)))
(((|#2|) |has| |#1| (-333)))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| (-489 #0=(-1076)) #0#) . T))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| (-489 #0=(-1077)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-156))
(|has| |#3| (-156))
-(((#0=(-377 (-875 |#1|)) #0#) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(|has| |#1| (-1005))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(|has| |#1| (-1005))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+(((#0=(-377 (-876 |#1|)) #0#) . T))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(|has| |#1| (-1006))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(|has| |#1| (-1006))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1| |#1|) |has| |#1| (-156)))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
-((((-377 (-875 |#1|))) . T))
+((((-377 (-876 |#1|))) . T))
(((|#1|) |has| |#1| (-156)))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((((-787)) . T))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-963)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-964)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))
(((|#1| |#2|) . T))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
(|has| |#3| (-725))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
(|has| |#3| (-777))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))))
(((|#2|) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#1| (-1057 |#1|)) |has| |#1| (-777)))
+(((|#1| (-1058 |#1|)) |has| |#1| (-777)))
((((-517) |#2|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#1|) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-1052)))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(|has| |#1| (-1005))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-1053)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(|has| |#1| (-1006))
(((|#2|) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
-(((|#4|) -3747 (|has| |#4| (-156)) (|has| |#4| (-333))))
-(((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333))))
+((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517)))))
+(((|#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333))))
+(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333))))
((((-787)) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-832)))
-((($ $) . T) ((#0=(-1076) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-750 (-1076)) |#1|) . T) ((#1# $) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-833)))
+((($ $) . T) ((#0=(-1077) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-750 (-1077)) |#1|) . T) ((#1# $) . T))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-833)))
((((-517) |#2|) . T))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-((($) -3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963))) ((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-963))))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+((($) -3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) ((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))))
((((-517) |#1|) . T))
(|has| (-377 |#2|) (-134))
(|has| (-377 |#2|) (-132))
@@ -677,26 +678,26 @@
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-787)) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
(|has| |#1| (-37 (-377 (-517))))
-((((-358) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+((((-358) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
(|has| |#1| (-37 (-377 (-517))))
-(|has| |#2| (-1052))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#2| (-1053))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
(((|#1|) . T))
-((((-358) (-1059)) . T))
+((((-358) (-1060)) . T))
(|has| |#1| (-509))
((((-111 |#1|)) . T))
((((-517) |#1|) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#2|) . T))
((((-787)) . T))
((((-751 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
-((((-1076) (-51)) . T))
+((((-1077) (-51)) . T))
(((|#1|) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -704,17 +705,17 @@
(((|#1|) |has| |#1| (-156)))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#2|) |has| |#2| (-280 |#2|)))
(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1072 |#1|)) . T))
+(((|#1| (-1073 |#1|)) . T))
(|has| $ (-134))
(((|#2|) . T))
(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
((($) . T) (((-517)) . T) (((-377 (-517))) . T))
(|has| |#2| (-338))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
@@ -722,67 +723,68 @@
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((((-517)) . T) (((-377 (-517))) . T) (($) . T))
-((((-1074 |#1| |#2| |#3|) $) -12 (|has| (-1074 |#1| |#2| |#3|) (-258 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+((((-1075 |#1| |#2| |#3|) $) -12 (|has| (-1075 |#1| |#2| |#3|) (-258 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((((-787)) . T))
((((-787)) . T))
-((($) . T) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
((($ $) . T))
((($ $) . T))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((#0=(-1149 |#1| |#2| |#3|) #0#) -12 (|has| (-1149 |#1| |#2| |#3|) (-280 (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1076) #0#) -12 (|has| (-1149 |#1| |#2| |#3|) (-478 (-1076) (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((#0=(-1150 |#1| |#2| |#3|) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1077) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-478 (-1077) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-377 (-517))) . T) (((-517)) . T))
((((-517) (-131)) . T))
((((-131)) . T))
(((|#1|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964)))
((((-107)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-107)) . T))
(((|#1|) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-199)) . #0=(|has| |#1| (-939))) (((-349)) . #0#))
+((((-493)) |has| |#1| (-558 (-493))) (((-199)) . #0=(|has| |#1| (-940))) (((-349)) . #0#))
((((-787)) . T))
(|has| |#1| (-752))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(|has| |#1| (-779))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
(|has| |#1| (-509))
-(|has| |#1| (-832))
+(|has| |#1| (-833))
(((|#1|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
((((-787)) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#1| (-1157 |#1|) (-1157 |#1|)) . T))
+(((|#1| (-1158 |#1|) (-1158 |#1|)) . T))
((((-517) (-131)) . T))
((($) . T))
-(-3747 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-963)))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
((((-787)) . T))
-(|has| |#1| (-1005))
-(((|#1| (-890)) . T))
+(|has| |#1| (-1006))
+(((|#1| (-891)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
(-12 (|has| |#1| (-442)) (|has| |#2| (-442)))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(((|#1|) . T))
(|has| |#2| (-725))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(|has| |#2| (-777))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
@@ -795,19 +797,19 @@
(((|#1|) . T))
(((|#1|) . T))
((((-377 (-517))) . T) (($) . T))
-((($) . T) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
(|has| |#1| (-760))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
-(|has| |#1| (-1005))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
+(|has| |#1| (-1006))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
((($) |has| |#1| (-509)))
-(((|#4|) |has| |#4| (-1005)))
-(((|#3|) |has| |#3| (-1005)))
+(((|#4|) |has| |#4| (-1006)))
+(((|#3|) |has| |#3| (-1006)))
(|has| |#3| (-338))
(((|#1|) . T) (((-787)) . T))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))))
((((-787)) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
@@ -817,30 +819,30 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
((((-377 (-517))) . T) (((-517)) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
((((-131)) . T))
(((|#1|) . T))
((((-131)) . T))
-((($) -3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963))) ((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))))
+((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) ((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))))
((((-131)) . T))
(((|#1| |#2| |#3|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964)))
(|has| $ (-134))
(|has| $ (-134))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-963)) (|has| |#1| (-1017)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-964)) (|has| |#1| (-1018)))
((($ $) |has| |#1| (-258 $ $)) ((|#1| $) |has| |#1| (-258 |#1| |#1|)))
(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-((((-1076)) . T))
+((((-1077)) . T))
(|has| |#1| (-509))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -851,7 +853,7 @@
(|has| |#1| (-134))
(|has| |#1| (-132))
(|has| |#4| (-777))
-(((|#2| (-214 (-3535 |#1|) (-703)) (-789 |#1|)) . T))
+(((|#2| (-214 (-3573 |#1|) (-703)) (-789 |#1|)) . T))
(|has| |#3| (-777))
(((|#1| (-489 |#3|) |#3|) . T))
(|has| |#1| (-134))
@@ -864,22 +866,22 @@
(|has| |#1| (-338))
(|has| |#1| (-132))
((((-377 (-517))) |has| |#2| (-333)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-319)) (|has| |#1| (-338)))
-((((-1043 |#2| |#1|)) . T) ((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-319)) (|has| |#1| (-338)))
+((((-1044 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-156))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-207)) (|has| |#2| (-963)))
-(((|#2|) . T) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-964)))
+(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
((((-632)) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
@@ -887,12 +889,12 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1076) (-51)) . T))
+((((-1077) (-51)) . T))
((((-787)) . T))
-((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1|) . T))
((((-787)) . T))
-((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1| (-517)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -901,38 +903,38 @@
(((|#1| (-377 (-517))) . T))
(((|#3|) . T) (((-556 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-(((#0=(-1074 |#1| |#2| |#3|) #0#) -12 (|has| (-1074 |#1| |#2| |#3|) (-280 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1076) #0#) -12 (|has| (-1074 |#1| |#2| |#3|) (-478 (-1076) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+(((#0=(-1075 |#1| |#2| |#3|) #0#) -12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1077) #0#) -12 (|has| (-1075 |#1| |#2| |#3|) (-478 (-1077) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) |has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))))
((((-787)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1076) (-51)) . T))
+((((-1077) (-51)) . T))
(((|#3|) . T))
((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-760))
-(|has| |#1| (-1005))
-(((|#2| |#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))) (($ $) |has| |#2| (-156)))
-(((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333))))
-((((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))) (($) |has| |#2| (-156)))
+(|has| |#1| (-1006))
+(((|#2| |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($ $) |has| |#2| (-156)))
+(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($) |has| |#2| (-156)))
((((-703)) . T))
((((-517)) . T))
(|has| |#1| (-509))
((((-787)) . T))
-(((|#1| (-377 (-517)) (-991)) . T))
+(((|#1| (-377 (-517)) (-992)) . T))
(|has| |#1| (-132))
(((|#1|) . T))
(|has| |#1| (-509))
@@ -940,111 +942,111 @@
((((-111 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-134))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
-((((-815 (-517))) . T) (((-815 (-349))) . T) (((-493)) . T) (((-1076)) . T))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-816 (-517))) . T) (((-816 (-349))) . T) (((-493)) . T) (((-1077)) . T))
((((-787)) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
((($) . T))
((((-787)) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
(((|#2|) |has| |#2| (-156)))
-((($) -3747 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
((((-794 |#1|)) . T))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005)))
-(-12 (|has| |#3| (-207)) (|has| |#3| (-963)))
-(|has| |#2| (-1052))
-(((#0=(-51)) . T) (((-2 (|:| -2585 (-1076)) (|:| -1859 #0#))) . T))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006)))
+(-12 (|has| |#3| (-207)) (|has| |#3| (-964)))
+(|has| |#2| (-1053))
+(((#0=(-51)) . T) (((-2 (|:| -2576 (-1077)) (|:| -1846 #0#))) . T))
(((|#1| |#2|) . T))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
-(((|#1| (-517) (-991)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| (-377 (-517)) (-991)) . T))
-((($) -3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
+(((|#1| (-517) (-992)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| (-377 (-517)) (-992)) . T))
+((($) -3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-517) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-338))
(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
((((-787)) . T))
-((((-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
(|has| |#1| (-319))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(|has| |#1| (-509))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
(((|#1| |#2|) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-833)))
((((-377 (-517))) . T) (((-517)) . T))
((((-517)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
((($) . T))
((((-787)) . T))
(((|#1|) . T))
((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
-(((|#3| |#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-963))) (($ $) |has| |#3| (-156)))
-(|has| |#1| (-939))
+(((|#3| |#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($ $) |has| |#3| (-156)))
+(|has| |#1| (-940))
((((-787)) . T))
-(((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-963))) (($) |has| |#3| (-156)))
+(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($) |has| |#3| (-156)))
((((-517) (-107)) . T))
(((|#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
-((((-1076) $) |has| |#1| (-478 (-1076) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)))
-((((-1076)) |has| |#1| (-823 (-1076))))
-(-3747 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
-((((-358) (-1023)) . T))
+((((-1077) $) |has| |#1| (-478 (-1077) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)))
+((((-1077)) |has| |#1| (-824 (-1077))))
+(-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
+((((-358) (-1024)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-358) |#1|) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(|has| |#1| (-1005))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-1006))
((((-787)) . T))
((((-787)) . T))
-((((-833 |#1|)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+((((-834 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
(((#0=(-794 |#1|)) |has| #0# (-280 #0#)))
(((|#1| |#2|) . T))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(((|#1|) . T))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-(|has| |#1| (-1097))
+(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+(|has| |#1| (-1098))
(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
((((-377 (-517))) . T) (($) . T))
-(((|#4|) |has| |#4| (-963)))
-(((|#3|) |has| |#3| (-963)))
+(((|#4|) |has| |#4| (-964)))
+(((|#3|) |has| |#3| (-964)))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(|has| |#1| (-333))
((((-517)) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) . T) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((($ $) . T) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
@@ -1059,27 +1061,27 @@
(((|#1| |#2|) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
-((($) . T) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
-(((#0=(-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) #0#) |has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))))
+((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(((#0=(-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) #0#) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))))
((($) . T))
(|has| |#2| (-779))
((($) . T))
-(((|#2|) |has| |#2| (-1005)))
-((((-787)) -3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005))) (((-1157 |#2|)) . T))
+(((|#2|) |has| |#2| (-1006)))
+((((-787)) -3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) (((-1158 |#2|)) . T))
(|has| |#1| (-779))
(|has| |#1| (-779))
-((((-1059) (-51)) . T))
+((((-1060) (-51)) . T))
(|has| |#1| (-779))
((((-787)) . T))
((((-517)) |has| #0=(-377 |#2|) (-579 (-517))) ((#0#) . T))
((((-517) (-131)) . T))
-((((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#1| |#2|) . T))
((((-377 (-517))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-787)) . T))
-((((-833 |#1|)) . T))
+((((-834 |#1|)) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
@@ -1089,44 +1091,44 @@
(|has| |#1| (-777))
(((|#1|) . T) (($) . T))
(|has| |#1| (-777))
-((((-1076)) |has| |#1| (-823 (-1076))))
-(((|#1| (-1076)) . T))
-(((|#1| (-1157 |#1|) (-1157 |#1|)) . T))
+((((-1077)) |has| |#1| (-824 (-1077))))
+(((|#1| (-1077)) . T))
+(((|#1| (-1158 |#1|) (-1158 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1005))
-(((|#1| (-1076) (-750 (-1076)) (-489 (-750 (-1076)))) . T))
-((((-377 (-875 |#1|))) . T))
+(|has| |#1| (-1006))
+(((|#1| (-1077) (-750 (-1077)) (-489 (-750 (-1077)))) . T))
+((((-377 (-876 |#1|))) . T))
((((-493)) . T))
((((-787)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-156)))
-((((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-156)))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))))
+((((-493)) |has| |#1| (-558 (-493))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))))
((((-787)) . T))
-(((|#2|) . T) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(|has| |#2| (-777))
-(-12 (|has| |#2| (-207)) (|has| |#2| (-963)))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-964)))
(|has| |#1| (-509))
-(|has| |#1| (-1052))
-((((-1059) |#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
-((((-377 (-517))) |has| |#1| (-954 (-517))) (((-517)) |has| |#1| (-954 (-517))) (((-1076)) |has| |#1| (-954 (-1076))) ((|#1|) . T))
+(|has| |#1| (-1053))
+((((-1060) |#1|) . T))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+((((-377 (-517))) |has| |#1| (-955 (-517))) (((-517)) |has| |#1| (-955 (-517))) (((-1077)) |has| |#1| (-955 (-1077))) ((|#1|) . T))
((((-517) |#2|) . T))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
-((((-517)) |has| |#1| (-809 (-517))) (((-349)) |has| |#1| (-809 (-349))))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
+((((-517)) |has| |#1| (-810 (-517))) (((-349)) |has| |#1| (-810 (-349))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1|) . T))
((((-583 |#4|)) . T) (((-787)) . T))
((((-493)) |has| |#4| (-558 (-493))))
@@ -1138,21 +1140,21 @@
((((-493)) |has| |#4| (-558 (-493))))
(((|#1|) . T))
(((|#2|) . T))
-((((-1076)) |has| (-377 |#2|) (-823 (-1076))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+((((-1077)) |has| (-377 |#2|) (-824 (-1077))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-787)) -3747 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-963)) (|has| |#3| (-1005))) (((-1157 |#3|)) . T))
+((((-787)) -3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)) (|has| |#3| (-1006))) (((-1158 |#3|)) . T))
((((-517) |#2|) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
-(((|#2| |#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))) (($ $) |has| |#2| (-156)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
+(((|#2| |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($ $) |has| |#2| (-156)))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#2|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-1059) (-1076) (-517) (-199) (-787)) . T))
+((((-1060) (-1077) (-517) (-199) (-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -1184,11 +1186,11 @@
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-(((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-963))) (($) |has| |#2| (-156)))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($) |has| |#2| (-156)))
(|has| $ (-134))
((((-377 |#2|)) . T))
-((((-377 (-517))) |has| #0=(-377 |#2|) (-954 (-377 (-517)))) (((-517)) |has| #0# (-954 (-517))) ((#0#) . T))
+((((-377 (-517))) |has| #0=(-377 |#2|) (-955 (-377 (-517)))) (((-517)) |has| #0# (-955 (-517))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-156)))
(|has| |#2| (-132))
@@ -1196,19 +1198,19 @@
(((|#3|) |has| |#3| (-156)))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-207))
-((((-1076) (-51)) . T))
+((((-1077) (-51)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-((((-1076)) |has| |#2| (-823 (-1076))))
+((((-1077)) |has| |#2| (-824 (-1077))))
((((-517) (-107)) . T))
(|has| |#1| (-509))
(((|#2|) . T))
@@ -1224,44 +1226,44 @@
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
((((-787)) . T))
-((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-((((-917 |#1|)) . T) ((|#1|) . T))
+((((-918 |#1|)) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1072 |#1|)) . T))
+(((|#1| (-1073 |#1|)) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(((|#3|) . T) (($) . T))
(|has| |#1| (-779))
(((|#2|) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
((((-517) |#2|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#2|) . T))
((((-517) |#3|) . T))
(((|#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
-(|has| |#1| (-1005))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))
+(|has| |#1| (-1006))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-333))
-(((|#2|) . T) (((-517)) |has| |#2| (-954 (-517))) (((-377 (-517))) |has| |#2| (-954 (-377 (-517)))))
+(((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517)))))
(((|#2|) . T))
-((((-1059) (-51)) . T))
+((((-1060) (-51)) . T))
(((|#2|) |has| |#2| (-156)))
((((-517) |#3|) . T))
((((-517) (-131)) . T))
@@ -1273,7 +1275,7 @@
(|has| |#1| (-132))
((($) . T))
(|has| |#1| (-509))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((($) . T))
(((|#1|) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
@@ -1281,62 +1283,62 @@
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
-((((-1059) (-51)) . T))
+((((-1060) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1| |#2|) . T))
((((-517) (-131)) . T))
-(((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-779))
-(((|#2| (-703) (-991)) . T))
+(((|#2| (-703) (-992)) . T))
(((|#1| |#2|) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
(|has| |#1| (-723))
(((|#1|) |has| |#1| (-156)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3747 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
-(-3747 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
+(-3786 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
+(-3786 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
(((|#4|) . T))
(|has| |#1| (-132))
-((((-1059) |#1|) . T))
+((((-1060) |#1|) . T))
(|has| |#1| (-134))
(((|#1|) . T))
((((-517)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#3|) . T))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))) (((-880 |#1|)) . T))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))) (((-881 |#1|)) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(|has| |#2| (-333))
(((|#1|) |has| |#1| (-156)))
-(((|#2|) |has| |#2| (-963)))
-((((-1059) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))
-(((|#2| (-816 |#1|)) . T))
+(((|#2|) |has| |#2| (-964)))
+((((-1060) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))
+(((|#2| (-817 |#1|)) . T))
((($) . T))
-((((-358) (-1059)) . T))
+((((-358) (-1060)) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-787)) -3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005))) (((-1157 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2585 (-1059)) (|:| -1859 #0#))) . T))
+((((-787)) -3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) (((-1158 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2576 (-1060)) (|:| -1846 #0#))) . T))
(((|#1|) . T))
((((-787)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
((((-131)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
(|has| |#1| (-442))
-(-3747 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
(|has| |#1| (-333))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
@@ -1345,18 +1347,18 @@
(|has| |#1| (-777))
(|has| |#1| (-777))
((((-787)) . T))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1076)) |has| |#1| (-823 (-1076))))
-((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-1077)) |has| |#1| (-824 (-1077))))
+((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
((((-787)) . T))
((((-787)) . T))
-(|has| |#1| (-1005))
-(((|#2| (-450 (-3535 |#1|) (-703)) (-789 |#1|)) . T))
+(|has| |#1| (-1006))
+(((|#2| (-450 (-3573 |#1|) (-703)) (-789 |#1|)) . T))
((((-377 (-517))) . #0=(|has| |#2| (-333))) (($) . #0#))
-(((|#1| (-489 (-1076)) (-1076)) . T))
+(((|#1| (-489 (-1077)) (-1077)) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
@@ -1374,45 +1376,45 @@
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-1076) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-1077) (-51)) . T))
((($ $) . T))
(((|#1| (-517)) . T))
-((((-833 |#1|)) . T))
-(((|#1|) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-963))) (($) -3747 (|has| |#1| (-823 (-1076))) (|has| |#1| (-963))))
-(((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
+((((-834 |#1|)) . T))
+(((|#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-964))) (($) -3786 (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))))
+(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
(|has| |#1| (-779))
(|has| |#1| (-779))
((((-517) |#2|) . T))
((((-517)) . T))
-((((-1149 |#1| |#2| |#3|)) -12 (|has| (-1149 |#1| |#2| |#3|) (-280 (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1150 |#1| |#2| |#3|)) -12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))))
(|has| |#1| (-779))
((((-623 |#2|)) . T) (((-787)) . T))
(((|#1| |#2|) . T))
-((((-377 (-875 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
+((((-377 (-876 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
(((|#1|) |has| |#1| (-156)))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333))))
(|has| |#2| (-779))
(|has| |#1| (-779))
-(-3747 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-833)))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
((((-517) |#2|) . T))
-(((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333))))
+(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333))))
(|has| |#1| (-319))
-(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))
((($) . T) (((-377 (-517))) . T))
((((-517) (-107)) . T))
(|has| |#1| (-752))
(|has| |#1| (-752))
(((|#1|) . T))
-(-3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-777))
(|has| |#1| (-777))
(|has| |#1| (-777))
@@ -1421,15 +1423,15 @@
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-1076)) |has| |#1| (-823 (-1076))) (((-991)) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-1077)) |has| |#1| (-824 (-1077))) (((-992)) . T))
(((|#1|) . T))
(|has| |#1| (-777))
-(((#0=(-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) #0#) |has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(|has| |#1| (-1005))
+(((#0=(-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) #0#) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(|has| |#1| (-1006))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1440,12 +1442,12 @@
(((|#1|) . T))
(((|#1| (-489 |#2|) |#2|) . T))
((((-787)) . T))
-(((|#1| (-703) (-991)) . T))
+(((|#1| (-703) (-992)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-131)) . T))
(((|#2|) |has| |#2| (-156)))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005)))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006)))
(((|#1|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
@@ -1455,63 +1457,63 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-333)))
(((|#2|) . T))
-(((|#1| (-1072 |#1|)) . T))
-((((-991)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
+(((|#1| (-1073 |#1|)) . T))
+((((-992)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
((($) . T) ((|#1|) . T) (((-377 (-517))) . T))
(((|#2|) . T))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
((($) |has| |#1| (-777)))
-(|has| |#1| (-832))
+(|has| |#1| (-833))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((#0=(-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) #0#) |has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-832)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((#0=(-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) #0#) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-833)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333))))
(|has| |#1| (-779))
(|has| |#1| (-509))
((((-530 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3747 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((((-833 |#1|)) . T))
+(-3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((((-834 |#1|)) . T))
(((|#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-703)) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((((-608 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-493)) . T))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#2|) . T))
-(-3747 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-963)) (|has| |#3| (-1005)))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
-(|has| |#1| (-1097))
-(|has| |#1| (-1097))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005)))
-(|has| |#1| (-1097))
-(|has| |#1| (-1097))
+(-3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)) (|has| |#3| (-1006)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
+(|has| |#1| (-1098))
+(|has| |#1| (-1098))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006)))
+(|has| |#1| (-1098))
+(|has| |#1| (-1098))
(((|#3| |#3|) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T) ((#1=(-377 |#1|) #1#) . T) ((|#1| |#1|) . T))
@@ -1520,45 +1522,45 @@
((($) . T) (((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-1059) (-51)) . T))
-(|has| |#1| (-1005))
-(-3747 (|has| |#2| (-752)) (|has| |#2| (-779)))
+((((-1060) (-51)) . T))
+(|has| |#1| (-1006))
+(-3786 (|has| |#2| (-752)) (|has| |#2| (-779)))
(((|#1|) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
((($) . T))
-((((-1074 |#1| |#2| |#3|)) -12 (|has| (-1074 |#1| |#2| |#3|) (-280 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1075 |#1| |#2| |#3|)) -12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))))
((((-787)) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
((($) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-832)))
-(|has| |#2| (-832))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-833)))
+(|has| |#2| (-833))
(|has| |#1| (-333))
-(((|#2|) |has| |#2| (-1005)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(((|#2|) |has| |#2| (-1006)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((($) . T) ((|#2|) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-832)))
-(|has| |#1| (-832))
-(|has| |#1| (-832))
-((((-493)) . T) (((-377 (-1072 (-517)))) . T) (((-199)) . T) (((-349)) . T))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-833)))
+(|has| |#1| (-833))
+(|has| |#1| (-833))
+((((-493)) . T) (((-377 (-1073 (-517)))) . T) (((-199)) . T) (((-349)) . T))
((((-349)) . T) (((-199)) . T) (((-787)) . T))
-(|has| |#1| (-832))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(|has| |#1| (-833))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
((($ $) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((($ $) . T))
((((-517) (-107)) . T))
((($) . T))
(((|#1|) . T))
((((-517)) . T))
((((-107)) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-37 (-377 (-517))))
(((|#1| (-517)) . T))
((($) . T))
@@ -1567,117 +1569,117 @@
(((|#1|) . T))
((((-517)) . T))
(((|#1| |#2|) . T))
-((((-1076)) |has| |#1| (-963)))
+((((-1077)) |has| |#1| (-964)))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
((((-787)) . T))
(((|#1| (-517)) . T))
-(((|#1| (-1149 |#1| |#2| |#3|)) . T))
+(((|#1| (-1150 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-377 (-517))) . T))
-(((|#1| (-1121 |#1| |#2| |#3|)) . T))
+(((|#1| (-1122 |#1| |#2| |#3|)) . T))
(((|#1| (-703)) . T))
(((|#1|) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-787)) . T))
-(|has| |#1| (-1005))
-((((-1059) |#1|) . T))
+(|has| |#1| (-1006))
+((((-1060) |#1|) . T))
((($) . T))
(|has| |#2| (-134))
(|has| |#2| (-132))
-(((|#1| (-489 (-750 (-1076))) (-750 (-1076))) . T))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-963)))
+(((|#1| (-489 (-750 (-1077))) (-750 (-1077))) . T))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-964)))
((((-517) (-107)) . T))
-((((-787)) |has| |#1| (-1005)))
+((((-787)) |has| |#1| (-1006)))
(|has| |#2| (-156))
((((-517)) . T))
(|has| |#2| (-777))
(((|#1|) . T))
((((-517)) . T))
((((-787)) . T))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-319)))
((((-787)) . T))
(|has| |#1| (-134))
(((|#3|) . T))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
((((-787)) . T))
-((((-1142 |#2| |#3| |#4|)) . T) (((-1143 |#1| |#2| |#3| |#4|)) . T))
+((((-1143 |#2| |#3| |#4|)) . T) (((-1144 |#1| |#2| |#3| |#4|)) . T))
((((-787)) . T))
-((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) -3747 (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517)))) (|has| |#1| (-954 (-377 (-517))))) (((-377 (-875 |#1|))) |has| |#1| (-509)) (((-875 |#1|)) |has| |#1| (-963)) (((-1076)) . T))
+((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) -3786 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (|has| |#1| (-955 (-377 (-517))))) (((-377 (-876 |#1|))) |has| |#1| (-509)) (((-876 |#1|)) |has| |#1| (-964)) (((-1077)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-703)) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-280 |#1|)))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
-((((-517)) |has| |#1| (-809 (-517))) (((-349)) |has| |#1| (-809 (-349))))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
+((((-517)) |has| |#1| (-810 (-517))) (((-349)) |has| |#1| (-810 (-349))))
(((|#1|) . T))
(|has| |#1| (-509))
(((|#1|) . T))
((((-787)) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((|#1|) |has| |#1| (-156)))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1005)))
-(((|#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-333))))
-((((-1142 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1006)))
+(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-1143 |#2| |#3| |#4|)) . T))
((((-107)) . T))
(|has| |#1| (-752))
(|has| |#1| (-752))
-(((|#1| (-517) (-991)) . T))
+(((|#1| (-517) (-992)) . T))
((($) |has| |#1| (-280 $)) ((|#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-777))
(|has| |#1| (-777))
-(((|#1| (-517) (-991)) . T))
-(-3747 (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-(((|#1| (-377 (-517)) (-991)) . T))
-(((|#1| (-703) (-991)) . T))
+(((|#1| (-517) (-992)) . T))
+(-3786 (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+(((|#1| (-377 (-517)) (-992)) . T))
+(((|#1| (-703) (-992)) . T))
(|has| |#1| (-779))
-(((#0=(-833 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
+(((#0=(-834 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
(((|#2|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(|has| |#1| (-1005))
-((((-833 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
+((((-834 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-1006))
(((|#1|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
((((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((|#2|) |has| |#1| (-333)))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005)))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006)))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
((((-787)) . T))
(|has| |#3| (-777))
((((-787)) . T))
-((((-1142 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
((((-787)) . T))
-(((|#1| |#1|) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-963))))
+(((|#1| |#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-964))))
(((|#1|) . T))
((((-517)) . T))
((((-517)) . T))
-(((|#1|) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-963))))
+(((|#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-964))))
(((|#2|) |has| |#2| (-333)))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
(|has| |#1| (-779))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) |has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-832)))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-833)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
((((-787)) . T))
((((-787)) . T))
-((((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
@@ -1686,13 +1688,13 @@
(((|#1|) . T))
(((|#1| (-517)) . T))
(|has| |#1| (-777))
-(((|#1| (-1074 |#1| |#2| |#3|)) . T))
+(((|#1| (-1075 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| (-377 (-517))) . T))
-(((|#1| (-1067 |#1| |#2| |#3|)) . T))
+(((|#1| (-1068 |#1| |#2| |#3|)) . T))
(((|#1| (-703)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
@@ -1707,25 +1709,25 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((((-787)) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| (-377 |#2|) (-207))
-(|has| |#1| (-832))
-(((|#2|) |has| |#2| (-963)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(|has| |#1| (-833))
+(((|#2|) |has| |#2| (-964)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(|has| |#1| (-333))
(((|#1|) |has| |#1| (-156)))
(((|#1| |#1|) . T))
((((-794 |#1|)) . T))
((((-787)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1005)))
+(((|#2|) |has| |#2| (-1006)))
(|has| |#2| (-779))
(((|#1|) . T))
((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T))
@@ -1735,15 +1737,15 @@
(|has| |#1| (-779))
((((-787)) . T))
(((|#1| (-489 |#2|) |#2|) . T))
-(((|#1| (-517) (-991)) . T))
-((((-833 |#1|)) . T))
+(((|#1| (-517) (-992)) . T))
+((((-834 |#1|)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-377 (-517)) (-991)) . T))
-(((|#1| (-703) (-991)) . T))
+(((|#1| (-377 (-517)) (-992)) . T))
+(((|#1| (-703) (-992)) . T))
(((#0=(-377 |#2|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-517)) -3747 (|has| (-377 (-517)) (-954 (-517))) (|has| |#1| (-954 (-517)))) (((-377 (-517))) . T))
+(((|#1|) . T) (((-517)) -3786 (|has| (-377 (-517)) (-955 (-517))) (|has| |#1| (-955 (-517)))) (((-377 (-517))) . T))
(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
@@ -1762,41 +1764,41 @@
((((-632)) . T))
(((|#2|) |has| |#2| (-156)))
(|has| |#2| (-777))
-((((-107)) |has| |#1| (-1005)) (((-787)) -3747 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)) (|has| |#1| (-1017)) (|has| |#1| (-1005))))
+((((-107)) |has| |#1| (-1006)) (((-787)) -3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)) (|has| |#1| (-1006))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T))
((((-787)) . T))
((((-517) |#1|) . T))
((((-632)) . T) (((-377 (-517))) . T) (((-517)) . T))
(((|#1| |#1|) |has| |#1| (-156)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
((((-349)) . T))
((((-632)) . T))
((((-377 (-517))) . #0=(|has| |#2| (-333))) (($) . #0#))
(((|#1|) |has| |#1| (-156)))
-((((-377 (-875 |#1|))) . T))
+((((-377 (-876 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#2|) . T))
(|has| |#2| (-779))
-(((|#3|) |has| |#3| (-963)))
-(|has| |#2| (-832))
-(|has| |#1| (-832))
+(((|#3|) |has| |#3| (-964)))
+(|has| |#2| (-833))
+(|has| |#1| (-833))
(|has| |#1| (-333))
(|has| |#1| (-779))
-((((-1076)) |has| |#2| (-823 (-1076))))
+((((-1077)) |has| |#2| (-824 (-1077))))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-377 (-517))) . T) (($) . T))
(|has| |#1| (-442))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-333))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-963)) (|has| |#1| (-1017)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-964)) (|has| |#1| (-1018)))
(|has| |#1| (-37 (-377 (-517))))
((((-111 |#1|)) . T))
((((-111 |#1|)) . T))
@@ -1817,17 +1819,17 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-779))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
(((|#2|) . T))
(((|#3|) . T))
((((-111 |#1|)) . T))
(|has| |#1| (-338))
(|has| |#1| (-779))
-(((|#2|) . T) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
+(((|#2|) . T) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
((((-111 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) . T))
@@ -1836,44 +1838,44 @@
(|has| |#1| (-333))
((((-787)) . T))
((((-787)) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))) (((-349)) . #0=(|has| |#1| (-939))) (((-199)) . #0#))
+((((-493)) |has| |#1| (-558 (-493))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))) (((-349)) . #0=(|has| |#1| (-940))) (((-199)) . #0#))
(((|#1|) |has| |#1| (-333)))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((($ $) . T) (((-556 $) $) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((($) . T) (((-1143 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
-((($) -3747 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((($) . T) (((-1144 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
+((($) -3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
((((-349)) . T) (((-517)) . T) (((-377 (-517))) . T))
((((-583 (-712 |#1| (-789 |#2|)))) . T) (((-787)) . T))
((((-493)) |has| (-712 |#1| (-789 |#2|)) (-558 (-493))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-349)) . T))
-(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))
((((-787)) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-833)))
(((|#1|) . T))
(|has| |#1| (-779))
(|has| |#1| (-779))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
-(|has| |#1| (-1005))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
+(|has| |#1| (-1006))
((((-787)) . T))
((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
((((-517)) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(((#0=(-1142 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))) (($) . T))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(((#0=(-1143 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))) (($) . T))
((((-517)) . T))
(|has| |#1| (-333))
-(-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
-(-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-333))
(|has| |#1| (-132))
(|has| |#1| (-134))
@@ -1886,39 +1888,39 @@
((((-787)) . T))
((((-517)) |has| |#2| (-579 (-517))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(((|#3|) |has| |#3| (-156)))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005)))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006)))
((((-517)) . T))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
((((-787)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-262)) (|has| |#1| (-333))) ((#0=(-377 (-517)) #0#) |has| |#1| (-333)))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
+(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-262)) (|has| |#1| (-333))) ((#0=(-377 (-517)) #0#) |has| |#1| (-333)))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
((($) . T))
((((-517) |#1|) . T))
-((((-1076)) |has| (-377 |#2|) (-823 (-1076))))
-(((|#1|) . T) (($) -3747 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
+((((-1077)) |has| (-377 |#2|) (-824 (-1077))))
+(((|#1|) . T) (($) -3786 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
((((-493)) |has| |#2| (-558 (-493))))
((((-623 |#2|)) . T) (((-787)) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
((((-794 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(-3747 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(-3786 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
((((-787)) . T))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#2|) |has| |#2| (-963)))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#2|) |has| |#2| (-964)))
(((|#1|) . T))
((((-377 |#2|)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))
((((-517) |#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -1926,18 +1928,18 @@
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-1115)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-1116)))
((($) . T))
-((((-377 (-517))) |has| #0=(-377 |#2|) (-954 (-377 (-517)))) (((-517)) |has| #0# (-954 (-517))) ((#0#) . T))
+((((-377 (-517))) |has| #0=(-377 |#2|) (-955 (-377 (-517)))) (((-517)) |has| #0# (-955 (-517))) ((#0#) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| (-703)) . T))
(|has| |#1| (-779))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-517)) . T))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) |has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(|has| |#1| (-777))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -1961,53 +1963,53 @@
(((|#1| |#2|) . T))
((((-131)) . T))
((((-712 |#1| (-789 |#2|))) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-(|has| |#1| (-1097))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+(|has| |#1| (-1098))
(((|#1|) . T))
-(-3747 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-963)) (|has| |#3| (-1005)))
-((((-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)))
+(-3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)) (|has| |#3| (-1006)))
+((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)))
(((|#2|) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-833 |#1|)) . T))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-834 |#1|)) . T))
((($) . T))
-((((-377 (-875 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-377 (-876 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-493)) |has| |#4| (-558 (-493))))
((((-787)) . T) (((-583 |#4|)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-777))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) |has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))))
-(|has| |#1| (-1005))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))))
+(|has| |#1| (-1006))
(|has| |#1| (-333))
(|has| |#1| (-779))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-377 (-517))) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
-(-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-777))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
-((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(|has| |#1| (-1005))
+((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1006))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T) (((-517)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
-((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(|has| |#1| (-1005))
+((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1006))
(((|#2|) |has| |#2| (-156)))
(((|#2|) . T))
(((|#1| |#1|) . T))
@@ -2018,37 +2020,37 @@
((((-787)) . T))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
-(((|#1|) -3747 (|has| |#1| (-156)) (|has| |#1| (-333))))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(((|#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333))))
((((-286 |#1|)) . T))
(((|#2|) |has| |#2| (-333)))
(((|#2|) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((#0=(-712 |#1| (-789 |#2|)) #0#) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
((((-789 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#2|) . T))
-((((-1076)) |has| |#1| (-823 (-1076))) (((-991)) . T))
-((((-1076)) |has| |#1| (-823 (-1076))) (((-995 (-1076))) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-1077)) |has| |#1| (-824 (-1077))) (((-992)) . T))
+((((-1077)) |has| |#1| (-824 (-1077))) (((-996 (-1077))) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(|has| |#1| (-37 (-377 (-517))))
-(((|#4|) |has| |#4| (-963)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-963))))
-(((|#3|) |has| |#3| (-963)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-963))))
+(((|#4|) |has| |#4| (-964)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-964))))
+(((|#3|) |has| |#3| (-964)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964))))
(|has| |#1| (-132))
(|has| |#1| (-134))
((($ $) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)) (|has| |#1| (-1017)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)) (|has| |#1| (-1006)))
(|has| |#1| (-509))
(((|#2|) . T))
((((-517)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964)))
((((-530 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
@@ -2056,34 +2058,34 @@
((($) . T))
(((|#1|) . T))
((((-787)) . T))
-(((|#2|) |has| |#2| (-6 (-4194 "*"))))
+(((|#2|) |has| |#2| (-6 (-4197 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-954 (-377 (-517)))) (((-517)) |has| |#2| (-954 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((($) . T) (((-111 |#1|)) . T) (((-377 (-517))) . T))
-((((-1028 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
-((((-1072 |#1|)) . T) (((-991)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
-((((-1028 |#1| (-1076))) . T) (((-995 (-1076))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-1076)) . T))
-(|has| |#1| (-1005))
+((((-1029 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
+((((-1073 |#1|)) . T) (((-992)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
+((((-1029 |#1| (-1077))) . T) (((-996 (-1077))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-1077)) . T))
+(|has| |#1| (-1006))
((($) . T))
-(|has| |#1| (-1005))
-((((-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))) (((-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349)))))
+(|has| |#1| (-1006))
+((((-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))) (((-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349)))))
(((|#1| |#2|) . T))
-((((-1076) |#1|) . T))
+((((-1077) |#1|) . T))
(((|#4|) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-1076) (-51)) . T))
-((((-1142 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-1077) (-51)) . T))
+((((-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T))
((((-787)) . T))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)) (|has| |#2| (-1005)))
-(((#0=(-1143 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006)))
+(((#0=(-1144 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-156)) ((#0=(-377 (-517)) #0#) |has| |#1| (-509)) (($ $) |has| |#1| (-509)))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
-((((-1143 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-1144 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)) (($) |has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-132))
@@ -2092,34 +2094,34 @@
(|has| |#1| (-132))
((((-377 (-517))) . T) (($) . T))
(((|#3|) |has| |#3| (-333)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
-((((-1076)) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
+((((-1077)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
(((|#2| |#3|) . T))
-(-3747 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
(((|#1| (-489 |#2|)) . T))
(((|#1| (-703)) . T))
-(((|#1| (-489 (-995 (-1076)))) . T))
+(((|#1| (-489 (-996 (-1077)))) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(|has| |#2| (-832))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(|has| |#2| (-833))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
((((-787)) . T))
-((($ $) . T) ((#0=(-1142 |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) |has| #0# (-37 (-377 (-517)))))
-((((-833 |#1|)) . T))
+((($ $) . T) ((#0=(-1143 |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) |has| #0# (-37 (-377 (-517)))))
+((((-834 |#1|)) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
(|has| |#1| (-333))
-(-3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
(|has| |#1| (-333))
-((($) . T) ((#0=(-1142 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
+((($) . T) ((#0=(-1143 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
-(-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3747 (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
@@ -2136,10 +2138,10 @@
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#2| (-752))
(((|#4|) . T))
@@ -2147,37 +2149,37 @@
((($ $) . T))
((($) . T))
((((-787)) . T))
-(((|#1| (-489 (-1076))) . T))
+(((|#1| (-489 (-1077))) . T))
(((|#1|) |has| |#1| (-156)))
((((-787)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
-(((|#2|) -3747 (|has| |#2| (-6 (-4194 "*"))) (|has| |#2| (-156))))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
+(((|#2|) -3786 (|has| |#2| (-6 (-4197 "*"))) (|has| |#2| (-156))))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(|has| |#2| (-779))
-(|has| |#2| (-832))
-(|has| |#1| (-832))
+(|has| |#2| (-833))
+(|has| |#1| (-833))
(((|#2|) |has| |#2| (-156)))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
((((-787)) . T))
((((-787)) . T))
-((((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T))
(((|#1|) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-(-3747 (|has| |#1| (-262)) (|has| |#1| (-333)))
+(-3786 (|has| |#1| (-262)) (|has| |#1| (-333)))
((((-131)) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
(|has| |#1| (-777))
((((-787)) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2186,19 +2188,19 @@
((((-377 (-517))) . T) (($) . T))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))))
-((((-1076) (-51)) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))))
+((((-1077) (-51)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-583 (-131))) . T) (((-1059)) . T))
+((((-583 (-131))) . T) (((-1060)) . T))
((((-787)) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
-((((-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
+((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-779))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
@@ -2208,83 +2210,83 @@
((((-493)) |has| |#4| (-558 (-493))))
((((-787)) . T) (((-583 |#4|)) . T))
(((|#2|) . T))
-((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3747 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-963)))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
-((((-1076) (-51)) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
+((((-1077) (-51)) . T))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(|has| |#1| (-832))
-(|has| |#1| (-832))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(|has| |#1| (-833))
+(|has| |#1| (-833))
(((|#2|) . T))
(((|#1|) . T))
((((-787)) . T))
((((-517)) . T))
(((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((((-377 (-517))) . T) (($) . T))
-(((|#1| (-377 (-517)) (-991)) . T))
-(|has| |#1| (-1005))
+(((|#1| (-377 (-517)) (-992)) . T))
+(|has| |#1| (-1006))
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(|has| |#1| (-752))
-(((#0=(-833 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
+(((#0=(-834 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
((((-377 |#2|)) . T))
(|has| |#1| (-777))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) . T) ((#1=(-517) #1#) . T) (($ $) . T))
-((((-833 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(((|#2|) |has| |#2| (-963)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963))))
+((((-834 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(((|#2|) |has| |#2| (-964)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964))))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
(((|#2|) . T))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2585 (-1076)) (|:| -1859 #0#))) . T))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2576 (-1077)) (|:| -1846 #0#))) . T))
(|has| |#1| (-319))
((((-517)) . T))
((((-787)) . T))
-(((#0=(-1143 |#1| |#2| |#3| |#4|) $) |has| #0# (-258 #0# #0#)))
+(((#0=(-1144 |#1| |#2| |#3| |#4|) $) |has| #0# (-258 #0# #0#)))
(|has| |#1| (-333))
-(((#0=(-991) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(((#0=(-992) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
(((#0=(-377 (-517)) #0#) . T) ((#1=(-632) #1#) . T) (($ $) . T))
((((-286 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#1|) . T))
-(((|#1|) -3747 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
-(((|#1|) -3747 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3786 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3786 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
(((|#2|) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-207))
((((-789 |#1|)) . T))
-((((-1076)) |has| |#1| (-823 (-1076))) ((|#3|) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-939)))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1077)) |has| |#1| (-824 (-1077))) ((|#3|) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-940)))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
((((-787)) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
((((-517)) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
((((-517)) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2292,13 +2294,13 @@
((($) . T) (((-377 (-517))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1157 |#1|) (-1157 |#1|)) . T))
+(((|#1| (-1158 |#1|) (-1158 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-787)) . T))
((((-787)) . T))
(((#0=(-111 |#1|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
-((((-377 (-517))) |has| |#2| (-954 (-377 (-517)))) (((-517)) |has| |#2| (-954 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
-((((-1028 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((|#2|) . T))
+((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-1029 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2306,7 +2308,7 @@
((((-608 |#1|)) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((((-111 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((((-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) (((-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))))
+((((-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) (((-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))))
(((|#2|) . T) ((|#6|) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
((((-131)) . T))
@@ -2314,39 +2316,39 @@
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-(|has| |#2| (-832))
-(|has| |#1| (-832))
-(|has| |#1| (-832))
+(|has| |#2| (-833))
+(|has| |#1| (-833))
+(|has| |#1| (-833))
(((|#4|) . T))
-(|has| |#2| (-939))
+(|has| |#2| (-940))
((($) . T))
-(|has| |#1| (-832))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+(|has| |#1| (-833))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-333))
-((((-833 |#1|)) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-834 |#1|)) . T))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
-(-3747 (|has| |#1| (-338)) (|has| |#1| (-779)))
+(-3786 (|has| |#1| (-338)) (|has| |#1| (-779)))
(((|#1|) . T))
((((-787)) . T))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))))
((((-377 |#2|) |#3|) . T))
((($) . T) (((-377 (-517))) . T))
((((-703) |#1|) . T))
-(((|#2| (-214 (-3535 |#1|) (-703))) . T))
+(((|#2| (-214 (-3573 |#1|) (-703))) . T))
(((|#1| (-489 |#3|)) . T))
((((-377 (-517))) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((((-787)) . T))
-(((#0=(-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) #0#) |has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))))
-(|has| |#1| (-832))
+(((#0=(-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) #0#) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))))
+(|has| |#1| (-833))
(|has| |#2| (-333))
-(-3747 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
((((-787)) . T))
(((|#1|) . T))
@@ -2363,13 +2365,13 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-37 (-377 (-517))))
(-12 (|has| |#1| (-502)) (|has| |#1| (-760)))
((((-787)) . T))
-((((-1076)) -3747 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-823 (-1076))))))
+((((-1077)) -3786 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-824 (-1077))))))
(|has| |#1| (-333))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))))
(|has| |#1| (-333))
((((-377 (-517))) . T) (($) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
@@ -2377,54 +2379,54 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-333)))
(((|#2|) |has| |#1| (-333)))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(((|#2|) . T) (((-1076)) -12 (|has| |#1| (-333)) (|has| |#2| (-954 (-1076)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-954 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-954 (-517)))))
+(((|#2|) . T) (((-1077)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-1077)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))))
(((|#2|) . T))
-((((-1076) #0=(-1143 |#1| |#2| |#3| |#4|)) |has| #0# (-478 (-1076) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
+((((-1077) #0=(-1144 |#1| |#2| |#3| |#4|)) |has| #0# (-478 (-1077) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
((((-556 $) $) . T) (($ $) . T))
-((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1072 (-632))) . T) (((-815 (-349))) . T))
+((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1073 (-632))) . T) (((-816 (-349))) . T))
((((-787)) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(|has| (-377 |#2|) (-207))
(((|#1| (-377 (-517))) . T))
((($ $) . T))
-((((-1076)) |has| |#2| (-823 (-1076))))
+((((-1077)) |has| |#2| (-824 (-1077))))
((($) . T))
((((-787)) . T))
((((-377 (-517))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#2|) |has| |#1| (-333)))
-((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-517)))))
+((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-517)))))
(|has| |#1| (-333))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-333))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-509))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
(((|#3|) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#2|) . T))
(((|#2|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(|has| |#1| (-37 (-377 (-517))))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-((((-1059) |#1|) . T))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-1060) |#1|) . T))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
((((-530 |#1|)) . T))
((($) . T))
@@ -2432,66 +2434,66 @@
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-319)))
(|has| |#1| (-134))
((((-787)) . T))
((($) . T))
-((((-377 (-517))) |has| |#2| (-954 (-517))) (((-517)) |has| |#2| (-954 (-517))) (((-1076)) |has| |#2| (-954 (-1076))) ((|#2|) . T))
+((((-377 (-517))) |has| |#2| (-955 (-517))) (((-517)) |has| |#2| (-955 (-517))) (((-1077)) |has| |#2| (-955 (-1077))) ((|#2|) . T))
(((#0=(-377 |#2|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
-((((-1041 |#1| |#2|)) . T))
+((((-1042 |#1| |#2|)) . T))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
-((((-517)) |has| |#2| (-809 (-517))) (((-349)) |has| |#2| (-809 (-349))))
+((((-517)) |has| |#2| (-810 (-517))) (((-349)) |has| |#2| (-810 (-349))))
(((|#2|) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((((-107)) . T))
(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
(((|#2|) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-((((-1076) (-51)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+((((-1077) (-51)) . T))
((((-377 |#2|)) . T))
((((-787)) . T))
(((|#1|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(|has| |#1| (-723))
(|has| |#1| (-723))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-109)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-199)) . T) (((-349)) . T) (((-815 (-349))) . T))
+((((-199)) . T) (((-349)) . T) (((-816 (-349))) . T))
((((-787)) . T))
-((((-1143 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1144 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
((((-787)) . T))
(((|#2|) . T))
((((-787)) . T))
-(((#0=(-833 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
+(((#0=(-834 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-833 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-834 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-333))
(((|#2|) . T))
((((-517)) . T))
((((-517)) . T))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
((((-787)) . T))
((((-787)) . T))
-((((-1059)) . T) (((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-1060)) . T) (((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((($) . T) ((#0=(-1142 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
+((($) . T) ((#0=(-1143 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1076))) (|has| |#1| (-963)) (|has| |#1| (-1017)) (|has| |#1| (-1005)))
-(|has| |#1| (-1052))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)) (|has| |#1| (-1006)))
+(|has| |#1| (-1053))
((((-517) |#1|) . T))
(((|#1|) . T))
(((#0=(-111 |#1|) $) |has| #0# (-258 #0# #0#)))
@@ -2500,7 +2502,7 @@
((((-109)) . T) ((|#1|) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
-((((-1076) |#1|) . T))
+((((-1077) |#1|) . T))
(((|#1|) |has| |#1| (-280 |#1|)))
((((-517) |#1|) . T))
(((|#1|) . T))
@@ -2508,32 +2510,32 @@
(((|#1|) . T))
(|has| |#1| (-509))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
((((-349)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-509))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
((((-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-832))
+(|has| |#2| (-833))
(((|#1|) . T))
(((|#1| (-489 |#2|)) . T))
(((|#1| (-703)) . T))
(|has| |#1| (-207))
-(((|#1| (-489 (-995 (-1076)))) . T))
+(((|#1| (-489 (-996 (-1077)))) . T))
(|has| |#2| (-333))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
((((-787)) . T))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
@@ -2542,110 +2544,110 @@
((((-517)) . T))
(((|#3|) . T))
((((-787)) . T))
-(-3747 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3747 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-963)))
+(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964)))
(((#0=(-530 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1|) |has| |#1| (-156)))
-(((|#1| (-1157 |#1|) (-1157 |#1|)) . T))
+(((|#1| (-1158 |#1|) (-1158 |#1|)) . T))
((((-530 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) . T))
-(((|#2|) |has| |#2| (-6 (-4194 "*"))))
+(((|#2|) |has| |#2| (-6 (-4197 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((((-265 |#3|)) . T))
(((|#1|) . T))
-(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(|has| |#2| (-832))
-(|has| |#1| (-832))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#2| (-833))
+(|has| |#1| (-833))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) . T))
+((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
(((|#1|) . T))
-((((-1076)) . T) ((|#1|) . T))
+((((-1077)) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))
(((#0=(-377 (-517)) #0#) . T))
((((-377 (-517))) . T))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#1|) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-964)))
((((-493)) . T))
((((-787)) . T))
-((((-1076)) |has| |#2| (-823 (-1076))) (((-991)) . T))
-((((-1142 |#2| |#3| |#4|)) . T))
-((((-833 |#1|)) . T))
+((((-1077)) |has| |#2| (-824 (-1077))) (((-992)) . T))
+((((-1143 |#2| |#3| |#4|)) . T))
+((((-834 |#1|)) . T))
((($) . T) (((-377 (-517))) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-(|has| |#1| (-1115))
+(|has| |#1| (-1116))
(((|#2|) . T))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
-((((-1076)) |has| |#1| (-823 (-1076))))
-((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((($) . T) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
-(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((((-1077)) |has| |#1| (-824 (-1077))))
+((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
-(((|#2|) |has| |#2| (-963)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-509))))
+(((|#2|) |has| |#2| (-964)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))))
(|has| |#1| (-509))
(((|#1|) |has| |#1| (-333)))
((((-517)) . T))
(|has| |#1| (-723))
(|has| |#1| (-723))
-((((-1076) #0=(-111 |#1|)) |has| #0# (-478 (-1076) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
-(((|#2|) . T) (((-517)) |has| |#2| (-954 (-517))) (((-377 (-517))) |has| |#2| (-954 (-377 (-517)))))
-((((-991)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-954 (-517))) (((-377 (-517))) |has| |#2| (-954 (-377 (-517)))))
+((((-1077) #0=(-111 |#1|)) |has| #0# (-478 (-1077) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
+(((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517)))))
+((((-992)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-517) (-703)) . T) ((|#3| (-703)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-787)) . T))
(|has| |#2| (-752))
(|has| |#2| (-752))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
-((((-517)) |has| |#1| (-809 (-517))) (((-349)) |has| |#1| (-809 (-349))))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
+((((-517)) |has| |#1| (-810 (-517))) (((-349)) |has| |#1| (-810 (-349))))
(((|#1|) . T))
((((-794 |#1|)) . T))
((((-794 |#1|)) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-832)))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-833)))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
(|has| |#1| (-333))
(((|#2|) . T))
(((|#1|) . T))
@@ -2656,14 +2658,14 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#2| (-703)) . T))
-((((-1076)) . T))
+((((-1077)) . T))
((((-794 |#1|)) . T))
-(-3747 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-963)))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-964)))
((((-787)) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
+(-3786 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
((((-794 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-338))
@@ -2680,31 +2682,31 @@
(((|#1|) . T))
((((-787)) . T))
((($) . T) ((|#2|) . T) (((-377 (-517))) . T))
-(|has| |#1| (-1005))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(|has| |#1| (-1006))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
-(|has| |#2| (-832))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
+(|has| |#2| (-833))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517)))))
((((-787)) . T))
((((-787)) . T))
-(((|#3|) |has| |#3| (-963)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-963))))
-((((-1028 |#1| |#2|)) . T) (((-875 |#1|)) |has| |#2| (-558 (-1076))) (((-787)) . T))
-((((-875 |#1|)) |has| |#2| (-558 (-1076))) (((-1059)) -12 (|has| |#1| (-954 (-517))) (|has| |#2| (-558 (-1076)))) (((-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517))))) (((-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
-((((-1072 |#1|)) . T) (((-787)) . T))
+(((|#3|) |has| |#3| (-964)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964))))
+((((-1029 |#1| |#2|)) . T) (((-876 |#1|)) |has| |#2| (-558 (-1077))) (((-787)) . T))
+((((-876 |#1|)) |has| |#2| (-558 (-1077))) (((-1060)) -12 (|has| |#1| (-955 (-517))) (|has| |#2| (-558 (-1077)))) (((-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517))))) (((-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
+((((-1073 |#1|)) . T) (((-787)) . T))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-954 (-377 (-517)))) (((-517)) |has| |#2| (-954 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T) (((-1076)) . T))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T) (((-1077)) . T))
((((-787)) . T))
((((-517)) . T))
((($) . T))
-((((-349)) |has| |#1| (-809 (-349))) (((-517)) |has| |#1| (-809 (-517))))
+((((-349)) |has| |#1| (-810 (-349))) (((-517)) |has| |#1| (-810 (-517))))
((((-517)) . T))
(((|#1|) . T))
((((-787)) . T))
@@ -2721,24 +2723,24 @@
((((-377 (-517))) . T) (($) . T))
((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1005))
-(((|#2| (-450 (-3535 |#1|) (-703))) . T))
+(|has| |#1| (-1006))
+(((|#2| (-450 (-3573 |#1|) (-703))) . T))
((((-517) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-489 (-1076))) . T))
-(-3747 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(((|#1| (-489 (-1077))) . T))
+(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
((((-517)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1076)) |has| |#1| (-823 (-1076))) (((-991)) . T))
+((((-1077)) |has| |#1| (-824 (-1077))) (((-992)) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(|has| |#1| (-509))
((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
(((|#1|) . T))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
((((-131)) . T))
(((|#1|) . T) (((-377 (-517))) . T))
@@ -2746,15 +2748,15 @@
(((|#1|) . T))
((((-787)) . T))
(((|#1|) . T))
-(|has| |#1| (-1052))
+(|has| |#1| (-1053))
(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
(((|#1|) . T))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
-((((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-517)) |has| |#1| (-954 (-517))) ((|#1|) . T) ((|#2|) . T))
-((((-991)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))))
-((((-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349)))) (((-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T) ((|#2|) . T))
+((((-992)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))))
+((((-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349)))) (((-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
((((-517) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
@@ -2764,67 +2766,67 @@
((((-712 |#1| (-789 |#2|))) . T))
((($) . T))
((((-377 (-517))) . T) (($) . T))
-(|has| |#1| (-1005))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
+(|has| |#1| (-1006))
(|has| |#2| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-37 (-377 (-517))))
((((-517)) . T))
-((((-1076)) -12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963))))
-((((-1076)) -12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963))))
+((((-1077)) -12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964))))
+((((-1077)) -12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964))))
(((|#1|) . T))
(|has| |#1| (-207))
(((|#1| (-489 |#3|)) . T))
(|has| |#1| (-338))
-(((|#2| (-214 (-3535 |#1|) (-703))) . T))
+(((|#2| (-214 (-3573 |#1|) (-703))) . T))
(|has| |#1| (-338))
(|has| |#1| (-338))
(((|#1|) . T) (($) . T))
(((|#1| (-489 |#2|)) . T))
-(-3747 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#1| (-703)) . T))
(|has| |#1| (-509))
-(-3747 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-787)) . T))
-(-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
-(-3747 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-963)))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
+(-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3786 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
(((|#1|) |has| |#1| (-156)))
-(((|#4|) |has| |#4| (-963)))
-(((|#3|) |has| |#3| (-963)))
+(((|#4|) |has| |#4| (-964)))
+(((|#3|) |has| |#3| (-964)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T))
-(((|#4|) |has| |#4| (-1005)) (((-517)) -12 (|has| |#4| (-954 (-517))) (|has| |#4| (-1005))) (((-377 (-517))) -12 (|has| |#4| (-954 (-377 (-517)))) (|has| |#4| (-1005))))
-(((|#3|) |has| |#3| (-1005)) (((-517)) -12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005))) (((-377 (-517))) -12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005))))
+(((|#4|) |has| |#4| (-1006)) (((-517)) -12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006))) (((-377 (-517))) -12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))
+(((|#3|) |has| |#3| (-1006)) (((-517)) -12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (((-377 (-517))) -12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))
(|has| |#2| (-333))
-(((|#2|) |has| |#2| (-963)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963))))
+(((|#2|) |has| |#2| (-964)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964))))
(((|#1|) . T))
(|has| |#2| (-333))
-(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#2| |#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#2|) . T))
((($) . T))
-((((-787)) |has| |#1| (-1005)))
-((((-1143 |#1| |#2| |#3| |#4|)) . T))
+((((-787)) |has| |#1| (-1006)))
+((((-1144 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#2| (-752))
@@ -2835,109 +2837,109 @@
(|has| |#1| (-333))
(((|#1|) |has| |#2| (-387 |#1|)))
(((|#1|) |has| |#2| (-387 |#1|)))
-((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
((((-787)) . T))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) |has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((((-517) |#1|) . T))
(((|#1|) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-((((-1076)) |has| |#1| (-823 (-1076))) (((-750 (-1076))) . T))
-(-3747 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+((((-1077)) |has| |#1| (-824 (-1077))) (((-750 (-1077))) . T))
+(-3786 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)))
((((-751 |#1|)) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
-((((-1143 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1144 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(|has| |#1| (-333))
-(-3747 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
+(-3786 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(((|#1|) . T))
-(((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+(((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
((((-517) |#1|) . T))
((((-286 |#1|)) . T))
-(((#0=(-632) (-1072 #0#)) . T))
-((((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+(((#0=(-632) (-1073 #0#)) . T))
+((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-777))
((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1028 |#1| (-1076))) . T) (((-750 (-1076))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-954 (-517))) (((-377 (-517))) |has| |#1| (-954 (-377 (-517)))) (((-1076)) . T))
+((((-1029 |#1| (-1077))) . T) (((-750 (-1077))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-1077)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-991) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1076) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-995 (-1076)) |#1|) . T) ((#1# $) . T))
+(((#0=(-992) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1077) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-996 (-1077)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(|has| |#2| (-832))
-((($) . T) ((#0=(-1142 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
+(|has| |#2| (-833))
+((($) . T) ((#0=(-1143 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
((((-517) |#1|) . T))
-(((#0=(-1143 |#1| |#2| |#3| |#4|)) |has| #0# (-280 #0#)))
+(((#0=(-1144 |#1| |#2| |#3| |#4|)) |has| #0# (-280 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
(|has| |#2| (-207))
(|has| $ (-134))
((((-787)) . T))
-((($) . T) (((-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-787)) . T))
(|has| |#1| (-777))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))
((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
((((-787)) . T))
(((|#2| (-608 |#1|)) . T))
-(-12 (|has| |#1| (-278)) (|has| |#1| (-832)))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(-12 (|has| |#1| (-278)) (|has| |#1| (-833)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#4|) . T))
(|has| |#1| (-509))
-((($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
-((((-1076)) -3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))
-(((|#1|) . T) (($) -3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076)))))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))
+((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
+((((-1077)) -3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))
+(((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077)))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))
((((-517) |#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
(((|#1|) . T))
-(((|#1| (-489 (-750 (-1076)))) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(((|#1| (-489 (-750 (-1077)))) . T))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#1|) . T))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
(((|#1|) . T))
-(-3747 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
((($) . T) (((-794 |#1|)) . T) (((-377 (-517))) . T))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-377 |#2|)) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((((-517)) . T))
@@ -2948,50 +2950,50 @@
((((-377 (-517))) . T) (($) . T))
((((-517) |#1|) . T))
((((-787)) . T))
-((($ $) . T) (((-1076) $) . T))
-((((-1149 |#1| |#2| |#3|)) . T))
-((((-1149 |#1| |#2| |#3|)) . T) (((-1121 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((($ $) . T) (((-1077) $) . T))
+((((-1150 |#1| |#2| |#3|)) . T))
+((((-1150 |#1| |#2| |#3|)) . T) (((-1122 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
+((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517)))))
((((-787)) . T))
((((-787)) . T))
-((((-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) (((-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))
+((((-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) (((-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
((((-787)) . T))
-((((-1149 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1076)) . T) (((-787)) . T))
+((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1077)) . T) (((-787)) . T))
(|has| |#1| (-333))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-1009)) . T))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-1010)) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
-((($) -3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(|has| |#2| (-832))
-(|has| |#1| (-832))
+((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#2| (-833))
+(|has| |#1| (-833))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
((((-632)) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-156)))
((((-377 (-517))) . T) (($) . T))
(((|#1| (-517)) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-333))
(|has| |#1| (-333))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3747 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-156)) (|has| |#1| (-509)))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
(((|#1| (-703)) . T))
@@ -2999,23 +3001,23 @@
(((|#1| (-489 |#2|) |#2|) . T))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
-(|has| |#1| (-1005))
+(|has| |#1| (-1006))
((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-815 (-349))) . T) (((-815 (-517))) . T) (((-1076)) . T) (((-493)) . T))
+((((-816 (-349))) . T) (((-816 (-517))) . T) (((-1077)) . T) (((-493)) . T))
(((|#1|) . T))
((((-787)) . T))
-(-3747 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-(-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+(-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
((((-517)) . T))
((((-517)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3747 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-963)))
-((((-1076)) -12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963))))
-(-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
+(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964)))
+((((-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964))))
+(-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-333))
@@ -3023,72 +3025,73 @@
(((|#1| |#2|) . T))
(|has| |#1| (-207))
((((-787)) . T))
-(((|#1| (-703) (-991)) . T))
+(((|#1| (-703) (-992)) . T))
((((-517) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
((((-111 |#1|)) . T))
((((-377 (-517))) . T) (((-517)) . T))
-(((|#2|) |has| |#2| (-963)))
+(((|#2|) |has| |#2| (-964)))
((((-377 (-517))) . T) (($) . T))
(((|#2|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
((((-517)) . T))
((((-517)) . T))
-((((-1059) (-1076) (-517) (-199) (-787)) . T))
+((((-1060) (-1077) (-517) (-199) (-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3747 (|has| |#1| (-319)) (|has| |#1| (-338)))
+(-3786 (|has| |#1| (-319)) (|has| |#1| (-338)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#2|) |has| |#2| (-1005)) (((-517)) -12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (((-377 (-517))) -12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005))))
+(((|#2|) |has| |#2| (-1006)) (((-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (((-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006))))
((($) . T) (((-377 (-517))) . T))
-(|has| |#1| (-832))
-(|has| |#1| (-832))
-((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-939))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-939))) (((-815 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-349))))) (((-815 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))))
+(|has| |#1| (-833))
+(|has| |#1| (-833))
+((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) (((-816 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-349))))) (((-816 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))))
((((-787)) . T))
((((-787)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#2|) . T))
-(-3747 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3786 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
(((|#1|) . T))
-(|has| (-377 |#2|) (-134))
+((((-787)) -3786 (-12 (|has| |#1| (-557 (-787))) (|has| |#2| (-557 (-787)))) (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))))
((((-377 |#2|) |#3|) . T))
((((-377 (-517))) . T) (($) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-333))
((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(|has| (-377 |#2|) (-134))
(|has| (-377 |#2|) (-132))
((((-632)) . T))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
(((#0=(-517) #0#) . T))
((($) . T) (((-377 (-517))) . T))
-(-3747 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-963)))
-(-3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963)))
+(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964)))
+(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964)))
(|has| |#4| (-725))
-(-3747 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3786 (|has| |#4| (-725)) (|has| |#4| (-777)))
(|has| |#4| (-777))
(|has| |#3| (-725))
-(-3747 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3786 (|has| |#3| (-725)) (|has| |#3| (-777)))
(|has| |#3| (-777))
((((-517)) . T))
(((|#2|) . T))
-((((-1076)) -3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))))
-((((-1076)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076)))))
+((((-1077)) -3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))))
+((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -3096,76 +3099,76 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T))
((((-789 |#1|)) . T))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1041 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1042 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
((($) . T))
-(|has| |#1| (-939))
-(((|#2|) . T) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+(|has| |#1| (-940))
+(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
((((-787)) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-349)) . #0=(|has| |#2| (-939))) (((-199)) . #0#))
-((((-1076) (-51)) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-349)) . #0=(|has| |#2| (-940))) (((-199)) . #0#))
+((((-1077) (-51)) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#2|) . T))
((($ $) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
-((((-1074 |#1| |#2| |#3|)) . T))
-((((-1074 |#1| |#2| |#3|)) . T) (((-1067 |#1| |#2| |#3|)) . T))
+((((-1075 |#1| |#2| |#3|)) . T))
+((((-1075 |#1| |#2| |#3|)) . T) (((-1068 |#1| |#2| |#3|)) . T))
((((-787)) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
((((-517) |#1|) . T))
-((((-1074 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-333))
-(((|#3|) . T) ((|#2|) . T) (($) -3747 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-963))) ((|#4|) -3747 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-963))))
-(((|#2|) . T) (($) -3747 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-963))) ((|#3|) -3747 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-963))))
+(((|#3|) . T) ((|#2|) . T) (($) -3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964))) ((|#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-964))))
+(((|#2|) . T) (($) -3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) ((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-333))
((((-111 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-954 (-377 (-517)))) (((-517)) |has| |#2| (-954 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-832)))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-833)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| (-489 |#2|)) . T))
-((((-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) . T))
+((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
(((|#1| (-703)) . T))
((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(-3747 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
-(-3747 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))
+(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))
((($) . T))
(((|#2| (-489 (-789 |#1|))) . T))
((((-517) |#1|) . T))
(((|#2|) . T))
(((|#2| (-703)) . T))
-((((-787)) -3747 (|has| |#1| (-557 (-787))) (|has| |#1| (-1005))))
+((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1059) |#1|) . T))
+((((-1060) |#1|) . T))
((((-377 |#2|)) . T))
-((((-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T))
+((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
((($) . T) ((|#2|) . T))
@@ -3173,26 +3176,26 @@
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-258 |#2| |#2|)))
(((|#1| (-583 |#1|)) |has| |#1| (-777)))
-(-3747 (|has| |#1| (-207)) (|has| |#1| (-319)))
-(-3747 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(|has| |#1| (-1005))
+(-3786 (|has| |#1| (-207)) (|has| |#1| (-319)))
+(-3786 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-1006))
(((|#1|) . T))
((((-377 (-517))) . T) (($) . T))
-((((-917 |#1|)) . T) ((|#1|) . T) (((-517)) -3747 (|has| (-917 |#1|) (-954 (-517))) (|has| |#1| (-954 (-517)))) (((-377 (-517))) -3747 (|has| (-917 |#1|) (-954 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-((((-1076)) |has| |#1| (-823 (-1076))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))
+((((-918 |#1|)) . T) ((|#1|) . T) (((-517)) -3786 (|has| (-918 |#1|) (-955 (-517))) (|has| |#1| (-955 (-517)))) (((-377 (-517))) -3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+((((-1077)) |has| |#1| (-824 (-1077))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))
(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1041 |#1| |#2|) #0#) |has| (-1041 |#1| |#2|) (-280 (-1041 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((#0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) #0#) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))))
+(((#0=(-1042 |#1| |#2|) #0#) |has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))))
(((#0=(-111 |#1|)) |has| #0# (-280 #0#)))
-(-3747 (|has| |#1| (-779)) (|has| |#1| (-1005)))
+(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006)))
((($ $) . T))
((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-207)) ((|#2| |#1|) |has| |#1| (-207)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-599 . -1005) T) ((-237 . -478) 141976) ((-221 . -478) 141919) ((-524 . -106) 141904) ((-489 . -23) T) ((-219 . -1005) 141854) ((-112 . -280) 141811) ((-447 . -478) 141603) ((-627 . -97) T) ((-1042 . -478) 141522) ((-360 . -123) T) ((-1168 . -895) 141491) ((-548 . -456) 141475) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 141425) ((-57 . -478) 141358) ((-482 . -478) 141291) ((-388 . -823) 141250) ((-153 . -963) T) ((-480 . -478) 141183) ((-462 . -478) 141116) ((-461 . -478) 141049) ((-731 . -954) 140836) ((-632 . -37) 140801) ((-313 . -319) T) ((-1000 . -999) 140785) ((-1000 . -1005) 140763) ((-153 . -217) 140714) ((-153 . -207) 140665) ((-1000 . -1001) 140623) ((-796 . -258) 140581) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1051 . -1088) 140560) ((-377 . -911) 140544) ((-634 . -21) T) ((-634 . -25) T) ((-1170 . -585) 140518) ((-286 . -145) 140497) ((-286 . -130) 140476) ((-1051 . -102) 140426) ((-125 . -25) T) ((-39 . -205) 140403) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 140379) ((-444 . -260) 140358) ((-1130 . -963) T) ((-784 . -963) T) ((-731 . -308) 140342) ((-112 . -1052) NIL) ((-89 . -557) 140274) ((-446 . -123) T) ((-540 . -1111) T) ((-1130 . -296) 140251) ((-524 . -963) T) ((-1130 . -207) T) ((-599 . -650) 140235) ((-880 . -260) 140212) ((-58 . -33) T) ((-974 . -727) T) ((-974 . -724) T) ((-748 . -659) T) ((-664 . -46) 140177) ((-564 . -37) 140164) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 140095) ((-221 . -262) 140026) ((-941 . -97) T) ((-383 . -659) T) ((-112 . -37) 139971) ((-383 . -442) T) ((-324 . -97) T) ((-1106 . -970) T) ((-644 . -970) T) ((-1074 . -46) 139948) ((-1073 . -46) 139918) ((-1067 . -46) 139895) ((-952 . -138) 139841) ((-833 . -262) T) ((-1029 . -46) 139813) ((-627 . -280) NIL) ((-479 . -557) 139795) ((-474 . -557) 139777) ((-472 . -557) 139759) ((-297 . -1005) 139709) ((-645 . -421) 139640) ((-47 . -97) T) ((-1141 . -258) 139625) ((-1120 . -258) 139545) ((-583 . -603) 139529) ((-583 . -588) 139513) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 139497) ((-548 . -258) 139474) ((-358 . -97) T) ((-1023 . -130) T) ((-121 . -557) 139406) ((-797 . -1005) T) ((-595 . -381) 139390) ((-647 . -557) 139372) ((-146 . -557) 139354) ((-142 . -557) 139336) ((-1170 . -659) T) ((-1007 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -809) NIL) ((-1179 . -123) T) ((-351 . -123) T) ((-827 . -97) T) ((-664 . -954) 139214) ((-489 . -123) T) ((-994 . -381) 139198) ((-918 . -456) 139182) ((-112 . -370) 139159) ((-1067 . -1111) 139138) ((-714 . -381) 139122) ((-712 . -381) 139106) ((-866 . -33) T) ((-627 . -1052) NIL) ((-224 . -585) 138943) ((-223 . -585) 138767) ((-749 . -843) 138746) ((-423 . -381) 138730) ((-548 . -19) 138714) ((-1047 . -1105) 138683) ((-1067 . -809) NIL) ((-1067 . -807) 138635) ((-548 . -550) 138612) ((-1098 . -557) 138544) ((-1075 . -557) 138526) ((-60 . -365) T) ((-1073 . -954) 138461) ((-1067 . -954) 138427) ((-627 . -37) 138377) ((-443 . -258) 138362) ((-664 . -347) 138346) ((-595 . -970) T) ((-1141 . -920) 138312) ((-1120 . -920) 138278) ((-975 . -1088) 138253) ((-796 . -558) 138061) ((-796 . -557) 138043) ((-1085 . -456) 137980) ((-388 . -939) 137959) ((-47 . -280) 137946) ((-975 . -102) 137892) ((-447 . -456) 137829) ((-483 . -1111) T) ((-1042 . -456) 137800) ((-1067 . -308) 137752) ((-1067 . -347) 137704) ((-407 . -97) T) ((-994 . -970) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -970) T) ((-712 . -970) T) ((-664 . -823) 137681) ((-423 . -970) T) ((-57 . -456) 137665) ((-951 . -969) 137639) ((-482 . -456) 137623) ((-480 . -456) 137607) ((-462 . -456) 137591) ((-461 . -456) 137575) ((-219 . -478) 137508) ((-951 . -106) 137475) ((-1074 . -823) 137388) ((-607 . -1017) T) ((-1073 . -823) 137294) ((-1067 . -823) 137127) ((-1029 . -823) 137111) ((-324 . -1052) T) ((-292 . -969) 137093) ((-224 . -723) 137072) ((-224 . -726) 137023) ((-224 . -725) 137002) ((-223 . -723) 136981) ((-223 . -726) 136932) ((-223 . -725) 136911) ((-49 . -970) T) ((-224 . -659) 136842) ((-223 . -659) 136773) ((-1106 . -1005) T) ((-607 . -23) T) ((-530 . -970) T) ((-481 . -970) T) ((-349 . -969) 136738) ((-292 . -106) 136713) ((-71 . -353) T) ((-71 . -365) T) ((-941 . -37) 136650) ((-627 . -370) 136632) ((-94 . -97) T) ((-644 . -1005) T) ((-921 . -132) 136604) ((-349 . -106) 136560) ((-289 . -1115) 136539) ((-443 . -920) 136505) ((-324 . -37) 136470) ((-39 . -340) 136442) ((-921 . -134) 136414) ((-122 . -120) 136398) ((-116 . -120) 136382) ((-766 . -969) 136352) ((-765 . -21) 136304) ((-759 . -969) 136288) ((-765 . -25) 136240) ((-289 . -509) 136191) ((-517 . -760) T) ((-214 . -1111) T) ((-766 . -106) 136156) ((-759 . -106) 136135) ((-1141 . -557) 136117) ((-1120 . -557) 136099) ((-1120 . -558) 135772) ((-1072 . -832) 135751) ((-1028 . -832) 135730) ((-47 . -37) 135695) ((-1177 . -1017) T) ((-548 . -557) 135607) ((-548 . -558) 135568) ((-1175 . -1017) T) ((-214 . -954) 135397) ((-1072 . -585) 135322) ((-1028 . -585) 135247) ((-651 . -557) 135229) ((-783 . -585) 135203) ((-1177 . -23) T) ((-1175 . -23) T) ((-951 . -963) T) ((-1085 . -258) 135182) ((-153 . -338) 135133) ((-922 . -1111) T) ((-43 . -23) T) ((-447 . -258) 135112) ((-534 . -1005) T) ((-1047 . -1014) 135081) ((-1009 . -1008) 135033) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1017) T) ((-1183 . -97) T) ((-922 . -807) 135015) ((-922 . -809) 134997) ((-1106 . -650) 134894) ((-564 . -205) 134878) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1092 . -1005) T) ((-644 . -650) 134843) ((-214 . -347) 134813) ((-922 . -954) 134773) ((-349 . -963) T) ((-197 . -970) T) ((-112 . -205) 134750) ((-57 . -258) 134727) ((-139 . -23) T) ((-480 . -258) 134704) ((-297 . -478) 134637) ((-461 . -258) 134614) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -963) T) ((-759 . -963) T) ((-645 . -872) 134584) ((-634 . -779) T) ((-443 . -557) 134566) ((-759 . -207) 134545) ((-125 . -779) T) ((-595 . -1005) T) ((-1085 . -550) 134524) ((-503 . -1088) 134503) ((-306 . -1005) T) ((-289 . -333) 134482) ((-377 . -134) 134461) ((-377 . -132) 134440) ((-886 . -1017) 134339) ((-214 . -823) 134272) ((-747 . -1017) 134203) ((-591 . -781) 134187) ((-447 . -550) 134166) ((-503 . -102) 134116) ((-922 . -347) 134098) ((-922 . -308) 134080) ((-92 . -1005) T) ((-886 . -23) 133891) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 133762) ((-1076 . -557) 133744) ((-57 . -19) 133728) ((-1076 . -558) 133650) ((-1072 . -659) T) ((-1028 . -659) T) ((-480 . -19) 133634) ((-461 . -19) 133618) ((-57 . -550) 133595) ((-994 . -1005) T) ((-824 . -97) 133573) ((-783 . -659) T) ((-714 . -1005) T) ((-480 . -550) 133550) ((-461 . -550) 133527) ((-712 . -1005) T) ((-712 . -977) 133494) ((-430 . -1005) T) ((-423 . -1005) T) ((-534 . -650) 133469) ((-586 . -1005) T) ((-922 . -823) NIL) ((-1149 . -46) 133446) ((-567 . -1017) T) ((-607 . -123) T) ((-1143 . -97) T) ((-1142 . -46) 133416) ((-1121 . -46) 133393) ((-1106 . -156) 133344) ((-989 . -1115) 133295) ((-248 . -1005) T) ((-83 . -410) T) ((-83 . -365) T) ((-1073 . -278) 133274) ((-1067 . -278) 133253) ((-49 . -1005) T) ((-989 . -509) 133204) ((-644 . -156) T) ((-542 . -46) 133181) ((-199 . -585) 133146) ((-530 . -1005) T) ((-481 . -1005) T) ((-329 . -1115) T) ((-323 . -1115) T) ((-315 . -1115) T) ((-454 . -752) T) ((-454 . -843) T) ((-289 . -1017) T) ((-103 . -1115) T) ((-309 . -779) T) ((-192 . -843) T) ((-192 . -752) T) ((-647 . -969) 133116) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 133086) ((-1067 . -939) NIL) ((-289 . -23) T) ((-65 . -1111) T) ((-918 . -557) 133018) ((-627 . -205) 133000) ((-647 . -106) 132965) ((-583 . -33) T) ((-219 . -456) 132949) ((-1007 . -1003) 132933) ((-155 . -1005) T) ((-875 . -832) 132912) ((-449 . -832) 132891) ((-1179 . -21) T) ((-1179 . -25) T) ((-1177 . -123) T) ((-1175 . -123) T) ((-994 . -650) 132740) ((-974 . -585) 132727) ((-875 . -585) 132652) ((-493 . -557) 132634) ((-493 . -558) 132615) ((-714 . -650) 132444) ((-712 . -650) 132293) ((-1168 . -97) T) ((-986 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 132218) ((-430 . -650) 132189) ((-423 . -650) 132038) ((-906 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1121 . -1111) 132017) ((-1153 . -557) 131983) ((-1121 . -809) NIL) ((-1121 . -807) 131935) ((-128 . -97) T) ((-43 . -123) T) ((-1085 . -558) NIL) ((-1085 . -557) 131917) ((-1043 . -1026) 131862) ((-313 . -970) T) ((-601 . -557) 131844) ((-261 . -1017) T) ((-325 . -557) 131826) ((-322 . -557) 131808) ((-314 . -557) 131790) ((-237 . -558) 131538) ((-237 . -557) 131520) ((-221 . -557) 131502) ((-221 . -558) 131363) ((-960 . -1105) 131292) ((-824 . -280) 131230) ((-1183 . -1052) T) ((-1142 . -954) 131165) ((-1121 . -954) 131131) ((-1106 . -478) 131098) ((-1042 . -557) 131080) ((-751 . -659) T) ((-548 . -260) 131057) ((-530 . -650) 131022) ((-447 . -558) NIL) ((-447 . -557) 131004) ((-481 . -650) 130949) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -969) 130901) ((-833 . -557) 130883) ((-833 . -558) 130865) ((-796 . -106) 130803) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1133) 130787) ((-647 . -963) T) ((-627 . -319) NIL) ((-482 . -557) 130719) ((-349 . -727) T) ((-197 . -1005) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 130680) ((-57 . -557) 130592) ((-199 . -659) T) ((-480 . -558) 130553) ((-480 . -557) 130465) ((-462 . -557) 130397) ((-461 . -558) 130358) ((-461 . -557) 130270) ((-989 . -333) 130221) ((-39 . -381) 130198) ((-75 . -1111) T) ((-795 . -832) NIL) ((-329 . -299) 130182) ((-329 . -333) T) ((-323 . -299) 130166) ((-323 . -333) T) ((-315 . -299) 130150) ((-315 . -333) T) ((-286 . -256) 130129) ((-103 . -333) T) ((-68 . -1111) T) ((-1121 . -308) 130081) ((-795 . -585) 130026) ((-1121 . -347) 129978) ((-886 . -123) 129833) ((-747 . -123) 129704) ((-880 . -588) 129688) ((-994 . -156) 129599) ((-880 . -343) 129583) ((-974 . -726) T) ((-974 . -723) T) ((-714 . -156) 129474) ((-712 . -156) 129385) ((-748 . -46) 129347) ((-974 . -659) T) ((-297 . -456) 129331) ((-875 . -659) T) ((-423 . -156) 129242) ((-219 . -258) 129219) ((-449 . -659) T) ((-1168 . -280) 129157) ((-1149 . -823) 129070) ((-1142 . -823) 128976) ((-1141 . -969) 128811) ((-1121 . -823) 128644) ((-1120 . -969) 128452) ((-1106 . -262) 128431) ((-1047 . -138) 128415) ((-984 . -97) T) ((-850 . -877) T) ((-73 . -1111) T) ((-670 . -280) 128353) ((-153 . -832) 128306) ((-601 . -352) 128278) ((-30 . -877) T) ((-1 . -557) 128260) ((-1023 . -97) T) ((-989 . -23) T) ((-49 . -561) 128244) ((-989 . -1017) T) ((-921 . -379) 128216) ((-542 . -823) 128129) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -963) T) ((-765 . -779) 128108) ((-79 . -1111) T) ((-644 . -262) T) ((-39 . -970) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 128090) ((-153 . -585) 128000) ((-471 . -557) 127982) ((-321 . -134) 127964) ((-321 . -132) T) ((-329 . -1017) T) ((-323 . -1017) T) ((-315 . -1017) T) ((-922 . -278) T) ((-837 . -278) T) ((-796 . -217) T) ((-103 . -1017) T) ((-796 . -207) 127943) ((-1141 . -106) 127764) ((-1120 . -106) 127553) ((-219 . -1145) 127537) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 127524) ((-283 . -280) 127465) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-922 . -939) T) ((-103 . -23) T) ((-219 . -550) 127442) ((-1143 . -37) 127334) ((-1130 . -832) 127313) ((-107 . -1005) T) ((-952 . -97) T) ((-1130 . -585) 127238) ((-795 . -726) NIL) ((-784 . -585) 127212) ((-795 . -723) NIL) ((-748 . -809) NIL) ((-795 . -659) T) ((-994 . -478) 127086) ((-714 . -478) 127034) ((-712 . -478) 126986) ((-524 . -585) 126973) ((-748 . -954) 126803) ((-423 . -478) 126746) ((-358 . -359) T) ((-58 . -1111) T) ((-562 . -779) 126725) ((-465 . -598) T) ((-1047 . -895) 126694) ((-921 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -969) 126529) ((-313 . -1005) T) ((-283 . -1052) NIL) ((-261 . -123) T) ((-364 . -1005) T) ((-627 . -340) 126496) ((-794 . -970) T) ((-197 . -561) 126473) ((-297 . -258) 126450) ((-443 . -106) 126271) ((-1141 . -963) T) ((-1120 . -963) T) ((-748 . -347) 126255) ((-153 . -659) T) ((-591 . -97) T) ((-1141 . -217) 126234) ((-1141 . -207) 126186) ((-1120 . -207) 126091) ((-1120 . -217) 126070) ((-921 . -372) NIL) ((-607 . -579) 126018) ((-286 . -37) 125928) ((-283 . -37) 125857) ((-67 . -557) 125839) ((-289 . -458) 125805) ((-1085 . -260) 125784) ((-1018 . -1017) 125715) ((-81 . -1111) T) ((-59 . -557) 125697) ((-447 . -260) 125676) ((-1170 . -954) 125653) ((-1065 . -1005) T) ((-1018 . -23) 125524) ((-748 . -823) 125460) ((-1130 . -659) T) ((-1007 . -1111) T) ((-994 . -262) 125391) ((-816 . -97) T) ((-714 . -262) 125302) ((-297 . -19) 125286) ((-57 . -260) 125263) ((-712 . -262) 125194) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 125171) ((-297 . -550) 125148) ((-461 . -260) 125125) ((-423 . -262) 125056) ((-952 . -280) 124907) ((-524 . -659) T) ((-599 . -557) 124889) ((-219 . -558) 124850) ((-219 . -557) 124762) ((-1048 . -33) T) ((-866 . -1111) T) ((-313 . -650) 124707) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -963) T) ((-575 . -387) 124672) ((-551 . -387) 124637) ((-1023 . -1052) T) ((-530 . -262) T) ((-481 . -262) T) ((-1142 . -278) 124616) ((-443 . -207) 124568) ((-443 . -217) 124547) ((-1121 . -278) 124526) ((-989 . -123) T) ((-796 . -727) 124505) ((-131 . -97) T) ((-39 . -1005) T) ((-796 . -724) 124484) ((-583 . -928) 124468) ((-529 . -970) T) ((-517 . -970) T) ((-460 . -970) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 124452) ((-283 . -370) 124413) ((-323 . -123) T) ((-315 . -123) T) ((-1121 . -939) NIL) ((-1000 . -557) 124380) ((-103 . -123) T) ((-1023 . -37) 124367) ((-844 . -1005) T) ((-703 . -1005) T) ((-608 . -1005) T) ((-634 . -134) T) ((-111 . -134) T) ((-1177 . -21) T) ((-1177 . -25) T) ((-1175 . -21) T) ((-1175 . -25) T) ((-601 . -969) 124351) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -969) 124303) ((-322 . -969) 124255) ((-314 . -969) 124207) ((-224 . -1111) T) ((-223 . -1111) T) ((-237 . -969) 124050) ((-221 . -969) 123893) ((-601 . -106) 123872) ((-325 . -106) 123810) ((-322 . -106) 123748) ((-314 . -106) 123686) ((-237 . -106) 123515) ((-221 . -106) 123344) ((-749 . -1115) 123323) ((-564 . -381) 123307) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 123215) ((-749 . -509) 123194) ((-224 . -954) 123023) ((-223 . -954) 122852) ((-121 . -114) 122836) ((-833 . -969) 122801) ((-632 . -970) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 122783) ((-833 . -106) 122739) ((-39 . -650) 122684) ((-794 . -1005) T) ((-297 . -558) 122645) ((-297 . -557) 122557) ((-1120 . -724) 122510) ((-1120 . -727) 122463) ((-224 . -347) 122433) ((-223 . -347) 122403) ((-591 . -37) 122373) ((-552 . -33) T) ((-450 . -1017) 122304) ((-444 . -33) T) ((-1018 . -123) 122175) ((-886 . -25) 121986) ((-797 . -557) 121968) ((-886 . -21) 121923) ((-747 . -21) 121834) ((-747 . -25) 121686) ((-564 . -970) T) ((-1078 . -509) 121665) ((-1072 . -46) 121642) ((-325 . -963) T) ((-322 . -963) T) ((-450 . -23) 121513) ((-314 . -963) T) ((-237 . -963) T) ((-221 . -963) T) ((-1028 . -46) 121485) ((-112 . -970) T) ((-951 . -585) 121459) ((-880 . -33) T) ((-325 . -207) 121438) ((-325 . -217) T) ((-322 . -207) 121417) ((-221 . -296) 121374) ((-322 . -217) T) ((-314 . -207) 121353) ((-314 . -217) T) ((-237 . -296) 121325) ((-237 . -207) 121304) ((-1057 . -138) 121288) ((-224 . -823) 121221) ((-223 . -823) 121154) ((-991 . -779) T) ((-1124 . -1111) T) ((-384 . -1017) T) ((-967 . -23) T) ((-833 . -963) T) ((-292 . -585) 121136) ((-941 . -777) T) ((-1106 . -920) 121102) ((-1073 . -843) 121081) ((-1067 . -843) 121060) ((-833 . -217) T) ((-749 . -333) 121039) ((-355 . -23) T) ((-122 . -1005) 121017) ((-116 . -1005) 120995) ((-833 . -207) T) ((-1067 . -752) NIL) ((-349 . -585) 120960) ((-794 . -650) 120947) ((-960 . -138) 120912) ((-39 . -156) T) ((-627 . -381) 120894) ((-645 . -280) 120881) ((-766 . -585) 120841) ((-759 . -585) 120815) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 120794) ((-529 . -1005) T) ((-517 . -1005) T) ((-460 . -1005) T) ((-219 . -260) 120771) ((-283 . -205) 120732) ((-1072 . -809) NIL) ((-1028 . -809) 120591) ((-1072 . -954) 120474) ((-1028 . -954) 120359) ((-783 . -954) 120257) ((-714 . -258) 120184) ((-749 . -1017) T) ((-951 . -659) T) ((-548 . -588) 120168) ((-960 . -895) 120097) ((-917 . -97) T) ((-749 . -23) T) ((-645 . -1052) 120075) ((-627 . -970) T) ((-548 . -343) 120059) ((-321 . -421) T) ((-313 . -262) T) ((-1158 . -1005) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1005) T) ((-331 . -442) T) ((-1106 . -557) 120041) ((-1072 . -347) 120025) ((-1028 . -347) 120009) ((-941 . -381) 119971) ((-128 . -203) 119953) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 119935) ((-645 . -37) 119764) ((-1157 . -1155) 119748) ((-321 . -372) T) ((-1157 . -1005) 119698) ((-529 . -650) 119685) ((-517 . -650) 119672) ((-460 . -650) 119637) ((-286 . -569) 119616) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1111) T) ((-989 . -579) 119564) ((-1072 . -823) 119508) ((-1028 . -823) 119492) ((-599 . -969) 119476) ((-103 . -579) 119458) ((-450 . -123) 119329) ((-1078 . -1017) T) ((-875 . -46) 119298) ((-564 . -1005) T) ((-599 . -106) 119277) ((-297 . -260) 119254) ((-449 . -46) 119211) ((-1078 . -23) T) ((-112 . -1005) T) ((-98 . -97) 119189) ((-1167 . -1017) T) ((-967 . -123) T) ((-941 . -970) T) ((-751 . -954) 119173) ((-921 . -657) 119145) ((-1167 . -23) T) ((-632 . -650) 119110) ((-534 . -557) 119092) ((-356 . -954) 119076) ((-324 . -970) T) ((-355 . -123) T) ((-294 . -954) 119060) ((-199 . -809) 119042) ((-922 . -843) T) ((-89 . -33) T) ((-922 . -752) T) ((-837 . -843) T) ((-454 . -1115) T) ((-1092 . -557) 119024) ((-1010 . -1005) T) ((-192 . -1115) T) ((-917 . -280) 118989) ((-199 . -954) 118949) ((-39 . -262) T) ((-989 . -21) T) ((-989 . -25) T) ((-1023 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 118909) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -970) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 118891) ((-670 . -669) 118875) ((-306 . -557) 118857) ((-66 . -353) T) ((-66 . -365) T) ((-1007 . -102) 118841) ((-974 . -809) 118823) ((-875 . -809) 118748) ((-590 . -1017) T) ((-564 . -650) 118735) ((-449 . -809) NIL) ((-1047 . -97) T) ((-974 . -954) 118717) ((-92 . -557) 118699) ((-446 . -134) T) ((-875 . -954) 118581) ((-112 . -650) 118526) ((-590 . -23) T) ((-449 . -954) 118404) ((-994 . -558) NIL) ((-994 . -557) 118386) ((-714 . -558) NIL) ((-714 . -557) 118347) ((-712 . -558) 117982) ((-712 . -557) 117896) ((-1018 . -579) 117804) ((-430 . -557) 117786) ((-423 . -557) 117768) ((-423 . -558) 117629) ((-952 . -203) 117575) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -832) 117554) ((-586 . -557) 117536) ((-325 . -1174) 117520) ((-322 . -1174) 117504) ((-314 . -1174) 117488) ((-122 . -478) 117421) ((-116 . -478) 117354) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 117292) ((-196 . -97) 117270) ((-627 . -1005) T) ((-632 . -156) T) ((-796 . -585) 117222) ((-63 . -354) T) ((-248 . -557) 117204) ((-63 . -365) T) ((-875 . -347) 117188) ((-794 . -262) T) ((-49 . -557) 117170) ((-917 . -37) 117118) ((-530 . -557) 117100) ((-449 . -347) 117084) ((-530 . -558) 117066) ((-481 . -557) 117048) ((-833 . -1174) 117035) ((-795 . -1111) T) ((-634 . -421) T) ((-460 . -478) 117001) ((-454 . -333) T) ((-325 . -338) 116980) ((-322 . -338) 116959) ((-314 . -338) 116938) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1178 . -1169) 116922) ((-795 . -807) 116899) ((-795 . -809) NIL) ((-886 . -779) 116798) ((-747 . -779) 116749) ((-591 . -593) 116733) ((-1098 . -33) T) ((-155 . -557) 116715) ((-1018 . -21) 116626) ((-1018 . -25) 116478) ((-795 . -954) 116455) ((-875 . -823) 116436) ((-1130 . -46) 116413) ((-833 . -338) T) ((-57 . -588) 116397) ((-480 . -588) 116381) ((-449 . -823) 116358) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 116342) ((-57 . -343) 116326) ((-564 . -156) T) ((-480 . -343) 116310) ((-461 . -343) 116294) ((-759 . -642) 116278) ((-1072 . -278) 116257) ((-1078 . -123) T) ((-112 . -156) T) ((-1047 . -280) 116195) ((-153 . -1111) T) ((-575 . -677) 116179) ((-551 . -677) 116163) ((-1167 . -123) T) ((-1142 . -843) 116142) ((-1121 . -843) 116121) ((-1121 . -752) NIL) ((-627 . -650) 116071) ((-1120 . -832) 116024) ((-941 . -1005) T) ((-795 . -347) 116001) ((-795 . -308) 115978) ((-828 . -1017) T) ((-153 . -807) 115962) ((-153 . -809) 115887) ((-454 . -1017) T) ((-324 . -1005) T) ((-192 . -1017) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -954) 115785) ((-289 . -779) T) ((-1157 . -478) 115718) ((-1141 . -585) 115615) ((-1120 . -585) 115485) ((-796 . -726) 115464) ((-796 . -723) 115443) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 115425) ((-157 . -421) T) ((-196 . -280) 115363) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1179 . -1172) 115342) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -954) 115326) ((-460 . -262) T) ((-127 . -439) 115281) ((-47 . -1005) T) ((-645 . -205) 115265) ((-795 . -823) NIL) ((-1130 . -809) NIL) ((-812 . -97) T) ((-808 . -97) T) ((-358 . -1005) T) ((-153 . -347) 115249) ((-153 . -308) 115233) ((-1130 . -954) 115116) ((-784 . -954) 115014) ((-1043 . -97) T) ((-590 . -123) T) ((-112 . -478) 114922) ((-599 . -724) 114901) ((-599 . -727) 114880) ((-524 . -954) 114862) ((-265 . -1164) 114832) ((-790 . -97) T) ((-885 . -509) 114811) ((-1106 . -969) 114694) ((-450 . -579) 114602) ((-827 . -1005) T) ((-941 . -650) 114539) ((-644 . -969) 114504) ((-548 . -33) T) ((-1048 . -1111) T) ((-1106 . -106) 114373) ((-443 . -585) 114270) ((-324 . -650) 114215) ((-153 . -823) 114174) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 114130) ((-1183 . -970) T) ((-1130 . -347) 114114) ((-388 . -1115) 114092) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1120 . -723) 114045) ((-1120 . -726) 113998) ((-1141 . -659) T) ((-1120 . -659) T) ((-47 . -650) 113963) ((-199 . -939) T) ((-321 . -1164) 113940) ((-1143 . -381) 113906) ((-651 . -659) T) ((-1130 . -823) 113850) ((-107 . -557) 113832) ((-107 . -558) 113814) ((-651 . -442) T) ((-450 . -21) 113725) ((-122 . -456) 113709) ((-116 . -456) 113693) ((-450 . -25) 113545) ((-564 . -262) T) ((-534 . -969) 113520) ((-407 . -1005) T) ((-974 . -278) T) ((-112 . -262) T) ((-1009 . -97) T) ((-921 . -97) T) ((-534 . -106) 113488) ((-1043 . -280) 113426) ((-1106 . -963) T) ((-974 . -939) T) ((-64 . -1111) T) ((-967 . -25) T) ((-967 . -21) T) ((-644 . -963) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-941 . -156) T) ((-644 . -217) T) ((-974 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 113408) ((-364 . -557) 113390) ((-443 . -659) T) ((-1023 . -777) T) ((-815 . -954) 113358) ((-103 . -779) T) ((-595 . -969) 113342) ((-454 . -123) T) ((-1143 . -970) T) ((-192 . -123) T) ((-1057 . -97) 113320) ((-94 . -1005) T) ((-219 . -603) 113304) ((-219 . -588) 113288) ((-595 . -106) 113267) ((-286 . -381) 113251) ((-219 . -343) 113235) ((-1060 . -209) 113182) ((-917 . -205) 113166) ((-72 . -1111) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1178 . -97) T) ((-994 . -969) 113009) ((-237 . -832) 112988) ((-221 . -832) 112967) ((-714 . -969) 112790) ((-712 . -969) 112633) ((-552 . -1111) T) ((-1065 . -557) 112615) ((-994 . -106) 112444) ((-960 . -97) T) ((-444 . -1111) T) ((-430 . -969) 112415) ((-423 . -969) 112258) ((-601 . -585) 112242) ((-795 . -278) T) ((-714 . -106) 112051) ((-712 . -106) 111880) ((-325 . -585) 111832) ((-322 . -585) 111784) ((-314 . -585) 111736) ((-237 . -585) 111661) ((-221 . -585) 111586) ((-1059 . -779) T) ((-430 . -106) 111547) ((-423 . -106) 111376) ((-995 . -954) 111360) ((-985 . -954) 111337) ((-918 . -33) T) ((-880 . -1111) T) ((-121 . -928) 111321) ((-885 . -1017) T) ((-795 . -939) NIL) ((-668 . -1017) T) ((-648 . -1017) T) ((-1157 . -456) 111305) ((-1043 . -37) 111265) ((-885 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-833 . -585) 111230) ((-530 . -969) 111195) ((-481 . -969) 111140) ((-201 . -55) 111098) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 111068) ((-530 . -106) 111024) ((-481 . -106) 110953) ((-388 . -1017) T) ((-286 . -970) 110844) ((-283 . -970) T) ((-595 . -963) T) ((-1183 . -1005) T) ((-153 . -278) 110775) ((-388 . -23) T) ((-39 . -557) 110757) ((-39 . -558) 110741) ((-103 . -911) 110723) ((-111 . -793) 110707) ((-47 . -478) 110673) ((-1098 . -928) 110657) ((-1081 . -557) 110639) ((-1085 . -33) T) ((-844 . -557) 110621) ((-1018 . -779) 110572) ((-703 . -557) 110554) ((-608 . -557) 110536) ((-1057 . -280) 110474) ((-447 . -33) T) ((-998 . -1111) T) ((-446 . -421) T) ((-994 . -963) T) ((-1042 . -33) T) ((-714 . -963) T) ((-712 . -963) T) ((-584 . -209) 110458) ((-572 . -209) 110404) ((-1130 . -278) 110383) ((-994 . -296) 110345) ((-423 . -963) T) ((-1078 . -21) T) ((-994 . -207) 110324) ((-714 . -296) 110301) ((-714 . -207) T) ((-712 . -296) 110273) ((-297 . -588) 110257) ((-664 . -1115) 110236) ((-1078 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 110215) ((-297 . -343) 110199) ((-462 . -33) T) ((-461 . -33) T) ((-921 . -1052) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 110130) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-960 . -280) 110038) ((-824 . -1005) 110016) ((-49 . -963) T) ((-1167 . -21) T) ((-1167 . -25) T) ((-1074 . -509) 109995) ((-1073 . -1115) 109974) ((-530 . -963) T) ((-481 . -963) T) ((-1067 . -1115) 109953) ((-331 . -954) 109937) ((-292 . -954) 109921) ((-941 . -262) T) ((-349 . -809) 109903) ((-1073 . -509) 109854) ((-1067 . -509) 109805) ((-921 . -37) 109750) ((-731 . -1017) T) ((-833 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1029 . -509) 109729) ((-324 . -262) T) ((-584 . -628) 109713) ((-349 . -954) 109673) ((-1023 . -970) T) ((-98 . -120) 109657) ((-731 . -23) T) ((-1157 . -258) 109634) ((-377 . -280) 109599) ((-1177 . -1172) 109575) ((-1175 . -1172) 109554) ((-1143 . -1005) T) ((-794 . -557) 109536) ((-766 . -954) 109505) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -920) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 109489) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1178 . -37) 109459) ((-112 . -258) 109410) ((-1157 . -19) 109394) ((-1157 . -550) 109371) ((-1168 . -1005) T) ((-986 . -1005) T) ((-906 . -1005) T) ((-885 . -123) T) ((-670 . -1005) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1052) 109349) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -963) T) ((-265 . -97) 109132) ((-128 . -1005) T) ((-632 . -920) T) ((-89 . -1111) T) ((-122 . -557) 109064) ((-116 . -557) 108996) ((-1183 . -156) T) ((-1073 . -333) 108975) ((-1067 . -333) 108954) ((-286 . -1005) T) ((-388 . -123) T) ((-283 . -1005) T) ((-377 . -37) 108906) ((-1036 . -97) T) ((-1143 . -650) 108798) ((-591 . -970) T) ((-289 . -132) 108777) ((-289 . -134) 108756) ((-127 . -1005) T) ((-109 . -1005) T) ((-786 . -97) T) ((-529 . -557) 108738) ((-517 . -558) 108637) ((-517 . -557) 108619) ((-460 . -557) 108601) ((-460 . -558) 108546) ((-452 . -23) T) ((-450 . -779) 108497) ((-454 . -579) 108479) ((-192 . -579) 108461) ((-199 . -374) T) ((-599 . -585) 108445) ((-1072 . -843) 108424) ((-664 . -1017) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -969) 108369) ((-1059 . -1058) T) ((-1048 . -102) 108353) ((-1074 . -1017) T) ((-1073 . -1017) T) ((-479 . -954) 108337) ((-1067 . -1017) T) ((-1029 . -1017) T) ((-313 . -106) 108266) ((-922 . -1115) T) ((-121 . -1111) T) ((-837 . -1115) T) ((-627 . -258) NIL) ((-1158 . -557) 108248) ((-1074 . -23) T) ((-1073 . -23) T) ((-922 . -509) T) ((-1067 . -23) T) ((-837 . -509) T) ((-1043 . -205) 108232) ((-222 . -557) 108214) ((-1029 . -23) T) ((-984 . -1005) T) ((-731 . -123) T) ((-286 . -650) 108124) ((-283 . -650) 108053) ((-632 . -557) 108035) ((-632 . -558) 107980) ((-377 . -370) 107964) ((-408 . -1005) T) ((-454 . -25) T) ((-454 . -21) T) ((-1023 . -1005) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 107948) ((-647 . -954) 107917) ((-1157 . -557) 107829) ((-1157 . -558) 107790) ((-1143 . -156) T) ((-219 . -33) T) ((-849 . -893) T) ((-1098 . -1111) T) ((-599 . -723) 107769) ((-599 . -726) 107748) ((-368 . -365) T) ((-486 . -97) 107726) ((-952 . -1005) T) ((-196 . -913) 107710) ((-469 . -97) T) ((-564 . -557) 107692) ((-44 . -779) NIL) ((-564 . -558) 107669) ((-952 . -554) 107644) ((-824 . -478) 107577) ((-313 . -963) T) ((-112 . -558) NIL) ((-112 . -557) 107559) ((-796 . -1111) T) ((-607 . -387) 107543) ((-607 . -1026) 107488) ((-465 . -138) 107470) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -969) 107415) ((-796 . -807) 107399) ((-796 . -809) 107324) ((-645 . -970) T) ((-627 . -920) NIL) ((-1141 . -46) 107294) ((-1120 . -46) 107271) ((-1042 . -928) 107242) ((-199 . -843) T) ((-39 . -106) 107171) ((-796 . -954) 107038) ((-1023 . -650) 107025) ((-1010 . -557) 107007) ((-989 . -134) 106986) ((-989 . -132) 106937) ((-922 . -333) T) ((-289 . -1100) 106903) ((-349 . -278) T) ((-289 . -1097) 106869) ((-286 . -156) 106848) ((-283 . -156) T) ((-921 . -205) 106825) ((-837 . -333) T) ((-530 . -1174) 106812) ((-481 . -1174) 106789) ((-329 . -134) 106768) ((-329 . -132) 106719) ((-323 . -134) 106698) ((-323 . -132) 106649) ((-552 . -1088) 106625) ((-315 . -134) 106604) ((-315 . -132) 106555) ((-289 . -34) 106521) ((-444 . -1088) 106500) ((0 . |EnumerationCategory|) T) ((-289 . -91) 106466) ((-349 . -939) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 106416) ((-591 . -1005) T) ((-552 . -102) 106363) ((-452 . -123) T) ((-444 . -102) 106313) ((-214 . -1017) 106244) ((-796 . -347) 106228) ((-796 . -308) 106212) ((-214 . -23) 106083) ((-974 . -843) T) ((-974 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1052) T) ((-297 . -33) T) ((-43 . -387) 106067) ((-360 . -677) 106051) ((-1168 . -478) 105984) ((-664 . -123) T) ((-1149 . -509) 105963) ((-1142 . -1115) 105942) ((-1142 . -509) 105893) ((-670 . -478) 105826) ((-1121 . -1115) 105805) ((-1121 . -509) 105756) ((-816 . -1005) T) ((-131 . -773) T) ((-1120 . -1111) 105735) ((-1120 . -809) 105608) ((-1120 . -807) 105578) ((-486 . -280) 105516) ((-1074 . -123) T) ((-128 . -478) NIL) ((-1073 . -123) T) ((-1067 . -123) T) ((-1029 . -123) T) ((-941 . -920) T) ((-321 . -37) 105481) ((-922 . -1017) T) ((-837 . -1017) T) ((-80 . -557) 105463) ((-39 . -963) T) ((-794 . -969) 105450) ((-922 . -23) T) ((-796 . -823) 105409) ((-634 . -97) T) ((-921 . -319) NIL) ((-548 . -1111) T) ((-890 . -23) T) ((-837 . -23) T) ((-794 . -106) 105394) ((-397 . -1017) T) ((-443 . -46) 105364) ((-125 . -97) T) ((-39 . -207) 105336) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 105315) ((-542 . -509) 105294) ((-627 . -557) 105276) ((-627 . -558) 105184) ((-286 . -478) 105150) ((-283 . -478) 105042) ((-1141 . -954) 105026) ((-1120 . -954) 104815) ((-917 . -381) 104799) ((-397 . -23) T) ((-1023 . -156) T) ((-1143 . -262) T) ((-591 . -650) 104769) ((-131 . -1005) T) ((-47 . -920) T) ((-377 . -205) 104753) ((-266 . -209) 104703) ((-795 . -843) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1120 . -308) 104673) ((-1120 . -347) 104643) ((-196 . -1024) 104627) ((-1157 . -260) 104604) ((-1106 . -585) 104529) ((-885 . -21) T) ((-885 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 104494) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-917 . -970) T) ((-794 . -963) T) ((-706 . -97) T) ((-1142 . -333) 104473) ((-1141 . -823) 104379) ((-1121 . -333) 104358) ((-1120 . -823) 104209) ((-941 . -557) 104191) ((-377 . -760) 104144) ((-1074 . -458) 104110) ((-153 . -843) 104041) ((-1073 . -458) 104007) ((-1067 . -458) 103973) ((-645 . -1005) T) ((-1029 . -458) 103939) ((-529 . -969) 103926) ((-517 . -969) 103913) ((-460 . -969) 103878) ((-286 . -262) 103857) ((-283 . -262) T) ((-324 . -557) 103839) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 103818) ((-529 . -106) 103803) ((-517 . -106) 103788) ((-460 . -106) 103744) ((-1076 . -809) 103711) ((-824 . -456) 103695) ((-47 . -557) 103677) ((-47 . -558) 103622) ((-214 . -123) 103493) ((-1130 . -843) 103472) ((-748 . -1115) 103451) ((-952 . -478) 103295) ((-358 . -557) 103277) ((-748 . -509) 103208) ((-534 . -585) 103183) ((-237 . -46) 103155) ((-221 . -46) 103112) ((-489 . -473) 103089) ((-918 . -1111) T) ((-632 . -969) 103054) ((-1149 . -1017) T) ((-1142 . -1017) T) ((-1121 . -1017) T) ((-921 . -340) 103026) ((-107 . -338) T) ((-443 . -823) 102932) ((-1149 . -23) T) ((-1142 . -23) T) ((-827 . -557) 102914) ((-89 . -102) 102898) ((-1106 . -659) T) ((-828 . -779) 102849) ((-634 . -1052) T) ((-632 . -106) 102805) ((-1121 . -23) T) ((-543 . -1017) T) ((-542 . -1017) T) ((-645 . -650) 102634) ((-644 . -659) T) ((-1023 . -262) T) ((-922 . -123) T) ((-454 . -779) T) ((-890 . -123) T) ((-837 . -123) T) ((-529 . -963) T) ((-192 . -779) T) ((-517 . -963) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -963) T) ((-543 . -23) T) ((-313 . -1174) 102611) ((-289 . -421) 102590) ((-309 . -280) 102577) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 102551) ((-219 . -928) 102535) ((-796 . -278) T) ((-1179 . -1169) 102519) ((-634 . -37) 102506) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1051 . -209) 102456) ((-994 . -832) 102435) ((-111 . -37) 102422) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -939) 102401) ((-1168 . -456) 102385) ((-714 . -832) 102364) ((-712 . -832) 102343) ((-1085 . -1111) T) ((-423 . -832) 102322) ((-670 . -456) 102306) ((-994 . -585) 102231) ((-714 . -585) 102156) ((-564 . -969) 102143) ((-447 . -1111) T) ((-313 . -338) T) ((-128 . -456) 102125) ((-712 . -585) 102050) ((-1042 . -1111) T) ((-430 . -585) 102021) ((-237 . -809) 101880) ((-221 . -809) NIL) ((-112 . -969) 101825) ((-423 . -585) 101750) ((-601 . -954) 101727) ((-564 . -106) 101712) ((-325 . -954) 101696) ((-322 . -954) 101680) ((-314 . -954) 101664) ((-237 . -954) 101510) ((-221 . -954) 101388) ((-112 . -106) 101317) ((-57 . -1111) T) ((-482 . -1111) T) ((-480 . -1111) T) ((-462 . -1111) T) ((-461 . -1111) T) ((-407 . -557) 101299) ((-404 . -557) 101281) ((-3 . -97) T) ((-944 . -1105) 101250) ((-765 . -97) T) ((-623 . -55) 101208) ((-632 . -963) T) ((-49 . -585) 101182) ((-261 . -421) T) ((-445 . -1105) 101151) ((0 . -97) T) ((-530 . -585) 101116) ((-481 . -585) 101061) ((-48 . -97) T) ((-833 . -954) 101048) ((-632 . -217) T) ((-989 . -379) 101027) ((-664 . -579) 100975) ((-917 . -1005) T) ((-645 . -156) 100866) ((-454 . -911) 100848) ((-237 . -347) 100832) ((-221 . -347) 100816) ((-369 . -1005) T) ((-309 . -37) 100800) ((-943 . -97) 100778) ((-192 . -911) 100760) ((-157 . -37) 100692) ((-1141 . -278) 100671) ((-1120 . -278) 100650) ((-595 . -659) T) ((-94 . -557) 100632) ((-1067 . -579) 100584) ((-452 . -25) T) ((-452 . -21) T) ((-1120 . -939) 100537) ((-564 . -963) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -823) 100483) ((-221 . -823) 100460) ((-112 . -963) T) ((-748 . -1017) T) ((-994 . -659) T) ((-564 . -207) 100439) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1017) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-986 . -258) 100418) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -969) 100368) ((-1149 . -123) T) ((-1142 . -123) T) ((-1121 . -123) T) ((-1043 . -381) 100352) ((-575 . -337) 100284) ((-551 . -337) 100216) ((-1057 . -1050) 100200) ((-98 . -1005) 100178) ((-1074 . -25) T) ((-1074 . -21) T) ((-1073 . -21) T) ((-917 . -650) 100126) ((-197 . -585) 100093) ((-627 . -106) 100027) ((-49 . -659) T) ((-1073 . -25) T) ((-321 . -319) T) ((-1067 . -21) T) ((-989 . -421) 99978) ((-1067 . -25) T) ((-645 . -478) 99926) ((-530 . -659) T) ((-481 . -659) T) ((-1029 . -21) T) ((-1029 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 99905) ((-283 . -258) 99840) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1183 . -557) 99822) ((-1183 . -558) 99804) ((-989 . -372) 99783) ((-952 . -456) 99714) ((-517 . -727) T) ((-517 . -724) T) ((-975 . -209) 99660) ((-329 . -372) 99611) ((-323 . -372) 99562) ((-315 . -372) 99513) ((-1170 . -1017) T) ((-1170 . -23) T) ((-1159 . -97) T) ((-1043 . -970) T) ((-607 . -677) 99497) ((-1078 . -132) 99476) ((-1078 . -134) 99455) ((-1047 . -1005) T) ((-1047 . -982) 99424) ((-67 . -1111) T) ((-941 . -969) 99361) ((-790 . -970) T) ((-214 . -579) 99269) ((-627 . -963) T) ((-324 . -969) 99214) ((-59 . -1111) T) ((-941 . -106) 99130) ((-824 . -557) 99062) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 99041) ((-632 . -727) T) ((-632 . -724) T) ((-921 . -381) 99018) ((-324 . -106) 98947) ((-349 . -843) T) ((-377 . -777) 98926) ((-645 . -262) 98837) ((-197 . -659) T) ((-1149 . -458) 98803) ((-1142 . -458) 98769) ((-1121 . -458) 98735) ((-286 . -920) 98714) ((-196 . -1005) 98692) ((-289 . -892) 98655) ((-100 . -97) T) ((-47 . -969) 98620) ((-1179 . -97) T) ((-351 . -97) T) ((-47 . -106) 98576) ((-922 . -579) 98558) ((-1143 . -557) 98540) ((-489 . -97) T) ((-465 . -97) T) ((-1036 . -1037) 98524) ((-139 . -1164) 98508) ((-219 . -1111) T) ((-1072 . -1115) 98487) ((-1028 . -1115) 98466) ((-214 . -21) 98377) ((-214 . -25) 98229) ((-122 . -114) 98213) ((-116 . -114) 98197) ((-43 . -677) 98181) ((-1072 . -509) 98092) ((-1028 . -509) 98023) ((-952 . -258) 97998) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-1000 . -1111) T) ((-224 . -1017) 97929) ((-223 . -1017) 97860) ((-941 . -963) T) ((-921 . -970) T) ((-313 . -585) 97805) ((-562 . -37) 97789) ((-1168 . -557) 97751) ((-1168 . -558) 97712) ((-986 . -557) 97694) ((-941 . -217) T) ((-324 . -963) T) ((-747 . -1164) 97664) ((-224 . -23) T) ((-223 . -23) T) ((-906 . -557) 97646) ((-670 . -558) 97607) ((-670 . -557) 97589) ((-731 . -779) 97568) ((-917 . -478) 97480) ((-324 . -207) T) ((-324 . -217) T) ((-1060 . -138) 97427) ((-922 . -25) T) ((-128 . -557) 97409) ((-128 . -558) 97368) ((-833 . -278) T) ((-922 . -21) T) ((-890 . -25) T) ((-837 . -21) T) ((-837 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 97352) ((-47 . -963) T) ((-1177 . -1169) 97336) ((-1175 . -1169) 97320) ((-952 . -550) 97295) ((-286 . -558) 97156) ((-286 . -557) 97138) ((-283 . -558) NIL) ((-283 . -557) 97120) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 97081) ((-503 . -209) 97031) ((-127 . -557) 97013) ((-109 . -557) 96995) ((-446 . -37) 96960) ((-1179 . -1176) 96939) ((-1170 . -123) T) ((-1178 . -970) T) ((-991 . -97) T) ((-86 . -1111) T) ((-465 . -280) NIL) ((-918 . -102) 96923) ((-812 . -1005) T) ((-808 . -1005) T) ((-1157 . -588) 96907) ((-1157 . -343) 96891) ((-297 . -1111) T) ((-540 . -779) T) ((-1043 . -1005) T) ((-1043 . -966) 96831) ((-98 . -478) 96764) ((-850 . -557) 96746) ((-313 . -659) T) ((-30 . -557) 96728) ((-790 . -1005) T) ((-772 . -970) 96707) ((-39 . -585) 96652) ((-199 . -1115) T) ((-377 . -970) T) ((-1059 . -138) 96634) ((-917 . -262) 96585) ((-199 . -509) T) ((-289 . -1138) 96569) ((-289 . -1135) 96539) ((-1085 . -1088) 96518) ((-984 . -557) 96500) ((-584 . -138) 96484) ((-572 . -138) 96430) ((-1085 . -102) 96380) ((-447 . -1088) 96359) ((-454 . -134) T) ((-454 . -132) NIL) ((-1023 . -558) 96274) ((-408 . -557) 96256) ((-192 . -134) T) ((-192 . -132) NIL) ((-1023 . -557) 96238) ((-51 . -97) T) ((-1121 . -579) 96190) ((-447 . -102) 96140) ((-912 . -23) T) ((-1179 . -37) 96110) ((-1072 . -1017) T) ((-1028 . -1017) T) ((-974 . -1115) T) ((-783 . -1017) T) ((-875 . -1115) 96089) ((-449 . -1115) 96068) ((-664 . -779) 96047) ((-974 . -509) T) ((-875 . -509) 95978) ((-1072 . -23) T) ((-1028 . -23) T) ((-783 . -23) T) ((-449 . -509) 95909) ((-1043 . -650) 95841) ((-1047 . -478) 95774) ((-952 . -558) NIL) ((-952 . -557) 95756) ((-790 . -650) 95726) ((-1106 . -46) 95695) ((-224 . -123) T) ((-223 . -123) T) ((-1009 . -1005) T) ((-921 . -1005) T) ((-60 . -557) 95677) ((-1067 . -779) NIL) ((-941 . -724) T) ((-941 . -727) T) ((-1183 . -969) 95664) ((-1183 . -106) 95649) ((-794 . -585) 95636) ((-1149 . -25) T) ((-1149 . -21) T) ((-1142 . -21) T) ((-1142 . -25) T) ((-1121 . -21) T) ((-1121 . -25) T) ((-944 . -138) 95620) ((-796 . -752) 95599) ((-796 . -843) T) ((-645 . -258) 95526) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 95459) ((-542 . -25) T) ((-445 . -138) 95443) ((-432 . -138) 95427) ((-844 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1005) T) ((-703 . -659) T) ((-199 . -333) T) ((-1057 . -1005) 95405) ((-795 . -1115) T) ((-591 . -557) 95387) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1164) 95371) ((-607 . -97) T) ((-323 . -1164) 95355) ((-315 . -1164) 95339) ((-1178 . -1005) T) ((-483 . -779) 95318) ((-749 . -421) 95297) ((-960 . -1005) T) ((-960 . -982) 95226) ((-944 . -895) 95195) ((-751 . -1017) T) ((-921 . -650) 95140) ((-356 . -1017) T) ((-445 . -895) 95109) ((-432 . -895) 95078) ((-105 . -138) 95060) ((-71 . -557) 95042) ((-816 . -557) 95024) ((-989 . -657) 95003) ((-1183 . -963) T) ((-748 . -579) 94951) ((-265 . -970) 94894) ((-153 . -1115) 94799) ((-199 . -1017) T) ((-294 . -23) T) ((-1067 . -911) 94751) ((-772 . -1005) T) ((-1029 . -673) 94730) ((-1143 . -969) 94635) ((-1141 . -843) 94614) ((-794 . -659) T) ((-153 . -509) 94525) ((-1120 . -843) 94504) ((-529 . -585) 94491) ((-377 . -1005) T) ((-517 . -585) 94478) ((-236 . -1005) T) ((-460 . -585) 94443) ((-199 . -23) T) ((-1120 . -752) 94396) ((-1177 . -97) T) ((-324 . -1174) 94373) ((-1175 . -97) T) ((-1143 . -106) 94265) ((-131 . -557) 94247) ((-912 . -123) T) ((-43 . -97) T) ((-214 . -779) 94198) ((-1130 . -1115) 94177) ((-98 . -456) 94161) ((-1178 . -650) 94131) ((-994 . -46) 94093) ((-974 . -1017) T) ((-875 . -1017) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 94070) ((-712 . -46) 94042) ((-1130 . -509) 93953) ((-324 . -338) T) ((-449 . -1017) T) ((-1072 . -123) T) ((-1028 . -123) T) ((-423 . -46) 93932) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-974 . -23) T) ((-875 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1043 . -478) 93865) ((-534 . -954) 93849) ((-449 . -23) T) ((-321 . -970) T) ((-1106 . -823) 93830) ((-607 . -280) 93768) ((-1018 . -1164) 93738) ((-632 . -585) 93703) ((-921 . -156) T) ((-885 . -132) 93682) ((-575 . -1005) T) ((-551 . -1005) T) ((-885 . -134) 93661) ((-922 . -779) T) ((-668 . -134) 93640) ((-668 . -132) 93619) ((-890 . -779) T) ((-443 . -843) 93598) ((-286 . -969) 93508) ((-283 . -969) 93437) ((-917 . -258) 93395) ((-377 . -650) 93347) ((-634 . -777) T) ((-1143 . -963) T) ((-286 . -106) 93243) ((-283 . -106) 93156) ((-886 . -97) T) ((-747 . -97) 92967) ((-645 . -558) NIL) ((-645 . -557) 92949) ((-595 . -954) 92847) ((-1143 . -296) 92791) ((-952 . -260) 92766) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 92717) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1047 . -456) 92701) ((-994 . -809) NIL) ((-795 . -1017) T) ((-112 . -832) NIL) ((-1177 . -1176) 92677) ((-1175 . -1176) 92656) ((-714 . -809) NIL) ((-712 . -809) 92515) ((-1170 . -25) T) ((-1170 . -21) T) ((-1109 . -97) 92493) ((-1011 . -365) T) ((-564 . -585) 92480) ((-423 . -809) NIL) ((-611 . -97) 92458) ((-994 . -954) 92288) ((-795 . -23) T) ((-714 . -954) 92150) ((-712 . -954) 92009) ((-112 . -585) 91954) ((-423 . -954) 91832) ((-586 . -954) 91816) ((-567 . -97) T) ((-196 . -456) 91800) ((-1157 . -33) T) ((-575 . -650) 91784) ((-551 . -650) 91768) ((-607 . -37) 91728) ((-289 . -97) T) ((-83 . -557) 91710) ((-49 . -954) 91694) ((-1023 . -969) 91681) ((-994 . -347) 91665) ((-58 . -55) 91627) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -954) 91614) ((-481 . -954) 91591) ((-632 . -659) T) ((-286 . -963) 91482) ((-294 . -123) T) ((-283 . -963) T) ((-153 . -1017) T) ((-714 . -347) 91466) ((-712 . -347) 91450) ((-44 . -138) 91400) ((-922 . -911) 91382) ((-423 . -347) 91366) ((-377 . -156) T) ((-286 . -217) 91345) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1005) 91128) ((-199 . -123) T) ((-1023 . -106) 91113) ((-153 . -23) T) ((-731 . -134) 91092) ((-731 . -132) 91071) ((-224 . -579) 90979) ((-223 . -579) 90887) ((-289 . -256) 90853) ((-1057 . -478) 90786) ((-1036 . -1005) T) ((-199 . -972) T) ((-747 . -280) 90724) ((-994 . -823) 90660) ((-714 . -823) 90604) ((-712 . -823) 90588) ((-1177 . -37) 90558) ((-1175 . -37) 90528) ((-1130 . -1017) T) ((-784 . -1017) T) ((-423 . -823) 90505) ((-786 . -1005) T) ((-1130 . -23) T) ((-524 . -1017) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -843) T) ((-322 . -843) T) ((-261 . -97) T) ((-314 . -843) T) ((-974 . -123) T) ((-875 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -832) NIL) ((-960 . -478) 90406) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 90344) ((-575 . -694) T) ((-551 . -694) T) ((-1121 . -779) NIL) ((-921 . -262) T) ((-224 . -21) T) ((-627 . -585) 90294) ((-321 . -1005) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 90278) ((-2 . -97) T) ((-833 . -843) T) ((-450 . -1164) 90248) ((-197 . -954) 90225) ((-1023 . -963) T) ((-644 . -278) T) ((-265 . -650) 90167) ((-634 . -970) T) ((-454 . -421) T) ((-377 . -478) 90079) ((-192 . -421) T) ((-1023 . -207) T) ((-266 . -138) 90029) ((-917 . -558) 89990) ((-917 . -557) 89972) ((-908 . -557) 89954) ((-111 . -970) T) ((-591 . -969) 89938) ((-199 . -458) T) ((-369 . -557) 89920) ((-369 . -558) 89897) ((-967 . -1164) 89867) ((-591 . -106) 89846) ((-1043 . -456) 89830) ((-747 . -37) 89800) ((-61 . -410) T) ((-61 . -365) T) ((-1060 . -97) T) ((-795 . -123) T) ((-451 . -97) 89778) ((-1183 . -338) T) ((-989 . -97) T) ((-973 . -97) T) ((-321 . -650) 89723) ((-664 . -134) 89702) ((-664 . -132) 89681) ((-941 . -585) 89618) ((-486 . -1005) 89596) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1005) T) ((-324 . -585) 89541) ((-1072 . -579) 89489) ((-1028 . -579) 89437) ((-355 . -473) 89416) ((-765 . -777) 89395) ((-349 . -1115) T) ((-627 . -659) T) ((-309 . -970) T) ((-1121 . -911) 89347) ((-157 . -970) T) ((-98 . -557) 89279) ((-1074 . -132) 89258) ((-1074 . -134) 89237) ((-349 . -509) T) ((-1073 . -134) 89216) ((-1073 . -132) 89195) ((-1067 . -132) 89102) ((-377 . -262) T) ((-1067 . -134) 89009) ((-1029 . -134) 88988) ((-1029 . -132) 88967) ((-289 . -37) 88808) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -963) T) ((-47 . -585) 88773) ((-912 . -21) T) ((-122 . -928) 88757) ((-116 . -928) 88741) ((-912 . -25) T) ((-824 . -114) 88725) ((-1059 . -97) T) ((-748 . -779) 88704) ((-1130 . -123) T) ((-1072 . -25) T) ((-1072 . -21) T) ((-784 . -123) T) ((-1028 . -25) T) ((-1028 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 88683) ((-584 . -97) 88661) ((-572 . -97) T) ((-1060 . -280) 88456) ((-524 . -123) T) ((-562 . -777) 88435) ((-1057 . -456) 88419) ((-1051 . -138) 88369) ((-1047 . -557) 88331) ((-1047 . -558) 88292) ((-941 . -723) T) ((-941 . -726) T) ((-941 . -659) T) ((-451 . -280) 88230) ((-422 . -387) 88200) ((-321 . -156) T) ((-261 . -37) 88187) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -954) 88164) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -969) 87987) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 87796) ((-607 . -205) 87780) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 87729) ((-103 . -280) NIL) ((-70 . -365) T) ((-1018 . -97) 87540) ((-765 . -381) 87524) ((-1023 . -727) T) ((-1023 . -724) T) ((-634 . -1005) T) ((-349 . -333) T) ((-153 . -458) 87502) ((-196 . -557) 87434) ((-125 . -1005) T) ((-111 . -1005) T) ((-47 . -659) T) ((-960 . -456) 87399) ((-128 . -395) 87381) ((-128 . -338) T) ((-944 . -97) T) ((-476 . -473) 87360) ((-445 . -97) T) ((-432 . -97) T) ((-951 . -1017) T) ((-1074 . -34) 87326) ((-1074 . -91) 87292) ((-1074 . -1100) 87258) ((-1074 . -1097) 87224) ((-1059 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-989 . -1052) 87203) ((-1073 . -1097) 87169) ((-1073 . -1100) 87135) ((-951 . -23) T) ((-1073 . -91) 87101) ((-524 . -458) T) ((-1073 . -34) 87067) ((-1067 . -1097) 87033) ((-1067 . -1100) 86999) ((-1067 . -91) 86965) ((-331 . -1017) T) ((-329 . -1052) 86944) ((-323 . -1052) 86923) ((-315 . -1052) 86902) ((-1067 . -34) 86868) ((-1029 . -34) 86834) ((-1029 . -91) 86800) ((-103 . -1052) T) ((-1029 . -1100) 86766) ((-765 . -970) 86745) ((-584 . -280) 86683) ((-572 . -280) 86534) ((-1029 . -1097) 86500) ((-645 . -963) T) ((-974 . -579) 86482) ((-989 . -37) 86350) ((-875 . -579) 86298) ((-922 . -134) T) ((-922 . -132) NIL) ((-349 . -1017) T) ((-294 . -25) T) ((-292 . -23) T) ((-866 . -779) 86277) ((-645 . -296) 86254) ((-449 . -579) 86202) ((-39 . -954) 86092) ((-634 . -650) 86079) ((-645 . -207) T) ((-309 . -1005) T) ((-157 . -1005) T) ((-301 . -779) T) ((-388 . -421) 86029) ((-349 . -23) T) ((-329 . -37) 85994) ((-323 . -37) 85959) ((-315 . -37) 85924) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1017) T) ((-103 . -37) 85874) ((-759 . -1017) T) ((-706 . -1005) T) ((-111 . -650) 85861) ((-608 . -954) 85845) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1057 . -258) 85822) ((-1018 . -280) 85760) ((-1007 . -209) 85744) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 85721) ((-590 . -781) 85705) ((-974 . -21) T) ((-974 . -25) T) ((-747 . -205) 85675) ((-875 . -25) T) ((-875 . -21) T) ((-562 . -970) T) ((-449 . -25) T) ((-449 . -21) T) ((-944 . -280) 85613) ((-812 . -557) 85595) ((-808 . -557) 85577) ((-224 . -779) 85528) ((-223 . -779) 85479) ((-486 . -478) 85412) ((-795 . -579) 85389) ((-445 . -280) 85327) ((-432 . -280) 85265) ((-321 . -262) T) ((-1057 . -1145) 85249) ((-1043 . -557) 85211) ((-1043 . -558) 85172) ((-1041 . -97) T) ((-917 . -969) 85068) ((-39 . -823) 85020) ((-1057 . -550) 84997) ((-1183 . -585) 84984) ((-975 . -138) 84930) ((-796 . -1115) T) ((-917 . -106) 84812) ((-309 . -650) 84796) ((-790 . -557) 84778) ((-157 . -650) 84710) ((-377 . -258) 84668) ((-796 . -509) T) ((-103 . -370) 84650) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 84461) ((-94 . -442) T) ((-111 . -156) T) ((-1018 . -37) 84431) ((-153 . -579) 84379) ((-967 . -97) T) ((-795 . -25) T) ((-747 . -212) 84358) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 84336) ((-122 . -1111) T) ((-116 . -1111) T) ((-951 . -123) T) ((-607 . -337) 84320) ((-917 . -963) T) ((-1130 . -579) 84268) ((-1009 . -557) 84250) ((-921 . -557) 84232) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1005) T) ((-921 . -558) 84216) ((-917 . -217) 84195) ((-917 . -207) 84174) ((-1183 . -659) T) ((-1149 . -132) 84153) ((-765 . -1005) T) ((-1149 . -134) 84132) ((-1142 . -134) 84111) ((-1142 . -132) 84090) ((-1141 . -1115) 84069) ((-1121 . -132) 83976) ((-1121 . -134) 83883) ((-1120 . -1115) 83862) ((-349 . -123) T) ((-517 . -809) 83844) ((0 . -1005) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1005) T) ((-1143 . -585) 83749) ((-1141 . -509) 83700) ((-647 . -1017) T) ((-1120 . -509) 83651) ((-517 . -954) 83633) ((-542 . -134) 83612) ((-542 . -132) 83591) ((-460 . -954) 83534) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 83516) ((-1179 . -970) T) ((-349 . -972) T) ((-943 . -1005) 83494) ((-824 . -33) T) ((-450 . -280) 83432) ((-1057 . -558) 83393) ((-1057 . -557) 83325) ((-1072 . -779) 83304) ((-44 . -97) T) ((-1028 . -779) 83283) ((-749 . -97) T) ((-1130 . -25) T) ((-1130 . -21) T) ((-784 . -25) T) ((-43 . -337) 83267) ((-784 . -21) T) ((-664 . -421) 83218) ((-1178 . -557) 83200) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1005) T) ((-967 . -280) 83138) ((-562 . -1005) T) ((-632 . -809) 83120) ((-1157 . -1111) T) ((-201 . -280) 83058) ((-131 . -338) T) ((-960 . -558) 83000) ((-960 . -557) 82943) ((-283 . -832) NIL) ((-632 . -954) 82888) ((-644 . -843) T) ((-443 . -1115) 82867) ((-1073 . -421) 82846) ((-1067 . -421) 82825) ((-300 . -97) T) ((-796 . -1017) T) ((-286 . -585) 82647) ((-283 . -585) 82576) ((-443 . -509) 82527) ((-309 . -478) 82493) ((-503 . -138) 82443) ((-39 . -278) T) ((-772 . -557) 82425) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-989 . -205) 82395) ((-476 . -97) T) ((-377 . -558) 82203) ((-377 . -557) 82185) ((-236 . -557) 82167) ((-111 . -262) T) ((-1143 . -659) T) ((-1141 . -333) 82146) ((-1120 . -333) 82125) ((-1168 . -33) T) ((-112 . -1111) T) ((-103 . -205) 82107) ((-1078 . -97) T) ((-446 . -1005) T) ((-486 . -456) 82091) ((-670 . -33) T) ((-450 . -37) 82061) ((-128 . -33) T) ((-112 . -807) 82038) ((-112 . -809) NIL) ((-564 . -954) 81923) ((-583 . -779) 81902) ((-1167 . -97) T) ((-266 . -97) T) ((-645 . -338) 81881) ((-112 . -954) 81858) ((-360 . -650) 81842) ((-562 . -650) 81826) ((-44 . -280) 81630) ((-748 . -132) 81609) ((-748 . -134) 81588) ((-1178 . -352) 81567) ((-751 . -779) T) ((-1159 . -1005) T) ((-1060 . -203) 81514) ((-356 . -779) 81493) ((-1149 . -1100) 81459) ((-1149 . -1097) 81425) ((-1142 . -1097) 81391) ((-479 . -123) T) ((-1142 . -1100) 81357) ((-1121 . -1097) 81323) ((-1121 . -1100) 81289) ((-1149 . -34) 81255) ((-1149 . -91) 81221) ((-575 . -557) 81190) ((-551 . -557) 81159) ((-199 . -779) T) ((-1142 . -91) 81125) ((-1142 . -34) 81091) ((-1141 . -1017) T) ((-1023 . -585) 81078) ((-1121 . -91) 81044) ((-1120 . -1017) T) ((-540 . -138) 81026) ((-989 . -319) 81005) ((-112 . -347) 80982) ((-112 . -308) 80959) ((-157 . -262) T) ((-1121 . -34) 80925) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 80775) ((-283 . -659) T) ((-443 . -333) 80754) ((-329 . -319) 80733) ((-323 . -319) 80712) ((-315 . -319) 80691) ((-286 . -442) 80670) ((-1141 . -23) T) ((-1120 . -23) T) ((-651 . -1017) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 80635) ((-44 . -254) 80585) ((-100 . -1005) T) ((-66 . -557) 80567) ((-789 . -97) T) ((-564 . -823) 80526) ((-1179 . -1005) T) ((-351 . -1005) T) ((-80 . -1111) T) ((-974 . -779) T) ((-875 . -779) 80505) ((-112 . -823) NIL) ((-714 . -843) 80484) ((-646 . -779) T) ((-489 . -1005) T) ((-465 . -1005) T) ((-325 . -1115) T) ((-322 . -1115) T) ((-314 . -1115) T) ((-237 . -1115) 80463) ((-221 . -1115) 80442) ((-1018 . -205) 80412) ((-449 . -779) 80391) ((-1043 . -969) 80375) ((-360 . -694) T) ((-1059 . -760) T) ((-627 . -1111) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 80306) ((-221 . -509) 80237) ((-1043 . -106) 80216) ((-422 . -677) 80186) ((-790 . -969) 80156) ((-749 . -37) 80098) ((-627 . -807) 80080) ((-627 . -809) 80062) ((-266 . -280) 79866) ((-833 . -1115) T) ((-607 . -381) 79850) ((-790 . -106) 79815) ((-627 . -954) 79760) ((-922 . -421) T) ((-833 . -509) T) ((-530 . -843) T) ((-443 . -1017) T) ((-481 . -843) T) ((-1057 . -260) 79737) ((-837 . -421) T) ((-63 . -557) 79719) ((-572 . -203) 79665) ((-443 . -23) T) ((-1023 . -726) T) ((-796 . -123) T) ((-1023 . -723) T) ((-1170 . -1172) 79644) ((-1023 . -659) T) ((-591 . -585) 79618) ((-265 . -557) 79360) ((-952 . -33) T) ((-747 . -777) 79339) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1179 . -650) 79309) ((-627 . -347) 79291) ((-627 . -308) 79273) ((-446 . -156) T) ((-351 . -650) 79243) ((-795 . -779) NIL) ((-517 . -939) T) ((-460 . -939) T) ((-1036 . -557) 79225) ((-1018 . -212) 79204) ((-189 . -97) T) ((-1051 . -97) T) ((-69 . -557) 79186) ((-1043 . -963) T) ((-1078 . -37) 79083) ((-786 . -557) 79065) ((-517 . -502) T) ((-607 . -970) T) ((-664 . -872) 79018) ((-1043 . -207) 78997) ((-991 . -1005) T) ((-951 . -25) T) ((-951 . -21) T) ((-921 . -969) 78942) ((-828 . -97) T) ((-790 . -963) T) ((-627 . -823) NIL) ((-325 . -299) 78926) ((-325 . -333) T) ((-322 . -299) 78910) ((-322 . -333) T) ((-314 . -299) 78894) ((-314 . -333) T) ((-454 . -97) T) ((-1167 . -37) 78864) ((-486 . -621) 78814) ((-192 . -97) T) ((-941 . -954) 78696) ((-921 . -106) 78625) ((-1074 . -892) 78595) ((-1073 . -892) 78558) ((-483 . -138) 78542) ((-989 . -340) 78521) ((-321 . -557) 78503) ((-292 . -21) T) ((-324 . -954) 78480) ((-292 . -25) T) ((-1067 . -892) 78450) ((-1029 . -892) 78417) ((-74 . -557) 78399) ((-632 . -278) T) ((-153 . -779) 78378) ((-833 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-833 . -299) 78365) ((-84 . -557) 78347) ((-632 . -939) T) ((-612 . -779) T) ((-1141 . -123) T) ((-1120 . -123) T) ((-824 . -928) 78331) ((-766 . -21) T) ((-47 . -954) 78274) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1177 . -970) T) ((-1175 . -970) T) ((-591 . -659) T) ((-1178 . -969) 78258) ((-1130 . -779) 78237) ((-747 . -381) 78206) ((-98 . -114) 78190) ((-51 . -1005) T) ((-849 . -557) 78172) ((-795 . -911) 78149) ((-755 . -97) T) ((-1178 . -106) 78128) ((-590 . -37) 78098) ((-524 . -779) T) ((-325 . -1017) T) ((-322 . -1017) T) ((-314 . -1017) T) ((-237 . -1017) T) ((-221 . -1017) T) ((-564 . -278) 78077) ((-1051 . -280) 77881) ((-601 . -23) T) ((-450 . -205) 77851) ((-139 . -970) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-921 . -963) T) ((-645 . -832) 77830) ((-921 . -207) 77802) ((-921 . -217) T) ((-112 . -939) NIL) ((-833 . -1017) T) ((-1142 . -421) 77781) ((-1121 . -421) 77760) ((-486 . -557) 77692) ((-645 . -585) 77617) ((-377 . -969) 77569) ((-469 . -557) 77551) ((-833 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 77489) ((-747 . -970) 77420) ((-670 . -1003) 77404) ((-1141 . -458) 77370) ((-1120 . -458) 77336) ((-128 . -1003) 77318) ((-446 . -262) T) ((-1178 . -963) T) ((-975 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 77297) ((-1072 . -132) 77276) ((-1072 . -134) 77255) ((-1028 . -134) 77234) ((-1028 . -132) 77213) ((-575 . -969) 77197) ((-551 . -969) 77181) ((-607 . -1005) T) ((-607 . -966) 77121) ((-1074 . -1148) 77105) ((-1074 . -1135) 77082) ((-454 . -1052) T) ((-1073 . -1140) 77043) ((-1073 . -1135) 77013) ((-1073 . -1138) 76997) ((-192 . -1052) T) ((-313 . -843) T) ((-750 . -239) 76981) ((-575 . -106) 76960) ((-551 . -106) 76939) ((-1067 . -1119) 76900) ((-772 . -963) 76879) ((-1067 . -1135) 76856) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1067 . -1117) 76840) ((-377 . -963) T) ((-289 . -970) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 76819) ((-645 . -659) T) ((-454 . -37) 76769) ((-192 . -37) 76719) ((-443 . -458) 76685) ((-1059 . -1045) T) ((-1006 . -97) T) ((-634 . -557) 76667) ((-634 . -558) 76582) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 76564) ((-111 . -557) 76546) ((-142 . -25) T) ((-1177 . -1005) T) ((-796 . -579) 76494) ((-1175 . -1005) T) ((-885 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 76445) ((-43 . -1005) T) ((-995 . -779) T) ((-601 . -123) T) ((-975 . -280) 76296) ((-607 . -650) 76280) ((-261 . -970) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1005) T) ((-44 . -203) 76230) ((-880 . -779) 76209) ((-917 . -585) 76147) ((-214 . -1164) 76117) ((-941 . -278) T) ((-265 . -969) 76039) ((-833 . -123) T) ((-39 . -843) T) ((-454 . -370) 76021) ((-324 . -278) T) ((-192 . -370) 76003) ((-989 . -381) 75987) ((-265 . -106) 75904) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 75886) ((-1143 . -46) 75830) ((-199 . -134) T) ((-157 . -557) 75812) ((-1018 . -777) 75791) ((-706 . -557) 75773) ((-552 . -209) 75720) ((-444 . -209) 75670) ((-1177 . -650) 75640) ((-47 . -278) T) ((-1175 . -650) 75610) ((-886 . -1005) T) ((-747 . -1005) 75421) ((-282 . -97) T) ((-824 . -1111) T) ((-47 . -939) T) ((-1120 . -579) 75329) ((-623 . -97) 75307) ((-43 . -650) 75291) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1109 . -1005) 75269) ((-321 . -969) 75214) ((-611 . -1005) 75192) ((-974 . -134) T) ((-875 . -134) 75171) ((-875 . -132) 75150) ((-731 . -97) T) ((-139 . -650) 75134) ((-449 . -134) 75113) ((-449 . -132) 75092) ((-321 . -106) 75021) ((-989 . -970) T) ((-292 . -779) 75000) ((-1149 . -892) 74970) ((-567 . -1005) T) ((-1142 . -892) 74933) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 74883) ((-329 . -970) T) ((-323 . -970) T) ((-315 . -970) T) ((-265 . -963) 74826) ((-1121 . -892) 74796) ((-349 . -779) T) ((-103 . -970) T) ((-917 . -659) T) ((-794 . -843) T) ((-772 . -727) 74775) ((-772 . -724) 74754) ((-388 . -280) 74693) ((-437 . -97) T) ((-542 . -892) 74663) ((-289 . -1005) T) ((-377 . -727) 74642) ((-377 . -724) 74621) ((-465 . -456) 74603) ((-1143 . -954) 74569) ((-1141 . -21) T) ((-1141 . -25) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-747 . -650) 74511) ((-632 . -374) T) ((-1168 . -1111) T) ((-1018 . -381) 74480) ((-921 . -338) NIL) ((-98 . -33) T) ((-670 . -1111) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 74464) ((-128 . -1111) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -963) T) ((-68 . -353) T) ((-68 . -365) T) ((-1066 . -97) T) ((-607 . -478) 74397) ((-623 . -280) 74335) ((-885 . -37) 74232) ((-668 . -37) 74202) ((-503 . -280) 74006) ((-286 . -1111) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1111) T) ((-261 . -1005) T) ((-1080 . -557) 73988) ((-644 . -1115) T) ((-1057 . -588) 73972) ((-1106 . -509) 73951) ((-644 . -509) T) ((-286 . -807) 73935) ((-286 . -809) 73860) ((-283 . -807) 73821) ((-283 . -809) NIL) ((-731 . -280) 73786) ((-289 . -650) 73627) ((-294 . -293) 73604) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 73578) ((-286 . -954) 73246) ((-199 . -1097) T) ((-199 . -1100) T) ((-3 . -557) 73228) ((-283 . -954) 73158) ((-2 . -1005) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73140) ((-1018 . -970) 73071) ((-529 . -843) T) ((-517 . -752) T) ((-517 . -843) T) ((-460 . -843) T) ((-127 . -954) 73055) ((-199 . -91) T) ((-153 . -134) 73034) ((-73 . -410) T) ((0 . -557) 73016) ((-73 . -365) T) ((-153 . -132) 72967) ((-199 . -34) T) ((-48 . -557) 72949) ((-446 . -970) T) ((-454 . -205) 72931) ((-451 . -888) 72915) ((-450 . -777) 72894) ((-192 . -205) 72876) ((-79 . -410) T) ((-79 . -365) T) ((-1047 . -33) T) ((-747 . -156) 72855) ((-664 . -97) T) ((-943 . -557) 72822) ((-465 . -258) 72797) ((-286 . -347) 72767) ((-283 . -347) 72728) ((-283 . -308) 72689) ((-748 . -872) 72636) ((-599 . -123) T) ((-1130 . -132) 72615) ((-1130 . -134) 72594) ((-1074 . -97) T) ((-1073 . -97) T) ((-1067 . -97) T) ((-1060 . -1005) T) ((-1029 . -97) T) ((-196 . -33) T) ((-261 . -650) 72581) ((-1060 . -554) 72557) ((-540 . -280) NIL) ((-451 . -1005) 72535) ((-360 . -557) 72517) ((-474 . -779) T) ((-1051 . -203) 72467) ((-1149 . -1148) 72451) ((-1149 . -1135) 72428) ((-1142 . -1140) 72389) ((-1142 . -1135) 72359) ((-1142 . -1138) 72343) ((-1121 . -1119) 72304) ((-1121 . -1135) 72281) ((-562 . -557) 72263) ((-1121 . -1117) 72247) ((-632 . -843) T) ((-1074 . -256) 72213) ((-1073 . -256) 72179) ((-1067 . -256) 72145) ((-989 . -1005) T) ((-973 . -1005) T) ((-47 . -273) T) ((-286 . -823) 72112) ((-283 . -823) NIL) ((-973 . -979) 72091) ((-1023 . -809) 72073) ((-731 . -37) 72057) ((-237 . -579) 72005) ((-221 . -579) 71953) ((-634 . -969) 71940) ((-542 . -1135) 71917) ((-1029 . -256) 71883) ((-289 . -156) 71814) ((-329 . -1005) T) ((-323 . -1005) T) ((-315 . -1005) T) ((-465 . -19) 71796) ((-1023 . -954) 71778) ((-1007 . -138) 71762) ((-103 . -1005) T) ((-111 . -969) 71749) ((-644 . -333) T) ((-465 . -550) 71724) ((-634 . -106) 71709) ((-406 . -97) T) ((-44 . -1050) 71659) ((-111 . -106) 71644) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 71577) ((-952 . -1111) T) ((-866 . -138) 71561) ((-483 . -97) 71511) ((-994 . -1115) 71490) ((-446 . -557) 71442) ((-446 . -558) 71364) ((-60 . -1111) T) ((-714 . -1115) 71343) ((-712 . -1115) 71322) ((-1072 . -421) 71253) ((-1059 . -1005) T) ((-1043 . -585) 71227) ((-994 . -509) 71158) ((-450 . -381) 71127) ((-564 . -843) 71106) ((-423 . -1115) 71085) ((-1028 . -421) 71036) ((-368 . -557) 71018) ((-611 . -478) 70951) ((-714 . -509) 70862) ((-712 . -509) 70793) ((-664 . -280) 70780) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 70711) ((-112 . -843) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1159 . -557) 70693) ((-1106 . -1017) T) ((-1106 . -23) T) ((-1067 . -280) 70578) ((-1029 . -280) 70565) ((-790 . -585) 70525) ((-989 . -650) 70393) ((-866 . -899) 70377) ((-261 . -156) T) ((-833 . -21) T) ((-833 . -25) T) ((-796 . -779) 70328) ((-644 . -1017) T) ((-644 . -23) T) ((-584 . -1005) 70306) ((-572 . -554) 70281) ((-572 . -1005) T) ((-530 . -1115) T) ((-481 . -1115) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 70233) ((-323 . -650) 70185) ((-157 . -969) 70117) ((-309 . -969) 70101) ((-103 . -650) 70051) ((-157 . -106) 69962) ((-315 . -650) 69914) ((-309 . -106) 69893) ((-247 . -1005) T) ((-246 . -1005) T) ((-245 . -1005) T) ((-244 . -1005) T) ((-634 . -963) T) ((-243 . -1005) T) ((-242 . -1005) T) ((-241 . -1005) T) ((-188 . -1005) T) ((-187 . -1005) T) ((-185 . -1005) T) ((-153 . -1100) 69871) ((-153 . -1097) 69849) ((-184 . -1005) T) ((-183 . -1005) T) ((-111 . -963) T) ((-182 . -1005) T) ((-179 . -1005) T) ((-634 . -207) T) ((-178 . -1005) T) ((-177 . -1005) T) ((-176 . -1005) T) ((-175 . -1005) T) ((-174 . -1005) T) ((-173 . -1005) T) ((-172 . -1005) T) ((-171 . -1005) T) ((-170 . -1005) T) ((-169 . -1005) T) ((-214 . -97) 69660) ((-153 . -34) 69638) ((-153 . -91) 69616) ((-591 . -954) 69514) ((-450 . -970) 69445) ((-1018 . -1005) 69256) ((-1043 . -33) T) ((-607 . -456) 69240) ((-71 . -1111) T) ((-100 . -557) 69222) ((-1179 . -557) 69204) ((-351 . -557) 69186) ((-524 . -1100) T) ((-524 . -1097) T) ((-664 . -37) 69035) ((-489 . -557) 69017) ((-483 . -280) 68955) ((-465 . -557) 68937) ((-465 . -558) 68919) ((-1067 . -1052) NIL) ((-944 . -982) 68888) ((-944 . -1005) T) ((-922 . -97) T) ((-890 . -97) T) ((-837 . -97) T) ((-816 . -954) 68865) ((-1043 . -659) T) ((-921 . -585) 68810) ((-445 . -1005) T) ((-432 . -1005) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-975 . -203) 68756) ((-1074 . -37) 68653) ((-790 . -659) T) ((-627 . -843) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1073 . -37) 68494) ((-309 . -963) T) ((-1067 . -37) 68290) ((-989 . -156) T) ((-157 . -963) T) ((-1029 . -37) 68187) ((-645 . -46) 68164) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68138) ((-462 . -55) 68088) ((-321 . -1174) 68065) ((-199 . -421) T) ((-289 . -262) 68016) ((-315 . -156) T) ((-157 . -217) T) ((-1120 . -779) 67915) ((-103 . -156) T) ((-796 . -911) 67899) ((-595 . -1017) T) ((-530 . -333) T) ((-530 . -299) 67886) ((-481 . -299) 67863) ((-481 . -333) T) ((-286 . -278) 67842) ((-283 . -278) T) ((-548 . -779) 67821) ((-1018 . -650) 67763) ((-483 . -254) 67747) ((-595 . -23) T) ((-388 . -205) 67731) ((-283 . -939) NIL) ((-306 . -23) T) ((-98 . -928) 67715) ((-44 . -35) 67694) ((-556 . -1005) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 67632) ((-994 . -1017) T) ((-1178 . -585) 67606) ((-714 . -1017) T) ((-712 . -1017) T) ((-423 . -1017) T) ((-974 . -421) T) ((-875 . -421) 67557) ((-105 . -1005) T) ((-994 . -23) T) ((-749 . -970) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 67508) ((-1060 . -478) 67291) ((-351 . -352) 67270) ((-1078 . -381) 67254) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67187) ((-261 . -262) T) ((-991 . -557) 67169) ((-377 . -832) 67148) ((-49 . -1017) T) ((-941 . -843) T) ((-921 . -659) T) ((-645 . -809) NIL) ((-530 . -1017) T) ((-481 . -1017) T) ((-772 . -585) 67121) ((-1106 . -123) T) ((-1067 . -370) 67073) ((-922 . -280) NIL) ((-747 . -456) 67057) ((-324 . -843) T) ((-1057 . -33) T) ((-377 . -585) 67009) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -954) 66892) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 66863) ((-1041 . -1005) T) ((-1170 . -1169) 66847) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1023 . -278) T) ((-1120 . -911) 66817) ((-47 . -843) T) ((-611 . -456) 66801) ((-224 . -1164) 66771) ((-223 . -1164) 66741) ((-1076 . -779) T) ((-1018 . -156) 66720) ((-1023 . -939) T) ((-960 . -33) T) ((-766 . -134) 66699) ((-766 . -132) 66678) ((-670 . -102) 66662) ((-556 . -124) T) ((-450 . -1005) 66473) ((-1078 . -970) T) ((-795 . -421) T) ((-83 . -1111) T) ((-214 . -37) 66443) ((-128 . -102) 66425) ((-645 . -347) 66409) ((-1023 . -502) T) ((-360 . -969) 66393) ((-1178 . -659) T) ((-1072 . -872) 66363) ((-51 . -557) 66345) ((-1028 . -872) 66312) ((-590 . -381) 66296) ((-1167 . -970) T) ((-562 . -969) 66280) ((-599 . -25) T) ((-599 . -21) T) ((-1059 . -478) NIL) ((-1149 . -97) T) ((-1142 . -97) T) ((-360 . -106) 66259) ((-196 . -227) 66243) ((-1121 . -97) T) ((-967 . -1005) T) ((-922 . -1052) T) ((-967 . -966) 66183) ((-750 . -1005) T) ((-313 . -1115) T) ((-575 . -585) 66167) ((-562 . -106) 66146) ((-551 . -585) 66130) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1005) T) ((-355 . -1005) T) ((-201 . -1005) 66108) ((-584 . -478) 66041) ((-572 . -478) 65885) ((-765 . -963) 65864) ((-583 . -138) 65848) ((-313 . -509) T) ((-645 . -823) 65792) ((-503 . -203) 65742) ((-1149 . -256) 65708) ((-989 . -262) 65659) ((-454 . -777) T) ((-197 . -1017) T) ((-1142 . -256) 65625) ((-1121 . -256) 65591) ((-922 . -37) 65541) ((-192 . -777) T) ((-1106 . -458) 65507) ((-837 . -37) 65459) ((-772 . -726) 65438) ((-772 . -723) 65417) ((-772 . -659) 65396) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 65327) ((-397 . -37) 65311) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 65290) ((-377 . -723) 65269) ((-377 . -659) T) ((-465 . -260) 65244) ((-446 . -969) 65209) ((-595 . -123) T) ((-1018 . -478) 65142) ((-306 . -123) T) ((-153 . -372) 65121) ((-450 . -650) 65063) ((-747 . -258) 65040) ((-446 . -106) 64996) ((-590 . -970) T) ((-1130 . -421) 64927) ((-994 . -123) T) ((-237 . -779) 64906) ((-221 . -779) 64885) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-967 . -650) 64827) ((-562 . -963) T) ((-944 . -478) 64760) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1005) T) ((-355 . -650) 64730) ((-749 . -1005) T) ((-445 . -478) 64663) ((-432 . -478) 64596) ((-422 . -337) 64566) ((-44 . -554) 64545) ((-286 . -273) T) ((-607 . -557) 64507) ((-57 . -779) 64486) ((-1121 . -280) 64371) ((-922 . -370) 64353) ((-747 . -550) 64330) ((-480 . -779) 64309) ((-461 . -779) 64288) ((-39 . -1115) T) ((-917 . -954) 64186) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64048) ((-313 . -299) 64025) ((-313 . -333) T) ((-292 . -293) 64002) ((-289 . -258) 63987) ((-39 . -509) T) ((-349 . -1097) T) ((-349 . -1100) T) ((-952 . -1088) 63962) ((-1085 . -209) 63912) ((-1067 . -205) 63864) ((-300 . -1005) T) ((-349 . -91) T) ((-349 . -34) T) ((-952 . -102) 63810) ((-446 . -963) T) ((-447 . -209) 63760) ((-1060 . -456) 63694) ((-1179 . -969) 63678) ((-351 . -969) 63662) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 63641) ((-647 . -132) 63620) ((-451 . -456) 63604) ((-452 . -305) 63573) ((-1179 . -106) 63552) ((-476 . -1005) T) ((-450 . -156) 63531) ((-917 . -347) 63515) ((-383 . -97) T) ((-351 . -106) 63494) ((-917 . -308) 63478) ((-252 . -902) 63462) ((-251 . -902) 63446) ((-1177 . -557) 63428) ((-1175 . -557) 63410) ((-105 . -478) NIL) ((-1072 . -1133) 63394) ((-783 . -781) 63378) ((-1078 . -1005) T) ((-98 . -1111) T) ((-875 . -872) 63339) ((-749 . -650) 63281) ((-1121 . -1052) NIL) ((-449 . -872) 63226) ((-974 . -130) T) ((-58 . -97) 63204) ((-43 . -557) 63186) ((-76 . -557) 63168) ((-321 . -585) 63113) ((-1167 . -1005) T) ((-475 . -779) T) ((-313 . -1017) T) ((-266 . -1005) T) ((-917 . -823) 63072) ((-266 . -554) 63051) ((-1149 . -37) 62948) ((-1142 . -37) 62789) ((-454 . -970) T) ((-1121 . -37) 62585) ((-192 . -970) T) ((-313 . -23) T) ((-139 . -557) 62567) ((-765 . -727) 62546) ((-765 . -724) 62525) ((-543 . -37) 62498) ((-542 . -37) 62395) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -920) 62361) ((-77 . -557) 62343) ((-645 . -278) 62322) ((-265 . -659) 62225) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62204) ((-1170 . -97) T) ((-39 . -333) T) ((-796 . -134) 62183) ((-796 . -132) 62162) ((-1059 . -456) 62144) ((-1179 . -963) T) ((-450 . -478) 62077) ((-1047 . -1111) T) ((-886 . -557) 62059) ((-584 . -456) 62043) ((-572 . -456) 61974) ((-747 . -557) 61726) ((-47 . -27) T) ((-1078 . -650) 61623) ((-590 . -1005) T) ((-406 . -334) 61597) ((-1007 . -97) T) ((-748 . -280) 61584) ((-789 . -1005) T) ((-1175 . -352) 61556) ((-967 . -478) 61489) ((-1060 . -258) 61465) ((-214 . -205) 61435) ((-1167 . -650) 61405) ((-749 . -156) 61384) ((-201 . -478) 61317) ((-562 . -727) 61296) ((-562 . -724) 61275) ((-1109 . -557) 61187) ((-196 . -1111) T) ((-611 . -557) 61119) ((-1057 . -928) 61103) ((-321 . -659) T) ((-866 . -97) 61053) ((-1121 . -370) 61005) ((-1018 . -456) 60989) ((-58 . -280) 60927) ((-301 . -97) T) ((-1106 . -21) T) ((-1106 . -25) T) ((-39 . -1017) T) ((-644 . -21) T) ((-567 . -557) 60909) ((-479 . -293) 60888) ((-644 . -25) T) ((-103 . -258) NIL) ((-844 . -1017) T) ((-39 . -23) T) ((-703 . -1017) T) ((-517 . -1115) T) ((-460 . -1115) T) ((-289 . -557) 60870) ((-922 . -205) 60852) ((-153 . -150) 60836) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1141 . -134) 60815) ((-1060 . -550) 60791) ((-1141 . -132) 60770) ((-944 . -456) 60754) ((-1120 . -132) 60679) ((-1120 . -134) 60604) ((-1170 . -1176) 60583) ((-445 . -456) 60567) ((-432 . -456) 60551) ((-486 . -33) T) ((-590 . -650) 60521) ((-599 . -779) 60500) ((-1078 . -156) 60451) ((-335 . -97) T) ((-214 . -212) 60430) ((-224 . -97) T) ((-223 . -97) T) ((-1130 . -872) 60400) ((-104 . -97) T) ((-219 . -779) 60379) ((-748 . -37) 60228) ((-44 . -478) 60020) ((-1059 . -258) 59995) ((-189 . -1005) T) ((-1051 . -1005) T) ((-1051 . -554) 59974) ((-534 . -25) T) ((-534 . -21) T) ((-1007 . -280) 59912) ((-885 . -381) 59896) ((-632 . -1115) T) ((-572 . -258) 59871) ((-994 . -579) 59819) ((-714 . -579) 59767) ((-712 . -579) 59715) ((-313 . -123) T) ((-261 . -557) 59697) ((-632 . -509) T) ((-828 . -1005) T) ((-794 . -1017) T) ((-423 . -579) 59645) ((-828 . -826) 59629) ((-349 . -421) T) ((-454 . -1005) T) ((-634 . -585) 59616) ((-866 . -280) 59554) ((-192 . -1005) T) ((-286 . -843) 59533) ((-283 . -843) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 59520) ((-443 . -132) 59499) ((-388 . -381) 59483) ((-443 . -134) 59462) ((-105 . -456) 59444) ((-2 . -557) 59426) ((-1059 . -19) 59408) ((-1059 . -550) 59383) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1045) T) ((-1018 . -258) 59360) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1170 . -37) 59330) ((-1043 . -1111) T) ((-572 . -550) 59305) ((-994 . -25) T) ((-994 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1115) T) ((-885 . -970) T) ((-564 . -509) T) ((-668 . -970) T) ((-648 . -970) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -969) 59289) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1043 . -954) 59187) ((-749 . -262) 59166) ((-755 . -1005) T) ((-607 . -106) 59145) ((-266 . -478) 58937) ((-1177 . -969) 58921) ((-1175 . -969) 58905) ((-224 . -280) 58843) ((-223 . -280) 58781) ((-1124 . -97) 58759) ((-1060 . -558) NIL) ((-1060 . -557) 58741) ((-1141 . -1097) 58707) ((-1141 . -1100) 58673) ((-1121 . -205) 58625) ((-1120 . -1097) 58591) ((-1120 . -1100) 58557) ((-1043 . -347) 58541) ((-1023 . -752) T) ((-1023 . -843) T) ((-1018 . -550) 58518) ((-989 . -558) 58502) ((-451 . -557) 58434) ((-747 . -260) 58411) ((-552 . -138) 58358) ((-388 . -970) T) ((-454 . -650) 58308) ((-450 . -456) 58292) ((-297 . -779) 58271) ((-309 . -585) 58245) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58195) ((-153 . -657) 58166) ((-157 . -585) 58098) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58048) ((-989 . -557) 58030) ((-973 . -557) 58012) ((-912 . -97) T) ((-787 . -97) T) ((-731 . -381) 57976) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -818) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1017) T) ((-517 . -1017) T) ((-460 . -1017) T) ((-634 . -659) T) ((-329 . -557) 57958) ((-323 . -557) 57940) ((-315 . -557) 57922) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 57852) ((-103 . -557) 57834) ((-187 . -818) T) ((-880 . -138) 57818) ((-1141 . -91) 57784) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1141 . -34) 57750) ((-967 . -456) 57734) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1120 . -91) 57700) ((-1120 . -34) 57666) ((-1072 . -97) T) ((-1028 . -97) T) ((-783 . -97) T) ((-201 . -456) 57650) ((-1177 . -106) 57629) ((-1175 . -106) 57608) ((-43 . -969) 57592) ((-1130 . -1133) 57576) ((-784 . -781) 57560) ((-1078 . -262) 57539) ((-105 . -258) 57514) ((-1043 . -823) 57473) ((-43 . -106) 57452) ((-607 . -963) T) ((-1081 . -1152) T) ((-1059 . -558) NIL) ((-1059 . -557) 57434) ((-975 . -554) 57409) ((-975 . -1005) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 57388) ((-139 . -969) 57372) ((-524 . -507) 57356) ((-325 . -134) 57335) ((-325 . -132) 57286) ((-322 . -134) 57265) ((-636 . -1005) T) ((-322 . -132) 57216) ((-314 . -134) 57195) ((-314 . -132) 57146) ((-237 . -132) 57125) ((-237 . -134) 57104) ((-224 . -37) 57074) ((-221 . -134) 57053) ((-112 . -333) T) ((-221 . -132) 57032) ((-223 . -37) 57002) ((-139 . -106) 56981) ((-921 . -954) 56871) ((-1067 . -777) NIL) ((-627 . -1115) T) ((-731 . -970) T) ((-632 . -1017) T) ((-1177 . -963) T) ((-1175 . -963) T) ((-1057 . -1111) T) ((-921 . -347) 56848) ((-833 . -132) T) ((-833 . -134) 56830) ((-794 . -123) T) ((-747 . -969) 56728) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 56660) ((-584 . -558) 56621) ((-572 . -558) NIL) ((-572 . -557) 56603) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1100) 56569) ((-443 . -1097) 56535) ((-247 . -557) 56517) ((-246 . -557) 56499) ((-245 . -557) 56481) ((-244 . -557) 56463) ((-243 . -557) 56445) ((-465 . -588) 56427) ((-242 . -557) 56409) ((-309 . -659) T) ((-241 . -557) 56391) ((-105 . -19) 56373) ((-157 . -659) T) ((-465 . -343) 56355) ((-188 . -557) 56337) ((-483 . -1050) 56321) ((-465 . -118) T) ((-105 . -550) 56296) ((-187 . -557) 56278) ((-443 . -34) 56244) ((-443 . -91) 56210) ((-185 . -557) 56192) ((-184 . -557) 56174) ((-183 . -557) 56156) ((-182 . -557) 56138) ((-179 . -557) 56120) ((-178 . -557) 56102) ((-177 . -557) 56084) ((-176 . -557) 56066) ((-175 . -557) 56048) ((-174 . -557) 56030) ((-173 . -557) 56012) ((-493 . -1008) 55964) ((-172 . -557) 55946) ((-171 . -557) 55928) ((-44 . -456) 55865) ((-170 . -557) 55847) ((-169 . -557) 55829) ((-747 . -106) 55720) ((-583 . -97) 55670) ((-450 . -258) 55647) ((-1018 . -557) 55399) ((-1006 . -1005) T) ((-960 . -1111) T) ((-564 . -1017) T) ((-1178 . -954) 55383) ((-1072 . -280) 55370) ((-1028 . -280) 55357) ((-112 . -1017) T) ((-751 . -97) T) ((-564 . -23) T) ((-1051 . -478) 55149) ((-356 . -97) T) ((-294 . -97) T) ((-921 . -823) 55101) ((-885 . -1005) T) ((-139 . -963) T) ((-112 . -23) T) ((-664 . -381) 55085) ((-668 . -1005) T) ((-648 . -1005) T) ((-636 . -124) T) ((-422 . -1005) T) ((-286 . -400) 55069) ((-377 . -1111) T) ((-944 . -558) 55030) ((-941 . -1115) T) ((-199 . -97) T) ((-944 . -557) 54992) ((-748 . -205) 54976) ((-941 . -509) T) ((-765 . -585) 54949) ((-324 . -1115) T) ((-445 . -557) 54911) ((-445 . -558) 54872) ((-432 . -558) 54833) ((-432 . -557) 54795) ((-377 . -807) 54779) ((-289 . -969) 54614) ((-377 . -809) 54539) ((-772 . -954) 54437) ((-454 . -478) NIL) ((-450 . -550) 54414) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1005) T) ((-377 . -954) 54281) ((-289 . -106) 54102) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1115) T) ((-747 . -963) 54033) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1060 . -260) 54009) ((-1072 . -1052) 53987) ((-286 . -27) 53966) ((-974 . -97) T) ((-747 . -207) 53919) ((-214 . -777) 53898) ((-875 . -97) T) ((-646 . -97) T) ((-266 . -456) 53835) ((-449 . -97) T) ((-664 . -970) T) ((-556 . -557) 53817) ((-556 . -558) 53678) ((-377 . -347) 53662) ((-377 . -308) 53646) ((-1072 . -37) 53475) ((-1028 . -37) 53324) ((-783 . -37) 53294) ((-360 . -585) 53278) ((-583 . -280) 53216) ((-885 . -650) 53113) ((-196 . -102) 53097) ((-44 . -258) 53022) ((-668 . -650) 52992) ((-562 . -585) 52966) ((-282 . -1005) T) ((-261 . -969) 52953) ((-105 . -557) 52935) ((-105 . -558) 52917) ((-422 . -650) 52887) ((-748 . -226) 52826) ((-623 . -1005) 52804) ((-503 . -1005) T) ((-1074 . -970) T) ((-1073 . -970) T) ((-261 . -106) 52789) ((-1067 . -970) T) ((-1029 . -970) T) ((-503 . -554) 52768) ((-922 . -777) T) ((-201 . -621) 52726) ((-627 . -1017) T) ((-1106 . -673) 52702) ((-289 . -963) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -823) 52661) ((-66 . -1111) T) ((-765 . -726) 52640) ((-388 . -650) 52614) ((-731 . -1005) T) ((-765 . -723) 52593) ((-632 . -123) T) ((-645 . -843) 52572) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 52551) ((-289 . -207) 52503) ((-289 . -217) 52482) ((-192 . -262) T) ((-941 . -333) T) ((-1141 . -421) 52461) ((-1120 . -421) 52440) ((-324 . -299) 52417) ((-324 . -333) T) ((-1041 . -557) 52399) ((-44 . -1145) 52349) ((-795 . -97) T) ((-583 . -254) 52333) ((-632 . -972) T) ((-446 . -585) 52298) ((-437 . -1005) T) ((-44 . -550) 52223) ((-1059 . -260) 52198) ((-39 . -579) 52137) ((-47 . -333) T) ((-1011 . -557) 52119) ((-994 . -779) 52098) ((-572 . -260) 52073) ((-714 . -779) 52052) ((-712 . -779) 52031) ((-450 . -557) 51783) ((-214 . -381) 51752) ((-875 . -280) 51739) ((-423 . -779) 51718) ((-63 . -1111) T) ((-564 . -123) T) ((-449 . -280) 51705) ((-975 . -478) 51549) ((-261 . -963) T) ((-112 . -123) T) ((-422 . -694) T) ((-885 . -156) 51500) ((-989 . -969) 51410) ((-562 . -726) 51389) ((-540 . -1005) T) ((-562 . -723) 51368) ((-562 . -659) T) ((-266 . -258) 51347) ((-265 . -1111) T) ((-967 . -557) 51309) ((-967 . -558) 51270) ((-941 . -1017) T) ((-153 . -97) T) ((-248 . -779) T) ((-1066 . -1005) T) ((-750 . -557) 51252) ((-1018 . -260) 51229) ((-1007 . -203) 51213) ((-921 . -278) T) ((-731 . -650) 51197) ((-329 . -969) 51149) ((-324 . -1017) T) ((-323 . -969) 51101) ((-384 . -557) 51083) ((-355 . -557) 51065) ((-315 . -969) 51017) ((-201 . -557) 50949) ((-989 . -106) 50845) ((-941 . -23) T) ((-103 . -969) 50795) ((-821 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 50774) ((-388 . -156) T) ((-329 . -106) 50712) ((-323 . -106) 50650) ((-315 . -106) 50588) ((-224 . -205) 50558) ((-223 . -205) 50528) ((-324 . -23) T) ((-69 . -1111) T) ((-199 . -37) 50493) ((-103 . -106) 50427) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50405) ((-47 . -1017) T) ((-844 . -25) T) ((-703 . -25) T) ((-1051 . -456) 50342) ((-452 . -1005) T) ((-1179 . -585) 50316) ((-1130 . -97) T) ((-784 . -97) T) ((-214 . -970) 50247) ((-974 . -1052) T) ((-886 . -724) 50200) ((-351 . -585) 50184) ((-47 . -23) T) ((-886 . -727) 50137) ((-747 . -727) 50088) ((-747 . -724) 50039) ((-266 . -550) 50018) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 49975) ((-590 . -258) 49954) ((-107 . -598) T) ((-74 . -1111) T) ((-974 . -37) 49941) ((-601 . -344) 49920) ((-875 . -37) 49769) ((-664 . -1005) T) ((-449 . -37) 49618) ((-84 . -1111) T) ((-524 . -256) T) ((-1121 . -777) NIL) ((-1074 . -1005) T) ((-1073 . -1005) T) ((-1067 . -1005) T) ((-321 . -954) 49595) ((-989 . -963) T) ((-922 . -970) T) ((-44 . -557) 49577) ((-44 . -558) NIL) ((-837 . -970) T) ((-749 . -557) 49559) ((-1048 . -97) 49537) ((-989 . -217) 49488) ((-397 . -970) T) ((-329 . -963) T) ((-323 . -963) T) ((-335 . -334) 49465) ((-315 . -963) T) ((-224 . -212) 49444) ((-223 . -212) 49423) ((-104 . -334) 49397) ((-989 . -207) 49322) ((-1029 . -1005) T) ((-265 . -823) 49281) ((-103 . -963) T) ((-627 . -123) T) ((-388 . -478) 49123) ((-329 . -207) 49102) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49081) ((-323 . -217) T) ((-315 . -207) 49060) ((-315 . -217) T) ((-153 . -280) 49025) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49000) ((-1018 . -969) 48898) ((-795 . -1052) NIL) ((-300 . -557) 48880) ((-377 . -939) 48859) ((-1018 . -106) 48750) ((-406 . -1005) T) ((-1179 . -659) T) ((-61 . -557) 48732) ((-795 . -37) 48677) ((-486 . -1111) T) ((-548 . -138) 48661) ((-476 . -557) 48643) ((-1130 . -280) 48630) ((-664 . -650) 48479) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48461) ((-460 . -579) 48421) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48372) ((-483 . -1005) 48322) ((-221 . -421) 48273) ((-1051 . -258) 48252) ((-1078 . -557) 48234) ((-623 . -478) 48167) ((-885 . -262) 48146) ((-503 . -478) 47938) ((-1072 . -205) 47922) ((-153 . -1052) 47901) ((-1167 . -557) 47883) ((-1074 . -650) 47780) ((-1073 . -650) 47621) ((-815 . -97) T) ((-1067 . -650) 47417) ((-1029 . -650) 47314) ((-1057 . -610) 47298) ((-325 . -372) 47249) ((-322 . -372) 47200) ((-314 . -372) 47151) ((-941 . -123) T) ((-731 . -478) 47063) ((-266 . -558) NIL) ((-266 . -557) 47045) ((-833 . -421) T) ((-886 . -338) 46998) ((-747 . -338) 46977) ((-474 . -473) 46956) ((-472 . -473) 46935) ((-454 . -258) NIL) ((-450 . -260) 46912) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1017) T) ((-153 . -37) 46740) ((-1141 . -892) 46703) ((-1048 . -280) 46641) ((-1120 . -892) 46611) ((-833 . -372) T) ((-1018 . -963) 46542) ((-1143 . -509) T) ((-1051 . -550) 46521) ((-107 . -779) T) ((-975 . -456) 46452) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1130 . -1052) 46430) ((-1018 . -207) 46383) ((-47 . -123) T) ((-1093 . -97) T) ((-214 . -1005) 46194) ((-795 . -370) 46171) ((-995 . -97) T) ((-985 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1130 . -37) 46000) ((-784 . -37) 45970) ((-664 . -156) 45881) ((-590 . -557) 45863) ((-524 . -37) 45850) ((-880 . -97) 45800) ((-789 . -557) 45782) ((-789 . -558) 45704) ((-540 . -478) NIL) ((-1149 . -970) T) ((-1142 . -970) T) ((-1121 . -970) T) ((-543 . -970) T) ((-542 . -970) T) ((-1183 . -1017) T) ((-1074 . -156) 45655) ((-1073 . -156) 45586) ((-1067 . -156) 45517) ((-1029 . -156) 45468) ((-922 . -1005) T) ((-890 . -1005) T) ((-837 . -1005) T) ((-1106 . -134) 45447) ((-731 . -729) 45431) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45408) ((-634 . -809) 45390) ((-397 . -1005) T) ((-286 . -1115) 45369) ((-283 . -1115) T) ((-153 . -370) 45353) ((-1106 . -132) 45332) ((-443 . -892) 45295) ((-70 . -557) 45277) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45256) ((-634 . -954) 45238) ((-283 . -509) T) ((-1183 . -23) T) ((-125 . -954) 45220) ((-450 . -969) 45118) ((-44 . -260) 45043) ((-214 . -650) 44985) ((-450 . -106) 44876) ((-998 . -97) 44854) ((-951 . -97) T) ((-583 . -760) 44833) ((-664 . -478) 44776) ((-967 . -969) 44760) ((-564 . -21) T) ((-564 . -25) T) ((-975 . -258) 44735) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 44709) ((-355 . -969) 44693) ((-967 . -106) 44672) ((-748 . -381) 44656) ((-112 . -25) T) ((-87 . -557) 44638) ((-112 . -21) T) ((-552 . -280) 44433) ((-444 . -280) 44237) ((-1051 . -558) NIL) ((-355 . -106) 44216) ((-349 . -97) T) ((-189 . -557) 44198) ((-1051 . -557) 44180) ((-922 . -650) 44130) ((-1067 . -478) 43899) ((-837 . -650) 43851) ((-1029 . -478) 43821) ((-321 . -278) T) ((-1085 . -138) 43771) ((-880 . -280) 43709) ((-766 . -97) T) ((-397 . -650) 43693) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 43643) ((-1141 . -1140) 43622) ((-1023 . -1115) T) ((-309 . -954) 43589) ((-1141 . -1135) 43559) ((-1141 . -1138) 43543) ((-1120 . -1119) 43522) ((-78 . -557) 43504) ((-828 . -557) 43486) ((-1120 . -1135) 43463) ((-1023 . -509) T) ((-844 . -779) T) ((-454 . -558) 43393) ((-454 . -557) 43375) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1120 . -1117) 43359) ((-1143 . -1017) T) ((-192 . -558) 43289) ((-192 . -557) 43271) ((-975 . -550) 43246) ((-57 . -138) 43230) ((-480 . -138) 43214) ((-461 . -138) 43198) ((-329 . -1174) 43182) ((-323 . -1174) 43166) ((-315 . -1174) 43150) ((-286 . -333) 43129) ((-283 . -333) T) ((-450 . -963) 43060) ((-627 . -579) 43042) ((-1177 . -585) 43016) ((-1175 . -585) 42990) ((-1143 . -23) T) ((-623 . -456) 42974) ((-62 . -557) 42956) ((-1018 . -727) 42907) ((-1018 . -724) 42858) ((-503 . -456) 42795) ((-607 . -33) T) ((-450 . -207) 42748) ((-266 . -260) 42727) ((-214 . -156) 42706) ((-748 . -970) T) ((-43 . -585) 42664) ((-989 . -338) 42615) ((-664 . -262) 42546) ((-483 . -478) 42479) ((-749 . -969) 42430) ((-994 . -132) 42409) ((-329 . -338) 42388) ((-323 . -338) 42367) ((-315 . -338) 42346) ((-994 . -134) 42325) ((-795 . -205) 42302) ((-749 . -106) 42244) ((-714 . -132) 42223) ((-714 . -134) 42202) ((-237 . -872) 42169) ((-224 . -777) 42148) ((-221 . -872) 42093) ((-223 . -777) 42072) ((-712 . -132) 42051) ((-712 . -134) 42030) ((-139 . -585) 42004) ((-423 . -134) 41983) ((-423 . -132) 41962) ((-607 . -659) T) ((-755 . -557) 41944) ((-1149 . -1005) T) ((-1142 . -1005) T) ((-1121 . -1005) T) ((-1106 . -1100) 41910) ((-1106 . -1097) 41876) ((-1074 . -262) 41855) ((-1073 . -262) 41806) ((-1067 . -262) 41757) ((-1029 . -262) 41736) ((-309 . -823) 41717) ((-922 . -156) T) ((-837 . -156) T) ((-543 . -1005) T) ((-542 . -1005) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1138) 41701) ((-443 . -1135) 41671) ((-388 . -258) 41599) ((-286 . -1017) 41449) ((-283 . -1017) T) ((-1106 . -34) 41415) ((-1106 . -91) 41381) ((-82 . -557) 41363) ((-89 . -97) 41341) ((-1183 . -123) T) ((-530 . -132) T) ((-530 . -134) 41323) ((-481 . -134) 41305) ((-481 . -132) T) ((-286 . -23) 41158) ((-39 . -312) 41132) ((-283 . -23) T) ((-1059 . -588) 41114) ((-747 . -585) 40964) ((-1170 . -970) T) ((-1059 . -343) 40946) ((-153 . -205) 40930) ((-540 . -456) 40912) ((-214 . -478) 40845) ((-1177 . -659) T) ((-1175 . -659) T) ((-1078 . -969) 40728) ((-1078 . -106) 40597) ((-749 . -963) T) ((-479 . -97) T) ((-47 . -579) 40557) ((-474 . -97) T) ((-472 . -97) T) ((-1167 . -969) 40527) ((-951 . -37) 40511) ((-749 . -207) T) ((-749 . -217) 40490) ((-503 . -258) 40469) ((-1167 . -106) 40434) ((-1130 . -205) 40418) ((-1149 . -650) 40315) ((-975 . -558) NIL) ((-975 . -557) 40297) ((-1142 . -650) 40138) ((-1121 . -650) 39934) ((-921 . -843) T) ((-636 . -557) 39903) ((-139 . -659) T) ((-1018 . -338) 39882) ((-922 . -478) NIL) ((-224 . -381) 39851) ((-223 . -381) 39820) ((-941 . -25) T) ((-941 . -21) T) ((-543 . -650) 39793) ((-542 . -650) 39690) ((-731 . -258) 39648) ((-121 . -97) 39626) ((-765 . -954) 39524) ((-153 . -760) 39503) ((-289 . -585) 39400) ((-747 . -33) T) ((-647 . -97) T) ((-1023 . -1017) T) ((-943 . -1111) T) ((-349 . -37) 39365) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1164) 39349) ((-322 . -1164) 39333) ((-314 . -1164) 39317) ((-153 . -319) 39296) ((-517 . -779) T) ((-460 . -779) T) ((-1023 . -23) T) ((-85 . -557) 39278) ((-634 . -278) T) ((-766 . -37) 39248) ((-759 . -37) 39218) ((-1143 . -123) T) ((-1051 . -260) 39197) ((-886 . -725) 39150) ((-886 . -726) 39103) ((-747 . -723) 39082) ((-111 . -278) T) ((-89 . -280) 39020) ((-611 . -33) T) ((-503 . -550) 38999) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 38950) ((-747 . -725) 38929) ((-634 . -939) T) ((-590 . -969) 38913) ((-886 . -659) 38812) ((-747 . -659) 38743) ((-886 . -442) 38696) ((-450 . -727) 38647) ((-450 . -724) 38598) ((-833 . -1164) 38585) ((-1078 . -963) T) ((-590 . -106) 38564) ((-1078 . -296) 38541) ((-1098 . -97) 38519) ((-1006 . -557) 38501) ((-634 . -502) T) ((-748 . -1005) T) ((-1167 . -963) T) ((-383 . -1005) T) ((-224 . -970) 38432) ((-223 . -970) 38363) ((-261 . -585) 38350) ((-540 . -258) 38325) ((-623 . -621) 38283) ((-885 . -557) 38265) ((-796 . -97) T) ((-668 . -557) 38247) ((-648 . -557) 38229) ((-1149 . -156) 38180) ((-1142 . -156) 38111) ((-1121 . -156) 38042) ((-632 . -779) T) ((-922 . -262) T) ((-422 . -557) 38024) ((-567 . -659) T) ((-58 . -1005) 38002) ((-219 . -138) 37986) ((-837 . -262) T) ((-941 . -930) T) ((-567 . -442) T) ((-645 . -1115) 37965) ((-543 . -156) 37944) ((-542 . -156) 37895) ((-1157 . -779) 37874) ((-645 . -509) 37785) ((-377 . -843) T) ((-377 . -752) 37764) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 37746) ((-388 . -558) 37654) ((-583 . -1050) 37638) ((-105 . -588) 37620) ((-121 . -280) 37558) ((-105 . -343) 37540) ((-157 . -278) T) ((-368 . -1111) T) ((-286 . -123) 37412) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37396) ((-591 . -1017) T) ((-540 . -19) 37378) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1005) T) ((-540 . -550) 37353) ((-446 . -954) 37313) ((-590 . -963) T) ((-591 . -23) T) ((-1170 . -1005) T) ((-748 . -650) 37162) ((-112 . -779) NIL) ((-1072 . -381) 37146) ((-1028 . -381) 37130) ((-783 . -381) 37114) ((-1141 . -97) T) ((-1121 . -478) 36883) ((-1098 . -280) 36821) ((-282 . -557) 36803) ((-1120 . -97) T) ((-1007 . -1005) T) ((-1074 . -258) 36788) ((-1073 . -258) 36773) ((-261 . -659) T) ((-103 . -832) NIL) ((-623 . -557) 36705) ((-623 . -558) 36666) ((-989 . -585) 36576) ((-547 . -557) 36558) ((-503 . -558) NIL) ((-503 . -557) 36540) ((-1067 . -258) 36388) ((-454 . -969) 36338) ((-644 . -421) T) ((-475 . -473) 36317) ((-471 . -473) 36296) ((-192 . -969) 36246) ((-329 . -585) 36198) ((-323 . -585) 36150) ((-199 . -777) T) ((-315 . -585) 36102) ((-548 . -97) 36052) ((-450 . -338) 36031) ((-103 . -585) 35981) ((-454 . -106) 35915) ((-214 . -456) 35899) ((-313 . -134) 35881) ((-313 . -132) T) ((-153 . -340) 35852) ((-866 . -1155) 35836) ((-192 . -106) 35770) ((-796 . -280) 35735) ((-866 . -1005) 35685) ((-731 . -558) 35646) ((-731 . -557) 35628) ((-651 . -97) T) ((-301 . -1005) T) ((-1023 . -123) T) ((-647 . -37) 35598) ((-286 . -458) 35577) ((-465 . -1111) T) ((-1141 . -256) 35543) ((-1120 . -256) 35509) ((-297 . -138) 35493) ((-975 . -260) 35468) ((-1170 . -650) 35438) ((-1060 . -33) T) ((-1179 . -954) 35415) ((-437 . -557) 35397) ((-451 . -33) T) ((-351 . -954) 35381) ((-1072 . -970) T) ((-1028 . -970) T) ((-783 . -970) T) ((-974 . -777) T) ((-748 . -156) 35292) ((-483 . -258) 35269) ((-112 . -911) 35246) ((-1149 . -262) 35225) ((-1093 . -334) 35199) ((-995 . -239) 35183) ((-443 . -97) T) ((-335 . -1005) T) ((-224 . -1005) T) ((-223 . -1005) T) ((-1142 . -262) 35134) ((-104 . -1005) T) ((-1121 . -262) 35085) ((-796 . -1052) 35063) ((-1074 . -920) 35029) ((-552 . -334) 34969) ((-1073 . -920) 34935) ((-552 . -203) 34882) ((-540 . -557) 34864) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 34814) ((-454 . -963) T) ((-1067 . -920) 34780) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -963) T) ((-1029 . -920) 34746) ((-989 . -659) T) ((-645 . -1017) T) ((-543 . -262) 34725) ((-542 . -262) 34704) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1066 . -557) 34686) ((-796 . -37) 34638) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1145) 34622) ((-103 . -659) T) ((-645 . -23) T) ((-1183 . -25) T) ((-443 . -256) 34588) ((-1183 . -21) T) ((-1120 . -280) 34527) ((-1076 . -97) T) ((-39 . -132) 34499) ((-39 . -134) 34471) ((-483 . -550) 34448) ((-1018 . -585) 34298) ((-548 . -280) 34236) ((-44 . -588) 34186) ((-44 . -603) 34136) ((-44 . -343) 34086) ((-1059 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34068) ((-214 . -258) 34045) ((-584 . -33) T) ((-572 . -33) T) ((-994 . -421) 33996) ((-748 . -478) 33870) ((-714 . -421) 33801) ((-712 . -421) 33752) ((-423 . -421) 33703) ((-875 . -381) 33687) ((-664 . -557) 33669) ((-224 . -650) 33611) ((-223 . -650) 33553) ((-664 . -558) 33414) ((-449 . -381) 33398) ((-309 . -273) T) ((-321 . -843) T) ((-918 . -97) 33376) ((-941 . -779) T) ((-58 . -478) 33309) ((-1120 . -1052) 33261) ((-922 . -258) NIL) ((-199 . -970) T) ((-349 . -760) T) ((-1018 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1124 . -999) 33245) ((-1124 . -1005) 33223) ((-214 . -550) 33200) ((-1124 . -1001) 33157) ((-1074 . -557) 33139) ((-1073 . -557) 33121) ((-1067 . -557) 33103) ((-1067 . -558) NIL) ((-1029 . -557) 33085) ((-796 . -370) 33069) ((-493 . -97) T) ((-1141 . -37) 32910) ((-1120 . -37) 32724) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1143 . -21) T) ((-1143 . -25) T) ((-1018 . -723) 32703) ((-1018 . -726) 32654) ((-1018 . -725) 32633) ((-912 . -1005) T) ((-944 . -33) T) ((-787 . -1005) T) ((-1153 . -97) T) ((-1018 . -659) 32564) ((-601 . -97) T) ((-503 . -260) 32543) ((-1085 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-974 . -970) T) ((-875 . -970) T) ((-286 . -579) 32451) ((-283 . -579) 32412) ((-449 . -970) T) ((-447 . -97) T) ((-406 . -557) 32394) ((-1072 . -1005) T) ((-1028 . -1005) T) ((-783 . -1005) T) ((-1042 . -97) T) ((-748 . -262) 32325) ((-885 . -969) 32208) ((-446 . -939) T) ((-668 . -969) 32178) ((-422 . -969) 32148) ((-1048 . -1024) 32132) ((-1007 . -478) 32065) ((-885 . -106) 31934) ((-833 . -97) T) ((-668 . -106) 31899) ((-57 . -97) 31849) ((-483 . -558) 31810) ((-483 . -557) 31722) ((-482 . -97) 31700) ((-480 . -97) 31650) ((-462 . -97) 31628) ((-461 . -97) 31578) ((-422 . -106) 31541) ((-224 . -156) 31520) ((-223 . -156) 31499) ((-388 . -969) 31473) ((-1106 . -892) 31435) ((-917 . -1017) T) ((-866 . -478) 31368) ((-454 . -727) T) ((-443 . -37) 31209) ((-388 . -106) 31176) ((-454 . -724) T) ((-918 . -280) 31114) ((-192 . -727) T) ((-192 . -724) T) ((-917 . -23) T) ((-645 . -123) T) ((-1120 . -370) 31084) ((-286 . -25) 30937) ((-153 . -381) 30921) ((-286 . -21) 30793) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30643) ((-795 . -970) T) ((-540 . -260) 30618) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1072 . -650) 30447) ((-1028 . -650) 30296) ((-1023 . -579) 30278) ((-783 . -650) 30248) ((-607 . -1111) T) ((-1 . -97) T) ((-214 . -557) 30000) ((-1130 . -381) 29984) ((-1085 . -280) 29788) ((-885 . -963) T) ((-668 . -963) T) ((-648 . -963) T) ((-583 . -1005) 29738) ((-967 . -585) 29722) ((-784 . -381) 29706) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 29693) ((-237 . -280) 29680) ((-885 . -296) 29659) ((-355 . -585) 29643) ((-447 . -280) 29447) ((-224 . -478) 29380) ((-607 . -954) 29278) ((-223 . -478) 29211) ((-1042 . -280) 29137) ((-751 . -1005) T) ((-731 . -969) 29121) ((-1149 . -258) 29106) ((-1142 . -258) 29091) ((-1121 . -258) 28939) ((-356 . -1005) T) ((-294 . -1005) T) ((-388 . -963) T) ((-153 . -970) T) ((-57 . -280) 28877) ((-731 . -106) 28856) ((-542 . -258) 28841) ((-482 . -280) 28779) ((-480 . -280) 28717) ((-462 . -280) 28655) ((-461 . -280) 28593) ((-388 . -207) 28572) ((-450 . -33) T) ((-922 . -558) 28502) ((-199 . -1005) T) ((-922 . -557) 28484) ((-890 . -557) 28466) ((-890 . -558) 28441) ((-837 . -557) 28423) ((-632 . -134) T) ((-634 . -843) T) ((-634 . -752) T) ((-397 . -557) 28405) ((-1023 . -21) T) ((-1023 . -25) T) ((-607 . -347) 28389) ((-111 . -843) T) ((-796 . -205) 28373) ((-76 . -1111) T) ((-121 . -120) 28357) ((-967 . -33) T) ((-1177 . -954) 28331) ((-1175 . -954) 28288) ((-1130 . -970) T) ((-784 . -970) T) ((-450 . -723) 28267) ((-325 . -1052) 28246) ((-322 . -1052) 28225) ((-314 . -1052) 28204) ((-450 . -726) 28155) ((-450 . -725) 28134) ((-201 . -33) T) ((-450 . -659) 28065) ((-58 . -456) 28049) ((-524 . -970) T) ((-1072 . -156) 27940) ((-1028 . -156) 27851) ((-974 . -1005) T) ((-994 . -872) 27798) ((-875 . -1005) T) ((-749 . -585) 27749) ((-714 . -872) 27719) ((-646 . -1005) T) ((-712 . -872) 27686) ((-480 . -254) 27670) ((-607 . -823) 27629) ((-449 . -1005) T) ((-423 . -872) 27596) ((-77 . -1111) T) ((-325 . -37) 27561) ((-322 . -37) 27526) ((-314 . -37) 27491) ((-237 . -37) 27340) ((-221 . -37) 27189) ((-833 . -1052) T) ((-564 . -134) 27168) ((-564 . -132) 27147) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -963) T) ((-313 . -421) T) ((-1149 . -920) 27113) ((-1142 . -920) 27079) ((-1121 . -920) 27045) ((-833 . -37) 27010) ((-199 . -650) 26975) ((-39 . -379) 26947) ((-289 . -46) 26917) ((-917 . -123) T) ((-747 . -1111) T) ((-157 . -843) T) ((-313 . -372) T) ((-483 . -260) 26894) ((-44 . -33) T) ((-747 . -954) 26723) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1007 . -456) 26707) ((-1120 . -205) 26677) ((-611 . -1111) T) ((-219 . -97) 26627) ((-795 . -1005) T) ((-1078 . -585) 26552) ((-974 . -650) 26539) ((-664 . -969) 26382) ((-1072 . -478) 26330) ((-875 . -650) 26179) ((-1028 . -478) 26131) ((-449 . -650) 25980) ((-65 . -557) 25962) ((-664 . -106) 25791) ((-866 . -456) 25775) ((-1167 . -585) 25735) ((-749 . -659) T) ((-1074 . -969) 25618) ((-1073 . -969) 25453) ((-1067 . -969) 25243) ((-1029 . -969) 25126) ((-921 . -1115) T) ((-1000 . -97) 25104) ((-747 . -347) 25074) ((-921 . -509) T) ((-1074 . -106) 24943) ((-1073 . -106) 24764) ((-1067 . -106) 24533) ((-1029 . -106) 24402) ((-1010 . -1008) 24366) ((-349 . -777) T) ((-1149 . -557) 24348) ((-1142 . -557) 24330) ((-1121 . -557) 24312) ((-1121 . -558) NIL) ((-214 . -260) 24289) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1005) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24271) ((-542 . -557) 24253) ((-821 . -1005) T) ((-770 . -1005) T) ((-740 . -1005) T) ((-701 . -1005) T) ((-595 . -781) 24237) ((-612 . -1005) T) ((-747 . -823) 24170) ((-39 . -372) NIL) ((-1023 . -598) T) ((-795 . -650) 24115) ((-224 . -456) 24099) ((-223 . -456) 24083) ((-645 . -579) 24031) ((-590 . -585) 24005) ((-266 . -33) T) ((-664 . -963) T) ((-530 . -1164) 23992) ((-481 . -1164) 23969) ((-1130 . -1005) T) ((-1072 . -262) 23880) ((-1028 . -262) 23811) ((-974 . -156) T) ((-784 . -1005) T) ((-875 . -156) 23722) ((-714 . -1133) 23706) ((-583 . -478) 23639) ((-75 . -557) 23621) ((-664 . -296) 23586) ((-1078 . -659) T) ((-524 . -1005) T) ((-449 . -156) 23497) ((-219 . -280) 23435) ((-1043 . -1017) T) ((-68 . -557) 23417) ((-1167 . -659) T) ((-1074 . -963) T) ((-1073 . -963) T) ((-297 . -97) 23367) ((-1067 . -963) T) ((-1043 . -23) T) ((-1029 . -963) T) ((-89 . -1024) 23351) ((-790 . -1017) T) ((-1074 . -207) 23310) ((-1073 . -217) 23289) ((-1073 . -207) 23241) ((-1067 . -207) 23128) ((-1067 . -217) 23107) ((-289 . -823) 23013) ((-790 . -23) T) ((-153 . -650) 22841) ((-377 . -1115) T) ((-1006 . -338) T) ((-941 . -134) T) ((-921 . -333) T) ((-794 . -421) T) ((-866 . -258) 22818) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 22800) ((-324 . -132) T) ((-1048 . -1005) 22778) ((-422 . -653) T) ((-73 . -557) 22760) ((-109 . -779) T) ((-219 . -254) 22744) ((-214 . -969) 22642) ((-79 . -557) 22624) ((-668 . -338) 22577) ((-1076 . -760) T) ((-670 . -209) 22561) ((-1060 . -1111) T) ((-128 . -209) 22543) ((-214 . -106) 22434) ((-1130 . -650) 22263) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22233) ((-451 . -1111) T) ((-875 . -478) 22180) ((-590 . -659) T) ((-524 . -650) 22167) ((-951 . -970) T) ((-449 . -478) 22110) ((-866 . -19) 22094) ((-866 . -550) 22071) ((-748 . -558) NIL) ((-748 . -557) 22053) ((-922 . -969) 22003) ((-383 . -557) 21985) ((-224 . -258) 21962) ((-223 . -258) 21939) ((-454 . -832) NIL) ((-286 . -29) 21909) ((-103 . -1111) T) ((-921 . -1017) T) ((-192 . -832) NIL) ((-837 . -969) 21861) ((-989 . -954) 21759) ((-922 . -106) 21693) ((-237 . -205) 21677) ((-670 . -628) 21661) ((-397 . -969) 21645) ((-349 . -970) T) ((-921 . -23) T) ((-837 . -106) 21583) ((-627 . -1100) NIL) ((-454 . -585) 21533) ((-103 . -807) 21515) ((-103 . -809) 21497) ((-627 . -1097) NIL) ((-192 . -585) 21447) ((-329 . -954) 21431) ((-323 . -954) 21415) ((-297 . -280) 21353) ((-315 . -954) 21337) ((-199 . -262) T) ((-397 . -106) 21316) ((-58 . -557) 21248) ((-153 . -156) T) ((-1023 . -779) T) ((-103 . -954) 21208) ((-815 . -1005) T) ((-766 . -970) T) ((-759 . -970) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -911) 21169) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -963) 21100) ((-1051 . -33) T) ((-446 . -843) T) ((-917 . -579) 21048) ((-224 . -550) 21025) ((-223 . -550) 21002) ((-989 . -347) 20986) ((-795 . -478) 20894) ((-214 . -207) 20847) ((-1059 . -1111) T) ((-756 . -557) 20829) ((-1178 . -1017) T) ((-1170 . -557) 20811) ((-1130 . -156) 20702) ((-103 . -347) 20684) ((-103 . -308) 20666) ((-974 . -262) T) ((-875 . -262) 20597) ((-731 . -338) 20576) ((-584 . -1111) T) ((-572 . -1111) T) ((-449 . -262) 20507) ((-524 . -156) T) ((-297 . -254) 20491) ((-1178 . -23) T) ((-1106 . -97) T) ((-1093 . -1005) T) ((-995 . -1005) T) ((-985 . -1005) T) ((-81 . -557) 20473) ((-644 . -97) T) ((-325 . -319) 20452) ((-552 . -1005) T) ((-322 . -319) 20431) ((-314 . -319) 20410) ((-444 . -1005) T) ((-1085 . -203) 20360) ((-237 . -226) 20322) ((-1043 . -123) T) ((-552 . -554) 20298) ((-989 . -823) 20231) ((-922 . -963) T) ((-837 . -963) T) ((-444 . -554) 20210) ((-1067 . -724) NIL) ((-1067 . -727) NIL) ((-1007 . -558) 20171) ((-447 . -203) 20121) ((-1007 . -557) 20103) ((-922 . -217) T) ((-922 . -207) T) ((-397 . -963) T) ((-880 . -1005) 20053) ((-837 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1017) 20032) ((-103 . -823) NIL) ((-1106 . -256) 19998) ((-796 . -777) 19977) ((-1018 . -1111) T) ((-828 . -659) T) ((-153 . -478) 19889) ((-917 . -25) T) ((-828 . -442) T) ((-377 . -1017) T) ((-454 . -726) T) ((-454 . -723) T) ((-833 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-917 . -21) T) ((-192 . -659) T) ((-772 . -23) 19841) ((-289 . -278) 19820) ((-952 . -209) 19766) ((-377 . -23) T) ((-866 . -558) 19727) ((-866 . -557) 19639) ((-583 . -456) 19623) ((-44 . -928) 19573) ((-301 . -557) 19555) ((-1018 . -954) 19384) ((-540 . -588) 19366) ((-540 . -343) 19348) ((-313 . -1164) 19325) ((-944 . -1111) T) ((-795 . -262) T) ((-1130 . -478) 19273) ((-445 . -1111) T) ((-432 . -1111) T) ((-534 . -97) T) ((-1072 . -258) 19200) ((-564 . -421) 19179) ((-918 . -913) 19163) ((-1170 . -352) 19135) ((-112 . -421) T) ((-1092 . -97) T) ((-998 . -1005) 19113) ((-951 . -1005) T) ((-816 . -779) T) ((-321 . -1115) T) ((-1149 . -969) 18996) ((-1018 . -347) 18966) ((-1142 . -969) 18801) ((-1121 . -969) 18591) ((-1149 . -106) 18460) ((-1142 . -106) 18281) ((-1121 . -106) 18050) ((-1106 . -280) 18037) ((-321 . -509) T) ((-335 . -557) 18019) ((-261 . -278) T) ((-543 . -969) 17992) ((-542 . -969) 17875) ((-331 . -1005) T) ((-292 . -1005) T) ((-224 . -557) 17836) ((-223 . -557) 17797) ((-921 . -123) T) ((-104 . -557) 17779) ((-575 . -23) T) ((-627 . -379) 17746) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17717) ((-542 . -106) 17586) ((-349 . -1005) T) ((-306 . -97) T) ((-153 . -262) 17497) ((-1120 . -777) 17450) ((-647 . -970) T) ((-1048 . -478) 17383) ((-1018 . -823) 17316) ((-766 . -1005) T) ((-759 . -1005) T) ((-757 . -1005) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -807) 17300) ((-105 . -1111) T) ((-994 . -97) T) ((-975 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17251) ((-214 . -724) 17202) ((-586 . -97) T) ((-1130 . -262) 17113) ((-601 . -574) 17097) ((-583 . -258) 17074) ((-951 . -650) 17058) ((-524 . -262) T) ((-885 . -585) 16983) ((-1178 . -123) T) ((-668 . -585) 16943) ((-648 . -585) 16930) ((-248 . -97) T) ((-422 . -585) 16860) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1149 . -963) T) ((-1142 . -963) T) ((-1121 . -963) T) ((-292 . -650) 16842) ((-1149 . -207) 16801) ((-1142 . -217) 16780) ((-1142 . -207) 16732) ((-1121 . -207) 16619) ((-1121 . -217) 16598) ((-1106 . -37) 16495) ((-543 . -963) T) ((-542 . -963) T) ((-922 . -727) T) ((-922 . -724) T) ((-890 . -727) T) ((-890 . -724) T) ((-796 . -970) T) ((-794 . -793) 16479) ((-627 . -421) T) ((-349 . -650) 16444) ((-388 . -585) 16418) ((-645 . -779) 16397) ((-644 . -37) 16362) ((-542 . -207) 16321) ((-39 . -657) 16293) ((-321 . -299) 16270) ((-321 . -333) T) ((-989 . -278) 16221) ((-265 . -1017) 16103) ((-1011 . -1111) T) ((-155 . -97) T) ((-1124 . -557) 16070) ((-772 . -123) 16022) ((-583 . -1145) 16006) ((-766 . -650) 15976) ((-759 . -650) 15946) ((-450 . -1111) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 15923) ((-377 . -123) T) ((-483 . -603) 15907) ((-103 . -278) T) ((-265 . -23) 15791) ((-483 . -588) 15775) ((-627 . -372) NIL) ((-483 . -343) 15759) ((-89 . -1005) 15737) ((-103 . -939) T) ((-517 . -130) T) ((-1157 . -138) 15721) ((-450 . -954) 15550) ((-1143 . -132) 15511) ((-1143 . -134) 15472) ((-967 . -1111) T) ((-912 . -557) 15454) ((-787 . -557) 15436) ((-748 . -969) 15279) ((-994 . -280) 15266) ((-201 . -1111) T) ((-714 . -280) 15253) ((-712 . -280) 15240) ((-748 . -106) 15069) ((-423 . -280) 15056) ((-1072 . -558) NIL) ((-1072 . -557) 15038) ((-1028 . -557) 15020) ((-1028 . -558) 14768) ((-951 . -156) T) ((-783 . -557) 14750) ((-866 . -260) 14727) ((-552 . -478) 14510) ((-750 . -954) 14494) ((-444 . -478) 14286) ((-885 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1017) T) ((-1079 . -557) 14268) ((-197 . -97) T) ((-450 . -347) 14238) ((-479 . -1005) T) ((-474 . -1005) T) ((-472 . -1005) T) ((-731 . -585) 14212) ((-941 . -421) T) ((-880 . -478) 14145) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14124) ((-349 . -156) T) ((-1141 . -970) T) ((-1120 . -970) T) ((-199 . -920) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1115) T) ((-1043 . -579) 14072) ((-529 . -793) 14056) ((-1060 . -1088) 14032) ((-634 . -509) T) ((-121 . -1005) 14010) ((-1170 . -969) 13994) ((-647 . -1005) T) ((-450 . -823) 13927) ((-595 . -37) 13897) ((-324 . -372) T) ((-286 . -134) 13876) ((-286 . -132) 13855) ((-111 . -509) T) ((-283 . -134) 13811) ((-283 . -132) 13767) ((-47 . -421) T) ((-146 . -1005) T) ((-142 . -1005) T) ((-1060 . -102) 13714) ((-714 . -1052) 13692) ((-623 . -33) T) ((-1170 . -106) 13671) ((-503 . -33) T) ((-451 . -102) 13655) ((-224 . -260) 13632) ((-223 . -260) 13609) ((-795 . -258) 13560) ((-44 . -1111) T) ((-748 . -963) T) ((-1078 . -46) 13537) ((-748 . -296) 13499) ((-994 . -37) 13348) ((-748 . -207) 13327) ((-714 . -37) 13156) ((-712 . -37) 13005) ((-423 . -37) 12854) ((-583 . -558) 12815) ((-583 . -557) 12727) ((-530 . -1052) T) ((-481 . -1052) T) ((-1048 . -456) 12711) ((-1098 . -1005) 12689) ((-1043 . -25) T) ((-1043 . -21) T) ((-443 . -970) T) ((-1121 . -724) NIL) ((-1121 . -727) NIL) ((-917 . -779) 12668) ((-751 . -557) 12650) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1115) T) ((-530 . -37) 12615) ((-481 . -37) 12580) ((-356 . -557) 12562) ((-294 . -557) 12544) ((-153 . -258) 12502) ((-61 . -1111) T) ((-107 . -97) T) ((-796 . -1005) T) ((-157 . -509) T) ((-647 . -650) 12472) ((-265 . -123) 12356) ((-199 . -557) 12338) ((-199 . -558) 12268) ((-921 . -579) 12207) ((-1170 . -963) T) ((-1023 . -134) T) ((-572 . -1088) 12182) ((-664 . -832) 12161) ((-540 . -33) T) ((-584 . -102) 12145) ((-572 . -102) 12091) ((-1130 . -258) 12018) ((-664 . -585) 11943) ((-266 . -1111) T) ((-1078 . -954) 11841) ((-1067 . -832) NIL) ((-974 . -558) 11756) ((-974 . -557) 11738) ((-313 . -97) T) ((-224 . -969) 11636) ((-223 . -969) 11534) ((-364 . -97) T) ((-875 . -557) 11516) ((-875 . -558) 11377) ((-646 . -557) 11359) ((-1168 . -1105) 11328) ((-449 . -557) 11310) ((-449 . -558) 11171) ((-221 . -381) 11155) ((-237 . -381) 11139) ((-224 . -106) 11030) ((-223 . -106) 10921) ((-1074 . -585) 10846) ((-1073 . -585) 10743) ((-1067 . -585) 10595) ((-1029 . -585) 10520) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-921 . -25) T) ((-921 . -21) T) ((-796 . -650) 10472) ((-349 . -262) T) ((-153 . -920) 10424) ((-627 . -357) T) ((-917 . -915) 10408) ((-634 . -1017) T) ((-627 . -150) 10390) ((-1141 . -1005) T) ((-1120 . -1005) T) ((-286 . -1097) 10369) ((-286 . -1100) 10348) ((-1065 . -97) T) ((-286 . -881) 10327) ((-125 . -1017) T) ((-111 . -1017) T) ((-548 . -1155) 10311) ((-634 . -23) T) ((-548 . -1005) 10261) ((-89 . -478) 10194) ((-157 . -333) T) ((-286 . -91) 10173) ((-286 . -34) 10152) ((-552 . -456) 10086) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1005) T) ((-444 . -456) 10023) ((-377 . -579) 9971) ((-590 . -954) 9869) ((-880 . -456) 9853) ((-325 . -970) T) ((-322 . -970) T) ((-314 . -970) T) ((-237 . -970) T) ((-221 . -970) T) ((-795 . -558) NIL) ((-795 . -557) 9835) ((-1178 . -21) T) ((-524 . -920) T) ((-664 . -659) T) ((-1178 . -25) T) ((-224 . -963) 9766) ((-223 . -963) 9697) ((-70 . -1111) T) ((-224 . -207) 9650) ((-223 . -207) 9603) ((-39 . -97) T) ((-833 . -970) T) ((-1074 . -659) T) ((-1073 . -659) T) ((-1067 . -659) T) ((-1067 . -723) NIL) ((-1067 . -726) NIL) ((-844 . -97) T) ((-1029 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1005) T) ((-309 . -1017) T) ((-157 . -1017) T) ((-289 . -843) 9582) ((-1141 . -650) 9423) ((-796 . -156) T) ((-1120 . -650) 9237) ((-772 . -21) 9189) ((-772 . -25) 9141) ((-219 . -1050) 9125) ((-121 . -478) 9058) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8826) ((-153 . -557) 8808) ((-157 . -23) T) ((-583 . -260) 8785) ((-483 . -33) T) ((-821 . -557) 8767) ((-87 . -1111) T) ((-770 . -557) 8749) ((-740 . -557) 8731) ((-701 . -557) 8713) ((-612 . -557) 8695) ((-214 . -585) 8545) ((-1076 . -1005) T) ((-1072 . -969) 8368) ((-1051 . -1111) T) ((-1028 . -969) 8211) ((-783 . -969) 8195) ((-1072 . -106) 8004) ((-1028 . -106) 7833) ((-783 . -106) 7812) ((-1130 . -558) NIL) ((-1130 . -557) 7794) ((-313 . -1052) T) ((-784 . -557) 7776) ((-985 . -258) 7755) ((-78 . -1111) T) ((-922 . -832) NIL) ((-552 . -258) 7731) ((-1098 . -478) 7664) ((-454 . -1111) T) ((-524 . -557) 7646) ((-444 . -258) 7625) ((-192 . -1111) T) ((-994 . -205) 7609) ((-261 . -843) T) ((-749 . -278) 7588) ((-794 . -97) T) ((-714 . -205) 7572) ((-922 . -585) 7522) ((-880 . -258) 7499) ((-837 . -585) 7451) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7416) ((-627 . -657) 7383) ((-454 . -807) 7365) ((-454 . -809) 7347) ((-443 . -650) 7188) ((-192 . -807) 7170) ((-62 . -1111) T) ((-192 . -809) 7152) ((-551 . -25) T) ((-397 . -585) 7126) ((-454 . -954) 7086) ((-796 . -478) 6998) ((-192 . -954) 6958) ((-214 . -33) T) ((-918 . -1005) 6936) ((-1141 . -156) 6867) ((-1120 . -156) 6798) ((-645 . -132) 6777) ((-645 . -134) 6756) ((-634 . -123) T) ((-127 . -434) 6733) ((-595 . -593) 6717) ((-1048 . -557) 6649) ((-111 . -123) T) ((-446 . -1115) T) ((-552 . -550) 6625) ((-444 . -550) 6604) ((-306 . -305) 6573) ((-493 . -1005) T) ((-446 . -509) T) ((-1072 . -963) T) ((-1028 . -963) T) ((-783 . -963) T) ((-214 . -723) 6552) ((-214 . -726) 6503) ((-214 . -725) 6482) ((-1072 . -296) 6459) ((-214 . -659) 6390) ((-880 . -19) 6374) ((-454 . -347) 6356) ((-454 . -308) 6338) ((-1028 . -296) 6310) ((-324 . -1164) 6287) ((-192 . -347) 6269) ((-192 . -308) 6251) ((-880 . -550) 6228) ((-1072 . -207) T) ((-601 . -1005) T) ((-1153 . -1005) T) ((-1085 . -1005) T) ((-994 . -226) 6167) ((-325 . -1005) T) ((-322 . -1005) T) ((-314 . -1005) T) ((-237 . -1005) T) ((-221 . -1005) T) ((-82 . -1111) T) ((-122 . -97) 6145) ((-116 . -97) 6123) ((-1085 . -554) 6102) ((-447 . -1005) T) ((-1042 . -1005) T) ((-447 . -554) 6081) ((-224 . -727) 6032) ((-224 . -724) 5983) ((-223 . -727) 5934) ((-39 . -1052) NIL) ((-223 . -724) 5885) ((-989 . -843) 5836) ((-922 . -726) T) ((-922 . -723) T) ((-922 . -659) T) ((-890 . -726) T) ((-837 . -659) T) ((-89 . -456) 5820) ((-454 . -823) NIL) ((-833 . -1005) T) ((-199 . -969) 5785) ((-796 . -262) T) ((-192 . -823) NIL) ((-765 . -1017) 5764) ((-57 . -1005) 5714) ((-482 . -1005) 5692) ((-480 . -1005) 5642) ((-462 . -1005) 5620) ((-461 . -1005) 5570) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5501) ((-329 . -843) T) ((-323 . -843) T) ((-315 . -843) T) ((-199 . -106) 5457) ((-765 . -23) 5409) ((-397 . -659) T) ((-103 . -843) T) ((-39 . -37) 5354) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1120 . -478) 5214) ((-286 . -421) 5193) ((-283 . -421) T) ((-766 . -258) 5172) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5037) ((-265 . -21) 4921) ((-44 . -1088) 4900) ((-64 . -557) 4882) ((-815 . -557) 4864) ((-548 . -478) 4797) ((-44 . -102) 4747) ((-1007 . -395) 4731) ((-1007 . -338) 4710) ((-975 . -1111) T) ((-974 . -969) 4697) ((-875 . -969) 4540) ((-449 . -969) 4383) ((-601 . -650) 4367) ((-974 . -106) 4352) ((-875 . -106) 4181) ((-446 . -333) T) ((-325 . -650) 4133) ((-322 . -650) 4085) ((-314 . -650) 4037) ((-237 . -650) 3886) ((-221 . -650) 3735) ((-866 . -588) 3719) ((-449 . -106) 3548) ((-1158 . -97) T) ((-866 . -343) 3532) ((-1121 . -832) NIL) ((-72 . -557) 3514) ((-885 . -46) 3493) ((-562 . -1017) T) ((-1 . -1005) T) ((-632 . -97) T) ((-1157 . -97) 3443) ((-1149 . -585) 3368) ((-1142 . -585) 3265) ((-121 . -456) 3249) ((-1093 . -557) 3231) ((-995 . -557) 3213) ((-360 . -23) T) ((-985 . -557) 3195) ((-85 . -1111) T) ((-1121 . -585) 3047) ((-833 . -650) 3012) ((-562 . -23) T) ((-552 . -557) 2994) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 2976) ((-475 . -1005) T) ((-471 . -1005) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2914) ((-116 . -280) 2852) ((-543 . -585) 2839) ((-199 . -963) T) ((-542 . -585) 2764) ((-349 . -920) T) ((-199 . -217) T) ((-199 . -207) T) ((-880 . -558) 2725) ((-880 . -557) 2637) ((-794 . -37) 2624) ((-1141 . -262) 2575) ((-1120 . -262) 2526) ((-1023 . -421) T) ((-467 . -779) T) ((-286 . -1040) 2505) ((-917 . -134) 2484) ((-917 . -132) 2463) ((-460 . -280) 2450) ((-266 . -1088) 2429) ((-446 . -1017) T) ((-795 . -969) 2374) ((-564 . -97) T) ((-1098 . -456) 2358) ((-224 . -338) 2337) ((-223 . -338) 2316) ((-266 . -102) 2266) ((-974 . -963) T) ((-112 . -97) T) ((-875 . -963) T) ((-795 . -106) 2195) ((-446 . -23) T) ((-449 . -963) T) ((-974 . -207) T) ((-875 . -296) 2164) ((-449 . -296) 2121) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2032) ((-221 . -156) 1943) ((-885 . -954) 1841) ((-668 . -954) 1812) ((-1010 . -97) T) ((-998 . -557) 1779) ((-951 . -557) 1761) ((-1149 . -659) T) ((-1142 . -659) T) ((-1121 . -723) NIL) ((-153 . -969) 1671) ((-1121 . -726) NIL) ((-833 . -156) T) ((-1121 . -659) T) ((-1168 . -138) 1655) ((-921 . -312) 1629) ((-918 . -478) 1562) ((-772 . -779) 1541) ((-517 . -1052) T) ((-443 . -262) 1492) ((-543 . -659) T) ((-331 . -557) 1474) ((-292 . -557) 1456) ((-388 . -954) 1354) ((-542 . -659) T) ((-377 . -779) 1305) ((-153 . -106) 1201) ((-765 . -123) 1153) ((-670 . -138) 1137) ((-1157 . -280) 1075) ((-454 . -278) T) ((-349 . -557) 1042) ((-483 . -928) 1026) ((-349 . -558) 940) ((-192 . -278) T) ((-128 . -138) 922) ((-647 . -258) 901) ((-454 . -939) T) ((-529 . -37) 888) ((-517 . -37) 875) ((-460 . -37) 840) ((-192 . -939) T) ((-795 . -963) T) ((-766 . -557) 822) ((-759 . -557) 804) ((-757 . -557) 786) ((-748 . -832) 765) ((-1179 . -1017) T) ((-1130 . -969) 588) ((-784 . -969) 572) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1111) T) ((-1179 . -23) T) ((-748 . -585) 497) ((-503 . -1111) T) ((-388 . -308) 481) ((-524 . -969) 468) ((-1130 . -106) 277) ((-634 . -579) 259) ((-784 . -106) 238) ((-351 . -23) T) ((-1085 . -478) 30)) \ No newline at end of file
+(((-599 . -1006) T) ((-237 . -478) 142202) ((-221 . -478) 142145) ((-524 . -106) 142130) ((-489 . -23) T) ((-219 . -1006) 142080) ((-112 . -280) 142037) ((-447 . -478) 141829) ((-627 . -97) T) ((-1043 . -478) 141748) ((-360 . -123) T) ((-1169 . -896) 141717) ((-548 . -456) 141701) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 141651) ((-57 . -478) 141584) ((-482 . -478) 141517) ((-388 . -824) 141476) ((-153 . -964) T) ((-480 . -478) 141409) ((-462 . -478) 141342) ((-461 . -478) 141275) ((-731 . -955) 141062) ((-632 . -37) 141027) ((-313 . -319) T) ((-1001 . -1000) 141011) ((-1001 . -1006) 140989) ((-153 . -217) 140940) ((-153 . -207) 140891) ((-1001 . -1002) 140849) ((-796 . -258) 140807) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1052 . -1089) 140786) ((-377 . -912) 140770) ((-634 . -21) T) ((-634 . -25) T) ((-1171 . -585) 140744) ((-286 . -145) 140723) ((-286 . -130) 140702) ((-1052 . -102) 140652) ((-125 . -25) T) ((-39 . -205) 140629) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 140605) ((-444 . -260) 140584) ((-1131 . -964) T) ((-784 . -964) T) ((-731 . -308) 140568) ((-112 . -1053) NIL) ((-89 . -557) 140500) ((-446 . -123) T) ((-540 . -1112) T) ((-1131 . -296) 140477) ((-524 . -964) T) ((-1131 . -207) T) ((-599 . -650) 140461) ((-881 . -260) 140438) ((-58 . -33) T) ((-975 . -727) T) ((-975 . -724) T) ((-748 . -659) T) ((-664 . -46) 140403) ((-564 . -37) 140390) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 140321) ((-221 . -262) 140252) ((-942 . -97) T) ((-383 . -659) T) ((-112 . -37) 140197) ((-383 . -442) T) ((-324 . -97) T) ((-1107 . -971) T) ((-644 . -971) T) ((-1075 . -46) 140174) ((-1074 . -46) 140144) ((-1068 . -46) 140121) ((-953 . -138) 140067) ((-834 . -262) T) ((-1030 . -46) 140039) ((-627 . -280) NIL) ((-479 . -557) 140021) ((-474 . -557) 140003) ((-472 . -557) 139985) ((-297 . -1006) 139935) ((-645 . -421) 139866) ((-47 . -97) T) ((-1142 . -258) 139851) ((-1121 . -258) 139771) ((-583 . -603) 139755) ((-583 . -588) 139739) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 139723) ((-548 . -258) 139700) ((-358 . -97) T) ((-1024 . -130) T) ((-121 . -557) 139632) ((-798 . -1006) T) ((-595 . -381) 139616) ((-647 . -557) 139598) ((-146 . -557) 139580) ((-142 . -557) 139562) ((-1171 . -659) T) ((-1008 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -810) NIL) ((-1180 . -123) T) ((-351 . -123) T) ((-828 . -97) T) ((-664 . -955) 139440) ((-489 . -123) T) ((-995 . -381) 139424) ((-919 . -456) 139408) ((-112 . -370) 139385) ((-1068 . -1112) 139364) ((-714 . -381) 139348) ((-712 . -381) 139332) ((-867 . -33) T) ((-627 . -1053) NIL) ((-224 . -585) 139169) ((-223 . -585) 138993) ((-749 . -844) 138972) ((-423 . -381) 138956) ((-548 . -19) 138940) ((-1048 . -1106) 138909) ((-1068 . -810) NIL) ((-1068 . -808) 138861) ((-548 . -550) 138838) ((-1099 . -557) 138770) ((-1076 . -557) 138752) ((-60 . -365) T) ((-1074 . -955) 138687) ((-1068 . -955) 138653) ((-627 . -37) 138603) ((-443 . -258) 138588) ((-664 . -347) 138572) ((-595 . -971) T) ((-1142 . -921) 138538) ((-1121 . -921) 138504) ((-976 . -1089) 138479) ((-796 . -558) 138287) ((-796 . -557) 138269) ((-1086 . -456) 138206) ((-388 . -940) 138185) ((-47 . -280) 138172) ((-976 . -102) 138118) ((-447 . -456) 138055) ((-483 . -1112) T) ((-1043 . -456) 138026) ((-1068 . -308) 137978) ((-1068 . -347) 137930) ((-407 . -97) T) ((-995 . -971) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -971) T) ((-712 . -971) T) ((-664 . -824) 137907) ((-423 . -971) T) ((-57 . -456) 137891) ((-952 . -970) 137865) ((-482 . -456) 137849) ((-480 . -456) 137833) ((-462 . -456) 137817) ((-461 . -456) 137801) ((-219 . -478) 137734) ((-952 . -106) 137701) ((-1075 . -824) 137614) ((-607 . -1018) T) ((-1074 . -824) 137520) ((-1068 . -824) 137353) ((-1030 . -824) 137337) ((-324 . -1053) T) ((-292 . -970) 137319) ((-224 . -723) 137298) ((-224 . -726) 137249) ((-224 . -725) 137228) ((-223 . -723) 137207) ((-223 . -726) 137158) ((-223 . -725) 137137) ((-49 . -971) T) ((-224 . -659) 137068) ((-223 . -659) 136999) ((-1107 . -1006) T) ((-607 . -23) T) ((-530 . -971) T) ((-481 . -971) T) ((-349 . -970) 136964) ((-292 . -106) 136939) ((-71 . -353) T) ((-71 . -365) T) ((-942 . -37) 136876) ((-627 . -370) 136858) ((-94 . -97) T) ((-644 . -1006) T) ((-922 . -132) 136830) ((-922 . -134) 136802) ((-349 . -106) 136758) ((-289 . -1116) 136737) ((-443 . -921) 136703) ((-324 . -37) 136668) ((-39 . -340) 136640) ((-797 . -557) 136512) ((-122 . -120) 136496) ((-116 . -120) 136480) ((-766 . -970) 136450) ((-765 . -21) 136402) ((-759 . -970) 136386) ((-765 . -25) 136338) ((-289 . -509) 136289) ((-517 . -760) T) ((-214 . -1112) T) ((-766 . -106) 136254) ((-759 . -106) 136233) ((-1142 . -557) 136215) ((-1121 . -557) 136197) ((-1121 . -558) 135870) ((-1073 . -833) 135849) ((-1029 . -833) 135828) ((-47 . -37) 135793) ((-1178 . -1018) T) ((-548 . -557) 135705) ((-548 . -558) 135666) ((-1176 . -1018) T) ((-214 . -955) 135495) ((-1073 . -585) 135420) ((-1029 . -585) 135345) ((-651 . -557) 135327) ((-783 . -585) 135301) ((-1178 . -23) T) ((-1176 . -23) T) ((-952 . -964) T) ((-1086 . -258) 135280) ((-153 . -338) 135231) ((-923 . -1112) T) ((-43 . -23) T) ((-447 . -258) 135210) ((-534 . -1006) T) ((-1048 . -1015) 135179) ((-1010 . -1009) 135131) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1018) T) ((-1184 . -97) T) ((-923 . -808) 135113) ((-923 . -810) 135095) ((-1107 . -650) 134992) ((-564 . -205) 134976) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1093 . -1006) T) ((-644 . -650) 134941) ((-214 . -347) 134911) ((-923 . -955) 134871) ((-349 . -964) T) ((-197 . -971) T) ((-112 . -205) 134848) ((-57 . -258) 134825) ((-139 . -23) T) ((-480 . -258) 134802) ((-297 . -478) 134735) ((-461 . -258) 134712) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -964) T) ((-759 . -964) T) ((-645 . -873) 134682) ((-634 . -779) T) ((-443 . -557) 134664) ((-759 . -207) 134643) ((-125 . -779) T) ((-595 . -1006) T) ((-1086 . -550) 134622) ((-503 . -1089) 134601) ((-306 . -1006) T) ((-289 . -333) 134580) ((-377 . -134) 134559) ((-377 . -132) 134538) ((-887 . -1018) 134437) ((-214 . -824) 134370) ((-747 . -1018) 134301) ((-591 . -781) 134285) ((-447 . -550) 134264) ((-503 . -102) 134214) ((-923 . -347) 134196) ((-923 . -308) 134178) ((-92 . -1006) T) ((-887 . -23) 133989) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 133860) ((-1077 . -557) 133842) ((-57 . -19) 133826) ((-1077 . -558) 133748) ((-1073 . -659) T) ((-1029 . -659) T) ((-480 . -19) 133732) ((-461 . -19) 133716) ((-57 . -550) 133693) ((-995 . -1006) T) ((-825 . -97) 133671) ((-783 . -659) T) ((-714 . -1006) T) ((-480 . -550) 133648) ((-461 . -550) 133625) ((-712 . -1006) T) ((-712 . -978) 133592) ((-430 . -1006) T) ((-423 . -1006) T) ((-534 . -650) 133567) ((-586 . -1006) T) ((-923 . -824) NIL) ((-1150 . -46) 133544) ((-567 . -1018) T) ((-607 . -123) T) ((-1144 . -97) T) ((-1143 . -46) 133514) ((-1122 . -46) 133491) ((-1107 . -156) 133442) ((-990 . -1116) 133393) ((-248 . -1006) T) ((-83 . -410) T) ((-83 . -365) T) ((-1074 . -278) 133372) ((-1068 . -278) 133351) ((-49 . -1006) T) ((-990 . -509) 133302) ((-644 . -156) T) ((-542 . -46) 133279) ((-199 . -585) 133244) ((-530 . -1006) T) ((-481 . -1006) T) ((-329 . -1116) T) ((-323 . -1116) T) ((-315 . -1116) T) ((-454 . -752) T) ((-454 . -844) T) ((-289 . -1018) T) ((-103 . -1116) T) ((-309 . -779) T) ((-192 . -844) T) ((-192 . -752) T) ((-647 . -970) 133214) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 133184) ((-1068 . -940) NIL) ((-289 . -23) T) ((-65 . -1112) T) ((-919 . -557) 133116) ((-627 . -205) 133098) ((-647 . -106) 133063) ((-583 . -33) T) ((-219 . -456) 133047) ((-1008 . -1004) 133031) ((-155 . -1006) T) ((-876 . -833) 133010) ((-449 . -833) 132989) ((-1180 . -21) T) ((-1180 . -25) T) ((-1178 . -123) T) ((-1176 . -123) T) ((-995 . -650) 132838) ((-975 . -585) 132825) ((-876 . -585) 132750) ((-493 . -557) 132732) ((-493 . -558) 132713) ((-714 . -650) 132542) ((-712 . -650) 132391) ((-1169 . -97) T) ((-987 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 132316) ((-430 . -650) 132287) ((-423 . -650) 132136) ((-907 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1122 . -1112) 132115) ((-1154 . -557) 132081) ((-1122 . -810) NIL) ((-1122 . -808) 132033) ((-128 . -97) T) ((-43 . -123) T) ((-1086 . -558) NIL) ((-1086 . -557) 132015) ((-1044 . -1027) 131960) ((-313 . -971) T) ((-601 . -557) 131942) ((-261 . -1018) T) ((-325 . -557) 131924) ((-322 . -557) 131906) ((-314 . -557) 131888) ((-237 . -558) 131636) ((-237 . -557) 131618) ((-221 . -557) 131600) ((-221 . -558) 131461) ((-961 . -1106) 131390) ((-825 . -280) 131328) ((-1184 . -1053) T) ((-1143 . -955) 131263) ((-1122 . -955) 131229) ((-1107 . -478) 131196) ((-1043 . -557) 131178) ((-751 . -659) T) ((-548 . -260) 131155) ((-530 . -650) 131120) ((-447 . -558) NIL) ((-447 . -557) 131102) ((-481 . -650) 131047) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -970) 130999) ((-834 . -557) 130981) ((-834 . -558) 130963) ((-796 . -106) 130901) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1134) 130885) ((-647 . -964) T) ((-627 . -319) NIL) ((-482 . -557) 130817) ((-349 . -727) T) ((-197 . -1006) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 130778) ((-57 . -557) 130690) ((-199 . -659) T) ((-480 . -558) 130651) ((-480 . -557) 130563) ((-462 . -557) 130495) ((-461 . -558) 130456) ((-461 . -557) 130368) ((-990 . -333) 130319) ((-39 . -381) 130296) ((-75 . -1112) T) ((-795 . -833) NIL) ((-329 . -299) 130280) ((-329 . -333) T) ((-323 . -299) 130264) ((-323 . -333) T) ((-315 . -299) 130248) ((-315 . -333) T) ((-286 . -256) 130227) ((-103 . -333) T) ((-68 . -1112) T) ((-1122 . -308) 130179) ((-795 . -585) 130124) ((-1122 . -347) 130076) ((-887 . -123) 129931) ((-747 . -123) 129802) ((-881 . -588) 129786) ((-995 . -156) 129697) ((-881 . -343) 129681) ((-975 . -726) T) ((-975 . -723) T) ((-714 . -156) 129572) ((-712 . -156) 129483) ((-748 . -46) 129445) ((-975 . -659) T) ((-297 . -456) 129429) ((-876 . -659) T) ((-423 . -156) 129340) ((-219 . -258) 129317) ((-449 . -659) T) ((-1169 . -280) 129255) ((-1150 . -824) 129168) ((-1143 . -824) 129074) ((-1142 . -970) 128909) ((-1122 . -824) 128742) ((-1121 . -970) 128550) ((-1107 . -262) 128529) ((-1048 . -138) 128513) ((-985 . -97) T) ((-851 . -878) T) ((-73 . -1112) T) ((-670 . -280) 128451) ((-153 . -833) 128404) ((-601 . -352) 128376) ((-30 . -878) T) ((-1 . -557) 128358) ((-1024 . -97) T) ((-990 . -23) T) ((-49 . -561) 128342) ((-990 . -1018) T) ((-922 . -379) 128314) ((-542 . -824) 128227) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -964) T) ((-765 . -779) 128206) ((-79 . -1112) T) ((-644 . -262) T) ((-39 . -971) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 128188) ((-153 . -585) 128098) ((-471 . -557) 128080) ((-321 . -134) 128062) ((-321 . -132) T) ((-329 . -1018) T) ((-323 . -1018) T) ((-315 . -1018) T) ((-923 . -278) T) ((-838 . -278) T) ((-796 . -217) T) ((-103 . -1018) T) ((-796 . -207) 128041) ((-1142 . -106) 127862) ((-1121 . -106) 127651) ((-219 . -1146) 127635) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 127622) ((-283 . -280) 127563) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-923 . -940) T) ((-103 . -23) T) ((-219 . -550) 127540) ((-1144 . -37) 127432) ((-1131 . -833) 127411) ((-107 . -1006) T) ((-953 . -97) T) ((-1131 . -585) 127336) ((-795 . -726) NIL) ((-784 . -585) 127310) ((-795 . -723) NIL) ((-748 . -810) NIL) ((-795 . -659) T) ((-995 . -478) 127184) ((-714 . -478) 127132) ((-712 . -478) 127084) ((-524 . -585) 127071) ((-748 . -955) 126901) ((-423 . -478) 126844) ((-358 . -359) T) ((-58 . -1112) T) ((-562 . -779) 126823) ((-465 . -598) T) ((-1048 . -896) 126792) ((-922 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -970) 126627) ((-313 . -1006) T) ((-283 . -1053) NIL) ((-261 . -123) T) ((-364 . -1006) T) ((-627 . -340) 126594) ((-794 . -971) T) ((-197 . -561) 126571) ((-297 . -258) 126548) ((-443 . -106) 126369) ((-1142 . -964) T) ((-1121 . -964) T) ((-748 . -347) 126353) ((-153 . -659) T) ((-591 . -97) T) ((-1142 . -217) 126332) ((-1142 . -207) 126284) ((-1121 . -207) 126189) ((-1121 . -217) 126168) ((-922 . -372) NIL) ((-607 . -579) 126116) ((-286 . -37) 126026) ((-283 . -37) 125955) ((-67 . -557) 125937) ((-289 . -458) 125903) ((-1086 . -260) 125882) ((-1019 . -1018) 125813) ((-81 . -1112) T) ((-59 . -557) 125795) ((-447 . -260) 125774) ((-1171 . -955) 125751) ((-1066 . -1006) T) ((-1019 . -23) 125622) ((-748 . -824) 125558) ((-1131 . -659) T) ((-1008 . -1112) T) ((-995 . -262) 125489) ((-817 . -97) T) ((-714 . -262) 125400) ((-297 . -19) 125384) ((-57 . -260) 125361) ((-712 . -262) 125292) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 125269) ((-297 . -550) 125246) ((-461 . -260) 125223) ((-423 . -262) 125154) ((-953 . -280) 125005) ((-524 . -659) T) ((-599 . -557) 124987) ((-219 . -558) 124948) ((-219 . -557) 124860) ((-1049 . -33) T) ((-867 . -1112) T) ((-313 . -650) 124805) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -964) T) ((-575 . -387) 124770) ((-551 . -387) 124735) ((-1024 . -1053) T) ((-530 . -262) T) ((-481 . -262) T) ((-1143 . -278) 124714) ((-443 . -207) 124666) ((-443 . -217) 124645) ((-1122 . -278) 124624) ((-990 . -123) T) ((-796 . -727) 124603) ((-131 . -97) T) ((-39 . -1006) T) ((-796 . -724) 124582) ((-583 . -929) 124566) ((-529 . -971) T) ((-517 . -971) T) ((-460 . -971) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 124550) ((-283 . -370) 124511) ((-323 . -123) T) ((-315 . -123) T) ((-1122 . -940) NIL) ((-1001 . -557) 124478) ((-103 . -123) T) ((-1024 . -37) 124465) ((-845 . -1006) T) ((-703 . -1006) T) ((-608 . -1006) T) ((-634 . -134) T) ((-111 . -134) T) ((-1178 . -21) T) ((-1178 . -25) T) ((-1176 . -21) T) ((-1176 . -25) T) ((-601 . -970) 124449) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -970) 124401) ((-322 . -970) 124353) ((-314 . -970) 124305) ((-224 . -1112) T) ((-223 . -1112) T) ((-237 . -970) 124148) ((-221 . -970) 123991) ((-601 . -106) 123970) ((-325 . -106) 123908) ((-322 . -106) 123846) ((-314 . -106) 123784) ((-237 . -106) 123613) ((-221 . -106) 123442) ((-749 . -1116) 123421) ((-564 . -381) 123405) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 123313) ((-749 . -509) 123292) ((-224 . -955) 123121) ((-223 . -955) 122950) ((-121 . -114) 122934) ((-834 . -970) 122899) ((-632 . -971) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 122881) ((-834 . -106) 122837) ((-39 . -650) 122782) ((-794 . -1006) T) ((-297 . -558) 122743) ((-297 . -557) 122655) ((-1121 . -724) 122608) ((-1121 . -727) 122561) ((-224 . -347) 122531) ((-223 . -347) 122501) ((-591 . -37) 122471) ((-552 . -33) T) ((-450 . -1018) 122402) ((-444 . -33) T) ((-1019 . -123) 122273) ((-887 . -25) 122084) ((-798 . -557) 122066) ((-887 . -21) 122021) ((-747 . -21) 121932) ((-747 . -25) 121784) ((-564 . -971) T) ((-1079 . -509) 121763) ((-1073 . -46) 121740) ((-325 . -964) T) ((-322 . -964) T) ((-450 . -23) 121611) ((-314 . -964) T) ((-237 . -964) T) ((-221 . -964) T) ((-1029 . -46) 121583) ((-112 . -971) T) ((-952 . -585) 121557) ((-881 . -33) T) ((-325 . -207) 121536) ((-325 . -217) T) ((-322 . -207) 121515) ((-221 . -296) 121472) ((-322 . -217) T) ((-314 . -207) 121451) ((-314 . -217) T) ((-237 . -296) 121423) ((-237 . -207) 121402) ((-1058 . -138) 121386) ((-224 . -824) 121319) ((-223 . -824) 121252) ((-992 . -779) T) ((-1125 . -1112) T) ((-384 . -1018) T) ((-968 . -23) T) ((-834 . -964) T) ((-292 . -585) 121234) ((-942 . -777) T) ((-1107 . -921) 121200) ((-1074 . -844) 121179) ((-1068 . -844) 121158) ((-834 . -217) T) ((-749 . -333) 121137) ((-355 . -23) T) ((-122 . -1006) 121115) ((-116 . -1006) 121093) ((-834 . -207) T) ((-1068 . -752) NIL) ((-349 . -585) 121058) ((-794 . -650) 121045) ((-961 . -138) 121010) ((-39 . -156) T) ((-627 . -381) 120992) ((-645 . -280) 120979) ((-766 . -585) 120939) ((-759 . -585) 120913) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 120892) ((-529 . -1006) T) ((-517 . -1006) T) ((-460 . -1006) T) ((-219 . -260) 120869) ((-283 . -205) 120830) ((-1073 . -810) NIL) ((-1029 . -810) 120689) ((-1073 . -955) 120572) ((-1029 . -955) 120457) ((-783 . -955) 120355) ((-714 . -258) 120282) ((-749 . -1018) T) ((-952 . -659) T) ((-548 . -588) 120266) ((-961 . -896) 120195) ((-918 . -97) T) ((-749 . -23) T) ((-645 . -1053) 120173) ((-627 . -971) T) ((-548 . -343) 120157) ((-321 . -421) T) ((-313 . -262) T) ((-1159 . -1006) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1006) T) ((-331 . -442) T) ((-1107 . -557) 120139) ((-1073 . -347) 120123) ((-1029 . -347) 120107) ((-942 . -381) 120069) ((-128 . -203) 120051) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 120033) ((-645 . -37) 119862) ((-1158 . -1156) 119846) ((-321 . -372) T) ((-1158 . -1006) 119796) ((-529 . -650) 119783) ((-517 . -650) 119770) ((-460 . -650) 119735) ((-286 . -569) 119714) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1112) T) ((-990 . -579) 119662) ((-1073 . -824) 119606) ((-1029 . -824) 119590) ((-599 . -970) 119574) ((-103 . -579) 119556) ((-450 . -123) 119427) ((-1079 . -1018) T) ((-876 . -46) 119396) ((-564 . -1006) T) ((-599 . -106) 119375) ((-297 . -260) 119352) ((-449 . -46) 119309) ((-1079 . -23) T) ((-112 . -1006) T) ((-98 . -97) 119287) ((-1168 . -1018) T) ((-968 . -123) T) ((-942 . -971) T) ((-751 . -955) 119271) ((-922 . -657) 119243) ((-1168 . -23) T) ((-632 . -650) 119208) ((-534 . -557) 119190) ((-356 . -955) 119174) ((-324 . -971) T) ((-355 . -123) T) ((-294 . -955) 119158) ((-199 . -810) 119140) ((-923 . -844) T) ((-89 . -33) T) ((-923 . -752) T) ((-838 . -844) T) ((-454 . -1116) T) ((-1093 . -557) 119122) ((-1011 . -1006) T) ((-192 . -1116) T) ((-918 . -280) 119087) ((-199 . -955) 119047) ((-39 . -262) T) ((-990 . -21) T) ((-990 . -25) T) ((-1024 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 119007) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -971) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 118989) ((-670 . -669) 118973) ((-306 . -557) 118955) ((-66 . -353) T) ((-66 . -365) T) ((-1008 . -102) 118939) ((-975 . -810) 118921) ((-876 . -810) 118846) ((-590 . -1018) T) ((-564 . -650) 118833) ((-449 . -810) NIL) ((-1048 . -97) T) ((-975 . -955) 118815) ((-92 . -557) 118797) ((-446 . -134) T) ((-876 . -955) 118679) ((-112 . -650) 118624) ((-590 . -23) T) ((-449 . -955) 118502) ((-995 . -558) NIL) ((-995 . -557) 118484) ((-714 . -558) NIL) ((-714 . -557) 118445) ((-712 . -558) 118080) ((-712 . -557) 117994) ((-1019 . -579) 117902) ((-430 . -557) 117884) ((-423 . -557) 117866) ((-423 . -558) 117727) ((-953 . -203) 117673) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -833) 117652) ((-586 . -557) 117634) ((-325 . -1175) 117618) ((-322 . -1175) 117602) ((-314 . -1175) 117586) ((-122 . -478) 117519) ((-116 . -478) 117452) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 117390) ((-196 . -97) 117368) ((-627 . -1006) T) ((-632 . -156) T) ((-796 . -585) 117320) ((-63 . -354) T) ((-248 . -557) 117302) ((-63 . -365) T) ((-876 . -347) 117286) ((-794 . -262) T) ((-49 . -557) 117268) ((-918 . -37) 117216) ((-530 . -557) 117198) ((-449 . -347) 117182) ((-530 . -558) 117164) ((-481 . -557) 117146) ((-834 . -1175) 117133) ((-795 . -1112) T) ((-634 . -421) T) ((-460 . -478) 117099) ((-454 . -333) T) ((-325 . -338) 117078) ((-322 . -338) 117057) ((-314 . -338) 117036) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1179 . -1170) 117020) ((-795 . -808) 116997) ((-795 . -810) NIL) ((-887 . -779) 116896) ((-747 . -779) 116847) ((-591 . -593) 116831) ((-1099 . -33) T) ((-155 . -557) 116813) ((-1019 . -21) 116724) ((-1019 . -25) 116576) ((-795 . -955) 116553) ((-876 . -824) 116534) ((-1131 . -46) 116511) ((-834 . -338) T) ((-57 . -588) 116495) ((-480 . -588) 116479) ((-449 . -824) 116456) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 116440) ((-57 . -343) 116424) ((-564 . -156) T) ((-480 . -343) 116408) ((-461 . -343) 116392) ((-759 . -642) 116376) ((-1073 . -278) 116355) ((-1079 . -123) T) ((-112 . -156) T) ((-1048 . -280) 116293) ((-153 . -1112) T) ((-575 . -677) 116277) ((-551 . -677) 116261) ((-1168 . -123) T) ((-1143 . -844) 116240) ((-1122 . -844) 116219) ((-1122 . -752) NIL) ((-627 . -650) 116169) ((-1121 . -833) 116122) ((-942 . -1006) T) ((-795 . -347) 116099) ((-795 . -308) 116076) ((-829 . -1018) T) ((-153 . -808) 116060) ((-153 . -810) 115985) ((-454 . -1018) T) ((-324 . -1006) T) ((-192 . -1018) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -955) 115883) ((-289 . -779) T) ((-1158 . -478) 115816) ((-1142 . -585) 115713) ((-1121 . -585) 115583) ((-796 . -726) 115562) ((-796 . -723) 115541) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 115523) ((-157 . -421) T) ((-196 . -280) 115461) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1180 . -1173) 115440) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -955) 115424) ((-460 . -262) T) ((-127 . -439) 115379) ((-47 . -1006) T) ((-645 . -205) 115363) ((-795 . -824) NIL) ((-1131 . -810) NIL) ((-813 . -97) T) ((-809 . -97) T) ((-358 . -1006) T) ((-153 . -347) 115347) ((-153 . -308) 115331) ((-1131 . -955) 115214) ((-784 . -955) 115112) ((-1044 . -97) T) ((-590 . -123) T) ((-112 . -478) 115020) ((-599 . -724) 114999) ((-599 . -727) 114978) ((-524 . -955) 114960) ((-265 . -1165) 114930) ((-790 . -97) T) ((-886 . -509) 114909) ((-1107 . -970) 114792) ((-450 . -579) 114700) ((-828 . -1006) T) ((-942 . -650) 114637) ((-644 . -970) 114602) ((-548 . -33) T) ((-1049 . -1112) T) ((-1107 . -106) 114471) ((-443 . -585) 114368) ((-324 . -650) 114313) ((-153 . -824) 114272) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 114228) ((-1184 . -971) T) ((-1131 . -347) 114212) ((-388 . -1116) 114190) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1121 . -723) 114143) ((-1121 . -726) 114096) ((-1142 . -659) T) ((-1121 . -659) T) ((-47 . -650) 114061) ((-199 . -940) T) ((-321 . -1165) 114038) ((-1144 . -381) 114004) ((-651 . -659) T) ((-1131 . -824) 113948) ((-107 . -557) 113930) ((-107 . -558) 113912) ((-651 . -442) T) ((-450 . -21) 113823) ((-122 . -456) 113807) ((-116 . -456) 113791) ((-450 . -25) 113643) ((-564 . -262) T) ((-534 . -970) 113618) ((-407 . -1006) T) ((-975 . -278) T) ((-112 . -262) T) ((-1010 . -97) T) ((-922 . -97) T) ((-534 . -106) 113586) ((-1044 . -280) 113524) ((-1107 . -964) T) ((-975 . -940) T) ((-64 . -1112) T) ((-968 . -25) T) ((-968 . -21) T) ((-644 . -964) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-942 . -156) T) ((-644 . -217) T) ((-975 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 113506) ((-364 . -557) 113488) ((-443 . -659) T) ((-1024 . -777) T) ((-816 . -955) 113456) ((-103 . -779) T) ((-595 . -970) 113440) ((-454 . -123) T) ((-1144 . -971) T) ((-192 . -123) T) ((-1058 . -97) 113418) ((-94 . -1006) T) ((-219 . -603) 113402) ((-219 . -588) 113386) ((-595 . -106) 113365) ((-286 . -381) 113349) ((-219 . -343) 113333) ((-1061 . -209) 113280) ((-918 . -205) 113264) ((-72 . -1112) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1179 . -97) T) ((-995 . -970) 113107) ((-237 . -833) 113086) ((-221 . -833) 113065) ((-714 . -970) 112888) ((-712 . -970) 112731) ((-552 . -1112) T) ((-1066 . -557) 112713) ((-995 . -106) 112542) ((-961 . -97) T) ((-444 . -1112) T) ((-430 . -970) 112513) ((-423 . -970) 112356) ((-601 . -585) 112340) ((-795 . -278) T) ((-714 . -106) 112149) ((-712 . -106) 111978) ((-325 . -585) 111930) ((-322 . -585) 111882) ((-314 . -585) 111834) ((-237 . -585) 111759) ((-221 . -585) 111684) ((-1060 . -779) T) ((-430 . -106) 111645) ((-423 . -106) 111474) ((-996 . -955) 111458) ((-986 . -955) 111435) ((-919 . -33) T) ((-881 . -1112) T) ((-121 . -929) 111419) ((-886 . -1018) T) ((-795 . -940) NIL) ((-668 . -1018) T) ((-648 . -1018) T) ((-1158 . -456) 111403) ((-1044 . -37) 111363) ((-886 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-834 . -585) 111328) ((-530 . -970) 111293) ((-481 . -970) 111238) ((-201 . -55) 111196) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 111166) ((-530 . -106) 111122) ((-481 . -106) 111051) ((-388 . -1018) T) ((-286 . -971) 110942) ((-283 . -971) T) ((-595 . -964) T) ((-1184 . -1006) T) ((-153 . -278) 110873) ((-388 . -23) T) ((-39 . -557) 110855) ((-39 . -558) 110839) ((-103 . -912) 110821) ((-111 . -793) 110805) ((-47 . -478) 110771) ((-1099 . -929) 110755) ((-1082 . -557) 110737) ((-1086 . -33) T) ((-845 . -557) 110719) ((-1019 . -779) 110670) ((-703 . -557) 110652) ((-608 . -557) 110634) ((-1058 . -280) 110572) ((-447 . -33) T) ((-999 . -1112) T) ((-446 . -421) T) ((-995 . -964) T) ((-1043 . -33) T) ((-714 . -964) T) ((-712 . -964) T) ((-584 . -209) 110556) ((-572 . -209) 110502) ((-1131 . -278) 110481) ((-995 . -296) 110443) ((-423 . -964) T) ((-1079 . -21) T) ((-995 . -207) 110422) ((-714 . -296) 110399) ((-714 . -207) T) ((-712 . -296) 110371) ((-297 . -588) 110355) ((-664 . -1116) 110334) ((-1079 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 110313) ((-297 . -343) 110297) ((-462 . -33) T) ((-461 . -33) T) ((-922 . -1053) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 110228) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-961 . -280) 110136) ((-825 . -1006) 110114) ((-49 . -964) T) ((-1168 . -21) T) ((-1168 . -25) T) ((-1075 . -509) 110093) ((-1074 . -1116) 110072) ((-530 . -964) T) ((-481 . -964) T) ((-1068 . -1116) 110051) ((-331 . -955) 110035) ((-292 . -955) 110019) ((-942 . -262) T) ((-349 . -810) 110001) ((-1074 . -509) 109952) ((-1068 . -509) 109903) ((-922 . -37) 109848) ((-731 . -1018) T) ((-834 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1030 . -509) 109827) ((-324 . -262) T) ((-584 . -628) 109811) ((-349 . -955) 109771) ((-1024 . -971) T) ((-98 . -120) 109755) ((-731 . -23) T) ((-1158 . -258) 109732) ((-377 . -280) 109697) ((-1178 . -1173) 109673) ((-1176 . -1173) 109652) ((-1144 . -1006) T) ((-794 . -557) 109634) ((-766 . -955) 109603) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -921) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 109587) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1179 . -37) 109557) ((-112 . -258) 109508) ((-1158 . -19) 109492) ((-1158 . -550) 109469) ((-1169 . -1006) T) ((-987 . -1006) T) ((-907 . -1006) T) ((-886 . -123) T) ((-670 . -1006) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1053) 109447) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -964) T) ((-265 . -97) 109230) ((-128 . -1006) T) ((-632 . -921) T) ((-89 . -1112) T) ((-122 . -557) 109162) ((-116 . -557) 109094) ((-1184 . -156) T) ((-1074 . -333) 109073) ((-1068 . -333) 109052) ((-286 . -1006) T) ((-388 . -123) T) ((-283 . -1006) T) ((-377 . -37) 109004) ((-1037 . -97) T) ((-1144 . -650) 108896) ((-591 . -971) T) ((-289 . -132) 108875) ((-289 . -134) 108854) ((-127 . -1006) T) ((-109 . -1006) T) ((-786 . -97) T) ((-529 . -557) 108836) ((-517 . -558) 108735) ((-517 . -557) 108717) ((-460 . -557) 108699) ((-460 . -558) 108644) ((-452 . -23) T) ((-450 . -779) 108595) ((-454 . -579) 108577) ((-192 . -579) 108559) ((-199 . -374) T) ((-599 . -585) 108543) ((-1073 . -844) 108522) ((-664 . -1018) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -970) 108467) ((-1060 . -1059) T) ((-1049 . -102) 108451) ((-1075 . -1018) T) ((-1074 . -1018) T) ((-479 . -955) 108435) ((-1068 . -1018) T) ((-1030 . -1018) T) ((-313 . -106) 108364) ((-923 . -1116) T) ((-121 . -1112) T) ((-838 . -1116) T) ((-627 . -258) NIL) ((-1159 . -557) 108346) ((-1075 . -23) T) ((-1074 . -23) T) ((-923 . -509) T) ((-1068 . -23) T) ((-838 . -509) T) ((-1044 . -205) 108330) ((-222 . -557) 108312) ((-1030 . -23) T) ((-985 . -1006) T) ((-731 . -123) T) ((-286 . -650) 108222) ((-283 . -650) 108151) ((-632 . -557) 108133) ((-632 . -558) 108078) ((-377 . -370) 108062) ((-408 . -1006) T) ((-454 . -25) T) ((-454 . -21) T) ((-1024 . -1006) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 108046) ((-647 . -955) 108015) ((-1158 . -557) 107927) ((-1158 . -558) 107888) ((-1144 . -156) T) ((-219 . -33) T) ((-850 . -894) T) ((-1099 . -1112) T) ((-599 . -723) 107867) ((-599 . -726) 107846) ((-368 . -365) T) ((-486 . -97) 107824) ((-953 . -1006) T) ((-196 . -914) 107808) ((-469 . -97) T) ((-564 . -557) 107790) ((-44 . -779) NIL) ((-564 . -558) 107767) ((-953 . -554) 107742) ((-825 . -478) 107675) ((-313 . -964) T) ((-112 . -558) NIL) ((-112 . -557) 107657) ((-796 . -1112) T) ((-607 . -387) 107641) ((-607 . -1027) 107586) ((-465 . -138) 107568) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -970) 107513) ((-796 . -808) 107497) ((-796 . -810) 107422) ((-645 . -971) T) ((-627 . -921) NIL) ((-1142 . -46) 107392) ((-1121 . -46) 107369) ((-1043 . -929) 107340) ((-199 . -844) T) ((-39 . -106) 107269) ((-796 . -955) 107136) ((-1024 . -650) 107123) ((-1011 . -557) 107105) ((-990 . -134) 107084) ((-990 . -132) 107035) ((-923 . -333) T) ((-289 . -1101) 107001) ((-349 . -278) T) ((-289 . -1098) 106967) ((-286 . -156) 106946) ((-283 . -156) T) ((-922 . -205) 106923) ((-838 . -333) T) ((-530 . -1175) 106910) ((-481 . -1175) 106887) ((-329 . -134) 106866) ((-329 . -132) 106817) ((-323 . -134) 106796) ((-323 . -132) 106747) ((-552 . -1089) 106723) ((-315 . -134) 106702) ((-315 . -132) 106653) ((-289 . -34) 106619) ((-444 . -1089) 106598) ((0 . |EnumerationCategory|) T) ((-289 . -91) 106564) ((-349 . -940) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 106514) ((-591 . -1006) T) ((-552 . -102) 106461) ((-452 . -123) T) ((-444 . -102) 106411) ((-214 . -1018) 106342) ((-796 . -347) 106326) ((-796 . -308) 106310) ((-214 . -23) 106181) ((-975 . -844) T) ((-975 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1053) T) ((-297 . -33) T) ((-43 . -387) 106165) ((-797 . -1112) T) ((-360 . -677) 106149) ((-1169 . -478) 106082) ((-664 . -123) T) ((-1150 . -509) 106061) ((-1143 . -1116) 106040) ((-1143 . -509) 105991) ((-670 . -478) 105924) ((-1122 . -1116) 105903) ((-1122 . -509) 105854) ((-817 . -1006) T) ((-131 . -773) T) ((-1121 . -1112) 105833) ((-1121 . -810) 105706) ((-1121 . -808) 105676) ((-486 . -280) 105614) ((-1075 . -123) T) ((-128 . -478) NIL) ((-1074 . -123) T) ((-1068 . -123) T) ((-1030 . -123) T) ((-942 . -921) T) ((-321 . -37) 105579) ((-923 . -1018) T) ((-838 . -1018) T) ((-80 . -557) 105561) ((-39 . -964) T) ((-794 . -970) 105548) ((-923 . -23) T) ((-796 . -824) 105507) ((-634 . -97) T) ((-922 . -319) NIL) ((-548 . -1112) T) ((-891 . -23) T) ((-838 . -23) T) ((-794 . -106) 105492) ((-397 . -1018) T) ((-443 . -46) 105462) ((-125 . -97) T) ((-39 . -207) 105434) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 105413) ((-542 . -509) 105392) ((-627 . -557) 105374) ((-627 . -558) 105282) ((-286 . -478) 105248) ((-283 . -478) 105140) ((-1142 . -955) 105124) ((-1121 . -955) 104913) ((-918 . -381) 104897) ((-397 . -23) T) ((-1024 . -156) T) ((-1144 . -262) T) ((-591 . -650) 104867) ((-131 . -1006) T) ((-47 . -921) T) ((-377 . -205) 104851) ((-266 . -209) 104801) ((-795 . -844) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1121 . -308) 104771) ((-1121 . -347) 104741) ((-196 . -1025) 104725) ((-1158 . -260) 104702) ((-1107 . -585) 104627) ((-886 . -21) T) ((-886 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 104592) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-918 . -971) T) ((-794 . -964) T) ((-706 . -97) T) ((-1143 . -333) 104571) ((-1142 . -824) 104477) ((-1122 . -333) 104456) ((-1121 . -824) 104307) ((-942 . -557) 104289) ((-377 . -760) 104242) ((-1075 . -458) 104208) ((-153 . -844) 104139) ((-1074 . -458) 104105) ((-1068 . -458) 104071) ((-645 . -1006) T) ((-1030 . -458) 104037) ((-529 . -970) 104024) ((-517 . -970) 104011) ((-460 . -970) 103976) ((-286 . -262) 103955) ((-283 . -262) T) ((-324 . -557) 103937) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 103916) ((-529 . -106) 103901) ((-517 . -106) 103886) ((-460 . -106) 103842) ((-1077 . -810) 103809) ((-825 . -456) 103793) ((-47 . -557) 103775) ((-47 . -558) 103720) ((-214 . -123) 103591) ((-1131 . -844) 103570) ((-748 . -1116) 103549) ((-953 . -478) 103393) ((-358 . -557) 103375) ((-748 . -509) 103306) ((-534 . -585) 103281) ((-237 . -46) 103253) ((-221 . -46) 103210) ((-489 . -473) 103187) ((-919 . -1112) T) ((-632 . -970) 103152) ((-1150 . -1018) T) ((-1143 . -1018) T) ((-1122 . -1018) T) ((-922 . -340) 103124) ((-107 . -338) T) ((-443 . -824) 103030) ((-1150 . -23) T) ((-1143 . -23) T) ((-828 . -557) 103012) ((-89 . -102) 102996) ((-1107 . -659) T) ((-829 . -779) 102947) ((-634 . -1053) T) ((-632 . -106) 102903) ((-1122 . -23) T) ((-543 . -1018) T) ((-542 . -1018) T) ((-645 . -650) 102732) ((-644 . -659) T) ((-1024 . -262) T) ((-923 . -123) T) ((-454 . -779) T) ((-891 . -123) T) ((-838 . -123) T) ((-529 . -964) T) ((-192 . -779) T) ((-517 . -964) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -964) T) ((-543 . -23) T) ((-313 . -1175) 102709) ((-289 . -421) 102688) ((-309 . -280) 102675) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 102649) ((-219 . -929) 102633) ((-796 . -278) T) ((-1180 . -1170) 102617) ((-634 . -37) 102604) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1052 . -209) 102554) ((-995 . -833) 102533) ((-111 . -37) 102520) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -940) 102499) ((-1169 . -456) 102483) ((-714 . -833) 102462) ((-712 . -833) 102441) ((-1086 . -1112) T) ((-423 . -833) 102420) ((-670 . -456) 102404) ((-995 . -585) 102329) ((-714 . -585) 102254) ((-564 . -970) 102241) ((-447 . -1112) T) ((-313 . -338) T) ((-128 . -456) 102223) ((-712 . -585) 102148) ((-1043 . -1112) T) ((-430 . -585) 102119) ((-237 . -810) 101978) ((-221 . -810) NIL) ((-112 . -970) 101923) ((-423 . -585) 101848) ((-601 . -955) 101825) ((-564 . -106) 101810) ((-325 . -955) 101794) ((-322 . -955) 101778) ((-314 . -955) 101762) ((-237 . -955) 101608) ((-221 . -955) 101486) ((-112 . -106) 101415) ((-57 . -1112) T) ((-482 . -1112) T) ((-480 . -1112) T) ((-462 . -1112) T) ((-461 . -1112) T) ((-407 . -557) 101397) ((-404 . -557) 101379) ((-3 . -97) T) ((-945 . -1106) 101348) ((-765 . -97) T) ((-623 . -55) 101306) ((-632 . -964) T) ((-49 . -585) 101280) ((-261 . -421) T) ((-445 . -1106) 101249) ((0 . -97) T) ((-530 . -585) 101214) ((-481 . -585) 101159) ((-48 . -97) T) ((-834 . -955) 101146) ((-632 . -217) T) ((-990 . -379) 101125) ((-664 . -579) 101073) ((-918 . -1006) T) ((-645 . -156) 100964) ((-454 . -912) 100946) ((-237 . -347) 100930) ((-221 . -347) 100914) ((-369 . -1006) T) ((-309 . -37) 100898) ((-944 . -97) 100876) ((-192 . -912) 100858) ((-157 . -37) 100790) ((-1142 . -278) 100769) ((-1121 . -278) 100748) ((-595 . -659) T) ((-94 . -557) 100730) ((-1068 . -579) 100682) ((-452 . -25) T) ((-452 . -21) T) ((-1121 . -940) 100635) ((-564 . -964) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -824) 100581) ((-221 . -824) 100558) ((-112 . -964) T) ((-748 . -1018) T) ((-995 . -659) T) ((-564 . -207) 100537) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1018) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-987 . -258) 100516) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -970) 100466) ((-1150 . -123) T) ((-1143 . -123) T) ((-1122 . -123) T) ((-1044 . -381) 100450) ((-575 . -337) 100382) ((-551 . -337) 100314) ((-1058 . -1051) 100298) ((-98 . -1006) 100276) ((-1075 . -25) T) ((-1075 . -21) T) ((-1074 . -21) T) ((-918 . -650) 100224) ((-197 . -585) 100191) ((-627 . -106) 100125) ((-49 . -659) T) ((-1074 . -25) T) ((-321 . -319) T) ((-1068 . -21) T) ((-990 . -421) 100076) ((-1068 . -25) T) ((-645 . -478) 100024) ((-530 . -659) T) ((-481 . -659) T) ((-1030 . -21) T) ((-1030 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 100003) ((-283 . -258) 99938) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1184 . -557) 99920) ((-1184 . -558) 99902) ((-990 . -372) 99881) ((-953 . -456) 99812) ((-517 . -727) T) ((-517 . -724) T) ((-976 . -209) 99758) ((-329 . -372) 99709) ((-323 . -372) 99660) ((-315 . -372) 99611) ((-1171 . -1018) T) ((-1171 . -23) T) ((-1160 . -97) T) ((-1044 . -971) T) ((-607 . -677) 99595) ((-1079 . -132) 99574) ((-1079 . -134) 99553) ((-1048 . -1006) T) ((-1048 . -983) 99522) ((-67 . -1112) T) ((-942 . -970) 99459) ((-790 . -971) T) ((-214 . -579) 99367) ((-627 . -964) T) ((-324 . -970) 99312) ((-59 . -1112) T) ((-942 . -106) 99228) ((-825 . -557) 99160) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 99139) ((-632 . -727) T) ((-632 . -724) T) ((-922 . -381) 99116) ((-324 . -106) 99045) ((-349 . -844) T) ((-377 . -777) 99024) ((-645 . -262) 98935) ((-197 . -659) T) ((-1150 . -458) 98901) ((-1143 . -458) 98867) ((-1122 . -458) 98833) ((-286 . -921) 98812) ((-196 . -1006) 98790) ((-289 . -893) 98753) ((-100 . -97) T) ((-47 . -970) 98718) ((-1180 . -97) T) ((-351 . -97) T) ((-47 . -106) 98674) ((-923 . -579) 98656) ((-1144 . -557) 98638) ((-489 . -97) T) ((-465 . -97) T) ((-1037 . -1038) 98622) ((-139 . -1165) 98606) ((-219 . -1112) T) ((-1073 . -1116) 98585) ((-1029 . -1116) 98564) ((-214 . -21) 98475) ((-214 . -25) 98327) ((-122 . -114) 98311) ((-116 . -114) 98295) ((-43 . -677) 98279) ((-1073 . -509) 98190) ((-1029 . -509) 98121) ((-953 . -258) 98096) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-1001 . -1112) T) ((-224 . -1018) 98027) ((-223 . -1018) 97958) ((-942 . -964) T) ((-922 . -971) T) ((-313 . -585) 97903) ((-562 . -37) 97887) ((-1169 . -557) 97849) ((-1169 . -558) 97810) ((-987 . -557) 97792) ((-942 . -217) T) ((-324 . -964) T) ((-747 . -1165) 97762) ((-224 . -23) T) ((-223 . -23) T) ((-907 . -557) 97744) ((-670 . -558) 97705) ((-670 . -557) 97687) ((-731 . -779) 97666) ((-918 . -478) 97578) ((-324 . -207) T) ((-324 . -217) T) ((-1061 . -138) 97525) ((-923 . -25) T) ((-128 . -557) 97507) ((-128 . -558) 97466) ((-834 . -278) T) ((-923 . -21) T) ((-891 . -25) T) ((-838 . -21) T) ((-838 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 97450) ((-47 . -964) T) ((-1178 . -1170) 97434) ((-1176 . -1170) 97418) ((-953 . -550) 97393) ((-286 . -558) 97254) ((-286 . -557) 97236) ((-283 . -558) NIL) ((-283 . -557) 97218) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 97179) ((-503 . -209) 97129) ((-127 . -557) 97111) ((-109 . -557) 97093) ((-446 . -37) 97058) ((-1180 . -1177) 97037) ((-1171 . -123) T) ((-1179 . -971) T) ((-992 . -97) T) ((-86 . -1112) T) ((-465 . -280) NIL) ((-919 . -102) 97021) ((-813 . -1006) T) ((-809 . -1006) T) ((-1158 . -588) 97005) ((-1158 . -343) 96989) ((-297 . -1112) T) ((-540 . -779) T) ((-1044 . -1006) T) ((-1044 . -967) 96929) ((-98 . -478) 96862) ((-851 . -557) 96844) ((-313 . -659) T) ((-30 . -557) 96826) ((-790 . -1006) T) ((-772 . -971) 96805) ((-39 . -585) 96750) ((-199 . -1116) T) ((-377 . -971) T) ((-1060 . -138) 96732) ((-918 . -262) 96683) ((-199 . -509) T) ((-289 . -1139) 96667) ((-289 . -1136) 96637) ((-1086 . -1089) 96616) ((-985 . -557) 96598) ((-584 . -138) 96582) ((-572 . -138) 96528) ((-1086 . -102) 96478) ((-447 . -1089) 96457) ((-454 . -134) T) ((-454 . -132) NIL) ((-1024 . -558) 96372) ((-408 . -557) 96354) ((-192 . -134) T) ((-192 . -132) NIL) ((-1024 . -557) 96336) ((-51 . -97) T) ((-1122 . -579) 96288) ((-447 . -102) 96238) ((-913 . -23) T) ((-1180 . -37) 96208) ((-1073 . -1018) T) ((-1029 . -1018) T) ((-975 . -1116) T) ((-783 . -1018) T) ((-876 . -1116) 96187) ((-449 . -1116) 96166) ((-664 . -779) 96145) ((-975 . -509) T) ((-876 . -509) 96076) ((-1073 . -23) T) ((-1029 . -23) T) ((-783 . -23) T) ((-449 . -509) 96007) ((-1044 . -650) 95939) ((-1048 . -478) 95872) ((-953 . -558) NIL) ((-953 . -557) 95854) ((-790 . -650) 95824) ((-1107 . -46) 95793) ((-224 . -123) T) ((-223 . -123) T) ((-1010 . -1006) T) ((-922 . -1006) T) ((-60 . -557) 95775) ((-1068 . -779) NIL) ((-942 . -724) T) ((-942 . -727) T) ((-1184 . -970) 95762) ((-1184 . -106) 95747) ((-794 . -585) 95734) ((-1150 . -25) T) ((-1150 . -21) T) ((-1143 . -21) T) ((-1143 . -25) T) ((-1122 . -21) T) ((-1122 . -25) T) ((-945 . -138) 95718) ((-796 . -752) 95697) ((-796 . -844) T) ((-645 . -258) 95624) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 95557) ((-542 . -25) T) ((-445 . -138) 95541) ((-432 . -138) 95525) ((-845 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1006) T) ((-703 . -659) T) ((-199 . -333) T) ((-1058 . -1006) 95503) ((-795 . -1116) T) ((-591 . -557) 95485) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1165) 95469) ((-607 . -97) T) ((-323 . -1165) 95453) ((-315 . -1165) 95437) ((-1179 . -1006) T) ((-483 . -779) 95416) ((-749 . -421) 95395) ((-961 . -1006) T) ((-961 . -983) 95324) ((-945 . -896) 95293) ((-751 . -1018) T) ((-922 . -650) 95238) ((-356 . -1018) T) ((-445 . -896) 95207) ((-432 . -896) 95176) ((-105 . -138) 95158) ((-71 . -557) 95140) ((-817 . -557) 95122) ((-990 . -657) 95101) ((-1184 . -964) T) ((-748 . -579) 95049) ((-265 . -971) 94992) ((-153 . -1116) 94897) ((-199 . -1018) T) ((-294 . -23) T) ((-1068 . -912) 94849) ((-772 . -1006) T) ((-1030 . -673) 94828) ((-1144 . -970) 94733) ((-1142 . -844) 94712) ((-794 . -659) T) ((-153 . -509) 94623) ((-1121 . -844) 94602) ((-529 . -585) 94589) ((-377 . -1006) T) ((-517 . -585) 94576) ((-236 . -1006) T) ((-460 . -585) 94541) ((-199 . -23) T) ((-1121 . -752) 94494) ((-1178 . -97) T) ((-324 . -1175) 94471) ((-1176 . -97) T) ((-1144 . -106) 94363) ((-131 . -557) 94345) ((-913 . -123) T) ((-43 . -97) T) ((-214 . -779) 94296) ((-1131 . -1116) 94275) ((-98 . -456) 94259) ((-1179 . -650) 94229) ((-995 . -46) 94191) ((-975 . -1018) T) ((-876 . -1018) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 94168) ((-712 . -46) 94140) ((-1131 . -509) 94051) ((-324 . -338) T) ((-449 . -1018) T) ((-1073 . -123) T) ((-1029 . -123) T) ((-423 . -46) 94030) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-975 . -23) T) ((-876 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1044 . -478) 93963) ((-534 . -955) 93947) ((-449 . -23) T) ((-321 . -971) T) ((-1107 . -824) 93928) ((-607 . -280) 93866) ((-1019 . -1165) 93836) ((-632 . -585) 93801) ((-922 . -156) T) ((-886 . -132) 93780) ((-575 . -1006) T) ((-551 . -1006) T) ((-886 . -134) 93759) ((-923 . -779) T) ((-668 . -134) 93738) ((-668 . -132) 93717) ((-891 . -779) T) ((-443 . -844) 93696) ((-286 . -970) 93606) ((-283 . -970) 93535) ((-918 . -258) 93493) ((-377 . -650) 93445) ((-634 . -777) T) ((-1144 . -964) T) ((-286 . -106) 93341) ((-283 . -106) 93254) ((-887 . -97) T) ((-747 . -97) 93065) ((-645 . -558) NIL) ((-645 . -557) 93047) ((-595 . -955) 92945) ((-1144 . -296) 92889) ((-953 . -260) 92864) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 92815) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1048 . -456) 92799) ((-995 . -810) NIL) ((-795 . -1018) T) ((-112 . -833) NIL) ((-1178 . -1177) 92775) ((-1176 . -1177) 92754) ((-714 . -810) NIL) ((-712 . -810) 92613) ((-1171 . -25) T) ((-1171 . -21) T) ((-1110 . -97) 92591) ((-1012 . -365) T) ((-564 . -585) 92578) ((-423 . -810) NIL) ((-611 . -97) 92556) ((-995 . -955) 92386) ((-795 . -23) T) ((-714 . -955) 92248) ((-712 . -955) 92107) ((-112 . -585) 92052) ((-423 . -955) 91930) ((-586 . -955) 91914) ((-567 . -97) T) ((-196 . -456) 91898) ((-1158 . -33) T) ((-575 . -650) 91882) ((-551 . -650) 91866) ((-607 . -37) 91826) ((-289 . -97) T) ((-83 . -557) 91808) ((-49 . -955) 91792) ((-1024 . -970) 91779) ((-995 . -347) 91763) ((-58 . -55) 91725) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -955) 91712) ((-481 . -955) 91689) ((-632 . -659) T) ((-286 . -964) 91580) ((-294 . -123) T) ((-283 . -964) T) ((-153 . -1018) T) ((-714 . -347) 91564) ((-712 . -347) 91548) ((-44 . -138) 91498) ((-923 . -912) 91480) ((-423 . -347) 91464) ((-377 . -156) T) ((-286 . -217) 91443) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1006) 91226) ((-199 . -123) T) ((-1024 . -106) 91211) ((-153 . -23) T) ((-731 . -134) 91190) ((-731 . -132) 91169) ((-224 . -579) 91077) ((-223 . -579) 90985) ((-289 . -256) 90951) ((-1058 . -478) 90884) ((-1037 . -1006) T) ((-199 . -973) T) ((-747 . -280) 90822) ((-995 . -824) 90758) ((-714 . -824) 90702) ((-712 . -824) 90686) ((-1178 . -37) 90656) ((-1176 . -37) 90626) ((-1131 . -1018) T) ((-784 . -1018) T) ((-423 . -824) 90603) ((-786 . -1006) T) ((-1131 . -23) T) ((-524 . -1018) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -844) T) ((-322 . -844) T) ((-261 . -97) T) ((-314 . -844) T) ((-975 . -123) T) ((-876 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -833) NIL) ((-961 . -478) 90504) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 90442) ((-575 . -694) T) ((-551 . -694) T) ((-1122 . -779) NIL) ((-922 . -262) T) ((-224 . -21) T) ((-627 . -585) 90392) ((-321 . -1006) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 90376) ((-2 . -97) T) ((-834 . -844) T) ((-450 . -1165) 90346) ((-197 . -955) 90323) ((-1024 . -964) T) ((-644 . -278) T) ((-265 . -650) 90265) ((-634 . -971) T) ((-454 . -421) T) ((-377 . -478) 90177) ((-192 . -421) T) ((-1024 . -207) T) ((-266 . -138) 90127) ((-918 . -558) 90088) ((-918 . -557) 90070) ((-909 . -557) 90052) ((-111 . -971) T) ((-591 . -970) 90036) ((-199 . -458) T) ((-369 . -557) 90018) ((-369 . -558) 89995) ((-968 . -1165) 89965) ((-591 . -106) 89944) ((-1044 . -456) 89928) ((-747 . -37) 89898) ((-61 . -410) T) ((-61 . -365) T) ((-1061 . -97) T) ((-795 . -123) T) ((-451 . -97) 89876) ((-1184 . -338) T) ((-990 . -97) T) ((-974 . -97) T) ((-321 . -650) 89821) ((-664 . -134) 89800) ((-664 . -132) 89779) ((-942 . -585) 89716) ((-486 . -1006) 89694) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1006) T) ((-324 . -585) 89639) ((-1073 . -579) 89587) ((-1029 . -579) 89535) ((-355 . -473) 89514) ((-765 . -777) 89493) ((-349 . -1116) T) ((-627 . -659) T) ((-309 . -971) T) ((-1122 . -912) 89445) ((-157 . -971) T) ((-98 . -557) 89377) ((-1075 . -132) 89356) ((-1075 . -134) 89335) ((-349 . -509) T) ((-1074 . -134) 89314) ((-1074 . -132) 89293) ((-1068 . -132) 89200) ((-377 . -262) T) ((-1068 . -134) 89107) ((-1030 . -134) 89086) ((-1030 . -132) 89065) ((-289 . -37) 88906) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -964) T) ((-47 . -585) 88871) ((-913 . -21) T) ((-122 . -929) 88855) ((-116 . -929) 88839) ((-913 . -25) T) ((-825 . -114) 88823) ((-1060 . -97) T) ((-748 . -779) 88802) ((-1131 . -123) T) ((-1073 . -25) T) ((-1073 . -21) T) ((-784 . -123) T) ((-1029 . -25) T) ((-1029 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 88781) ((-584 . -97) 88759) ((-572 . -97) T) ((-1061 . -280) 88554) ((-524 . -123) T) ((-562 . -777) 88533) ((-1058 . -456) 88517) ((-1052 . -138) 88467) ((-1048 . -557) 88429) ((-1048 . -558) 88390) ((-942 . -723) T) ((-942 . -726) T) ((-942 . -659) T) ((-451 . -280) 88328) ((-422 . -387) 88298) ((-321 . -156) T) ((-261 . -37) 88285) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -955) 88262) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -970) 88085) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 87894) ((-607 . -205) 87878) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 87827) ((-103 . -280) NIL) ((-70 . -365) T) ((-1019 . -97) 87638) ((-765 . -381) 87622) ((-1024 . -727) T) ((-1024 . -724) T) ((-634 . -1006) T) ((-349 . -333) T) ((-153 . -458) 87600) ((-196 . -557) 87532) ((-125 . -1006) T) ((-111 . -1006) T) ((-47 . -659) T) ((-961 . -456) 87497) ((-128 . -395) 87479) ((-128 . -338) T) ((-945 . -97) T) ((-476 . -473) 87458) ((-445 . -97) T) ((-432 . -97) T) ((-952 . -1018) T) ((-1075 . -34) 87424) ((-1075 . -91) 87390) ((-1075 . -1101) 87356) ((-1075 . -1098) 87322) ((-1060 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-990 . -1053) 87301) ((-1074 . -1098) 87267) ((-1074 . -1101) 87233) ((-952 . -23) T) ((-1074 . -91) 87199) ((-524 . -458) T) ((-1074 . -34) 87165) ((-1068 . -1098) 87131) ((-1068 . -1101) 87097) ((-1068 . -91) 87063) ((-331 . -1018) T) ((-329 . -1053) 87042) ((-323 . -1053) 87021) ((-315 . -1053) 87000) ((-1068 . -34) 86966) ((-1030 . -34) 86932) ((-1030 . -91) 86898) ((-103 . -1053) T) ((-1030 . -1101) 86864) ((-765 . -971) 86843) ((-584 . -280) 86781) ((-572 . -280) 86632) ((-1030 . -1098) 86598) ((-645 . -964) T) ((-975 . -579) 86580) ((-990 . -37) 86448) ((-876 . -579) 86396) ((-923 . -134) T) ((-923 . -132) NIL) ((-349 . -1018) T) ((-294 . -25) T) ((-292 . -23) T) ((-867 . -779) 86375) ((-645 . -296) 86352) ((-449 . -579) 86300) ((-39 . -955) 86190) ((-634 . -650) 86177) ((-645 . -207) T) ((-309 . -1006) T) ((-157 . -1006) T) ((-301 . -779) T) ((-388 . -421) 86127) ((-349 . -23) T) ((-329 . -37) 86092) ((-323 . -37) 86057) ((-315 . -37) 86022) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1018) T) ((-103 . -37) 85972) ((-759 . -1018) T) ((-706 . -1006) T) ((-111 . -650) 85959) ((-608 . -955) 85943) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1058 . -258) 85920) ((-1019 . -280) 85858) ((-1008 . -209) 85842) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 85819) ((-590 . -781) 85803) ((-975 . -21) T) ((-975 . -25) T) ((-747 . -205) 85773) ((-876 . -25) T) ((-876 . -21) T) ((-562 . -971) T) ((-449 . -25) T) ((-449 . -21) T) ((-945 . -280) 85711) ((-813 . -557) 85693) ((-809 . -557) 85675) ((-224 . -779) 85626) ((-223 . -779) 85577) ((-486 . -478) 85510) ((-795 . -579) 85487) ((-445 . -280) 85425) ((-432 . -280) 85363) ((-321 . -262) T) ((-1058 . -1146) 85347) ((-1044 . -557) 85309) ((-1044 . -558) 85270) ((-1042 . -97) T) ((-918 . -970) 85166) ((-39 . -824) 85118) ((-1058 . -550) 85095) ((-1184 . -585) 85082) ((-976 . -138) 85028) ((-796 . -1116) T) ((-918 . -106) 84910) ((-309 . -650) 84894) ((-790 . -557) 84876) ((-157 . -650) 84808) ((-377 . -258) 84766) ((-796 . -509) T) ((-103 . -370) 84748) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 84559) ((-94 . -442) T) ((-111 . -156) T) ((-1019 . -37) 84529) ((-153 . -579) 84477) ((-968 . -97) T) ((-795 . -25) T) ((-747 . -212) 84456) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 84434) ((-122 . -1112) T) ((-116 . -1112) T) ((-952 . -123) T) ((-607 . -337) 84418) ((-918 . -964) T) ((-1131 . -579) 84366) ((-1010 . -557) 84348) ((-922 . -557) 84330) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1006) T) ((-922 . -558) 84314) ((-918 . -217) 84293) ((-918 . -207) 84272) ((-1184 . -659) T) ((-1150 . -132) 84251) ((-765 . -1006) T) ((-1150 . -134) 84230) ((-1143 . -134) 84209) ((-1143 . -132) 84188) ((-1142 . -1116) 84167) ((-1122 . -132) 84074) ((-1122 . -134) 83981) ((-1121 . -1116) 83960) ((-349 . -123) T) ((-517 . -810) 83942) ((0 . -1006) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1006) T) ((-1144 . -585) 83847) ((-1142 . -509) 83798) ((-647 . -1018) T) ((-1121 . -509) 83749) ((-517 . -955) 83731) ((-542 . -134) 83710) ((-542 . -132) 83689) ((-460 . -955) 83632) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 83614) ((-1180 . -971) T) ((-349 . -973) T) ((-944 . -1006) 83592) ((-825 . -33) T) ((-450 . -280) 83530) ((-1058 . -558) 83491) ((-1058 . -557) 83423) ((-1073 . -779) 83402) ((-44 . -97) T) ((-1029 . -779) 83381) ((-749 . -97) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-784 . -25) T) ((-43 . -337) 83365) ((-784 . -21) T) ((-664 . -421) 83316) ((-1179 . -557) 83298) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1006) T) ((-968 . -280) 83236) ((-562 . -1006) T) ((-632 . -810) 83218) ((-1158 . -1112) T) ((-201 . -280) 83156) ((-131 . -338) T) ((-961 . -558) 83098) ((-961 . -557) 83041) ((-283 . -833) NIL) ((-632 . -955) 82986) ((-644 . -844) T) ((-443 . -1116) 82965) ((-1074 . -421) 82944) ((-1068 . -421) 82923) ((-300 . -97) T) ((-796 . -1018) T) ((-286 . -585) 82745) ((-283 . -585) 82674) ((-443 . -509) 82625) ((-309 . -478) 82591) ((-503 . -138) 82541) ((-39 . -278) T) ((-772 . -557) 82523) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-990 . -205) 82493) ((-476 . -97) T) ((-377 . -558) 82301) ((-377 . -557) 82283) ((-236 . -557) 82265) ((-111 . -262) T) ((-1144 . -659) T) ((-1142 . -333) 82244) ((-1121 . -333) 82223) ((-1169 . -33) T) ((-112 . -1112) T) ((-103 . -205) 82205) ((-1079 . -97) T) ((-446 . -1006) T) ((-486 . -456) 82189) ((-670 . -33) T) ((-450 . -37) 82159) ((-128 . -33) T) ((-112 . -808) 82136) ((-112 . -810) NIL) ((-564 . -955) 82021) ((-583 . -779) 82000) ((-1168 . -97) T) ((-266 . -97) T) ((-645 . -338) 81979) ((-112 . -955) 81956) ((-360 . -650) 81940) ((-562 . -650) 81924) ((-44 . -280) 81728) ((-748 . -132) 81707) ((-748 . -134) 81686) ((-1179 . -352) 81665) ((-751 . -779) T) ((-1160 . -1006) T) ((-1061 . -203) 81612) ((-356 . -779) 81591) ((-1150 . -1101) 81557) ((-1150 . -1098) 81523) ((-1143 . -1098) 81489) ((-479 . -123) T) ((-1143 . -1101) 81455) ((-1122 . -1098) 81421) ((-1122 . -1101) 81387) ((-1150 . -34) 81353) ((-1150 . -91) 81319) ((-575 . -557) 81288) ((-551 . -557) 81257) ((-199 . -779) T) ((-1143 . -91) 81223) ((-1143 . -34) 81189) ((-1142 . -1018) T) ((-1024 . -585) 81176) ((-1122 . -91) 81142) ((-1121 . -1018) T) ((-540 . -138) 81124) ((-990 . -319) 81103) ((-112 . -347) 81080) ((-112 . -308) 81057) ((-157 . -262) T) ((-1122 . -34) 81023) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 80873) ((-283 . -659) T) ((-443 . -333) 80852) ((-329 . -319) 80831) ((-323 . -319) 80810) ((-315 . -319) 80789) ((-286 . -442) 80768) ((-1142 . -23) T) ((-1121 . -23) T) ((-651 . -1018) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 80733) ((-44 . -254) 80683) ((-100 . -1006) T) ((-66 . -557) 80665) ((-789 . -97) T) ((-564 . -824) 80624) ((-1180 . -1006) T) ((-351 . -1006) T) ((-80 . -1112) T) ((-975 . -779) T) ((-876 . -779) 80603) ((-112 . -824) NIL) ((-714 . -844) 80582) ((-646 . -779) T) ((-489 . -1006) T) ((-465 . -1006) T) ((-325 . -1116) T) ((-322 . -1116) T) ((-314 . -1116) T) ((-237 . -1116) 80561) ((-221 . -1116) 80540) ((-1019 . -205) 80510) ((-449 . -779) 80489) ((-1044 . -970) 80473) ((-360 . -694) T) ((-1060 . -760) T) ((-627 . -1112) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 80404) ((-221 . -509) 80335) ((-1044 . -106) 80314) ((-422 . -677) 80284) ((-790 . -970) 80254) ((-749 . -37) 80196) ((-627 . -808) 80178) ((-627 . -810) 80160) ((-266 . -280) 79964) ((-834 . -1116) T) ((-607 . -381) 79948) ((-790 . -106) 79913) ((-627 . -955) 79858) ((-923 . -421) T) ((-834 . -509) T) ((-530 . -844) T) ((-443 . -1018) T) ((-481 . -844) T) ((-1058 . -260) 79835) ((-838 . -421) T) ((-63 . -557) 79817) ((-572 . -203) 79763) ((-443 . -23) T) ((-1024 . -726) T) ((-796 . -123) T) ((-1024 . -723) T) ((-1171 . -1173) 79742) ((-1024 . -659) T) ((-591 . -585) 79716) ((-265 . -557) 79458) ((-953 . -33) T) ((-747 . -777) 79437) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1180 . -650) 79407) ((-627 . -347) 79389) ((-627 . -308) 79371) ((-446 . -156) T) ((-351 . -650) 79341) ((-795 . -779) NIL) ((-517 . -940) T) ((-460 . -940) T) ((-1037 . -557) 79323) ((-1019 . -212) 79302) ((-189 . -97) T) ((-1052 . -97) T) ((-69 . -557) 79284) ((-1044 . -964) T) ((-1079 . -37) 79181) ((-786 . -557) 79163) ((-517 . -502) T) ((-607 . -971) T) ((-664 . -873) 79116) ((-1044 . -207) 79095) ((-992 . -1006) T) ((-952 . -25) T) ((-952 . -21) T) ((-922 . -970) 79040) ((-829 . -97) T) ((-790 . -964) T) ((-627 . -824) NIL) ((-325 . -299) 79024) ((-325 . -333) T) ((-322 . -299) 79008) ((-322 . -333) T) ((-314 . -299) 78992) ((-314 . -333) T) ((-454 . -97) T) ((-1168 . -37) 78962) ((-486 . -621) 78912) ((-192 . -97) T) ((-942 . -955) 78794) ((-922 . -106) 78723) ((-1075 . -893) 78693) ((-1074 . -893) 78656) ((-483 . -138) 78640) ((-990 . -340) 78619) ((-321 . -557) 78601) ((-292 . -21) T) ((-324 . -955) 78578) ((-292 . -25) T) ((-1068 . -893) 78548) ((-1030 . -893) 78515) ((-74 . -557) 78497) ((-632 . -278) T) ((-153 . -779) 78476) ((-834 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-834 . -299) 78463) ((-84 . -557) 78445) ((-632 . -940) T) ((-612 . -779) T) ((-1142 . -123) T) ((-1121 . -123) T) ((-825 . -929) 78429) ((-766 . -21) T) ((-47 . -955) 78372) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1178 . -971) T) ((-1176 . -971) T) ((-591 . -659) T) ((-1179 . -970) 78356) ((-1131 . -779) 78335) ((-747 . -381) 78304) ((-98 . -114) 78288) ((-51 . -1006) T) ((-850 . -557) 78270) ((-795 . -912) 78247) ((-755 . -97) T) ((-1179 . -106) 78226) ((-590 . -37) 78196) ((-524 . -779) T) ((-325 . -1018) T) ((-322 . -1018) T) ((-314 . -1018) T) ((-237 . -1018) T) ((-221 . -1018) T) ((-564 . -278) 78175) ((-1052 . -280) 77979) ((-601 . -23) T) ((-450 . -205) 77949) ((-139 . -971) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-922 . -964) T) ((-645 . -833) 77928) ((-922 . -207) 77900) ((-922 . -217) T) ((-112 . -940) NIL) ((-834 . -1018) T) ((-1143 . -421) 77879) ((-1122 . -421) 77858) ((-486 . -557) 77790) ((-645 . -585) 77715) ((-377 . -970) 77667) ((-469 . -557) 77649) ((-834 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 77587) ((-747 . -971) 77518) ((-670 . -1004) 77502) ((-1142 . -458) 77468) ((-1121 . -458) 77434) ((-128 . -1004) 77416) ((-446 . -262) T) ((-1179 . -964) T) ((-976 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 77395) ((-1073 . -132) 77374) ((-1073 . -134) 77353) ((-1029 . -134) 77332) ((-1029 . -132) 77311) ((-575 . -970) 77295) ((-551 . -970) 77279) ((-607 . -1006) T) ((-607 . -967) 77219) ((-1075 . -1149) 77203) ((-1075 . -1136) 77180) ((-454 . -1053) T) ((-1074 . -1141) 77141) ((-1074 . -1136) 77111) ((-1074 . -1139) 77095) ((-192 . -1053) T) ((-313 . -844) T) ((-750 . -239) 77079) ((-575 . -106) 77058) ((-551 . -106) 77037) ((-1068 . -1120) 76998) ((-772 . -964) 76977) ((-1068 . -1136) 76954) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1068 . -1118) 76938) ((-377 . -964) T) ((-289 . -971) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 76917) ((-645 . -659) T) ((-454 . -37) 76867) ((-192 . -37) 76817) ((-443 . -458) 76783) ((-1060 . -1046) T) ((-1007 . -97) T) ((-634 . -557) 76765) ((-634 . -558) 76680) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 76662) ((-111 . -557) 76644) ((-142 . -25) T) ((-1178 . -1006) T) ((-796 . -579) 76592) ((-1176 . -1006) T) ((-886 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 76543) ((-43 . -1006) T) ((-996 . -779) T) ((-601 . -123) T) ((-976 . -280) 76394) ((-607 . -650) 76378) ((-261 . -971) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1006) T) ((-44 . -203) 76328) ((-881 . -779) 76307) ((-918 . -585) 76245) ((-214 . -1165) 76215) ((-942 . -278) T) ((-265 . -970) 76137) ((-834 . -123) T) ((-39 . -844) T) ((-454 . -370) 76119) ((-324 . -278) T) ((-192 . -370) 76101) ((-990 . -381) 76085) ((-265 . -106) 76002) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 75984) ((-1144 . -46) 75928) ((-199 . -134) T) ((-157 . -557) 75910) ((-1019 . -777) 75889) ((-706 . -557) 75871) ((-552 . -209) 75818) ((-444 . -209) 75768) ((-1178 . -650) 75738) ((-47 . -278) T) ((-1176 . -650) 75708) ((-887 . -1006) T) ((-747 . -1006) 75519) ((-282 . -97) T) ((-825 . -1112) T) ((-47 . -940) T) ((-1121 . -579) 75427) ((-623 . -97) 75405) ((-43 . -650) 75389) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1110 . -1006) 75367) ((-321 . -970) 75312) ((-611 . -1006) 75290) ((-975 . -134) T) ((-876 . -134) 75269) ((-876 . -132) 75248) ((-731 . -97) T) ((-139 . -650) 75232) ((-449 . -134) 75211) ((-449 . -132) 75190) ((-321 . -106) 75119) ((-990 . -971) T) ((-292 . -779) 75098) ((-1150 . -893) 75068) ((-567 . -1006) T) ((-1143 . -893) 75031) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 74981) ((-329 . -971) T) ((-323 . -971) T) ((-315 . -971) T) ((-265 . -964) 74924) ((-1122 . -893) 74894) ((-349 . -779) T) ((-103 . -971) T) ((-918 . -659) T) ((-794 . -844) T) ((-772 . -727) 74873) ((-772 . -724) 74852) ((-388 . -280) 74791) ((-437 . -97) T) ((-542 . -893) 74761) ((-289 . -1006) T) ((-377 . -727) 74740) ((-377 . -724) 74719) ((-465 . -456) 74701) ((-1144 . -955) 74667) ((-1142 . -21) T) ((-1142 . -25) T) ((-1121 . -21) T) ((-1121 . -25) T) ((-747 . -650) 74609) ((-632 . -374) T) ((-1169 . -1112) T) ((-1019 . -381) 74578) ((-922 . -338) NIL) ((-98 . -33) T) ((-670 . -1112) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 74562) ((-128 . -1112) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -964) T) ((-68 . -353) T) ((-68 . -365) T) ((-1067 . -97) T) ((-607 . -478) 74495) ((-623 . -280) 74433) ((-886 . -37) 74330) ((-668 . -37) 74300) ((-503 . -280) 74104) ((-286 . -1112) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1112) T) ((-261 . -1006) T) ((-1081 . -557) 74086) ((-644 . -1116) T) ((-1058 . -588) 74070) ((-1107 . -509) 74049) ((-644 . -509) T) ((-286 . -808) 74033) ((-286 . -810) 73958) ((-283 . -808) 73919) ((-283 . -810) NIL) ((-731 . -280) 73884) ((-289 . -650) 73725) ((-294 . -293) 73702) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 73676) ((-286 . -955) 73344) ((-199 . -1098) T) ((-199 . -1101) T) ((-3 . -557) 73326) ((-283 . -955) 73256) ((-2 . -1006) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73238) ((-1019 . -971) 73169) ((-529 . -844) T) ((-517 . -752) T) ((-517 . -844) T) ((-460 . -844) T) ((-127 . -955) 73153) ((-199 . -91) T) ((-153 . -134) 73132) ((-73 . -410) T) ((0 . -557) 73114) ((-73 . -365) T) ((-153 . -132) 73065) ((-199 . -34) T) ((-48 . -557) 73047) ((-446 . -971) T) ((-454 . -205) 73029) ((-451 . -889) 73013) ((-450 . -777) 72992) ((-192 . -205) 72974) ((-79 . -410) T) ((-79 . -365) T) ((-1048 . -33) T) ((-747 . -156) 72953) ((-664 . -97) T) ((-944 . -557) 72920) ((-465 . -258) 72895) ((-286 . -347) 72865) ((-283 . -347) 72826) ((-283 . -308) 72787) ((-748 . -873) 72734) ((-599 . -123) T) ((-1131 . -132) 72713) ((-1131 . -134) 72692) ((-1075 . -97) T) ((-1074 . -97) T) ((-1068 . -97) T) ((-1061 . -1006) T) ((-1030 . -97) T) ((-196 . -33) T) ((-261 . -650) 72679) ((-1061 . -554) 72655) ((-540 . -280) NIL) ((-451 . -1006) 72633) ((-360 . -557) 72615) ((-474 . -779) T) ((-1052 . -203) 72565) ((-1150 . -1149) 72549) ((-1150 . -1136) 72526) ((-1143 . -1141) 72487) ((-1143 . -1136) 72457) ((-1143 . -1139) 72441) ((-1122 . -1120) 72402) ((-1122 . -1136) 72379) ((-562 . -557) 72361) ((-1122 . -1118) 72345) ((-632 . -844) T) ((-1075 . -256) 72311) ((-1074 . -256) 72277) ((-1068 . -256) 72243) ((-990 . -1006) T) ((-974 . -1006) T) ((-47 . -273) T) ((-286 . -824) 72210) ((-283 . -824) NIL) ((-974 . -980) 72189) ((-1024 . -810) 72171) ((-731 . -37) 72155) ((-237 . -579) 72103) ((-221 . -579) 72051) ((-634 . -970) 72038) ((-542 . -1136) 72015) ((-1030 . -256) 71981) ((-289 . -156) 71912) ((-329 . -1006) T) ((-323 . -1006) T) ((-315 . -1006) T) ((-465 . -19) 71894) ((-1024 . -955) 71876) ((-1008 . -138) 71860) ((-103 . -1006) T) ((-111 . -970) 71847) ((-644 . -333) T) ((-465 . -550) 71822) ((-634 . -106) 71807) ((-406 . -97) T) ((-44 . -1051) 71757) ((-111 . -106) 71742) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 71675) ((-953 . -1112) T) ((-867 . -138) 71659) ((-483 . -97) 71609) ((-995 . -1116) 71588) ((-446 . -557) 71540) ((-446 . -558) 71462) ((-60 . -1112) T) ((-714 . -1116) 71441) ((-712 . -1116) 71420) ((-1073 . -421) 71351) ((-1060 . -1006) T) ((-1044 . -585) 71325) ((-995 . -509) 71256) ((-450 . -381) 71225) ((-564 . -844) 71204) ((-423 . -1116) 71183) ((-1029 . -421) 71134) ((-368 . -557) 71116) ((-611 . -478) 71049) ((-714 . -509) 70960) ((-712 . -509) 70891) ((-664 . -280) 70878) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 70809) ((-112 . -844) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1160 . -557) 70791) ((-1107 . -1018) T) ((-1107 . -23) T) ((-1068 . -280) 70676) ((-1030 . -280) 70663) ((-790 . -585) 70623) ((-990 . -650) 70491) ((-867 . -900) 70475) ((-261 . -156) T) ((-834 . -21) T) ((-834 . -25) T) ((-796 . -779) 70426) ((-644 . -1018) T) ((-644 . -23) T) ((-584 . -1006) 70404) ((-572 . -554) 70379) ((-572 . -1006) T) ((-530 . -1116) T) ((-481 . -1116) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 70331) ((-323 . -650) 70283) ((-157 . -970) 70215) ((-309 . -970) 70199) ((-103 . -650) 70149) ((-157 . -106) 70060) ((-315 . -650) 70012) ((-309 . -106) 69991) ((-247 . -1006) T) ((-246 . -1006) T) ((-245 . -1006) T) ((-244 . -1006) T) ((-634 . -964) T) ((-243 . -1006) T) ((-242 . -1006) T) ((-241 . -1006) T) ((-188 . -1006) T) ((-187 . -1006) T) ((-185 . -1006) T) ((-153 . -1101) 69969) ((-153 . -1098) 69947) ((-184 . -1006) T) ((-183 . -1006) T) ((-111 . -964) T) ((-182 . -1006) T) ((-179 . -1006) T) ((-634 . -207) T) ((-178 . -1006) T) ((-177 . -1006) T) ((-176 . -1006) T) ((-175 . -1006) T) ((-174 . -1006) T) ((-173 . -1006) T) ((-172 . -1006) T) ((-171 . -1006) T) ((-170 . -1006) T) ((-169 . -1006) T) ((-214 . -97) 69758) ((-153 . -34) 69736) ((-153 . -91) 69714) ((-591 . -955) 69612) ((-450 . -971) 69543) ((-1019 . -1006) 69354) ((-1044 . -33) T) ((-607 . -456) 69338) ((-71 . -1112) T) ((-100 . -557) 69320) ((-1180 . -557) 69302) ((-351 . -557) 69284) ((-524 . -1101) T) ((-524 . -1098) T) ((-664 . -37) 69133) ((-489 . -557) 69115) ((-483 . -280) 69053) ((-465 . -557) 69035) ((-465 . -558) 69017) ((-1068 . -1053) NIL) ((-945 . -983) 68986) ((-945 . -1006) T) ((-923 . -97) T) ((-891 . -97) T) ((-838 . -97) T) ((-817 . -955) 68963) ((-1044 . -659) T) ((-922 . -585) 68908) ((-445 . -1006) T) ((-432 . -1006) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-976 . -203) 68854) ((-1075 . -37) 68751) ((-790 . -659) T) ((-627 . -844) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1074 . -37) 68592) ((-309 . -964) T) ((-1068 . -37) 68388) ((-990 . -156) T) ((-157 . -964) T) ((-1030 . -37) 68285) ((-645 . -46) 68262) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68236) ((-462 . -55) 68186) ((-321 . -1175) 68163) ((-199 . -421) T) ((-289 . -262) 68114) ((-315 . -156) T) ((-157 . -217) T) ((-1121 . -779) 68013) ((-103 . -156) T) ((-796 . -912) 67997) ((-595 . -1018) T) ((-530 . -333) T) ((-530 . -299) 67984) ((-481 . -299) 67961) ((-481 . -333) T) ((-286 . -278) 67940) ((-283 . -278) T) ((-548 . -779) 67919) ((-1019 . -650) 67861) ((-483 . -254) 67845) ((-595 . -23) T) ((-388 . -205) 67829) ((-283 . -940) NIL) ((-306 . -23) T) ((-98 . -929) 67813) ((-44 . -35) 67792) ((-556 . -1006) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 67730) ((-995 . -1018) T) ((-1179 . -585) 67704) ((-714 . -1018) T) ((-712 . -1018) T) ((-423 . -1018) T) ((-975 . -421) T) ((-876 . -421) 67655) ((-105 . -1006) T) ((-995 . -23) T) ((-749 . -971) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 67606) ((-1061 . -478) 67389) ((-351 . -352) 67368) ((-1079 . -381) 67352) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67285) ((-261 . -262) T) ((-992 . -557) 67267) ((-377 . -833) 67246) ((-49 . -1018) T) ((-942 . -844) T) ((-922 . -659) T) ((-645 . -810) NIL) ((-530 . -1018) T) ((-481 . -1018) T) ((-772 . -585) 67219) ((-1107 . -123) T) ((-1068 . -370) 67171) ((-923 . -280) NIL) ((-747 . -456) 67155) ((-324 . -844) T) ((-1058 . -33) T) ((-377 . -585) 67107) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -955) 66990) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 66961) ((-1042 . -1006) T) ((-1171 . -1170) 66945) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1024 . -278) T) ((-1121 . -912) 66915) ((-47 . -844) T) ((-611 . -456) 66899) ((-224 . -1165) 66869) ((-223 . -1165) 66839) ((-1077 . -779) T) ((-1019 . -156) 66818) ((-1024 . -940) T) ((-961 . -33) T) ((-766 . -134) 66797) ((-766 . -132) 66776) ((-670 . -102) 66760) ((-556 . -124) T) ((-450 . -1006) 66571) ((-1079 . -971) T) ((-795 . -421) T) ((-83 . -1112) T) ((-214 . -37) 66541) ((-128 . -102) 66523) ((-645 . -347) 66507) ((-1024 . -502) T) ((-360 . -970) 66491) ((-1179 . -659) T) ((-1073 . -873) 66461) ((-51 . -557) 66443) ((-1029 . -873) 66410) ((-590 . -381) 66394) ((-1168 . -971) T) ((-562 . -970) 66378) ((-599 . -25) T) ((-599 . -21) T) ((-1060 . -478) NIL) ((-1150 . -97) T) ((-1143 . -97) T) ((-360 . -106) 66357) ((-196 . -227) 66341) ((-1122 . -97) T) ((-968 . -1006) T) ((-923 . -1053) T) ((-968 . -967) 66281) ((-750 . -1006) T) ((-313 . -1116) T) ((-575 . -585) 66265) ((-562 . -106) 66244) ((-551 . -585) 66228) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1006) T) ((-355 . -1006) T) ((-201 . -1006) 66206) ((-584 . -478) 66139) ((-572 . -478) 65983) ((-765 . -964) 65962) ((-583 . -138) 65946) ((-313 . -509) T) ((-645 . -824) 65890) ((-503 . -203) 65840) ((-1150 . -256) 65806) ((-990 . -262) 65757) ((-454 . -777) T) ((-197 . -1018) T) ((-1143 . -256) 65723) ((-1122 . -256) 65689) ((-923 . -37) 65639) ((-192 . -777) T) ((-1107 . -458) 65605) ((-838 . -37) 65557) ((-772 . -726) 65536) ((-772 . -723) 65515) ((-772 . -659) 65494) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 65425) ((-397 . -37) 65409) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 65388) ((-377 . -723) 65367) ((-377 . -659) T) ((-465 . -260) 65342) ((-446 . -970) 65307) ((-595 . -123) T) ((-1019 . -478) 65240) ((-306 . -123) T) ((-153 . -372) 65219) ((-450 . -650) 65161) ((-747 . -258) 65138) ((-446 . -106) 65094) ((-590 . -971) T) ((-1131 . -421) 65025) ((-995 . -123) T) ((-237 . -779) 65004) ((-221 . -779) 64983) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-968 . -650) 64925) ((-562 . -964) T) ((-945 . -478) 64858) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1006) T) ((-355 . -650) 64828) ((-749 . -1006) T) ((-445 . -478) 64761) ((-432 . -478) 64694) ((-422 . -337) 64664) ((-44 . -554) 64643) ((-286 . -273) T) ((-607 . -557) 64605) ((-57 . -779) 64584) ((-1122 . -280) 64469) ((-923 . -370) 64451) ((-747 . -550) 64428) ((-480 . -779) 64407) ((-461 . -779) 64386) ((-39 . -1116) T) ((-918 . -955) 64284) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64146) ((-313 . -299) 64123) ((-313 . -333) T) ((-292 . -293) 64100) ((-289 . -258) 64085) ((-39 . -509) T) ((-349 . -1098) T) ((-349 . -1101) T) ((-953 . -1089) 64060) ((-1086 . -209) 64010) ((-1068 . -205) 63962) ((-300 . -1006) T) ((-349 . -91) T) ((-349 . -34) T) ((-953 . -102) 63908) ((-446 . -964) T) ((-447 . -209) 63858) ((-1061 . -456) 63792) ((-1180 . -970) 63776) ((-351 . -970) 63760) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 63739) ((-647 . -132) 63718) ((-451 . -456) 63702) ((-452 . -305) 63671) ((-1180 . -106) 63650) ((-476 . -1006) T) ((-450 . -156) 63629) ((-918 . -347) 63613) ((-383 . -97) T) ((-351 . -106) 63592) ((-918 . -308) 63576) ((-252 . -903) 63560) ((-251 . -903) 63544) ((-1178 . -557) 63526) ((-1176 . -557) 63508) ((-105 . -478) NIL) ((-1073 . -1134) 63492) ((-783 . -781) 63476) ((-1079 . -1006) T) ((-98 . -1112) T) ((-876 . -873) 63437) ((-749 . -650) 63379) ((-1122 . -1053) NIL) ((-449 . -873) 63324) ((-975 . -130) T) ((-58 . -97) 63302) ((-43 . -557) 63284) ((-76 . -557) 63266) ((-321 . -585) 63211) ((-1168 . -1006) T) ((-475 . -779) T) ((-313 . -1018) T) ((-266 . -1006) T) ((-918 . -824) 63170) ((-266 . -554) 63149) ((-1150 . -37) 63046) ((-1143 . -37) 62887) ((-454 . -971) T) ((-1122 . -37) 62683) ((-192 . -971) T) ((-313 . -23) T) ((-139 . -557) 62665) ((-765 . -727) 62644) ((-765 . -724) 62623) ((-543 . -37) 62596) ((-542 . -37) 62493) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -921) 62459) ((-77 . -557) 62441) ((-645 . -278) 62420) ((-265 . -659) 62323) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62302) ((-1171 . -97) T) ((-39 . -333) T) ((-796 . -134) 62281) ((-796 . -132) 62260) ((-1060 . -456) 62242) ((-1180 . -964) T) ((-450 . -478) 62175) ((-1048 . -1112) T) ((-887 . -557) 62157) ((-584 . -456) 62141) ((-572 . -456) 62072) ((-747 . -557) 61824) ((-47 . -27) T) ((-1079 . -650) 61721) ((-590 . -1006) T) ((-406 . -334) 61695) ((-1008 . -97) T) ((-748 . -280) 61682) ((-789 . -1006) T) ((-1176 . -352) 61654) ((-968 . -478) 61587) ((-1061 . -258) 61563) ((-214 . -205) 61533) ((-1168 . -650) 61503) ((-749 . -156) 61482) ((-201 . -478) 61415) ((-562 . -727) 61394) ((-562 . -724) 61373) ((-1110 . -557) 61285) ((-196 . -1112) T) ((-611 . -557) 61217) ((-1058 . -929) 61201) ((-321 . -659) T) ((-867 . -97) 61151) ((-1122 . -370) 61103) ((-1019 . -456) 61087) ((-58 . -280) 61025) ((-301 . -97) T) ((-1107 . -21) T) ((-1107 . -25) T) ((-39 . -1018) T) ((-644 . -21) T) ((-567 . -557) 61007) ((-479 . -293) 60986) ((-644 . -25) T) ((-103 . -258) NIL) ((-845 . -1018) T) ((-39 . -23) T) ((-703 . -1018) T) ((-517 . -1116) T) ((-460 . -1116) T) ((-289 . -557) 60968) ((-923 . -205) 60950) ((-153 . -150) 60934) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1142 . -134) 60913) ((-1061 . -550) 60889) ((-1142 . -132) 60868) ((-945 . -456) 60852) ((-1121 . -132) 60777) ((-1121 . -134) 60702) ((-1171 . -1177) 60681) ((-445 . -456) 60665) ((-432 . -456) 60649) ((-486 . -33) T) ((-590 . -650) 60619) ((-107 . -888) T) ((-599 . -779) 60598) ((-1079 . -156) 60549) ((-335 . -97) T) ((-214 . -212) 60528) ((-224 . -97) T) ((-223 . -97) T) ((-1131 . -873) 60498) ((-104 . -97) T) ((-219 . -779) 60477) ((-748 . -37) 60326) ((-44 . -478) 60118) ((-1060 . -258) 60093) ((-189 . -1006) T) ((-1052 . -1006) T) ((-1052 . -554) 60072) ((-534 . -25) T) ((-534 . -21) T) ((-1008 . -280) 60010) ((-886 . -381) 59994) ((-632 . -1116) T) ((-572 . -258) 59969) ((-995 . -579) 59917) ((-714 . -579) 59865) ((-712 . -579) 59813) ((-313 . -123) T) ((-261 . -557) 59795) ((-632 . -509) T) ((-829 . -1006) T) ((-794 . -1018) T) ((-423 . -579) 59743) ((-829 . -827) 59727) ((-349 . -421) T) ((-454 . -1006) T) ((-634 . -585) 59714) ((-867 . -280) 59652) ((-192 . -1006) T) ((-286 . -844) 59631) ((-283 . -844) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 59618) ((-443 . -132) 59597) ((-388 . -381) 59581) ((-443 . -134) 59560) ((-105 . -456) 59542) ((-2 . -557) 59524) ((-1060 . -19) 59506) ((-1060 . -550) 59481) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1046) T) ((-1019 . -258) 59458) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1171 . -37) 59428) ((-1044 . -1112) T) ((-572 . -550) 59403) ((-995 . -25) T) ((-995 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1116) T) ((-886 . -971) T) ((-564 . -509) T) ((-668 . -971) T) ((-648 . -971) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -970) 59387) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1044 . -955) 59285) ((-749 . -262) 59264) ((-755 . -1006) T) ((-607 . -106) 59243) ((-266 . -478) 59035) ((-1178 . -970) 59019) ((-1176 . -970) 59003) ((-224 . -280) 58941) ((-223 . -280) 58879) ((-1125 . -97) 58857) ((-1061 . -558) NIL) ((-1061 . -557) 58839) ((-1142 . -1098) 58805) ((-1142 . -1101) 58771) ((-1122 . -205) 58723) ((-1121 . -1098) 58689) ((-1121 . -1101) 58655) ((-1044 . -347) 58639) ((-1024 . -752) T) ((-1024 . -844) T) ((-1019 . -550) 58616) ((-990 . -558) 58600) ((-451 . -557) 58532) ((-747 . -260) 58509) ((-552 . -138) 58456) ((-388 . -971) T) ((-454 . -650) 58406) ((-450 . -456) 58390) ((-297 . -779) 58369) ((-309 . -585) 58343) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58293) ((-153 . -657) 58264) ((-157 . -585) 58196) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58146) ((-990 . -557) 58128) ((-974 . -557) 58110) ((-913 . -97) T) ((-787 . -97) T) ((-731 . -381) 58074) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -819) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1018) T) ((-517 . -1018) T) ((-460 . -1018) T) ((-634 . -659) T) ((-329 . -557) 58056) ((-323 . -557) 58038) ((-315 . -557) 58020) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 57950) ((-103 . -557) 57932) ((-187 . -819) T) ((-881 . -138) 57916) ((-1142 . -91) 57882) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1142 . -34) 57848) ((-968 . -456) 57832) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1121 . -91) 57798) ((-1121 . -34) 57764) ((-1073 . -97) T) ((-1029 . -97) T) ((-783 . -97) T) ((-201 . -456) 57748) ((-1178 . -106) 57727) ((-1176 . -106) 57706) ((-43 . -970) 57690) ((-1131 . -1134) 57674) ((-784 . -781) 57658) ((-1079 . -262) 57637) ((-105 . -258) 57612) ((-1044 . -824) 57571) ((-43 . -106) 57550) ((-607 . -964) T) ((-1082 . -1153) T) ((-1060 . -558) NIL) ((-1060 . -557) 57532) ((-976 . -554) 57507) ((-976 . -1006) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 57486) ((-139 . -970) 57470) ((-524 . -507) 57454) ((-325 . -134) 57433) ((-325 . -132) 57384) ((-322 . -134) 57363) ((-636 . -1006) T) ((-322 . -132) 57314) ((-314 . -134) 57293) ((-314 . -132) 57244) ((-237 . -132) 57223) ((-237 . -134) 57202) ((-224 . -37) 57172) ((-221 . -134) 57151) ((-112 . -333) T) ((-221 . -132) 57130) ((-223 . -37) 57100) ((-139 . -106) 57079) ((-922 . -955) 56969) ((-1068 . -777) NIL) ((-627 . -1116) T) ((-731 . -971) T) ((-632 . -1018) T) ((-1178 . -964) T) ((-1176 . -964) T) ((-1058 . -1112) T) ((-922 . -347) 56946) ((-834 . -132) T) ((-834 . -134) 56928) ((-794 . -123) T) ((-747 . -970) 56826) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 56758) ((-584 . -558) 56719) ((-572 . -558) NIL) ((-572 . -557) 56701) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1101) 56667) ((-443 . -1098) 56633) ((-247 . -557) 56615) ((-246 . -557) 56597) ((-245 . -557) 56579) ((-244 . -557) 56561) ((-243 . -557) 56543) ((-465 . -588) 56525) ((-242 . -557) 56507) ((-309 . -659) T) ((-241 . -557) 56489) ((-105 . -19) 56471) ((-157 . -659) T) ((-465 . -343) 56453) ((-188 . -557) 56435) ((-483 . -1051) 56419) ((-465 . -118) T) ((-105 . -550) 56394) ((-187 . -557) 56376) ((-443 . -34) 56342) ((-443 . -91) 56308) ((-185 . -557) 56290) ((-184 . -557) 56272) ((-183 . -557) 56254) ((-182 . -557) 56236) ((-179 . -557) 56218) ((-178 . -557) 56200) ((-177 . -557) 56182) ((-176 . -557) 56164) ((-175 . -557) 56146) ((-174 . -557) 56128) ((-173 . -557) 56110) ((-493 . -1009) 56062) ((-172 . -557) 56044) ((-171 . -557) 56026) ((-44 . -456) 55963) ((-170 . -557) 55945) ((-169 . -557) 55927) ((-747 . -106) 55818) ((-583 . -97) 55768) ((-450 . -258) 55745) ((-1019 . -557) 55497) ((-1007 . -1006) T) ((-961 . -1112) T) ((-564 . -1018) T) ((-1179 . -955) 55481) ((-1073 . -280) 55468) ((-1029 . -280) 55455) ((-112 . -1018) T) ((-751 . -97) T) ((-564 . -23) T) ((-1052 . -478) 55247) ((-356 . -97) T) ((-294 . -97) T) ((-922 . -824) 55199) ((-886 . -1006) T) ((-139 . -964) T) ((-112 . -23) T) ((-664 . -381) 55183) ((-668 . -1006) T) ((-648 . -1006) T) ((-636 . -124) T) ((-422 . -1006) T) ((-286 . -400) 55167) ((-377 . -1112) T) ((-945 . -558) 55128) ((-942 . -1116) T) ((-199 . -97) T) ((-945 . -557) 55090) ((-748 . -205) 55074) ((-942 . -509) T) ((-765 . -585) 55047) ((-324 . -1116) T) ((-445 . -557) 55009) ((-445 . -558) 54970) ((-432 . -558) 54931) ((-432 . -557) 54893) ((-377 . -808) 54877) ((-289 . -970) 54712) ((-377 . -810) 54637) ((-772 . -955) 54535) ((-454 . -478) NIL) ((-450 . -550) 54512) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1006) T) ((-377 . -955) 54379) ((-289 . -106) 54200) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1116) T) ((-747 . -964) 54131) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1061 . -260) 54107) ((-1073 . -1053) 54085) ((-286 . -27) 54064) ((-975 . -97) T) ((-747 . -207) 54017) ((-214 . -777) 53996) ((-876 . -97) T) ((-646 . -97) T) ((-266 . -456) 53933) ((-449 . -97) T) ((-664 . -971) T) ((-556 . -557) 53915) ((-556 . -558) 53776) ((-377 . -347) 53760) ((-377 . -308) 53744) ((-1073 . -37) 53573) ((-1029 . -37) 53422) ((-783 . -37) 53392) ((-360 . -585) 53376) ((-583 . -280) 53314) ((-886 . -650) 53211) ((-196 . -102) 53195) ((-44 . -258) 53120) ((-668 . -650) 53090) ((-562 . -585) 53064) ((-282 . -1006) T) ((-261 . -970) 53051) ((-105 . -557) 53033) ((-105 . -558) 53015) ((-422 . -650) 52985) ((-748 . -226) 52924) ((-623 . -1006) 52902) ((-503 . -1006) T) ((-1075 . -971) T) ((-1074 . -971) T) ((-261 . -106) 52887) ((-1068 . -971) T) ((-1030 . -971) T) ((-503 . -554) 52866) ((-923 . -777) T) ((-201 . -621) 52824) ((-627 . -1018) T) ((-1107 . -673) 52800) ((-289 . -964) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -824) 52759) ((-66 . -1112) T) ((-765 . -726) 52738) ((-388 . -650) 52712) ((-731 . -1006) T) ((-765 . -723) 52691) ((-632 . -123) T) ((-645 . -844) 52670) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 52649) ((-289 . -207) 52601) ((-289 . -217) 52580) ((-192 . -262) T) ((-942 . -333) T) ((-1142 . -421) 52559) ((-1121 . -421) 52538) ((-324 . -299) 52515) ((-324 . -333) T) ((-1042 . -557) 52497) ((-44 . -1146) 52447) ((-795 . -97) T) ((-583 . -254) 52431) ((-632 . -973) T) ((-446 . -585) 52396) ((-437 . -1006) T) ((-44 . -550) 52321) ((-1060 . -260) 52296) ((-39 . -579) 52235) ((-47 . -333) T) ((-1012 . -557) 52217) ((-995 . -779) 52196) ((-572 . -260) 52171) ((-714 . -779) 52150) ((-712 . -779) 52129) ((-450 . -557) 51881) ((-214 . -381) 51850) ((-876 . -280) 51837) ((-423 . -779) 51816) ((-63 . -1112) T) ((-564 . -123) T) ((-449 . -280) 51803) ((-976 . -478) 51647) ((-261 . -964) T) ((-112 . -123) T) ((-422 . -694) T) ((-886 . -156) 51598) ((-990 . -970) 51508) ((-562 . -726) 51487) ((-540 . -1006) T) ((-562 . -723) 51466) ((-562 . -659) T) ((-266 . -258) 51445) ((-265 . -1112) T) ((-968 . -557) 51407) ((-968 . -558) 51368) ((-942 . -1018) T) ((-153 . -97) T) ((-248 . -779) T) ((-1067 . -1006) T) ((-750 . -557) 51350) ((-1019 . -260) 51327) ((-1008 . -203) 51311) ((-922 . -278) T) ((-731 . -650) 51295) ((-329 . -970) 51247) ((-324 . -1018) T) ((-323 . -970) 51199) ((-384 . -557) 51181) ((-355 . -557) 51163) ((-315 . -970) 51115) ((-201 . -557) 51047) ((-990 . -106) 50943) ((-942 . -23) T) ((-103 . -970) 50893) ((-822 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 50872) ((-388 . -156) T) ((-329 . -106) 50810) ((-323 . -106) 50748) ((-315 . -106) 50686) ((-224 . -205) 50656) ((-223 . -205) 50626) ((-324 . -23) T) ((-69 . -1112) T) ((-199 . -37) 50591) ((-103 . -106) 50525) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50503) ((-47 . -1018) T) ((-845 . -25) T) ((-703 . -25) T) ((-1052 . -456) 50440) ((-452 . -1006) T) ((-1180 . -585) 50414) ((-1131 . -97) T) ((-784 . -97) T) ((-214 . -971) 50345) ((-975 . -1053) T) ((-887 . -724) 50298) ((-351 . -585) 50282) ((-47 . -23) T) ((-887 . -727) 50235) ((-747 . -727) 50186) ((-747 . -724) 50137) ((-266 . -550) 50116) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50073) ((-590 . -258) 50052) ((-107 . -598) T) ((-74 . -1112) T) ((-975 . -37) 50039) ((-601 . -344) 50018) ((-876 . -37) 49867) ((-664 . -1006) T) ((-449 . -37) 49716) ((-84 . -1112) T) ((-524 . -256) T) ((-1122 . -777) NIL) ((-1075 . -1006) T) ((-1074 . -1006) T) ((-1068 . -1006) T) ((-321 . -955) 49693) ((-990 . -964) T) ((-923 . -971) T) ((-44 . -557) 49675) ((-44 . -558) NIL) ((-838 . -971) T) ((-749 . -557) 49657) ((-1049 . -97) 49635) ((-990 . -217) 49586) ((-397 . -971) T) ((-329 . -964) T) ((-323 . -964) T) ((-335 . -334) 49563) ((-315 . -964) T) ((-224 . -212) 49542) ((-223 . -212) 49521) ((-104 . -334) 49495) ((-990 . -207) 49420) ((-1030 . -1006) T) ((-265 . -824) 49379) ((-103 . -964) T) ((-627 . -123) T) ((-388 . -478) 49221) ((-329 . -207) 49200) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49179) ((-323 . -217) T) ((-315 . -207) 49158) ((-315 . -217) T) ((-153 . -280) 49123) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49098) ((-1019 . -970) 48996) ((-795 . -1053) NIL) ((-300 . -557) 48978) ((-377 . -940) 48957) ((-1019 . -106) 48848) ((-406 . -1006) T) ((-1180 . -659) T) ((-61 . -557) 48830) ((-795 . -37) 48775) ((-486 . -1112) T) ((-548 . -138) 48759) ((-476 . -557) 48741) ((-1131 . -280) 48728) ((-664 . -650) 48577) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48559) ((-460 . -579) 48519) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48470) ((-483 . -1006) 48420) ((-221 . -421) 48371) ((-1052 . -258) 48350) ((-1079 . -557) 48332) ((-623 . -478) 48265) ((-886 . -262) 48244) ((-503 . -478) 48036) ((-1073 . -205) 48020) ((-153 . -1053) 47999) ((-1168 . -557) 47981) ((-1075 . -650) 47878) ((-1074 . -650) 47719) ((-816 . -97) T) ((-1068 . -650) 47515) ((-1030 . -650) 47412) ((-1058 . -610) 47396) ((-325 . -372) 47347) ((-322 . -372) 47298) ((-314 . -372) 47249) ((-942 . -123) T) ((-731 . -478) 47161) ((-266 . -558) NIL) ((-266 . -557) 47143) ((-834 . -421) T) ((-887 . -338) 47096) ((-747 . -338) 47075) ((-474 . -473) 47054) ((-472 . -473) 47033) ((-454 . -258) NIL) ((-450 . -260) 47010) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1018) T) ((-153 . -37) 46838) ((-1142 . -893) 46801) ((-1049 . -280) 46739) ((-1121 . -893) 46709) ((-834 . -372) T) ((-1019 . -964) 46640) ((-1144 . -509) T) ((-1052 . -550) 46619) ((-107 . -779) T) ((-976 . -456) 46550) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1131 . -1053) 46528) ((-1019 . -207) 46481) ((-47 . -123) T) ((-1094 . -97) T) ((-214 . -1006) 46292) ((-795 . -370) 46269) ((-996 . -97) T) ((-986 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1131 . -37) 46098) ((-784 . -37) 46068) ((-664 . -156) 45979) ((-590 . -557) 45961) ((-524 . -37) 45948) ((-881 . -97) 45898) ((-789 . -557) 45880) ((-789 . -558) 45802) ((-540 . -478) NIL) ((-1150 . -971) T) ((-1143 . -971) T) ((-1122 . -971) T) ((-543 . -971) T) ((-542 . -971) T) ((-1184 . -1018) T) ((-1075 . -156) 45753) ((-1074 . -156) 45684) ((-1068 . -156) 45615) ((-1030 . -156) 45566) ((-923 . -1006) T) ((-891 . -1006) T) ((-838 . -1006) T) ((-1107 . -134) 45545) ((-731 . -729) 45529) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45506) ((-634 . -810) 45488) ((-397 . -1006) T) ((-286 . -1116) 45467) ((-283 . -1116) T) ((-153 . -370) 45451) ((-1107 . -132) 45430) ((-443 . -893) 45393) ((-70 . -557) 45375) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45354) ((-634 . -955) 45336) ((-283 . -509) T) ((-1184 . -23) T) ((-125 . -955) 45318) ((-450 . -970) 45216) ((-44 . -260) 45141) ((-214 . -650) 45083) ((-450 . -106) 44974) ((-999 . -97) 44952) ((-952 . -97) T) ((-583 . -760) 44931) ((-664 . -478) 44874) ((-968 . -970) 44858) ((-564 . -21) T) ((-564 . -25) T) ((-976 . -258) 44833) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 44807) ((-355 . -970) 44791) ((-968 . -106) 44770) ((-748 . -381) 44754) ((-112 . -25) T) ((-87 . -557) 44736) ((-112 . -21) T) ((-552 . -280) 44531) ((-444 . -280) 44335) ((-1052 . -558) NIL) ((-355 . -106) 44314) ((-349 . -97) T) ((-189 . -557) 44296) ((-1052 . -557) 44278) ((-923 . -650) 44228) ((-1068 . -478) 43997) ((-838 . -650) 43949) ((-1030 . -478) 43919) ((-321 . -278) T) ((-1086 . -138) 43869) ((-881 . -280) 43807) ((-766 . -97) T) ((-397 . -650) 43791) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 43741) ((-1142 . -1141) 43720) ((-1024 . -1116) T) ((-309 . -955) 43687) ((-1142 . -1136) 43657) ((-1142 . -1139) 43641) ((-1121 . -1120) 43620) ((-78 . -557) 43602) ((-829 . -557) 43584) ((-1121 . -1136) 43561) ((-1024 . -509) T) ((-845 . -779) T) ((-454 . -558) 43491) ((-454 . -557) 43473) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1121 . -1118) 43457) ((-1144 . -1018) T) ((-192 . -558) 43387) ((-192 . -557) 43369) ((-976 . -550) 43344) ((-57 . -138) 43328) ((-480 . -138) 43312) ((-461 . -138) 43296) ((-329 . -1175) 43280) ((-323 . -1175) 43264) ((-315 . -1175) 43248) ((-286 . -333) 43227) ((-283 . -333) T) ((-450 . -964) 43158) ((-627 . -579) 43140) ((-1178 . -585) 43114) ((-1176 . -585) 43088) ((-1144 . -23) T) ((-623 . -456) 43072) ((-62 . -557) 43054) ((-1019 . -727) 43005) ((-1019 . -724) 42956) ((-503 . -456) 42893) ((-607 . -33) T) ((-450 . -207) 42846) ((-266 . -260) 42825) ((-214 . -156) 42804) ((-748 . -971) T) ((-43 . -585) 42762) ((-990 . -338) 42713) ((-664 . -262) 42644) ((-483 . -478) 42577) ((-749 . -970) 42528) ((-995 . -132) 42507) ((-329 . -338) 42486) ((-323 . -338) 42465) ((-315 . -338) 42444) ((-995 . -134) 42423) ((-795 . -205) 42400) ((-749 . -106) 42342) ((-714 . -132) 42321) ((-714 . -134) 42300) ((-237 . -873) 42267) ((-224 . -777) 42246) ((-221 . -873) 42191) ((-223 . -777) 42170) ((-712 . -132) 42149) ((-712 . -134) 42128) ((-139 . -585) 42102) ((-423 . -134) 42081) ((-423 . -132) 42060) ((-607 . -659) T) ((-755 . -557) 42042) ((-1150 . -1006) T) ((-1143 . -1006) T) ((-1122 . -1006) T) ((-1107 . -1101) 42008) ((-1107 . -1098) 41974) ((-1075 . -262) 41953) ((-1074 . -262) 41904) ((-1068 . -262) 41855) ((-1030 . -262) 41834) ((-309 . -824) 41815) ((-923 . -156) T) ((-838 . -156) T) ((-543 . -1006) T) ((-542 . -1006) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1139) 41799) ((-443 . -1136) 41769) ((-388 . -258) 41697) ((-286 . -1018) 41547) ((-283 . -1018) T) ((-1107 . -34) 41513) ((-1107 . -91) 41479) ((-82 . -557) 41461) ((-89 . -97) 41439) ((-1184 . -123) T) ((-530 . -132) T) ((-530 . -134) 41421) ((-481 . -134) 41403) ((-481 . -132) T) ((-286 . -23) 41256) ((-39 . -312) 41230) ((-283 . -23) T) ((-1060 . -588) 41212) ((-747 . -585) 41062) ((-1171 . -971) T) ((-1060 . -343) 41044) ((-153 . -205) 41028) ((-540 . -456) 41010) ((-214 . -478) 40943) ((-1178 . -659) T) ((-1176 . -659) T) ((-1079 . -970) 40826) ((-1079 . -106) 40695) ((-749 . -964) T) ((-479 . -97) T) ((-47 . -579) 40655) ((-474 . -97) T) ((-472 . -97) T) ((-1168 . -970) 40625) ((-952 . -37) 40609) ((-749 . -207) T) ((-749 . -217) 40588) ((-503 . -258) 40567) ((-1168 . -106) 40532) ((-1131 . -205) 40516) ((-1150 . -650) 40413) ((-976 . -558) NIL) ((-976 . -557) 40395) ((-1143 . -650) 40236) ((-1122 . -650) 40032) ((-922 . -844) T) ((-636 . -557) 40001) ((-139 . -659) T) ((-1019 . -338) 39980) ((-923 . -478) NIL) ((-224 . -381) 39949) ((-223 . -381) 39918) ((-942 . -25) T) ((-942 . -21) T) ((-543 . -650) 39891) ((-542 . -650) 39788) ((-731 . -258) 39746) ((-121 . -97) 39724) ((-765 . -955) 39622) ((-153 . -760) 39601) ((-289 . -585) 39498) ((-747 . -33) T) ((-647 . -97) T) ((-1024 . -1018) T) ((-944 . -1112) T) ((-349 . -37) 39463) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1165) 39447) ((-322 . -1165) 39431) ((-314 . -1165) 39415) ((-153 . -319) 39394) ((-517 . -779) T) ((-460 . -779) T) ((-1024 . -23) T) ((-85 . -557) 39376) ((-634 . -278) T) ((-766 . -37) 39346) ((-759 . -37) 39316) ((-1144 . -123) T) ((-1052 . -260) 39295) ((-887 . -725) 39248) ((-887 . -726) 39201) ((-747 . -723) 39180) ((-111 . -278) T) ((-89 . -280) 39118) ((-611 . -33) T) ((-503 . -550) 39097) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39048) ((-747 . -725) 39027) ((-634 . -940) T) ((-590 . -970) 39011) ((-887 . -659) 38910) ((-747 . -659) 38841) ((-887 . -442) 38794) ((-450 . -727) 38745) ((-450 . -724) 38696) ((-834 . -1165) 38683) ((-1079 . -964) T) ((-590 . -106) 38662) ((-1079 . -296) 38639) ((-1099 . -97) 38617) ((-1007 . -557) 38599) ((-634 . -502) T) ((-748 . -1006) T) ((-1168 . -964) T) ((-383 . -1006) T) ((-224 . -971) 38530) ((-223 . -971) 38461) ((-261 . -585) 38448) ((-540 . -258) 38423) ((-623 . -621) 38381) ((-886 . -557) 38363) ((-796 . -97) T) ((-668 . -557) 38345) ((-648 . -557) 38327) ((-1150 . -156) 38278) ((-1143 . -156) 38209) ((-1122 . -156) 38140) ((-632 . -779) T) ((-923 . -262) T) ((-422 . -557) 38122) ((-567 . -659) T) ((-58 . -1006) 38100) ((-219 . -138) 38084) ((-838 . -262) T) ((-942 . -931) T) ((-567 . -442) T) ((-645 . -1116) 38063) ((-543 . -156) 38042) ((-542 . -156) 37993) ((-1158 . -779) 37972) ((-645 . -509) 37883) ((-377 . -844) T) ((-377 . -752) 37862) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 37844) ((-388 . -558) 37752) ((-583 . -1051) 37736) ((-105 . -588) 37718) ((-121 . -280) 37656) ((-105 . -343) 37638) ((-157 . -278) T) ((-368 . -1112) T) ((-286 . -123) 37510) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37494) ((-591 . -1018) T) ((-540 . -19) 37476) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1006) T) ((-540 . -550) 37451) ((-446 . -955) 37411) ((-590 . -964) T) ((-591 . -23) T) ((-1171 . -1006) T) ((-748 . -650) 37260) ((-112 . -779) NIL) ((-1073 . -381) 37244) ((-1029 . -381) 37228) ((-783 . -381) 37212) ((-797 . -97) 37163) ((-1142 . -97) T) ((-1122 . -478) 36932) ((-1099 . -280) 36870) ((-282 . -557) 36852) ((-1121 . -97) T) ((-1008 . -1006) T) ((-1075 . -258) 36837) ((-1074 . -258) 36822) ((-261 . -659) T) ((-103 . -833) NIL) ((-623 . -557) 36754) ((-623 . -558) 36715) ((-990 . -585) 36625) ((-547 . -557) 36607) ((-503 . -558) NIL) ((-503 . -557) 36589) ((-1068 . -258) 36437) ((-454 . -970) 36387) ((-644 . -421) T) ((-475 . -473) 36366) ((-471 . -473) 36345) ((-192 . -970) 36295) ((-329 . -585) 36247) ((-323 . -585) 36199) ((-199 . -777) T) ((-315 . -585) 36151) ((-548 . -97) 36101) ((-450 . -338) 36080) ((-103 . -585) 36030) ((-454 . -106) 35964) ((-214 . -456) 35948) ((-313 . -134) 35930) ((-313 . -132) T) ((-153 . -340) 35901) ((-867 . -1156) 35885) ((-192 . -106) 35819) ((-796 . -280) 35784) ((-867 . -1006) 35734) ((-731 . -558) 35695) ((-731 . -557) 35677) ((-651 . -97) T) ((-301 . -1006) T) ((-1024 . -123) T) ((-647 . -37) 35647) ((-286 . -458) 35626) ((-465 . -1112) T) ((-1142 . -256) 35592) ((-1121 . -256) 35558) ((-297 . -138) 35542) ((-976 . -260) 35517) ((-1171 . -650) 35487) ((-1061 . -33) T) ((-1180 . -955) 35464) ((-437 . -557) 35446) ((-451 . -33) T) ((-351 . -955) 35430) ((-1073 . -971) T) ((-1029 . -971) T) ((-783 . -971) T) ((-975 . -777) T) ((-748 . -156) 35341) ((-483 . -258) 35318) ((-112 . -912) 35295) ((-1150 . -262) 35274) ((-1094 . -334) 35248) ((-996 . -239) 35232) ((-443 . -97) T) ((-335 . -1006) T) ((-224 . -1006) T) ((-223 . -1006) T) ((-1143 . -262) 35183) ((-104 . -1006) T) ((-1122 . -262) 35134) ((-796 . -1053) 35112) ((-1075 . -921) 35078) ((-552 . -334) 35018) ((-1074 . -921) 34984) ((-552 . -203) 34931) ((-540 . -557) 34913) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 34863) ((-454 . -964) T) ((-1068 . -921) 34829) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -964) T) ((-1030 . -921) 34795) ((-990 . -659) T) ((-645 . -1018) T) ((-543 . -262) 34774) ((-542 . -262) 34753) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1067 . -557) 34735) ((-796 . -37) 34687) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1146) 34671) ((-103 . -659) T) ((-645 . -23) T) ((-1184 . -25) T) ((-443 . -256) 34637) ((-1184 . -21) T) ((-1121 . -280) 34576) ((-1077 . -97) T) ((-39 . -132) 34548) ((-39 . -134) 34520) ((-483 . -550) 34497) ((-1019 . -585) 34347) ((-548 . -280) 34285) ((-44 . -588) 34235) ((-44 . -603) 34185) ((-44 . -343) 34135) ((-1060 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34117) ((-214 . -258) 34094) ((-584 . -33) T) ((-572 . -33) T) ((-995 . -421) 34045) ((-748 . -478) 33919) ((-714 . -421) 33850) ((-712 . -421) 33801) ((-423 . -421) 33752) ((-876 . -381) 33736) ((-664 . -557) 33718) ((-224 . -650) 33660) ((-223 . -650) 33602) ((-664 . -558) 33463) ((-449 . -381) 33447) ((-309 . -273) T) ((-321 . -844) T) ((-919 . -97) 33425) ((-942 . -779) T) ((-58 . -478) 33358) ((-1121 . -1053) 33310) ((-923 . -258) NIL) ((-199 . -971) T) ((-349 . -760) T) ((-1019 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1125 . -1000) 33294) ((-1125 . -1006) 33272) ((-214 . -550) 33249) ((-1125 . -1002) 33206) ((-1075 . -557) 33188) ((-1074 . -557) 33170) ((-1068 . -557) 33152) ((-1068 . -558) NIL) ((-1030 . -557) 33134) ((-796 . -370) 33118) ((-493 . -97) T) ((-1142 . -37) 32959) ((-1121 . -37) 32773) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1144 . -21) T) ((-1144 . -25) T) ((-1019 . -723) 32752) ((-1019 . -726) 32703) ((-1019 . -725) 32682) ((-913 . -1006) T) ((-945 . -33) T) ((-787 . -1006) T) ((-1154 . -97) T) ((-1019 . -659) 32613) ((-601 . -97) T) ((-503 . -260) 32592) ((-1086 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-975 . -971) T) ((-876 . -971) T) ((-286 . -579) 32500) ((-283 . -579) 32461) ((-449 . -971) T) ((-447 . -97) T) ((-406 . -557) 32443) ((-1073 . -1006) T) ((-1029 . -1006) T) ((-783 . -1006) T) ((-1043 . -97) T) ((-748 . -262) 32374) ((-886 . -970) 32257) ((-446 . -940) T) ((-668 . -970) 32227) ((-422 . -970) 32197) ((-1049 . -1025) 32181) ((-1008 . -478) 32114) ((-886 . -106) 31983) ((-834 . -97) T) ((-668 . -106) 31948) ((-57 . -97) 31898) ((-483 . -558) 31859) ((-483 . -557) 31771) ((-482 . -97) 31749) ((-480 . -97) 31699) ((-462 . -97) 31677) ((-461 . -97) 31627) ((-422 . -106) 31590) ((-224 . -156) 31569) ((-223 . -156) 31548) ((-388 . -970) 31522) ((-1107 . -893) 31484) ((-918 . -1018) T) ((-867 . -478) 31417) ((-454 . -727) T) ((-443 . -37) 31258) ((-388 . -106) 31225) ((-454 . -724) T) ((-919 . -280) 31163) ((-192 . -727) T) ((-192 . -724) T) ((-918 . -23) T) ((-645 . -123) T) ((-1121 . -370) 31133) ((-286 . -25) 30986) ((-153 . -381) 30970) ((-286 . -21) 30842) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30692) ((-795 . -971) T) ((-540 . -260) 30667) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1073 . -650) 30496) ((-1029 . -650) 30345) ((-1024 . -579) 30327) ((-783 . -650) 30297) ((-607 . -1112) T) ((-1 . -97) T) ((-214 . -557) 30049) ((-1131 . -381) 30033) ((-1086 . -280) 29837) ((-886 . -964) T) ((-668 . -964) T) ((-648 . -964) T) ((-583 . -1006) 29787) ((-968 . -585) 29771) ((-784 . -381) 29755) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 29742) ((-237 . -280) 29729) ((-886 . -296) 29708) ((-355 . -585) 29692) ((-447 . -280) 29496) ((-224 . -478) 29429) ((-607 . -955) 29327) ((-223 . -478) 29260) ((-1043 . -280) 29186) ((-751 . -1006) T) ((-731 . -970) 29170) ((-1150 . -258) 29155) ((-1143 . -258) 29140) ((-1122 . -258) 28988) ((-356 . -1006) T) ((-294 . -1006) T) ((-388 . -964) T) ((-153 . -971) T) ((-57 . -280) 28926) ((-731 . -106) 28905) ((-542 . -258) 28890) ((-482 . -280) 28828) ((-480 . -280) 28766) ((-462 . -280) 28704) ((-461 . -280) 28642) ((-388 . -207) 28621) ((-450 . -33) T) ((-923 . -558) 28551) ((-199 . -1006) T) ((-923 . -557) 28533) ((-891 . -557) 28515) ((-891 . -558) 28490) ((-838 . -557) 28472) ((-632 . -134) T) ((-634 . -844) T) ((-634 . -752) T) ((-397 . -557) 28454) ((-1024 . -21) T) ((-1024 . -25) T) ((-607 . -347) 28438) ((-111 . -844) T) ((-796 . -205) 28422) ((-76 . -1112) T) ((-121 . -120) 28406) ((-968 . -33) T) ((-1178 . -955) 28380) ((-1176 . -955) 28337) ((-1131 . -971) T) ((-784 . -971) T) ((-450 . -723) 28316) ((-325 . -1053) 28295) ((-322 . -1053) 28274) ((-314 . -1053) 28253) ((-450 . -726) 28204) ((-450 . -725) 28183) ((-201 . -33) T) ((-450 . -659) 28114) ((-58 . -456) 28098) ((-524 . -971) T) ((-1073 . -156) 27989) ((-1029 . -156) 27900) ((-975 . -1006) T) ((-995 . -873) 27847) ((-876 . -1006) T) ((-749 . -585) 27798) ((-714 . -873) 27768) ((-646 . -1006) T) ((-712 . -873) 27735) ((-480 . -254) 27719) ((-607 . -824) 27678) ((-449 . -1006) T) ((-423 . -873) 27645) ((-77 . -1112) T) ((-325 . -37) 27610) ((-322 . -37) 27575) ((-314 . -37) 27540) ((-237 . -37) 27389) ((-221 . -37) 27238) ((-834 . -1053) T) ((-564 . -134) 27217) ((-564 . -132) 27196) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -964) T) ((-313 . -421) T) ((-1150 . -921) 27162) ((-1143 . -921) 27128) ((-1122 . -921) 27094) ((-834 . -37) 27059) ((-199 . -650) 27024) ((-39 . -379) 26996) ((-289 . -46) 26966) ((-918 . -123) T) ((-747 . -1112) T) ((-157 . -844) T) ((-313 . -372) T) ((-483 . -260) 26943) ((-44 . -33) T) ((-747 . -955) 26772) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1008 . -456) 26756) ((-1121 . -205) 26726) ((-611 . -1112) T) ((-219 . -97) 26676) ((-795 . -1006) T) ((-1079 . -585) 26601) ((-975 . -650) 26588) ((-664 . -970) 26431) ((-1073 . -478) 26379) ((-876 . -650) 26228) ((-1029 . -478) 26180) ((-449 . -650) 26029) ((-65 . -557) 26011) ((-664 . -106) 25840) ((-867 . -456) 25824) ((-1168 . -585) 25784) ((-749 . -659) T) ((-1075 . -970) 25667) ((-1074 . -970) 25502) ((-1068 . -970) 25292) ((-1030 . -970) 25175) ((-922 . -1116) T) ((-1001 . -97) 25153) ((-747 . -347) 25123) ((-922 . -509) T) ((-1075 . -106) 24992) ((-1074 . -106) 24813) ((-1068 . -106) 24582) ((-1030 . -106) 24451) ((-1011 . -1009) 24415) ((-349 . -777) T) ((-1150 . -557) 24397) ((-1143 . -557) 24379) ((-1122 . -557) 24361) ((-1122 . -558) NIL) ((-214 . -260) 24338) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1006) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24320) ((-542 . -557) 24302) ((-822 . -1006) T) ((-770 . -1006) T) ((-740 . -1006) T) ((-701 . -1006) T) ((-595 . -781) 24286) ((-612 . -1006) T) ((-747 . -824) 24219) ((-39 . -372) NIL) ((-1024 . -598) T) ((-795 . -650) 24164) ((-224 . -456) 24148) ((-223 . -456) 24132) ((-645 . -579) 24080) ((-590 . -585) 24054) ((-266 . -33) T) ((-664 . -964) T) ((-530 . -1165) 24041) ((-481 . -1165) 24018) ((-1131 . -1006) T) ((-1073 . -262) 23929) ((-1029 . -262) 23860) ((-975 . -156) T) ((-784 . -1006) T) ((-876 . -156) 23771) ((-714 . -1134) 23755) ((-583 . -478) 23688) ((-75 . -557) 23670) ((-664 . -296) 23635) ((-1079 . -659) T) ((-524 . -1006) T) ((-449 . -156) 23546) ((-219 . -280) 23484) ((-1044 . -1018) T) ((-68 . -557) 23466) ((-1168 . -659) T) ((-1075 . -964) T) ((-1074 . -964) T) ((-297 . -97) 23416) ((-1068 . -964) T) ((-1044 . -23) T) ((-1030 . -964) T) ((-89 . -1025) 23400) ((-790 . -1018) T) ((-1075 . -207) 23359) ((-1074 . -217) 23338) ((-1074 . -207) 23290) ((-1068 . -207) 23177) ((-1068 . -217) 23156) ((-289 . -824) 23062) ((-790 . -23) T) ((-153 . -650) 22890) ((-377 . -1116) T) ((-1007 . -338) T) ((-942 . -134) T) ((-922 . -333) T) ((-794 . -421) T) ((-867 . -258) 22867) ((-286 . -779) T) ((-283 . -779) NIL) ((-798 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 22849) ((-324 . -132) T) ((-1049 . -1006) 22827) ((-422 . -653) T) ((-73 . -557) 22809) ((-109 . -779) T) ((-219 . -254) 22793) ((-214 . -970) 22691) ((-79 . -557) 22673) ((-668 . -338) 22626) ((-1077 . -760) T) ((-670 . -209) 22610) ((-1061 . -1112) T) ((-128 . -209) 22592) ((-214 . -106) 22483) ((-1131 . -650) 22312) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22282) ((-451 . -1112) T) ((-876 . -478) 22229) ((-590 . -659) T) ((-524 . -650) 22216) ((-952 . -971) T) ((-449 . -478) 22159) ((-867 . -19) 22143) ((-867 . -550) 22120) ((-748 . -558) NIL) ((-748 . -557) 22102) ((-923 . -970) 22052) ((-383 . -557) 22034) ((-224 . -258) 22011) ((-223 . -258) 21988) ((-454 . -833) NIL) ((-286 . -29) 21958) ((-103 . -1112) T) ((-922 . -1018) T) ((-192 . -833) NIL) ((-838 . -970) 21910) ((-990 . -955) 21808) ((-923 . -106) 21742) ((-237 . -205) 21726) ((-670 . -628) 21710) ((-397 . -970) 21694) ((-349 . -971) T) ((-922 . -23) T) ((-838 . -106) 21632) ((-627 . -1101) NIL) ((-454 . -585) 21582) ((-103 . -808) 21564) ((-103 . -810) 21546) ((-627 . -1098) NIL) ((-192 . -585) 21496) ((-329 . -955) 21480) ((-323 . -955) 21464) ((-297 . -280) 21402) ((-315 . -955) 21386) ((-199 . -262) T) ((-397 . -106) 21365) ((-58 . -557) 21297) ((-153 . -156) T) ((-1024 . -779) T) ((-103 . -955) 21257) ((-816 . -1006) T) ((-766 . -971) T) ((-759 . -971) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -912) 21218) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -964) 21149) ((-1052 . -33) T) ((-446 . -844) T) ((-918 . -579) 21097) ((-224 . -550) 21074) ((-223 . -550) 21051) ((-990 . -347) 21035) ((-795 . -478) 20943) ((-214 . -207) 20896) ((-1060 . -1112) T) ((-756 . -557) 20878) ((-1179 . -1018) T) ((-1171 . -557) 20860) ((-1131 . -156) 20751) ((-103 . -347) 20733) ((-103 . -308) 20715) ((-975 . -262) T) ((-876 . -262) 20646) ((-731 . -338) 20625) ((-584 . -1112) T) ((-572 . -1112) T) ((-449 . -262) 20556) ((-524 . -156) T) ((-297 . -254) 20540) ((-1179 . -23) T) ((-1107 . -97) T) ((-1094 . -1006) T) ((-996 . -1006) T) ((-986 . -1006) T) ((-81 . -557) 20522) ((-644 . -97) T) ((-325 . -319) 20501) ((-552 . -1006) T) ((-322 . -319) 20480) ((-314 . -319) 20459) ((-444 . -1006) T) ((-1086 . -203) 20409) ((-237 . -226) 20371) ((-1044 . -123) T) ((-552 . -554) 20347) ((-990 . -824) 20280) ((-923 . -964) T) ((-838 . -964) T) ((-444 . -554) 20259) ((-1068 . -724) NIL) ((-1068 . -727) NIL) ((-1008 . -558) 20220) ((-447 . -203) 20170) ((-1008 . -557) 20152) ((-923 . -217) T) ((-923 . -207) T) ((-397 . -964) T) ((-881 . -1006) 20102) ((-838 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1018) 20081) ((-103 . -824) NIL) ((-1107 . -256) 20047) ((-796 . -777) 20026) ((-1019 . -1112) T) ((-829 . -659) T) ((-153 . -478) 19938) ((-918 . -25) T) ((-829 . -442) T) ((-377 . -1018) T) ((-454 . -726) T) ((-454 . -723) T) ((-834 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-918 . -21) T) ((-192 . -659) T) ((-772 . -23) 19890) ((-289 . -278) 19869) ((-953 . -209) 19815) ((-377 . -23) T) ((-867 . -558) 19776) ((-867 . -557) 19688) ((-583 . -456) 19672) ((-44 . -929) 19622) ((-301 . -557) 19604) ((-1019 . -955) 19433) ((-540 . -588) 19415) ((-540 . -343) 19397) ((-313 . -1165) 19374) ((-945 . -1112) T) ((-795 . -262) T) ((-1131 . -478) 19322) ((-445 . -1112) T) ((-432 . -1112) T) ((-534 . -97) T) ((-1073 . -258) 19249) ((-564 . -421) 19228) ((-919 . -914) 19212) ((-1171 . -352) 19184) ((-112 . -421) T) ((-1093 . -97) T) ((-999 . -1006) 19162) ((-952 . -1006) T) ((-817 . -779) T) ((-321 . -1116) T) ((-1150 . -970) 19045) ((-1019 . -347) 19015) ((-1143 . -970) 18850) ((-1122 . -970) 18640) ((-1150 . -106) 18509) ((-1143 . -106) 18330) ((-1122 . -106) 18099) ((-1107 . -280) 18086) ((-321 . -509) T) ((-335 . -557) 18068) ((-261 . -278) T) ((-543 . -970) 18041) ((-542 . -970) 17924) ((-331 . -1006) T) ((-292 . -1006) T) ((-224 . -557) 17885) ((-223 . -557) 17846) ((-922 . -123) T) ((-104 . -557) 17828) ((-575 . -23) T) ((-627 . -379) 17795) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17766) ((-542 . -106) 17635) ((-349 . -1006) T) ((-306 . -97) T) ((-153 . -262) 17546) ((-1121 . -777) 17499) ((-647 . -971) T) ((-1049 . -478) 17432) ((-1019 . -824) 17365) ((-766 . -1006) T) ((-759 . -1006) T) ((-757 . -1006) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -808) 17349) ((-105 . -1112) T) ((-995 . -97) T) ((-976 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17300) ((-214 . -724) 17251) ((-586 . -97) T) ((-1131 . -262) 17162) ((-601 . -574) 17146) ((-583 . -258) 17123) ((-952 . -650) 17107) ((-524 . -262) T) ((-886 . -585) 17032) ((-1179 . -123) T) ((-668 . -585) 16992) ((-648 . -585) 16979) ((-248 . -97) T) ((-422 . -585) 16909) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1150 . -964) T) ((-1143 . -964) T) ((-1122 . -964) T) ((-292 . -650) 16891) ((-1150 . -207) 16850) ((-1143 . -217) 16829) ((-1143 . -207) 16781) ((-1122 . -207) 16668) ((-1122 . -217) 16647) ((-1107 . -37) 16544) ((-543 . -964) T) ((-542 . -964) T) ((-923 . -727) T) ((-923 . -724) T) ((-891 . -727) T) ((-891 . -724) T) ((-796 . -971) T) ((-794 . -793) 16528) ((-627 . -421) T) ((-349 . -650) 16493) ((-388 . -585) 16467) ((-645 . -779) 16446) ((-644 . -37) 16411) ((-542 . -207) 16370) ((-39 . -657) 16342) ((-321 . -299) 16319) ((-321 . -333) T) ((-990 . -278) 16270) ((-265 . -1018) 16152) ((-1012 . -1112) T) ((-155 . -97) T) ((-1125 . -557) 16119) ((-772 . -123) 16071) ((-583 . -1146) 16055) ((-766 . -650) 16025) ((-759 . -650) 15995) ((-450 . -1112) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 15972) ((-377 . -123) T) ((-483 . -603) 15956) ((-103 . -278) T) ((-265 . -23) 15840) ((-483 . -588) 15824) ((-627 . -372) NIL) ((-483 . -343) 15808) ((-89 . -1006) 15786) ((-103 . -940) T) ((-517 . -130) T) ((-1158 . -138) 15770) ((-450 . -955) 15599) ((-1144 . -132) 15560) ((-1144 . -134) 15521) ((-968 . -1112) T) ((-913 . -557) 15503) ((-787 . -557) 15485) ((-748 . -970) 15328) ((-995 . -280) 15315) ((-201 . -1112) T) ((-714 . -280) 15302) ((-712 . -280) 15289) ((-748 . -106) 15118) ((-423 . -280) 15105) ((-1073 . -558) NIL) ((-1073 . -557) 15087) ((-1029 . -557) 15069) ((-1029 . -558) 14817) ((-952 . -156) T) ((-783 . -557) 14799) ((-867 . -260) 14776) ((-552 . -478) 14559) ((-750 . -955) 14543) ((-444 . -478) 14335) ((-886 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1018) T) ((-1080 . -557) 14317) ((-197 . -97) T) ((-450 . -347) 14287) ((-479 . -1006) T) ((-474 . -1006) T) ((-472 . -1006) T) ((-731 . -585) 14261) ((-942 . -421) T) ((-881 . -478) 14194) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14173) ((-349 . -156) T) ((-1142 . -971) T) ((-1121 . -971) T) ((-199 . -921) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1116) T) ((-1044 . -579) 14121) ((-529 . -793) 14105) ((-1061 . -1089) 14081) ((-634 . -509) T) ((-121 . -1006) 14059) ((-1171 . -970) 14043) ((-647 . -1006) T) ((-450 . -824) 13976) ((-595 . -37) 13946) ((-324 . -372) T) ((-286 . -134) 13925) ((-286 . -132) 13904) ((-111 . -509) T) ((-283 . -134) 13860) ((-283 . -132) 13816) ((-47 . -421) T) ((-146 . -1006) T) ((-142 . -1006) T) ((-1061 . -102) 13763) ((-714 . -1053) 13741) ((-623 . -33) T) ((-1171 . -106) 13720) ((-503 . -33) T) ((-451 . -102) 13704) ((-224 . -260) 13681) ((-223 . -260) 13658) ((-795 . -258) 13609) ((-44 . -1112) T) ((-748 . -964) T) ((-1079 . -46) 13586) ((-748 . -296) 13548) ((-995 . -37) 13397) ((-748 . -207) 13376) ((-714 . -37) 13205) ((-712 . -37) 13054) ((-423 . -37) 12903) ((-583 . -558) 12864) ((-583 . -557) 12776) ((-530 . -1053) T) ((-481 . -1053) T) ((-1049 . -456) 12760) ((-1099 . -1006) 12738) ((-1044 . -25) T) ((-1044 . -21) T) ((-443 . -971) T) ((-1122 . -724) NIL) ((-1122 . -727) NIL) ((-918 . -779) 12717) ((-751 . -557) 12699) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1116) T) ((-530 . -37) 12664) ((-481 . -37) 12629) ((-356 . -557) 12611) ((-294 . -557) 12593) ((-153 . -258) 12551) ((-61 . -1112) T) ((-107 . -97) T) ((-796 . -1006) T) ((-157 . -509) T) ((-647 . -650) 12521) ((-265 . -123) 12405) ((-199 . -557) 12387) ((-199 . -558) 12317) ((-922 . -579) 12256) ((-1171 . -964) T) ((-1024 . -134) T) ((-572 . -1089) 12231) ((-664 . -833) 12210) ((-540 . -33) T) ((-584 . -102) 12194) ((-572 . -102) 12140) ((-1131 . -258) 12067) ((-664 . -585) 11992) ((-266 . -1112) T) ((-1079 . -955) 11890) ((-1068 . -833) NIL) ((-975 . -558) 11805) ((-975 . -557) 11787) ((-313 . -97) T) ((-224 . -970) 11685) ((-223 . -970) 11583) ((-364 . -97) T) ((-876 . -557) 11565) ((-876 . -558) 11426) ((-646 . -557) 11408) ((-1169 . -1106) 11377) ((-449 . -557) 11359) ((-449 . -558) 11220) ((-221 . -381) 11204) ((-237 . -381) 11188) ((-224 . -106) 11079) ((-223 . -106) 10970) ((-1075 . -585) 10895) ((-1074 . -585) 10792) ((-1068 . -585) 10644) ((-1030 . -585) 10569) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-922 . -25) T) ((-922 . -21) T) ((-797 . -1006) 10520) ((-796 . -650) 10472) ((-349 . -262) T) ((-153 . -921) 10424) ((-627 . -357) T) ((-918 . -916) 10408) ((-634 . -1018) T) ((-627 . -150) 10390) ((-1142 . -1006) T) ((-1121 . -1006) T) ((-286 . -1098) 10369) ((-286 . -1101) 10348) ((-1066 . -97) T) ((-286 . -882) 10327) ((-125 . -1018) T) ((-111 . -1018) T) ((-548 . -1156) 10311) ((-634 . -23) T) ((-548 . -1006) 10261) ((-89 . -478) 10194) ((-157 . -333) T) ((-286 . -91) 10173) ((-286 . -34) 10152) ((-552 . -456) 10086) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1006) T) ((-444 . -456) 10023) ((-377 . -579) 9971) ((-590 . -955) 9869) ((-881 . -456) 9853) ((-325 . -971) T) ((-322 . -971) T) ((-314 . -971) T) ((-237 . -971) T) ((-221 . -971) T) ((-795 . -558) NIL) ((-795 . -557) 9835) ((-1179 . -21) T) ((-524 . -921) T) ((-664 . -659) T) ((-1179 . -25) T) ((-224 . -964) 9766) ((-223 . -964) 9697) ((-70 . -1112) T) ((-224 . -207) 9650) ((-223 . -207) 9603) ((-39 . -97) T) ((-834 . -971) T) ((-1075 . -659) T) ((-1074 . -659) T) ((-1068 . -659) T) ((-1068 . -723) NIL) ((-1068 . -726) NIL) ((-845 . -97) T) ((-1030 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1006) T) ((-309 . -1018) T) ((-157 . -1018) T) ((-289 . -844) 9582) ((-1142 . -650) 9423) ((-796 . -156) T) ((-1121 . -650) 9237) ((-772 . -21) 9189) ((-772 . -25) 9141) ((-219 . -1051) 9125) ((-121 . -478) 9058) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8826) ((-153 . -557) 8808) ((-157 . -23) T) ((-583 . -260) 8785) ((-483 . -33) T) ((-822 . -557) 8767) ((-87 . -1112) T) ((-770 . -557) 8749) ((-740 . -557) 8731) ((-701 . -557) 8713) ((-612 . -557) 8695) ((-214 . -585) 8545) ((-1077 . -1006) T) ((-1073 . -970) 8368) ((-1052 . -1112) T) ((-1029 . -970) 8211) ((-783 . -970) 8195) ((-1073 . -106) 8004) ((-1029 . -106) 7833) ((-783 . -106) 7812) ((-1131 . -558) NIL) ((-1131 . -557) 7794) ((-313 . -1053) T) ((-784 . -557) 7776) ((-986 . -258) 7755) ((-78 . -1112) T) ((-923 . -833) NIL) ((-552 . -258) 7731) ((-1099 . -478) 7664) ((-454 . -1112) T) ((-524 . -557) 7646) ((-444 . -258) 7625) ((-192 . -1112) T) ((-995 . -205) 7609) ((-261 . -844) T) ((-749 . -278) 7588) ((-794 . -97) T) ((-714 . -205) 7572) ((-923 . -585) 7522) ((-881 . -258) 7499) ((-838 . -585) 7451) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7416) ((-627 . -657) 7383) ((-454 . -808) 7365) ((-454 . -810) 7347) ((-443 . -650) 7188) ((-192 . -808) 7170) ((-62 . -1112) T) ((-192 . -810) 7152) ((-551 . -25) T) ((-397 . -585) 7126) ((-454 . -955) 7086) ((-796 . -478) 6998) ((-192 . -955) 6958) ((-214 . -33) T) ((-919 . -1006) 6936) ((-1142 . -156) 6867) ((-1121 . -156) 6798) ((-645 . -132) 6777) ((-645 . -134) 6756) ((-634 . -123) T) ((-127 . -434) 6733) ((-595 . -593) 6717) ((-1049 . -557) 6649) ((-111 . -123) T) ((-446 . -1116) T) ((-552 . -550) 6625) ((-444 . -550) 6604) ((-306 . -305) 6573) ((-493 . -1006) T) ((-446 . -509) T) ((-1073 . -964) T) ((-1029 . -964) T) ((-783 . -964) T) ((-214 . -723) 6552) ((-214 . -726) 6503) ((-214 . -725) 6482) ((-1073 . -296) 6459) ((-214 . -659) 6390) ((-881 . -19) 6374) ((-454 . -347) 6356) ((-454 . -308) 6338) ((-1029 . -296) 6310) ((-324 . -1165) 6287) ((-192 . -347) 6269) ((-192 . -308) 6251) ((-881 . -550) 6228) ((-1073 . -207) T) ((-601 . -1006) T) ((-1154 . -1006) T) ((-1086 . -1006) T) ((-995 . -226) 6167) ((-325 . -1006) T) ((-322 . -1006) T) ((-314 . -1006) T) ((-237 . -1006) T) ((-221 . -1006) T) ((-82 . -1112) T) ((-122 . -97) 6145) ((-116 . -97) 6123) ((-1086 . -554) 6102) ((-447 . -1006) T) ((-1043 . -1006) T) ((-447 . -554) 6081) ((-224 . -727) 6032) ((-224 . -724) 5983) ((-223 . -727) 5934) ((-39 . -1053) NIL) ((-223 . -724) 5885) ((-990 . -844) 5836) ((-923 . -726) T) ((-923 . -723) T) ((-923 . -659) T) ((-891 . -726) T) ((-838 . -659) T) ((-89 . -456) 5820) ((-454 . -824) NIL) ((-834 . -1006) T) ((-199 . -970) 5785) ((-796 . -262) T) ((-192 . -824) NIL) ((-765 . -1018) 5764) ((-57 . -1006) 5714) ((-482 . -1006) 5692) ((-480 . -1006) 5642) ((-462 . -1006) 5620) ((-461 . -1006) 5570) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5501) ((-329 . -844) T) ((-323 . -844) T) ((-315 . -844) T) ((-199 . -106) 5457) ((-765 . -23) 5409) ((-397 . -659) T) ((-103 . -844) T) ((-39 . -37) 5354) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1121 . -478) 5214) ((-286 . -421) 5193) ((-283 . -421) T) ((-766 . -258) 5172) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5037) ((-265 . -21) 4921) ((-44 . -1089) 4900) ((-64 . -557) 4882) ((-816 . -557) 4864) ((-548 . -478) 4797) ((-44 . -102) 4747) ((-1008 . -395) 4731) ((-1008 . -338) 4710) ((-976 . -1112) T) ((-975 . -970) 4697) ((-876 . -970) 4540) ((-449 . -970) 4383) ((-601 . -650) 4367) ((-975 . -106) 4352) ((-876 . -106) 4181) ((-446 . -333) T) ((-325 . -650) 4133) ((-322 . -650) 4085) ((-314 . -650) 4037) ((-237 . -650) 3886) ((-221 . -650) 3735) ((-867 . -588) 3719) ((-449 . -106) 3548) ((-1159 . -97) T) ((-867 . -343) 3532) ((-1122 . -833) NIL) ((-72 . -557) 3514) ((-886 . -46) 3493) ((-562 . -1018) T) ((-1 . -1006) T) ((-632 . -97) T) ((-1158 . -97) 3443) ((-1150 . -585) 3368) ((-1143 . -585) 3265) ((-121 . -456) 3249) ((-1094 . -557) 3231) ((-996 . -557) 3213) ((-360 . -23) T) ((-986 . -557) 3195) ((-85 . -1112) T) ((-1122 . -585) 3047) ((-834 . -650) 3012) ((-562 . -23) T) ((-552 . -557) 2994) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 2976) ((-475 . -1006) T) ((-471 . -1006) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2914) ((-116 . -280) 2852) ((-543 . -585) 2839) ((-199 . -964) T) ((-542 . -585) 2764) ((-349 . -921) T) ((-199 . -217) T) ((-199 . -207) T) ((-881 . -558) 2725) ((-881 . -557) 2637) ((-794 . -37) 2624) ((-1142 . -262) 2575) ((-1121 . -262) 2526) ((-1024 . -421) T) ((-467 . -779) T) ((-286 . -1041) 2505) ((-918 . -134) 2484) ((-918 . -132) 2463) ((-460 . -280) 2450) ((-266 . -1089) 2429) ((-446 . -1018) T) ((-795 . -970) 2374) ((-564 . -97) T) ((-1099 . -456) 2358) ((-224 . -338) 2337) ((-223 . -338) 2316) ((-266 . -102) 2266) ((-975 . -964) T) ((-112 . -97) T) ((-876 . -964) T) ((-795 . -106) 2195) ((-446 . -23) T) ((-449 . -964) T) ((-975 . -207) T) ((-876 . -296) 2164) ((-449 . -296) 2121) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2032) ((-221 . -156) 1943) ((-886 . -955) 1841) ((-668 . -955) 1812) ((-1011 . -97) T) ((-999 . -557) 1779) ((-952 . -557) 1761) ((-1150 . -659) T) ((-1143 . -659) T) ((-1122 . -723) NIL) ((-153 . -970) 1671) ((-1122 . -726) NIL) ((-834 . -156) T) ((-1122 . -659) T) ((-1169 . -138) 1655) ((-922 . -312) 1629) ((-919 . -478) 1562) ((-772 . -779) 1541) ((-517 . -1053) T) ((-443 . -262) 1492) ((-543 . -659) T) ((-331 . -557) 1474) ((-292 . -557) 1456) ((-388 . -955) 1354) ((-542 . -659) T) ((-377 . -779) 1305) ((-153 . -106) 1201) ((-765 . -123) 1153) ((-670 . -138) 1137) ((-1158 . -280) 1075) ((-454 . -278) T) ((-349 . -557) 1042) ((-483 . -929) 1026) ((-349 . -558) 940) ((-192 . -278) T) ((-128 . -138) 922) ((-647 . -258) 901) ((-454 . -940) T) ((-529 . -37) 888) ((-517 . -37) 875) ((-460 . -37) 840) ((-192 . -940) T) ((-795 . -964) T) ((-766 . -557) 822) ((-759 . -557) 804) ((-757 . -557) 786) ((-748 . -833) 765) ((-1180 . -1018) T) ((-1131 . -970) 588) ((-784 . -970) 572) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1112) T) ((-1180 . -23) T) ((-748 . -585) 497) ((-503 . -1112) T) ((-388 . -308) 481) ((-524 . -970) 468) ((-1131 . -106) 277) ((-634 . -579) 259) ((-784 . -106) 238) ((-351 . -23) T) ((-1086 . -478) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 9c88271d..b6ba6655 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3409435989)
-(4195 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3409486830)
+(4198 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -301,7 +301,7 @@
|OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList|
|OrdinaryWeightedPolynomials| |PadeApproximants|
|PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
- |PAdicRational| |PAdicRationalConstructor| |Palette|
+ |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette|
|PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
|ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
|ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
@@ -458,639 +458,638 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |Category| |setvalue!| |hermiteH| |generalLambert|
- |digits| |divideExponents| |operators| |infieldIntegrate|
- |radicalOfLeftTraceForm| |prinshINFO| |pointColorPalette| |binaryTree|
- |perfectSquare?| |diagonals| |prem| |mathieu22|
- |genericLeftMinimalPolynomial| |c06gqf| |getZechTable| |maxRowIndex|
- |leadingIndex| |romberg| |f01brf| |changeName| |position| |iisec|
- |listOfMonoms| |neglist| |difference| |rischNormalize| |s17ahf|
- |monicDecomposeIfCan| |discriminant| |hdmpToP| |cTan| |square?|
- |squareFreePart| |iExquo| |log| |genericPosition| |linGenPos|
- |cyclicEntries| |uniform01| |clikeUniv| |pointColor| |iiasech|
- |continuedFraction| |besselJ| |fglmIfCan| |tree| |makeGraphImage|
- |expintfldpoly| |removeConstantTerm| |magnitude| |nil?|
- |GospersMethod| |upDateBranches| |generalTwoFactor| |cyclicCopy|
- |pack!| |complexNormalize| |pushdterm| |f01rdf| |hexDigit|
- |countRealRoots| |normalized?| |LiePolyIfCan| |rationalApproximation|
- |leftExactQuotient| |stoseIntegralLastSubResultant| |dequeue!|
- |prime?| |approxNthRoot| |d01gbf| |checkForZero| |var2Steps|
- |generateIrredPoly| |showSummary| |commutative?| |dfRange|
- |constantRight| |infinite?| |definingEquations| |critpOrder| |moduloP|
- |brillhartIrreducible?| |fortranDouble| |FormatArabic| |poisson|
- |tanQ| RF2UTS |sech2cosh| |rk4f| |iiGamma| |currentSubProgram| |cCsch|
- |rightCharacteristicPolynomial| |showAttributes| |linearPolynomials|
- |cschIfCan| |ef2edf| |closedCurve?| |setClipValue| |splitSquarefree|
- |rightRegularRepresentation| |transpose|
- |generalizedContinuumHypothesisAssumed?| |const| |rectangularMatrix|
- |e04naf| |besselK| |ellipticCylindrical| |redPo| |rootRadius|
- |totalDegree| |ffactor| |primitiveElement| |transcendenceDegree|
- |usingTable?| |removeSuperfluousCases| |OMputAttr| |acosIfCan|
- |LazardQuotient| |semiIndiceSubResultantEuclidean| |asinIfCan| |mdeg|
- |dimensionOfIrreducibleRepresentation| |singularAtInfinity?|
- |completeHensel| |realEigenvectors| |generator| |subNodeOf?| |less?|
- |jacobiIdentity?| |light| |modularGcdPrimitive| |presub| |directory|
- |interpolate| BY |changeNameToObjf| |traverse| |graphStates| |c06ecf|
- |removeSquaresIfCan| |alphabetic?| |OMputVariable| |monomRDE|
- |removeZeroes| |s18aff| |lexGroebner| |pattern| |separate| |subSet|
- |uniform| |stripCommentsAndBlanks| |leftTraceMatrix|
- |stoseInternalLastSubResultant| |cSec| |extractClosed| |mr|
- |rootSplit| |startPolynomial| |child| |comparison| |s17adf|
- |characteristicSet| |wordInStrongGenerators| |eisensteinIrreducible?|
- |lyndonIfCan| |extension| |s18dcf| |combineFeatureCompatibility|
- |sumOfSquares| |systemCommand| |wholePart| |debug| |yellow|
- |homogeneous?| |formula| |torsion?| |semiLastSubResultantEuclidean|
- |updatD| |curve?| |constantCoefficientRicDE| |companionBlocks|
- |reducedForm| |groebner| |one?| |pToDmp| |split|
- |removeSuperfluousQuasiComponents| |showRegion| |e02aef| |rowEchelon|
- |stiffnessAndStabilityOfODEIF| |d01gaf| |constant| |hMonic| |normal|
- |d01amf| |areEquivalent?| |generalPosition| |mainPrimitivePart| |root|
- |sample| |extractIndex| |order| |iiatanh| |rightTraceMatrix| |kernel|
- |removeDuplicates!| |f01qef| |purelyAlgebraic?| |constantKernel|
- |complexNumeric| |s21bcf| |adjoint| |stoseInvertible?| |op|
- |linearlyDependent?| |collectUnder| |pleskenSplit| |sortConstraints|
- |leftTrace| |palgintegrate| |imagI| |stopTableGcd!| |copies| |iiasin|
- |integralRepresents| |OMParseError?| |sort!| |nrows| |erf| |remove|
- |kernels| |linearAssociatedLog| |createNormalElement|
- |factorByRecursion| |bsolve| |setCondition!| |cup| |leftUnits| |cAcos|
- |SturmHabicht| |triangulate| |ncols| |deleteProperty!| |tanNa|
- |linearlyDependentOverZ?| |birth| |univariate| |outlineRender|
- |d01alf| |hdmpToDmp| |rightUnits| |addMatch| |last| |true| |vark|
- |laplacian| |match?| |csch2sinh| |ListOfTerms| |mainMonomials|
- |selectIntegrationRoutines| |lambert| |crest| |distribute| |mapSolve|
- |assoc| |dilog| |superHeight| |scanOneDimSubspaces| |closeComponent|
- |trim| |triangularSystems| |cyclotomicDecomposition|
- |leftRankPolynomial| |OMreadStr| |ptFunc| |d01apf| |sin| |iitan|
- |stop| |quadraticNorm| |separateFactors| |character?| |prologue|
- |trigs2explogs| |leftRemainder| |isPower| |f01ref| |aQuadratic| |cos|
- |reduceBasisAtInfinity| |unit| |cAsec| |constantToUnaryFunction|
- |lyndon| |nary?| |primaryDecomp| |badValues| |basis| |internalAugment|
- |tan| |functionIsContinuousAtEndPoints| |binary| |OMputApp| |imagE|
- |draw| |fortranLinkerArgs| |cRationalPower| |exptMod|
- |partialFraction| |sh| |mathieu12| |mesh| |cot| |fortranLiteralLine|
- |lift| |factors| |seed| |groebner?| |elRow1!| |primlimintfrac|
- |string| |solve| |leftDivide| |removeSinSq| |argumentListOf| |sec|
- |computeCycleLength| |reduce| |mainCoefficients| |OMopenString|
- |backOldPos| |symbolIfCan| |duplicates| |find| |cAcoth| |ParCondList|
- |shade| |scan| |csc| |parts| |compiledFunction| |palgint| |dimension|
- |aQuartic| |vspace| |readIfCan!| |tail| |fortranTypeOf|
- |validExponential| |musserTrials| |showAllElements| |quotientByP|
- |quatern| |asin| |zeroSquareMatrix| |makeObject| |ldf2vmf|
- |sqfrFactor| |rename| |integralMatrixAtInfinity| |polyred|
- |cyclotomic| |processTemplate| |Si| |OMcloseConn| |s17akf|
- |laurentRep| |acos| |charpol| |irreducibleFactor| |power!| |e01bhf|
- |indiceSubResultantEuclidean| |head| |status| |open?|
- |constantOpIfCan| |binarySearchTree| |lieAdmissible?| |f04maf|
- |s01eaf| |atan| |genericRightNorm| |e02zaf| |f01mcf|
- |axesColorDefault| |lyndon?| |coef| |complexSolve| =
- |groebnerFactorize| |hasTopPredicate?| |indicialEquations| |realSolve|
- |acot| |leftRecip| |mirror| |schema| |tanhIfCan| |radix|
- |tryFunctionalDecomposition?| |sizePascalTriangle|
- |addMatchRestricted| |hessian| |orbits| |asec| |modularGcd| |f02abf|
- |inGroundField?| |subresultantVector| |roughSubIdeal?| SEGMENT
- |reciprocalPolynomial| < |partitions| |subCase?| |f04atf|
- |viewDeltaXDefault| |acsc| |withPredicates| |pushup| |sparsityIF|
- |OMUnknownSymbol?| > |buildSyntax| |coth2tanh| |toScale|
- |beauzamyBound| |deepExpand| |sinh| |showTypeInOutput| |bfKeys|
- |ocf2ocdf| |generalizedInverse| |cyclotomicFactorization| <= |heap|
- |f01rcf| |pastel| |radicalEigenvalues| |cosh| |rightFactorCandidate|
- |rootBound| |OMgetError| |maximumExponent| |certainlySubVariety?|
- |recolor| >= |OMgetVariable| |surface| |semiResultantReduitEuclidean|
- |factorFraction| |freeOf?| |tanh| |reset| |newLine| |curve|
- |factorSquareFreeByRecursion| |isPlus| |dihedral| |d02gaf| |deepCopy|
- |scaleRoots| |divideIfCan| |LyndonCoordinates| |coth| |routines|
- |latex| |lazyIrreducibleFactors| |taylorRep| |createZechTable|
- |safeFloor| |genericRightTraceForm| |infinityNorm| |divergence| |sech|
- |OMgetEndAttr| |write| |modulus| |lquo| |LyndonWordsList| |conjug|
- |critBonD| + |rightRankPolynomial| |monomialIntPoly| |harmonic| |csch|
- |minRowIndex| |sincos| |save| |measure2Result| |internalIntegrate0|
- |lazyPseudoDivide| |coefficient| |predicate| |factorial| -
- |identitySquareMatrix| |pol| |complement| |cAsinh| |asinh|
- |bivariatePolynomials| |characteristicPolynomial|
- |coercePreimagesImages| |lexico| |setrest!| |constantOperator| /
- |f07fdf| |quoByVar| |createMultiplicationMatrix| |presuper| |acosh|
- |monomRDEsys| |singular?| |simpson| |t| |coleman| |points|
- |bezoutMatrix| |representationType| |log2|
- |removeRedundantFactorsInPols| |btwFact| |algint| |atanh|
- |selectPDERoutines| |close| F |digit| |enterInCache| |block| |maxint|
- |d03faf| |composites| |initiallyReduced?| |hypergeometric0F1|
- |prefixRagits| |acoth| |lazyPquo| |leftUnit| |tanAn| |nilFactor|
- |imagk| |frst| |overset?| |characteristicSerie| |makeFR| |choosemon|
- |showFortranOutputStack| |insert| |symbolTableOf| |spherical|
- |OMgetBind| |qinterval| |htrigs| |concat!| |makeViewport3D| |generic?|
- |isQuotient| |display| |createPrimitiveElement| |fixedPoint| |cfirst|
- |conjugates| |principalIdeal| |rightExactQuotient| |polyRDE|
- |superscript| |even?| |findCycle| |tableForDiscreteLogarithm|
- |reduction| |toseSquareFreePart| |mainContent| |quasiMonic?|
- |tryFunctionalDecomposition| |midpoint| |showAll?| |f01bsf|
- |graphCurves| |deepestTail| |KrullNumber| |leftFactorIfCan|
- |stopTable!| |setClosed| |d02bhf| |OMputAtp| |showTheSymbolTable|
- |cSin| |csc2sin| |aCubic| |nthFactor| |pointSizeDefault| |mapmult|
- |modifyPointData| |setPoly| |probablyZeroDim?| |algebraicOf|
- |quickSort| |bumptab1| |iitanh| |genericLeftNorm| |RemainderList|
- |mainDefiningPolynomial| |karatsubaOnce| |inspect| |rootPoly|
- |exprHasAlgebraicWeight| |removeRoughlyRedundantFactorsInPols|
- |besselI| |f04jgf| |height| |input| |numerators| |coerceP|
- |diagonalProduct| |makeMulti| |internalZeroSetSplit|
- |functionIsOscillatory| |e02daf| |conditionP| |mightHaveRoots|
- |getOperator| |colorDef| |library| |nthFlag| |drawToScale| |pointPlot|
- |getDatabase| |hspace| |octon| |reverseLex| |geometric| |monic?|
- |diagonal?| |medialSet| |generalizedContinuumHypothesisAssumed|
- |insertTop!| |froot| |expenseOfEvaluation| |generalSqFr| |getlo|
- |setFormula!| |redpps| |conjugate| |rational| |distance| |symbolTable|
- |iiacsc| |genericLeftTraceForm| |f02ajf| |log10| |OMUnknownCD?|
- |size?| |polCase| |e02ddf| |f02xef| |leadingCoefficientRicDE|
- |augment| |delta| |linearMatrix| |entry| |OMbindTCP|
- |SturmHabichtMultiple| |numerator| |subTriSet?| |powerAssociative?|
- |SturmHabichtCoefficients| |viewWriteAvailable| |f04mcf| |opeval|
- |pushFortranOutputStack| |integerBound| |increasePrecision|
- |rightRemainder| |reorder| |baseRDEsys| |basisOfMiddleNucleus|
- |symmetricRemainder| |identification| |arg1| |nthExpon| |pole?|
- |mainSquareFreePart| |keys| |popFortranOutputStack| |set|
- |balancedBinaryTree| |cond| |dAndcExp| |collectQuasiMonic| |d02raf|
- |firstUncouplingMatrix| |unitNormalize| |rightRank| |tracePowMod|
- |palgint0| |arg2| |vectorise| |pointColorDefault| |outputAsFortran|
- |imaginary| |say| |copyInto!| |fortranCharacter| |members|
- |countRealRootsMultiple| |acschIfCan| |groebSolve| |divideIfCan!|
- |reverse| |factorset| |changeVar| |fractRadix| |declare|
- |genericLeftDiscriminant| |infieldint| |fixedDivisor| |tablePow|
- |binomial| |clearTheSymbolTable| |isobaric?| |iilog| |s17ajf|
- |secIfCan| |particularSolution| |conditions| |rubiksGroup|
- |integerIfCan| |untab| |terms| |explicitEntries?| |trigs| |tubePlot|
- |rootSimp| |zeroDimPrime?| |operator| |tubeRadiusDefault|
- |monicRightDivide| |match| |times!| |leaves| |elliptic?| |frobenius|
- |point?| |gcdPolynomial| |headReduced?| |d01aqf| |palgLODE|
- |monomialIntegrate| |changeBase| |corrPoly| |OMgetInteger| |lambda|
- |negative?| |useSingleFactorBound?| |padicallyExpand|
- |interpretString| |internalIntegrate| |bivariate?|
- |resultantEuclidean| |numberOfIrreduciblePoly| |Is| |subset?| |iroot|
- |setEpilogue!| |iicot| |computePowers| |ratDenom| |lexTriangular|
- |bipolar| |getGraph| |setref| |deepestInitial| |extractProperty|
- |iicsc| |logIfCan| |numberOfComposites| |oddintegers| |cycleElt|
- |deleteRoutine!| |algintegrate| |vertConcat| |linkToFortran| |mkPrim|
- |redmat| |fortranInteger| |printInfo!| |show| |iflist2Result|
- |outputForm| |maxIndex| |B1solve| |factorsOfDegree| |pow|
- |intcompBasis| |minset| |power| |powers| |compose| |coefficients|
- |algebraic?| |sylvesterMatrix| |OMgetFloat| |balancedFactorisation|
- |badNum| |cycleRagits| |setlast!| |edf2efi| |cAcsc|
- |removeRedundantFactors| |trace| |subMatrix| Y
- |createLowComplexityNormalBasis| |pointLists| |alternative?|
- |commonDenominator| |anfactor| |pmComplexintegrate| |realZeros|
- |solveLinearPolynomialEquation| |rotatex| |airyAi| |zeroMatrix|
- |printTypes| |qPot| |intChoose| |sin?| |leftMult| |clipParametric|
- |copy!| |startTableInvSet!| |jordanAdmissible?| |expintegrate|
- |makeCos| |swap!| |numberOfOperations| |rdregime| |node| |in?| |rule|
- |discriminantEuclidean| |fractionPart| |s21bbf| |splitLinear| |void|
- |read!| |cycle| |f02axf| |vector| |setColumn!| |e02agf| |increment|
- |chebyshevU| |setleft!| |computeBasis| |bernoulliB| |testDim| |cCot|
- |f02agf| |commutator| |differentiate| |reducedDiscriminant|
- |printingInfo?| |genericLeftTrace| |denomLODE| |stirling2| |is?|
- |OMconnOutDevice| |OMgetEndError| |RittWuCompare| |univariate?|
- |inconsistent?| |prepareSubResAlgo| |realRoots| |associates?|
- |selectFiniteRoutines| |region| |swapRows!| |monomial| |extractTop!|
- |BasicMethod| |f01maf| LODO2FUN |s17aff| |localReal?| |unaryFunction|
- |multivariate| |getExplanations| |createNormalPoly| |monicModulo|
- |pushucoef| |rewriteSetByReducingWithParticularGenerators| |nthRoot|
- |rightRecip| |univariateSolve| |tubePoints| |rightGcd| |variables|
- |denom| |jacobi| |invertIfCan| |moebiusMu| |getStream| |viewpoint|
- |f02akf| |setOfMinN| |oddInfiniteProduct| |sumOfKthPowerDivisors|
- |rk4| |overlabel| |e04mbf| |genus| |reify| |quartic| |rowEchLocal|
- |Nul| |pi| |f07aef| |multisect| ~= |closed?| |exponent| |consnewpol|
- |fixedPoints| |leadingTerm| |infinity| |imagK| |purelyTranscendental?|
- |cCosh| |messagePrint| |socf2socdf| |safetyMargin| |cSech|
- |traceMatrix| |drawStyle| |OMputFloat| |pair?| |moebius| |quadratic|
- |rootProduct| |credPol| |physicalLength!| |shift| |nullary|
- |permutation| |taylor| |algDsolve| |minrank| |option?| |gbasis|
- |setVariableOrder| |Lazard| |setPredicates| |expandPower| |laurent|
- |normalDenom| |indicialEquation| |resultant| |lo| |listYoungTableaus|
- |sn| |screenResolution| |chiSquare1| |sort| |prindINFO| |puiseux|
- |sorted?| |makeEq| |incr| |check| |taylorQuoByVar| |plot|
- |univariatePolynomial| |fTable| |hi| |tanh2coth| |dictionary|
- |setEmpty!| |trailingCoefficient| |countable?| |li| |nil|
- |makeFloatFunction| |symmetricProduct| |equiv| |lieAlgebra?|
- |UnVectorise| |position!| |infLex?| |c05nbf| |unit?| |univcase|
- |discreteLog| |plenaryPower| |minPoints| |listBranches| F2FG
- |bandedJacobian| |fracPart| |children| |e01bff| |c06fuf| |random|
- |ran| |approximate| |dimensionsOf| |tan2cot| |reducedSystem|
- |rightMinimalPolynomial| |dflist| |stFunc2| |segment| |ratpart|
- |df2mf| |outputAsScript| |cAtan| |phiCoord| |makeSketch| |normDeriv2|
- |selectNonFiniteRoutines| |mapUp!| |f04adf| |getBadValues| |legendreP|
- |numberOfHues| |write!| |showTheFTable| |function|
- |wordsForStrongGenerators| |getMeasure| |rewriteSetWithReduction|
- |cycleEntry| |makeSeries| |partialNumerators| |horizConcat|
- |univariatePolynomialsGcds| |aspFilename| |OMgetEndBind| |limit|
- |coth2trigh| |firstNumer| |mainVariables| |po| |nextItem| |rightUnit|
- |laurentIfCan| |setStatus| |qfactor| |cartesian| |assign| |datalist|
- |symbol| |weighted| |integral?| |blue| |setfirst!| |squareTop|
- |initializeGroupForWordProblem| |morphism| |intersect| |tanintegrate|
- |red| |irreducibleRepresentation| |graphImage| |output| |zeroSetSplit|
- |generate| |e01saf| |integer| |delay| |mapBivariate| |coerce| |ord|
- |innerEigenvectors| |OMconnectTCP| |case| |factorSquareFreePolynomial|
- |s18adf| |algebraicDecompose| |addPoint2| |implies| |stopTableInvSet!|
- |smith| |incrementBy| |cscIfCan| |parametric?| |f02wef| |d01fcf|
- |construct| |clearCache| |changeWeightLevel| |alphanumeric?|
- |leftMinimalPolynomial| |permanent| |xor| |c06ekf| |expand|
- |mainVariable| |cylindrical| |ScanArabic| |inv| |permutationGroup|
- |OMreadFile| |coordinate| |generalInfiniteProduct| |invertibleSet|
- |filterWhile| |close!| |sncndn| |getCode| |ground?| |changeMeasure|
- |d02kef| |prevPrime| |moreAlgebraic?| |squareMatrix| |filterUntil|
- |f01qcf| |lazyVariations| |mathieu11| |insertBottom!| |ground|
- |binaryFunction| |internalSubQuasiComponent?| |list| |select| |cross|
- |shellSort| |f02fjf| |exquo| |squareFreePrim| |getOrder| |lcm| |plus|
- |zag| |leadingMonomial| |setDifference| |numericalIntegration|
- |quotedOperators| |readLine!| |OMputEndBind| |div| |ODESolve|
- |viewSizeDefault| |wrregime| |selectMultiDimensionalRoutines| |pdf2df|
- |leadingCoefficient| |interpret| |setIntersection| |lastSubResultant|
- |scalarMatrix| |decompose| |iisech| |quo| |eulerE| |integrate| |prime|
- |cAsin| |primitiveMonomials| |sign| |derivative| |setUnion|
- |OMencodingBinary| |var2StepsDefault| |linears| |HenselLift|
- |completeEchelonBasis| |curveColor| |basisOfRightAnnihilator| |gcd|
- |matrix| |rischDE| |reductum| |s20acf| |apply| |abs| |nullary?|
- |s19abf| |rem| |monicCompleteDecompose| |noKaratsuba| |completeEval|
- |upperCase?| |union| |gethi| |times| |definingPolynomial| |aLinear|
- |elColumn2!| |unrankImproperPartitions1| |condition| |mkcomm|
- |leftQuotient| |empty?| |leftGcd| |false| |randomLC| |exprToXXP|
- |size| |makeRecord| |multiplyExponents| |extensionDegree| |setnext!|
- |exprToGenUPS| |karatsuba| |listRepresentation| |cyclePartition|
- |ptree| |maxrank| |sinhIfCan| |alternatingGroup| |prolateSpheroidal|
- |iisin| |palgextint0| |e01bgf| |shanksDiscLogAlgorithm|
- |clipWithRanges| |curryRight| |quasiRegular?| |OMencodingSGML|
- |linearAssociatedExp| |doubleComplex?| |removeSinhSq|
- |useNagFunctions| |monom| |singRicDE| |oneDimensionalArray|
- |compactFraction| |first| |accuracyIF| |separant| |repeating?|
- |twoFactor| |digit?| |OMread| |antiCommutative?|
- |semiResultantEuclidean1| |setTex!| |rest| |limitedint| |node?|
- |subscript| |identityMatrix| |asinhIfCan| |setelt| |cosIfCan|
- |property| |substitute| |evaluate| |limitPlus| |iiabs| |empty|
- |cycleLength| |expandTrigProducts| |removeDuplicates| |OMserve|
- |remove!| |f04axf| |OMsupportsSymbol?| |e01sef| |OMputBind| |copy|
- |setAttributeButtonStep| |zeroDimensional?| |lifting1| |paraboloidal|
- |critT| |numberOfCycles| |bringDown| |OMunhandledSymbol| |logGamma|
- |result| |units| |d01asf| |hclf| |squareFreeLexTriangular| |f07fef|
- |setButtonValue| |not| |oddlambert| |totalLex| ^= |integral|
- |denominator| |elements| |mathieu24| |expt| |ravel| |iiasinh|
- |maxPoints| |autoCoerce| |saturate| |simpsono| |meshPar2Var|
- |rationalPower| |lastSubResultantElseSplit| |more?| |reshape|
- |palgRDE| |radicalSolve| |roughBase?| |exponents| |fractionFreeGauss!|
- |SturmHabichtSequence| |back| |cyclicParents|
- |degreeSubResultantEuclidean| |lhs| |rdHack1| |normalizedAssociate|
- |createGenericMatrix| |bezoutResultant| |extractIfCan|
- |realElementary| |rhs| |code| |forLoop| |rationalIfCan| |compile|
- |structuralConstants| |cardinality| |OMsetEncoding| |cPower|
- |trueEqual| |rationalPoints| |repeatUntilLoop| |subNode?|
- |diagonalMatrix| |returnType!| |OMlistSymbols| |slex| |elliptic|
- |dmpToHdmp| |getCurve| |update| |solid?| |hue| |separateDegrees|
- |leastMonomial| |zoom| |leftAlternative?| |karatsubaDivide|
- |figureUnits| |subHeight| |insertionSort!| |lfinfieldint| |e04ycf|
- |normal?| |reverse!| |ScanFloatIgnoreSpaces| |suffix?| |e04jaf| |top|
- |rightNorm| |exteriorDifferential| |supRittWu?| |nonSingularModel|
- |OMputError| |unitNormal| |recip| |continue| |rightDivide|
- |create3Space| |divisors| |setMaxPoints3D| |qelt|
- |rewriteIdealWithRemainder| |convergents|
- |stiffnessAndStabilityFactor| |subResultantGcdEuclidean| |prefix?|
- |reducedQPowers| |call| |testModulus| |viewWriteDefault| |second|
- |mapCoef| |newSubProgram| |revert| |boundOfCauchy|
- |integralCoordinates| |polygon?| |laplace| |pushdown| |key| |third|
- |init| |solveLinear| |basisOfCommutingElements| |quadratic?|
- |knownInfBasis| |numberOfChildren| |semiSubResultantGcdEuclidean1|
- |upperCase| |lex| |options| |roughBasicSet| |computeInt| |exQuo|
- |goodPoint| |setLabelValue| |acoshIfCan| |primintegrate| |An|
- |atanhIfCan| |schwerpunkt| |setLegalFortranSourceExtensions|
- |subPolSet?| |elt| |filename| |tanSum| |coord| |s17aef| |flatten|
- |compBound| |integralLastSubResultant| |rightLcm| |printInfo|
- |baseRDE| |nullSpace| |mainVariable?| |rotatez| |getGoodPrime|
- |Hausdorff| |innerint| |initial| |e04ucf| |infix?| |cyclicSubmodule|
- |linearPart| |typeList| |commaSeparate| |fixPredicate| |setValue!|
- |readLineIfCan!| |df2st| |regularRepresentation| |mask|
- |reduceByQuasiMonic| |alphanumeric| |f04qaf| |ignore?| |pdf2ef|
- |c02agf| |parse| |basicSet| |unvectorise| |summation| |tab1|
- |calcRanges| |acothIfCan| |cyclicGroup| |incrementKthElement|
- |charClass| |s14abf| |front| |has?| |int| |movedPoints| |legendre|
- |besselY| |merge| |complexExpand| |var1Steps| |clipBoolean| |leftNorm|
- |inverseColeman| |e02bcf| |diff| |isExpt| |extend| |OMputEndApp|
- |direction| |OMencodingUnknown| |drawCurves| |newTypeLists|
- |externalList| |setOrder| |iicosh| |fortranComplex|
- |rootOfIrreduciblePoly| |degreePartition| |primitivePart| |writeLine!|
- |printHeader| |odd?| |trivialIdeal?| |makeSUP| |associatorDependence|
- |outerProduct| |fullDisplay| |prepareDecompose| |pushuconst|
- |cothIfCan| |bfEntry| |anticoord| |objectOf| |lowerCase?| |exp1|
- |iprint| |useEisensteinCriterion?| |fortran| |solid| |push!|
- |trapezoidal| |radicalEigenvectors| |headRemainder|
- |removeRoughlyRedundantFactorsInPol| |xRange| |outputFixed|
- |factorSquareFree| |goodnessOfFit| |topPredicate| |internalSubPolSet?|
- |heapSort| |setelt!| |varselect| |nextColeman| |printCode| |nullity|
- |yRange| |taylorIfCan| |factorGroebnerBasis| |decimal| |critMTonD1|
- |getMatch| |eq?| |multiple?| |idealiser| |diag| |top!| |returns|
- |zRange| |shuffle| |sub| |putColorInfo| |setAdaptive3D| |cAcot|
- |crushedSet| |reducedContinuedFraction| |exprToUPS|
- |mapUnivariateIfCan| |getSyntaxFormsFromFile| |setRealSteps| |isTimes|
- |map!| |doubleFloatFormat| |ipow| |zeroDimPrimary?| FG2F
- |getVariableOrder| |eyeDistance| |virtualDegree| |primextintfrac|
- |d02bbf| |s17dlf| |ratPoly| |range| |qsetelt!| |iiacoth|
- |lfextendedint| |nextSublist| |extendedSubResultantGcd| |component|
- |vconcat| |minimalPolynomial| |mulmod| |nextsubResultant2|
- |stoseLastSubResultant| |normalizedDivide| |f02awf| |specialTrigs|
- |primPartElseUnitCanonical| |weights| |build| |intermediateResultsIF|
- |coerceListOfPairs| |universe| |nonQsign| |zeroDim?| |clearTable!|
- |factorOfDegree| |stosePrepareSubResAlgo| |lp| |e04fdf| |evenlambert|
- |e02dff| |normalize| |LiePoly| |insertMatch| |optimize| |makeop|
- |nextPrime| |blankSeparate| |interReduce| |s18acf|
- |stoseInvertibleSetreg| |subtractIfCan| |imagi| |subResultantChain|
- |rur| |pascalTriangle| |norm| |partialQuotients| |solveid|
- |symmetricGroup| |LazardQuotient2| |halfExtendedResultant1| |rotate!|
- |finiteBasis| |symmetricPower| |index| |numFunEvals3D| |yCoord| ^
- |palgextint| |indices| |factorAndSplit| |packageCall| |readable?|
- |rewriteIdealWithHeadRemainder| |setRow!| |someBasis| |acsch| |tab|
- |multiEuclideanTree| |topFortranOutputStack|
- |zeroSetSplitIntoTriangularSystems| |internalLastSubResultant|
- |perspective| |exprHasWeightCosWXorSinWX| |notelem| |leadingBasisTerm|
- |symmetricDifference| |primlimitedint| |child?| |quote| |lowerCase!|
- |clipPointsDefault| |numberOfVariables| |resetAttributeButtons|
- |digamma| |script| |HermiteIntegrate| |selectODEIVPRoutines| |fill!|
- |viewDefaults| |complexIntegrate| |npcoef| |makingStats?|
- |lazyPseudoRemainder| |bits| |truncate| |determinant| |primeFrobenius|
- |lazyPseudoQuotient| |OMgetAtp| |sts2stst| |isMult| |FormatRoman|
- |differentialVariables| |normalForm| |binomThmExpt| |aromberg| |stack|
- |endSubProgram| |genericRightMinimalPolynomial| |s19acf| |hcrf|
- |wholeRagits| |squareFreeFactors| |expIfCan| |LowTriBddDenomInv|
- |polarCoordinates| |e01daf| |leftFactor| |f02aef| |tex|
- |resetBadValues| |lfunc| |hitherPlane| |iidsum| |OMsupportsCD?|
- |e02ahf| |OMencodingXML| |s18aef| |airyBi| |edf2fi| |leadingExponent|
- |inf| |entries| |linear| |roughEqualIdeals?| |numberOfComponents|
- |numberOfFractionalTerms| |optional?| |prinb| |simplifyLog|
- |clearTheFTable| |matrixConcat3D| |postfix| |Beta| |edf2ef|
- |sylvesterSequence| |hexDigit?| |critMonD1| |rightTrim|
- |associatedEquations| |antisymmetric?| |createThreeSpace|
- |rangePascalTriangle| |safeCeiling| |firstSubsetGray| |polynomial|
- |OMreceive| |shallowCopy| |dec| |complexEigenvectors| |OMputSymbol|
- |leftTrim| |leftZero| |laguerre| |tan2trig| |submod| |s13acf| |color|
- |central?| |transcendent?| |palgLODE0| |primes| |shallowExpand|
- |meatAxe| |symmetricTensors| |listLoops| |mapExponents| |ScanRoman|
- |mkIntegral| |tValues| |twist| |rationalPoint?| |realEigenvalues|
- |numberOfDivisors| |message| |dom| |var1StepsDefault| |remainder|
- |d03eef| |sup| |invmod| |normalizeIfCan| |antiCommutator| |viewport2D|
- |factorials| |setScreenResolution| |kroneckerDelta|
- |transcendentalDecompose| |purelyAlgebraicLeadingMonomial?|
- |infRittWu?| |failed?| |contractSolve| |floor|
- |generalizedEigenvectors| |outputSpacing| |iomode|
- |fortranDoubleComplex| |split!| |algSplitSimple| |equation|
- |alphabetic| |parametersOf| |f2st| |simplifyPower|
- |clearFortranOutputStack| |OMputEndBVar| |c06fqf| |extendedint|
- |directSum| |s13aaf| |integers| |c06frf| |rk4qc| |integer?|
- |lazyGintegrate| |adaptive| |selectPolynomials| |updatF| |s17agf|
- |positive?| |name| |bumptab| |showIntensityFunctions| |SFunction|
- |csubst| |firstDenom| |cons| |basisOfRightNucloid| |logpart| |high|
- |null?| |rational?| |monicLeftDivide| |coerceImages| |whileLoop|
- |skewSFunction| |simpleBounds?| |expressIdealMember| |leastPower|
- |polygamma| |listConjugateBases| |replaceKthElement|
- |tubePointsDefault| |startTable!| |possiblyInfinite?| |pomopo!|
- |algebraicSort| |mat| |leaf?| |linearAssociatedOrder|
- |stoseSquareFreePart| |cycleSplit!| |label| |orbit| |expandLog| |mvar|
- |graphState| |createRandomElement| |setright!| |cyclic?| |goto|
- |wordInGenerators| |e| |dequeue| |arrayStack| |c05adf| |powerSum|
- |e01baf| |multiEuclidean| |trunc| |closedCurve| |queue| |c02aff|
- |d01anf| |bat1| |makeVariable| |makeSin| |modifyPoint| |leftRank|
- |pile| |getOperands| |OMputBVar| |graeffe| |generic| |recur|
- |initTable!| |subresultantSequence| |rightZero| |coHeight|
- |oblateSpheroidal| |setMinPoints3D| |basisOfLeftNucloid| |applyRules|
- |unitCanonical| |controlPanel| |powern| |bitCoef| |f02bjf|
- |semiResultantEuclideannaif| |returnTypeOf| |increase| |groebnerIdeal|
- |meshPar1Var| |lookup| |factor1| |bottom!| |brace|
- |radicalEigenvector| |weight| |intPatternMatch| |infiniteProduct|
- |removeCosSq| |solve1| |shufflein| |extractSplittingLeaf| |nor|
- |s17acf| |localIntegralBasis| |zerosOf| |removeCoshSq|
- |stopMusserTrials| |psolve| |numberOfFactors| |palglimint0|
- |plotPolar| |title| |flagFactor| |makeprod| |zero?|
- |subscriptedVariables| |createLowComplexityTable| |associator|
- |makeViewport2D| |unexpand| |stirling1| |chineseRemainder| |llprop|
- |functionIsFracPolynomial?| |newReduc| |nextNormalPoly|
- |uncouplingMatrices| |error| |palginfieldint| |approxSqrt| |redPol|
- |numeric| |janko2| |internal?| |normalizeAtInfinity| |symmetricSquare|
- |content| |innerSolve| |value| |setProperties| |assert| |nthr|
- |radical| |OMclose| |tubeRadius| |scalarTypeOf| |flexible?| |index?|
- |f02aaf| |c06gcf| |inrootof| |doubleResultant| |principal?| |dim|
- |gcdPrimitive| |multiplyCoefficients| |chvar| |torsionIfCan|
- |substring?| |bivariateSLPEBR| |plusInfinity| |infix| |depth|
- |LyndonBasis| |ParCond| |rename!| |external?| |idealiserMatrix|
- |degreeSubResultant| |divisor| |leadingSupport| |exponentialOrder|
- |minusInfinity| |properties| |option| |regime| |iiacos| |normal01|
- |hasSolution?| |lprop| |ReduceOrder| |internalDecompose| |d03edf|
- |denominators| |seriesToOutputForm| |shrinkable| |constDsolve| |lists|
- |nand| |explogs2trigs| |OMputInteger| |basisOfNucleus| |OMgetObject|
- |numberOfNormalPoly| |palgRDE0| |changeThreshhold| |pade|
- |resultantEuclideannaif| |bag| |swap| |omError| |rangeIsFinite|
- |isAbsolutelyIrreducible?| |id| |selectOptimizationRoutines|
- |lowerPolynomial| |mainForm| |polyPart| |translate|
- |totalDifferential| |tableau| |basisOfRightNucleus| |shiftLeft|
- |product| |padecf| |distdfact| |conical| |leftPower| **
- |mapMatrixIfCan| |table| |nextNormalPrimitivePoly| |outputArgs|
- |element?| |leastAffineMultiple| |mapExpon| |ode|
- |numericalOptimization| |float| |failed| |new| |f02aff| |parent|
- |atanIfCan| |resetNew| |space| |iiexp| |radPoly| EQ
- |variationOfParameters| |outputList| |generalizedEigenvector|
- |shiftRoots| |f04arf| |removeRoughlyRedundantFactorsInContents|
- |retractIfCan| |argument| |linearDependenceOverZ| |pquo| |replace|
- |numericIfCan| |evenInfiniteProduct| |splitNodeOf!| |padicFraction|
- |basisOfLeftAnnihilator| |tensorProduct| |iiatan| |evaluateInverse|
- |insert!| |deref| |zCoord| |reduced?| |rightDiscriminant| |dn|
- |OMlistCDs| |positiveRemainder| |reduceLODE| |reseed| |acscIfCan|
- |headReduce| |laguerreL| |Vectorise| |bipolarCylindrical| |OMgetBVar|
- |cCos| |retractable?| |column| |completeHermite| |iipow| |imagJ|
- |e02adf| |finite?| |OMgetType| GE |setImagSteps| |groebgen|
- |setScreenResolution3D| |iCompose| |minIndex| |hermite| |root?| GT
- |delete!| |mix| |stoseInvertible?reg| |singleFactorBound| |lllip|
- |level| |argumentList!| |useSingleFactorBound| |cotIfCan|
- |trace2PowMod| |errorInfo| LE |ref| |left| |imagj| |multMonom|
- |monicDivide| |exprHasLogarithmicWeights| |branchIfCan| |typeLists|
- |createPrimitivePoly| |sumSquares| |car| LT |supersub| |right|
- |leader| |algebraicCoefficients?| |e02ajf| |dominantTerm| |polar|
- |rotatey| |dihedralGroup| |minimize| |cdr| |map| |exponential1|
- |optAttributes| |iiasec| |solveLinearlyOverQ| |lintgcd|
- |expextendedint| |invmultisect| |hasoln| |PDESolve| |fmecg|
- |gcdcofactprim| |rootsOf| |gramschmidt| |simplifyExp| |idealSimplify|
- |gradient| |squareFreePolynomial| |qroot| |Ci| |stFuncN|
- |quasiMonicPolynomials| |s17dhf| |satisfy?| |patternVariable|
- |unrankImproperPartitions0| |c06fpf| |resultantReduit|
- |roughUnitIdeal?| |xn| |viewPosDefault| |solveInField| D
- |associatedSystem| |fixedPointExquo| |dark| |perfectNthRoot| |pr2dmp|
- |outputFloating| |common| |module| |att2Result| |trapezoidalo|
- |debug3D| |sdf2lst| |sqfree| |iifact| |numFunEvals|
- |leftRegularRepresentation| |convert| |preprocess| |sequences|
- |multinomial| |complexForm| |invertibleElseSplit?| |associative?|
- |randomR| |varList| |minPoints3D| |toroidal| |limitedIntegrate|
- |quotient| |antisymmetricTensors| |leviCivitaSymbol| |create| |s17def|
- |operation| |c06gbf| |checkRur| |cos2sec| |pToHdmp| |completeSmith|
- |roman| |BumInSepFFE| |normalDeriv| |fillPascalTriangle| |e02bdf|
- |asimpson| |setAdaptive| |triangular?| |retract| |fprindINFO|
- |weierstrass| |iisqrt2| |pop!| |quasiAlgebraicSet| |primitivePart!|
- |s19aaf| |isList| |showScalarValues| |minColIndex| |overbar|
- |radicalRoots| |f04mbf| |shiftRight| |pseudoQuotient| |print|
- |standardBasisOfCyclicSubmodule| |lepol| |problemPoints| |rroot|
- |ramifiedAtInfinity?| |cubic| |toseInvertibleSet| |complexZeros|
- |printStatement| |point| |gderiv| |gcdcofact| |width| |Lazard2|
- |rightExtendedGcd| |triangSolve| |wronskianMatrix| |drawComplex|
- |coshIfCan| |drawComplexVectorField| |minPol| |predicates|
- |lazyPremWithDefault| |cot2tan| |toseInvertible?| |polygon| |series|
- |lineColorDefault| |conditionsForIdempotents| |precision|
- |rootNormalize| |biRank| |extendIfCan| |box| |partition|
- |factorPolynomial| |allRootsOf| |absolutelyIrreducible?|
- |halfExtendedSubResultantGcd2| |sinh2csch| |eigenvalues| |optional|
- |atrapezoidal| |getRef| |resize| |epilogue|
- |noncommutativeJordanAlgebra?| |sum| |semiResultantEuclidean2|
- |e02bbf| |selectAndPolynomials| |min| |primitive?| |inRadical?|
- |d02ejf| |rightAlternative?| |commutativeEquality| |next|
- |OMputObject| |sec2cos| |parabolic| |rCoord| |rowEch| |lifting|
- |modularFactor| |rst| |localUnquote| |createNormalPrimitivePoly|
- |e01sff| |row| |zeroOf| |OMgetEndObject| |mpsode| |euler| |doubleRank|
- |hasPredicate?| |largest| |rotate| |unitsColorDefault| |mergeFactors|
- |s18def| |checkPrecision| |asech| |midpoints| |bright| |minimumDegree|
- |f07adf| |extractBottom!| |lagrange| |addBadValue| |irreducible?|
- |cycleTail| |partialDenominators| |comp| |asechIfCan|
- |numberOfComputedEntries| |polynomialZeros| |df2fi| |eulerPhi|
- |reopen!| |multiple| |upperCase!| |listexp| |nthFractionalTerm|
- |useEisensteinCriterion| |setPosition| |applyQuote|
- |removeRedundantFactorsInContents| |enumerate| |s14baf| |f04asf|
- |edf2df| |e02dcf| |diagonal| |c06ebf| |rootOf| |ramified?| |eval|
- |leadingIdeal| |OMgetAttr| |nextsousResultant2| |any|
- |curveColorPalette| |iiacot| |perfectNthPower?| |bubbleSort!|
- |inverseLaplace| |distFact| |#| |sumOfDivisors|
- |permutationRepresentation| |ruleset| |complexElementary| |repeating|
- |gcdprim| |LagrangeInterpolation| |iiacsch| |patternMatch| |e02gaf|
- |selectOrPolynomials| |radicalSimplify| |ricDsolve| |lazyResidueClass|
- |cosh2sech| |decrease| |clearDenominator| |strongGenerators|
- |fibonacci| |ScanFloatIgnoreSpacesIfCan| |lastSubResultantEuclidean|
- |maxdeg| |suchThat| |adaptive3D?| |possiblyNewVariety?| |char|
- |se2rfi| |rightQuotient| |search| |inR?| |randnum| |LyndonWordsList1|
- |initials| |center| |rightFactorIfCan| |primPartElseUnitCanonical!|
- |extendedEuclidean| |setprevious!| |refine| |cExp| |e02baf| |key?|
- |fortranCarriageReturn| |resultantnaif| |primextendedint|
- |exactQuotient!| |OMopenFile| |sechIfCan| |e01sbf| |complex?|
- |rowEchelonLocal| |extendedIntegrate| |outputAsTex|
- |nextLatticePermutation| |pseudoDivide| |constant?| |symbol?|
- |yCoordinates| |selectsecond| |UpTriBddDenomInv| |getButtonValue|
- |OMsend| |approximants| |ceiling| |euclideanSize| |constantLeft|
- |any?| |cosSinInfo| |Ei| |invertible?| |plus!| |string?|
- |clearTheIFTable| |fractRagits| |Zero| |cCoth| |iisinh| |OMputEndAtp|
- |rightPower| |leftExtendedGcd| |highCommonTerms| |measure|
- |rootKerSimp| |One| |exists?| |recoverAfterFail| |sturmVariationsOf| ~
- |complete| |rischDEsys| |components| |semiSubResultantGcdEuclidean2|
- |overlap| |Frobenius| |cn| |powmod| |f02adf| |signAround| |droot|
- |iidprod| |reindex| |list?| |d01bbf| |setleaves!| |bitTruth|
- |expenseOfEvaluationIF| |decomposeFunc| |quoted?| |every?|
- |stoseInvertibleSet| |super| |degree| |rombergo| |f01qdf| |s13adf|
- |rewriteIdealWithQuasiMonicGenerators| |exactQuotient| |insertRoot!|
- |binaryTournament| |cSinh| |viewport3D| |nodes| |OMputEndObject|
- |paren| |OMgetSymbol| |iteratedInitials| |innerSolve1|
- |PollardSmallFactor| |OMgetString| |inverseIntegralMatrixAtInfinity|
- |complexRoots| |ode2| |mindeg| |normalElement| |linSolve|
- |setErrorBound| |OMputString| |unprotectedRemoveRedundantFactors|
- |clip| |lowerCase| |open| |e02akf| |permutations| |duplicates?|
- |resultantReduitEuclidean| |stoseInvertible?sqfreg| |length|
- |finiteBound| |fi2df| |jacobian| |lazy?| |mesh?| |minimumExponent|
- |fintegrate| |select!| |mindegTerm| |quadraticForm| |scripts|
- |patternMatchTimes| |modTree| |addmod| |elem?| |rightMult| |mantissa|
- |Gamma| |halfExtendedResultant2| |viewDeltaYDefault|
- |chainSubResultants| |listOfLists| |integralMatrix| |lazyIntegrate|
- |c06gsf| |factorSFBRlcUnit| |bat| |makeResult| |deriv| |entry?| |expr|
- |outputGeneral| |basisOfCentroid| |cCsc| |pdct| |equality|
- |pseudoRemainder| |append| |viewZoomDefault| |f04faf| |totalGroebner|
- |writable?| |simplify| |logical?| |numberOfImproperPartitions|
- |delete| |removeIrreducibleRedundantFactors| |makeYoungTableau|
- |middle| |cAcosh| |cot2trig| |moduleSum| |showClipRegion| NOT |rank|
- |OMputEndError| |colorFunction| |cTanh| |cAcsch| |elRow2!|
- |normFactors| |clipSurface| |complexNumericIfCan| |dot| OR
- |lfintegrate| |iicoth| |belong?| |unmakeSUP| |variable| |polyRicDE|
- |iicos| |ode1| |iiacosh| |lSpaceBasis| AND |normalise| |minPoly|
- |linear?| |ddFact| |splitConstant| |leftCharacteristicPolynomial|
- |prod| |outputMeasure| |d02cjf| |maxPoints3D| |d01akf| |chebyshevT|
- |xCoord| |indiceSubResultant| |matrixGcd| |showTheRoutinesTable|
- |nsqfree| |errorKind| |removeZero| |df2ef| |primeFactor| |rk4a| |eq|
- |slash| |numberOfMonomials| |coordinates| |basisOfLeftNucleus|
- |e01bef| |zeroVector| |decreasePrecision| |pmintegrate|
- |explimitedint| |mainCharacterization| |iter| UP2UTS |monomials|
- |startStats!| |asecIfCan| |maxColIndex| |linearDependence|
- |matrixDimensions| |optpair| |stronglyReduced?| |graphs| |obj|
- |exponential| |/\\| |nthCoef| |factorList| |nonLinearPart| |minordet|
- |transform| |lazyPrem| |eigenMatrix| |showTheIFTable| |s15adf|
- |nextPrimitiveNormalPoly| |nthRootIfCan| |\\/| |s14aaf| |cache|
- |sizeLess?| |interval| |complexLimit| |sturmSequence| |bracket|
- |OMgetEndApp| |numer| |composite| |domainOf| |leftDiscriminant|
- |d01ajf| |contract| |isOp| |cyclic| |tower| |wholeRadix| |dimensions|
- |argscript| |complexEigenvalues| |doublyTransitive?| |cycles|
- |startTableGcd!| |makeUnit| |axes| |lazyEvaluate| |minus!|
- |selectfirst| |integralBasis| |sayLength| |createIrreduciblePoly|
- |iiperm| |s20adf| |e04gcf| |divide| * |nodeOf?| |inverse|
- |monicRightFactorIfCan| |dmpToP| |s17dgf| |setsubMatrix!|
- |indicialEquationAtInfinity| |OMReadError?| |inHallBasis?| |qqq|
- |createPrimitiveNormalPoly| |s15aef| |genericRightDiscriminant|
- |factor| |physicalLength| |exp| |wreath| |c05pbf| |cyclicEqual?|
- |declare!| |tanh2trigh| |intensity| |zero| |sinIfCan| |loopPoints|
- |sqrt| |diophantineSystem| |subResultantsChain| |complex| |mapdiv|
- |integralDerivationMatrix| |jordanAlgebra?| |float?| |lighting| |cap|
- |null| |screenResolution3D| |iFTable| |selectSumOfSquaresRoutines|
- |real| |complementaryBasis| |f02bbf| |setProperty| |represents|
- |systemSizeIF| |leftScalarTimes!| |relerror| |And| |hconcat| |connect|
- |orthonormalBasis| |imag| |updateStatus!| |rules| |directProduct|
- |sizeMultiplication| |mapUnivariate| |mapGen| |toseLastSubResultant|
- |endOfFile?| |subst| |Or| |ideal| |subspace| |doubleDisc| UTS2UP
- |kovacic| |coefChoose| |perfectSqrt| |e04dgf| |member?| |sinhcosh|
- |Not| |escape| |setchildren!| |localAbs| |leftLcm| |iisqrt3|
- |symmetric?| |scale| |positiveSolve| |fortranLiteral| |maxrow|
- |generators| |stronglyReduce| |internalInfRittWu?| |youngGroup|
- |destruct| |algebraicVariables| |contains?| |basisOfCenter|
- |mainMonomial| |iicsch| |pointData| |createMultiplicationTable|
- |bernoulli| |raisePolynomial| |tRange| |getPickedPoints| |pureLex|
- |nextPrimitivePoly| |UP2ifCan| |branchPoint?| |curryLeft| |critM|
- |mkAnswer| |OMgetApp| |addiag| |extractPoint| |iibinom| |arity|
- |integralAtInfinity?| |atoms| |defineProperty| |bit?| |meshFun2Var|
- |mainKernel| |objects| |derivationCoordinates| |charthRoot| |enqueue!|
- |hasHi| |swapColumns!| |bitLength| |e02bef| |or| |cLog| |monomial?|
- |round| |printStats!| |base| |normInvertible?|
- |semiDegreeSubResultantEuclidean| |subQuasiComponent?| |ratDsolve|
- |solveRetract| |tanIfCan| |double| |and| |sin2csc| |rightOne|
- |nextSubsetGray| |restorePrecision| |initiallyReduce| |vedf2vef|
- |number?| |viewThetaDefault| |lllp| |semicolonSeparate| |addPoint|
- |factorsOfCyclicGroupSize| |inc| |thetaCoord| |fortranCompilerName|
- |acotIfCan| |makeCrit| |supDimElseRittWu?| |alternating|
- |fullPartialFraction| |extendedResultant| |rarrow| |setStatus!|
- |myDegree| |squareFree| |repSq| |primintfldpoly| |compdegd|
- |whatInfinity| |dioSolve| |eigenvectors| |getMultiplicationMatrix|
- |prefix| |fortranLogical| |collectUpper| |OMgetEndAtp| |Aleph|
- |setFieldInfo| |OMwrite| |explicitlyFinite?|
- |solveLinearPolynomialEquationByRecursion| |dmp2rfi| |hex| |tube|
- |splitDenominator| |cAtanh| |s19adf| |prinpolINFO| |comment| |unravel|
- |OMmakeConn| |resetVariableOrder| |setMaxPoints| |viewPhiDefault|
- |f2df| |rightTrace| |nthExponent| |relationsIdeal| |palglimint|
- |setMinPoints| |rootPower| |test| |antiAssociative?|
- |univariatePolynomials| |cAsech| |putGraph| |makeTerm| |setPrologue!|
- |euclideanGroebner| |genericRightTrace| |multiset| |c06eaf|
- |OMputEndAttr| |over| |low| |numberOfPrimitivePoly| |identity|
- |lflimitedint| |OMgetEndBVar| |real?| |green| |eigenvector|
- |semiDiscriminantEuclidean| |rationalFunction| |hyperelliptic|
- |definingInequation| |brillhartTrials| |flexibleArray| |e02def|
- |irreducibleFactors| |max| |getMultiplicationTable| |unparse|
- |ldf2lst| |inverseIntegralMatrix| GF2FG |relativeApprox|
- |enterPointData| |showArrayValues| |integralBasisAtInfinity|
- |nextIrreduciblePoly| |fortranReal| |singularitiesOf| |rquo|
- |bandedHessian| |characteristic| |mapDown!| |s21baf| |setTopPredicate|
- |unary?| |subResultantGcd| |leftOne| |bombieriNorm| |kmax| |expint|
- |abelianGroup| |concat| |stoseInvertibleSetsqfreg| |nextPartition|
- |extract!| |sPol| |solveLinearPolynomialEquationByFractions| |rspace|
- |seriesSolve| |halfExtendedSubResultantGcd1| |mainValue| |s21bdf|
- |chiSquare| |s17dcf| |henselFact| |previous| |hash|
- |euclideanNormalForm| |lfextlimint| |expPot| |userOrdered?|
- |quasiComponent| |parabolicCylindrical| |divisorCascade|
- |rightScalarTimes!| |denomRicDE| |autoReduced?| |quasiRegular| |count|
- |weakBiRank| |bezoutDiscriminant| |minGbasis| |ranges|
- |mergeDifference| |style| |ridHack1| |atom?| |mathieu23| |stFunc1|
- |elementary| |ksec| |explicitlyEmpty?| |adaptive?| |bumprow| |symFunc|
- |critB| |merge!| |addPointLast| |computeCycleEntry| |double?|
- |collect| |noLinearFactor?| |constantIfCan| |nlde| |scripted?|
- |totolex| |OMconnInDevice| |totalfract| |move|
- |branchPointAtInfinity?| |curry| |unitVector| |appendPoint| |d02gbf|
- |nil| |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Record| |Union| |Category| |updateStatus!| |degree| |child| |inR?|
+ |wholeRagits| |factorPolynomial| |zeroMatrix| |rowEchelon|
+ |modularGcd| |edf2fi| |e01sef| |difference| |complexEigenvalues|
+ |makeVariable| |skewSFunction| |multiset| |e02dcf| |s14abf|
+ |constantLeft| |c06fpf| |position| |OMreadFile| |routines|
+ |symbolTableOf| |powmod| |setProperties| |deepestTail| |autoReduced?|
+ |setfirst!| |expintegrate| |UpTriBddDenomInv| |factorset|
+ |normalElement| |setrest!| |cSech| |halfExtendedResultant2|
+ |ListOfTerms| |constantKernel| |computeInt| |zeroDim?|
+ |perfectNthPower?| |zeroSquareMatrix| |log| |tree| |convergents|
+ |polyRicDE| |iicot| |expenseOfEvaluation| |imagj| |qfactor| |OMgetApp|
+ |mathieu23| |zeroDimPrime?| |invertibleSet| |allRootsOf|
+ |mapMatrixIfCan| |lyndon?| |subspace| |doublyTransitive?| |leftNorm|
+ |scan| |sequences| |c06eaf| |domainOf| |palgextint| |rotate| |square?|
+ |returns| |argumentList!| |orbit| |bombieriNorm| |nthr|
+ |multiEuclideanTree| |weierstrass| |exprHasAlgebraicWeight| |f02abf|
+ |sizeMultiplication| |comparison| |showSummary| |iicos| |getCode|
+ |myDegree| |any?| |imagI| |leftDiscriminant| |monomRDEsys|
+ |rischNormalize| |spherical| |traceMatrix| |generateIrredPoly|
+ |var1StepsDefault| |squareTop| |constDsolve| |changeMeasure|
+ |replaceKthElement| |getButtonValue| |makeSin| |showAttributes|
+ |absolutelyIrreducible?| |stiffnessAndStabilityOfODEIF| |curve|
+ |trailingCoefficient| |s21bcf| |commutative?| |list?| |coordinate|
+ |linSolve| |factor1| |diagonal| |multMonom| |monomials|
+ |factorSquareFreeByRecursion| |region| |ldf2vmf|
+ |semiResultantEuclidean1| |cross| |generator| |printTypes|
+ |writeLine!| |continuedFraction| |doubleDisc| |qPot|
+ |monicCompleteDecompose| |multinomial| |directory| BY |firstNumer|
+ |univariateSolve| Y |front| |quasiRegular| |pushup| |squareFreePart|
+ |gradient| |c06ebf| |operator| |associatedSystem|
+ |drawComplexVectorField| |pattern| |integral| |mainMonomials|
+ |KrullNumber| |pow| |inGroundField?| |weakBiRank| |vectorise| |mr|
+ |nthExponent| |tablePow| |pointSizeDefault| |nextNormalPrimitivePoly|
+ |viewDeltaYDefault| |unitsColorDefault| |cosSinInfo| |raisePolynomial|
+ |selectIntegrationRoutines| |leftRemainder| |normal01| |outputGeneral|
+ |lfextendedint| |systemCommand| |e02dff| |debug| |nand| |complexSolve|
+ |generalSqFr| |getlo| |initializeGroupForWordProblem| |formula|
+ |f02aef| |makeEq| |subPolSet?| |functionIsFracPolynomial?|
+ |rightMinimalPolynomial| |atoms| |iisqrt2| |topFortranOutputStack|
+ |stopTableGcd!| |adjoint| |singular?| |outputArgs| |pdf2df|
+ |coordinates| |constant| |sizePascalTriangle| |normal| |f07aef|
+ |numberOfFractionalTerms| |removeRoughlyRedundantFactorsInPols| UTS2UP
+ |d01ajf| |compound?| |palgint| |numericIfCan| |binaryTournament|
+ |kernel| |OMputEndError| |oddintegers| |complexNumeric| |roman|
+ |nextLatticePermutation| |LiePolyIfCan| |iExquo| |swapRows!|
+ |zeroSetSplitIntoTriangularSystems| |op| |rangePascalTriangle| |row|
+ |knownInfBasis| |shellSort| |composites| |shiftRight| |pointLists|
+ |interpretString| |fortranReal| |subresultantVector| |d02kef|
+ |tubePointsDefault| |printStats!| |nrows| |erf| |Aleph| |kernels|
+ |topPredicate| |cyclic?| |fortranCompilerName| |OMgetError| |dfRange|
+ |Ei| |showTheFTable| |d01bbf| |separate| |ncols| |remove| |tubePoints|
+ |mainVariables| |purelyAlgebraicLeadingMonomial?| |listexp|
+ |univariate| |listLoops| |intChoose| |removeSinhSq| |hasSolution?|
+ |closedCurve?| |true| |minPol| |match?| |setTex!| |dmpToHdmp|
+ |reducedForm| |euclideanNormalForm| |numberOfNormalPoly| |isPlus|
+ |noKaratsuba| |basisOfLeftNucleus| |radicalSimplify| |dilog| |last|
+ |relationsIdeal| |indices| |normalize| |totalDifferential|
+ |drawCurves| |squareFreePolynomial| |rootOf| |diagonalProduct|
+ |mkcomm| |check| |assoc| |sin| |stop| |nextSublist| |binomial|
+ |denominator| |toseSquareFreePart| |birth| |bezoutDiscriminant|
+ |UnVectorise| |pointColorDefault| |getSyntaxFormsFromFile| |dimension|
+ |cos| |newReduc| |fixedPointExquo| |mapmult| |lifting1| |powern|
+ |critMTonD1| |resetBadValues| |optpair| |zeroOf| |isPower| |tan|
+ |draw| |colorFunction| |optional?| |localIntegralBasis| |octon|
+ |mindegTerm| |cartesian| |setFormula!| |tRange| |magnitude|
+ |singularitiesOf| |tanSum| |cot| |basisOfCentroid| |lift|
+ |defineProperty| |multisect| |binarySearchTree| |e01bff| |setleaves!|
+ |exQuo| |lastSubResultant| |lambert| |subSet| |string| |sec| |dflist|
+ |reduce| |fortranDouble| |po| |internalIntegrate| |nthRootIfCan|
+ |listBranches| |useSingleFactorBound| |element?| |simpson|
+ |taylorQuoByVar| |evenInfiniteProduct| |csc| |sylvesterMatrix| |goto|
+ |rationalApproximation| |parts| |internalSubPolSet?|
+ |addMatchRestricted| |BumInSepFFE| |tail| |lazyPrem| |safeCeiling|
+ |contract| |startTable!| |mapUnivariate| |e01bef| |asin| |addBadValue|
+ |cycleElt| |makeObject| |limitedint| |predicates| |mapExponents|
+ |maximumExponent| |f01rdf| |extractTop!| |s17ahf|
+ |internalLastSubResultant| |normInvertible?| |aQuartic| |acos|
+ |extract!| |palglimint| |cSinh| |pseudoQuotient| |alternative?|
+ |acotIfCan| |pastel| |status| |setClipValue| |completeEval|
+ |prevPrime| |OMgetEndObject| |OMsend| |atan| |setFieldInfo| |bitCoef|
+ |extendedSubResultantGcd| |initiallyReduced?| |nthFractionalTerm|
+ |coef| |goodPoint| = |useNagFunctions| |constantRight|
+ |wordsForStrongGenerators| |nextsubResultant2| |acot| |nextNormalPoly|
+ |infRittWu?| |rightGcd| |lfextlimint| |groebner| |imaginary|
+ |dihedral| |ricDsolve| |rquo| |assign| |asec| |paraboloidal| |LiePoly|
+ |cTanh| |getCurve| |newTypeLists| SEGMENT |derivative| < |sin?|
+ |qroot| |setRealSteps| |nilFactor| |acsc| |dark| |closed?|
+ |mainContent| |outlineRender| > |ramified?| |lfunc| |leftQuotient|
+ |uniform| |e01sbf| |sinh| |putColorInfo| |clearTheSymbolTable|
+ |reverseLex| |quadraticForm| |minGbasis| <= |e01baf| |getPickedPoints|
+ |f01ref| |cosh| |outputAsTex| |readLine!| |heapSort| |prinb|
+ |lieAdmissible?| |tableau| |upperCase?| >= |quadratic?| |getMatch|
+ |zeroVector| |scalarMatrix| |laplace| |tanh| |reset| |bit?| |nextItem|
+ |normalDeriv| |c06fuf| |compBound| |coleman| |crest| |plot|
+ |splitNodeOf!| |coth| |rischDE| |FormatArabic| |lazyPremWithDefault|
+ |s14aaf| |bivariate?| |HenselLift| |degreeSubResultantEuclidean|
+ |possiblyInfinite?| |firstSubsetGray| |vspace| |backOldPos| |sech|
+ |write| |hypergeometric0F1| |component| |makeCrit| |leftExactQuotient|
+ |leastAffineMultiple| + |bitTruth| |bandedHessian| |splitSquarefree|
+ |csch| |nullSpace| |argumentListOf| |save| |jacobi| |setMinPoints|
+ |ScanRoman| |certainlySubVariety?| |predicate| |BasicMethod| -
+ |groebgen| |redpps| |s18acf| |mpsode| |asinh| |hermite| |shuffle|
+ |wordInGenerators| |useEisensteinCriterion| |one?| |systemSizeIF| /
+ |singRicDE| |isOp| |semiDegreeSubResultantEuclidean|
+ |stoseInvertibleSetreg| |complementaryBasis| |acosh|
+ |uncouplingMatrices| |node?| |t| |externalList| |commonDenominator|
+ |copyInto!| |symmetricProduct| |atanh| |perspective| |getMeasure|
+ |stoseLastSubResultant| |presub| |graphStates| |close| |cAcsch|
+ |viewport3D| |expPot| |f02bjf| |Ci| |maxColIndex| |moreAlgebraic?|
+ |red| |stripCommentsAndBlanks| |acoth| |permanent| |isobaric?|
+ |exponent| |d01alf| |quasiMonic?| |makeGraphImage| |infinite?|
+ |pureLex| |multiEuclidean| |lazyResidueClass| |perfectNthRoot|
+ |insert| |setAdaptive3D| |basisOfRightNucleus| |patternMatchTimes|
+ |d02gaf| |imagk| |buildSyntax| |hitherPlane| |isQuotient| |isTimes|
+ |display| |rightUnit| |meshFun2Var| |f04maf| |geometric| |remove!|
+ |oneDimensionalArray| |leadingIdeal| |midpoints| |decreasePrecision|
+ |empty?| |factorAndSplit| |setelt!| |insertMatch| |fillPascalTriangle|
+ |getOperator| |pomopo!| |leftMult| |power| |aQuadratic|
+ |univariatePolynomial| |sizeLess?| |simplifyLog| |cot2tan|
+ |plenaryPower| |resultantEuclidean| |eq?| |kmax| |movedPoints|
+ |padicFraction| |readIfCan!| |rootPower| |mkIntegral| |poisson|
+ |stoseIntegralLastSubResultant| |minordet| |basisOfNucleus| |ranges|
+ |points| |subtractIfCan| |decompose| |dequeue| |recolor| |vconcat|
+ |supDimElseRittWu?| |complexNormalize| |cyclic|
+ |expenseOfEvaluationIF| |integralRepresents|
+ |rightRegularRepresentation| |symbolIfCan| |height| |euler| |input|
+ |setPosition| |invertIfCan| |sub| |tryFunctionalDecomposition| |heap|
+ |alphanumeric| |exprHasWeightCosWXorSinWX| |irreducibleRepresentation|
+ |f01maf| |normalizedDivide| |mainVariable?| |library| |anfactor|
+ |palginfieldint| |prefixRagits| |numberOfComputedEntries| |setOrder|
+ |numerators| |distribute| |gethi| |characteristic| |root?| |cosh2sech|
+ |elRow2!| |pToDmp| |nodes| |userOrdered?| |setlast!|
+ |doubleFloatFormat| |fortranCharacter| |linearDependence| |rdHack1|
+ |leftTraceMatrix| |leftScalarTimes!| |symbolTable| |virtualDegree|
+ |consnewpol| |subscript| |calcRanges| |monic?| |mapExpon| |frst|
+ |equiv| |stFuncN| |c06ecf| |leftGcd| |delta| |iilog| |entry| |cAcot|
+ |hdmpToDmp| |semiResultantEuclideannaif|
+ |halfExtendedSubResultantGcd1| |iidsum| |reduceBasisAtInfinity|
+ |conjugate| |c06ekf| |trunc| |pushFortranOutputStack| |modTree|
+ |mainKernel| |varselect| |rangeIsFinite| |shiftLeft| |innerint|
+ |basisOfLeftAnnihilator| |finiteBasis| |nextPrimitivePoly| |fTable|
+ |arg1| |pseudoDivide| |keys| |popFortranOutputStack| |set|
+ |alternating| |cond| |pr2dmp| |laurentIfCan| |packageCall| |cAcos|
+ |leftAlternative?| |bezoutMatrix| |iisech| |pmintegrate|
+ |squareMatrix| |arg2| |numberOfChildren| |outputAsFortran| |say|
+ |interval| |clearTheFTable| |toseInvertible?| |f04axf| |s01eaf|
+ |simpsono| |rotatez| |reverse| |legendre| |definingEquations|
+ |fortranTypeOf| |monicRightFactorIfCan| |declare|
+ |numberOfIrreduciblePoly| |antiAssociative?| |makeop| |dequeue!|
+ |colorDef| |totalGroebner| |mapDown!| |duplicates| |algebraicSort|
+ |deepCopy| |conditions| |transpose| |symmetric?| |tanQ|
+ |minimalPolynomial| |transform| |e02bdf| |OMgetVariable|
+ |fortranInteger| |decrease| |clipParametric| |delete!| |decomposeFunc|
+ |f02awf| |match| |leaves| |csubst| |arrayStack| |iicosh| |approxSqrt|
+ |pmComplexintegrate| |minPoints| |toseInvertibleSet| |relerror|
+ |OMgetAttr| LODO2FUN |graphImage| |imagi| |lambda| |coefficient|
+ |moebiusMu| |pushdterm| |normFactors| |tValues|
+ |removeRedundantFactorsInContents| |fortranDoubleComplex| |ipow|
+ |removeSquaresIfCan| |stoseInternalLastSubResultant| |member?|
+ |prepareDecompose| |identityMatrix| |fixedPoints| |critT|
+ |quasiComponent| |splitDenominator| |randomLC| |overset?|
+ |mainVariable| |rootKerSimp| |clikeUniv| |crushedSet| |lazyPquo|
+ |rightUnits| |acothIfCan| |e04ucf| |unit| |closedCurve| |constant?|
+ |maxIndex| |commutator| |show| |OMputEndObject| |nextColeman|
+ |diagonal?| |split| |karatsubaDivide| |explimitedint| |eulerE|
+ |semiSubResultantGcdEuclidean1| |minimize| |f04atf| |midpoint|
+ |product| |infinityNorm| |find| |tensorProduct| |tanh2coth| |complex?|
+ |hasPredicate?| |baseRDEsys| |trace| |zero?| |solve| |readable?|
+ |returnTypeOf| |extendedint| |reseed| |validExponential|
+ |getGoodPrime| |dmpToP| |OMputEndBind| |leftTrace| |mathieu22|
+ |lazyPseudoRemainder| |finite?| |addmod| |complexLimit| |meshPar2Var|
+ |c05pbf| |generalizedContinuumHypothesisAssumed?| |mix| |sqfree|
+ |nthCoef| |pushdown| |inspect| |FormatRoman| |screenResolution3D|
+ |divide| |increase| |node| |rule| |prime?| |writable?| |usingTable?|
+ |unit?| |void| |seriesToOutputForm| |completeEchelonBasis| |scale|
+ |vector| |solid| |jacobiIdentity?| |genericRightNorm| |surface|
+ |complexZeros| |LyndonWordsList1| |exprToXXP| |factorial|
+ |computeCycleLength| |generalTwoFactor| |sinhcosh| |differentiate|
+ |numericalIntegration| |gderiv| |asimpson| |realZeros| |printInfo!|
+ |OMconnectTCP| |external?| |ocf2ocdf| |integralLastSubResultant|
+ |pushuconst| |constantIfCan| |OMopenFile| |cAtanh| |f01rcf| |Is|
+ |enumerate| |monomial| |subResultantGcdEuclidean| |nsqfree|
+ |mathieu12| |balancedFactorisation| |setScreenResolution3D|
+ |firstDenom| |subscriptedVariables| |integralCoordinates| |sncndn|
+ |multivariate| |split!| |indicialEquation| |OMgetBVar| |f02bbf|
+ |cycleTail| |exists?| |bits| |coord| |viewThetaDefault| |figureUnits|
+ |variables| |fortranLinkerArgs| |denom| |rCoord| |diophantineSystem|
+ FG2F |interpolate| |reducedDiscriminant| |nodeOf?| |var2StepsDefault|
+ |transcendent?| |cyclicSubmodule| |acscIfCan| |ldf2lst| |asinIfCan|
+ |solveLinearPolynomialEquationByFractions| |basisOfMiddleNucleus|
+ |leftDivide| |push!| |oblateSpheroidal| |directSum| |cyclicEqual?|
+ |pi| |idealiserMatrix| |refine| ~= |genericLeftMinimalPolynomial|
+ |gcdcofact| |OMgetType| |torsion?| |divergence| |infinity| |smith|
+ |multiplyExponents| |morphism| |nthFactor| |exponential1| |iFTable|
+ |nlde| |polyRDE| |rationalPower| |errorKind| |mesh| |iitanh| |entry?|
+ |differentialVariables| |createLowComplexityTable| |shift| |light|
+ |aspFilename| |simplify| |taylor| |cCos| |resultant|
+ |tryFunctionalDecomposition?| |stoseInvertible?| |positiveSolve|
+ |inverse| |jacobian| |iflist2Result| |laurent| |normDeriv2| |f04mbf|
+ |subResultantsChain| |lo| |lprop| |basisOfRightNucloid| |truncate|
+ |power!| |sort| |printStatement| |puiseux| |kovacic| |rowEch| |incr|
+ |numberOfComposites| |identitySquareMatrix| |trapezoidal| |corrPoly|
+ |algSplitSimple| |inverseIntegralMatrix| |genericPosition|
+ |OMgetEndAtp| |hi| |cothIfCan| |Lazard2| |c06gbf| |s19adf| |li| |nil|
+ |degreeSubResultant| |roughSubIdeal?| |transcendentalDecompose|
+ |recoverAfterFail| |scripted?| |palgLODE0| |linearPart|
+ |extensionDegree| |elliptic| |invertible?| |d01fcf| |printingInfo?|
+ |associator| |lllp| |subHeight| |listYoungTableaus| |iiatanh|
+ |intersect| |f02fjf| |optAttributes| |radicalEigenvectors|
+ |setMinPoints3D| |random| |s13aaf| |approximate| |removeZero|
+ |linearlyDependent?| |s17acf| |mapCoef| |symmetricRemainder|
+ |rightExtendedGcd| |semiLastSubResultantEuclidean| |segment|
+ |OMgetEndAttr| |lifting| |rotate!| |genericLeftNorm| |groebner?|
+ |c06gqf| |totolex| |superscript| |lastSubResultantElseSplit| GF2FG
+ |mdeg| |ReduceOrder| |fortranLiteral| |makeViewport2D| |lazy?|
+ |function| |logical?| |setnext!| |cExp| |coefChoose| |normalForm|
+ |genus| |checkRur| |setvalue!| |divisor| |cscIfCan| |bfEntry| |middle|
+ |e01bhf| |alphabetic| |sn| |fortranLiteralLine| |genericLeftTrace|
+ |headRemainder| |OMgetInteger| |prinpolINFO| |df2ef| |retractable?|
+ |datalist| |pol| |symbol| |triangSolve| |semicolonSeparate| |typeList|
+ |modularFactor| |mapdiv| |logpart| |OMconnInDevice| |primes| |df2fi|
+ |insertionSort!| |dimensionOfIrreducibleRepresentation|
+ |relativeApprox| |output| |generate| |integer| |sturmVariationsOf|
+ |unexpand| |basisOfLeftNucloid| |coerce| |modulus| |e02baf|
+ |OMputVariable| |more?| |reify| |updatD| |integers| |exprToGenUPS|
+ |parametric?| |implies| |incrementBy| |linGenPos| |iiasec| |case|
+ |cAcosh| |even?| |construct| |clearCache| |numberOfImproperPartitions|
+ |leadingSupport| |factors| |xor| |revert| |reciprocalPolynomial|
+ |expand| |getZechTable| |insertBottom!| |mesh?| |inv| |OMbindTCP|
+ |primeFactor| |primlimintfrac| |column| |plus!| |filterWhile|
+ |identification| |OMgetEndBind| |applyRules| |ground?| |monicDivide|
+ |integralDerivationMatrix| |e02adf| |screenResolution| |tanintegrate|
+ |filterUntil| |binomThmExpt| |removeRoughlyRedundantFactorsInPol|
+ |indiceSubResultantEuclidean| |ground| |hermiteH| |cap| |rst| |list|
+ |collectUnder| |select| |quotedOperators| |maxrow| |wronskianMatrix|
+ |negative?| |unravel| |lcm| |plus| |leadingMonomial| |setDifference|
+ |enterPointData| |less?| |internalDecompose| |pointColor| |polygon?|
+ |complement| |exquo| |totalfract| |cos2sec| |leadingCoefficient|
+ |parametersOf| |interpret| |setIntersection| |zag| |monomRDE|
+ |RemainderList| |palgRDE| |linears| |div| |viewDeltaXDefault|
+ |stirling1| |shallowExpand| |lfinfieldint| |primitiveMonomials|
+ |exponentialOrder| |setUnion| |exactQuotient!| |perfectSqrt| |s17aef|
+ |quo| |denomLODE| |B1solve| |quartic| |addPoint| |gcd| |matrix|
+ |commaSeparate| |reductum| |apply| |boundOfCauchy| |karatsuba|
+ |cyclicEntries| |removeSinSq| |high| |largest| |cot2trig|
+ |OMputEndApp| |union| |c06frf| |times| |rk4a| |OMencodingBinary|
+ |setImagSteps| |partitions| |palgintegrate| |condition| |rem|
+ |complete| |binaryFunction| |curve?| |false| |lquo| |chiSquare1|
+ |size| |pleskenSplit| |makeRecord| |selectSumOfSquaresRoutines|
+ |rootPoly| |nthExpon| |outputFixed| |findCycle|
+ |removeIrreducibleRedundantFactors| |ptree| |localUnquote|
+ |singularAtInfinity?| |d03edf| |modularGcdPrimitive| |shrinkable|
+ |solveLinearlyOverQ| |limit| |minimumExponent|
+ |exprHasLogarithmicWeights| |key?| |showArrayValues|
+ |mainDefiningPolynomial| |iiasech| |maxRowIndex| |drawComplex| |head|
+ |monom| |SturmHabichtMultiple| |f02wef| |removeZeroes| |first|
+ |e04dgf| |aromberg| |withPredicates| |chineseRemainder| |digit?|
+ |useSingleFactorBound?| |generalLambert| |listRepresentation| |rest|
+ |viewWriteDefault| |doubleRank| |factorsOfDegree| |generators|
+ |moduleSum| |pToHdmp| |setelt| |f2st| |property| |substitute| |regime|
+ |seed| |uniform01| |solveid| |rowEchLocal| |factorsOfCyclicGroupSize|
+ |removeDuplicates| |prindINFO| |completeHermite| |outputForm|
+ |stirling2| |internalSubQuasiComponent?| |meatAxe| |copy| |zerosOf|
+ |jordanAlgebra?| |slash| |subCase?| |algebraicDecompose| |cAsinh|
+ |coth2trigh| |tableForDiscreteLogarithm| |result| |elements| |units|
+ |createNormalPrimitivePoly| |completeHensel| |sortConstraints|
+ |partialFraction| |null?| |factorSquareFree| ^= |direction|
+ |modifyPointData| |integralBasisAtInfinity| |fortranCarriageReturn|
+ |denominators| |Vectorise| |ravel| |not| |coshIfCan|
+ |constantCoefficientRicDE| |autoCoerce| |cCsc| |s18aff| |sinIfCan|
+ |karatsubaOnce| |cCoth| |sechIfCan| |reshape| |iiacoth|
+ |unitCanonical| |hessian| |iiacos| |LazardQuotient| |escape|
+ |rightTrace| |fintegrate| |standardBasisOfCyclicSubmodule| |lhs|
+ |cyclePartition| |extendedEuclidean| |accuracyIF| |llprop| |open?|
+ |deleteRoutine!| |rhs| |code| |sorted?| |addPoint2| |prinshINFO|
+ |compile| |Nul| |padicallyExpand| |OMwrite| |univariate?|
+ |numberOfMonomials| |sh| |f04mcf| |showClipRegion| |completeSmith|
+ |failed?| |back| |compiledFunction| |bipolarCylindrical|
+ |algebraicCoefficients?| |update| |goodnessOfFit| |thetaCoord|
+ |solid?| |basisOfCenter| |e01sff| |loopPoints| |determinant|
+ |symmetricTensors| |setPoly| |listOfMonoms| |nextIrreduciblePoly|
+ |semiIndiceSubResultantEuclidean| |exteriorDifferential| |cPower|
+ |selectPDERoutines| |suffix?| |OMencodingUnknown| |top| |mathieu24|
+ |d02raf| |lexGroebner| |setprevious!| |s17agf|
+ |generalizedEigenvector| |rombergo| |continue| |companionBlocks|
+ |removeCoshSq| |fmecg| |maxrank| |qelt| |stopTableInvSet!| |f02xef|
+ |minRowIndex| |monicModulo| |prefix?| |reduction| |call| |pdct|
+ |squareFreeFactors| |second| |iisinh| |leadingExponent| |minus!|
+ |controlPanel| |constantOperator| |orbits| |quadraticNorm|
+ |selectAndPolynomials| |key| |third| |init| |computeBasis| |changeVar|
+ |digamma| |select!| |lepol| |simpleBounds?| |primintegrate|
+ |rationalFunction| |options| |separant| |resultantReduit|
+ |fractionPart| |constantOpIfCan| |algintegrate| |f02adf|
+ |prolateSpheroidal| |sdf2lst| |pointColorPalette| |repeating| |addiag|
+ |contractSolve| |filename| |inconsistent?| |untab|
+ |multiplyCoefficients| |flatten| |e02ajf| |printInfo| |symFunc|
+ |clearTable!| |generic| |divisors| |explicitlyFinite?| |elt|
+ |cyclicParents| |hexDigit?| |d02cjf| |digit| |initial| |opeval|
+ |shiftRoots| |infix?| |possiblyNewVariety?| |rewriteSetWithReduction|
+ |hue| |gcdcofactprim| |bitLength| |minrank| |primeFrobenius| |mask|
+ |pushucoef| |leadingCoefficientRicDE| |d02gbf| |permutations|
+ |stopMusserTrials| |primitive?| |firstUncouplingMatrix| |cCsch|
+ |parse| |setchildren!| |HermiteIntegrate| |f01qdf| |Si|
+ |internalAugment| |expt| |expIfCan| |hyperelliptic| |f04adf|
+ |OMputAtp| |countable?| |bernoulliB| |selectfirst| |inverseColeman|
+ |dn| |limitedIntegrate| |probablyZeroDim?| |mainMonomial| |iisin|
+ |sumOfKthPowerDivisors| |infiniteProduct| |gcdprim| |supRittWu?|
+ |startStats!| |expandLog| |s15aef| |gcdPolynomial| |equality| |f07fdf|
+ |chvar| |OMgetString| |c06gsf| |s21bbf| |positive?| |besselJ|
+ |repeating?| |nextSubsetGray| |totalDegree| |problemPoints|
+ |expressIdealMember| |option?| |empty| |leftRecip| |outerProduct|
+ |sparsityIF| |sincos| |factorOfDegree| |critB| |se2rfi| |tan2trig|
+ |vertConcat| |signAround| |separateFactors| |maxPoints3D| |isList|
+ |fortran| |mergeFactors| |OMputEndAtp| |f04arf| |roughUnitIdeal?|
+ |combineFeatureCompatibility| |setMaxPoints3D| |xRange|
+ |solveLinearPolynomialEquationByRecursion| |prepareSubResAlgo| |An|
+ |stFunc2| |dimensionsOf| |integerBound| |intcompBasis| |fractRadix|
+ |augment| |functionIsContinuousAtEndPoints| |fixedPoint| |yRange|
+ |floor| |s20acf| |critMonD1| |inRadical?| |setref| |binaryTree|
+ |copies| |inf| |selectODEIVPRoutines| |recur| |OMlistCDs| |zRange|
+ |separateDegrees| |rootsOf| |e02bef| |definingInequation| |bag|
+ |dioSolve| |explogs2trigs| |dominantTerm| |extractPoint|
+ |integralBasis| |genericRightDiscriminant| |cycleEntry| |map!|
+ |iiasinh| |unitNormalize| |rightCharacteristicPolynomial|
+ |palgextint0| |antiCommutator| |setCondition!| |localAbs| |anticoord|
+ |e02bcf| |besselI| |ffactor| |duplicates?| |qsetelt!| |psolve|
+ |iicsch| |getBadValues| |torsionIfCan| |summation|
+ |squareFreeLexTriangular| |splitLinear| |lazyPseudoQuotient| |s13adf|
+ |hconcat| |OMcloseConn| |rightQuotient| |algebraicOf|
+ |LowTriBddDenomInv| |inverseIntegralMatrixAtInfinity| |gbasis|
+ |conditionP| |mainPrimitivePart| |alphabetic?| |measure2Result|
+ |LagrangeInterpolation| |mvar| |quotient| |rewriteIdealWithRemainder|
+ |lp| |pseudoRemainder| |droot| |d01akf| |rk4| |factorList|
+ |showTheSymbolTable| |optimize| |cylindrical| |nonSingularModel|
+ |merge!| |enterInCache| |generalInfiniteProduct| |headReduced?|
+ |linkToFortran| |leastPower| |ratpart| |cycleLength| |univcase|
+ |removeCosSq| |linearMatrix| |testDim|
+ |rewriteSetByReducingWithParticularGenerators| |symbol?| |binary|
+ |submod| |character?| |rroot| |index| |quoByVar| |d02ejf| ^
+ |factorSFBRlcUnit| |cyclicCopy|
+ |removeRoughlyRedundantFactorsInContents| |bumptab| |upperCase|
+ |twoFactor| |restorePrecision| |selectOptimizationRoutines| |acsch|
+ |generalizedEigenvectors| |realRoots| |brillhartTrials|
+ |definingPolynomial| |generalizedInverse| |tan2cot| |iibinom|
+ |rightPower| |sayLength| |cAcoth| |sumOfSquares| F2FG |dmp2rfi| |abs|
+ |e01bgf| |atanhIfCan| |partialDenominators| |mirror| |script| |polar|
+ |genericLeftDiscriminant| |fill!| |stoseInvertible?reg| |makeSeries|
+ |eigenMatrix| |leastMonomial| |argument| |quasiRegular?| |pair|
+ |bivariateSLPEBR| |showScalarValues| |objectOf| |increasePrecision|
+ |xn| |connect| |hexDigit| |initTable!| |quickSort| |rightRank|
+ |chebyshevT| |viewSizeDefault| |stack| |deepestInitial| |iiacsch|
+ |perfectSquare?| |yCoordinates| |entries| |eulerPhi| |cfirst|
+ |numberOfFactors| |gramschmidt| |associatedEquations|
+ |setVariableOrder| |eigenvectors| |tex| |OMgetAtp| |read!|
+ |stosePrepareSubResAlgo| |resultantReduitEuclidean|
+ |radicalEigenvalues| |maxPoints| |polarCoordinates| |df2mf| |cLog|
+ |viewport2D| |block| |leftLcm| |linear| |addPointLast| |d01aqf|
+ |removeRedundantFactors| |viewZoomDefault| |pointData|
+ |rightAlternative?| |linearPolynomials| |solve1| |internalIntegrate0|
+ |createIrreduciblePoly| |OMread| |s17akf| |s17dlf|
+ |ramifiedAtInfinity?| |nullary?| |rightTrim| |flexibleArray|
+ |legendreP| |root| |diff| |showIntensityFunctions| |polynomial|
+ |viewDefaults| |antisymmetricTensors| |chiSquare| |dec| |mkPrim|
+ |createMultiplicationMatrix| |leftTrim| |shanksDiscLogAlgorithm|
+ |complexRoots| |cSin| |cCot| |lowerCase?| |graphState|
+ |deleteProperty!| |s13acf| |outputSpacing| |polygamma| |overlabel|
+ |infix| |f07fef| |leftExtendedGcd| |cycle|
+ |rewriteIdealWithQuasiMonicGenerators| |lowerPolynomial|
+ |initiallyReduce| |hex| |iidprod| |message| |Lazard|
+ |expandTrigProducts| |dom| |bat| |rotatey| |patternMatch| |nthRoot|
+ |partialNumerators| |OMputBind| |Hausdorff| |associates?| |xCoord|
+ |aLinear| |reducedSystem| |rightRemainder| |arity| |computeCycleEntry|
+ |conjugates| |pointPlot| |iipow| |zoom| |OMencodingSGML| |schwerpunkt|
+ |outputAsScript| |schema| |diagonals| |equation| |infieldint|
+ |plotPolar| |bandedJacobian| |wholePart| |float?| |saturate|
+ |tracePowMod| |commutativeEquality| |prologue| |minColIndex| |iisqrt3|
+ |iiperm| |viewPosDefault| |showTheIFTable| |subresultantSequence|
+ |realEigenvectors| |palglimint0| |e02def| |simplifyExp| |wrregime|
+ |name| |extractProperty| |functionIsOscillatory| |complexIntegrate|
+ |sts2stst| |e04fdf| |cons| |stoseInvertible?sqfreg| |countRealRoots|
+ |squareFreePrim| |bumptab1| |createMultiplicationTable|
+ |clipWithRanges| |linearDependenceOverZ| |factorials|
+ |factorByRecursion| |SFunction| |rightTraceMatrix| |exp1|
+ |roughEqualIdeals?| |rightFactorCandidate| |laurentRep|
+ |resultantnaif| |f04faf| |e01daf| |LyndonBasis| |antisymmetric?|
+ |leviCivitaSymbol| |getMultiplicationMatrix| |reopen!| |pade|
+ |fullDisplay| |cotIfCan| |antiCommutative?| |e02gaf| |cAcsc| |label|
+ |changeWeightLevel| |redmat| |reindex| |setPredicates| |monomial?|
+ |setButtonValue| |e| |palgLODE| |basicSet| |mapGen| |lazyPseudoDivide|
+ |maxint| |f02axf| |subMatrix| |d02bbf| |newSubProgram| |cubic|
+ |listConjugateBases| |numberOfHues| |indiceSubResultant| |sample|
+ |ratPoly| |c05nbf| |highCommonTerms| |monicDecomposeIfCan| |double?|
+ |isExpt| |vedf2vef| |s21bdf| |elRow1!| |iomode| |presuper| |cAtan|
+ |cschIfCan| |shufflein| |approximants| |exponential| |flagFactor|
+ |f02agf| |drawToScale| |createRandomElement| |s17dcf| |color| |imagJ|
+ |tube| |linearAssociatedExp| |e04mbf| |OMputObject| |brace| |csc2sin|
+ |upDateBranches| |reorder| |weighted| |rightRecip| |s20adf|
+ |setAttributeButtonStep| |yellow| |selectFiniteRoutines| |OMserve|
+ |irreducibleFactors| |makeResult| |bfKeys| |rightZero|
+ |removeDuplicates!| |dihedralGroup| |npcoef| |exactQuotient| |tanNa|
+ |title| |s19abf| |curryRight| |ode2| |tanhIfCan| |trace2PowMod| |prem|
+ |integralAtInfinity?| |iprint| |horizConcat| |getDatabase| |palgint0|
+ |exprToUPS| |ParCond| |iicsc| |setColumn!| |isMult|
+ |toseLastSubResultant| |numeric| |solveInField| |principalIdeal|
+ |mainForm| |idealSimplify| |matrixGcd| |elColumn2!| |overbar| |value|
+ |error| |radical| |discriminant| |fixedDivisor| |selectOrPolynomials|
+ |finiteBound| |fracPart| |leftFactor|
+ |setLegalFortranSourceExtensions| |expandPower| |fortranLogical| |dim|
+ |assert| |ceiling| |collect| |numberOfComponents| |charpol| |s15adf|
+ |trigs2explogs| |bernoulli| |substring?| |phiCoord| |plusInfinity|
+ |setScreenResolution| |depth| |integral?| |makeprod| |evenlambert|
+ |monomialIntegrate| |normalized?| |doubleComplex?|
+ |selectMultiDimensionalRoutines| |sec2cos| |OMlistSymbols|
+ |minusInfinity| |properties| |setright!| |f01qef| |option| |e04gcf|
+ |rootBound| |create| |getMultiplicationTable| |pquo| |oddlambert|
+ |insertRoot!| |makingStats?| |central?|
+ |createLowComplexityNormalBasis| |lists| |normalDenom| |round|
+ |extractIndex| |useEisensteinCriterion?| |d03faf| |number?|
+ |upperCase!| |beauzamyBound| |rename!| |createThreeSpace| |aCubic|
+ |noLinearFactor?| |extend| |homogeneous?| |range| |extractBottom!|
+ |id| |ef2edf| |showTheRoutinesTable| |extractSplittingLeaf|
+ |translate| |rightExactQuotient| |henselFact| |coefficients|
+ |makeSketch| |write!| |deriv| |realElementary| |polyPart| |coHeight|
+ ** |stoseInvertibleSetsqfreg| |table| |parabolic| |mapUnivariateIfCan|
+ |radix| |trim| |univariatePolynomialsGcds| |linearlyDependentOverZ?|
+ |float| |pdf2ef| |new| |unparse| |unrankImproperPartitions1|
+ |logIfCan| |f02ajf| |fi2df| |zeroDimensional?| |linearAssociatedLog|
+ |failed| EQ |outputList| |radicalRoots| |atanIfCan|
+ |irreducibleFactor| |hspace| |palgRDE0| |retractIfCan|
+ |leftRankPolynomial| |OMputEndAttr| |kroneckerDelta| |child?|
+ |replace| |nextPrimitiveNormalPoly| |s17def| |makeMulti|
+ |outputFloating| |OMclose| |collectUpper| |latex| |changeBase|
+ |children| |position!| |matrixConcat3D| |ode1| |slex| |makeCos|
+ |stronglyReduced?| |s17ajf| |drawStyle| |nor| |bubbleSort!| |s17adf|
+ |zeroSetSplit| |nil?| |derivationCoordinates|
+ |halfExtendedSubResultantGcd2| |order| |stFunc1| |OMgetBind|
+ |clearDenominator| |lighting| |deepExpand| |OMputAttr| |over|
+ |nextPrime| |totalLex| |forLoop| |zeroDimPrimary?| |modifyPoint|
+ |subNodeOf?| GE |s18adf| |lagrange| |tubeRadius| RF2UTS
+ |triangularSystems| |setErrorBound| |cAsec| |alphanumeric?| GT
+ |rightFactorIfCan| |algebraic?| |iiacosh| |leftUnit| |computePowers|
+ |badNum| |level| |log10| |iiatan| |sqfrFactor| |testModulus|
+ |primextendedint| LE |left| |nextPartition| |getStream| |OMputFloat|
+ |rspace| |remainder| |leader| |resetNew| |complexForm| |integrate|
+ |createNormalElement| |exptMod| LT |getOrder| |car| |right| |c05adf|
+ |sinh2csch| |getVariableOrder| |squareFree| |quote| |s17dgf|
+ |tubeRadiusDefault| |c02agf| |cdr| |map| |laguerreL| |paren| |low|
+ |has?| |cup| |cycles| |const| |OMreceive| |sPol| |changeThreshhold|
+ |intensity| |scalarTypeOf| |asinhIfCan| |swap| |rur| |irreducible?|
+ |lazyIrreducibleFactors| |e01saf| |subQuasiComponent?| |e02daf|
+ |acosIfCan| |internalZeroSetSplit| |lSpaceBasis| |OMreadStr| |d01gaf|
+ |mightHaveRoots| |OMgetFloat| |inverseLaplace| |leftRank|
+ |strongGenerators| |bsolve| |module| |primPartElseUnitCanonical!|
+ |infLex?| |pair?| D |printHeader| |tab1| |swap!|
+ |constantToUnaryFunction| |characteristicSet| |resultantEuclideannaif|
+ |common| |graphs| |eigenvalues| |blankSeparate| |bottom!|
+ |nonLinearPart| |elementary| |errorInfo| |qinterval| |evaluateInverse|
+ |unvectorise| |GospersMethod| |convert| |numberOfPrimitivePoly|
+ |secIfCan| |leftFactorIfCan| |cyclotomicDecomposition| |endOfFile?|
+ |OMputString| |prime| |varList| |showTypeInOutput| |flexible?|
+ |postfix| |chainSubResultants| |space| |hdmpToP| |setsubMatrix!|
+ |rename| |moebius| |charthRoot| |ratDenom| |operation| |euclideanSize|
+ |rationalIfCan| |monicRightDivide| |rectangularMatrix| |normalise|
+ |sech2cosh| |groebnerFactorize| |blue| |OMUnknownCD?| |fibonacci|
+ |invertibleElseSplit?| |powerSum| |atrapezoidal| |pascalTriangle|
+ |retract| |purelyAlgebraic?| |startTableGcd!| |ratDsolve| |delay|
+ |identity| |OMgetSymbol| |pop!| |lowerCase!| |OMputError|
+ |shallowCopy| |index?| |tanAn| |repSq| |taylorRep|
+ |wordInStrongGenerators| |move| |minPoly| |cosIfCan| |print| |d03eef|
+ |numberOfOperations| |lyndon| |pile| |quadratic| |viewpoint| |hMonic|
+ |distFact| |cAsin| |htrigs| |point| |getRef| |ptFunc|
+ |OMunhandledSymbol| |width| |ksec| |unprotectedRemoveRedundantFactors|
+ |insert!| |att2Result| |lflimitedint| |radicalEigenvector| |size?|
+ |integralMatrixAtInfinity| |indicialEquationAtInfinity| |f02aaf|
+ |interReduce| |odd?| |structuralConstants| |associative?| |e04naf|
+ |series| |rootProduct| |particularSolution| |stopTable!| |precision|
+ |iiexp| |mapBivariate| |times!| |linear?| |enqueue!| |int|
+ |clipPointsDefault| |complexEigenvectors| |ScanFloatIgnoreSpacesIfCan|
+ |Beta| |resize| |listOfLists| |optional| |makeUnit|
+ |branchPointAtInfinity?| |solveRetract| |rk4f| |OMgetEndBVar|
+ |hasTopPredicate?| |sum| |createZechTable| |eisensteinIrreducible?|
+ |unitNormal| |min| |c06gcf| |f02akf| |lexTriangular| |sumOfDivisors|
+ |nary?| |getOperands| |next| |box| |credPol| |evaluate|
+ |quasiAlgebraicSet| |extendedIntegrate| |rdregime| |deref| |concat!|
+ |ddFact| |iteratedInitials| |primintfldpoly|
+ |basisOfCommutingElements| |explicitlyEmpty?| |clip| |sign|
+ |setLabelValue| |epilogue| |sup| |basisOfRightAnnihilator| |radPoly|
+ |OMReadError?| |polyred| |d01apf| |real?| |logGamma| |OMopenString|
+ |elliptic?| |cardinality| |checkPrecision| |asech| |besselK| |bright|
+ |inrootof| |trapezoidalo| |norm| |baseRDE| |polCase| |ord| |randomR|
+ |comp| |physicalLength!| |rubiksGroup| |d01amf| |minIndex|
+ |numberOfVariables| |multiple| |OMputSymbol|
+ |lastSubResultantEuclidean| |edf2ef| |splitConstant| |trivialIdeal?|
+ |represents| |applyQuote| |axes| |curry| |tanIfCan|
+ |noncommutativeJordanAlgebra?| |hasHi| |weight| |traverse| |safeFloor|
+ |lyndonIfCan| |recip| |OMputApp| |eval| |green| |iiGamma| |setClosed|
+ |leftMinimalPolynomial| |any| |in?| |primaryDecomp| |OMputBVar|
+ |reduceLODE| |doubleResultant| |selectNonFiniteRoutines|
+ |integralMatrix| |permutationRepresentation| |ruleset| |zCoord|
+ |makeViewport3D| |wreath| |leftCharacteristicPolynomial| |innerSolve1|
+ |bipolar| |#| |rowEchelonLocal| |adaptive?| |inHallBasis?| |lowerCase|
+ |transcendenceDegree| |nullary| |setOfMinN| |indicialEquations|
+ |ODESolve| |OMsetEncoding| |ellipticCylindrical| |cyclotomic|
+ |randnum| |semiResultantEuclidean2| |limitPlus| |primitivePart!|
+ |curveColor| |innerEigenvectors| |e02ddf| |frobenius| |suchThat|
+ |stiffnessAndStabilityFactor| |iitan| |eigenvector| |invmod| |search|
+ |solveLinear| |variationOfParameters| |rightDivide| |minPoints3D|
+ |close!| |center| |char| |sinhIfCan| |acoshIfCan| |compdegd|
+ |OMmakeConn| |resetAttributeButtons| |rightLcm| |leftZero| |maxdeg|
+ |principal?| |integerIfCan| |partialQuotients| |e04ycf| |lazyEvaluate|
+ |mainCoefficients| |sin2csc| |unitVector| |imagE| |permutation|
+ |debug3D| |intPatternMatch| |fixPredicate| |genericRightTraceForm|
+ |iCompose| |extension| |badValues| |swapColumns!| |prod| |makeSUP|
+ |LyndonWordsList| |setProperty| |discriminantEuclidean| |graeffe|
+ |reduced?| |rischDEsys| |e02bbf| |sylvesterSequence| |areEquivalent?|
+ |rk4qc| |changeNameToObjf| |complexElementary| |generic?| |qqq|
+ |radicalSolve| |mapUp!| |semiDiscriminantEuclidean| |d01asf|
+ |makeYoungTableau| |bumprow| |redPo| |e02akf| |leadingIndex|
+ |alternatingGroup| |currentSubProgram| |d02bhf| |measure| |numerator|
+ |Zero| |processTemplate| |appendPoint| |taylorIfCan| |discreteLog|
+ |iiabs| |gcdPrimitive| ~ |lazyIntegrate| |mergeDifference|
+ |branchIfCan| |compactFraction| |One| |toroidal| |cn| |adaptive3D?|
+ |lintgcd| |polynomialZeros| |outputMeasure| |PollardSmallFactor| |ran|
+ |pack!| |digits| |notelem| |members| |point?| |create3Space| |pole?|
+ |cyclotomicFactorization| |algDsolve| |oddInfiniteProduct| |edf2efi|
+ |realSolve| |simplifyPower| |multiple?| |quasiMonicPolynomials|
+ |rightOne| |basis| |endSubProgram| |primextintfrac| |s19aaf|
+ |asechIfCan| |resetVariableOrder| |UP2ifCan| |mapSolve|
+ |rightDiscriminant| |laguerre| |stronglyReduce| |polygon| |mainValue|
+ |cycleRagits| |getGraph| |normal?| |normalizedAssociate|
+ |OMsupportsCD?| |createPrimitiveElement| |createPrimitiveNormalPoly|
+ |symmetricGroup| |mulmod| |seriesSolve| |open| |normalizeIfCan| |mat|
+ |setValue!| |rational| |length| |rootRadius| |s18dcf| |is?|
+ |univariatePolynomials| |whatInfinity| |eyeDistance|
+ |representationType| |conjug| |ode| |scripts| |bivariatePolynomials|
+ |redPol| |associatorDependence| |leftUnits| |mantissa| |integer?|
+ |symmetricPower| |besselY| |terms| |rational?| |trueEqual|
+ |generalPosition| |omError| |subTriSet?| |s17aff| |wholeRadix|
+ |specialTrigs| |expr| |components| |leadingTerm| |hclf| |typeLists|
+ |f01qcf| |quoted?| |s21baf| |roughBase?| |clipSurface| |critpOrder|
+ |divideExponents| |append| |s17dhf| |subResultantChain|
+ |factorGroebnerBasis| |reducedContinuedFraction|
+ |parabolicCylindrical| |fullPartialFraction| |clearFortranOutputStack|
+ NOT |scaleRoots| |rank| |delete| |countRealRootsMultiple| |cSec|
+ |expextendedint| |printCode| |twist| |padecf| OR |setMaxPoints|
+ |branchPoint?| |copy!| |queue| |variable| |romberg| |lineColorDefault|
+ |fortranComplex| |addMatch| AND |reverse!| |e02ahf|
+ |nextsousResultant2| |characteristicSerie| |mainSquareFreePart|
+ |cAsech| |numberOfCycles| |medialSet| |readLineIfCan!| |style|
+ |localReal?| |dictionary| |genericRightMinimalPolynomial|
+ |rationalPoints| |sturmSequence| |removeSuperfluousQuasiComponents|
+ |critBonD| |leadingBasisTerm| |log2| |mainCharacterization| |eq|
+ |internalInfRittWu?| |janko2| |cyclicGroup|
+ |rewriteIdealWithHeadRemainder| |idealiser| |lazyGintegrate| |merge|
+ |removeSuperfluousCases| |musserTrials| |iter| |LazardQuotient2|
+ |complexNumericIfCan| |approxNthRoot| |showAll?| |e02agf|
+ |superHeight| |leaf?| |factorSquareFreePolynomial| |iifact|
+ |exponents| |/\\| |obj| |imagK| |elem?| |semiResultantReduitEuclidean|
+ |every?| |string?| |createGenericMatrix| |initials| |explicitEntries?|
+ |characteristicPolynomial| |\\/| |nullity| |cache| |e02zaf| |s14baf|
+ |operators| |reducedQPowers| |curryLeft| |numericalOptimization|
+ |numer| |setTopPredicate| |monicLeftDivide| |conditionsForIdempotents|
+ |solveLinearPolynomialEquation| |setAdaptive| |tower|
+ |createPrimitivePoly| |cRationalPower| |satisfy?| |distance|
+ |primPartElseUnitCanonical| |OMconnOutDevice| |putGraph|
+ |divisorCascade| |subset?| |powerAssociative?| |acschIfCan|
+ |dimensions| |headReduce| |makeFR| |semiSubResultantGcdEuclidean2|
+ |repeatUntilLoop| |rationalPoint?| |vark| * |df2st| |OMencodingXML|
+ |numFunEvals3D| |tanh2trigh| |extractClosed| |decimal| |internal?|
+ |generalizedContinuumHypothesisAssumed| |extendedResultant|
+ |coerceListOfPairs| |OMputEndBVar| |lazyVariations| |factor| |c02aff|
+ |exp| |balancedBinaryTree| |distdfact| |purelyTranscendental?|
+ |rootOfIrreduciblePoly| |declare!| |zero| |linearAssociatedOrder|
+ |viewPhiDefault| |moduloP| |sqrt| |setEmpty!| |f01brf| |setRow!| |dot|
+ |complex| |bringDown| |expintfldpoly| |complexExpand| |null|
+ |ScanFloatIgnoreSpaces| |real| |divideIfCan| UP2UTS |invmultisect|
+ |rootNormalize| |groebnerIdeal| |bracket| |curveColorPalette| |And|
+ |rightRankPolynomial| |coth2tanh| |removeRedundantFactorsInPols|
+ |imag| |showAllElements| |rules| |s19acf| |directProduct| |makeTerm|
+ |d01gbf| |showRegion| |subst| |Or| |adaptive| |minimumDegree|
+ |unaryFunction| |startTableInvSet!| |numFunEvals| |youngGroup|
+ |normalizeAtInfinity| |f01bsf| |factorFraction| |Not| |increment|
+ |powers| |ridHack1| |stoseInvertibleSet| |trigs|
+ |halfExtendedResultant1| |subNode?| |rotatex| |incrementKthElement|
+ |bezoutResultant| |expint| |clearTheIFTable| |universe| |destruct|
+ |unary?| |fractionFreeGauss!| |lfintegrate| |rightMult| |f04asf|
+ |coerceP| |sumSquares| |groebSolve| |diag| |weights| |coerceImages|
+ |cCosh| |rightScalarTimes!| |f01mcf| |iiacsc| |infieldIntegrate|
+ |OMParseError?| |makeFloatFunction| |patternVariable| |rootSplit|
+ |coercePreimagesImages| |iroot| |biRank| |critM| |laplacian| |f04qaf|
+ |objects| |ScanArabic| |SturmHabichtCoefficients| |asecIfCan|
+ |scanOneDimSubspaces| |choosemon| |overlap| |conical| |setPrologue!|
+ |f2df| |triangular?| |fglmIfCan| |base| |f02aff| |OMgetObject|
+ |s18aef| |lex| |d01anf| |double| |OMgetEndError| |or|
+ |symmetricSquare| |insertTop!| |realEigenvalues| |var1Steps|
+ |lieAlgebra?| |c06fqf| |s18def| |ParCondList| |symmetricDifference|
+ |quotientByP| |inc| |changeName| |and| |diagonalMatrix| |someBasis|
+ |rarrow| |regularRepresentation| |btwFact| |matrixDimensions|
+ |OMUnknownSymbol?| |argscript| |tubePlot| |dAndcExp| |iicoth|
+ |charClass| |OMgetEndApp| |removeConstantTerm| |e04jaf| |minset|
+ |prefix| |yCoord| |stoseSquareFreePart| |leftRegularRepresentation|
+ |hcrf| |checkForZero| |messagePrint| |degreePartition| |triangulate|
+ |toScale| |iiasin| |monomialIntPoly| |super| |mathieu11| |build|
+ |comment| F |hasoln| |extendIfCan| |freeOf?| |e02aef|
+ |brillhartIrreducible?| |nthFlag| |f07adf| |selectPolynomials|
+ |f04jgf| |getExplanations| |subResultantGcd| |test|
+ |algebraicVariables| |edf2df| |euclideanGroebner| |singleFactorBound|
+ |meshPar1Var| |divideIfCan!| |SturmHabicht| |compose| |chebyshevU|
+ |LyndonCoordinates| |OMputInteger| |startPolynomial| |whileLoop|
+ |returnType!| |airyAi| |graphCurves| |iiacot| |OMsupportsSymbol?|
+ |abelianGroup| |fractRagits| |mkAnswer| |orthonormalBasis|
+ |showFortranOutputStack| |RittWuCompare| |content| |max| |denomRicDE|
+ |Gamma| |radicalOfLeftTraceForm| |isAbsolutelyIrreducible?| |ignore?|
+ |neglist| |jordanAdmissible?| |unrankImproperPartitions0| |bat1|
+ |lexico| |socf2socdf| |csch2sinh| |axesColorDefault| |sort!|
+ |permutationGroup| |supersub| |atom?| |airyBi| |mindeg| |Frobenius|
+ |belong?| |concat| |fprindINFO| |leftPower| |top!|
+ |viewWriteAvailable| |selectsecond| |nonQsign| |quatern|
+ |SturmHabichtSequence| |partition| |froot| |setEpilogue!| |previous|
+ |hash| |clipBoolean| |rightNorm| |roughBasicSet| |closeComponent|
+ |rootSimp| |iisec| |genericRightTrace| |numberOfDivisors| |tab|
+ |count| |algint| |reduceByQuasiMonic| |setStatus| |extractIfCan|
+ |preprocess| |positiveRemainder| |PDESolve| |innerSolve| |setStatus!|
+ |composite| |ref| |updatF| |genericLeftTraceForm| |shade|
+ |cycleSplit!| |intermediateResultsIF| |physicalLength|
+ |collectQuasiMonic| |safetyMargin| |var2Steps| |lookup| |ideal|
+ |createNormalPoly| |harmonic| |lllip| |parent| |leftOne| |contains?|
+ |primitiveElement| |unmakeSUP| |newLine| |primitivePart| |cTan|
+ |setleft!| |primlimitedint| |nil| |infinite| |arbitraryExponent|
+ |approximate| |complex| |shallowMutable| |canonical| |noetherian|
+ |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
+ |additiveValuation| |unitsKnown| |canonicalUnitNormal|
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
+ |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index e76d5921..ea830d7f 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4867 +1,4871 @@
-(3127291 . 3409436009)
-((-2166 (((-107) (-1 (-107) |#2| |#2|) $) 63) (((-107) $) NIL)) (-1420 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2445 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1124 (-517)) |#2|) 34)) (-2549 (($ $) 59)) (-1522 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1212 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 71)) (-1534 (((-583 |#2|) $) 13)) (-2662 (($ (-1 (-107) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2746 (($ (-1 |#2| |#2|) $) 29)) (-3310 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1747 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 50)) (-1528 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-3644 (((-107) (-1 (-107) |#2|) $) 21)) (-2609 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1124 (-517))) 49)) (-3728 (($ $ (-517)) 56) (($ $ (-1124 (-517))) 55)) (-4137 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-1901 (($ $ $ (-517)) 52)) (-2462 (($ $) 51)) (-2288 (($ (-583 |#2|)) 53)) (-4110 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-583 $)) 62)) (-2271 (((-787) $) 69)) (-3602 (((-107) (-1 (-107) |#2|) $) 20)) (-1584 (((-107) $ $) 70)) (-1608 (((-107) $ $) 73)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1584 ((-107) |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1420 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -1901 (|#1| |#1| |#1| (-517))) (-15 -2166 ((-107) |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -1212 ((-517) |#2| |#1| (-517))) (-15 -1212 ((-517) |#2| |#1|)) (-15 -1212 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2166 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2662 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2445 (|#2| |#1| (-1124 (-517)) |#2|)) (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -3728 (|#1| |#1| (-1124 (-517)))) (-15 -3728 (|#1| |#1| (-517))) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4110 (|#1| (-583 |#1|))) (-15 -4110 (|#1| |#1| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -1528 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2609 (|#2| |#1| (-517))) (-15 -2609 (|#2| |#1| (-517) |#2|)) (-15 -2445 (|#2| |#1| (-517) |#2|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -1534 ((-583 |#2|) |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2462 (|#1| |#1|))) (-19 |#2|) (-1111)) (T -18))
-NIL
-(-10 -8 (-15 -1584 ((-107) |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1420 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -1901 (|#1| |#1| |#1| (-517))) (-15 -2166 ((-107) |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -1212 ((-517) |#2| |#1| (-517))) (-15 -1212 ((-517) |#2| |#1|)) (-15 -1212 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2166 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2662 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2445 (|#2| |#1| (-1124 (-517)) |#2|)) (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -3728 (|#1| |#1| (-1124 (-517)))) (-15 -3728 (|#1| |#1| (-517))) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4110 (|#1| (-583 |#1|))) (-15 -4110 (|#1| |#1| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -1528 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2609 (|#2| |#1| (-517))) (-15 -2609 (|#2| |#1| (-517) |#2|)) (-15 -2445 (|#2| |#1| (-517) |#2|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -1534 ((-583 |#2|) |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2462 (|#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4193))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2549 (($ $) 90 (|has| $ (-6 -4193)))) (-1908 (($ $) 100)) (-2455 (($ $) 78 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 51)) (-1212 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 87 (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 86 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 42 (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2846 (($ $ |#1|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1124 (-517))) 63)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 91 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 70)) (-4110 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-1630 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-19 |#1|) (-1188) (-1111)) (T -19))
-NIL
-(-13 (-343 |t#1|) (-10 -7 (-6 -4193)))
-(((-33) . T) ((-97) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1005) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-1111) . T))
-((-2798 (((-3 $ "failed") $ $) 12)) (-1692 (($ $) NIL) (($ $ $) 9)) (* (($ (-844) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -2798 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -2798 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
-(((-21) (-1188)) (T -21))
-((-1692 (*1 *1 *1) (-4 *1 (-21))) (-1692 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
-(-13 (-123) (-10 -8 (-15 -1692 ($ $)) (-15 -1692 ($ $ $)) (-15 * ($ (-517) $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-3097 (((-107) $) 10)) (-1393 (($) 15)) (* (($ (-844) $) 14) (($ (-703) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -3097 ((-107) |#1|)) (-15 -1393 (|#1|)) (-15 * (|#1| (-844) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -3097 ((-107) |#1|)) (-15 -1393 (|#1|)) (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15)))
-(((-23) (-1188)) (T -23))
-((-3610 (*1 *1) (-4 *1 (-23))) (-1393 (*1 *1) (-4 *1 (-23))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
-(-13 (-25) (-10 -8 (-15 (-3610) ($) -1385) (-15 -1393 ($) -1385) (-15 -3097 ((-107) $)) (-15 * ($ (-703) $))))
-(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((* (($ (-844) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-844) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13)))
-(((-25) (-1188)) (T -25))
-((-1678 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-844)))))
-(-13 (-1005) (-10 -8 (-15 -1678 ($ $ $)) (-15 * ($ (-844) $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-3087 (((-583 $) (-875 $)) 29) (((-583 $) (-1072 $)) 16) (((-583 $) (-1072 $) (-1076)) 20)) (-3477 (($ (-875 $)) 27) (($ (-1072 $)) 11) (($ (-1072 $) (-1076)) 54)) (-3322 (((-583 $) (-875 $)) 30) (((-583 $) (-1072 $)) 18) (((-583 $) (-1072 $) (-1076)) 19)) (-3522 (($ (-875 $)) 28) (($ (-1072 $)) 13) (($ (-1072 $) (-1076)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3087 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3087 ((-583 |#1|) (-1072 |#1|))) (-15 -3087 ((-583 |#1|) (-875 |#1|))) (-15 -3477 (|#1| (-1072 |#1|) (-1076))) (-15 -3477 (|#1| (-1072 |#1|))) (-15 -3477 (|#1| (-875 |#1|))) (-15 -3322 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3322 ((-583 |#1|) (-1072 |#1|))) (-15 -3322 ((-583 |#1|) (-875 |#1|))) (-15 -3522 (|#1| (-1072 |#1|) (-1076))) (-15 -3522 (|#1| (-1072 |#1|))) (-15 -3522 (|#1| (-875 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3087 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3087 ((-583 |#1|) (-1072 |#1|))) (-15 -3087 ((-583 |#1|) (-875 |#1|))) (-15 -3477 (|#1| (-1072 |#1|) (-1076))) (-15 -3477 (|#1| (-1072 |#1|))) (-15 -3477 (|#1| (-875 |#1|))) (-15 -3322 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3322 ((-583 |#1|) (-1072 |#1|))) (-15 -3322 ((-583 |#1|) (-875 |#1|))) (-15 -3522 (|#1| (-1072 |#1|) (-1076))) (-15 -3522 (|#1| (-1072 |#1|))) (-15 -3522 (|#1| (-875 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3087 (((-583 $) (-875 $)) 80) (((-583 $) (-1072 $)) 79) (((-583 $) (-1072 $) (-1076)) 78)) (-3477 (($ (-875 $)) 83) (($ (-1072 $)) 82) (($ (-1072 $) (-1076)) 81)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3880 (($ $) 92)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-3322 (((-583 $) (-875 $)) 86) (((-583 $) (-1072 $)) 85) (((-583 $) (-1072 $) (-1076)) 84)) (-3522 (($ (-875 $)) 89) (($ (-1072 $)) 88) (($ (-1072 $) (-1076)) 87)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1259 (((-107) $) 71)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 91)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 64)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-27) (-1188)) (T -27))
-((-3522 (*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27)))) (-3522 (*1 *1 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-27)))) (-3522 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 *1)) (-5 *3 (-1076)) (-4 *1 (-27)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1072 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *1)) (-5 *4 (-1076)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-27)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 *1)) (-5 *3 (-1076)) (-4 *1 (-27)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-1072 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *1)) (-5 *4 (-1076)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
-(-13 (-333) (-920) (-10 -8 (-15 -3522 ($ (-875 $))) (-15 -3522 ($ (-1072 $))) (-15 -3522 ($ (-1072 $) (-1076))) (-15 -3322 ((-583 $) (-875 $))) (-15 -3322 ((-583 $) (-1072 $))) (-15 -3322 ((-583 $) (-1072 $) (-1076))) (-15 -3477 ($ (-875 $))) (-15 -3477 ($ (-1072 $))) (-15 -3477 ($ (-1072 $) (-1076))) (-15 -3087 ((-583 $) (-875 $))) (-15 -3087 ((-583 $) (-1072 $))) (-15 -3087 ((-583 $) (-1072 $) (-1076)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-920) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-3087 (((-583 $) (-875 $)) NIL) (((-583 $) (-1072 $)) NIL) (((-583 $) (-1072 $) (-1076)) 50) (((-583 $) $) 19) (((-583 $) $ (-1076)) 41)) (-3477 (($ (-875 $)) NIL) (($ (-1072 $)) NIL) (($ (-1072 $) (-1076)) 52) (($ $) 17) (($ $ (-1076)) 37)) (-3322 (((-583 $) (-875 $)) NIL) (((-583 $) (-1072 $)) NIL) (((-583 $) (-1072 $) (-1076)) 48) (((-583 $) $) 15) (((-583 $) $ (-1076)) 43)) (-3522 (($ (-875 $)) NIL) (($ (-1072 $)) NIL) (($ (-1072 $) (-1076)) NIL) (($ $) 12) (($ $ (-1076)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3087 ((-583 |#1|) |#1| (-1076))) (-15 -3477 (|#1| |#1| (-1076))) (-15 -3087 ((-583 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3322 ((-583 |#1|) |#1| (-1076))) (-15 -3522 (|#1| |#1| (-1076))) (-15 -3322 ((-583 |#1|) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3087 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3087 ((-583 |#1|) (-1072 |#1|))) (-15 -3087 ((-583 |#1|) (-875 |#1|))) (-15 -3477 (|#1| (-1072 |#1|) (-1076))) (-15 -3477 (|#1| (-1072 |#1|))) (-15 -3477 (|#1| (-875 |#1|))) (-15 -3322 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3322 ((-583 |#1|) (-1072 |#1|))) (-15 -3322 ((-583 |#1|) (-875 |#1|))) (-15 -3522 (|#1| (-1072 |#1|) (-1076))) (-15 -3522 (|#1| (-1072 |#1|))) (-15 -3522 (|#1| (-875 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
-NIL
-(-10 -8 (-15 -3087 ((-583 |#1|) |#1| (-1076))) (-15 -3477 (|#1| |#1| (-1076))) (-15 -3087 ((-583 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3322 ((-583 |#1|) |#1| (-1076))) (-15 -3522 (|#1| |#1| (-1076))) (-15 -3322 ((-583 |#1|) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3087 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3087 ((-583 |#1|) (-1072 |#1|))) (-15 -3087 ((-583 |#1|) (-875 |#1|))) (-15 -3477 (|#1| (-1072 |#1|) (-1076))) (-15 -3477 (|#1| (-1072 |#1|))) (-15 -3477 (|#1| (-875 |#1|))) (-15 -3322 ((-583 |#1|) (-1072 |#1|) (-1076))) (-15 -3322 ((-583 |#1|) (-1072 |#1|))) (-15 -3322 ((-583 |#1|) (-875 |#1|))) (-15 -3522 (|#1| (-1072 |#1|) (-1076))) (-15 -3522 (|#1| (-1072 |#1|))) (-15 -3522 (|#1| (-875 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3087 (((-583 $) (-875 $)) 80) (((-583 $) (-1072 $)) 79) (((-583 $) (-1072 $) (-1076)) 78) (((-583 $) $) 126) (((-583 $) $ (-1076)) 124)) (-3477 (($ (-875 $)) 83) (($ (-1072 $)) 82) (($ (-1072 $) (-1076)) 81) (($ $) 127) (($ $ (-1076)) 125)) (-3097 (((-107) $) 16)) (-2097 (((-583 (-1076)) $) 201)) (-1440 (((-377 (-1072 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-3834 (((-583 (-556 $)) $) 164)) (-2798 (((-3 $ "failed") $ $) 19)) (-3915 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3880 (($ $) 92)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-3322 (((-583 $) (-875 $)) 86) (((-583 $) (-1072 $)) 85) (((-583 $) (-1072 $) (-1076)) 84) (((-583 $) $) 130) (((-583 $) $ (-1076)) 128)) (-3522 (($ (-875 $)) 89) (($ (-1072 $)) 88) (($ (-1072 $) (-1076)) 87) (($ $) 131) (($ $ (-1076)) 129)) (-3228 (((-3 (-875 |#1|) "failed") $) 251 (|has| |#1| (-963))) (((-3 (-377 (-875 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-954 (-517)))) (((-3 (-1076) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3747 (-12 (|has| |#1| (-954 (-517))) (|has| |#1| (-509))) (|has| |#1| (-954 (-377 (-517))))))) (-3390 (((-875 |#1|) $) 252 (|has| |#1| (-963))) (((-377 (-875 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-954 (-517)))) (((-1076) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3747 (-12 (|has| |#1| (-954 (-517))) (|has| |#1| (-509))) (|has| |#1| (-954 (-377 (-517))))))) (-2379 (($ $ $) 55)) (-2207 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-963))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 240 (|has| |#1| (-963))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 121 (-3747 (-3993 (|has| |#1| (-963)) (|has| |#1| (-579 (-517)))) (-3993 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))))) (((-623 (-517)) (-623 $)) 120 (-3747 (-3993 (|has| |#1| (-963)) (|has| |#1| (-579 (-517)))) (-3993 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))))) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1259 (((-107) $) 71)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 193 (|has| |#1| (-809 (-349)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 192 (|has| |#1| (-809 (-517))))) (-3659 (($ (-583 $)) 158) (($ $) 157)) (-1194 (((-583 (-109)) $) 165)) (-1934 (((-109) (-109)) 166)) (-1376 (((-107) $) 31)) (-2686 (((-107) $) 186 (|has| $ (-954 (-517))))) (-1862 (($ $) 218 (|has| |#1| (-963)))) (-3826 (((-1028 |#1| (-556 $)) $) 217 (|has| |#1| (-963)))) (-2092 (($ $ (-517)) 91)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3760 (((-1072 $) (-556 $)) 183 (|has| $ (-963)))) (-3458 (($ $ $) 137)) (-4084 (($ $ $) 136)) (-3310 (($ (-1 $ $) (-556 $)) 172)) (-3971 (((-3 (-556 $) "failed") $) 162)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-1424 (((-583 (-556 $)) $) 163)) (-1398 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-2745 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1017)))) (-1480 (((-3 (-2 (|:| |val| $) (|:| -2121 (-517))) "failed") $) 221 (|has| |#1| (-963)))) (-1653 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-2859 (((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2670 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-1076)) 220 (|has| |#1| (-963))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-963))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $) 213 (|has| |#1| (-1017)))) (-2066 (((-107) $ (-1076)) 169) (((-107) $ (-109)) 168)) (-2300 (($ $) 70)) (-1809 (((-703) $) 161)) (-4125 (((-1023) $) 10)) (-2310 (((-107) $) 199)) (-2321 ((|#1| $) 200)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-1647 (((-107) $ (-1076)) 174) (((-107) $ $) 173)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-1766 (((-107) $) 185 (|has| $ (-954 (-517))))) (-3524 (($ $ (-1076) (-703) (-1 $ $)) 225 (|has| |#1| (-963))) (($ $ (-1076) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-963))) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-963))) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-963))) (($ $ (-583 (-109)) (-583 $) (-1076)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1076)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1076))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1076)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1076) (-1 $ $)) 178) (($ $ (-1076) (-1 $ (-583 $))) 177) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1076)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3600 (((-703) $) 58)) (-2609 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-1457 (($ $ $) 160) (($ $) 159)) (-2060 (($ $ (-1076)) 249 (|has| |#1| (-963))) (($ $ (-583 (-1076))) 248 (|has| |#1| (-963))) (($ $ (-1076) (-703)) 247 (|has| |#1| (-963))) (($ $ (-583 (-1076)) (-583 (-703))) 246 (|has| |#1| (-963)))) (-2484 (($ $) 228 (|has| |#1| (-509)))) (-2098 (((-1028 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2387 (($ $) 184 (|has| $ (-963)))) (-3359 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-815 (-349)) $) 191 (|has| |#1| (-558 (-815 (-349))))) (((-815 (-517)) $) 190 (|has| |#1| (-558 (-815 (-517)))))) (-1842 (($ $ $) 254 (|has| |#1| (-442)))) (-2059 (($ $ $) 253 (|has| |#1| (-442)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-875 |#1|)) 250 (|has| |#1| (-963))) (($ (-377 (-875 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-875 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-875 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1028 |#1| (-556 $))) 216 (|has| |#1| (-963))) (($ |#1|) 196) (($ (-1076)) 187) (($ (-556 $)) 138)) (-3974 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-3440 (($ (-583 $)) 156) (($ $) 155)) (-3750 (((-107) (-109)) 167)) (-2074 (((-107) $ $) 39)) (-3513 (($ (-1076) (-583 $)) 206) (($ (-1076) $ $ $ $) 205) (($ (-1076) $ $ $) 204) (($ (-1076) $ $) 203) (($ (-1076) $) 202)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-1076)) 245 (|has| |#1| (-963))) (($ $ (-583 (-1076))) 244 (|has| |#1| (-963))) (($ $ (-1076) (-703)) 243 (|has| |#1| (-963))) (($ $ (-583 (-1076)) (-583 (-703))) 242 (|has| |#1| (-963)))) (-1642 (((-107) $ $) 134)) (-1618 (((-107) $ $) 133)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 135)) (-1608 (((-107) $ $) 132)) (-1704 (($ $ $) 64) (($ (-1028 |#1| (-556 $)) (-1028 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
-(((-29 |#1|) (-1188) (-13 (-779) (-509))) (T -29))
-((-3522 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-3322 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-1076)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-3087 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-1076)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -3522 ($ $)) (-15 -3322 ((-583 $) $)) (-15 -3522 ($ $ (-1076))) (-15 -3322 ((-583 $) $ (-1076))) (-15 -3477 ($ $)) (-15 -3087 ((-583 $) $)) (-15 -3477 ($ $ (-1076))) (-15 -3087 ((-583 $) $ (-1076)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-963)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) ((-579 |#1|) |has| |#1| (-963)) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-823 (-1076)) |has| |#1| (-963)) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-843) . T) ((-920) . T) ((-954 (-377 (-517))) -3747 (|has| |#1| (-954 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517))))) ((-954 (-377 (-875 |#1|))) |has| |#1| (-509)) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 (-556 $)) . T) ((-954 (-875 |#1|)) |has| |#1| (-963)) ((-954 (-1076)) . T) ((-954 |#1|) . T) ((-969 #0#) . T) ((-969 |#1|) |has| |#1| (-156)) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1111) . T) ((-1115) . T))
-((-2721 (((-1000 (-199)) $) NIL)) (-2709 (((-1000 (-199)) $) NIL)) (-3574 (($ $ (-199)) 123)) (-2217 (($ (-875 (-517)) (-1076) (-1076) (-1000 (-377 (-517))) (-1000 (-377 (-517)))) 85)) (-2195 (((-583 (-583 (-866 (-199)))) $) 135)) (-2271 (((-787) $) 147)))
-(((-30) (-13 (-877) (-10 -8 (-15 -2217 ($ (-875 (-517)) (-1076) (-1076) (-1000 (-377 (-517))) (-1000 (-377 (-517))))) (-15 -3574 ($ $ (-199)))))) (T -30))
-((-2217 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-875 (-517))) (-5 *3 (-1076)) (-5 *4 (-1000 (-377 (-517)))) (-5 *1 (-30)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
-(-13 (-877) (-10 -8 (-15 -2217 ($ (-875 (-517)) (-1076) (-1076) (-1000 (-377 (-517))) (-1000 (-377 (-517))))) (-15 -3574 ($ $ (-199)))))
-((-3522 ((|#2| (-1072 |#2|) (-1076)) 42)) (-1934 (((-109) (-109)) 55)) (-3760 (((-1072 |#2|) (-556 |#2|)) 131 (|has| |#1| (-954 (-517))))) (-1962 ((|#2| |#1| (-517)) 110 (|has| |#1| (-954 (-517))))) (-3133 ((|#2| (-1072 |#2|) |#2|) 30)) (-3634 (((-787) (-583 |#2|)) 86)) (-2387 ((|#2| |#2|) 127 (|has| |#1| (-954 (-517))))) (-3750 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 91 (|has| |#1| (-954 (-517))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -3522 (|#2| (-1072 |#2|) (-1076))) (-15 -1934 ((-109) (-109))) (-15 -3750 ((-107) (-109))) (-15 -3133 (|#2| (-1072 |#2|) |#2|)) (-15 -3634 ((-787) (-583 |#2|))) (IF (|has| |#1| (-954 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3760 ((-1072 |#2|) (-556 |#2|))) (-15 -2387 (|#2| |#2|)) (-15 -1962 (|#2| |#1| (-517)))) |%noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
-((-1962 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-954 *4)) (-4 *3 (-13 (-779) (-509))))) (-2387 (*1 *2 *2) (-12 (-4 *3 (-954 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-954 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1072 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-954 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-3133 (*1 *2 *3 *2) (-12 (-5 *3 (-1072 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *2)) (-5 *4 (-1076)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
-(-10 -7 (-15 -3522 (|#2| (-1072 |#2|) (-1076))) (-15 -1934 ((-109) (-109))) (-15 -3750 ((-107) (-109))) (-15 -3133 (|#2| (-1072 |#2|) |#2|)) (-15 -3634 ((-787) (-583 |#2|))) (IF (|has| |#1| (-954 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3760 ((-1072 |#2|) (-556 |#2|))) (-15 -2387 (|#2| |#2|)) (-15 -1962 (|#2| |#1| (-517)))) |%noBranch|))
-((-1851 (((-107) $ (-703)) 16)) (-1393 (($) 10)) (-2497 (((-107) $ (-703)) 15)) (-1320 (((-107) $ (-703)) 14)) (-2727 (((-107) $ $) 8)) (-2394 (((-107) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -1393 (|#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703))) (-15 -2394 ((-107) |#1|)) (-15 -2727 ((-107) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -1393 (|#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703))) (-15 -2394 ((-107) |#1|)) (-15 -2727 ((-107) |#1| |#1|)))
-((-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-2497 (((-107) $ (-703)) 9)) (-1320 (((-107) $ (-703)) 10)) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2462 (($ $) 13)) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-33) (-1188)) (T -33))
-((-2727 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2462 (*1 *1 *1) (-4 *1 (-33))) (-2452 (*1 *1) (-4 *1 (-33))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-1320 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2497 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-1851 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-1393 (*1 *1) (-4 *1 (-33))) (-3535 (*1 *2 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-33)) (-5 *2 (-703)))))
-(-13 (-1111) (-10 -8 (-15 -2727 ((-107) $ $)) (-15 -2462 ($ $)) (-15 -2452 ($)) (-15 -2394 ((-107) $)) (-15 -1320 ((-107) $ (-703))) (-15 -2497 ((-107) $ (-703))) (-15 -1851 ((-107) $ (-703))) (-15 -1393 ($) -1385) (IF (|has| $ (-6 -4192)) (-15 -3535 ((-703) $)) |%noBranch|)))
-(((-1111) . T))
-((-1722 (($ $) 11)) (-1697 (($ $) 10)) (-3489 (($ $) 9)) (-2824 (($ $) 8)) (-1735 (($ $) 7)) (-1709 (($ $) 6)))
-(((-34) (-1188)) (T -34))
-((-1722 (*1 *1 *1) (-4 *1 (-34))) (-1697 (*1 *1 *1) (-4 *1 (-34))) (-3489 (*1 *1 *1) (-4 *1 (-34))) (-2824 (*1 *1 *1) (-4 *1 (-34))) (-1735 (*1 *1 *1) (-4 *1 (-34))) (-1709 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -1709 ($ $)) (-15 -1735 ($ $)) (-15 -2824 ($ $)) (-15 -3489 ($ $)) (-15 -1697 ($ $)) (-15 -1722 ($ $))))
-((-2119 (((-107) $ $) 19 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-3121 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 125)) (-2586 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 148)) (-1541 (($ $) 146)) (-3203 (($) 72) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 71)) (-2034 (((-1162) $ |#1| |#1|) 99 (|has| $ (-6 -4193))) (((-1162) $ (-517) (-517)) 178 (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) 159 (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1420 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 200 (|has| $ (-6 -4193))) (($ $) 199 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1851 (((-107) $ (-703)) 8)) (-1189 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 134 (|has| $ (-6 -4193)))) (-1702 (($ $ $) 155 (|has| $ (-6 -4193)))) (-2005 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 157 (|has| $ (-6 -4193)))) (-2255 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 153 (|has| $ (-6 -4193)))) (-2445 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 189 (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-1124 (-517)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 160 (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "last" (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 158 (|has| $ (-6 -4193))) (($ $ "rest" $) 156 (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "first" (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 154 (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "value" (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 133 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 132 (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 45 (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 216)) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 55 (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 175 (|has| $ (-6 -4192)))) (-2576 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 147)) (-3564 (((-3 |#2| "failed") |#1| $) 61)) (-1393 (($) 7 T CONST)) (-2549 (($ $) 201 (|has| $ (-6 -4193)))) (-1908 (($ $) 211)) (-2439 (($ $ (-703)) 142) (($ $) 140)) (-1399 (($ $) 214 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-2455 (($ $) 58 (-3747 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192))) (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 46 (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 220) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 215 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 54 (|has| $ (-6 -4192))) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 174 (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 56 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 53 (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 52 (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 176 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 173 (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 172 (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 190 (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) 88) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) 188)) (-3013 (((-107) $) 192)) (-1212 (((-517) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 208) (((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 207 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) (((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 30 (|has| $ (-6 -4192))) (((-583 |#2|) $) 79 (|has| $ (-6 -4192))) (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 114 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 123)) (-2441 (((-107) $ $) 131 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-3213 (($ (-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 169)) (-2497 (((-107) $ (-703)) 9)) (-3271 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-3458 (($ $ $) 198 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-4155 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-2662 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 29 (|has| $ (-6 -4192))) (((-583 |#2|) $) 80 (|has| $ (-6 -4192))) (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 115 (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192)))) (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192))))) (-1989 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-4084 (($ $ $) 197 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 34 (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4193))) (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 110 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 109)) (-2324 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 225)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 128)) (-3017 (((-107) $) 124)) (-1662 (((-1059) $) 22 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-1446 (($ $ (-703)) 145) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 143)) (-1882 (((-583 |#1|) $) 63)) (-3577 (((-107) |#1| $) 64)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 39)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 40) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-1747 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-2817 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-3130 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-4125 (((-1023) $) 21 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2429 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 137)) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 51) (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 171)) (-2846 (($ $ |#2|) 98 (|has| $ (-6 -4193))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 179 (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 41)) (-4033 (((-107) $) 191)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 32 (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 112 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) 26 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 25 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 24 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 23 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 121 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 120 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 119 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) 118 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 182 (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2891 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 185)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 187) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) 186) (($ $ (-1124 (-517))) 165) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "first") 138) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "value") 126)) (-1844 (((-517) $ $) 129)) (-2176 (($) 49) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 48)) (-3275 (($ $ (-517)) 222) (($ $ (-1124 (-517))) 221)) (-3728 (($ $ (-517)) 164) (($ $ (-1124 (-517))) 163)) (-3028 (((-107) $) 127)) (-3498 (($ $) 151)) (-3020 (($ $) 152 (|has| $ (-6 -4193)))) (-2453 (((-703) $) 150)) (-2231 (($ $) 149)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 31 (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 113 (|has| $ (-6 -4192)))) (-1901 (($ $ $ (-517)) 202 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493)))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 50) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 170)) (-1753 (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 224) (($ $ $) 223)) (-4110 (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 136) (($ $ $) 135)) (-2271 (((-787) $) 18 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787)))))) (-2199 (((-583 $) $) 122)) (-2836 (((-107) $ $) 130 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 42)) (-1459 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") |#1| $) 108)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 33 (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 111 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 195 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1618 (((-107) $ $) 194 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1584 (((-107) $ $) 20 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-1630 (((-107) $ $) 196 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1608 (((-107) $ $) 193 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-35 |#1| |#2|) (-1188) (-1005) (-1005)) (T -35))
-((-1459 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| -2585 *3) (|:| -1859 *4))))))
-(-13 (-1088 |t#1| |t#2|) (-603 (-2 (|:| -2585 |t#1|) (|:| -1859 |t#2|))) (-10 -8 (-15 -1459 ((-3 (-2 (|:| -2585 |t#1|) (|:| -1859 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((-97) -3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779))) ((-557 (-787)) -3747 (|has| |#2| (-1005)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787)))) ((-138 #1=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 #2=(-517) #1#) . T) ((-258 |#1| |#2|) . T) ((-260 #2# #1#) . T) ((-260 |#1| |#2|) . T) ((-280 #1#) -12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-254 #1#) . T) ((-343 #1#) . T) ((-456 #1#) . T) ((-456 |#2|) . T) ((-550 #2# #1#) . T) ((-550 |#1| |#2|) . T) ((-478 #1# #1#) -12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-554 |#1| |#2|) . T) ((-588 #1#) . T) ((-603 #1#) . T) ((-779) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)) ((-928 #1#) . T) ((-1005) -3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779))) ((-1050 #1#) . T) ((-1088 |#1| |#2|) . T) ((-1111) . T) ((-1145 #1#) . T))
-((-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
-NIL
-(-10 -8 (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-37 |#1|) (-1188) (-156)) (T -37))
-((-2271 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
-(-13 (-963) (-650 |t#1|) (-10 -8 (-15 -2271 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1378 (((-388 |#1|) |#1|) 38)) (-3868 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-3839 (((-107) |#1|) 54)))
-(((-38 |#1|) (-10 -7 (-15 -3868 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -1378 ((-388 |#1|) |#1|)) (-15 -3839 ((-107) |#1|))) (-1133 (-47))) (T -38))
-((-3839 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47))))) (-1378 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47))))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47))))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47))))))
-(-10 -7 (-15 -3868 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -1378 ((-388 |#1|) |#1|)) (-15 -3839 ((-107) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3593 (((-2 (|:| |num| (-1157 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-3062 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2190 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-2133 (((-623 (-377 |#2|)) (-1157 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-2009 (((-377 |#2|) $) NIL)) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-4018 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3820 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2399 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-1315 (((-107)) NIL)) (-1711 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-954 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| (-377 |#2|) (-954 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-954 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3898 (($ (-1157 (-377 |#2|)) (-1157 $)) NIL) (($ (-1157 (-377 |#2|))) 57) (($ (-1157 |#2|) |#2|) 124)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2379 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2637 (((-623 (-377 |#2|)) $ (-1157 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-377 |#2|))) (|:| |vec| (-1157 (-377 |#2|)))) (-623 $) (-1157 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-1484 (((-1157 $) (-1157 $)) NIL)) (-1522 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-2560 (((-3 $ "failed") $) NIL)) (-2525 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-2940 (((-107) |#1| |#1|) NIL)) (-3737 (((-844)) NIL)) (-2202 (($) NIL (|has| (-377 |#2|) (-338)))) (-3411 (((-107)) NIL)) (-3523 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2354 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-2683 (($ $) NIL)) (-1304 (($) NIL (|has| (-377 |#2|) (-319)))) (-3459 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2855 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-1259 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1395 (((-844) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-844)) $) NIL (|has| (-377 |#2|) (-319)))) (-1376 (((-107) $) NIL)) (-2894 (((-703)) NIL)) (-3117 (((-1157 $) (-1157 $)) 100)) (-2803 (((-377 |#2|) $) NIL)) (-2557 (((-583 (-875 |#1|)) (-1076)) NIL (|has| |#1| (-333)))) (-2243 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2766 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-3072 (((-844) $) NIL (|has| (-377 |#2|) (-338)))) (-1509 ((|#3| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1662 (((-1059) $) NIL)) (-2591 (((-1162) (-703)) 78)) (-3665 (((-623 (-377 |#2|))) 51)) (-4088 (((-623 (-377 |#2|))) 44)) (-2300 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1418 (($ (-1157 |#2|) |#2|) 125)) (-1554 (((-623 (-377 |#2|))) 45)) (-3705 (((-623 (-377 |#2|))) 43)) (-3885 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-2581 (((-2 (|:| |num| (-1157 |#2|)) (|:| |den| |#2|)) $) 63)) (-4093 (((-1157 $)) 42)) (-3847 (((-1157 $)) 41)) (-3966 (((-107) $) NIL)) (-2253 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2587 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2812 (($ (-844)) NIL (|has| (-377 |#2|) (-338)))) (-4078 (((-3 |#2| "failed")) NIL)) (-4125 (((-1023) $) NIL)) (-2111 (((-703)) NIL)) (-1318 (($) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| (-377 |#2|) (-333)))) (-2370 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3868 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2329 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3600 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2609 ((|#1| $ |#1| |#1|) NIL)) (-2532 (((-3 |#2| "failed")) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1220 (((-377 |#2|) (-1157 $)) NIL) (((-377 |#2|)) 39)) (-2192 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2060 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-703)) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3973 (((-623 (-377 |#2|)) (-1157 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2387 ((|#3|) 50)) (-1758 (($) NIL (|has| (-377 |#2|) (-319)))) (-3784 (((-1157 (-377 |#2|)) $ (-1157 $)) NIL) (((-623 (-377 |#2|)) (-1157 $) (-1157 $)) NIL) (((-1157 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1157 $)) 101)) (-3359 (((-1157 (-377 |#2|)) $) NIL) (($ (-1157 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3895 (((-1157 $) (-1157 $)) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3747 (|has| (-377 |#2|) (-954 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3974 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-1699 ((|#3| $) NIL)) (-4099 (((-703)) NIL)) (-4168 (((-107)) 37)) (-3957 (((-107) |#1|) 49) (((-107) |#2|) 131)) (-1492 (((-1157 $)) 91)) (-2074 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2967 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3444 (((-107)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3610 (($) 16 T CONST)) (-3619 (($) 26 T CONST)) (-3342 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-703)) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -2591 ((-1162) (-703))))) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) |#3|) (T -39))
-((-2591 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1133 *4)) (-5 *2 (-1162)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1133 (-377 *5))) (-14 *7 *6))))
-(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -2591 ((-1162) (-703)))))
-((-1349 ((|#2| |#2|) 47)) (-1932 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-954 (-517)))))) (-2139 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-954 (-517)))))) (-4054 ((|#2| |#2|) 87 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-954 (-517)))))) (-3618 ((|#2| (-109) |#2| (-703)) 74 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-954 (-517)))))) (-2757 (((-1072 |#2|) |#2|) 44)) (-1966 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -1349 (|#2| |#2|)) (-15 -1966 (|#2| |#2|)) (-15 -1966 (|#2| |#2| |#2|)) (-15 -1966 (|#2| |#2| (-583 |#2|))) (-15 -1966 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -2757 ((-1072 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-954 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -4054 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -3618 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 |#1| (-556 $)) $)) (-15 -2098 ((-1028 |#1| (-556 $)) $)) (-15 -2271 ($ (-1028 |#1| (-556 $))))))) (T -40))
-((-3618 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-954 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *5 (-556 $)) $)) (-15 -2098 ((-1028 *5 (-556 $)) $)) (-15 -2271 ($ (-1028 *5 (-556 $))))))))) (-1932 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-954 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $)) (-15 -2098 ((-1028 *3 (-556 $)) $)) (-15 -2271 ($ (-1028 *3 (-556 $))))))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-954 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $)) (-15 -2098 ((-1028 *3 (-556 $)) $)) (-15 -2271 ($ (-1028 *3 (-556 $))))))))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-954 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $)) (-15 -2098 ((-1028 *3 (-556 $)) $)) (-15 -2271 ($ (-1028 *3 (-556 $))))))))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1072 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *4 (-556 $)) $)) (-15 -2098 ((-1028 *4 (-556 $)) $)) (-15 -2271 ($ (-1028 *4 (-556 $))))))))) (-1966 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *4 (-556 $)) $)) (-15 -2098 ((-1028 *4 (-556 $)) $)) (-15 -2271 ($ (-1028 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-1966 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *4 (-556 $)) $)) (-15 -2098 ((-1028 *4 (-556 $)) $)) (-15 -2271 ($ (-1028 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-1966 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $)) (-15 -2098 ((-1028 *3 (-556 $)) $)) (-15 -2271 ($ (-1028 *3 (-556 $))))))))) (-1966 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $)) (-15 -2098 ((-1028 *3 (-556 $)) $)) (-15 -2271 ($ (-1028 *3 (-556 $))))))))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $)) (-15 -2098 ((-1028 *3 (-556 $)) $)) (-15 -2271 ($ (-1028 *3 (-556 $))))))))))
-(-10 -7 (-15 -1349 (|#2| |#2|)) (-15 -1966 (|#2| |#2|)) (-15 -1966 (|#2| |#2| |#2|)) (-15 -1966 (|#2| |#2| (-583 |#2|))) (-15 -1966 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -2757 ((-1072 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-954 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -4054 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -3618 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3868 (((-388 (-1072 |#3|)) (-1072 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3868 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3868 ((-388 (-1072 |#3|)) (-1072 |#3|) (-583 (-47))))) (-779) (-725) (-872 (-47) |#2| |#1|)) (T -41))
-((-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-872 (-47) *6 *5)) (-5 *2 (-388 (-1072 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1072 *7)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-872 (-47) *6 *5)))))
-(-10 -7 (-15 -3868 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3868 ((-388 (-1072 |#3|)) (-1072 |#3|) (-583 (-47)))))
-((-4138 (((-703) |#2|) 65)) (-1892 (((-703) |#2|) 68)) (-1196 (((-583 |#2|)) 33)) (-3047 (((-703) |#2|) 67)) (-3481 (((-703) |#2|) 64)) (-3438 (((-703) |#2|) 66)) (-2996 (((-583 (-623 |#1|))) 60)) (-3194 (((-583 |#2|)) 55)) (-2369 (((-583 |#2|) |#2|) 43)) (-3174 (((-583 |#2|)) 57)) (-1875 (((-583 |#2|)) 56)) (-3060 (((-583 (-623 |#1|))) 48)) (-3785 (((-583 |#2|)) 54)) (-3237 (((-583 |#2|) |#2|) 42)) (-2589 (((-583 |#2|)) 50)) (-3715 (((-583 (-623 |#1|))) 61)) (-3945 (((-583 |#2|)) 59)) (-1492 (((-1157 |#2|) (-1157 |#2|)) 84 (|has| |#1| (-278)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -3047 ((-703) |#2|)) (-15 -1892 ((-703) |#2|)) (-15 -3481 ((-703) |#2|)) (-15 -4138 ((-703) |#2|)) (-15 -3438 ((-703) |#2|)) (-15 -2589 ((-583 |#2|))) (-15 -3237 ((-583 |#2|) |#2|)) (-15 -2369 ((-583 |#2|) |#2|)) (-15 -3785 ((-583 |#2|))) (-15 -3194 ((-583 |#2|))) (-15 -1875 ((-583 |#2|))) (-15 -3174 ((-583 |#2|))) (-15 -3945 ((-583 |#2|))) (-15 -3060 ((-583 (-623 |#1|)))) (-15 -2996 ((-583 (-623 |#1|)))) (-15 -3715 ((-583 (-623 |#1|)))) (-15 -1196 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1492 ((-1157 |#2|) (-1157 |#2|))) |%noBranch|)) (-509) (-387 |#1|)) (T -42))
-((-1492 (*1 *2 *2) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-1196 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3715 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2996 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3060 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3945 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3174 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1875 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3194 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3785 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3237 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2589 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3481 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1892 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(-10 -7 (-15 -3047 ((-703) |#2|)) (-15 -1892 ((-703) |#2|)) (-15 -3481 ((-703) |#2|)) (-15 -4138 ((-703) |#2|)) (-15 -3438 ((-703) |#2|)) (-15 -2589 ((-583 |#2|))) (-15 -3237 ((-583 |#2|) |#2|)) (-15 -2369 ((-583 |#2|) |#2|)) (-15 -3785 ((-583 |#2|))) (-15 -3194 ((-583 |#2|))) (-15 -1875 ((-583 |#2|))) (-15 -3174 ((-583 |#2|))) (-15 -3945 ((-583 |#2|))) (-15 -3060 ((-583 (-623 |#1|)))) (-15 -2996 ((-583 (-623 |#1|)))) (-15 -3715 ((-583 (-623 |#1|)))) (-15 -1196 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1492 ((-1157 |#2|) (-1157 |#2|))) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1485 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-2520 (((-1157 (-623 |#1|)) (-1157 $)) NIL) (((-1157 (-623 |#1|))) 24)) (-2823 (((-1157 $)) 50)) (-1393 (($) NIL T CONST)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-2244 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1397 (((-623 |#1|) (-1157 $)) NIL) (((-623 |#1|)) NIL)) (-4049 ((|#1| $) NIL)) (-1292 (((-623 |#1|) $ (-1157 $)) NIL) (((-623 |#1|) $) NIL)) (-2093 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-1679 (((-1072 (-875 |#1|))) NIL (|has| |#1| (-333)))) (-3614 (($ $ (-844)) NIL)) (-2554 ((|#1| $) NIL)) (-2208 (((-1072 |#1|) $) NIL (|has| |#1| (-509)))) (-3245 ((|#1| (-1157 $)) NIL) ((|#1|) NIL)) (-1284 (((-1072 |#1|) $) NIL)) (-3462 (((-107)) 86)) (-3898 (($ (-1157 |#1|) (-1157 $)) NIL) (($ (-1157 |#1|)) NIL)) (-2560 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-3737 (((-844)) 51)) (-1864 (((-107)) NIL)) (-2193 (($ $ (-844)) NIL)) (-3453 (((-107)) NIL)) (-2185 (((-107)) NIL)) (-1573 (((-107)) 88)) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1737 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1344 (((-623 |#1|) (-1157 $)) NIL) (((-623 |#1|)) NIL)) (-1412 ((|#1| $) NIL)) (-3358 (((-623 |#1|) $ (-1157 $)) NIL) (((-623 |#1|) $) NIL)) (-1590 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-1467 (((-1072 (-875 |#1|))) NIL (|has| |#1| (-333)))) (-3200 (($ $ (-844)) NIL)) (-2666 ((|#1| $) NIL)) (-2292 (((-1072 |#1|) $) NIL (|has| |#1| (-509)))) (-3829 ((|#1| (-1157 $)) NIL) ((|#1|) NIL)) (-3764 (((-1072 |#1|) $) NIL)) (-2541 (((-107)) 85)) (-1662 (((-1059) $) NIL)) (-3886 (((-107)) 92)) (-2031 (((-107)) 91)) (-1321 (((-107)) 93)) (-4125 (((-1023) $) NIL)) (-3129 (((-107)) 87)) (-2609 ((|#1| $ (-517)) 53)) (-3784 (((-1157 |#1|) $ (-1157 $)) 47) (((-623 |#1|) (-1157 $) (-1157 $)) NIL) (((-1157 |#1|) $) 28) (((-623 |#1|) (-1157 $)) NIL)) (-3359 (((-1157 |#1|) $) NIL) (($ (-1157 |#1|)) NIL)) (-3435 (((-583 (-875 |#1|)) (-1157 $)) NIL) (((-583 (-875 |#1|))) NIL)) (-2059 (($ $ $) NIL)) (-1266 (((-107)) 83)) (-2271 (((-787) $) 68) (($ (-1157 |#1|)) 22)) (-1492 (((-1157 $)) 44)) (-2689 (((-583 (-1157 |#1|))) NIL (|has| |#1| (-509)))) (-3100 (($ $ $ $) NIL)) (-3365 (((-107)) 81)) (-2375 (($ (-623 |#1|) $) 18)) (-2951 (($ $ $) NIL)) (-2436 (((-107)) 84)) (-4056 (((-107)) 82)) (-2014 (((-107)) 80)) (-3610 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1043 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1043 |#2| |#1|)) (-10 -8 (-15 -2271 ($ (-1157 |#1|))))) (-333) (-844) (-583 (-1076)) (-1157 (-623 |#1|))) (T -43))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-333)) (-14 *6 (-1157 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))))))
-(-13 (-387 |#1|) (-585 (-1043 |#2| |#1|)) (-10 -8 (-15 -2271 ($ (-1157 |#1|)))))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3121 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2586 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-1541 (($ $) NIL)) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193))) (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1420 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779))))) (-2163 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-1189 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193)))) (-1702 (($ $ $) 27 (|has| $ (-6 -4193)))) (-2005 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193)))) (-2255 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 29 (|has| $ (-6 -4193)))) (-2445 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-1124 (-517)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "last" (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193))) (($ $ "rest" $) NIL (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "first" (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "value" (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2576 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3564 (((-3 |#2| "failed") |#1| $) 37)) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2439 (($ $ (-703)) NIL) (($ $) 24)) (-1399 (($ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) NIL)) (-3013 (((-107) $) NIL)) (-1212 (((-517) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) (((-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 18 (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192))) (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 18 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-3213 (($ (-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-4155 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-2662 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192))) (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193))) (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2324 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1939 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-3017 (((-107) $) NIL)) (-1662 (((-1059) $) 42 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1446 (($ $ (-703)) NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-1882 (((-583 |#1|) $) 20)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1747 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-3130 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 23)) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-4033 (((-107) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2891 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 17)) (-2394 (((-107) $) 16)) (-2452 (($) 13)) (-2609 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ (-517)) NIL) (($ $ (-1124 (-517))) NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "first") NIL) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $ "value") NIL)) (-1844 (((-517) $ $) NIL)) (-2176 (($) 12) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3275 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-3028 (((-107) $) NIL)) (-3498 (($ $) NIL)) (-3020 (($ $) NIL (|has| $ (-6 -4193)))) (-2453 (((-703) $) NIL)) (-2231 (($ $) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-1753 (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL) (($ $ $) NIL)) (-4110 (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 25) (($ $ $) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-1459 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") |#1| $) 44)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1630 (((-107) $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-779)))) (-3535 (((-703) $) 22 (|has| $ (-6 -4192)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1005) (-1005)) (T -44))
+(3128700 . 3409486851)
+((-2508 (((-107) (-1 (-107) |#2| |#2|) $) 63) (((-107) $) NIL)) (-4109 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2436 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1125 (-517)) |#2|) 34)) (-3797 (($ $) 59)) (-1510 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1210 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 71)) (-1525 (((-583 |#2|) $) 13)) (-3824 (($ (-1 (-107) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2737 (($ (-1 |#2| |#2|) $) 29)) (-3312 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1734 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 50)) (-1985 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-3843 (((-107) (-1 (-107) |#2|) $) 21)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1125 (-517))) 49)) (-3779 (($ $ (-517)) 56) (($ $ (-1125 (-517))) 55)) (-4140 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-1704 (($ $ $ (-517)) 52)) (-2453 (($ $) 51)) (-2279 (($ (-583 |#2|)) 53)) (-4117 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-583 $)) 62)) (-2262 (((-787) $) 69)) (-1272 (((-107) (-1 (-107) |#2|) $) 20)) (-1572 (((-107) $ $) 70)) (-1596 (((-107) $ $) 73)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -2508 ((-107) |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|))) (-19 |#2|) (-1112)) (T -18))
+NIL
+(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -2508 ((-107) |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-19 |#1|) (-1189) (-1112)) (T -19))
+NIL
+(-13 (-343 |t#1|) (-10 -7 (-6 -4196)))
+(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T))
+((-1783 (((-3 $ "failed") $ $) 12)) (-1680 (($ $) NIL) (($ $ $) 9)) (* (($ (-845) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1783 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1783 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-21) (-1189)) (T -21))
+((-1680 (*1 *1 *1) (-4 *1 (-21))) (-1680 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
+(-13 (-123) (-10 -8 (-15 -1680 ($ $)) (-15 -1680 ($ $ $)) (-15 * ($ (-517) $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-1992 (((-107) $) 10)) (-3038 (($) 15)) (* (($ (-845) $) 14) (($ (-703) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 * (|#1| (-845) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15)))
+(((-23) (-1189)) (T -23))
+((-3663 (*1 *1) (-4 *1 (-23))) (-3038 (*1 *1) (-4 *1 (-23))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
+(-13 (-25) (-10 -8 (-15 (-3663) ($) -1373) (-15 -3038 ($) -1373) (-15 -1992 ((-107) $)) (-15 * ($ (-703) $))))
+(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((* (($ (-845) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-845) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13)))
+(((-25) (-1189)) (T -25))
+((-1666 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-845)))))
+(-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ (-845) $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2454 (((-583 $) (-876 $)) 29) (((-583 $) (-1073 $)) 16) (((-583 $) (-1073 $) (-1077)) 20)) (-1480 (($ (-876 $)) 27) (($ (-1073 $)) 11) (($ (-1073 $) (-1077)) 54)) (-2726 (((-583 $) (-876 $)) 30) (((-583 $) (-1073 $)) 18) (((-583 $) (-1073 $) (-1077)) 19)) (-1454 (($ (-876 $)) 28) (($ (-1073 $)) 13) (($ (-1073 $) (-1077)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|))))
+((-2105 (((-107) $ $) 7)) (-2454 (((-583 $) (-876 $)) 80) (((-583 $) (-1073 $)) 79) (((-583 $) (-1073 $) (-1077)) 78)) (-1480 (($ (-876 $)) 83) (($ (-1073 $)) 82) (($ (-1073 $) (-1077)) 81)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 92)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2726 (((-583 $) (-876 $)) 86) (((-583 $) (-1073 $)) 85) (((-583 $) (-1073 $) (-1077)) 84)) (-1454 (($ (-876 $)) 89) (($ (-1073 $)) 88) (($ (-1073 $) (-1077)) 87)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 91)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-27) (-1189)) (T -27))
+((-1454 (*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27)))) (-1454 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27)))) (-1480 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
+(-13 (-333) (-921) (-10 -8 (-15 -1454 ($ (-876 $))) (-15 -1454 ($ (-1073 $))) (-15 -1454 ($ (-1073 $) (-1077))) (-15 -2726 ((-583 $) (-876 $))) (-15 -2726 ((-583 $) (-1073 $))) (-15 -2726 ((-583 $) (-1073 $) (-1077))) (-15 -1480 ($ (-876 $))) (-15 -1480 ($ (-1073 $))) (-15 -1480 ($ (-1073 $) (-1077))) (-15 -2454 ((-583 $) (-876 $))) (-15 -2454 ((-583 $) (-1073 $))) (-15 -2454 ((-583 $) (-1073 $) (-1077)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-921) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-2454 (((-583 $) (-876 $)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-1073 $) (-1077)) 50) (((-583 $) $) 19) (((-583 $) $ (-1077)) 41)) (-1480 (($ (-876 $)) NIL) (($ (-1073 $)) NIL) (($ (-1073 $) (-1077)) 52) (($ $) 17) (($ $ (-1077)) 37)) (-2726 (((-583 $) (-876 $)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-1073 $) (-1077)) 48) (((-583 $) $) 15) (((-583 $) $ (-1077)) 43)) (-1454 (($ (-876 $)) NIL) (($ (-1073 $)) NIL) (($ (-1073 $) (-1077)) NIL) (($ $) 12) (($ $ (-1077)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2454 ((-583 |#1|) |#1| (-1077))) (-15 -1480 (|#1| |#1| (-1077))) (-15 -2454 ((-583 |#1|) |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -2726 ((-583 |#1|) |#1| (-1077))) (-15 -1454 (|#1| |#1| (-1077))) (-15 -2726 ((-583 |#1|) |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
+NIL
+(-10 -8 (-15 -2454 ((-583 |#1|) |#1| (-1077))) (-15 -1480 (|#1| |#1| (-1077))) (-15 -2454 ((-583 |#1|) |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -2726 ((-583 |#1|) |#1| (-1077))) (-15 -1454 (|#1| |#1| (-1077))) (-15 -2726 ((-583 |#1|) |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|))))
+((-2105 (((-107) $ $) 7)) (-2454 (((-583 $) (-876 $)) 80) (((-583 $) (-1073 $)) 79) (((-583 $) (-1073 $) (-1077)) 78) (((-583 $) $) 126) (((-583 $) $ (-1077)) 124)) (-1480 (($ (-876 $)) 83) (($ (-1073 $)) 82) (($ (-1073 $) (-1077)) 81) (($ $) 127) (($ $ (-1077)) 125)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-1077)) $) 201)) (-1428 (((-377 (-1073 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-3864 (((-583 (-556 $)) $) 164)) (-1783 (((-3 $ "failed") $ $) 19)) (-3939 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 92)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2726 (((-583 $) (-876 $)) 86) (((-583 $) (-1073 $)) 85) (((-583 $) (-1073 $) (-1077)) 84) (((-583 $) $) 130) (((-583 $) $ (-1077)) 128)) (-1454 (($ (-876 $)) 89) (($ (-1073 $)) 88) (($ (-1073 $) (-1077)) 87) (($ $) 131) (($ $ (-1077)) 129)) (-3220 (((-3 (-876 |#1|) "failed") $) 251 (|has| |#1| (-964))) (((-3 (-377 (-876 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-955 (-517)))) (((-3 (-1077) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 (((-876 |#1|) $) 252 (|has| |#1| (-964))) (((-377 (-876 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-955 (-517)))) (((-1077) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-2383 (($ $ $) 55)) (-2947 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-964))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 240 (|has| |#1| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 121 (-3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (((-623 (-517)) (-623 $)) 120 (-3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 193 (|has| |#1| (-810 (-349)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 192 (|has| |#1| (-810 (-517))))) (-3314 (($ (-583 $)) 158) (($ $) 157)) (-3854 (((-583 (-109)) $) 165)) (-1325 (((-109) (-109)) 166)) (-1690 (((-107) $) 31)) (-3448 (((-107) $) 186 (|has| $ (-955 (-517))))) (-3662 (($ $) 218 (|has| |#1| (-964)))) (-3858 (((-1029 |#1| (-556 $)) $) 217 (|has| |#1| (-964)))) (-2940 (($ $ (-517)) 91)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3419 (((-1073 $) (-556 $)) 183 (|has| $ (-964)))) (-3480 (($ $ $) 137)) (-4095 (($ $ $) 136)) (-3312 (($ (-1 $ $) (-556 $)) 172)) (-1858 (((-3 (-556 $) "failed") $) 162)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-1412 (((-583 (-556 $)) $) 163)) (-1385 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-1743 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1018)))) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) 221 (|has| |#1| (-964)))) (-1442 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) 220 (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) 213 (|has| |#1| (-1018)))) (-3731 (((-107) $ (-1077)) 169) (((-107) $ (-109)) 168)) (-2291 (($ $) 70)) (-1795 (((-703) $) 161)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 199)) (-2311 ((|#1| $) 200)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-4060 (((-107) $ (-1077)) 174) (((-107) $ $) 173)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2278 (((-107) $) 185 (|has| $ (-955 (-517))))) (-3552 (($ $ (-1077) (-703) (-1 $ $)) 225 (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-964))) (($ $ (-583 (-109)) (-583 $) (-1077)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1077)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1077)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1077) (-1 $ $)) 178) (($ $ (-1077) (-1 $ (-583 $))) 177) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3388 (((-703) $) 58)) (-2612 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-1816 (($ $ $) 160) (($ $) 159)) (-2042 (($ $ (-1077)) 249 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 248 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 247 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) 246 (|has| |#1| (-964)))) (-1463 (($ $) 228 (|has| |#1| (-509)))) (-2082 (((-1029 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2819 (($ $) 184 (|has| $ (-964)))) (-3367 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-816 (-349)) $) 191 (|has| |#1| (-558 (-816 (-349))))) (((-816 (-517)) $) 190 (|has| |#1| (-558 (-816 (-517)))))) (-1853 (($ $ $) 254 (|has| |#1| (-442)))) (-1970 (($ $ $) 253 (|has| |#1| (-442)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-876 |#1|)) 250 (|has| |#1| (-964))) (($ (-377 (-876 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-876 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-876 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1029 |#1| (-556 $))) 216 (|has| |#1| (-964))) (($ |#1|) 196) (($ (-1077)) 187) (($ (-556 $)) 138)) (-3385 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3488 (($ (-583 $)) 156) (($ $) 155)) (-4116 (((-107) (-109)) 167)) (-2944 (((-107) $ $) 39)) (-3540 (($ (-1077) (-583 $)) 206) (($ (-1077) $ $ $ $) 205) (($ (-1077) $ $ $) 204) (($ (-1077) $ $) 203) (($ (-1077) $) 202)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1077)) 245 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 244 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 243 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) 242 (|has| |#1| (-964)))) (-1630 (((-107) $ $) 134)) (-1606 (((-107) $ $) 133)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 135)) (-1596 (((-107) $ $) 132)) (-1692 (($ $ $) 64) (($ (-1029 |#1| (-556 $)) (-1029 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
+(((-29 |#1|) (-1189) (-13 (-779) (-509))) (T -29))
+((-1454 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2726 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1454 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2726 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2454 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2454 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -1454 ($ $)) (-15 -2726 ((-583 $) $)) (-15 -1454 ($ $ (-1077))) (-15 -2726 ((-583 $) $ (-1077))) (-15 -1480 ($ $)) (-15 -2454 ((-583 $) $)) (-15 -1480 ($ $ (-1077))) (-15 -2454 ((-583 $) $ (-1077)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-964)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) ((-579 |#1|) |has| |#1| (-964)) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-824 (-1077)) |has| |#1| (-964)) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-844) . T) ((-921) . T) ((-955 (-377 (-517))) -3786 (|has| |#1| (-955 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) ((-955 (-377 (-876 |#1|))) |has| |#1| (-509)) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 (-556 $)) . T) ((-955 (-876 |#1|)) |has| |#1| (-964)) ((-955 (-1077)) . T) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) |has| |#1| (-156)) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1112) . T) ((-1116) . T))
+((-2712 (((-1001 (-199)) $) NIL)) (-2700 (((-1001 (-199)) $) NIL)) (-2104 (($ $ (-199)) 123)) (-3187 (($ (-876 (-517)) (-1077) (-1077) (-1001 (-377 (-517))) (-1001 (-377 (-517)))) 85)) (-1515 (((-583 (-583 (-867 (-199)))) $) 135)) (-2262 (((-787) $) 147)))
+(((-30) (-13 (-878) (-10 -8 (-15 -3187 ($ (-876 (-517)) (-1077) (-1077) (-1001 (-377 (-517))) (-1001 (-377 (-517))))) (-15 -2104 ($ $ (-199)))))) (T -30))
+((-3187 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-876 (-517))) (-5 *3 (-1077)) (-5 *4 (-1001 (-377 (-517)))) (-5 *1 (-30)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
+(-13 (-878) (-10 -8 (-15 -3187 ($ (-876 (-517)) (-1077) (-1077) (-1001 (-377 (-517))) (-1001 (-377 (-517))))) (-15 -2104 ($ $ (-199)))))
+((-1454 ((|#2| (-1073 |#2|) (-1077)) 42)) (-1325 (((-109) (-109)) 55)) (-3419 (((-1073 |#2|) (-556 |#2|)) 131 (|has| |#1| (-955 (-517))))) (-3986 ((|#2| |#1| (-517)) 110 (|has| |#1| (-955 (-517))))) (-3520 ((|#2| (-1073 |#2|) |#2|) 30)) (-2777 (((-787) (-583 |#2|)) 86)) (-2819 ((|#2| |#2|) 127 (|has| |#1| (-955 (-517))))) (-4116 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 91 (|has| |#1| (-955 (-517))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -1454 (|#2| (-1073 |#2|) (-1077))) (-15 -1325 ((-109) (-109))) (-15 -4116 ((-107) (-109))) (-15 -3520 (|#2| (-1073 |#2|) |#2|)) (-15 -2777 ((-787) (-583 |#2|))) (IF (|has| |#1| (-955 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3419 ((-1073 |#2|) (-556 |#2|))) (-15 -2819 (|#2| |#2|)) (-15 -3986 (|#2| |#1| (-517)))) |%noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
+((-3986 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-955 *4)) (-4 *3 (-13 (-779) (-509))))) (-2819 (*1 *2 *2) (-12 (-4 *3 (-955 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-955 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1073 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-955 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-3520 (*1 *2 *3 *2) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *2)) (-5 *4 (-1077)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
+(-10 -7 (-15 -1454 (|#2| (-1073 |#2|) (-1077))) (-15 -1325 ((-109) (-109))) (-15 -4116 ((-107) (-109))) (-15 -3520 (|#2| (-1073 |#2|) |#2|)) (-15 -2777 ((-787) (-583 |#2|))) (IF (|has| |#1| (-955 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3419 ((-1073 |#2|) (-556 |#2|))) (-15 -2819 (|#2| |#2|)) (-15 -3986 (|#2| |#1| (-517)))) |%noBranch|))
+((-3443 (((-107) $ (-703)) 16)) (-3038 (($) 10)) (-2266 (((-107) $ (-703)) 15)) (-2328 (((-107) $ (-703)) 14)) (-1770 (((-107) $ $) 8)) (-1754 (((-107) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -3038 (|#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -1754 ((-107) |#1|)) (-15 -1770 ((-107) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -3038 (|#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -1754 ((-107) |#1|)) (-15 -1770 ((-107) |#1| |#1|)))
+((-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2266 (((-107) $ (-703)) 9)) (-2328 (((-107) $ (-703)) 10)) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2453 (($ $) 13)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-33) (-1189)) (T -33))
+((-1770 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2453 (*1 *1 *1) (-4 *1 (-33))) (-2679 (*1 *1) (-4 *1 (-33))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2328 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3443 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3038 (*1 *1) (-4 *1 (-33))) (-3573 (*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-33)) (-5 *2 (-703)))))
+(-13 (-1112) (-10 -8 (-15 -1770 ((-107) $ $)) (-15 -2453 ($ $)) (-15 -2679 ($)) (-15 -1754 ((-107) $)) (-15 -2328 ((-107) $ (-703))) (-15 -2266 ((-107) $ (-703))) (-15 -3443 ((-107) $ (-703))) (-15 -3038 ($) -1373) (IF (|has| $ (-6 -4195)) (-15 -3573 ((-703) $)) |%noBranch|)))
+(((-1112) . T))
+((-1706 (($ $) 11)) (-1685 (($ $) 10)) (-3517 (($ $) 9)) (-2815 (($ $) 8)) (-1722 (($ $) 7)) (-1698 (($ $) 6)))
+(((-34) (-1189)) (T -34))
+((-1706 (*1 *1 *1) (-4 *1 (-34))) (-1685 (*1 *1 *1) (-4 *1 (-34))) (-3517 (*1 *1 *1) (-4 *1 (-34))) (-2815 (*1 *1 *1) (-4 *1 (-34))) (-1722 (*1 *1 *1) (-4 *1 (-34))) (-1698 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -1698 ($ $)) (-15 -1722 ($ $)) (-15 -2815 ($ $)) (-15 -3517 ($ $)) (-15 -1685 ($ $)) (-15 -1706 ($ $))))
+((-2105 (((-107) $ $) 19 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-3112 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 125)) (-2577 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 148)) (-1529 (($ $) 146)) (-3195 (($) 72) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 71)) (-3351 (((-1163) $ |#1| |#1|) 99 (|has| $ (-6 -4196))) (((-1163) $ (-517) (-517)) 178 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 159 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-4109 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 200 (|has| $ (-6 -4196))) (($ $) 199 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2226 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 134 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 155 (|has| $ (-6 -4196)))) (-1825 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 157 (|has| $ (-6 -4196)))) (-1218 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 153 (|has| $ (-6 -4196)))) (-2436 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 189 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-1125 (-517)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 160 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 158 (|has| $ (-6 -4196))) (($ $ "rest" $) 156 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 154 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 133 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 132 (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 45 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 216)) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 55 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 175 (|has| $ (-6 -4195)))) (-2567 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 147)) (-3599 (((-3 |#2| "failed") |#1| $) 61)) (-3038 (($) 7 T CONST)) (-3797 (($ $) 201 (|has| $ (-6 -4196)))) (-1894 (($ $) 211)) (-2429 (($ $ (-703)) 142) (($ $) 140)) (-3081 (($ $) 214 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2446 (($ $) 58 (-3786 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))) (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 46 (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 220) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 215 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 54 (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 174 (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 56 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 53 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 52 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 176 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 173 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 172 (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 190 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 88) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 188)) (-1655 (((-107) $) 192)) (-1210 (((-517) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 208) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 207 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 30 (|has| $ (-6 -4195))) (((-583 |#2|) $) 79 (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 114 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 123)) (-1700 (((-107) $ $) 131 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3204 (($ (-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 169)) (-2266 (((-107) $ (-703)) 9)) (-3531 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-3480 (($ $ $) 198 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2785 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3824 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 29 (|has| $ (-6 -4195))) (((-583 |#2|) $) 80 (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 115 (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-1969 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-4095 (($ $ $) 197 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 34 (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4196))) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 110 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 109)) (-2315 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 225)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 128)) (-3834 (((-107) $) 124)) (-3232 (((-1060) $) 22 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1447 (($ $ (-703)) 145) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 143)) (-1869 (((-583 |#1|) $) 63)) (-2409 (((-107) |#1| $) 64)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 39)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 40) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-1734 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-1449 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-3413 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-4130 (((-1024) $) 21 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2420 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 137)) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 51) (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 171)) (-2837 (($ $ |#2|) 98 (|has| $ (-6 -4196))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 179 (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 41)) (-2611 (((-107) $) 191)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 32 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 112 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 26 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 25 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 24 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 23 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 121 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 120 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 119 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 118 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 182 (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2862 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 185)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 187) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 186) (($ $ (-1125 (-517))) 165) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first") 138) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value") 126)) (-3868 (((-517) $ $) 129)) (-3808 (($) 49) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 48)) (-1921 (($ $ (-517)) 222) (($ $ (-1125 (-517))) 221)) (-3779 (($ $ (-517)) 164) (($ $ (-1125 (-517))) 163)) (-1414 (((-107) $) 127)) (-2074 (($ $) 151)) (-4155 (($ $) 152 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 150)) (-2736 (($ $) 149)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 31 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 113 (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) 202 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493)))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 50) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 170)) (-3495 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 224) (($ $ $) 223)) (-4117 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 136) (($ $ $) 135)) (-2262 (((-787) $) 18 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))))) (-3234 (((-583 $) $) 122)) (-3224 (((-107) $ $) 130 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 42)) (-1458 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") |#1| $) 108)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 33 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 111 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 195 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1606 (((-107) $ $) 194 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1572 (((-107) $ $) 20 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1618 (((-107) $ $) 196 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1596 (((-107) $ $) 193 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-35 |#1| |#2|) (-1189) (-1006) (-1006)) (T -35))
+((-1458 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| -2576 *3) (|:| -1846 *4))))))
+(-13 (-1089 |t#1| |t#2|) (-603 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|))) (-10 -8 (-15 -1458 ((-3 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-97) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779))) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))) ((-138 #1=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 #2=(-517) #1#) . T) ((-258 |#1| |#2|) . T) ((-260 #2# #1#) . T) ((-260 |#1| |#2|) . T) ((-280 #1#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-254 #1#) . T) ((-343 #1#) . T) ((-456 #1#) . T) ((-456 |#2|) . T) ((-550 #2# #1#) . T) ((-550 |#1| |#2|) . T) ((-478 #1# #1#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-554 |#1| |#2|) . T) ((-588 #1#) . T) ((-603 #1#) . T) ((-779) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)) ((-929 #1#) . T) ((-1006) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779))) ((-1051 #1#) . T) ((-1089 |#1| |#2|) . T) ((-1112) . T) ((-1146 #1#) . T))
+((-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
+NIL
+(-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-37 |#1|) (-1189) (-156)) (T -37))
+((-2262 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
+(-13 (-964) (-650 |t#1|) (-10 -8 (-15 -2262 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-1975 (((-388 |#1|) |#1|) 38)) (-3896 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-1248 (((-107) |#1|) 54)))
+(((-38 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1975 ((-388 |#1|) |#1|)) (-15 -1248 ((-107) |#1|))) (-1134 (-47))) (T -38))
+((-1248 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) (-1975 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))))
+(-10 -7 (-15 -3896 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1975 ((-388 |#1|) |#1|)) (-15 -1248 ((-107) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2861 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2491 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2025 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1278 (((-623 (-377 |#2|)) (-1158 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1991 (((-377 |#2|) $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3306 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1765 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2390 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2401 (((-107)) NIL)) (-1369 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3539 (($ (-1158 (-377 |#2|)) (-1158 $)) NIL) (($ (-1158 (-377 |#2|))) 57) (($ (-1158 |#2|) |#2|) 124)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-4028 (((-623 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-377 |#2|))) (|:| |vec| (-1158 (-377 |#2|)))) (-623 $) (-1158 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-1852 (((-1158 $) (-1158 $)) NIL)) (-1510 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3810 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3881 (((-107) |#1| |#1|) NIL)) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| (-377 |#2|) (-338)))) (-2897 (((-107)) NIL)) (-1607 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2356 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-4172 (($ $) NIL)) (-4169 (($) NIL (|has| (-377 |#2|) (-319)))) (-2634 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2627 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2022 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3250 (((-845) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-845)) $) NIL (|has| (-377 |#2|) (-319)))) (-1690 (((-107) $) NIL)) (-3128 (((-703)) NIL)) (-3947 (((-1158 $) (-1158 $)) 100)) (-3522 (((-377 |#2|) $) NIL)) (-2784 (((-583 (-876 |#1|)) (-1077)) NIL (|has| |#1| (-333)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1914 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-4161 (((-845) $) NIL (|has| (-377 |#2|) (-338)))) (-1497 ((|#3| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3232 (((-1060) $) NIL)) (-1398 (((-1163) (-703)) 78)) (-2765 (((-623 (-377 |#2|))) 51)) (-2160 (((-623 (-377 |#2|))) 44)) (-2291 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1792 (($ (-1158 |#2|) |#2|) 125)) (-3444 (((-623 (-377 |#2|))) 45)) (-3564 (((-623 (-377 |#2|))) 43)) (-2303 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-2067 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 63)) (-2474 (((-1158 $)) 42)) (-2734 (((-1158 $)) 41)) (-3093 (((-107) $) NIL)) (-3138 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2578 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| (-377 |#2|) (-338)))) (-2645 (((-3 |#2| "failed")) NIL)) (-4130 (((-1024) $) NIL)) (-2224 (((-703)) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| (-377 |#2|) (-333)))) (-2361 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3896 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3388 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2612 ((|#1| $ |#1| |#1|) NIL)) (-2178 (((-3 |#2| "failed")) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3115 (((-377 |#2|) (-1158 $)) NIL) (((-377 |#2|)) 39)) (-3667 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2042 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3248 (((-623 (-377 |#2|)) (-1158 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2819 ((|#3|) 50)) (-3718 (($) NIL (|has| (-377 |#2|) (-319)))) (-1372 (((-1158 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) (-1158 $) (-1158 $)) NIL) (((-1158 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1158 $)) 101)) (-3367 (((-1158 (-377 |#2|)) $) NIL) (($ (-1158 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-1697 (((-1158 $) (-1158 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| (-377 |#2|) (-955 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3385 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3848 ((|#3| $) NIL)) (-1818 (((-703)) NIL)) (-3471 (((-107)) 37)) (-3788 (((-107) |#1|) 49) (((-107) |#2|) 131)) (-3700 (((-1158 $)) 91)) (-2944 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2159 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1288 (((-107)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3663 (($) 16 T CONST)) (-3675 (($) 26 T CONST)) (-3348 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1398 ((-1163) (-703))))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) |#3|) (T -39))
+((-1398 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *2 (-1163)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1134 (-377 *5))) (-14 *7 *6))))
+(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1398 ((-1163) (-703)))))
+((-3984 ((|#2| |#2|) 47)) (-4135 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-3453 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-1775 ((|#2| |#2|) 87 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-1959 ((|#2| (-109) |#2| (-703)) 74 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-3039 (((-1073 |#2|) |#2|) 44)) (-3386 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -3984 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| (-583 |#2|))) (-15 -3386 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3039 ((-1073 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-955 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -1775 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1959 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 |#1| (-556 $)) $)) (-15 -2082 ((-1029 |#1| (-556 $)) $)) (-15 -2262 ($ (-1029 |#1| (-556 $))))))) (T -40))
+((-1959 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-955 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *5 (-556 $)) $)) (-15 -2082 ((-1029 *5 (-556 $)) $)) (-15 -2262 ($ (-1029 *5 (-556 $))))))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-1775 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3039 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1073 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) (-15 -2082 ((-1029 *4 (-556 $)) $)) (-15 -2262 ($ (-1029 *4 (-556 $))))))))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) (-15 -2082 ((-1029 *4 (-556 $)) $)) (-15 -2262 ($ (-1029 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) (-15 -2082 ((-1029 *4 (-556 $)) $)) (-15 -2262 ($ (-1029 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))))
+(-10 -7 (-15 -3984 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| (-583 |#2|))) (-15 -3386 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3039 ((-1073 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-955 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -1775 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1959 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3896 (((-388 (-1073 |#3|)) (-1073 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3896 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3896 ((-388 (-1073 |#3|)) (-1073 |#3|) (-583 (-47))))) (-779) (-725) (-873 (-47) |#2| |#1|)) (T -41))
+((-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-873 (-47) *6 *5)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-873 (-47) *6 *5)))))
+(-10 -7 (-15 -3896 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3896 ((-388 (-1073 |#3|)) (-1073 |#3|) (-583 (-47)))))
+((-1334 (((-703) |#2|) 65)) (-2854 (((-703) |#2|) 68)) (-4098 (((-583 |#2|)) 33)) (-3341 (((-703) |#2|) 67)) (-2431 (((-703) |#2|) 64)) (-3987 (((-703) |#2|) 66)) (-2146 (((-583 (-623 |#1|))) 60)) (-1736 (((-583 |#2|)) 55)) (-3506 (((-583 |#2|) |#2|) 43)) (-1780 (((-583 |#2|)) 57)) (-2096 (((-583 |#2|)) 56)) (-2261 (((-583 (-623 |#1|))) 48)) (-1444 (((-583 |#2|)) 54)) (-1863 (((-583 |#2|) |#2|) 42)) (-3499 (((-583 |#2|)) 50)) (-1496 (((-583 (-623 |#1|))) 61)) (-2530 (((-583 |#2|)) 59)) (-3700 (((-1158 |#2|) (-1158 |#2|)) 84 (|has| |#1| (-278)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -3341 ((-703) |#2|)) (-15 -2854 ((-703) |#2|)) (-15 -2431 ((-703) |#2|)) (-15 -1334 ((-703) |#2|)) (-15 -3987 ((-703) |#2|)) (-15 -3499 ((-583 |#2|))) (-15 -1863 ((-583 |#2|) |#2|)) (-15 -3506 ((-583 |#2|) |#2|)) (-15 -1444 ((-583 |#2|))) (-15 -1736 ((-583 |#2|))) (-15 -2096 ((-583 |#2|))) (-15 -1780 ((-583 |#2|))) (-15 -2530 ((-583 |#2|))) (-15 -2261 ((-583 (-623 |#1|)))) (-15 -2146 ((-583 (-623 |#1|)))) (-15 -1496 ((-583 (-623 |#1|)))) (-15 -4098 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -3700 ((-1158 |#2|) (-1158 |#2|))) |%noBranch|)) (-509) (-387 |#1|)) (T -42))
+((-3700 (*1 *2 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-4098 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1496 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2146 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2261 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2530 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1780 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2096 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1736 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1444 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3506 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3499 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1334 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(-10 -7 (-15 -3341 ((-703) |#2|)) (-15 -2854 ((-703) |#2|)) (-15 -2431 ((-703) |#2|)) (-15 -1334 ((-703) |#2|)) (-15 -3987 ((-703) |#2|)) (-15 -3499 ((-583 |#2|))) (-15 -1863 ((-583 |#2|) |#2|)) (-15 -3506 ((-583 |#2|) |#2|)) (-15 -1444 ((-583 |#2|))) (-15 -1736 ((-583 |#2|))) (-15 -2096 ((-583 |#2|))) (-15 -1780 ((-583 |#2|))) (-15 -2530 ((-583 |#2|))) (-15 -2261 ((-583 (-623 |#1|)))) (-15 -2146 ((-583 (-623 |#1|)))) (-15 -1496 ((-583 (-623 |#1|)))) (-15 -4098 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -3700 ((-1158 |#2|) (-1158 |#2|))) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#1|)) (-1158 $)) NIL) (((-1158 (-623 |#1|))) 24)) (-4026 (((-1158 $)) 50)) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1745 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2998 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) NIL)) (-2496 ((|#1| $) NIL)) (-1793 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-3071 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-3928 (((-1073 (-876 |#1|))) NIL (|has| |#1| (-333)))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#1| $) NIL)) (-1363 (((-1073 |#1|) $) NIL (|has| |#1| (-509)))) (-3708 ((|#1| (-1158 $)) NIL) ((|#1|) NIL)) (-2740 (((-1073 |#1|) $) NIL)) (-2889 (((-107)) 86)) (-3539 (($ (-1158 |#1|) (-1158 $)) NIL) (($ (-1158 |#1|)) NIL)) (-3550 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-3778 (((-845)) 51)) (-3874 (((-107)) NIL)) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL)) (-4016 (((-107)) NIL)) (-1627 (((-107)) 88)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-3277 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1830 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) NIL)) (-2002 ((|#1| $) NIL)) (-4044 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-2680 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-3221 (((-1073 (-876 |#1|))) NIL (|has| |#1| (-333)))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#1| $) NIL)) (-3556 (((-1073 |#1|) $) NIL (|has| |#1| (-509)))) (-1274 ((|#1| (-1158 $)) NIL) ((|#1|) NIL)) (-3570 (((-1073 |#1|) $) NIL)) (-1878 (((-107)) 85)) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) 92)) (-4102 (((-107)) 91)) (-2032 (((-107)) 93)) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) 87)) (-2612 ((|#1| $ (-517)) 53)) (-1372 (((-1158 |#1|) $ (-1158 $)) 47) (((-623 |#1|) (-1158 $) (-1158 $)) NIL) (((-1158 |#1|) $) 28) (((-623 |#1|) (-1158 $)) NIL)) (-3367 (((-1158 |#1|) $) NIL) (($ (-1158 |#1|)) NIL)) (-3861 (((-583 (-876 |#1|)) (-1158 $)) NIL) (((-583 (-876 |#1|))) NIL)) (-1970 (($ $ $) NIL)) (-1293 (((-107)) 83)) (-2262 (((-787) $) 68) (($ (-1158 |#1|)) 22)) (-3700 (((-1158 $)) 44)) (-3741 (((-583 (-1158 |#1|))) NIL (|has| |#1| (-509)))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) 81)) (-2365 (($ (-623 |#1|) $) 18)) (-2742 (($ $ $) NIL)) (-3014 (((-107)) 84)) (-1901 (((-107)) 82)) (-1555 (((-107)) 80)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1044 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1044 |#2| |#1|)) (-10 -8 (-15 -2262 ($ (-1158 |#1|))))) (-333) (-845) (-583 (-1077)) (-1158 (-623 |#1|))) (T -43))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-14 *6 (-1158 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))))))
+(-13 (-387 |#1|) (-585 (-1044 |#2| |#1|)) (-10 -8 (-15 -2262 ($ (-1158 |#1|)))))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3112 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-2577 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1529 (($ $) NIL)) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196))) (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-4109 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779))))) (-2149 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2226 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) 27 (|has| $ (-6 -4196)))) (-1825 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-1218 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 29 (|has| $ (-6 -4196)))) (-2436 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-1125 (-517)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (($ $ "rest" $) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2567 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3599 (((-3 |#2| "failed") |#1| $) 37)) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2429 (($ $ (-703)) NIL) (($ $) 24)) (-3081 (($ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 18 (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 18 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3204 (($ (-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2785 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3824 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2315 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) 42 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1447 (($ $ (-703)) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1869 (((-583 |#1|) $) 20)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1734 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-3413 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 23)) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2862 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 17)) (-1754 (((-107) $) 16)) (-2679 (($) 13)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL) (($ $ (-1125 (-517))) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first") NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value") NIL)) (-3868 (((-517) $ $) NIL)) (-3808 (($) 12) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1921 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1414 (((-107) $) NIL)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3495 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL) (($ $ $) NIL)) (-4117 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 25) (($ $ $) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1458 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") |#1| $) 44)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1618 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3573 (((-703) $) 22 (|has| $ (-6 -4195)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1006) (-1006)) (T -44))
NIL
(-35 |#1| |#2|)
-((-3982 (((-107) $) 12)) (-3310 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3982 ((-107) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-46 |#2| |#3|) (-963) (-724)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3982 ((-107) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-3982 (((-107) $) 62)) (-2078 (($ |#1| |#2|) 61)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3647 ((|#2| $) 64)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1689 ((|#1| $ |#2|) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-46 |#1| |#2|) (-1188) (-963) (-724)) (T -46))
-((-2347 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)))) (-2335 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2078 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)))) (-1689 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)))) (-1704 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)) (-4 *2 (-333)))))
-(-13 (-963) (-106 |t#1| |t#1|) (-10 -8 (-15 -2347 (|t#1| $)) (-15 -2335 ($ $)) (-15 -3647 (|t#2| $)) (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (-15 -3982 ((-107) $)) (-15 -2078 ($ |t#1| |t#2|)) (-15 -2373 ($ $)) (-15 -1689 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1704 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3087 (((-583 $) (-1072 $) (-1076)) NIL) (((-583 $) (-1072 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3477 (($ (-1072 $) (-1076)) NIL) (($ (-1072 $)) NIL) (($ (-875 $)) NIL)) (-3097 (((-107) $) 11)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-3834 (((-583 (-556 $)) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3915 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3880 (($ $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-3322 (((-583 $) (-1072 $) (-1076)) NIL) (((-583 $) (-1072 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3522 (($ (-1072 $) (-1076)) NIL) (($ (-1072 $)) NIL) (($ (-875 $)) NIL)) (-3228 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3390 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2379 (($ $ $) NIL)) (-2207 (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-377 (-517)))) (|:| |vec| (-1157 (-377 (-517))))) (-623 $) (-1157 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1522 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3659 (($ $) NIL) (($ (-583 $)) NIL)) (-1194 (((-583 (-109)) $) NIL)) (-1934 (((-109) (-109)) NIL)) (-1376 (((-107) $) 14)) (-2686 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3826 (((-1028 (-517) (-556 $)) $) NIL)) (-2092 (($ $ (-517)) NIL)) (-2803 (((-1072 $) (-1072 $) (-556 $)) NIL) (((-1072 $) (-1072 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3760 (((-1072 $) (-556 $)) NIL (|has| $ (-963)))) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 $ $) (-556 $)) NIL)) (-3971 (((-3 (-556 $) "failed") $) NIL)) (-2332 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-1424 (((-583 (-556 $)) $) NIL)) (-1398 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-2066 (((-107) $ (-109)) NIL) (((-107) $ (-1076)) NIL)) (-2300 (($ $) NIL)) (-1809 (((-703) $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1647 (((-107) $ $) NIL) (((-107) $ (-1076)) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1766 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3524 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1076) (-1 $ (-583 $))) NIL) (($ $ (-1076) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3600 (((-703) $) NIL)) (-2609 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1457 (($ $) NIL) (($ $ $) NIL)) (-2060 (($ $ (-703)) NIL) (($ $) NIL)) (-2098 (((-1028 (-517) (-556 $)) $) NIL)) (-2387 (($ $) NIL (|has| $ (-963)))) (-3359 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2271 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1028 (-517) (-556 $))) NIL)) (-4099 (((-703)) NIL)) (-3440 (($ $) NIL) (($ (-583 $)) NIL)) (-3750 (((-107) (-109)) NIL)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3610 (($) 7 T CONST)) (-3619 (($) 12 T CONST)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 16)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL)) (-1692 (($ $ $) 15) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
-(((-47) (-13 (-273) (-27) (-954 (-517)) (-954 (-377 (-517))) (-579 (-517)) (-939) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2271 ($ (-1028 (-517) (-556 $)))) (-15 -3826 ((-1028 (-517) (-556 $)) $)) (-15 -2098 ((-1028 (-517) (-556 $)) $)) (-15 -1522 ($ $)) (-15 -2803 ((-1072 $) (-1072 $) (-556 $))) (-15 -2803 ((-1072 $) (-1072 $) (-583 (-556 $)))) (-15 -2803 ($ $ (-556 $))) (-15 -2803 ($ $ (-583 (-556 $))))))) (T -47))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1028 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1522 (*1 *1 *1) (-5 *1 (-47))) (-2803 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-2803 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
-(-13 (-273) (-27) (-954 (-517)) (-954 (-377 (-517))) (-579 (-517)) (-939) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2271 ($ (-1028 (-517) (-556 $)))) (-15 -3826 ((-1028 (-517) (-556 $)) $)) (-15 -2098 ((-1028 (-517) (-556 $)) $)) (-15 -1522 ($ $)) (-15 -2803 ((-1072 $) (-1072 $) (-556 $))) (-15 -2803 ((-1072 $) (-1072 $) (-583 (-556 $)))) (-15 -2803 ($ $ (-556 $))) (-15 -2803 ($ $ (-583 (-556 $))))))
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 7)) (-1584 (((-107) $ $) NIL)))
-(((-48) (-1005)) (T -48))
-NIL
-(-1005)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 60)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3258 (((-107) $) 20)) (-3228 (((-3 |#1| "failed") $) 23)) (-3390 ((|#1| $) 24)) (-2373 (($ $) 27)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2347 ((|#1| $) 21)) (-2833 (($ $) 49)) (-1662 (((-1059) $) NIL)) (-1366 (((-107) $) 28)) (-4125 (((-1023) $) NIL)) (-1318 (($ (-703)) 47)) (-3870 (($ (-583 (-517))) 48)) (-3647 (((-703) $) 29)) (-2271 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-1689 ((|#1| $ $) 19)) (-4099 (((-703)) 46)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 30 T CONST)) (-3619 (($) 14 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 40)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-561 |#1|) (-954 |#1|) (-10 -8 (-15 -2347 (|#1| $)) (-15 -2833 ($ $)) (-15 -2373 ($ $)) (-15 -1689 (|#1| $ $)) (-15 -1318 ($ (-703))) (-15 -3870 ($ (-583 (-517)))) (-15 -1366 ((-107) $)) (-15 -3258 ((-107) $)) (-15 -3647 ((-703) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)))) (-963) (-583 (-1076))) (T -49))
-((-2347 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1076))))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-963)) (-14 *3 (-583 (-1076))))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-963)) (-14 *3 (-583 (-1076))))) (-1689 (*1 *2 *1 *1) (-12 (-4 *2 (-963)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1076))))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963)) (-14 *4 (-583 (-1076))))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-963)) (-14 *4 (-583 (-1076))))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963)) (-14 *4 (-583 (-1076))))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963)) (-14 *4 (-583 (-1076))))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963)) (-14 *4 (-583 (-1076))))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1076))))))
-(-13 (-561 |#1|) (-954 |#1|) (-10 -8 (-15 -2347 (|#1| $)) (-15 -2833 ($ $)) (-15 -2373 ($ $)) (-15 -1689 (|#1| $ $)) (-15 -1318 ($ (-703))) (-15 -3870 ($ (-583 (-517)))) (-15 -1366 ((-107) $)) (-15 -3258 ((-107) $)) (-15 -3647 ((-703) $)) (-15 -3310 ($ (-1 |#1| |#1|) $))))
-((-3258 (((-107) (-51)) 13)) (-3228 (((-3 |#1| "failed") (-51)) 21)) (-3390 ((|#1| (-51)) 22)) (-2271 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2271 ((-51) |#1|)) (-15 -3228 ((-3 |#1| "failed") (-51))) (-15 -3258 ((-107) (-51))) (-15 -3390 (|#1| (-51)))) (-1111)) (T -50))
-((-3390 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1111)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1111)))) (-3228 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1111)))) (-2271 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2271 ((-51) |#1|)) (-15 -3228 ((-3 |#1| "failed") (-51))) (-15 -3258 ((-107) (-51))) (-15 -3390 (|#1| (-51))))
-((-2119 (((-107) $ $) NIL)) (-1625 (((-1059) (-107)) 25)) (-2697 (((-787) $) 24)) (-3803 (((-706) $) 12)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3828 (((-787) $) 16)) (-2944 (((-1009) $) 14)) (-2271 (((-787) $) 32)) (-3528 (($ (-1009) (-706)) 33)) (-1584 (((-107) $ $) 18)))
-(((-51) (-13 (-1005) (-10 -8 (-15 -3528 ($ (-1009) (-706))) (-15 -3828 ((-787) $)) (-15 -2697 ((-787) $)) (-15 -2944 ((-1009) $)) (-15 -3803 ((-706) $)) (-15 -1625 ((-1059) (-107)))))) (T -51))
-((-3528 (*1 *1 *2 *3) (-12 (-5 *2 (-1009)) (-5 *3 (-706)) (-5 *1 (-51)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-51)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1059)) (-5 *1 (-51)))))
-(-13 (-1005) (-10 -8 (-15 -3528 ($ (-1009) (-706))) (-15 -3828 ((-787) $)) (-15 -2697 ((-787) $)) (-15 -2944 ((-1009) $)) (-15 -3803 ((-706) $)) (-15 -1625 ((-1059) (-107)))))
-((-2375 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2375 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-963) (-585 |#1|) (-781 |#1|)) (T -52))
-((-2375 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-963)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
-(-10 -7 (-15 -2375 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3473 ((|#3| |#3| (-583 (-1076))) 35)) (-3061 ((|#3| (-583 (-985 |#1| |#2| |#3|)) |#3| (-844)) 22) ((|#3| (-583 (-985 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3061 (|#3| (-583 (-985 |#1| |#2| |#3|)) |#3|)) (-15 -3061 (|#3| (-583 (-985 |#1| |#2| |#3|)) |#3| (-844))) (-15 -3473 (|#3| |#3| (-583 (-1076))))) (-1005) (-13 (-963) (-809 |#1|) (-779) (-558 (-815 |#1|))) (-13 (-400 |#2|) (-809 |#1|) (-558 (-815 |#1|)))) (T -53))
-((-3473 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1076))) (-4 *4 (-1005)) (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))) (-3061 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-985 *5 *6 *2))) (-5 *4 (-844)) (-4 *5 (-1005)) (-4 *6 (-13 (-963) (-809 *5) (-779) (-558 (-815 *5)))) (-4 *2 (-13 (-400 *6) (-809 *5) (-558 (-815 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3061 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-985 *4 *5 *2))) (-4 *4 (-1005)) (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4)))) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -3061 (|#3| (-583 (-985 |#1| |#2| |#3|)) |#3|)) (-15 -3061 (|#3| (-583 (-985 |#1| |#2| |#3|)) |#3| (-844))) (-15 -3473 (|#3| |#3| (-583 (-1076)))))
-((-1851 (((-107) $ (-703)) 23)) (-2822 (($ $ (-517) |#3|) 45)) (-2049 (($ $ (-517) |#4|) 49)) (-3476 ((|#3| $ (-517)) 58)) (-1534 (((-583 |#2|) $) 30)) (-2497 (((-107) $ (-703)) 25)) (-3925 (((-107) |#2| $) 53)) (-2746 (($ (-1 |#2| |#2|) $) 37)) (-3310 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-1320 (((-107) $ (-703)) 24)) (-2846 (($ $ |#2|) 34)) (-3644 (((-107) (-1 (-107) |#2|) $) 19)) (-2609 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-4137 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2462 (($ $) 33)) (-3259 ((|#4| $ (-517)) 61)) (-2271 (((-787) $) 66)) (-3602 (((-107) (-1 (-107) |#2|) $) 18)) (-1584 (((-107) $ $) 52)) (-3535 (((-703) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2049 (|#1| |#1| (-517) |#4|)) (-15 -2822 (|#1| |#1| (-517) |#3|)) (-15 -1534 ((-583 |#2|) |#1|)) (-15 -3259 (|#4| |#1| (-517))) (-15 -3476 (|#3| |#1| (-517))) (-15 -2609 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) (-517))) (-15 -2846 (|#1| |#1| |#2|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3925 ((-107) |#2| |#1|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703))) (-15 -2462 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1111) (-343 |#2|) (-343 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2049 (|#1| |#1| (-517) |#4|)) (-15 -2822 (|#1| |#1| (-517) |#3|)) (-15 -1534 ((-583 |#2|) |#1|)) (-15 -3259 (|#4| |#1| (-517))) (-15 -3476 (|#3| |#1| (-517))) (-15 -2609 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) (-517))) (-15 -2846 (|#1| |#1| |#2|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3925 ((-107) |#2| |#1|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703))) (-15 -2462 (|#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) (-517) |#1|) 44)) (-2822 (($ $ (-517) |#2|) 42)) (-2049 (($ $ (-517) |#3|) 41)) (-1393 (($) 7 T CONST)) (-3476 ((|#2| $ (-517)) 46)) (-2759 ((|#1| $ (-517) (-517) |#1|) 43)) (-2566 ((|#1| $ (-517) (-517)) 48)) (-1534 (((-583 |#1|) $) 30)) (-1421 (((-703) $) 51)) (-3213 (($ (-703) (-703) |#1|) 57)) (-1435 (((-703) $) 50)) (-2497 (((-107) $ (-703)) 9)) (-1683 (((-517) $) 55)) (-3400 (((-517) $) 53)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1207 (((-517) $) 54)) (-3797 (((-517) $) 52)) (-2746 (($ (-1 |#1| |#1|) $) 34)) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) 56)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3259 ((|#3| $ (-517)) 45)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-55 |#1| |#2| |#3|) (-1188) (-1111) (-343 |t#1|) (-343 |t#1|)) (T -55))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3213 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1111)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2846 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-2609 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1111)))) (-2566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1111)))) (-2609 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1111)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3476 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1111)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1111)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2445 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1111)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-2759 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1111)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-2822 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1111)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1111)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-2746 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3310 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3310 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(-13 (-456 |t#1|) (-10 -8 (-6 -4193) (-6 -4192) (-15 -3213 ($ (-703) (-703) |t#1|)) (-15 -2846 ($ $ |t#1|)) (-15 -1683 ((-517) $)) (-15 -1207 ((-517) $)) (-15 -3400 ((-517) $)) (-15 -3797 ((-517) $)) (-15 -1421 ((-703) $)) (-15 -1435 ((-703) $)) (-15 -2609 (|t#1| $ (-517) (-517))) (-15 -2566 (|t#1| $ (-517) (-517))) (-15 -2609 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3476 (|t#2| $ (-517))) (-15 -3259 (|t#3| $ (-517))) (-15 -1534 ((-583 |t#1|) $)) (-15 -2445 (|t#1| $ (-517) (-517) |t#1|)) (-15 -2759 (|t#1| $ (-517) (-517) |t#1|)) (-15 -2822 ($ $ (-517) |t#2|)) (-15 -2049 ($ $ (-517) |t#3|)) (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (-15 -2746 ($ (-1 |t#1| |t#1|) $)) (-15 -3310 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3310 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-1532 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1522 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3310 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -1532 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3310 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1111) (-1111)) (T -56))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-56 *5 *2)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -1532 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3310 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2427 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3213 (($ (-703) |#1|) 9)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 7)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2427 ($ (-583 |#1|))) (-15 -2427 ($ (-703) |#1|)))) (-1111)) (T -57))
-((-2427 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-57 *3)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1111)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2427 ($ (-583 |#1|))) (-15 -2427 ($ (-703) |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2822 (($ $ (-517) (-57 |#1|)) NIL)) (-2049 (($ $ (-517) (-57 |#1|)) NIL)) (-1393 (($) NIL T CONST)) (-3476 (((-57 |#1|) $ (-517)) NIL)) (-2759 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2566 ((|#1| $ (-517) (-517)) NIL)) (-1534 (((-583 |#1|) $) NIL)) (-1421 (((-703) $) NIL)) (-3213 (($ (-703) (-703) |#1|) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-1683 (((-517) $) NIL)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1207 (((-517) $) NIL)) (-3797 (((-517) $) NIL)) (-2746 (($ (-1 |#1| |#1|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-3259 (((-57 |#1|) $ (-517)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4193))) (-1111)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4193)))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 69) (((-3 $ "failed") (-1157 (-286 (-517)))) 58) (((-3 $ "failed") (-1157 (-875 (-349)))) 91) (((-3 $ "failed") (-1157 (-875 (-517)))) 80) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 47) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 36)) (-3390 (($ (-1157 (-286 (-349)))) 65) (($ (-1157 (-286 (-517)))) 54) (($ (-1157 (-875 (-349)))) 87) (($ (-1157 (-875 (-517)))) 76) (($ (-1157 (-377 (-875 (-349))))) 43) (($ (-1157 (-377 (-875 (-517))))) 29)) (-1898 (((-1162) $) 118)) (-2271 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 97) (($ (-1157 (-309 (-2288 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2288) (-632)))) 28)))
-(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2288) (-632))))))) (-1076)) (T -59))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2288) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2288) (-632)))))))
-((-1898 (((-1162) $) 48) (((-1162)) 49)) (-2271 (((-787) $) 45)))
-(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -1898 ((-1162))))) (-1076)) (T -60))
-((-1898 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-60 *3)) (-14 *3 (-1076)))))
-(-13 (-365) (-10 -7 (-15 -1898 ((-1162)))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 142) (((-3 $ "failed") (-1157 (-286 (-517)))) 132) (((-3 $ "failed") (-1157 (-875 (-349)))) 163) (((-3 $ "failed") (-1157 (-875 (-517)))) 152) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 121) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 110)) (-3390 (($ (-1157 (-286 (-349)))) 138) (($ (-1157 (-286 (-517)))) 128) (($ (-1157 (-875 (-349)))) 159) (($ (-1157 (-875 (-517)))) 148) (($ (-1157 (-377 (-875 (-349))))) 117) (($ (-1157 (-377 (-875 (-517))))) 103)) (-1898 (((-1162) $) 96)) (-2271 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 31) (($ (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632)))) 88)))
-(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632))))))) (-1076)) (T -61))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632)))))))
-((-3228 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-875 (-349))) 46) (((-3 $ "failed") (-875 (-517))) 51) (((-3 $ "failed") (-377 (-875 (-349)))) 31) (((-3 $ "failed") (-377 (-875 (-517)))) 26)) (-3390 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-875 (-349))) 44) (($ (-875 (-517))) 49) (($ (-377 (-875 (-349)))) 29) (($ (-377 (-875 (-517)))) 23)) (-1898 (((-1162) $) 73)) (-2271 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 60) (($ (-309 (-2288 (QUOTE X)) (-2288) (-632))) 22)))
-(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288 (QUOTE X)) (-2288) (-632)))))) (-1076)) (T -62))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-309 (-2288 (QUOTE X)) (-2288) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1076)))))
-(-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288 (QUOTE X)) (-2288) (-632))))))
-((-3228 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-875 (-349)))) 122) (((-3 $ "failed") (-623 (-875 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 67)) (-3390 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-875 (-349)))) 118) (($ (-623 (-875 (-517)))) 107) (($ (-623 (-377 (-875 (-349))))) 74) (($ (-623 (-377 (-875 (-517))))) 60)) (-1898 (((-1162) $) 130)) (-2271 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 30) (($ (-623 (-309 (-2288) (-2288 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
-(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288) (-2288 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1076)) (T -63))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2288) (-2288 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1076)))))
-(-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288) (-2288 (QUOTE X) (QUOTE HESS)) (-632)))))))
-((-3228 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-875 (-349))) 64) (((-3 $ "failed") (-875 (-517))) 69) (((-3 $ "failed") (-377 (-875 (-349)))) 49) (((-3 $ "failed") (-377 (-875 (-517)))) 44)) (-3390 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-875 (-349))) 62) (($ (-875 (-517))) 67) (($ (-377 (-875 (-349)))) 47) (($ (-377 (-875 (-517)))) 41)) (-1898 (((-1162) $) 78)) (-2271 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 30) (($ (-309 (-2288) (-2288 (QUOTE XC)) (-632))) 38)))
-(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288) (-2288 (QUOTE XC)) (-632)))))) (-1076)) (T -64))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-309 (-2288) (-2288 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1076)))))
-(-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288) (-2288 (QUOTE XC)) (-632))))))
-((-1898 (((-1162) $) 63)) (-2271 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 53)))
-(((-65 |#1|) (-353) (-1076)) (T -65))
+((-3022 (((-107) $) 12)) (-3312 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3022 ((-107) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-46 |#2| |#3|) (-964) (-724)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3022 ((-107) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1191 ((|#2| $) 64)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-46 |#1| |#2|) (-1189) (-964) (-724)) (T -46))
+((-2336 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2059 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-1939 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *2 (-333)))))
+(-13 (-964) (-106 |t#1| |t#1|) (-10 -8 (-15 -2336 (|t#1| $)) (-15 -2325 ($ $)) (-15 -1191 (|t#2| $)) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -3022 ((-107) $)) (-15 -2059 ($ |t#1| |t#2|)) (-15 -2364 ($ $)) (-15 -1939 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1692 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-2454 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1480 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-1992 (((-107) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-3864 (((-583 (-556 $)) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2726 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1454 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-377 (-517)))) (|:| |vec| (-1158 (-377 (-517))))) (-623 $) (-1158 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1510 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) NIL)) (-1690 (((-107) $) 14)) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3858 (((-1029 (-517) (-556 $)) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-3522 (((-1073 $) (-1073 $) (-556 $)) NIL) (((-1073 $) (-1073 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3419 (((-1073 $) (-556 $)) NIL (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) NIL)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) NIL)) (-1385 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) NIL)) (-2291 (($ $) NIL)) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3388 (((-703) $) NIL)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-1816 (($ $) NIL) (($ $ $) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2082 (((-1029 (-517) (-556 $)) $) NIL)) (-2819 (($ $) NIL (|has| $ (-964)))) (-3367 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2262 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1029 (-517) (-556 $))) NIL)) (-1818 (((-703)) NIL)) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-4116 (((-107) (-109)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 7 T CONST)) (-3675 (($) 12 T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 16)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $ $) 15) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL)))
+(((-47) (-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $))))))) (T -47))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1510 (*1 *1 *1) (-5 *1 (-47))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
+(-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $))))))
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 7)) (-1572 (((-107) $ $) NIL)))
+(((-48) (-1006)) (T -48))
+NIL
+(-1006)
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 60)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2240 (((-107) $) 20)) (-3220 (((-3 |#1| "failed") $) 23)) (-3402 ((|#1| $) 24)) (-2364 (($ $) 27)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2336 ((|#1| $) 21)) (-3814 (($ $) 49)) (-3232 (((-1060) $) NIL)) (-3176 (((-107) $) 28)) (-4130 (((-1024) $) NIL)) (-1306 (($ (-703)) 47)) (-3898 (($ (-583 (-517))) 48)) (-1191 (((-703) $) 29)) (-2262 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-1939 ((|#1| $ $) 19)) (-1818 (((-703)) 46)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 30 T CONST)) (-3675 (($) 14 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 40)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-561 |#1|) (-955 |#1|) (-10 -8 (-15 -2336 (|#1| $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 (|#1| $ $)) (-15 -1306 ($ (-703))) (-15 -3898 ($ (-583 (-517)))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-703) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)))) (-964) (-583 (-1077))) (T -49))
+((-2336 (*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077))))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))))) (-1939 (*1 *2 *1 *1) (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077))))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1077))))))
+(-13 (-561 |#1|) (-955 |#1|) (-10 -8 (-15 -2336 (|#1| $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 (|#1| $ $)) (-15 -1306 ($ (-703))) (-15 -3898 ($ (-583 (-517)))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-703) $)) (-15 -3312 ($ (-1 |#1| |#1|) $))))
+((-2240 (((-107) (-51)) 13)) (-3220 (((-3 |#1| "failed") (-51)) 21)) (-3402 ((|#1| (-51)) 22)) (-2262 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2262 ((-51) |#1|)) (-15 -3220 ((-3 |#1| "failed") (-51))) (-15 -2240 ((-107) (-51))) (-15 -3402 (|#1| (-51)))) (-1112)) (T -50))
+((-3402 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1112)))) (-3220 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1112)))))
+(-10 -7 (-15 -2262 ((-51) |#1|)) (-15 -3220 ((-3 |#1| "failed") (-51))) (-15 -2240 ((-107) (-51))) (-15 -3402 (|#1| (-51))))
+((-2105 (((-107) $ $) NIL)) (-3376 (((-1060) (-107)) 25)) (-2847 (((-787) $) 24)) (-3839 (((-706) $) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1253 (((-787) $) 16)) (-2936 (((-1010) $) 14)) (-2262 (((-787) $) 32)) (-3557 (($ (-1010) (-706)) 33)) (-1572 (((-107) $ $) 18)))
+(((-51) (-13 (-1006) (-10 -8 (-15 -3557 ($ (-1010) (-706))) (-15 -1253 ((-787) $)) (-15 -2847 ((-787) $)) (-15 -2936 ((-1010) $)) (-15 -3839 ((-706) $)) (-15 -3376 ((-1060) (-107)))))) (T -51))
+((-3557 (*1 *1 *2 *3) (-12 (-5 *2 (-1010)) (-5 *3 (-706)) (-5 *1 (-51)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-51)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1060)) (-5 *1 (-51)))))
+(-13 (-1006) (-10 -8 (-15 -3557 ($ (-1010) (-706))) (-15 -1253 ((-787) $)) (-15 -2847 ((-787) $)) (-15 -2936 ((-1010) $)) (-15 -3839 ((-706) $)) (-15 -3376 ((-1060) (-107)))))
+((-2365 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2365 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-964) (-585 |#1|) (-781 |#1|)) (T -52))
+((-2365 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-964)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
+(-10 -7 (-15 -2365 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2400 ((|#3| |#3| (-583 (-1077))) 35)) (-2300 ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-845)) 22) ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-845))) (-15 -2400 (|#3| |#3| (-583 (-1077))))) (-1006) (-13 (-964) (-810 |#1|) (-779) (-558 (-816 |#1|))) (-13 (-400 |#2|) (-810 |#1|) (-558 (-816 |#1|)))) (T -53))
+((-2400 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) (-2300 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-845)) (-4 *5 (-1006)) (-4 *6 (-13 (-964) (-810 *5) (-779) (-558 (-816 *5)))) (-4 *2 (-13 (-400 *6) (-810 *5) (-558 (-816 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2300 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-845))) (-15 -2400 (|#3| |#3| (-583 (-1077)))))
+((-3443 (((-107) $ (-703)) 23)) (-3911 (($ $ (-517) |#3|) 45)) (-3101 (($ $ (-517) |#4|) 49)) (-1397 ((|#3| $ (-517)) 58)) (-1525 (((-583 |#2|) $) 30)) (-2266 (((-107) $ (-703)) 25)) (-1949 (((-107) |#2| $) 53)) (-2737 (($ (-1 |#2| |#2|) $) 37)) (-3312 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2328 (((-107) $ (-703)) 24)) (-2837 (($ $ |#2|) 34)) (-3843 (((-107) (-1 (-107) |#2|) $) 19)) (-2612 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-4140 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2453 (($ $) 33)) (-2295 ((|#4| $ (-517)) 61)) (-2262 (((-787) $) 66)) (-1272 (((-107) (-1 (-107) |#2|) $) 18)) (-1572 (((-107) $ $) 52)) (-3573 (((-703) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3101 (|#1| |#1| (-517) |#4|)) (-15 -3911 (|#1| |#1| (-517) |#3|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -2295 (|#4| |#1| (-517))) (-15 -1397 (|#3| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -2453 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1112) (-343 |#2|) (-343 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3101 (|#1| |#1| (-517) |#4|)) (-15 -3911 (|#1| |#1| (-517) |#3|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -2295 (|#4| |#1| (-517))) (-15 -1397 (|#3| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -2453 (|#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) (-517) |#1|) 44)) (-3911 (($ $ (-517) |#2|) 42)) (-3101 (($ $ (-517) |#3|) 41)) (-3038 (($) 7 T CONST)) (-1397 ((|#2| $ (-517)) 46)) (-2750 ((|#1| $ (-517) (-517) |#1|) 43)) (-2557 ((|#1| $ (-517) (-517)) 48)) (-1525 (((-583 |#1|) $) 30)) (-1409 (((-703) $) 51)) (-3204 (($ (-703) (-703) |#1|) 57)) (-1422 (((-703) $) 50)) (-2266 (((-107) $ (-703)) 9)) (-2560 (((-517) $) 55)) (-2970 (((-517) $) 53)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 54)) (-1718 (((-517) $) 52)) (-2737 (($ (-1 |#1| |#1|) $) 34)) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) 56)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2295 ((|#3| $ (-517)) 45)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-55 |#1| |#2| |#3|) (-1189) (-1112) (-343 |t#1|) (-343 |t#1|)) (T -55))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3204 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1112)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2837 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1112)))) (-2557 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1397 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1112)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1112)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2436 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-2750 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3911 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3101 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1112)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3312 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -3204 ($ (-703) (-703) |t#1|)) (-15 -2837 ($ $ |t#1|)) (-15 -2560 ((-517) $)) (-15 -2413 ((-517) $)) (-15 -2970 ((-517) $)) (-15 -1718 ((-517) $)) (-15 -1409 ((-703) $)) (-15 -1422 ((-703) $)) (-15 -2612 (|t#1| $ (-517) (-517))) (-15 -2557 (|t#1| $ (-517) (-517))) (-15 -2612 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1397 (|t#2| $ (-517))) (-15 -2295 (|t#3| $ (-517))) (-15 -1525 ((-583 |t#1|) $)) (-15 -2436 (|t#1| $ (-517) (-517) |t#1|)) (-15 -2750 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3911 ($ $ (-517) |t#2|)) (-15 -3101 ($ $ (-517) |t#3|)) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -2737 ($ (-1 |t#1| |t#1|) $)) (-15 -3312 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3312 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-1250 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3312 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -1250 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3312 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1112) (-1112)) (T -56))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-56 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -1250 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3312 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1750 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3204 (($ (-703) |#1|) 9)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 7)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1750 ($ (-583 |#1|))) (-15 -1750 ($ (-703) |#1|)))) (-1112)) (T -57))
+((-1750 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-57 *3)))) (-1750 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1112)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1750 ($ (-583 |#1|))) (-15 -1750 ($ (-703) |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3911 (($ $ (-517) (-57 |#1|)) NIL)) (-3101 (($ $ (-517) (-57 |#1|)) NIL)) (-3038 (($) NIL T CONST)) (-1397 (((-57 |#1|) $ (-517)) NIL)) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-57 |#1|) $ (-517)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4196))) (-1112)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4196)))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 69) (((-3 $ "failed") (-1158 (-286 (-517)))) 58) (((-3 $ "failed") (-1158 (-876 (-349)))) 91) (((-3 $ "failed") (-1158 (-876 (-517)))) 80) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 47) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 36)) (-3402 (($ (-1158 (-286 (-349)))) 65) (($ (-1158 (-286 (-517)))) 54) (($ (-1158 (-876 (-349)))) 87) (($ (-1158 (-876 (-517)))) 76) (($ (-1158 (-377 (-876 (-349))))) 43) (($ (-1158 (-377 (-876 (-517))))) 29)) (-1885 (((-1163) $) 118)) (-2262 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 97) (($ (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632)))) 28)))
+(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632))))))) (-1077)) (T -59))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632)))))))
+((-1885 (((-1163) $) 48) (((-1163)) 49)) (-2262 (((-787) $) 45)))
+(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) (-1077)) (T -60))
+((-1885 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-60 *3)) (-14 *3 (-1077)))))
+(-13 (-365) (-10 -7 (-15 -1885 ((-1163)))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 142) (((-3 $ "failed") (-1158 (-286 (-517)))) 132) (((-3 $ "failed") (-1158 (-876 (-349)))) 163) (((-3 $ "failed") (-1158 (-876 (-517)))) 152) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 121) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 110)) (-3402 (($ (-1158 (-286 (-349)))) 138) (($ (-1158 (-286 (-517)))) 128) (($ (-1158 (-876 (-349)))) 159) (($ (-1158 (-876 (-517)))) 148) (($ (-1158 (-377 (-876 (-349))))) 117) (($ (-1158 (-377 (-876 (-517))))) 103)) (-1885 (((-1163) $) 96)) (-2262 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 31) (($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) 88)))
+(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))) (-1077)) (T -61))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))))))
+((-3220 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-876 (-349))) 46) (((-3 $ "failed") (-876 (-517))) 51) (((-3 $ "failed") (-377 (-876 (-349)))) 31) (((-3 $ "failed") (-377 (-876 (-517)))) 26)) (-3402 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-876 (-349))) 44) (($ (-876 (-517))) 49) (($ (-377 (-876 (-349)))) 29) (($ (-377 (-876 (-517)))) 23)) (-1885 (((-1163) $) 73)) (-2262 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 60) (($ (-309 (-2279 (QUOTE X)) (-2279) (-632))) 22)))
+(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279) (-632)))))) (-1077)) (T -62))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279 (QUOTE X)) (-2279) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1077)))))
+(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279) (-632))))))
+((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-876 (-349)))) 122) (((-3 $ "failed") (-623 (-876 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 67)) (-3402 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-876 (-349)))) 118) (($ (-623 (-876 (-517)))) 107) (($ (-623 (-377 (-876 (-349))))) 74) (($ (-623 (-377 (-876 (-517))))) 60)) (-1885 (((-1163) $) 130)) (-2262 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 30) (($ (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
+(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1077)) (T -63))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1077)))))
+(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632)))))))
+((-3220 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-876 (-349))) 64) (((-3 $ "failed") (-876 (-517))) 69) (((-3 $ "failed") (-377 (-876 (-349)))) 49) (((-3 $ "failed") (-377 (-876 (-517)))) 44)) (-3402 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-876 (-349))) 62) (($ (-876 (-517))) 67) (($ (-377 (-876 (-349)))) 47) (($ (-377 (-876 (-517)))) 41)) (-1885 (((-1163) $) 78)) (-2262 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 30) (($ (-309 (-2279) (-2279 (QUOTE XC)) (-632))) 38)))
+(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE XC)) (-632)))))) (-1077)) (T -64))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279) (-2279 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1077)))))
+(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))
+((-1885 (((-1163) $) 63)) (-2262 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 53)))
+(((-65 |#1|) (-353) (-1077)) (T -65))
NIL
(-353)
-((-1898 (((-1162) $) 64)) (-2271 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 55)))
-(((-66 |#1|) (-353) (-1076)) (T -66))
+((-1885 (((-1163) $) 64)) (-2262 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 55)))
+(((-66 |#1|) (-353) (-1077)) (T -66))
NIL
(-353)
-((-1898 (((-1162) $) NIL) (((-1162)) 32)) (-2271 (((-787) $) NIL)))
-(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -1898 ((-1162))))) (-1076)) (T -67))
-((-1898 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-67 *3)) (-14 *3 (-1076)))))
-(-13 (-365) (-10 -7 (-15 -1898 ((-1162)))))
-((-1898 (((-1162) $) 68)) (-2271 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 52)))
-(((-68 |#1|) (-353) (-1076)) (T -68))
+((-1885 (((-1163) $) NIL) (((-1163)) 32)) (-2262 (((-787) $) NIL)))
+(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) (-1077)) (T -67))
+((-1885 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-67 *3)) (-14 *3 (-1077)))))
+(-13 (-365) (-10 -7 (-15 -1885 ((-1163)))))
+((-1885 (((-1163) $) 68)) (-2262 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 52)))
+(((-68 |#1|) (-353) (-1077)) (T -68))
NIL
(-353)
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 98) (((-3 $ "failed") (-1157 (-286 (-517)))) 87) (((-3 $ "failed") (-1157 (-875 (-349)))) 119) (((-3 $ "failed") (-1157 (-875 (-517)))) 108) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 76) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 65)) (-3390 (($ (-1157 (-286 (-349)))) 94) (($ (-1157 (-286 (-517)))) 83) (($ (-1157 (-875 (-349)))) 115) (($ (-1157 (-875 (-517)))) 104) (($ (-1157 (-377 (-875 (-349))))) 72) (($ (-1157 (-377 (-875 (-517))))) 58)) (-1898 (((-1162) $) 133)) (-2271 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 50) (($ (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))) 51)))
-(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632))))))) (-1076)) (T -69))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))))))
-((-1898 (((-1162) $) 32) (((-1162)) 31)) (-2271 (((-787) $) 35)))
-(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -1898 ((-1162))))) (-1076)) (T -70))
-((-1898 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-70 *3)) (-14 *3 (-1076)))))
-(-13 (-365) (-10 -7 (-15 -1898 ((-1162)))))
-((-1898 (((-1162) $) 62)) (-2271 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 46)))
-(((-71 |#1|) (-353) (-1076)) (T -71))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 98) (((-3 $ "failed") (-1158 (-286 (-517)))) 87) (((-3 $ "failed") (-1158 (-876 (-349)))) 119) (((-3 $ "failed") (-1158 (-876 (-517)))) 108) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 76) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 65)) (-3402 (($ (-1158 (-286 (-349)))) 94) (($ (-1158 (-286 (-517)))) 83) (($ (-1158 (-876 (-349)))) 115) (($ (-1158 (-876 (-517)))) 104) (($ (-1158 (-377 (-876 (-349))))) 72) (($ (-1158 (-377 (-876 (-517))))) 58)) (-1885 (((-1163) $) 133)) (-2262 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 50) (($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) 51)))
+(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))) (-1077)) (T -69))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))))))
+((-1885 (((-1163) $) 32) (((-1163)) 31)) (-2262 (((-787) $) 35)))
+(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) (-1077)) (T -70))
+((-1885 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-70 *3)) (-14 *3 (-1077)))))
+(-13 (-365) (-10 -7 (-15 -1885 ((-1163)))))
+((-1885 (((-1163) $) 62)) (-2262 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 46)))
+(((-71 |#1|) (-353) (-1077)) (T -71))
NIL
(-353)
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 119) (((-3 $ "failed") (-1157 (-286 (-517)))) 108) (((-3 $ "failed") (-1157 (-875 (-349)))) 141) (((-3 $ "failed") (-1157 (-875 (-517)))) 130) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 98) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 87)) (-3390 (($ (-1157 (-286 (-349)))) 115) (($ (-1157 (-286 (-517)))) 104) (($ (-1157 (-875 (-349)))) 137) (($ (-1157 (-875 (-517)))) 126) (($ (-1157 (-377 (-875 (-349))))) 94) (($ (-1157 (-377 (-875 (-517))))) 80)) (-1898 (((-1162) $) 73)) (-2271 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 66) (($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))) 60)))
-(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632))))))) (-1076)) (T -72))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 125) (((-3 $ "failed") (-1157 (-286 (-517)))) 114) (((-3 $ "failed") (-1157 (-875 (-349)))) 147) (((-3 $ "failed") (-1157 (-875 (-517)))) 136) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 103) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 92)) (-3390 (($ (-1157 (-286 (-349)))) 121) (($ (-1157 (-286 (-517)))) 110) (($ (-1157 (-875 (-349)))) 143) (($ (-1157 (-875 (-517)))) 132) (($ (-1157 (-377 (-875 (-349))))) 99) (($ (-1157 (-377 (-875 (-517))))) 85)) (-1898 (((-1162) $) 78)) (-2271 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) NIL) (($ (-1157 (-309 (-2288 (QUOTE X) (QUOTE EPS)) (-2288 (QUOTE -2011)) (-632)))) 65)))
-(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X) (QUOTE EPS)) (-2288 (QUOTE -2011)) (-632))))))) (-1076) (-1076) (-1076)) (T -73))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE X) (QUOTE EPS)) (-2288 (QUOTE -2011)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1076)) (-14 *4 (-1076)) (-14 *5 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X) (QUOTE EPS)) (-2288 (QUOTE -2011)) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 129) (((-3 $ "failed") (-1157 (-286 (-517)))) 118) (((-3 $ "failed") (-1157 (-875 (-349)))) 151) (((-3 $ "failed") (-1157 (-875 (-517)))) 140) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 107) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 96)) (-3390 (($ (-1157 (-286 (-349)))) 125) (($ (-1157 (-286 (-517)))) 114) (($ (-1157 (-875 (-349)))) 147) (($ (-1157 (-875 (-517)))) 136) (($ (-1157 (-377 (-875 (-349))))) 103) (($ (-1157 (-377 (-875 (-517))))) 89)) (-1898 (((-1162) $) 82)) (-2271 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) NIL) (($ (-1157 (-309 (-2288 (QUOTE EPS)) (-2288 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
-(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE EPS)) (-2288 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1076) (-1076) (-1076)) (T -74))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE EPS)) (-2288 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1076)) (-14 *4 (-1076)) (-14 *5 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE EPS)) (-2288 (QUOTE YA) (QUOTE YB)) (-632)))))))
-((-3228 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-875 (-349))) 87) (((-3 $ "failed") (-875 (-517))) 92) (((-3 $ "failed") (-377 (-875 (-349)))) 72) (((-3 $ "failed") (-377 (-875 (-517)))) 67)) (-3390 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-875 (-349))) 85) (($ (-875 (-517))) 90) (($ (-377 (-875 (-349)))) 70) (($ (-377 (-875 (-517)))) 64)) (-1898 (((-1162) $) 61)) (-2271 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 53) (($ (-309 (-2288) (-2288 (QUOTE X)) (-632))) 46)))
-(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288) (-2288 (QUOTE X)) (-632)))))) (-1076)) (T -75))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-309 (-2288) (-2288 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1076)))))
-(-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288) (-2288 (QUOTE X)) (-632))))))
-((-3228 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-875 (-349))) 51) (((-3 $ "failed") (-875 (-517))) 56) (((-3 $ "failed") (-377 (-875 (-349)))) 36) (((-3 $ "failed") (-377 (-875 (-517)))) 31)) (-3390 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-875 (-349))) 49) (($ (-875 (-517))) 54) (($ (-377 (-875 (-349)))) 34) (($ (-377 (-875 (-517)))) 28)) (-1898 (((-1162) $) 77)) (-2271 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 65) (($ (-309 (-2288) (-2288 (QUOTE X)) (-632))) 27)))
-(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288) (-2288 (QUOTE X)) (-632)))))) (-1076)) (T -76))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-309 (-2288) (-2288 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1076)))))
-(-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288) (-2288 (QUOTE X)) (-632))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 84) (((-3 $ "failed") (-1157 (-286 (-517)))) 73) (((-3 $ "failed") (-1157 (-875 (-349)))) 106) (((-3 $ "failed") (-1157 (-875 (-517)))) 95) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 62) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 51)) (-3390 (($ (-1157 (-286 (-349)))) 80) (($ (-1157 (-286 (-517)))) 69) (($ (-1157 (-875 (-349)))) 102) (($ (-1157 (-875 (-517)))) 91) (($ (-1157 (-377 (-875 (-349))))) 58) (($ (-1157 (-377 (-875 (-517))))) 44)) (-1898 (((-1162) $) 122)) (-2271 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 112) (($ (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632)))) 37)))
-(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632))))))) (-1076)) (T -77))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE XC)) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 137) (((-3 $ "failed") (-1157 (-286 (-517)))) 126) (((-3 $ "failed") (-1157 (-875 (-349)))) 158) (((-3 $ "failed") (-1157 (-875 (-517)))) 147) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 116) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 105)) (-3390 (($ (-1157 (-286 (-349)))) 133) (($ (-1157 (-286 (-517)))) 122) (($ (-1157 (-875 (-349)))) 154) (($ (-1157 (-875 (-517)))) 143) (($ (-1157 (-377 (-875 (-349))))) 112) (($ (-1157 (-377 (-875 (-517))))) 98)) (-1898 (((-1162) $) 91)) (-2271 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 81) (($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))) 77)))
-(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632))))))) (-1076)) (T -78))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 73) (((-3 $ "failed") (-1157 (-286 (-517)))) 62) (((-3 $ "failed") (-1157 (-875 (-349)))) 95) (((-3 $ "failed") (-1157 (-875 (-517)))) 84) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 51) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 40)) (-3390 (($ (-1157 (-286 (-349)))) 69) (($ (-1157 (-286 (-517)))) 58) (($ (-1157 (-875 (-349)))) 91) (($ (-1157 (-875 (-517)))) 80) (($ (-1157 (-377 (-875 (-349))))) 47) (($ (-1157 (-377 (-875 (-517))))) 33)) (-1898 (((-1162) $) 121)) (-2271 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 110) (($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))) 32)))
-(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632))))))) (-1076)) (T -79))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288) (-2288 (QUOTE X)) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 90) (((-3 $ "failed") (-1157 (-286 (-517)))) 79) (((-3 $ "failed") (-1157 (-875 (-349)))) 112) (((-3 $ "failed") (-1157 (-875 (-517)))) 101) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 68) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 57)) (-3390 (($ (-1157 (-286 (-349)))) 86) (($ (-1157 (-286 (-517)))) 75) (($ (-1157 (-875 (-349)))) 108) (($ (-1157 (-875 (-517)))) 97) (($ (-1157 (-377 (-875 (-349))))) 64) (($ (-1157 (-377 (-875 (-517))))) 50)) (-1898 (((-1162) $) 43)) (-2271 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 32) (($ (-1157 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632)))) 27)))
-(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632))))))) (-1076)) (T -80))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632)))))))
-((-3228 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-875 (-349)))) 125) (((-3 $ "failed") (-623 (-875 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 71)) (-3390 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-875 (-349)))) 121) (($ (-623 (-875 (-517)))) 110) (($ (-623 (-377 (-875 (-349))))) 78) (($ (-623 (-377 (-875 (-517))))) 64)) (-1898 (((-1162) $) 57)) (-2271 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 47) (($ (-623 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632)))) 40)))
-(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632))))))) (-1076)) (T -81))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1076)))))
-(-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288 (QUOTE X) (QUOTE -2011)) (-2288) (-632)))))))
-((-3228 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-875 (-349)))) 124) (((-3 $ "failed") (-623 (-875 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 70)) (-3390 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-875 (-349)))) 120) (($ (-623 (-875 (-517)))) 109) (($ (-623 (-377 (-875 (-349))))) 77) (($ (-623 (-377 (-875 (-517))))) 63)) (-1898 (((-1162) $) 56)) (-2271 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 40) (($ (-623 (-309 (-2288 (QUOTE X)) (-2288) (-632)))) 41)))
-(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288 (QUOTE X)) (-2288) (-632))))))) (-1076)) (T -82))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2288 (QUOTE X)) (-2288) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1076)))))
-(-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288 (QUOTE X)) (-2288) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 99) (((-3 $ "failed") (-1157 (-286 (-517)))) 88) (((-3 $ "failed") (-1157 (-875 (-349)))) 121) (((-3 $ "failed") (-1157 (-875 (-517)))) 110) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 77) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 66)) (-3390 (($ (-1157 (-286 (-349)))) 95) (($ (-1157 (-286 (-517)))) 84) (($ (-1157 (-875 (-349)))) 117) (($ (-1157 (-875 (-517)))) 106) (($ (-1157 (-377 (-875 (-349))))) 73) (($ (-1157 (-377 (-875 (-517))))) 59)) (-1898 (((-1162) $) 45)) (-2271 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 51) (($ (-1157 (-309 (-2288 (QUOTE X)) (-2288) (-632)))) 36)))
-(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X)) (-2288) (-632))))))) (-1076)) (T -83))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE X)) (-2288) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X)) (-2288) (-632)))))))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 74) (((-3 $ "failed") (-1157 (-286 (-517)))) 63) (((-3 $ "failed") (-1157 (-875 (-349)))) 96) (((-3 $ "failed") (-1157 (-875 (-517)))) 85) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 52) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 41)) (-3390 (($ (-1157 (-286 (-349)))) 70) (($ (-1157 (-286 (-517)))) 59) (($ (-1157 (-875 (-349)))) 92) (($ (-1157 (-875 (-517)))) 81) (($ (-1157 (-377 (-875 (-349))))) 48) (($ (-1157 (-377 (-875 (-517))))) 34)) (-1898 (((-1162) $) 122)) (-2271 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 111) (($ (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))) 33)))
-(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632))))))) (-1076)) (T -84))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1076)))))
-(-13 (-410) (-10 -8 (-15 -2271 ($ (-1157 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))))))
-((-3228 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-875 (-349)))) 127) (((-3 $ "failed") (-623 (-875 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 72)) (-3390 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-875 (-349)))) 123) (($ (-623 (-875 (-517)))) 112) (($ (-623 (-377 (-875 (-349))))) 79) (($ (-623 (-377 (-875 (-517))))) 65)) (-1898 (((-1162) $) 58)) (-2271 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 47) (($ (-623 (-309 (-2288 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2288) (-632)))) 43)))
-(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2288) (-632))))))) (-1076)) (T -85))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2288 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2288) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1076)))))
-(-13 (-354) (-10 -8 (-15 -2271 ($ (-623 (-309 (-2288 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2288) (-632)))))))
-((-1898 (((-1162) $) 44)) (-2271 (((-787) $) 38) (($ (-1157 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 32)))
-(((-86 |#1|) (-409) (-1076)) (T -86))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 119) (((-3 $ "failed") (-1158 (-286 (-517)))) 108) (((-3 $ "failed") (-1158 (-876 (-349)))) 141) (((-3 $ "failed") (-1158 (-876 (-517)))) 130) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 98) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 87)) (-3402 (($ (-1158 (-286 (-349)))) 115) (($ (-1158 (-286 (-517)))) 104) (($ (-1158 (-876 (-349)))) 137) (($ (-1158 (-876 (-517)))) 126) (($ (-1158 (-377 (-876 (-349))))) 94) (($ (-1158 (-377 (-876 (-517))))) 80)) (-1885 (((-1163) $) 73)) (-2262 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 66) (($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) 60)))
+(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) (-1077)) (T -72))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 125) (((-3 $ "failed") (-1158 (-286 (-517)))) 114) (((-3 $ "failed") (-1158 (-876 (-349)))) 147) (((-3 $ "failed") (-1158 (-876 (-517)))) 136) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 103) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 92)) (-3402 (($ (-1158 (-286 (-349)))) 121) (($ (-1158 (-286 (-517)))) 110) (($ (-1158 (-876 (-349)))) 143) (($ (-1158 (-876 (-517)))) 132) (($ (-1158 (-377 (-876 (-349))))) 99) (($ (-1158 (-377 (-876 (-517))))) 85)) (-1885 (((-1163) $) 78)) (-2262 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) NIL) (($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632)))) 65)))
+(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632))))))) (-1077) (-1077) (-1077)) (T -73))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077)) (-14 *5 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 129) (((-3 $ "failed") (-1158 (-286 (-517)))) 118) (((-3 $ "failed") (-1158 (-876 (-349)))) 151) (((-3 $ "failed") (-1158 (-876 (-517)))) 140) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 107) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 96)) (-3402 (($ (-1158 (-286 (-349)))) 125) (($ (-1158 (-286 (-517)))) 114) (($ (-1158 (-876 (-349)))) 147) (($ (-1158 (-876 (-517)))) 136) (($ (-1158 (-377 (-876 (-349))))) 103) (($ (-1158 (-377 (-876 (-517))))) 89)) (-1885 (((-1163) $) 82)) (-2262 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) NIL) (($ (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
+(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1077) (-1077) (-1077)) (T -74))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077)) (-14 *5 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632)))))))
+((-3220 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-876 (-349))) 87) (((-3 $ "failed") (-876 (-517))) 92) (((-3 $ "failed") (-377 (-876 (-349)))) 72) (((-3 $ "failed") (-377 (-876 (-517)))) 67)) (-3402 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-876 (-349))) 85) (($ (-876 (-517))) 90) (($ (-377 (-876 (-349)))) 70) (($ (-377 (-876 (-517)))) 64)) (-1885 (((-1163) $) 61)) (-2262 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 53) (($ (-309 (-2279) (-2279 (QUOTE X)) (-632))) 46)))
+(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632)))))) (-1077)) (T -75))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279) (-2279 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1077)))))
+(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632))))))
+((-3220 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-876 (-349))) 51) (((-3 $ "failed") (-876 (-517))) 56) (((-3 $ "failed") (-377 (-876 (-349)))) 36) (((-3 $ "failed") (-377 (-876 (-517)))) 31)) (-3402 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-876 (-349))) 49) (($ (-876 (-517))) 54) (($ (-377 (-876 (-349)))) 34) (($ (-377 (-876 (-517)))) 28)) (-1885 (((-1163) $) 77)) (-2262 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 65) (($ (-309 (-2279) (-2279 (QUOTE X)) (-632))) 27)))
+(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632)))))) (-1077)) (T -76))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279) (-2279 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1077)))))
+(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 84) (((-3 $ "failed") (-1158 (-286 (-517)))) 73) (((-3 $ "failed") (-1158 (-876 (-349)))) 106) (((-3 $ "failed") (-1158 (-876 (-517)))) 95) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 62) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 51)) (-3402 (($ (-1158 (-286 (-349)))) 80) (($ (-1158 (-286 (-517)))) 69) (($ (-1158 (-876 (-349)))) 102) (($ (-1158 (-876 (-517)))) 91) (($ (-1158 (-377 (-876 (-349))))) 58) (($ (-1158 (-377 (-876 (-517))))) 44)) (-1885 (((-1163) $) 122)) (-2262 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 112) (($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) 37)))
+(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))) (-1077)) (T -77))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 137) (((-3 $ "failed") (-1158 (-286 (-517)))) 126) (((-3 $ "failed") (-1158 (-876 (-349)))) 158) (((-3 $ "failed") (-1158 (-876 (-517)))) 147) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 116) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 105)) (-3402 (($ (-1158 (-286 (-349)))) 133) (($ (-1158 (-286 (-517)))) 122) (($ (-1158 (-876 (-349)))) 154) (($ (-1158 (-876 (-517)))) 143) (($ (-1158 (-377 (-876 (-349))))) 112) (($ (-1158 (-377 (-876 (-517))))) 98)) (-1885 (((-1163) $) 91)) (-2262 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 81) (($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) 77)))
+(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) (-1077)) (T -78))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 73) (((-3 $ "failed") (-1158 (-286 (-517)))) 62) (((-3 $ "failed") (-1158 (-876 (-349)))) 95) (((-3 $ "failed") (-1158 (-876 (-517)))) 84) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 51) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 40)) (-3402 (($ (-1158 (-286 (-349)))) 69) (($ (-1158 (-286 (-517)))) 58) (($ (-1158 (-876 (-349)))) 91) (($ (-1158 (-876 (-517)))) 80) (($ (-1158 (-377 (-876 (-349))))) 47) (($ (-1158 (-377 (-876 (-517))))) 33)) (-1885 (((-1163) $) 121)) (-2262 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 110) (($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) 32)))
+(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) (-1077)) (T -79))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 90) (((-3 $ "failed") (-1158 (-286 (-517)))) 79) (((-3 $ "failed") (-1158 (-876 (-349)))) 112) (((-3 $ "failed") (-1158 (-876 (-517)))) 101) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 68) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 57)) (-3402 (($ (-1158 (-286 (-349)))) 86) (($ (-1158 (-286 (-517)))) 75) (($ (-1158 (-876 (-349)))) 108) (($ (-1158 (-876 (-517)))) 97) (($ (-1158 (-377 (-876 (-349))))) 64) (($ (-1158 (-377 (-876 (-517))))) 50)) (-1885 (((-1163) $) 43)) (-2262 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 32) (($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) 27)))
+(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632))))))) (-1077)) (T -80))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))))))
+((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-876 (-349)))) 125) (((-3 $ "failed") (-623 (-876 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 71)) (-3402 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-876 (-349)))) 121) (($ (-623 (-876 (-517)))) 110) (($ (-623 (-377 (-876 (-349))))) 78) (($ (-623 (-377 (-876 (-517))))) 64)) (-1885 (((-1163) $) 57)) (-2262 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 47) (($ (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) 40)))
+(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632))))))) (-1077)) (T -81))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1077)))))
+(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))))))
+((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-876 (-349)))) 124) (((-3 $ "failed") (-623 (-876 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 70)) (-3402 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-876 (-349)))) 120) (($ (-623 (-876 (-517)))) 109) (($ (-623 (-377 (-876 (-349))))) 77) (($ (-623 (-377 (-876 (-517))))) 63)) (-1885 (((-1163) $) 56)) (-2262 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 40) (($ (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) 41)))
+(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632))))))) (-1077)) (T -82))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1077)))))
+(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 99) (((-3 $ "failed") (-1158 (-286 (-517)))) 88) (((-3 $ "failed") (-1158 (-876 (-349)))) 121) (((-3 $ "failed") (-1158 (-876 (-517)))) 110) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 77) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 66)) (-3402 (($ (-1158 (-286 (-349)))) 95) (($ (-1158 (-286 (-517)))) 84) (($ (-1158 (-876 (-349)))) 117) (($ (-1158 (-876 (-517)))) 106) (($ (-1158 (-377 (-876 (-349))))) 73) (($ (-1158 (-377 (-876 (-517))))) 59)) (-1885 (((-1163) $) 45)) (-2262 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 51) (($ (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) 36)))
+(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632))))))) (-1077)) (T -83))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632)))))))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 74) (((-3 $ "failed") (-1158 (-286 (-517)))) 63) (((-3 $ "failed") (-1158 (-876 (-349)))) 96) (((-3 $ "failed") (-1158 (-876 (-517)))) 85) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 52) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 41)) (-3402 (($ (-1158 (-286 (-349)))) 70) (($ (-1158 (-286 (-517)))) 59) (($ (-1158 (-876 (-349)))) 92) (($ (-1158 (-876 (-517)))) 81) (($ (-1158 (-377 (-876 (-349))))) 48) (($ (-1158 (-377 (-876 (-517))))) 34)) (-1885 (((-1163) $) 122)) (-2262 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 111) (($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) 33)))
+(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))) (-1077)) (T -84))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1077)))))
+(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))))))
+((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-876 (-349)))) 127) (((-3 $ "failed") (-623 (-876 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 72)) (-3402 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-876 (-349)))) 123) (($ (-623 (-876 (-517)))) 112) (($ (-623 (-377 (-876 (-349))))) 79) (($ (-623 (-377 (-876 (-517))))) 65)) (-1885 (((-1163) $) 58)) (-2262 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 47) (($ (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632)))) 43)))
+(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632))))))) (-1077)) (T -85))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1077)))))
+(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632)))))))
+((-1885 (((-1163) $) 44)) (-2262 (((-787) $) 38) (($ (-1158 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 32)))
+(((-86 |#1|) (-409) (-1077)) (T -86))
NIL
(-409)
-((-3228 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-875 (-349))) 52) (((-3 $ "failed") (-875 (-517))) 57) (((-3 $ "failed") (-377 (-875 (-349)))) 37) (((-3 $ "failed") (-377 (-875 (-517)))) 32)) (-3390 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-875 (-349))) 50) (($ (-875 (-517))) 55) (($ (-377 (-875 (-349)))) 35) (($ (-377 (-875 (-517)))) 29)) (-1898 (((-1162) $) 88)) (-2271 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 73) (($ (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632))) 28)))
-(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632)))))) (-1076)) (T -87))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1076)))))
-(-13 (-366) (-10 -8 (-15 -2271 ($ (-309 (-2288 (QUOTE X)) (-2288 (QUOTE -2011)) (-632))))))
-((-3109 (((-1157 (-623 |#1|)) (-623 |#1|)) 55)) (-3343 (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 (-583 (-844))))) |#2| (-844)) 45)) (-2908 (((-2 (|:| |minor| (-583 (-844))) (|:| -3781 |#2|) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 |#2|))) |#2| (-844)) 63 (|has| |#1| (-333)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -3343 ((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 (-583 (-844))))) |#2| (-844))) (-15 -3109 ((-1157 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2908 ((-2 (|:| |minor| (-583 (-844))) (|:| -3781 |#2|) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 |#2|))) |#2| (-844))) |%noBranch|)) (-509) (-593 |#1|)) (T -88))
-((-2908 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-844))) (|:| -3781 *3) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1157 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -3016 (-623 *5)) (|:| |vec| (-1157 (-583 (-844)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -3343 ((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 (-583 (-844))))) |#2| (-844))) (-15 -3109 ((-1157 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2908 ((-2 (|:| |minor| (-583 (-844))) (|:| -3781 |#2|) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 |#2|))) |#2| (-844))) |%noBranch|))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2553 ((|#1| $) 35)) (-1851 (((-107) $ (-703)) NIL)) (-1393 (($) NIL T CONST)) (-2704 ((|#1| |#1| $) 30)) (-3394 ((|#1| $) 28)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1803 ((|#1| $) NIL)) (-3241 (($ |#1| $) 31)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-4113 ((|#1| $) 29)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 16)) (-2452 (($) 39)) (-3145 (((-703) $) 26)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 15)) (-2271 (((-787) $) 25 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) NIL)) (-3033 (($ (-583 |#1|)) 37)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 13 (|has| |#1| (-1005)))) (-3535 (((-703) $) 10 (|has| $ (-6 -4192)))))
-(((-89 |#1|) (-13 (-1024 |#1|) (-10 -8 (-15 -3033 ($ (-583 |#1|))))) (-1005)) (T -89))
-((-3033 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-89 *3)))))
-(-13 (-1024 |#1|) (-10 -8 (-15 -3033 ($ (-583 |#1|)))))
-((-1600 (($ $) 10)) (-1613 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -1613 (|#1| |#1|)) (-15 -1600 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -1613 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)))
-((-1576 (($ $) 11)) (-1548 (($ $) 10)) (-1600 (($ $) 9)) (-1613 (($ $) 8)) (-1589 (($ $) 7)) (-1562 (($ $) 6)))
-(((-91) (-1188)) (T -91))
-((-1576 (*1 *1 *1) (-4 *1 (-91))) (-1548 (*1 *1 *1) (-4 *1 (-91))) (-1600 (*1 *1 *1) (-4 *1 (-91))) (-1613 (*1 *1 *1) (-4 *1 (-91))) (-1589 (*1 *1 *1) (-4 *1 (-91))) (-1562 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -1562 ($ $)) (-15 -1589 ($ $)) (-15 -1613 ($ $)) (-15 -1600 ($ $)) (-15 -1548 ($ $)) (-15 -1576 ($ $))))
-((-2119 (((-107) $ $) NIL)) (-2478 (((-349) (-1059) (-349)) 42) (((-349) (-1059) (-1059) (-349)) 41)) (-2463 (((-349) (-349)) 33)) (-2841 (((-1162)) 36)) (-1662 (((-1059) $) NIL)) (-3069 (((-349) (-1059) (-1059)) 46) (((-349) (-1059)) 48)) (-4125 (((-1023) $) NIL)) (-3596 (((-349) (-1059) (-1059)) 47)) (-3551 (((-349) (-1059) (-1059)) 49) (((-349) (-1059)) 50)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
-(((-92) (-13 (-1005) (-10 -7 (-15 -3069 ((-349) (-1059) (-1059))) (-15 -3069 ((-349) (-1059))) (-15 -3551 ((-349) (-1059) (-1059))) (-15 -3551 ((-349) (-1059))) (-15 -3596 ((-349) (-1059) (-1059))) (-15 -2841 ((-1162))) (-15 -2463 ((-349) (-349))) (-15 -2478 ((-349) (-1059) (-349))) (-15 -2478 ((-349) (-1059) (-1059) (-349))) (-6 -4192)))) (T -92))
-((-3069 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3551 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3596 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2841 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-92)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-2478 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1059)) (-5 *1 (-92)))) (-2478 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1059)) (-5 *1 (-92)))))
-(-13 (-1005) (-10 -7 (-15 -3069 ((-349) (-1059) (-1059))) (-15 -3069 ((-349) (-1059))) (-15 -3551 ((-349) (-1059) (-1059))) (-15 -3551 ((-349) (-1059))) (-15 -3596 ((-349) (-1059) (-1059))) (-15 -2841 ((-1162))) (-15 -2463 ((-349) (-349))) (-15 -2478 ((-349) (-1059) (-349))) (-15 -2478 ((-349) (-1059) (-1059) (-349))) (-6 -4192)))
-NIL
-(((-93) (-1188)) (T -93))
-NIL
-(-13 (-10 -7 (-6 -4192) (-6 (-4194 "*")) (-6 -4193) (-6 -4189) (-6 -4187) (-6 -4186) (-6 -4185) (-6 -4190) (-6 -4184) (-6 -4183) (-6 -4182) (-6 -4181) (-6 -4180) (-6 -4188) (-6 -4191) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4179)))
-((-2119 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-2258 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 14)) (-4125 (((-1023) $) NIL)) (-2609 ((|#1| $ |#1|) 11)) (-1842 (($ $ $) NIL)) (-2059 (($ $ $) NIL)) (-2271 (((-787) $) 20)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3619 (($) 8 T CONST)) (-1584 (((-107) $ $) 10)) (-1704 (($ $ $) NIL)) (** (($ $ (-844)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2258 ($ (-1 |#1| |#1|))) (-15 -2258 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2258 ($ (-1 |#1| |#1| (-517)))))) (-963)) (T -94))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-94 *3)))) (-2258 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-94 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-963)) (-5 *1 (-94 *3)))))
-(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2258 ($ (-1 |#1| |#1|))) (-15 -2258 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2258 ($ (-1 |#1| |#1| (-517))))))
-((-2002 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -2002 ((-388 |#2|) |#2| |#2|)) (-15 -2002 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1133 |#1|)) (T -95))
-((-2002 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2002 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -2002 ((-388 |#2|) |#2| |#2|)) (-15 -2002 ((-388 |#2|) |#2| (-583 |#2|))))
-((-2119 (((-107) $ $) 10)))
-(((-96 |#1|) (-10 -8 (-15 -2119 ((-107) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -2119 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-1584 (((-107) $ $) 6)))
-(((-97) (-1188)) (T -97))
-((-2119 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1584 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(-13 (-10 -8 (-15 -1584 ((-107) $ $)) (-15 -2119 ((-107) $ $))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) 13 (|has| $ (-6 -4193)))) (-3027 (($ $ $) NIL (|has| $ (-6 -4193)))) (-2053 (($ $ $) NIL (|has| $ (-6 -4193)))) (-3639 (($ $ (-583 |#1|)) 15)) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "left" $) NIL (|has| $ (-6 -4193))) (($ $ "right" $) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3300 (($ $) 11)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2037 (($ $ |#1| $) 17)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2220 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4100 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3288 (($ $) 10)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) 12)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 9)) (-2452 (($) 16)) (-2609 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1844 (((-517) $ $) NIL)) (-3028 (((-107) $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1885 (($ (-703) |#1|) 19)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -1885 ($ (-703) |#1|)) (-15 -3639 ($ $ (-583 |#1|))) (-15 -2220 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2220 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4100 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4100 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1005)) (T -98))
-((-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1005)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-98 *3)))) (-2220 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1005)))) (-2220 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-98 *3)))) (-4100 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-98 *2)))) (-4100 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-98 *2)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -1885 ($ (-703) |#1|)) (-15 -3639 ($ $ (-583 |#1|))) (-15 -2220 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2220 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4100 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4100 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
-((-2000 ((|#3| |#2| |#2|) 29)) (-2512 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4194 "*"))))) (-1716 ((|#3| |#2| |#2|) 30)) (-4139 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4194 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2000 (|#3| |#2| |#2|)) (-15 -1716 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4194 "*"))) (PROGN (-15 -2512 (|#1| |#2| |#2|)) (-15 -4139 (|#1| |#2|))) |%noBranch|)) (-963) (-1133 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
-((-4139 (*1 *2 *3) (-12 (|has| *2 (-6 (-4194 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-963)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1133 *2)) (-4 *4 (-621 *2 *5 *6)))) (-2512 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4194 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-963)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1133 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1716 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1133 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-2000 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1133 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(-10 -7 (-15 -2000 (|#3| |#2| |#2|)) (-15 -1716 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4194 "*"))) (PROGN (-15 -2512 (|#1| |#2| |#2|)) (-15 -4139 (|#1| |#2|))) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1626 (((-583 (-1076))) 32)) (-2695 (((-2 (|:| |zeros| (-1057 (-199))) (|:| |ones| (-1057 (-199))) (|:| |singularities| (-1057 (-199)))) (-1076)) 35)) (-1584 (((-107) $ $) NIL)))
-(((-100) (-13 (-1005) (-10 -7 (-15 -1626 ((-583 (-1076)))) (-15 -2695 ((-2 (|:| |zeros| (-1057 (-199))) (|:| |ones| (-1057 (-199))) (|:| |singularities| (-1057 (-199)))) (-1076))) (-6 -4192)))) (T -100))
-((-1626 (*1 *2) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-100)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-2 (|:| |zeros| (-1057 (-199))) (|:| |ones| (-1057 (-199))) (|:| |singularities| (-1057 (-199))))) (-5 *1 (-100)))))
-(-13 (-1005) (-10 -7 (-15 -1626 ((-583 (-1076)))) (-15 -2695 ((-2 (|:| |zeros| (-1057 (-199))) (|:| |ones| (-1057 (-199))) (|:| |singularities| (-1057 (-199)))) (-1076))) (-6 -4192)))
-((-3181 (($ (-583 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -3181 (|#1| (-583 |#2|)))) (-102 |#2|) (-1111)) (T -101))
-NIL
-(-10 -8 (-15 -3181 (|#1| (-583 |#2|))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-102 |#1|) (-1188) (-1111)) (T -102))
-((-3181 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-4 *1 (-102 *3)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1111)))) (-3241 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1111)))) (-1803 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1111)))))
-(-13 (-456 |t#1|) (-10 -8 (-6 -4193) (-15 -3181 ($ (-583 |t#1|))) (-15 -4113 (|t#1| $)) (-15 -3241 ($ |t#1| $)) (-15 -1803 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-517) $) NIL (|has| (-517) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-517) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| (-517) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-954 (-517))))) (-3390 (((-517) $) NIL) (((-1076) $) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-517) (-954 (-517)))) (((-517) $) NIL (|has| (-517) (-954 (-517))))) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| (-517) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-517) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| (-517) (-1052)))) (-1952 (((-107) $) NIL (|has| (-517) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-517) (-779)))) (-3310 (($ (-1 (-517) (-517)) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-517) (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2961 (((-517) $) NIL (|has| (-517) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1076)) (-583 (-517))) NIL (|has| (-517) (-478 (-1076) (-517)))) (($ $ (-1076) (-517)) NIL (|has| (-517) (-478 (-1076) (-517))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-517) $) NIL)) (-3359 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-939))) (((-199) $) NIL (|has| (-517) (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1076)) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL) (((-922 2) $) 9)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-4099 (((-703)) NIL)) (-3599 (((-517) $) NIL (|has| (-517) (-502)))) (-1496 (($ (-377 (-517))) 8)) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL (|has| (-517) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1704 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-103) (-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2271 ((-922 2) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -1496 ($ (-377 (-517))))))) (T -103))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-922 2)) (-5 *1 (-103)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
-(-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2271 ((-922 2) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -1496 ($ (-377 (-517))))))
-((-2119 (((-107) $ $) NIL)) (-2225 (((-1023) $ (-1023)) 23)) (-3506 (($ $ (-1059)) 17)) (-1540 (((-3 (-1023) "failed") $) 22)) (-2045 (((-1023) $) 20)) (-2187 (((-1023) $ (-1023)) 25)) (-1212 (((-1023) $) 24)) (-3676 (($ (-358)) NIL) (($ (-358) (-1059)) 16)) (-2989 (((-358) $) NIL)) (-1662 (((-1059) $) NIL)) (-2964 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-2307 (($ $) 18)) (-1584 (((-107) $ $) NIL)))
-(((-104) (-13 (-334 (-358) (-1023)) (-10 -8 (-15 -1540 ((-3 (-1023) "failed") $)) (-15 -1212 ((-1023) $)) (-15 -2187 ((-1023) $ (-1023)))))) (T -104))
-((-1540 (*1 *2 *1) (|partial| -12 (-5 *2 (-1023)) (-5 *1 (-104)))) (-1212 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-104)))) (-2187 (*1 *2 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-104)))))
-(-13 (-334 (-358) (-1023)) (-10 -8 (-15 -1540 ((-3 (-1023) "failed") $)) (-15 -1212 ((-1023) $)) (-15 -2187 ((-1023) $ (-1023)))))
-((-2119 (((-107) $ $) NIL)) (-3623 (($ $) NIL)) (-2294 (($ $ $) NIL)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-1420 (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4193)))) (-2163 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2445 (((-107) $ (-1124 (-517)) (-107)) NIL (|has| $ (-6 -4193))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-1423 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-1522 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-2759 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4193)))) (-2566 (((-107) $ (-517)) NIL)) (-1212 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1005))) (((-517) (-107) $) NIL (|has| (-107) (-1005))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1534 (((-583 (-107)) $) NIL (|has| $ (-6 -4192)))) (-3980 (($ $ $) NIL)) (-2479 (($ $) NIL)) (-3084 (($ $ $) NIL)) (-3213 (($ (-703) (-107)) 8)) (-3171 (($ $ $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL)) (-2662 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-1903 (((-583 (-107)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL)) (-2746 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-1747 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-107) $) NIL (|has| (-517) (-779)))) (-1528 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2846 (($ $ (-107)) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-2891 (((-583 (-107)) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 (($ $ (-1124 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3728 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-4137 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2288 (($ (-583 (-107))) NIL)) (-4110 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2271 (((-787) $) NIL)) (-2852 (($ (-703) (-107)) 9)) (-3602 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-3993 (($ $ $) NIL)) (-2815 (($ $) NIL)) (-3817 (($ $ $) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-3805 (($ $ $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-105) (-13 (-118) (-10 -8 (-15 -2852 ($ (-703) (-107)))))) (T -105))
-((-2852 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
-(-13 (-118) (-10 -8 (-15 -2852 ($ (-703) (-107)))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-106 |#1| |#2|) (-1188) (-963) (-963)) (T -106))
-NIL
-(-13 (-585 |t#1|) (-969 |t#2|) (-10 -7 (-6 -4187) (-6 -4186)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-969 |#2|) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3623 (($ $) 12)) (-2294 (($ $ $) 17)) (-1447 (($) 8 T CONST)) (-4055 (((-107) $) 7)) (-2399 (((-703)) 25)) (-2202 (($) 31)) (-3980 (($ $ $) 15)) (-2479 (($ $) 10)) (-3084 (($ $ $) 18)) (-3171 (($ $ $) 19)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3072 (((-844) $) 30)) (-1662 (((-1059) $) NIL)) (-2812 (($ (-844)) 29)) (-2280 (($ $ $) 21)) (-4125 (((-1023) $) NIL)) (-2396 (($) 9 T CONST)) (-3359 (((-493) $) 37)) (-2271 (((-787) $) 40)) (-3993 (($ $ $) 13)) (-2815 (($ $) 11)) (-3817 (($ $ $) 16)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 20)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 23)) (-3805 (($ $ $) 14)))
-(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1447 ($) -1385) (-15 -2396 ($) -1385) (-15 -2815 ($ $)) (-15 -2479 ($ $)) (-15 -3993 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -2294 ($ $ $)) (-15 -3171 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -2280 ($ $ $)) (-15 -4055 ((-107) $))))) (T -107))
-((-1447 (*1 *1) (-5 *1 (-107))) (-2396 (*1 *1) (-5 *1 (-107))) (-2815 (*1 *1 *1) (-5 *1 (-107))) (-2479 (*1 *1 *1) (-5 *1 (-107))) (-3993 (*1 *1 *1 *1) (-5 *1 (-107))) (-3980 (*1 *1 *1 *1) (-5 *1 (-107))) (-2294 (*1 *1 *1 *1) (-5 *1 (-107))) (-3171 (*1 *1 *1 *1) (-5 *1 (-107))) (-3084 (*1 *1 *1 *1) (-5 *1 (-107))) (-2280 (*1 *1 *1 *1) (-5 *1 (-107))) (-4055 (*1 *1 *1) (-5 *1 (-107))))
-(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1447 ($) -1385) (-15 -2396 ($) -1385) (-15 -2815 ($ $)) (-15 -2479 ($ $)) (-15 -3993 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -2294 ($ $ $)) (-15 -3171 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -2280 ($ $ $)) (-15 -4055 ((-107) $))))
-((-2449 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-2361 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-1703 (((-109) |#1|) 54 (|has| |#1| (-779)))) (-1571 (((-3 |#1| "failed") (-109)) 49 (|has| |#1| (-779)))))
-(((-108 |#1|) (-10 -7 (-15 -2449 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -2449 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -2449 ((-109) (-109) (-1 |#1| |#1|))) (-15 -2449 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -2361 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2361 ((-109) (-109) (-1 |#1| |#1|))) (-15 -2361 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1703 ((-109) |#1|)) (-15 -1571 ((-3 |#1| "failed") (-109)))) |%noBranch|)) (-1005)) (T -108))
-((-1571 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1005)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-1703 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1005)))) (-2361 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1005)))) (-2361 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005)) (-5 *1 (-108 *4)))) (-2361 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1005)) (-5 *1 (-108 *4)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1005)))) (-2449 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005)) (-5 *1 (-108 *4)))) (-2449 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1005)) (-5 *1 (-108 *4)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1005)))))
-(-10 -7 (-15 -2449 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -2449 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -2449 ((-109) (-109) (-1 |#1| |#1|))) (-15 -2449 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -2361 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2361 ((-109) (-109) (-1 |#1| |#1|))) (-15 -2361 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1703 ((-109) |#1|)) (-15 -1571 ((-3 |#1| "failed") (-109)))) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-3077 (((-703) $) 68) (($ $ (-703)) 30)) (-4103 (((-107) $) 32)) (-3897 (($ $ (-1059) (-706)) 26)) (-3122 (($ $ (-44 (-1059) (-706))) 13)) (-2447 (((-3 (-706) "failed") $ (-1059)) 24)) (-3156 (((-44 (-1059) (-706)) $) 12)) (-1934 (($ (-1076)) 15) (($ (-1076) (-703)) 20)) (-2377 (((-107) $) 31)) (-1489 (((-107) $) 33)) (-2989 (((-1076) $) 8)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-2066 (((-107) $ (-1076)) 10)) (-1810 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-4125 (((-1023) $) NIL)) (-2657 (((-107) $ (-1059)) 29)) (-3718 (($ $ (-1 (-107) $ $)) 35)) (-1757 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-1436 (($ $ (-1059)) 45)) (-2462 (($ $) 61)) (-1352 (($ $ (-1 (-107) $ $)) 36)) (-2271 (((-787) $) 48)) (-3123 (($ $ (-1059)) 27)) (-3965 (((-3 (-703) "failed") $) 56)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 67)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 73)))
-(((-109) (-13 (-779) (-10 -8 (-15 -2989 ((-1076) $)) (-15 -3156 ((-44 (-1059) (-706)) $)) (-15 -2462 ($ $)) (-15 -1934 ($ (-1076))) (-15 -1934 ($ (-1076) (-703))) (-15 -3965 ((-3 (-703) "failed") $)) (-15 -2377 ((-107) $)) (-15 -4103 ((-107) $)) (-15 -1489 ((-107) $)) (-15 -3077 ((-703) $)) (-15 -3077 ($ $ (-703))) (-15 -3718 ($ $ (-1 (-107) $ $))) (-15 -1352 ($ $ (-1 (-107) $ $))) (-15 -1757 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1757 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1757 ($ $ (-1 (-787) (-787)))) (-15 -1810 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1810 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -2066 ((-107) $ (-1076))) (-15 -2657 ((-107) $ (-1059))) (-15 -3123 ($ $ (-1059))) (-15 -1436 ($ $ (-1059))) (-15 -2447 ((-3 (-706) "failed") $ (-1059))) (-15 -3897 ($ $ (-1059) (-706))) (-15 -3122 ($ $ (-44 (-1059) (-706))))))) (T -109))
-((-2989 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-109)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-44 (-1059) (-706))) (-5 *1 (-109)))) (-2462 (*1 *1 *1) (-5 *1 (-109))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-109)))) (-1934 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-703)) (-5 *1 (-109)))) (-3965 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1352 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1757 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1810 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2657 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3123 (*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-109)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-109)))) (-2447 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-706)) (-5 *1 (-109)))) (-3897 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-706)) (-5 *1 (-109)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1059) (-706))) (-5 *1 (-109)))))
-(-13 (-779) (-10 -8 (-15 -2989 ((-1076) $)) (-15 -3156 ((-44 (-1059) (-706)) $)) (-15 -2462 ($ $)) (-15 -1934 ($ (-1076))) (-15 -1934 ($ (-1076) (-703))) (-15 -3965 ((-3 (-703) "failed") $)) (-15 -2377 ((-107) $)) (-15 -4103 ((-107) $)) (-15 -1489 ((-107) $)) (-15 -3077 ((-703) $)) (-15 -3077 ($ $ (-703))) (-15 -3718 ($ $ (-1 (-107) $ $))) (-15 -1352 ($ $ (-1 (-107) $ $))) (-15 -1757 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1757 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1757 ($ $ (-1 (-787) (-787)))) (-15 -1810 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1810 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -2066 ((-107) $ (-1076))) (-15 -2657 ((-107) $ (-1059))) (-15 -3123 ($ $ (-1059))) (-15 -1436 ($ $ (-1059))) (-15 -2447 ((-3 (-706) "failed") $ (-1059))) (-15 -3897 ($ $ (-1059) (-706))) (-15 -3122 ($ $ (-44 (-1059) (-706))))))
-((-1870 (((-517) |#2|) 36)))
-(((-110 |#1| |#2|) (-10 -7 (-15 -1870 ((-517) |#2|))) (-13 (-333) (-954 (-377 (-517)))) (-1133 |#1|)) (T -110))
-((-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-954 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -1870 ((-517) |#2|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ (-517)) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-1392 (($ (-1072 (-517)) (-517)) NIL)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1546 (($ $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1395 (((-703) $) NIL)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1673 (((-517)) NIL)) (-1272 (((-517) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2671 (($ $ (-517)) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1192 (((-1057 (-517)) $) NIL)) (-3624 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL)) (-2204 (((-517) $ (-517)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+((-3220 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-876 (-349))) 52) (((-3 $ "failed") (-876 (-517))) 57) (((-3 $ "failed") (-377 (-876 (-349)))) 37) (((-3 $ "failed") (-377 (-876 (-517)))) 32)) (-3402 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-876 (-349))) 50) (($ (-876 (-517))) 55) (($ (-377 (-876 (-349)))) 35) (($ (-377 (-876 (-517)))) 29)) (-1885 (((-1163) $) 88)) (-2262 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 73) (($ (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))) 28)))
+(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))))) (-1077)) (T -87))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1077)))))
+(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))
+((-1699 (((-1158 (-623 |#1|)) (-623 |#1|)) 55)) (-1326 (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 (-583 (-845))))) |#2| (-845)) 45)) (-2867 (((-2 (|:| |minor| (-583 (-845))) (|:| -3817 |#2|) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 |#2|))) |#2| (-845)) 63 (|has| |#1| (-333)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1326 ((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 (-583 (-845))))) |#2| (-845))) (-15 -1699 ((-1158 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2867 ((-2 (|:| |minor| (-583 (-845))) (|:| -3817 |#2|) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 |#2|))) |#2| (-845))) |%noBranch|)) (-509) (-593 |#1|)) (T -88))
+((-2867 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-845))) (|:| -3817 *3) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5)))) (-1699 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-1326 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 (-583 (-845)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -1326 ((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 (-583 (-845))))) |#2| (-845))) (-15 -1699 ((-1158 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2867 ((-2 (|:| |minor| (-583 (-845))) (|:| -3817 |#2|) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 |#2|))) |#2| (-845))) |%noBranch|))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2544 ((|#1| $) 35)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2098 ((|#1| |#1| $) 30)) (-3409 ((|#1| $) 28)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) NIL)) (-3439 (($ |#1| $) 31)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1551 ((|#1| $) 29)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 16)) (-2679 (($) 39)) (-3137 (((-703) $) 26)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 15)) (-2262 (((-787) $) 25 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) NIL)) (-1927 (($ (-583 |#1|)) 37)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 13 (|has| |#1| (-1006)))) (-3573 (((-703) $) 10 (|has| $ (-6 -4195)))))
+(((-89 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -1927 ($ (-583 |#1|))))) (-1006)) (T -89))
+((-1927 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-89 *3)))))
+(-13 (-1025 |#1|) (-10 -8 (-15 -1927 ($ (-583 |#1|)))))
+((-1588 (($ $) 10)) (-1601 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)))
+((-1564 (($ $) 11)) (-1536 (($ $) 10)) (-1588 (($ $) 9)) (-1601 (($ $) 8)) (-1577 (($ $) 7)) (-1550 (($ $) 6)))
+(((-91) (-1189)) (T -91))
+((-1564 (*1 *1 *1) (-4 *1 (-91))) (-1536 (*1 *1 *1) (-4 *1 (-91))) (-1588 (*1 *1 *1) (-4 *1 (-91))) (-1601 (*1 *1 *1) (-4 *1 (-91))) (-1577 (*1 *1 *1) (-4 *1 (-91))) (-1550 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -1550 ($ $)) (-15 -1577 ($ $)) (-15 -1601 ($ $)) (-15 -1588 ($ $)) (-15 -1536 ($ $)) (-15 -1564 ($ $))))
+((-2105 (((-107) $ $) NIL)) (-3023 (((-349) (-1060) (-349)) 42) (((-349) (-1060) (-1060) (-349)) 41)) (-3073 (((-349) (-349)) 33)) (-3611 (((-1163)) 36)) (-3232 (((-1060) $) NIL)) (-2019 (((-349) (-1060) (-1060)) 46) (((-349) (-1060)) 48)) (-4130 (((-1024) $) NIL)) (-1285 (((-349) (-1060) (-1060)) 47)) (-1919 (((-349) (-1060) (-1060)) 49) (((-349) (-1060)) 50)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
+(((-92) (-13 (-1006) (-10 -7 (-15 -2019 ((-349) (-1060) (-1060))) (-15 -2019 ((-349) (-1060))) (-15 -1919 ((-349) (-1060) (-1060))) (-15 -1919 ((-349) (-1060))) (-15 -1285 ((-349) (-1060) (-1060))) (-15 -3611 ((-1163))) (-15 -3073 ((-349) (-349))) (-15 -3023 ((-349) (-1060) (-349))) (-15 -3023 ((-349) (-1060) (-1060) (-349))) (-6 -4195)))) (T -92))
+((-2019 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1919 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1285 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3611 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-92)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-3023 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92)))) (-3023 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92)))))
+(-13 (-1006) (-10 -7 (-15 -2019 ((-349) (-1060) (-1060))) (-15 -2019 ((-349) (-1060))) (-15 -1919 ((-349) (-1060) (-1060))) (-15 -1919 ((-349) (-1060))) (-15 -1285 ((-349) (-1060) (-1060))) (-15 -3611 ((-1163))) (-15 -3073 ((-349) (-349))) (-15 -3023 ((-349) (-1060) (-349))) (-15 -3023 ((-349) (-1060) (-1060) (-349))) (-6 -4195)))
+NIL
+(((-93) (-1189)) (T -93))
+NIL
+(-13 (-10 -7 (-6 -4195) (-6 (-4197 "*")) (-6 -4196) (-6 -4192) (-6 -4190) (-6 -4189) (-6 -4188) (-6 -4193) (-6 -4187) (-6 -4186) (-6 -4185) (-6 -4184) (-6 -4183) (-6 -4191) (-6 -4194) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4182)))
+((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-2114 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 14)) (-4130 (((-1024) $) NIL)) (-2612 ((|#1| $ |#1|) 11)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 20)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 8 T CONST)) (-1572 (((-107) $ $) 10)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2114 ($ (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1| (-517)))))) (-964)) (T -94))
+((-2114 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3)))) (-2114 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-94 *3)))))
+(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2114 ($ (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1| (-517))))))
+((-2063 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -2063 ((-388 |#2|) |#2| |#2|)) (-15 -2063 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1134 |#1|)) (T -95))
+((-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2063 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -2063 ((-388 |#2|) |#2| |#2|)) (-15 -2063 ((-388 |#2|) |#2| (-583 |#2|))))
+((-2105 (((-107) $ $) 10)))
+(((-96 |#1|) (-10 -8 (-15 -2105 ((-107) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -2105 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1572 (((-107) $ $) 6)))
+(((-97) (-1189)) (T -97))
+((-2105 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
+(-13 (-10 -8 (-15 -1572 ((-107) $ $)) (-15 -2105 ((-107) $ $))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) 13 (|has| $ (-6 -4196)))) (-3149 (($ $ $) NIL (|has| $ (-6 -4196)))) (-4174 (($ $ $) NIL (|has| $ (-6 -4196)))) (-1502 (($ $ (-583 |#1|)) 15)) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 11)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 17)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-3650 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1906 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 10)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) 12)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 9)) (-2679 (($) 16)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3899 (($ (-703) |#1|) 19)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -3899 ($ (-703) |#1|)) (-15 -1502 ($ $ (-583 |#1|))) (-15 -3650 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3650 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1006)) (T -98))
+((-3899 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1006)))) (-1502 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3)))) (-3650 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1006)))) (-3650 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3)))) (-1906 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-98 *2)))) (-1906 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-98 *2)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -3899 ($ (-703) |#1|)) (-15 -1502 ($ $ (-583 |#1|))) (-15 -3650 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3650 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
+((-1522 ((|#3| |#2| |#2|) 29)) (-3960 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4197 "*"))))) (-1879 ((|#3| |#2| |#2|) 30)) (-1466 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4197 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1522 (|#3| |#2| |#2|)) (-15 -1879 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4197 "*"))) (PROGN (-15 -3960 (|#1| |#2| |#2|)) (-15 -1466 (|#1| |#2|))) |%noBranch|)) (-964) (-1134 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
+((-1466 (*1 *2 *3) (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3960 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-1522 (*1 *2 *3 *3) (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(-10 -7 (-15 -1522 (|#3| |#2| |#2|)) (-15 -1879 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4197 "*"))) (PROGN (-15 -3960 (|#1| |#2| |#2|)) (-15 -1466 (|#1| |#2|))) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3079 (((-583 (-1077))) 32)) (-2229 (((-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199)))) (-1077)) 35)) (-1572 (((-107) $ $) NIL)))
+(((-100) (-13 (-1006) (-10 -7 (-15 -3079 ((-583 (-1077)))) (-15 -2229 ((-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199)))) (-1077))) (-6 -4195)))) (T -100))
+((-3079 (*1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-100)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199))))) (-5 *1 (-100)))))
+(-13 (-1006) (-10 -7 (-15 -3079 ((-583 (-1077)))) (-15 -2229 ((-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199)))) (-1077))) (-6 -4195)))
+((-2729 (($ (-583 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -2729 (|#1| (-583 |#2|)))) (-102 |#2|) (-1112)) (T -101))
+NIL
+(-10 -8 (-15 -2729 (|#1| (-583 |#2|))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-102 |#1|) (-1189) (-1112)) (T -102))
+((-2729 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-102 *3)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))) (-3439 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4196) (-15 -2729 ($ (-583 |t#1|))) (-15 -1551 (|t#1| $)) (-15 -3439 ($ |t#1| $)) (-15 -2015 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-517) $) NIL (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2713 (((-517) $) NIL (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL) (((-923 2) $) 9)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-517) $) NIL (|has| (-517) (-502)))) (-2799 (($ (-377 (-517))) 8)) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1692 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-103) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 2) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2799 ($ (-377 (-517))))))) (T -103))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-923 2)) (-5 *1 (-103)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
+(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 2) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2799 ($ (-377 (-517))))))
+((-2105 (((-107) $ $) NIL)) (-3188 (((-1024) $ (-1024)) 23)) (-3010 (($ $ (-1060)) 17)) (-1774 (((-3 (-1024) "failed") $) 22)) (-2872 (((-1024) $) 20)) (-3235 (((-1024) $ (-1024)) 25)) (-1210 (((-1024) $) 24)) (-3723 (($ (-358)) NIL) (($ (-358) (-1060)) 16)) (-2981 (((-358) $) NIL)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3604 (($ $) 18)) (-1572 (((-107) $ $) NIL)))
+(((-104) (-13 (-334 (-358) (-1024)) (-10 -8 (-15 -1774 ((-3 (-1024) "failed") $)) (-15 -1210 ((-1024) $)) (-15 -3235 ((-1024) $ (-1024)))))) (T -104))
+((-1774 (*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-104)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-104)))) (-3235 (*1 *2 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-104)))))
+(-13 (-334 (-358) (-1024)) (-10 -8 (-15 -1774 ((-3 (-1024) "failed") $)) (-15 -1210 ((-1024) $)) (-15 -3235 ((-1024) $ (-1024)))))
+((-2105 (((-107) $ $) NIL)) (-3670 (($ $) NIL)) (-2284 (($ $ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-107) $ (-1125 (-517)) (-107)) NIL (|has| $ (-6 -4196))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1423 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1510 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2750 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4196)))) (-2557 (((-107) $ (-517)) NIL)) (-1210 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1006))) (((-517) (-107) $) NIL (|has| (-107) (-1006))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1525 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-4011 (($ $ $) NIL)) (-2479 (($ $) NIL)) (-3243 (($ $ $) NIL)) (-3204 (($ (-703) (-107)) 8)) (-1353 (($ $ $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL)) (-3824 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3687 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL)) (-2737 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-107) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2837 (($ $ (-107)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2862 (((-583 (-107)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (($ $ (-1125 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-4140 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2279 (($ (-583 (-107))) NIL)) (-4117 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2262 (((-787) $) NIL)) (-2076 (($ (-703) (-107)) 9)) (-1272 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-4024 (($ $ $) NIL)) (-2806 (($ $) NIL)) (-3849 (($ $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-3838 (($ $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-105) (-13 (-118) (-10 -8 (-15 -2076 ($ (-703) (-107)))))) (T -105))
+((-2076 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
+(-13 (-118) (-10 -8 (-15 -2076 ($ (-703) (-107)))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-106 |#1| |#2|) (-1189) (-964) (-964)) (T -106))
+NIL
+(-13 (-585 |t#1|) (-970 |t#2|) (-10 -7 (-6 -4190) (-6 -4189)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-970 |#2|) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-3670 (($ $) 12)) (-2284 (($ $ $) 17)) (-1434 (($) 8 T CONST)) (-4069 (((-107) $) 7)) (-2390 (((-703)) 26)) (-2192 (($) 32)) (-4011 (($ $ $) 15)) (-2479 (($ $) 10)) (-3243 (($ $ $) 18)) (-1353 (($ $ $) 19)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-4161 (((-845) $) 31)) (-3232 (((-1060) $) NIL)) (-2803 (($ (-845)) 30)) (-2272 (($ $ $) 21)) (-4130 (((-1024) $) NIL)) (-2387 (($) 9 T CONST)) (-1840 (($ $ $) 22)) (-3367 (((-493) $) 38)) (-2262 (((-787) $) 41)) (-4024 (($ $ $) 13)) (-2806 (($ $) 11)) (-3849 (($ $ $) 16)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 24)) (-3838 (($ $ $) 14)))
+(((-107) (-13 (-779) (-338) (-598) (-888) (-558 (-493)) (-10 -8 (-15 -1434 ($) -1373) (-15 -2387 ($) -1373) (-15 -2806 ($ $)) (-15 -2284 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -4069 ((-107) $))))) (T -107))
+((-1434 (*1 *1) (-5 *1 (-107))) (-2387 (*1 *1) (-5 *1 (-107))) (-2806 (*1 *1 *1) (-5 *1 (-107))) (-2284 (*1 *1 *1 *1) (-5 *1 (-107))) (-1353 (*1 *1 *1 *1) (-5 *1 (-107))) (-3243 (*1 *1 *1 *1) (-5 *1 (-107))) (-4069 (*1 *1 *1) (-5 *1 (-107))))
+(-13 (-779) (-338) (-598) (-888) (-558 (-493)) (-10 -8 (-15 -1434 ($) -1373) (-15 -2387 ($) -1373) (-15 -2806 ($ $)) (-15 -2284 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -4069 ((-107) $))))
+((-3490 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-1595 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-2572 (((-109) |#1|) 54 (|has| |#1| (-779)))) (-2591 (((-3 |#1| "failed") (-109)) 49 (|has| |#1| (-779)))))
+(((-108 |#1|) (-10 -7 (-15 -3490 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3490 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3490 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3490 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1595 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1595 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1595 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2572 ((-109) |#1|)) (-15 -2591 ((-3 |#1| "failed") (-109)))) |%noBranch|)) (-1006)) (T -108))
+((-2591 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1006)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-2572 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1006)))) (-1595 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1006)))) (-1595 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-1595 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-3490 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1006)))) (-3490 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-3490 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-3490 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1006)))))
+(-10 -7 (-15 -3490 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3490 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3490 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3490 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1595 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1595 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1595 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2572 ((-109) |#1|)) (-15 -2591 ((-3 |#1| "failed") (-109)))) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-3546 (((-703) $) 68) (($ $ (-703)) 30)) (-3965 (((-107) $) 32)) (-3636 (($ $ (-1060) (-706)) 26)) (-1215 (($ $ (-44 (-1060) (-706))) 13)) (-2438 (((-3 (-706) "failed") $ (-1060)) 24)) (-3148 (((-44 (-1060) (-706)) $) 12)) (-1325 (($ (-1077)) 15) (($ (-1077) (-703)) 20)) (-2898 (((-107) $) 31)) (-3485 (((-107) $) 33)) (-2981 (((-1077) $) 8)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-3731 (((-107) $ (-1077)) 10)) (-1797 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-4130 (((-1024) $) NIL)) (-3316 (((-107) $ (-1060)) 29)) (-2665 (($ $ (-1 (-107) $ $)) 35)) (-1744 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-2919 (($ $ (-1060)) 45)) (-2453 (($ $) 61)) (-1267 (($ $ (-1 (-107) $ $)) 36)) (-2262 (((-787) $) 48)) (-3125 (($ $ (-1060)) 27)) (-2949 (((-3 (-703) "failed") $) 56)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 67)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 73)))
+(((-109) (-13 (-779) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -3148 ((-44 (-1060) (-706)) $)) (-15 -2453 ($ $)) (-15 -1325 ($ (-1077))) (-15 -1325 ($ (-1077) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -2898 ((-107) $)) (-15 -3965 ((-107) $)) (-15 -3485 ((-107) $)) (-15 -3546 ((-703) $)) (-15 -3546 ($ $ (-703))) (-15 -2665 ($ $ (-1 (-107) $ $))) (-15 -1267 ($ $ (-1 (-107) $ $))) (-15 -1744 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1744 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1744 ($ $ (-1 (-787) (-787)))) (-15 -1797 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1797 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -3731 ((-107) $ (-1077))) (-15 -3316 ((-107) $ (-1060))) (-15 -3125 ($ $ (-1060))) (-15 -2919 ($ $ (-1060))) (-15 -2438 ((-3 (-706) "failed") $ (-1060))) (-15 -3636 ($ $ (-1060) (-706))) (-15 -1215 ($ $ (-44 (-1060) (-706))))))) (T -109))
+((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-109)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109)))) (-2453 (*1 *1 *1) (-5 *1 (-109))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-109)))) (-1325 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *1 (-109)))) (-2949 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1744 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1797 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1797 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3316 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3125 (*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109)))) (-2919 (*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109)))) (-2438 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-706)) (-5 *1 (-109)))) (-3636 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1215 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109)))))
+(-13 (-779) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -3148 ((-44 (-1060) (-706)) $)) (-15 -2453 ($ $)) (-15 -1325 ($ (-1077))) (-15 -1325 ($ (-1077) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -2898 ((-107) $)) (-15 -3965 ((-107) $)) (-15 -3485 ((-107) $)) (-15 -3546 ((-703) $)) (-15 -3546 ($ $ (-703))) (-15 -2665 ($ $ (-1 (-107) $ $))) (-15 -1267 ($ $ (-1 (-107) $ $))) (-15 -1744 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1744 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1744 ($ $ (-1 (-787) (-787)))) (-15 -1797 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1797 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -3731 ((-107) $ (-1077))) (-15 -3316 ((-107) $ (-1060))) (-15 -3125 ($ $ (-1060))) (-15 -2919 ($ $ (-1060))) (-15 -2438 ((-3 (-706) "failed") $ (-1060))) (-15 -3636 ($ $ (-1060) (-706))) (-15 -1215 ($ $ (-44 (-1060) (-706))))))
+((-2706 (((-517) |#2|) 36)))
+(((-110 |#1| |#2|) (-10 -7 (-15 -2706 ((-517) |#2|))) (-13 (-333) (-955 (-377 (-517)))) (-1134 |#1|)) (T -110))
+((-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-955 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -2706 ((-517) |#2|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $ (-517)) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2902 (($ (-1073 (-517)) (-517)) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4021 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-3250 (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 (((-517)) NIL)) (-3907 (((-517) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3175 (($ $ (-517)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-1058 (-517)) $) NIL)) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2194 (((-517) $ (-517)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
(((-111 |#1|) (-793 |#1|) (-517)) (T -111))
NIL
(-793 |#1|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-111 |#1|) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-111 |#1|) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| (-111 |#1|) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-954 (-517))))) (-3390 (((-111 |#1|) $) NIL) (((-1076) $) NIL (|has| (-111 |#1|) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-954 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-954 (-517))))) (-1336 (($ $) NIL) (($ (-517) $) NIL)) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-111 |#1|))) (|:| |vec| (-1157 (-111 |#1|)))) (-623 $) (-1157 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-111 |#1|) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-111 |#1|) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-111 |#1|) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-111 |#1|) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1052)))) (-1952 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-4084 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3310 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-111 |#1|) (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2961 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-111 |#1|) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-111 |#1|) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1076)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1076) (-111 |#1|)))) (($ $ (-1076) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1076) (-111 |#1|))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1076)) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-111 |#1|) $) NIL)) (-3359 (((-815 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-939))) (((-199) $) NIL (|has| (-111 |#1|) (-939)))) (-1234 (((-157 (-377 (-517))) $) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1076)) NIL (|has| (-111 |#1|) (-954 (-1076))))) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-832))) (|has| (-111 |#1|) (-132))))) (-4099 (((-703)) NIL)) (-3599 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2074 (((-107) $ $) NIL)) (-2204 (((-377 (-517)) $ (-517)) NIL)) (-2376 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1076)) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-111 |#1|) (-823 (-1076)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1704 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
-(((-112 |#1|) (-13 (-911 (-111 |#1|)) (-10 -8 (-15 -2204 ((-377 (-517)) $ (-517))) (-15 -1234 ((-157 (-377 (-517))) $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $)))) (-517)) (T -112))
-((-2204 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-1336 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
-(-13 (-911 (-111 |#1|)) (-10 -8 (-15 -2204 ((-377 (-517)) $ (-517))) (-15 -1234 ((-157 (-377 (-517))) $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $))))
-((-2445 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3657 (((-583 $) $) 27)) (-2441 (((-107) $ $) 32)) (-3925 (((-107) |#2| $) 36)) (-1939 (((-583 |#2|) $) 22)) (-3017 (((-107) $) 16)) (-2609 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3028 (((-107) $) 45)) (-2271 (((-787) $) 41)) (-2199 (((-583 $) $) 28)) (-1584 (((-107) $ $) 34)) (-3535 (((-703) $) 43)))
-(((-113 |#1| |#2|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -2445 (|#1| |#1| "right" |#1|)) (-15 -2445 (|#1| |#1| "left" |#1|)) (-15 -2609 (|#1| |#1| "right")) (-15 -2609 (|#1| |#1| "left")) (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -2441 ((-107) |#1| |#1|)) (-15 -1939 ((-583 |#2|) |#1|)) (-15 -3028 ((-107) |#1|)) (-15 -2609 (|#2| |#1| "value")) (-15 -3017 ((-107) |#1|)) (-15 -3657 ((-583 |#1|) |#1|)) (-15 -2199 ((-583 |#1|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3925 ((-107) |#2| |#1|)) (-15 -3535 ((-703) |#1|))) (-114 |#2|) (-1111)) (T -113))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -2445 (|#1| |#1| "right" |#1|)) (-15 -2445 (|#1| |#1| "left" |#1|)) (-15 -2609 (|#1| |#1| "right")) (-15 -2609 (|#1| |#1| "left")) (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -2441 ((-107) |#1| |#1|)) (-15 -1939 ((-583 |#2|) |#1|)) (-15 -3028 ((-107) |#1|)) (-15 -2609 (|#2| |#1| "value")) (-15 -3017 ((-107) |#1|)) (-15 -3657 ((-583 |#1|) |#1|)) (-15 -2199 ((-583 |#1|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3925 ((-107) |#2| |#1|)) (-15 -3535 ((-703) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-3027 (($ $ $) 52 (|has| $ (-6 -4193)))) (-2053 (($ $ $) 54 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193))) (($ $ "left" $) 55 (|has| $ (-6 -4193))) (($ $ "right" $) 53 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-1393 (($) 7 T CONST)) (-3300 (($ $) 57)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-3288 (($ $) 59)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1844 (((-517) $ $) 44)) (-3028 (((-107) $) 46)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-114 |#1|) (-1188) (-1111)) (T -114))
-((-3288 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1111)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1111)))) (-3300 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1111)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1111)))) (-2445 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4193)) (-4 *1 (-114 *3)) (-4 *3 (-1111)))) (-2053 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-114 *2)) (-4 *2 (-1111)))) (-2445 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4193)) (-4 *1 (-114 *3)) (-4 *3 (-1111)))) (-3027 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-114 *2)) (-4 *2 (-1111)))))
-(-13 (-928 |t#1|) (-10 -8 (-15 -3288 ($ $)) (-15 -2609 ($ $ "left")) (-15 -3300 ($ $)) (-15 -2609 ($ $ "right")) (IF (|has| $ (-6 -4193)) (PROGN (-15 -2445 ($ $ "left" $)) (-15 -2053 ($ $ $)) (-15 -2445 ($ $ "right" $)) (-15 -3027 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-928 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-4160 (((-107) |#1|) 24)) (-4080 (((-703) (-703)) 23) (((-703)) 22)) (-1273 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
-(((-115 |#1|) (-10 -7 (-15 -1273 ((-107) |#1|)) (-15 -1273 ((-107) |#1| (-107))) (-15 -4080 ((-703))) (-15 -4080 ((-703) (-703))) (-15 -4160 ((-107) |#1|))) (-1133 (-517))) (T -115))
-((-4160 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))) (-4080 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))) (-1273 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))) (-1273 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))))
-(-10 -7 (-15 -1273 ((-107) |#1|)) (-15 -1273 ((-107) |#1| (-107))) (-15 -4080 ((-703))) (-15 -4080 ((-703) (-703))) (-15 -4160 ((-107) |#1|)))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) 15)) (-1378 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-3027 (($ $ $) 18 (|has| $ (-6 -4193)))) (-2053 (($ $ $) 20 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "left" $) NIL (|has| $ (-6 -4193))) (($ $ "right" $) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3300 (($ $) 17)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2037 (($ $ |#1| $) 23)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3288 (($ $) 19)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3653 (($ |#1| $) 24)) (-3241 (($ |#1| $) 10)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 14)) (-2452 (($) 8)) (-2609 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1844 (((-517) $ $) NIL)) (-3028 (((-107) $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1572 (($ (-583 |#1|)) 12)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4193) (-6 -4192) (-15 -1572 ($ (-583 |#1|))) (-15 -3241 ($ |#1| $)) (-15 -3653 ($ |#1| $)) (-15 -1378 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
-((-1572 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-3241 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-3653 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1378 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4193) (-6 -4192) (-15 -1572 ($ (-583 |#1|))) (-15 -3241 ($ |#1| $)) (-15 -3653 ($ |#1| $)) (-15 -1378 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3623 (($ $) 14)) (-2479 (($ $) 11)) (-3084 (($ $ $) 24)) (-3171 (($ $ $) 22)) (-2815 (($ $) 12)) (-3817 (($ $ $) 20)) (-3805 (($ $ $) 18)))
-(((-117 |#1|) (-10 -8 (-15 -3084 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3817 (|#1| |#1| |#1|))) (-118)) (T -117))
-NIL
-(-10 -8 (-15 -3084 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3817 (|#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3623 (($ $) 104)) (-2294 (($ $ $) 25)) (-2034 (((-1162) $ (-517) (-517)) 67 (|has| $ (-6 -4193)))) (-2166 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-1420 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4193)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4193)))) (-2163 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-1851 (((-107) $ (-703)) 38)) (-2445 (((-107) $ (-1124 (-517)) (-107)) 89 (|has| $ (-6 -4193))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4192)))) (-1393 (($) 39 T CONST)) (-2549 (($ $) 101 (|has| $ (-6 -4193)))) (-1908 (($ $) 91)) (-2455 (($ $) 69 (-12 (|has| (-107) (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4192))) (($ (-107) $) 70 (-12 (|has| (-107) (-1005)) (|has| $ (-6 -4192))))) (-1522 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1005)) (|has| $ (-6 -4192))))) (-2759 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4193)))) (-2566 (((-107) $ (-517)) 56)) (-1212 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1005))) (((-517) (-107) $) 95 (|has| (-107) (-1005))) (((-517) (-1 (-107) (-107)) $) 94)) (-1534 (((-583 (-107)) $) 46 (|has| $ (-6 -4192)))) (-3980 (($ $ $) 26)) (-2479 (($ $) 31)) (-3084 (($ $ $) 28)) (-3213 (($ (-703) (-107)) 78)) (-3171 (($ $ $) 29)) (-2497 (((-107) $ (-703)) 37)) (-3271 (((-517) $) 64 (|has| (-517) (-779)))) (-3458 (($ $ $) 13)) (-2662 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-1903 (((-583 (-107)) $) 47 (|has| $ (-6 -4192)))) (-3925 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 63 (|has| (-517) (-779)))) (-4084 (($ $ $) 14)) (-2746 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-1320 (((-107) $ (-703)) 36)) (-1662 (((-1059) $) 9)) (-1747 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-2817 (((-583 (-517)) $) 61)) (-3130 (((-107) (-517) $) 60)) (-4125 (((-1023) $) 10)) (-2429 (((-107) $) 65 (|has| (-517) (-779)))) (-1528 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2846 (($ $ (-107)) 66 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005))))) (-2727 (((-107) $ $) 32)) (-3712 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-2891 (((-583 (-107)) $) 59)) (-2394 (((-107) $) 35)) (-2452 (($) 34)) (-2609 (($ $ (-1124 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3728 (($ $ (-1124 (-517))) 86) (($ $ (-517)) 85)) (-4137 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4192)))) (-1901 (($ $ $ (-517)) 100 (|has| $ (-6 -4193)))) (-2462 (($ $) 33)) (-3359 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2288 (($ (-583 (-107))) 77)) (-4110 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2271 (((-787) $) 11)) (-3602 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4192)))) (-3993 (($ $ $) 27)) (-2815 (($ $) 30)) (-3817 (($ $ $) 106)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-3805 (($ $ $) 105)) (-3535 (((-703) $) 40 (|has| $ (-6 -4192)))))
-(((-118) (-1188)) (T -118))
-((-2479 (*1 *1 *1) (-4 *1 (-118))) (-2815 (*1 *1 *1) (-4 *1 (-118))) (-3171 (*1 *1 *1 *1) (-4 *1 (-118))) (-3084 (*1 *1 *1 *1) (-4 *1 (-118))) (-3993 (*1 *1 *1 *1) (-4 *1 (-118))) (-3980 (*1 *1 *1 *1) (-4 *1 (-118))) (-2294 (*1 *1 *1 *1) (-4 *1 (-118))))
-(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2479 ($ $)) (-15 -2815 ($ $)) (-15 -3171 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -2294 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005))) ((-588 #0#) . T) ((-598) . T) ((-19 #0#) . T) ((-779) . T) ((-1005) . T) ((-1111) . T))
-((-2746 (($ (-1 |#2| |#2|) $) 22)) (-2462 (($ $) 16)) (-3535 (((-703) $) 24)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -2462 (|#1| |#1|))) (-120 |#2|) (-1005)) (T -119))
-NIL
-(-10 -8 (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -2462 (|#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-3027 (($ $ $) 52 (|has| $ (-6 -4193)))) (-2053 (($ $ $) 54 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193))) (($ $ "left" $) 55 (|has| $ (-6 -4193))) (($ $ "right" $) 53 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-1393 (($) 7 T CONST)) (-3300 (($ $) 57)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-2037 (($ $ |#1| $) 60)) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-3288 (($ $) 59)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1844 (((-517) $ $) 44)) (-3028 (((-107) $) 46)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-120 |#1|) (-1188) (-1005)) (T -120))
-((-2037 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1005)))))
-(-13 (-114 |t#1|) (-10 -8 (-6 -4193) (-6 -4192) (-15 -2037 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-114 |#1|) . T) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-928 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) 15)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) 19 (|has| $ (-6 -4193)))) (-3027 (($ $ $) 20 (|has| $ (-6 -4193)))) (-2053 (($ $ $) 18 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "left" $) NIL (|has| $ (-6 -4193))) (($ $ "right" $) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3300 (($ $) 21)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2037 (($ $ |#1| $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3288 (($ $) NIL)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3241 (($ |#1| $) 10)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 14)) (-2452 (($) 8)) (-2609 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1844 (((-517) $ $) NIL)) (-3028 (((-107) $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 17)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3654 (($ (-583 |#1|)) 12)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4193) (-15 -3654 ($ (-583 |#1|))) (-15 -3241 ($ |#1| $)))) (-779)) (T -121))
-((-3654 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-3241 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4193) (-15 -3654 ($ (-583 |#1|))) (-15 -3241 ($ |#1| $))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) 24)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) 26 (|has| $ (-6 -4193)))) (-3027 (($ $ $) 30 (|has| $ (-6 -4193)))) (-2053 (($ $ $) 28 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "left" $) NIL (|has| $ (-6 -4193))) (($ $ "right" $) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3300 (($ $) 20)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2037 (($ $ |#1| $) 15)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3288 (($ $) 19)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) 21)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 18)) (-2452 (($) 11)) (-2609 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1844 (((-517) $ $) NIL)) (-3028 (((-107) $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1199 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 10 (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -1199 ($ |#1|)) (-15 -1199 ($ $ |#1| $)))) (-1005)) (T -122))
-((-1199 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1005)))) (-1199 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1005)))))
-(-13 (-120 |#1|) (-10 -8 (-15 -1199 ($ |#1|)) (-15 -1199 ($ $ |#1| $))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15)))
-(((-123) (-1188)) (T -123))
-((-2798 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(-13 (-23) (-10 -8 (-15 -2798 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-3512 (((-1162) $ (-703)) 19)) (-1212 (((-703) $) 20)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)))
-(((-124) (-1188)) (T -124))
-((-1212 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-3512 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1162)))))
-(-13 (-779) (-10 -8 (-15 -1212 ((-703) $)) (-15 -3512 ((-1162) $ (-703)))))
-(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-703) "failed") $) 38)) (-3390 (((-703) $) 36)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) 26)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1294 (((-107)) 39)) (-1834 (((-107) (-107)) 41)) (-3264 (((-107) $) 23)) (-2179 (((-107) $) 35)) (-2271 (((-787) $) 22) (($ (-703)) 14)) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3610 (($) 12 T CONST)) (-3619 (($) 11 T CONST)) (-4030 (($ (-703)) 15)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 24)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 25)) (-1692 (((-3 $ "failed") $ $) 29)) (-1678 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-844) $) NIL) (($ $ $) 30)))
-(((-125) (-13 (-779) (-23) (-659) (-954 (-703)) (-10 -8 (-6 (-4194 "*")) (-15 -1692 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4030 ($ (-703))) (-15 -3264 ((-107) $)) (-15 -2179 ((-107) $)) (-15 -1294 ((-107))) (-15 -1834 ((-107) (-107)))))) (T -125))
-((-1692 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1294 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(-13 (-779) (-23) (-659) (-954 (-703)) (-10 -8 (-6 (-4194 "*")) (-15 -1692 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4030 ($ (-703))) (-15 -3264 ((-107) $)) (-15 -2179 ((-107) $)) (-15 -1294 ((-107))) (-15 -1834 ((-107) (-107)))))
-((-2498 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-3310 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
-(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2498 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3310 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2498 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3310 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
-((-2119 (((-107) $ $) NIL)) (-4043 (($ (-583 |#3|)) 39)) (-1293 (($ $) 98) (($ $ (-517) (-517)) 97)) (-1393 (($) 17)) (-3228 (((-3 |#3| "failed") $) 59)) (-3390 ((|#3| $) NIL)) (-3636 (($ $ (-583 (-517))) 99)) (-2488 (((-583 |#3|) $) 35)) (-3737 (((-703) $) 43)) (-3196 (($ $ $) 92)) (-3373 (($) 42)) (-1662 (((-1059) $) NIL)) (-2955 (($) 16)) (-4125 (((-1023) $) NIL)) (-2609 ((|#3| $) 45) ((|#3| $ (-517)) 46) ((|#3| $ (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517)) 48) ((|#3| $ (-517) (-517) (-517) (-517)) 49) ((|#3| $ (-583 (-517))) 51)) (-3647 (((-703) $) 44)) (-3831 (($ $ (-517) $ (-517)) 93) (($ $ (-517) (-517)) 95)) (-2271 (((-787) $) 66) (($ |#3|) 67) (($ (-214 |#2| |#3|)) 74) (($ (-1043 |#2| |#3|)) 77) (($ (-583 |#3|)) 52) (($ (-583 $)) 57)) (-3610 (($) 68 T CONST)) (-3619 (($) 69 T CONST)) (-1584 (((-107) $ $) 79)) (-1692 (($ $) 85) (($ $ $) 83)) (-1678 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-517)) 88) (($ (-517) $) 87) (($ $ $) 94)))
-(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2271 ($ (-214 |#2| |#3|))) (-15 -2271 ($ (-1043 |#2| |#3|))) (-15 -2271 ($ (-583 |#3|))) (-15 -2271 ($ (-583 $))) (-15 -3737 ((-703) $)) (-15 -2609 (|#3| $)) (-15 -2609 (|#3| $ (-517))) (-15 -2609 (|#3| $ (-517) (-517))) (-15 -2609 (|#3| $ (-517) (-517) (-517))) (-15 -2609 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2609 (|#3| $ (-583 (-517)))) (-15 -3196 ($ $ $)) (-15 * ($ $ $)) (-15 -3831 ($ $ (-517) $ (-517))) (-15 -3831 ($ $ (-517) (-517))) (-15 -1293 ($ $)) (-15 -1293 ($ $ (-517) (-517))) (-15 -3636 ($ $ (-583 (-517)))) (-15 -2955 ($)) (-15 -3373 ($)) (-15 -2488 ((-583 |#3|) $)) (-15 -4043 ($ (-583 |#3|))) (-15 -1393 ($)))) (-517) (-703) (-156)) (T -127))
-((-3196 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1043 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-2609 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2609 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2609 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2609 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3831 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3831 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1293 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1293 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3636 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2955 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3373 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1393 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2271 ($ (-214 |#2| |#3|))) (-15 -2271 ($ (-1043 |#2| |#3|))) (-15 -2271 ($ (-583 |#3|))) (-15 -2271 ($ (-583 $))) (-15 -3737 ((-703) $)) (-15 -2609 (|#3| $)) (-15 -2609 (|#3| $ (-517))) (-15 -2609 (|#3| $ (-517) (-517))) (-15 -2609 (|#3| $ (-517) (-517) (-517))) (-15 -2609 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2609 (|#3| $ (-583 (-517)))) (-15 -3196 ($ $ $)) (-15 * ($ $ $)) (-15 -3831 ($ $ (-517) $ (-517))) (-15 -3831 ($ $ (-517) (-517))) (-15 -1293 ($ $)) (-15 -1293 ($ $ (-517) (-517))) (-15 -3636 ($ $ (-583 (-517)))) (-15 -2955 ($)) (-15 -3373 ($)) (-15 -2488 ((-583 |#3|) $)) (-15 -4043 ($ (-583 |#3|))) (-15 -1393 ($))))
-((-2119 (((-107) $ $) NIL)) (-2594 (($) 15 T CONST)) (-2778 (($) NIL (|has| (-131) (-338)))) (-2384 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-2834 (($ $ $) NIL)) (-1961 (((-107) $ $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| (-131) (-338)))) (-1884 (($) NIL) (($ (-583 (-131))) NIL)) (-3690 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-2457 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192))) (($ (-131) $) 51 (|has| $ (-6 -4192)))) (-1423 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1522 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4192))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4192))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-2202 (($) NIL (|has| (-131) (-338)))) (-1534 (((-583 (-131)) $) 60 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3458 (((-131) $) NIL (|has| (-131) (-779)))) (-1903 (((-583 (-131)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-4084 (((-131) $) NIL (|has| (-131) (-779)))) (-2746 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-131) (-131)) $) 55)) (-3675 (($) 16 T CONST)) (-3072 (((-844) $) NIL (|has| (-131) (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2259 (($ $ $) 29)) (-1803 (((-131) $) 52)) (-3241 (($ (-131) $) 50)) (-2812 (($ (-844)) NIL (|has| (-131) (-338)))) (-1251 (($) 14 T CONST)) (-4125 (((-1023) $) NIL)) (-1528 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-4113 (((-131) $) 53)) (-3644 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 48)) (-1726 (($) 13 T CONST)) (-1216 (($ $ $) 31) (($ $ (-131)) NIL)) (-2176 (($ (-583 (-131))) NIL) (($) NIL)) (-4137 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-1059) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2288 (($ (-583 (-131))) NIL)) (-1695 (($ $) 32 (|has| (-131) (-338)))) (-2271 (((-787) $) 46)) (-2654 (($ (-1059)) 12) (($ (-583 (-131))) 43)) (-2521 (((-703) $) NIL)) (-3075 (($) 49) (($ (-583 (-131))) NIL)) (-3181 (($ (-583 (-131))) NIL)) (-3602 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-2640 (($) 19 T CONST)) (-2969 (($) 18 T CONST)) (-1584 (((-107) $ $) 22)) (-1608 (((-107) $ $) NIL)) (-3535 (((-703) $) 47 (|has| $ (-6 -4192)))))
-(((-128) (-13 (-1005) (-558 (-1059)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2654 ($ (-1059))) (-15 -2654 ($ (-583 (-131)))) (-15 -1726 ($) -1385) (-15 -1251 ($) -1385) (-15 -2594 ($) -1385) (-15 -3675 ($) -1385) (-15 -2969 ($) -1385) (-15 -2640 ($) -1385)))) (T -128))
-((-2654 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-128)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-1726 (*1 *1) (-5 *1 (-128))) (-1251 (*1 *1) (-5 *1 (-128))) (-2594 (*1 *1) (-5 *1 (-128))) (-3675 (*1 *1) (-5 *1 (-128))) (-2969 (*1 *1) (-5 *1 (-128))) (-2640 (*1 *1) (-5 *1 (-128))))
-(-13 (-1005) (-558 (-1059)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2654 ($ (-1059))) (-15 -2654 ($ (-583 (-131)))) (-15 -1726 ($) -1385) (-15 -1251 ($) -1385) (-15 -2594 ($) -1385) (-15 -3675 ($) -1385) (-15 -2969 ($) -1385) (-15 -2640 ($) -1385)))
-((-4038 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2015 ((|#1| |#3|) 9)) (-3552 ((|#3| |#3|) 15)))
-(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -2015 (|#1| |#3|)) (-15 -3552 (|#3| |#3|)) (-15 -4038 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-911 |#1|) (-343 |#2|)) (T -129))
-((-4038 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-911 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-3552 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-911 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
-(-10 -7 (-15 -2015 (|#1| |#3|)) (-15 -3552 (|#3| |#3|)) (-15 -4038 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2144 (($ $ $) 8)) (-1691 (($ $) 7)) (-1917 (($ $ $) 6)))
-(((-130) (-1188)) (T -130))
-((-2144 (*1 *1 *1 *1) (-4 *1 (-130))) (-1691 (*1 *1 *1) (-4 *1 (-130))) (-1917 (*1 *1 *1 *1) (-4 *1 (-130))))
-(-13 (-10 -8 (-15 -1917 ($ $ $)) (-15 -1691 ($ $)) (-15 -2144 ($ $ $))))
-((-2119 (((-107) $ $) NIL)) (-2383 (((-107) $) 38)) (-2594 (($ $) 50)) (-3218 (($) 25)) (-2399 (((-703)) 16)) (-2202 (($) 24)) (-2837 (($) 26)) (-2272 (((-517) $) 21)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-2698 (((-107) $) 40)) (-3675 (($ $) 51)) (-3072 (((-844) $) 22)) (-1662 (((-1059) $) 46)) (-2812 (($ (-844)) 20)) (-2905 (((-107) $) 36)) (-4125 (((-1023) $) NIL)) (-3928 (($) 27)) (-2434 (((-107) $) 34)) (-2271 (((-787) $) 29)) (-3561 (($ (-517)) 18) (($ (-1059)) 49)) (-2291 (((-107) $) 44)) (-1333 (((-107) $) 42)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 13)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 14)))
-(((-131) (-13 (-773) (-10 -8 (-15 -2272 ((-517) $)) (-15 -3561 ($ (-517))) (-15 -3561 ($ (-1059))) (-15 -3218 ($)) (-15 -2837 ($)) (-15 -3928 ($)) (-15 -2594 ($ $)) (-15 -3675 ($ $)) (-15 -2434 ((-107) $)) (-15 -2905 ((-107) $)) (-15 -1333 ((-107) $)) (-15 -2383 ((-107) $)) (-15 -2698 ((-107) $)) (-15 -2291 ((-107) $))))) (T -131))
-((-2272 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-131)))) (-3218 (*1 *1) (-5 *1 (-131))) (-2837 (*1 *1) (-5 *1 (-131))) (-3928 (*1 *1) (-5 *1 (-131))) (-2594 (*1 *1 *1) (-5 *1 (-131))) (-3675 (*1 *1 *1) (-5 *1 (-131))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(-13 (-773) (-10 -8 (-15 -2272 ((-517) $)) (-15 -3561 ($ (-517))) (-15 -3561 ($ (-1059))) (-15 -3218 ($)) (-15 -2837 ($)) (-15 -3928 ($)) (-15 -2594 ($ $)) (-15 -3675 ($ $)) (-15 -2434 ((-107) $)) (-15 -2905 ((-107) $)) (-15 -1333 ((-107) $)) (-15 -2383 ((-107) $)) (-15 -2698 ((-107) $)) (-15 -2291 ((-107) $))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-3974 (((-3 $ "failed") $) 35)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-132) (-1188)) (T -132))
-((-3974 (*1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-963) (-10 -8 (-15 -3974 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1699 ((|#1| (-623 |#1|) |#1|) 17)))
-(((-133 |#1|) (-10 -7 (-15 -1699 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
-((-1699 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
-(-10 -7 (-15 -1699 (|#1| (-623 |#1|) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-134) (-1188)) (T -134))
-NIL
-(-13 (-963))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1804 (((-2 (|:| -2121 (-703)) (|:| -1582 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 70)) (-3220 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 52)) (-2937 (((-2 (|:| -1582 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2600 ((|#1| |#3| |#3|) 40)) (-3524 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-3139 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 49)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -2937 ((-2 (|:| -1582 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3220 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1804 ((-2 (|:| -2121 (-703)) (|:| -1582 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -2600 (|#1| |#3| |#3|)) (-15 -3524 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -3139 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1115) (-1133 |#1|) (-1133 (-377 |#2|))) (T -135))
-((-3139 (*1 *2 *3 *3) (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1133 (-377 *5))))) (-3524 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1133 *3)))) (-2600 (*1 *2 *3 *3) (-12 (-4 *4 (-1133 *2)) (-4 *2 (-1115)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1133 (-377 *4))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1115)) (-4 *6 (-1133 *5)) (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1133 *3)))) (-3220 (*1 *2 *3) (|partial| -12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1133 (-377 *5))))) (-2937 (*1 *2 *3) (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| -1582 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1133 (-377 *5))))))
-(-10 -7 (-15 -2937 ((-2 (|:| -1582 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3220 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1804 ((-2 (|:| -2121 (-703)) (|:| -1582 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -2600 (|#1| |#3| |#3|)) (-15 -3524 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -3139 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
-((-2019 (((-3 (-583 (-1072 |#2|)) "failed") (-583 (-1072 |#2|)) (-1072 |#2|)) 32)))
-(((-136 |#1| |#2|) (-10 -7 (-15 -2019 ((-3 (-583 (-1072 |#2|)) "failed") (-583 (-1072 |#2|)) (-1072 |#2|)))) (-502) (-150 |#1|)) (T -136))
-((-2019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1072 *5))) (-5 *3 (-1072 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
-(-10 -7 (-15 -2019 ((-3 (-583 (-1072 |#2|)) "failed") (-583 (-1072 |#2|)) (-1072 |#2|))))
-((-2325 (($ (-1 (-107) |#2|) $) 29)) (-2455 (($ $) 36)) (-1423 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-1522 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1528 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-3644 (((-107) (-1 (-107) |#2|) $) 16)) (-4137 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-3602 (((-107) (-1 (-107) |#2|) $) 15)) (-3535 (((-703) $) 11)))
-(((-137 |#1| |#2|) (-10 -8 (-15 -2455 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2325 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1528 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3535 ((-703) |#1|))) (-138 |#2|) (-1111)) (T -137))
-NIL
-(-10 -8 (-15 -2455 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2325 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1528 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3535 ((-703) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-2325 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2455 (($ $) 41 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192))) (($ |#1| $) 42 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 49)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-138 |#1|) (-1188) (-1111)) (T -138))
-((-2288 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-4 *1 (-138 *3)))) (-1528 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1111)))) (-1522 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111)))) (-1522 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *3)) (-4 *3 (-1111)))) (-2325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *3)) (-4 *3 (-1111)))) (-1522 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111)))) (-1423 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111)) (-4 *2 (-1005)))) (-2455 (*1 *1 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111)) (-4 *2 (-1005)))))
-(-13 (-456 |t#1|) (-10 -8 (-15 -2288 ($ (-583 |t#1|))) (-15 -1528 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4192)) (PROGN (-15 -1522 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1522 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1423 ($ (-1 (-107) |t#1|) $)) (-15 -2325 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -1522 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1423 ($ |t#1| $)) (-15 -2455 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) 86)) (-1376 (((-107) $) NIL)) (-2078 (($ |#2| (-583 (-844))) 57)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3031 (($ (-844)) 48)) (-1537 (((-125)) 23)) (-2271 (((-787) $) 69) (($ (-517)) 46) (($ |#2|) 47)) (-1689 ((|#2| $ (-583 (-844))) 59)) (-4099 (((-703)) 20)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 40 T CONST)) (-3619 (($) 44 T CONST)) (-1584 (((-107) $ $) 26)) (-1704 (($ $ |#2|) NIL)) (-1692 (($ $) 34) (($ $ $) 32)) (-1678 (($ $ $) 30)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-139 |#1| |#2| |#3|) (-13 (-963) (-37 |#2|) (-1164 |#2|) (-10 -8 (-15 -3031 ($ (-844))) (-15 -2078 ($ |#2| (-583 (-844)))) (-15 -1689 (|#2| $ (-583 (-844)))) (-15 -2560 ((-3 $ "failed") $)))) (-844) (-333) (-912 |#1| |#2|)) (T -139))
-((-2560 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-844)) (-4 *3 (-333)) (-14 *4 (-912 *2 *3)))) (-3031 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-912 *3 *4)))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-844))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-844)) (-4 *2 (-333)) (-14 *5 (-912 *4 *2)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-844))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-844)) (-14 *5 (-912 *4 *2)))))
-(-13 (-963) (-37 |#2|) (-1164 |#2|) (-10 -8 (-15 -3031 ($ (-844))) (-15 -2078 ($ |#2| (-583 (-844)))) (-15 -1689 (|#2| $ (-583 (-844)))) (-15 -2560 ((-3 $ "failed") $))))
-((-2417 (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-583 (-866 (-199)))) (-199) (-199) (-199) (-199)) 38)) (-2028 (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850)) 64)) (-3674 (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-583 (-866 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-866 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850)) 59)))
-(((-140) (-10 -7 (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850))) (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -2028 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850))) (-15 -2028 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -2417 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-583 (-866 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-866 (-199))))) (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-583 (-866 (-199)))))))) (T -140))
-((-3674 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 (-199))))))) (-3674 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-866 (-199)))))) (-2417 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 *4)))) (|:| |xValues| (-1000 *4)) (|:| |yValues| (-1000 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 *4)))))) (-2028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199))))) (-5 *1 (-140)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199))))) (-5 *1 (-140)))) (-3674 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199))))) (-5 *1 (-140)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199))))) (-5 *1 (-140)))))
-(-10 -7 (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850))) (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -2028 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850))) (-15 -2028 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -2417 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-583 (-866 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-866 (-199))))) (-15 -3674 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))) (-583 (-583 (-866 (-199)))))))
-((-3414 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
-(((-141 |#1| |#2|) (-10 -7 (-15 -3414 ((-583 (-153 |#2|)) |#1| |#2|))) (-1133 (-153 (-517))) (-13 (-333) (-777))) (T -141))
-((-3414 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1133 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -3414 ((-583 (-153 |#2|)) |#1| |#2|)))
-((-2119 (((-107) $ $) NIL)) (-1365 (($) 16)) (-2261 (($) 15)) (-2224 (((-844)) 23)) (-1662 (((-1059) $) NIL)) (-2537 (((-517) $) 20)) (-4125 (((-1023) $) NIL)) (-4074 (($) 17)) (-2926 (($ (-517)) 24)) (-2271 (((-787) $) 30)) (-2254 (($) 18)) (-1584 (((-107) $ $) 14)) (-1678 (($ $ $) 13)) (* (($ (-844) $) 22) (($ (-199) $) 8)))
-(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-844) $)) (-15 * ($ (-199) $)) (-15 -1678 ($ $ $)) (-15 -2261 ($)) (-15 -1365 ($)) (-15 -4074 ($)) (-15 -2254 ($)) (-15 -2537 ((-517) $)) (-15 -2224 ((-844))) (-15 -2926 ($ (-517)))))) (T -142))
-((-1678 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2261 (*1 *1) (-5 *1 (-142))) (-1365 (*1 *1) (-5 *1 (-142))) (-4074 (*1 *1) (-5 *1 (-142))) (-2254 (*1 *1) (-5 *1 (-142))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-2224 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-142)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-844) $)) (-15 * ($ (-199) $)) (-15 -1678 ($ $ $)) (-15 -2261 ($)) (-15 -1365 ($)) (-15 -4074 ($)) (-15 -2254 ($)) (-15 -2537 ((-517) $)) (-15 -2224 ((-844))) (-15 -2926 ($ (-517)))))
-((-2648 ((|#2| |#2| (-998 |#2|)) 87) ((|#2| |#2| (-1076)) 67)) (-3196 ((|#2| |#2| (-998 |#2|)) 86) ((|#2| |#2| (-1076)) 66)) (-2144 ((|#2| |#2| |#2|) 27)) (-1934 (((-109) (-109)) 97)) (-2748 ((|#2| (-583 |#2|)) 116)) (-3261 ((|#2| (-583 |#2|)) 134)) (-3850 ((|#2| (-583 |#2|)) 124)) (-3356 ((|#2| |#2|) 122)) (-2882 ((|#2| (-583 |#2|)) 109)) (-3635 ((|#2| (-583 |#2|)) 110)) (-3964 ((|#2| (-583 |#2|)) 132)) (-2953 ((|#2| |#2| (-1076)) 54) ((|#2| |#2|) 53)) (-1691 ((|#2| |#2|) 23)) (-1917 ((|#2| |#2| |#2|) 26)) (-3750 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1917 (|#2| |#2| |#2|)) (-15 -2144 (|#2| |#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -2953 (|#2| |#2| (-1076))) (-15 -2648 (|#2| |#2| (-1076))) (-15 -2648 (|#2| |#2| (-998 |#2|))) (-15 -3196 (|#2| |#2| (-1076))) (-15 -3196 (|#2| |#2| (-998 |#2|))) (-15 -3356 (|#2| |#2|)) (-15 -3964 (|#2| (-583 |#2|))) (-15 -3850 (|#2| (-583 |#2|))) (-15 -3261 (|#2| (-583 |#2|))) (-15 -2882 (|#2| (-583 |#2|))) (-15 -3635 (|#2| (-583 |#2|))) (-15 -2748 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
-((-2748 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3196 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3196 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2648 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-2648 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2953 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2953 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-2144 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1917 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
-(-10 -7 (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1917 (|#2| |#2| |#2|)) (-15 -2144 (|#2| |#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -2953 (|#2| |#2| (-1076))) (-15 -2648 (|#2| |#2| (-1076))) (-15 -2648 (|#2| |#2| (-998 |#2|))) (-15 -3196 (|#2| |#2| (-1076))) (-15 -3196 (|#2| |#2| (-998 |#2|))) (-15 -3356 (|#2| |#2|)) (-15 -3964 (|#2| (-583 |#2|))) (-15 -3850 (|#2| (-583 |#2|))) (-15 -3261 (|#2| (-583 |#2|))) (-15 -2882 (|#2| (-583 |#2|))) (-15 -3635 (|#2| (-583 |#2|))) (-15 -2748 (|#2| (-583 |#2|))))
-((-2065 ((|#1| |#1| |#1|) 52)) (-3103 ((|#1| |#1| |#1|) 49)) (-2144 ((|#1| |#1| |#1|) 43)) (-3441 ((|#1| |#1|) 34)) (-3362 ((|#1| |#1| (-583 |#1|)) 42)) (-1691 ((|#1| |#1|) 36)) (-1917 ((|#1| |#1| |#1|) 39)))
-(((-144 |#1|) (-10 -7 (-15 -1917 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-583 |#1|))) (-15 -3441 (|#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2065 (|#1| |#1| |#1|))) (-502)) (T -144))
-((-2065 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-2144 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3441 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-1691 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1917 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(-10 -7 (-15 -1917 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-583 |#1|))) (-15 -3441 (|#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2065 (|#1| |#1| |#1|)))
-((-2648 (($ $ (-1076)) 12) (($ $ (-998 $)) 11)) (-3196 (($ $ (-1076)) 10) (($ $ (-998 $)) 9)) (-2144 (($ $ $) 8)) (-2953 (($ $) 14) (($ $ (-1076)) 13)) (-1691 (($ $) 7)) (-1917 (($ $ $) 6)))
-(((-145) (-1188)) (T -145))
-((-2953 (*1 *1 *1) (-4 *1 (-145))) (-2953 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1076)))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1076)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-145)))) (-3196 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1076)))) (-3196 (*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-145)))))
-(-13 (-130) (-10 -8 (-15 -2953 ($ $)) (-15 -2953 ($ $ (-1076))) (-15 -2648 ($ $ (-1076))) (-15 -2648 ($ $ (-998 $))) (-15 -3196 ($ $ (-1076))) (-15 -3196 ($ $ (-998 $)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-111 |#1|) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-955 (-517))))) (-3402 (((-111 |#1|) $) NIL) (((-1077) $) NIL (|has| (-111 |#1|) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-955 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-955 (-517))))) (-2419 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-111 |#1|))) (|:| |vec| (-1158 (-111 |#1|)))) (-623 $) (-1158 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-111 |#1|) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-111 |#1|) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-111 |#1|) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-111 |#1|) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1053)))) (-2321 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-4095 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3312 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-111 |#1|) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2713 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1077)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1077) (-111 |#1|)))) (($ $ (-1077) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1077) (-111 |#1|))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-111 |#1|) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-940))) (((-199) $) NIL (|has| (-111 |#1|) (-940)))) (-1309 (((-157 (-377 (-517))) $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1077)) NIL (|has| (-111 |#1|) (-955 (-1077))))) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-833))) (|has| (-111 |#1|) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ (-517)) NIL)) (-2829 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1692 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
+(((-112 |#1|) (-13 (-912 (-111 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) (-517)) (T -112))
+((-2194 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
+(-13 (-912 (-111 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $))))
+((-2436 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1823 (((-583 $) $) 27)) (-1700 (((-107) $ $) 32)) (-1949 (((-107) |#2| $) 36)) (-1925 (((-583 |#2|) $) 22)) (-3834 (((-107) $) 16)) (-2612 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1414 (((-107) $) 45)) (-2262 (((-787) $) 41)) (-3234 (((-583 $) $) 28)) (-1572 (((-107) $ $) 34)) (-3573 (((-703) $) 43)))
+(((-113 |#1| |#2|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2436 (|#1| |#1| "right" |#1|)) (-15 -2436 (|#1| |#1| "left" |#1|)) (-15 -2612 (|#1| |#1| "right")) (-15 -2612 (|#1| |#1| "left")) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1925 ((-583 |#2|) |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -3573 ((-703) |#1|))) (-114 |#2|) (-1112)) (T -113))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2436 (|#1| |#1| "right" |#1|)) (-15 -2436 (|#1| |#1| "left" |#1|)) (-15 -2612 (|#1| |#1| "right")) (-15 -2612 (|#1| |#1| "left")) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1925 ((-583 |#2|) |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -3573 ((-703) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 52 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 54 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) (($ $ "left" $) 55 (|has| $ (-6 -4196))) (($ $ "right" $) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-3302 (($ $) 57)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3287 (($ $) 59)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-114 |#1|) (-1189) (-1112)) (T -114))
+((-3287 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-4174 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-3149 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112)))))
+(-13 (-929 |t#1|) (-10 -8 (-15 -3287 ($ $)) (-15 -2612 ($ $ "left")) (-15 -3302 ($ $)) (-15 -2612 ($ $ "right")) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2436 ($ $ "left" $)) (-15 -4174 ($ $ $)) (-15 -2436 ($ $ "right" $)) (-15 -3149 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-3174 (((-107) |#1|) 24)) (-2818 (((-703) (-703)) 23) (((-703)) 22)) (-4062 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
+(((-115 |#1|) (-10 -7 (-15 -4062 ((-107) |#1|)) (-15 -4062 ((-107) |#1| (-107))) (-15 -2818 ((-703))) (-15 -2818 ((-703) (-703))) (-15 -3174 ((-107) |#1|))) (-1134 (-517))) (T -115))
+((-3174 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-2818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))))
+(-10 -7 (-15 -4062 ((-107) |#1|)) (-15 -4062 ((-107) |#1| (-107))) (-15 -2818 ((-703))) (-15 -2818 ((-703) (-703))) (-15 -3174 ((-107) |#1|)))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 15)) (-1975 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-3149 (($ $ $) 18 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 20 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 17)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 23)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 19)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3158 (($ |#1| $) 24)) (-3439 (($ |#1| $) 10)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 8)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1500 (($ (-583 |#1|)) 12)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -1500 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)) (-15 -3158 ($ |#1| $)) (-15 -1975 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
+((-1500 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-3158 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1975 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -1500 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)) (-15 -3158 ($ |#1| $)) (-15 -1975 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3670 (($ $) 14)) (-2479 (($ $) 11)) (-3243 (($ $ $) 24)) (-1353 (($ $ $) 22)) (-2806 (($ $) 12)) (-3849 (($ $ $) 20)) (-3838 (($ $ $) 18)))
+(((-117 |#1|) (-10 -8 (-15 -3243 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3849 (|#1| |#1| |#1|))) (-118)) (T -117))
+NIL
+(-10 -8 (-15 -3243 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3849 (|#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-3670 (($ $) 104)) (-2284 (($ $ $) 25)) (-3351 (((-1163) $ (-517) (-517)) 67 (|has| $ (-6 -4196)))) (-2508 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-4109 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4196)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4196)))) (-2149 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-3443 (((-107) $ (-703)) 38)) (-2436 (((-107) $ (-1125 (-517)) (-107)) 89 (|has| $ (-6 -4196))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4195)))) (-3038 (($) 39 T CONST)) (-3797 (($ $) 101 (|has| $ (-6 -4196)))) (-1894 (($ $) 91)) (-2446 (($ $) 69 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4195))) (($ (-107) $) 70 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-1510 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-2750 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4196)))) (-2557 (((-107) $ (-517)) 56)) (-1210 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1006))) (((-517) (-107) $) 95 (|has| (-107) (-1006))) (((-517) (-1 (-107) (-107)) $) 94)) (-1525 (((-583 (-107)) $) 46 (|has| $ (-6 -4195)))) (-4011 (($ $ $) 26)) (-2479 (($ $) 31)) (-3243 (($ $ $) 28)) (-3204 (($ (-703) (-107)) 78)) (-1353 (($ $ $) 29)) (-2266 (((-107) $ (-703)) 37)) (-3531 (((-517) $) 64 (|has| (-517) (-779)))) (-3480 (($ $ $) 13)) (-3824 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-3687 (((-583 (-107)) $) 47 (|has| $ (-6 -4195)))) (-1949 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 63 (|has| (-517) (-779)))) (-4095 (($ $ $) 14)) (-2737 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-2328 (((-107) $ (-703)) 36)) (-3232 (((-1060) $) 9)) (-1734 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-1449 (((-583 (-517)) $) 61)) (-3413 (((-107) (-517) $) 60)) (-4130 (((-1024) $) 10)) (-2420 (((-107) $) 65 (|has| (-517) (-779)))) (-1985 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2837 (($ $ (-107)) 66 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))))) (-1770 (((-107) $ $) 32)) (-2124 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2862 (((-583 (-107)) $) 59)) (-1754 (((-107) $) 35)) (-2679 (($) 34)) (-2612 (($ $ (-1125 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3779 (($ $ (-1125 (-517))) 86) (($ $ (-517)) 85)) (-4140 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) 100 (|has| $ (-6 -4196)))) (-2453 (($ $) 33)) (-3367 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2279 (($ (-583 (-107))) 77)) (-4117 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2262 (((-787) $) 11)) (-1272 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4195)))) (-4024 (($ $ $) 27)) (-2806 (($ $) 30)) (-3849 (($ $ $) 106)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-3838 (($ $ $) 105)) (-3573 (((-703) $) 40 (|has| $ (-6 -4195)))))
+(((-118) (-1189)) (T -118))
+((-2479 (*1 *1 *1) (-4 *1 (-118))) (-2806 (*1 *1 *1) (-4 *1 (-118))) (-1353 (*1 *1 *1 *1) (-4 *1 (-118))) (-3243 (*1 *1 *1 *1) (-4 *1 (-118))) (-4024 (*1 *1 *1 *1) (-4 *1 (-118))) (-4011 (*1 *1 *1 *1) (-4 *1 (-118))) (-2284 (*1 *1 *1 *1) (-4 *1 (-118))))
+(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2479 ($ $)) (-15 -2806 ($ $)) (-15 -1353 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2284 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))) ((-588 #0#) . T) ((-598) . T) ((-19 #0#) . T) ((-779) . T) ((-1006) . T) ((-1112) . T))
+((-2737 (($ (-1 |#2| |#2|) $) 22)) (-2453 (($ $) 16)) (-3573 (((-703) $) 24)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -2453 (|#1| |#1|))) (-120 |#2|) (-1006)) (T -119))
+NIL
+(-10 -8 (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -2453 (|#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 52 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 54 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) (($ $ "left" $) 55 (|has| $ (-6 -4196))) (($ $ "right" $) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-3302 (($ $) 57)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 60)) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3287 (($ $) 59)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-120 |#1|) (-1189) (-1006)) (T -120))
+((-2020 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1006)))))
+(-13 (-114 |t#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -2020 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-114 |#1|) . T) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 15)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) 19 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 20 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 18 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 21)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3439 (($ |#1| $) 10)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 8)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 17)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1384 (($ (-583 |#1|)) 12)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4196) (-15 -1384 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)))) (-779)) (T -121))
+((-1384 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4196) (-15 -1384 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 24)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) 26 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 30 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 28 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 20)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 15)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 19)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) 21)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 18)) (-2679 (($) 11)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2718 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 10 (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -2718 ($ |#1|)) (-15 -2718 ($ $ |#1| $)))) (-1006)) (T -122))
+((-2718 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006)))) (-2718 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006)))))
+(-13 (-120 |#1|) (-10 -8 (-15 -2718 ($ |#1|)) (-15 -2718 ($ $ |#1| $))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15)))
+(((-123) (-1189)) (T -123))
+((-1783 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(-13 (-23) (-10 -8 (-15 -1783 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-1798 (((-1163) $ (-703)) 19)) (-1210 (((-703) $) 20)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)))
+(((-124) (-1189)) (T -124))
+((-1210 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1163)))))
+(-13 (-779) (-10 -8 (-15 -1210 ((-703) $)) (-15 -1798 ((-1163) $ (-703)))))
+(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-703) "failed") $) 38)) (-3402 (((-703) $) 36)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) 26)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2010 (((-107)) 39)) (-3891 (((-107) (-107)) 41)) (-2005 (((-107) $) 23)) (-2648 (((-107) $) 35)) (-2262 (((-787) $) 22) (($ (-703)) 14)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 12 T CONST)) (-3675 (($) 11 T CONST)) (-1411 (($ (-703)) 15)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 24)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 25)) (-1680 (((-3 $ "failed") $ $) 29)) (-1666 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-845) $) NIL) (($ $ $) 30)))
+(((-125) (-13 (-779) (-23) (-659) (-955 (-703)) (-10 -8 (-6 (-4197 "*")) (-15 -1680 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1411 ($ (-703))) (-15 -2005 ((-107) $)) (-15 -2648 ((-107) $)) (-15 -2010 ((-107))) (-15 -3891 ((-107) (-107)))))) (T -125))
+((-1680 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2010 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(-13 (-779) (-23) (-659) (-955 (-703)) (-10 -8 (-6 (-4197 "*")) (-15 -1680 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1411 ($ (-703))) (-15 -2005 ((-107) $)) (-15 -2648 ((-107) $)) (-15 -2010 ((-107))) (-15 -3891 ((-107) (-107)))))
+((-2489 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-3312 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
+(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2489 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3312 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2489 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3312 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
+((-2105 (((-107) $ $) NIL)) (-2322 (($ (-583 |#3|)) 39)) (-1911 (($ $) 98) (($ $ (-517) (-517)) 97)) (-3038 (($) 17)) (-3220 (((-3 |#3| "failed") $) 59)) (-3402 ((|#3| $) NIL)) (-3020 (($ $ (-583 (-517))) 99)) (-2478 (((-583 |#3|) $) 35)) (-3778 (((-703) $) 43)) (-1983 (($ $ $) 92)) (-3008 (($) 42)) (-3232 (((-1060) $) NIL)) (-3223 (($) 16)) (-4130 (((-1024) $) NIL)) (-2612 ((|#3| $) 45) ((|#3| $ (-517)) 46) ((|#3| $ (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517)) 48) ((|#3| $ (-517) (-517) (-517) (-517)) 49) ((|#3| $ (-583 (-517))) 51)) (-1191 (((-703) $) 44)) (-1532 (($ $ (-517) $ (-517)) 93) (($ $ (-517) (-517)) 95)) (-2262 (((-787) $) 66) (($ |#3|) 67) (($ (-214 |#2| |#3|)) 74) (($ (-1044 |#2| |#3|)) 77) (($ (-583 |#3|)) 52) (($ (-583 $)) 57)) (-3663 (($) 68 T CONST)) (-3675 (($) 69 T CONST)) (-1572 (((-107) $ $) 79)) (-1680 (($ $) 85) (($ $ $) 83)) (-1666 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-517)) 88) (($ (-517) $) 87) (($ $ $) 94)))
+(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2262 ($ (-214 |#2| |#3|))) (-15 -2262 ($ (-1044 |#2| |#3|))) (-15 -2262 ($ (-583 |#3|))) (-15 -2262 ($ (-583 $))) (-15 -3778 ((-703) $)) (-15 -2612 (|#3| $)) (-15 -2612 (|#3| $ (-517))) (-15 -2612 (|#3| $ (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-583 (-517)))) (-15 -1983 ($ $ $)) (-15 * ($ $ $)) (-15 -1532 ($ $ (-517) $ (-517))) (-15 -1532 ($ $ (-517) (-517))) (-15 -1911 ($ $)) (-15 -1911 ($ $ (-517) (-517))) (-15 -3020 ($ $ (-583 (-517)))) (-15 -3223 ($)) (-15 -3008 ($)) (-15 -2478 ((-583 |#3|) $)) (-15 -2322 ($ (-583 |#3|))) (-15 -3038 ($)))) (-517) (-703) (-156)) (T -127))
+((-1983 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1044 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-2612 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1532 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1532 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1911 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1911 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3223 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3008 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-3038 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2262 ($ (-214 |#2| |#3|))) (-15 -2262 ($ (-1044 |#2| |#3|))) (-15 -2262 ($ (-583 |#3|))) (-15 -2262 ($ (-583 $))) (-15 -3778 ((-703) $)) (-15 -2612 (|#3| $)) (-15 -2612 (|#3| $ (-517))) (-15 -2612 (|#3| $ (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-583 (-517)))) (-15 -1983 ($ $ $)) (-15 * ($ $ $)) (-15 -1532 ($ $ (-517) $ (-517))) (-15 -1532 ($ $ (-517) (-517))) (-15 -1911 ($ $)) (-15 -1911 ($ $ (-517) (-517))) (-15 -3020 ($ $ (-583 (-517)))) (-15 -3223 ($)) (-15 -3008 ($)) (-15 -2478 ((-583 |#3|) $)) (-15 -2322 ($ (-583 |#3|))) (-15 -3038 ($))))
+((-2105 (((-107) $ $) NIL)) (-2811 (($) 15 T CONST)) (-3963 (($) NIL (|has| (-131) (-338)))) (-2374 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-4020 (($ $ $) NIL)) (-3873 (((-107) $ $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| (-131) (-338)))) (-1871 (($) NIL) (($ (-583 (-131))) NIL)) (-2582 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1749 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (($ (-131) $) 51 (|has| $ (-6 -4195)))) (-1423 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2192 (($) NIL (|has| (-131) (-338)))) (-1525 (((-583 (-131)) $) 60 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3480 (((-131) $) NIL (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-4095 (((-131) $) NIL (|has| (-131) (-779)))) (-2737 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) 55)) (-3577 (($) 16 T CONST)) (-4161 (((-845) $) NIL (|has| (-131) (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 29)) (-2015 (((-131) $) 52)) (-3439 (($ (-131) $) 50)) (-2803 (($ (-845)) NIL (|has| (-131) (-338)))) (-2851 (($) 14 T CONST)) (-4130 (((-1024) $) NIL)) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1551 (((-131) $) 53)) (-3843 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 48)) (-2616 (($) 13 T CONST)) (-1201 (($ $ $) 31) (($ $ (-131)) NIL)) (-3808 (($ (-583 (-131))) NIL) (($) NIL)) (-4140 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-1060) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2279 (($ (-583 (-131))) NIL)) (-2332 (($ $) 32 (|has| (-131) (-338)))) (-2262 (((-787) $) 46)) (-4036 (($ (-1060)) 12) (($ (-583 (-131))) 43)) (-3515 (((-703) $) NIL)) (-3066 (($) 49) (($ (-583 (-131))) NIL)) (-2729 (($ (-583 (-131))) NIL)) (-1272 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1803 (($) 19 T CONST)) (-2232 (($) 18 T CONST)) (-1572 (((-107) $ $) 22)) (-1596 (((-107) $ $) NIL)) (-3573 (((-703) $) 47 (|has| $ (-6 -4195)))))
+(((-128) (-13 (-1006) (-558 (-1060)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -4036 ($ (-1060))) (-15 -4036 ($ (-583 (-131)))) (-15 -2616 ($) -1373) (-15 -2851 ($) -1373) (-15 -2811 ($) -1373) (-15 -3577 ($) -1373) (-15 -2232 ($) -1373) (-15 -1803 ($) -1373)))) (T -128))
+((-4036 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-128)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-2616 (*1 *1) (-5 *1 (-128))) (-2851 (*1 *1) (-5 *1 (-128))) (-2811 (*1 *1) (-5 *1 (-128))) (-3577 (*1 *1) (-5 *1 (-128))) (-2232 (*1 *1) (-5 *1 (-128))) (-1803 (*1 *1) (-5 *1 (-128))))
+(-13 (-1006) (-558 (-1060)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -4036 ($ (-1060))) (-15 -4036 ($ (-583 (-131)))) (-15 -2616 ($) -1373) (-15 -2851 ($) -1373) (-15 -2811 ($) -1373) (-15 -3577 ($) -1373) (-15 -2232 ($) -1373) (-15 -1803 ($) -1373)))
+((-1955 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1703 ((|#1| |#3|) 9)) (-3253 ((|#3| |#3|) 15)))
+(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-912 |#1|) (-343 |#2|)) (T -129))
+((-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-3253 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3624 (($ $ $) 8)) (-2038 (($ $) 7)) (-1462 (($ $ $) 6)))
+(((-130) (-1189)) (T -130))
+((-3624 (*1 *1 *1 *1) (-4 *1 (-130))) (-2038 (*1 *1 *1) (-4 *1 (-130))) (-1462 (*1 *1 *1 *1) (-4 *1 (-130))))
+(-13 (-10 -8 (-15 -1462 ($ $ $)) (-15 -2038 ($ $)) (-15 -3624 ($ $ $))))
+((-2105 (((-107) $ $) NIL)) (-1629 (((-107) $) 38)) (-2811 (($ $) 50)) (-3380 (($) 25)) (-2390 (((-703)) 16)) (-2192 (($) 24)) (-3307 (($) 26)) (-3525 (((-517) $) 21)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2917 (((-107) $) 40)) (-3577 (($ $) 51)) (-4161 (((-845) $) 22)) (-3232 (((-1060) $) 46)) (-2803 (($ (-845)) 20)) (-2614 (((-107) $) 36)) (-4130 (((-1024) $) NIL)) (-2495 (($) 27)) (-2425 (((-107) $) 34)) (-2262 (((-787) $) 29)) (-3606 (($ (-517)) 18) (($ (-1060)) 49)) (-3272 (((-107) $) 44)) (-2769 (((-107) $) 42)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 14)))
+(((-131) (-13 (-773) (-10 -8 (-15 -3525 ((-517) $)) (-15 -3606 ($ (-517))) (-15 -3606 ($ (-1060))) (-15 -3380 ($)) (-15 -3307 ($)) (-15 -2495 ($)) (-15 -2811 ($ $)) (-15 -3577 ($ $)) (-15 -2425 ((-107) $)) (-15 -2614 ((-107) $)) (-15 -2769 ((-107) $)) (-15 -1629 ((-107) $)) (-15 -2917 ((-107) $)) (-15 -3272 ((-107) $))))) (T -131))
+((-3525 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-131)))) (-3380 (*1 *1) (-5 *1 (-131))) (-3307 (*1 *1) (-5 *1 (-131))) (-2495 (*1 *1) (-5 *1 (-131))) (-2811 (*1 *1 *1) (-5 *1 (-131))) (-3577 (*1 *1 *1) (-5 *1 (-131))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(-13 (-773) (-10 -8 (-15 -3525 ((-517) $)) (-15 -3606 ($ (-517))) (-15 -3606 ($ (-1060))) (-15 -3380 ($)) (-15 -3307 ($)) (-15 -2495 ($)) (-15 -2811 ($ $)) (-15 -3577 ($ $)) (-15 -2425 ((-107) $)) (-15 -2614 ((-107) $)) (-15 -2769 ((-107) $)) (-15 -1629 ((-107) $)) (-15 -2917 ((-107) $)) (-15 -3272 ((-107) $))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-3385 (((-3 $ "failed") $) 35)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-132) (-1189)) (T -132))
+((-3385 (*1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-964) (-10 -8 (-15 -3385 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3848 ((|#1| (-623 |#1|) |#1|) 17)))
+(((-133 |#1|) (-10 -7 (-15 -3848 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
+((-3848 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
+(-10 -7 (-15 -3848 (|#1| (-623 |#1|) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-134) (-1189)) (T -134))
+NIL
+(-13 (-964))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2394 (((-2 (|:| -1725 (-703)) (|:| -1570 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 70)) (-3507 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 52)) (-1776 (((-2 (|:| -1570 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1571 ((|#1| |#3| |#3|) 40)) (-3552 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2667 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 49)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-2 (|:| -1570 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3507 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -2394 ((-2 (|:| -1725 (-703)) (|:| -1570 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1571 (|#1| |#3| |#3|)) (-15 -3552 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2667 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1116) (-1134 |#1|) (-1134 (-377 |#2|))) (T -135))
+((-2667 (*1 *2 *3 *3) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))) (-3552 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1134 *3)))) (-1571 (*1 *2 *3 *3) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-1116)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1134 (-377 *4))))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1116)) (-4 *6 (-1134 *5)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1134 *3)))) (-3507 (*1 *2 *3) (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -1570 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))))
+(-10 -7 (-15 -1776 ((-2 (|:| -1570 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3507 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -2394 ((-2 (|:| -1725 (-703)) (|:| -1570 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1571 (|#1| |#3| |#3|)) (-15 -3552 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2667 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
+((-3862 (((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)) 32)))
+(((-136 |#1| |#2|) (-10 -7 (-15 -3862 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)))) (-502) (-150 |#1|)) (T -136))
+((-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
+(-10 -7 (-15 -3862 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|))))
+((-2317 (($ (-1 (-107) |#2|) $) 29)) (-2446 (($ $) 36)) (-1423 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-1510 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1985 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-3843 (((-107) (-1 (-107) |#2|) $) 16)) (-4140 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-1272 (((-107) (-1 (-107) |#2|) $) 15)) (-3573 (((-703) $) 11)))
+(((-137 |#1| |#2|) (-10 -8 (-15 -2446 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|))) (-138 |#2|) (-1112)) (T -137))
+NIL
+(-10 -8 (-15 -2446 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2317 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 41 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195))) (($ |#1| $) 42 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 49)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-138 |#1|) (-1189) (-1112)) (T -138))
+((-2279 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-138 *3)))) (-1985 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1510 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1510 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3)) (-4 *3 (-1112)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3)) (-4 *3 (-1112)))) (-1510 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1423 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) (-2446 (*1 *1 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -2279 ($ (-583 |t#1|))) (-15 -1985 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4195)) (PROGN (-15 -1510 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1510 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1423 ($ (-1 (-107) |t#1|) $)) (-15 -2317 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1510 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1423 ($ |t#1| $)) (-15 -2446 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) 86)) (-1690 (((-107) $) NIL)) (-2059 (($ |#2| (-583 (-845))) 57)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3024 (($ (-845)) 48)) (-1470 (((-125)) 23)) (-2262 (((-787) $) 69) (($ (-517)) 46) (($ |#2|) 47)) (-1939 ((|#2| $ (-583 (-845))) 59)) (-1818 (((-703)) 20)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 40 T CONST)) (-3675 (($) 44 T CONST)) (-1572 (((-107) $ $) 26)) (-1692 (($ $ |#2|) NIL)) (-1680 (($ $) 34) (($ $ $) 32)) (-1666 (($ $ $) 30)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-139 |#1| |#2| |#3|) (-13 (-964) (-37 |#2|) (-1165 |#2|) (-10 -8 (-15 -3024 ($ (-845))) (-15 -2059 ($ |#2| (-583 (-845)))) (-15 -1939 (|#2| $ (-583 (-845)))) (-15 -3550 ((-3 $ "failed") $)))) (-845) (-333) (-913 |#1| |#2|)) (T -139))
+((-3550 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-845)) (-4 *3 (-333)) (-14 *4 (-913 *2 *3)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-913 *3 *4)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-845))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-845)) (-4 *2 (-333)) (-14 *5 (-913 *4 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-845))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-845)) (-14 *5 (-913 *4 *2)))))
+(-13 (-964) (-37 |#2|) (-1165 |#2|) (-10 -8 (-15 -3024 ($ (-845))) (-15 -2059 ($ |#2| (-583 (-845)))) (-15 -1939 (|#2| $ (-583 (-845)))) (-15 -3550 ((-3 $ "failed") $))))
+((-2993 (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))) (-199) (-199) (-199) (-199)) 38)) (-1920 (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851)) 64)) (-3501 (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-867 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851)) 59)))
+(((-140) (-10 -7 (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -2993 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-867 (-199))))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))))))) (T -140))
+((-3501 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 (-199))))))) (-3501 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-867 (-199)))))) (-2993 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 *4)))))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))) (-3501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))))
+(-10 -7 (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -2993 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-867 (-199))))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))))))
+((-2035 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
+(((-141 |#1| |#2|) (-10 -7 (-15 -2035 ((-583 (-153 |#2|)) |#1| |#2|))) (-1134 (-153 (-517))) (-13 (-333) (-777))) (T -141))
+((-2035 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1134 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -2035 ((-583 (-153 |#2|)) |#1| |#2|)))
+((-2105 (((-107) $ $) NIL)) (-3074 (($) 16)) (-1720 (($) 15)) (-3036 (((-845)) 23)) (-3232 (((-1060) $) NIL)) (-2623 (((-517) $) 20)) (-4130 (((-1024) $) NIL)) (-3553 (($) 17)) (-3060 (($ (-517)) 24)) (-2262 (((-787) $) 30)) (-3395 (($) 18)) (-1572 (((-107) $ $) 14)) (-1666 (($ $ $) 13)) (* (($ (-845) $) 22) (($ (-199) $) 8)))
+(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-845) $)) (-15 * ($ (-199) $)) (-15 -1666 ($ $ $)) (-15 -1720 ($)) (-15 -3074 ($)) (-15 -3553 ($)) (-15 -3395 ($)) (-15 -2623 ((-517) $)) (-15 -3036 ((-845))) (-15 -3060 ($ (-517)))))) (T -142))
+((-1666 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-1720 (*1 *1) (-5 *1 (-142))) (-3074 (*1 *1) (-5 *1 (-142))) (-3553 (*1 *1) (-5 *1 (-142))) (-3395 (*1 *1) (-5 *1 (-142))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-3036 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-142)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-845) $)) (-15 * ($ (-199) $)) (-15 -1666 ($ $ $)) (-15 -1720 ($)) (-15 -3074 ($)) (-15 -3553 ($)) (-15 -3395 ($)) (-15 -2623 ((-517) $)) (-15 -3036 ((-845))) (-15 -3060 ($ (-517)))))
+((-2755 ((|#2| |#2| (-999 |#2|)) 87) ((|#2| |#2| (-1077)) 67)) (-1983 ((|#2| |#2| (-999 |#2|)) 86) ((|#2| |#2| (-1077)) 66)) (-3624 ((|#2| |#2| |#2|) 27)) (-1325 (((-109) (-109)) 97)) (-1946 ((|#2| (-583 |#2|)) 116)) (-2953 ((|#2| (-583 |#2|)) 134)) (-2972 ((|#2| (-583 |#2|)) 124)) (-3836 ((|#2| |#2|) 122)) (-1851 ((|#2| (-583 |#2|)) 109)) (-2932 ((|#2| (-583 |#2|)) 110)) (-2822 ((|#2| (-583 |#2|)) 132)) (-2995 ((|#2| |#2| (-1077)) 54) ((|#2| |#2|) 53)) (-2038 ((|#2| |#2|) 23)) (-1462 ((|#2| |#2| |#2|) 26)) (-4116 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1462 (|#2| |#2| |#2|)) (-15 -3624 (|#2| |#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -2995 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-999 |#2|))) (-15 -1983 (|#2| |#2| (-1077))) (-15 -1983 (|#2| |#2| (-999 |#2|))) (-15 -3836 (|#2| |#2|)) (-15 -2822 (|#2| (-583 |#2|))) (-15 -2972 (|#2| (-583 |#2|))) (-15 -2953 (|#2| (-583 |#2|))) (-15 -1851 (|#2| (-583 |#2|))) (-15 -2932 (|#2| (-583 |#2|))) (-15 -1946 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
+((-1946 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2995 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3624 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1462 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1462 (|#2| |#2| |#2|)) (-15 -3624 (|#2| |#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -2995 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-999 |#2|))) (-15 -1983 (|#2| |#2| (-1077))) (-15 -1983 (|#2| |#2| (-999 |#2|))) (-15 -3836 (|#2| |#2|)) (-15 -2822 (|#2| (-583 |#2|))) (-15 -2972 (|#2| (-583 |#2|))) (-15 -2953 (|#2| (-583 |#2|))) (-15 -1851 (|#2| (-583 |#2|))) (-15 -2932 (|#2| (-583 |#2|))) (-15 -1946 (|#2| (-583 |#2|))))
+((-2450 ((|#1| |#1| |#1|) 52)) (-2347 ((|#1| |#1| |#1|) 49)) (-3624 ((|#1| |#1| |#1|) 43)) (-4126 ((|#1| |#1|) 34)) (-1313 ((|#1| |#1| (-583 |#1|)) 42)) (-2038 ((|#1| |#1|) 36)) (-1462 ((|#1| |#1| |#1|) 39)))
+(((-144 |#1|) (-10 -7 (-15 -1462 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1313 (|#1| |#1| (-583 |#1|))) (-15 -4126 (|#1| |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|))) (-502)) (T -144))
+((-2450 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-2347 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3624 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-4126 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1313 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-2038 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(-10 -7 (-15 -1462 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1313 (|#1| |#1| (-583 |#1|))) (-15 -4126 (|#1| |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)))
+((-2755 (($ $ (-1077)) 12) (($ $ (-999 $)) 11)) (-1983 (($ $ (-1077)) 10) (($ $ (-999 $)) 9)) (-3624 (($ $ $) 8)) (-2995 (($ $) 14) (($ $ (-1077)) 13)) (-2038 (($ $) 7)) (-1462 (($ $ $) 6)))
+(((-145) (-1189)) (T -145))
+((-2995 (*1 *1 *1) (-4 *1 (-145))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) (-2755 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145)))) (-1983 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145)))))
+(-13 (-130) (-10 -8 (-15 -2995 ($ $)) (-15 -2995 ($ $ (-1077))) (-15 -2755 ($ $ (-1077))) (-15 -2755 ($ $ (-999 $))) (-15 -1983 ($ $ (-1077))) (-15 -1983 ($ $ (-999 $)))))
(((-130) . T))
-((-2119 (((-107) $ $) NIL)) (-2392 (($ (-517)) 13) (($ $ $) 14)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 17)) (-1584 (((-107) $ $) 9)))
-(((-146) (-13 (-1005) (-10 -8 (-15 -2392 ($ (-517))) (-15 -2392 ($ $ $))))) (T -146))
-((-2392 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-2392 (*1 *1 *1 *1) (-5 *1 (-146))))
-(-13 (-1005) (-10 -8 (-15 -2392 ($ (-517))) (-15 -2392 ($ $ $))))
-((-1934 (((-109) (-1076)) 97)))
-(((-147) (-10 -7 (-15 -1934 ((-109) (-1076))))) (T -147))
-((-1934 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-109)) (-5 *1 (-147)))))
-(-10 -7 (-15 -1934 ((-109) (-1076))))
-((-3182 ((|#3| |#3|) 20)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3182 (|#3| |#3|))) (-963) (-1133 |#1|) (-1133 |#2|)) (T -148))
-((-3182 (*1 *2 *2) (-12 (-4 *3 (-963)) (-4 *4 (-1133 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1133 *4)))))
-(-10 -7 (-15 -3182 (|#3| |#3|)))
-((-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 216)) (-2009 ((|#2| $) 96)) (-1648 (($ $) 243)) (-1494 (($ $) 237)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 40)) (-1624 (($ $) 241)) (-1471 (($ $) 235)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3390 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 138)) (-2379 (($ $ $) 221)) (-2207 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) 154) (((-623 |#2|) (-623 $)) 148)) (-1522 (($ (-1072 |#2|)) 119) (((-3 $ "failed") (-377 (-1072 |#2|))) NIL)) (-2560 (((-3 $ "failed") $) 208)) (-2518 (((-3 (-377 (-517)) "failed") $) 198)) (-3000 (((-107) $) 193)) (-1843 (((-377 (-517)) $) 196)) (-3737 (((-844)) 89)) (-2354 (($ $ $) 223)) (-2874 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2116 (($) 232)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 185) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 190)) (-2803 ((|#2| $) 94)) (-2766 (((-1072 |#2|) $) 121)) (-3310 (($ (-1 |#2| |#2|) $) 102)) (-1226 (($ $) 234)) (-1509 (((-1072 |#2|) $) 120)) (-2300 (($ $) 201)) (-1899 (($) 97)) (-2276 (((-388 (-1072 $)) (-1072 $)) 88)) (-3442 (((-388 (-1072 $)) (-1072 $)) 57)) (-2329 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3870 (($ $) 233)) (-3600 (((-703) $) 218)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 227)) (-1220 ((|#2| (-1157 $)) NIL) ((|#2|) 91)) (-2060 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2387 (((-1072 |#2|)) 114)) (-1635 (($ $) 242)) (-1483 (($ $) 236)) (-3784 (((-1157 |#2|) $ (-1157 $)) 127) (((-623 |#2|) (-1157 $) (-1157 $)) NIL) (((-1157 |#2|) $) 110) (((-623 |#2|) (-1157 $)) NIL)) (-3359 (((-1157 |#2|) $) NIL) (($ (-1157 |#2|)) NIL) (((-1072 |#2|) $) NIL) (($ (-1072 |#2|)) NIL) (((-815 (-517)) $) 176) (((-815 (-349)) $) 180) (((-153 (-349)) $) 166) (((-153 (-199)) $) 161) (((-493) $) 172)) (-1842 (($ $) 98)) (-2271 (((-787) $) 137) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1699 (((-1072 |#2|) $) 23)) (-4099 (((-703)) 100)) (-1722 (($ $) 246)) (-1576 (($ $) 240)) (-1697 (($ $) 244)) (-1548 (($ $) 238)) (-3229 ((|#2| $) 231)) (-1709 (($ $) 245)) (-1562 (($ $) 239)) (-2376 (($ $) 156)) (-1584 (((-107) $ $) 104)) (-1608 (((-107) $ $) 192)) (-1692 (($ $) 106) (($ $ $) NIL)) (-1678 (($ $ $) 105)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 265) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
-(((-149 |#1| |#2|) (-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2271 (|#1| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2559 ((-2 (|:| -1485 |#1|) (|:| -4179 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -3600 ((-703) |#1|)) (-15 -3853 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -1608 ((-107) |#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3359 ((-153 (-199)) |#1|)) (-15 -3359 ((-153 (-349)) |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1226 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2116 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3442 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2276 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2874 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3229 (|#2| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1842 (|#1| |#1|)) (-15 -1899 (|#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1522 ((-3 |#1| "failed") (-377 (-1072 |#2|)))) (-15 -1509 ((-1072 |#2|) |#1|)) (-15 -3359 (|#1| (-1072 |#2|))) (-15 -1522 (|#1| (-1072 |#2|))) (-15 -2387 ((-1072 |#2|))) (-15 -2207 ((-623 |#2|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3359 ((-1072 |#2|) |#1|)) (-15 -1220 (|#2|)) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -2766 ((-1072 |#2|) |#1|)) (-15 -1699 ((-1072 |#2|) |#1|)) (-15 -1220 (|#2| (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2803 (|#2| |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -3737 ((-844))) (-15 -2271 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
-((-4099 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3737 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-844)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-1220 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2387 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1072 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
-(-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2271 (|#1| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2559 ((-2 (|:| -1485 |#1|) (|:| -4179 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -3600 ((-703) |#1|)) (-15 -3853 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -1608 ((-107) |#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3359 ((-153 (-199)) |#1|)) (-15 -3359 ((-153 (-349)) |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1226 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2116 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3442 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2276 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2874 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3229 (|#2| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1842 (|#1| |#1|)) (-15 -1899 (|#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1522 ((-3 |#1| "failed") (-377 (-1072 |#2|)))) (-15 -1509 ((-1072 |#2|) |#1|)) (-15 -3359 (|#1| (-1072 |#2|))) (-15 -1522 (|#1| (-1072 |#2|))) (-15 -2387 ((-1072 |#2|))) (-15 -2207 ((-623 |#2|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3359 ((-1072 |#2|) |#1|)) (-15 -1220 (|#2|)) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -2766 ((-1072 |#2|) |#1|)) (-15 -1699 ((-1072 |#2|) |#1|)) (-15 -1220 (|#2| (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2803 (|#2| |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -3737 ((-844))) (-15 -2271 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 93 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-3062 (($ $) 94 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2190 (((-107) $) 96 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2133 (((-623 |#1|) (-1157 $)) 46) (((-623 |#1|)) 61)) (-2009 ((|#1| $) 52)) (-1648 (($ $) 228 (|has| |#1| (-1097)))) (-1494 (($ $) 211 (|has| |#1| (-1097)))) (-1768 (((-1085 (-844) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-2798 (((-3 $ "failed") $ $) 19)) (-3327 (((-388 (-1072 $)) (-1072 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-1224 (($ $) 113 (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-4018 (((-388 $) $) 114 (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-3880 (($ $) 241 (-12 (|has| |#1| (-920)) (|has| |#1| (-1097))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3820 (((-107) $ $) 104 (|has| |#1| (-278)))) (-2399 (((-703)) 87 (|has| |#1| (-338)))) (-1624 (($ $) 227 (|has| |#1| (-1097)))) (-1471 (($ $) 212 (|has| |#1| (-1097)))) (-1670 (($ $) 226 (|has| |#1| (-1097)))) (-1520 (($ $) 213 (|has| |#1| (-1097)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 169 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3390 (((-517) $) 170 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 165)) (-3898 (($ (-1157 |#1|) (-1157 $)) 48) (($ (-1157 |#1|)) 64)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2379 (($ $ $) 108 (|has| |#1| (-278)))) (-2637 (((-623 |#1|) $ (-1157 $)) 53) (((-623 |#1|) $) 59)) (-2207 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1522 (($ (-1072 |#1|)) 158) (((-3 $ "failed") (-377 (-1072 |#1|))) 155 (|has| |#1| (-333)))) (-2560 (((-3 $ "failed") $) 34)) (-3894 ((|#1| $) 253)) (-2518 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-3000 (((-107) $) 248 (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-3737 (((-844)) 54)) (-2202 (($) 90 (|has| |#1| (-338)))) (-2354 (($ $ $) 107 (|has| |#1| (-278)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-1304 (($) 149 (|has| |#1| (-319)))) (-3459 (((-107) $) 150 (|has| |#1| (-319)))) (-2855 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-1259 (((-107) $) 115 (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-2874 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-972)) (|has| |#1| (-1097))))) (-2116 (($) 238 (|has| |#1| (-1097)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 261 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 260 (|has| |#1| (-809 (-349))))) (-1395 (((-844) $) 152 (|has| |#1| (-319))) (((-765 (-844)) $) 138 (|has| |#1| (-319)))) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 240 (-12 (|has| |#1| (-920)) (|has| |#1| (-1097))))) (-2803 ((|#1| $) 51)) (-2243 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-2766 (((-1072 |#1|) $) 44 (|has| |#1| (-333)))) (-3458 (($ $ $) 207 (|has| |#1| (-779)))) (-4084 (($ $ $) 206 (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) 262)) (-3072 (((-844) $) 89 (|has| |#1| (-338)))) (-1226 (($ $) 235 (|has| |#1| (-1097)))) (-1509 (((-1072 |#1|) $) 156)) (-2332 (($ (-583 $)) 100 (-3747 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (($ $ $) 99 (-3747 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-1662 (((-1059) $) 9)) (-2300 (($ $) 116 (|has| |#1| (-333)))) (-2587 (($) 143 (|has| |#1| (-319)) CONST)) (-2812 (($ (-844)) 88 (|has| |#1| (-338)))) (-1899 (($) 257)) (-3906 ((|#1| $) 254)) (-4125 (((-1023) $) 10)) (-1318 (($) 160)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 101 (-3747 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2370 (($ (-583 $)) 98 (-3747 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (($ $ $) 97 (-3747 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 146 (|has| |#1| (-319)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3442 (((-388 (-1072 $)) (-1072 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3868 (((-388 $) $) 112 (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 109 (|has| |#1| (-278)))) (-2329 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-3870 (($ $) 236 (|has| |#1| (-1097)))) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) 263 (|has| |#1| (-478 (-1076) |#1|)))) (-3600 (((-703) $) 105 (|has| |#1| (-278)))) (-2609 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 106 (|has| |#1| (-278)))) (-1220 ((|#1| (-1157 $)) 47) ((|#1|) 60)) (-2192 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2060 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1076)) (-583 (-703))) 130 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 131 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 132 (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) 133 (|has| |#1| (-823 (-1076)))) (($ $ (-703)) 135 (-3747 (-3993 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3993 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3747 (-3993 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3993 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-3973 (((-623 |#1|) (-1157 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2387 (((-1072 |#1|)) 159)) (-1682 (($ $) 225 (|has| |#1| (-1097)))) (-1533 (($ $) 214 (|has| |#1| (-1097)))) (-1758 (($) 148 (|has| |#1| (-319)))) (-1660 (($ $) 224 (|has| |#1| (-1097)))) (-1507 (($ $) 215 (|has| |#1| (-1097)))) (-1635 (($ $) 223 (|has| |#1| (-1097)))) (-1483 (($ $) 216 (|has| |#1| (-1097)))) (-3784 (((-1157 |#1|) $ (-1157 $)) 50) (((-623 |#1|) (-1157 $) (-1157 $)) 49) (((-1157 |#1|) $) 66) (((-623 |#1|) (-1157 $)) 65)) (-3359 (((-1157 |#1|) $) 63) (($ (-1157 |#1|)) 62) (((-1072 |#1|) $) 171) (($ (-1072 |#1|)) 157) (((-815 (-517)) $) 259 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 258 (|has| |#1| (-558 (-815 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-939))) (((-153 (-199)) $) 209 (|has| |#1| (-939))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1842 (($ $) 256)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 145 (-3747 (-3993 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (|has| |#1| (-319))))) (-3883 (($ |#1| |#1|) 255)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3747 (|has| |#1| (-333)) (|has| |#1| (-954 (-377 (-517)))))) (($ $) 91 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-3974 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3747 (-3993 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (|has| |#1| (-132))))) (-1699 (((-1072 |#1|) $) 45)) (-4099 (((-703)) 29)) (-1492 (((-1157 $)) 67)) (-1722 (($ $) 234 (|has| |#1| (-1097)))) (-1576 (($ $) 222 (|has| |#1| (-1097)))) (-2074 (((-107) $ $) 95 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-1697 (($ $) 233 (|has| |#1| (-1097)))) (-1548 (($ $) 221 (|has| |#1| (-1097)))) (-3489 (($ $) 232 (|has| |#1| (-1097)))) (-1600 (($ $) 220 (|has| |#1| (-1097)))) (-3229 ((|#1| $) 250 (|has| |#1| (-1097)))) (-2824 (($ $) 231 (|has| |#1| (-1097)))) (-1613 (($ $) 219 (|has| |#1| (-1097)))) (-1735 (($ $) 230 (|has| |#1| (-1097)))) (-1589 (($ $) 218 (|has| |#1| (-1097)))) (-1709 (($ $) 229 (|has| |#1| (-1097)))) (-1562 (($ $) 217 (|has| |#1| (-1097)))) (-2376 (($ $) 251 (|has| |#1| (-972)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1076)) (-583 (-703))) 126 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 127 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 128 (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) 129 (|has| |#1| (-823 (-1076)))) (($ $ (-703)) 134 (-3747 (-3993 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3993 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3747 (-3993 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3993 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1642 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1704 (($ $ $) 121 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-920)) (|has| |#1| (-1097)))) (($ $ $) 237 (|has| |#1| (-1097))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
-(((-150 |#1|) (-1188) (-156)) (T -150))
-((-2803 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1899 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3883 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3906 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2329 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-972)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1097)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-972)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2518 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
-(-13 (-657 |t#1| (-1072 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-807 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3883) (-15 -1899 ($)) (-15 -1842 ($ $)) (-15 -3883 ($ |t#1| |t#1|)) (-15 -3906 (|t#1| $)) (-15 -3894 (|t#1| $)) (-15 -2803 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2329 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |%noBranch|) (IF (|has| |t#1| (-6 -4191)) (-6 -4191) |%noBranch|) (IF (|has| |t#1| (-6 -4188)) (-6 -4188) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-939)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -2376 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1097)) (PROGN (-6 (-1097)) (-15 -3229 (|t#1| $)) (IF (|has| |t#1| (-920)) (-6 (-920)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -2874 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-832)) (IF (|has| |t#1| (-278)) (-6 (-832)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1097)) ((-91) |has| |#1| (-1097)) ((-97) . T) ((-106 #0# #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3747 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-939)) ((-558 (-153 (-349))) |has| |#1| (-939)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-558 #1=(-1072 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3747 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1097)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3747 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3747 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3747 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| #1#) . T) ((-379 |#1| #1#) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3747 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1097)) ((-478 (-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3747 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| #1#) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 (-1076)) |has| |#1| (-823 (-1076))) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-832) -12 (|has| |#1| (-278)) (|has| |#1| (-832))) ((-843) -3747 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-920) -12 (|has| |#1| (-920)) (|has| |#1| (-1097))) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-969 |#1|) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) |has| |#1| (-319)) ((-1097) |has| |#1| (-1097)) ((-1100) |has| |#1| (-1097)) ((-1111) . T) ((-1115) -3747 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))
-((-3868 (((-388 |#2|) |#2|) 63)))
-(((-151 |#1| |#2|) (-10 -7 (-15 -3868 ((-388 |#2|) |#2|))) (-278) (-1133 (-153 |#1|))) (T -151))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1133 (-153 *4))))))
-(-10 -7 (-15 -3868 ((-388 |#2|) |#2|)))
-((-3310 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
-(((-152 |#1| |#2|) (-10 -7 (-15 -3310 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
-(-10 -7 (-15 -3310 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 33)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-3062 (($ $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-2190 (((-107) $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-2133 (((-623 |#1|) (-1157 $)) NIL) (((-623 |#1|)) NIL)) (-2009 ((|#1| $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-1097)))) (-1494 (($ $) NIL (|has| |#1| (-1097)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-1224 (($ $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-4018 (((-388 $) $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-3880 (($ $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-1097))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-278)))) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1624 (($ $) NIL (|has| |#1| (-1097)))) (-1471 (($ $) NIL (|has| |#1| (-1097)))) (-1670 (($ $) NIL (|has| |#1| (-1097)))) (-1520 (($ $) NIL (|has| |#1| (-1097)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-3898 (($ (-1157 |#1|) (-1157 $)) NIL) (($ (-1157 |#1|)) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2379 (($ $ $) NIL (|has| |#1| (-278)))) (-2637 (((-623 |#1|) $ (-1157 $)) NIL) (((-623 |#1|) $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1522 (($ (-1072 |#1|)) NIL) (((-3 $ "failed") (-377 (-1072 |#1|))) NIL (|has| |#1| (-333)))) (-2560 (((-3 $ "failed") $) NIL)) (-3894 ((|#1| $) 13)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3000 (((-107) $) NIL (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3737 (((-844)) NIL)) (-2202 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL (|has| |#1| (-278)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-1304 (($) NIL (|has| |#1| (-319)))) (-3459 (((-107) $) NIL (|has| |#1| (-319)))) (-2855 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-1259 (((-107) $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-2874 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-972)) (|has| |#1| (-1097))))) (-2116 (($) NIL (|has| |#1| (-1097)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| |#1| (-809 (-349))))) (-1395 (((-844) $) NIL (|has| |#1| (-319))) (((-765 (-844)) $) NIL (|has| |#1| (-319)))) (-1376 (((-107) $) 35)) (-2092 (($ $ (-517)) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-1097))))) (-2803 ((|#1| $) 46)) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2766 (((-1072 |#1|) $) NIL (|has| |#1| (-333)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-1226 (($ $) NIL (|has| |#1| (-1097)))) (-1509 (((-1072 |#1|) $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2587 (($) NIL (|has| |#1| (-319)) CONST)) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-1899 (($) NIL)) (-3906 ((|#1| $) 15)) (-4125 (((-1023) $) NIL)) (-1318 (($) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-278)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| |#1| (-319)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3868 (((-388 $) $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-278)))) (-2329 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3870 (($ $) NIL (|has| |#1| (-1097)))) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-478 (-1076) |#1|)))) (-3600 (((-703) $) NIL (|has| |#1| (-278)))) (-2609 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-278)))) (-1220 ((|#1| (-1157 $)) NIL) ((|#1|) NIL)) (-2192 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2060 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3973 (((-623 |#1|) (-1157 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2387 (((-1072 |#1|)) NIL)) (-1682 (($ $) NIL (|has| |#1| (-1097)))) (-1533 (($ $) NIL (|has| |#1| (-1097)))) (-1758 (($) NIL (|has| |#1| (-319)))) (-1660 (($ $) NIL (|has| |#1| (-1097)))) (-1507 (($ $) NIL (|has| |#1| (-1097)))) (-1635 (($ $) NIL (|has| |#1| (-1097)))) (-1483 (($ $) NIL (|has| |#1| (-1097)))) (-3784 (((-1157 |#1|) $ (-1157 $)) NIL) (((-623 |#1|) (-1157 $) (-1157 $)) NIL) (((-1157 |#1|) $) NIL) (((-623 |#1|) (-1157 $)) NIL)) (-3359 (((-1157 |#1|) $) NIL) (($ (-1157 |#1|)) NIL) (((-1072 |#1|) $) NIL) (($ (-1072 |#1|)) NIL) (((-815 (-517)) $) NIL (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#1| (-558 (-815 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-939))) (((-153 (-199)) $) NIL (|has| |#1| (-939))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1842 (($ $) 45)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-319))))) (-3883 (($ |#1| |#1|) 37)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-333)) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-3974 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-1699 (((-1072 |#1|) $) NIL)) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL)) (-1722 (($ $) NIL (|has| |#1| (-1097)))) (-1576 (($ $) NIL (|has| |#1| (-1097)))) (-2074 (((-107) $ $) NIL (-3747 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-1697 (($ $) NIL (|has| |#1| (-1097)))) (-1548 (($ $) NIL (|has| |#1| (-1097)))) (-3489 (($ $) NIL (|has| |#1| (-1097)))) (-1600 (($ $) NIL (|has| |#1| (-1097)))) (-3229 ((|#1| $) NIL (|has| |#1| (-1097)))) (-2824 (($ $) NIL (|has| |#1| (-1097)))) (-1613 (($ $) NIL (|has| |#1| (-1097)))) (-1735 (($ $) NIL (|has| |#1| (-1097)))) (-1589 (($ $) NIL (|has| |#1| (-1097)))) (-1709 (($ $) NIL (|has| |#1| (-1097)))) (-1562 (($ $) NIL (|has| |#1| (-1097)))) (-2376 (($ $) NIL (|has| |#1| (-972)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 28 T CONST)) (-3619 (($) 30 T CONST)) (-4032 (((-1059) $) 23 (|has| |#1| (-760))) (((-1059) $ (-107)) 25 (|has| |#1| (-760))) (((-1162) (-754) $) 26 (|has| |#1| (-760))) (((-1162) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-3342 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 39)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-1097)))) (($ $ $) NIL (|has| |#1| (-1097))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+((-2105 (((-107) $ $) NIL)) (-1456 (($ (-517)) 13) (($ $ $) 14)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 17)) (-1572 (((-107) $ $) 9)))
+(((-146) (-13 (-1006) (-10 -8 (-15 -1456 ($ (-517))) (-15 -1456 ($ $ $))))) (T -146))
+((-1456 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-1456 (*1 *1 *1 *1) (-5 *1 (-146))))
+(-13 (-1006) (-10 -8 (-15 -1456 ($ (-517))) (-15 -1456 ($ $ $))))
+((-1325 (((-109) (-1077)) 97)))
+(((-147) (-10 -7 (-15 -1325 ((-109) (-1077))))) (T -147))
+((-1325 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-109)) (-5 *1 (-147)))))
+(-10 -7 (-15 -1325 ((-109) (-1077))))
+((-3326 ((|#3| |#3|) 20)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3326 (|#3| |#3|))) (-964) (-1134 |#1|) (-1134 |#2|)) (T -148))
+((-3326 (*1 *2 *2) (-12 (-4 *3 (-964)) (-4 *4 (-1134 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1134 *4)))))
+(-10 -7 (-15 -3326 (|#3| |#3|)))
+((-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 216)) (-1991 ((|#2| $) 96)) (-1636 (($ $) 243)) (-1482 (($ $) 237)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 40)) (-1612 (($ $) 241)) (-1459 (($ $) 235)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 138)) (-2383 (($ $ $) 221)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 154) (((-623 |#2|) (-623 $)) 148)) (-1510 (($ (-1073 |#2|)) 119) (((-3 $ "failed") (-377 (-1073 |#2|))) NIL)) (-3550 (((-3 $ "failed") $) 208)) (-3389 (((-3 (-377 (-517)) "failed") $) 198)) (-3748 (((-107) $) 193)) (-3727 (((-377 (-517)) $) 196)) (-3778 (((-845)) 89)) (-2356 (($ $ $) 223)) (-2877 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2102 (($) 232)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 185) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 190)) (-3522 ((|#2| $) 94)) (-1914 (((-1073 |#2|) $) 121)) (-3312 (($ (-1 |#2| |#2|) $) 102)) (-1232 (($ $) 234)) (-1497 (((-1073 |#2|) $) 120)) (-2291 (($ $) 201)) (-1583 (($) 97)) (-3835 (((-388 (-1073 $)) (-1073 $)) 88)) (-1195 (((-388 (-1073 $)) (-1073 $)) 57)) (-2333 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3898 (($ $) 233)) (-3388 (((-703) $) 218)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 227)) (-3115 ((|#2| (-1158 $)) NIL) ((|#2|) 91)) (-2042 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2819 (((-1073 |#2|)) 114)) (-1622 (($ $) 242)) (-1471 (($ $) 236)) (-1372 (((-1158 |#2|) $ (-1158 $)) 127) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $) 110) (((-623 |#2|) (-1158 $)) NIL)) (-3367 (((-1158 |#2|) $) NIL) (($ (-1158 |#2|)) NIL) (((-1073 |#2|) $) NIL) (($ (-1073 |#2|)) NIL) (((-816 (-517)) $) 176) (((-816 (-349)) $) 180) (((-153 (-349)) $) 166) (((-153 (-199)) $) 161) (((-493) $) 172)) (-1853 (($ $) 98)) (-2262 (((-787) $) 137) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3848 (((-1073 |#2|) $) 23)) (-1818 (((-703)) 100)) (-1706 (($ $) 246)) (-1564 (($ $) 240)) (-1685 (($ $) 244)) (-1536 (($ $) 238)) (-2842 ((|#2| $) 231)) (-1698 (($ $) 245)) (-1550 (($ $) 239)) (-2829 (($ $) 156)) (-1572 (((-107) $ $) 104)) (-1596 (((-107) $ $) 192)) (-1680 (($ $) 106) (($ $ $) NIL)) (-1666 (($ $ $) 105)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 265) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2262 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-153 (-199)) |#1|)) (-15 -3367 ((-153 (-349)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2102 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2877 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1853 (|#1| |#1|)) (-15 -1583 (|#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1510 ((-3 |#1| "failed") (-377 (-1073 |#2|)))) (-15 -1497 ((-1073 |#2|) |#1|)) (-15 -3367 (|#1| (-1073 |#2|))) (-15 -1510 (|#1| (-1073 |#2|))) (-15 -2819 ((-1073 |#2|))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3848 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -3522 (|#2| |#1|)) (-15 -1991 (|#2| |#1|)) (-15 -3778 ((-845))) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
+((-1818 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3778 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-845)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3115 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2819 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1073 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
+(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2262 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-153 (-199)) |#1|)) (-15 -3367 ((-153 (-349)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2102 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2877 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1853 (|#1| |#1|)) (-15 -1583 (|#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1510 ((-3 |#1| "failed") (-377 (-1073 |#2|)))) (-15 -1497 ((-1073 |#2|) |#1|)) (-15 -3367 (|#1| (-1073 |#2|))) (-15 -1510 (|#1| (-1073 |#2|))) (-15 -2819 ((-1073 |#2|))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3848 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -3522 (|#2| |#1|)) (-15 -1991 (|#2| |#1|)) (-15 -3778 ((-845))) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 93 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2491 (($ $) 94 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2025 (((-107) $) 96 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-1278 (((-623 |#1|) (-1158 $)) 46) (((-623 |#1|)) 61)) (-1991 ((|#1| $) 52)) (-1636 (($ $) 228 (|has| |#1| (-1098)))) (-1482 (($ $) 211 (|has| |#1| (-1098)))) (-2461 (((-1086 (-845) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1322 (($ $) 113 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3306 (((-388 $) $) 114 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3908 (($ $) 241 (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1765 (((-107) $ $) 104 (|has| |#1| (-278)))) (-2390 (((-703)) 87 (|has| |#1| (-338)))) (-1612 (($ $) 227 (|has| |#1| (-1098)))) (-1459 (($ $) 212 (|has| |#1| (-1098)))) (-1659 (($ $) 226 (|has| |#1| (-1098)))) (-1508 (($ $) 213 (|has| |#1| (-1098)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 169 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3402 (((-517) $) 170 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 165)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48) (($ (-1158 |#1|)) 64)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2383 (($ $ $) 108 (|has| |#1| (-278)))) (-4028 (((-623 |#1|) $ (-1158 $)) 53) (((-623 |#1|) $) 59)) (-2947 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1510 (($ (-1073 |#1|)) 158) (((-3 $ "failed") (-377 (-1073 |#1|))) 155 (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) 34)) (-3919 ((|#1| $) 253)) (-3389 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-3748 (((-107) $) 248 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-3778 (((-845)) 54)) (-2192 (($) 90 (|has| |#1| (-338)))) (-2356 (($ $ $) 107 (|has| |#1| (-278)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-4169 (($) 149 (|has| |#1| (-319)))) (-2634 (((-107) $) 150 (|has| |#1| (-319)))) (-2627 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2022 (((-107) $) 115 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2877 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-973)) (|has| |#1| (-1098))))) (-2102 (($) 238 (|has| |#1| (-1098)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 261 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 260 (|has| |#1| (-810 (-349))))) (-3250 (((-845) $) 152 (|has| |#1| (-319))) (((-765 (-845)) $) 138 (|has| |#1| (-319)))) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 240 (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3522 ((|#1| $) 51)) (-1639 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-1914 (((-1073 |#1|) $) 44 (|has| |#1| (-333)))) (-3480 (($ $ $) 207 (|has| |#1| (-779)))) (-4095 (($ $ $) 206 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 262)) (-4161 (((-845) $) 89 (|has| |#1| (-338)))) (-1232 (($ $) 235 (|has| |#1| (-1098)))) (-1497 (((-1073 |#1|) $) 156)) (-2323 (($ (-583 $)) 100 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (($ $ $) 99 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 116 (|has| |#1| (-333)))) (-2578 (($) 143 (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) 88 (|has| |#1| (-338)))) (-1583 (($) 257)) (-3931 ((|#1| $) 254)) (-4130 (((-1024) $) 10)) (-1306 (($) 160)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 101 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2361 (($ (-583 $)) 98 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (($ $ $) 97 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 146 (|has| |#1| (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1195 (((-388 (-1073 $)) (-1073 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-3896 (((-388 $) $) 112 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 109 (|has| |#1| (-278)))) (-2333 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-3898 (($ $) 236 (|has| |#1| (-1098)))) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 263 (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) 105 (|has| |#1| (-278)))) (-2612 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 106 (|has| |#1| (-278)))) (-3115 ((|#1| (-1158 $)) 47) ((|#1|) 60)) (-3667 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2042 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1077)) (-583 (-703))) 130 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 131 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 132 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 133 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 135 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2819 (((-1073 |#1|)) 159)) (-1670 (($ $) 225 (|has| |#1| (-1098)))) (-1521 (($ $) 214 (|has| |#1| (-1098)))) (-3718 (($) 148 (|has| |#1| (-319)))) (-1647 (($ $) 224 (|has| |#1| (-1098)))) (-1495 (($ $) 215 (|has| |#1| (-1098)))) (-1622 (($ $) 223 (|has| |#1| (-1098)))) (-1471 (($ $) 216 (|has| |#1| (-1098)))) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49) (((-1158 |#1|) $) 66) (((-623 |#1|) (-1158 $)) 65)) (-3367 (((-1158 |#1|) $) 63) (($ (-1158 |#1|)) 62) (((-1073 |#1|) $) 171) (($ (-1073 |#1|)) 157) (((-816 (-517)) $) 259 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 258 (|has| |#1| (-558 (-816 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-940))) (((-153 (-199)) $) 209 (|has| |#1| (-940))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1853 (($ $) 256)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 145 (-3786 (-4024 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (|has| |#1| (-319))))) (-3913 (($ |#1| |#1|) 255)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517)))))) (($ $) 91 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-3385 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3786 (-4024 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (|has| |#1| (-132))))) (-3848 (((-1073 |#1|) $) 45)) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 67)) (-1706 (($ $) 234 (|has| |#1| (-1098)))) (-1564 (($ $) 222 (|has| |#1| (-1098)))) (-2944 (((-107) $ $) 95 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-1685 (($ $) 233 (|has| |#1| (-1098)))) (-1536 (($ $) 221 (|has| |#1| (-1098)))) (-3517 (($ $) 232 (|has| |#1| (-1098)))) (-1588 (($ $) 220 (|has| |#1| (-1098)))) (-2842 ((|#1| $) 250 (|has| |#1| (-1098)))) (-2815 (($ $) 231 (|has| |#1| (-1098)))) (-1601 (($ $) 219 (|has| |#1| (-1098)))) (-1722 (($ $) 230 (|has| |#1| (-1098)))) (-1577 (($ $) 218 (|has| |#1| (-1098)))) (-1698 (($ $) 229 (|has| |#1| (-1098)))) (-1550 (($ $) 217 (|has| |#1| (-1098)))) (-2829 (($ $) 251 (|has| |#1| (-973)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1077)) (-583 (-703))) 126 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 127 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 128 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 129 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 134 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1630 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1692 (($ $ $) 121 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-921)) (|has| |#1| (-1098)))) (($ $ $) 237 (|has| |#1| (-1098))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-150 |#1|) (-1189) (-156)) (T -150))
+((-3522 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1583 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1853 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3913 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2829 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1098)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-973)) (-4 *3 (-1098)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-657 |t#1| (-1073 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-808 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3913) (-15 -1583 ($)) (-15 -1853 ($ $)) (-15 -3913 ($ |t#1| |t#1|)) (-15 -3931 (|t#1| $)) (-15 -3919 (|t#1| $)) (-15 -3522 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2333 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |%noBranch|) (IF (|has| |t#1| (-6 -4194)) (-6 -4194) |%noBranch|) (IF (|has| |t#1| (-6 -4191)) (-6 -4191) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-940)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2829 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1098)) (PROGN (-6 (-1098)) (-15 -2842 (|t#1| $)) (IF (|has| |t#1| (-921)) (-6 (-921)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2877 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-833)) (IF (|has| |t#1| (-278)) (-6 (-833)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1098)) ((-91) |has| |#1| (-1098)) ((-97) . T) ((-106 #0# #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-940)) ((-558 (-153 (-349))) |has| |#1| (-940)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-558 #1=(-1073 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3786 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1098)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3786 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| #1#) . T) ((-379 |#1| #1#) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1098)) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| #1#) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-833) -12 (|has| |#1| (-278)) (|has| |#1| (-833))) ((-844) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-921) -12 (|has| |#1| (-921)) (|has| |#1| (-1098))) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-319)) ((-1098) |has| |#1| (-1098)) ((-1101) |has| |#1| (-1098)) ((-1112) . T) ((-1116) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))
+((-3896 (((-388 |#2|) |#2|) 63)))
+(((-151 |#1| |#2|) (-10 -7 (-15 -3896 ((-388 |#2|) |#2|))) (-278) (-1134 (-153 |#1|))) (T -151))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1134 (-153 *4))))))
+(-10 -7 (-15 -3896 ((-388 |#2|) |#2|)))
+((-3312 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
+(((-152 |#1| |#2|) (-10 -7 (-15 -3312 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
+(-10 -7 (-15 -3312 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 33)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-2491 (($ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-2025 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-1278 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) NIL)) (-1991 ((|#1| $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-1098)))) (-1482 (($ $) NIL (|has| |#1| (-1098)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1322 (($ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3306 (((-388 $) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3908 (($ $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-278)))) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL (|has| |#1| (-1098)))) (-1459 (($ $) NIL (|has| |#1| (-1098)))) (-1659 (($ $) NIL (|has| |#1| (-1098)))) (-1508 (($ $) NIL (|has| |#1| (-1098)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|) (-1158 $)) NIL) (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2383 (($ $ $) NIL (|has| |#1| (-278)))) (-4028 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1510 (($ (-1073 |#1|)) NIL) (((-3 $ "failed") (-377 (-1073 |#1|))) NIL (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3919 ((|#1| $) 13)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3748 (((-107) $) NIL (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL (|has| |#1| (-278)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-4169 (($) NIL (|has| |#1| (-319)))) (-2634 (((-107) $) NIL (|has| |#1| (-319)))) (-2627 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2022 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2877 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1098))))) (-2102 (($) NIL (|has| |#1| (-1098)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| |#1| (-810 (-349))))) (-3250 (((-845) $) NIL (|has| |#1| (-319))) (((-765 (-845)) $) NIL (|has| |#1| (-319)))) (-1690 (((-107) $) 35)) (-2940 (($ $ (-517)) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3522 ((|#1| $) 46)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-1914 (((-1073 |#1|) $) NIL (|has| |#1| (-333)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-1232 (($ $) NIL (|has| |#1| (-1098)))) (-1497 (((-1073 |#1|) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-2578 (($) NIL (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1583 (($) NIL)) (-3931 ((|#1| $) 15)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-278)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-3896 (((-388 $) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-278)))) (-2333 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3898 (($ $) NIL (|has| |#1| (-1098)))) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) NIL (|has| |#1| (-278)))) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-278)))) (-3115 ((|#1| (-1158 $)) NIL) ((|#1|) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2042 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2819 (((-1073 |#1|)) NIL)) (-1670 (($ $) NIL (|has| |#1| (-1098)))) (-1521 (($ $) NIL (|has| |#1| (-1098)))) (-3718 (($) NIL (|has| |#1| (-319)))) (-1647 (($ $) NIL (|has| |#1| (-1098)))) (-1495 (($ $) NIL (|has| |#1| (-1098)))) (-1622 (($ $) NIL (|has| |#1| (-1098)))) (-1471 (($ $) NIL (|has| |#1| (-1098)))) (-1372 (((-1158 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) (-1158 $) (-1158 $)) NIL) (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-3367 (((-1158 |#1|) $) NIL) (($ (-1158 |#1|)) NIL) (((-1073 |#1|) $) NIL) (($ (-1073 |#1|)) NIL) (((-816 (-517)) $) NIL (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#1| (-558 (-816 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-940))) (((-153 (-199)) $) NIL (|has| |#1| (-940))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1853 (($ $) 45)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-319))))) (-3913 (($ |#1| |#1|) 37)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-3385 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-3848 (((-1073 |#1|) $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL)) (-1706 (($ $) NIL (|has| |#1| (-1098)))) (-1564 (($ $) NIL (|has| |#1| (-1098)))) (-2944 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-1685 (($ $) NIL (|has| |#1| (-1098)))) (-1536 (($ $) NIL (|has| |#1| (-1098)))) (-3517 (($ $) NIL (|has| |#1| (-1098)))) (-1588 (($ $) NIL (|has| |#1| (-1098)))) (-2842 ((|#1| $) NIL (|has| |#1| (-1098)))) (-2815 (($ $) NIL (|has| |#1| (-1098)))) (-1601 (($ $) NIL (|has| |#1| (-1098)))) (-1722 (($ $) NIL (|has| |#1| (-1098)))) (-1577 (($ $) NIL (|has| |#1| (-1098)))) (-1698 (($ $) NIL (|has| |#1| (-1098)))) (-1550 (($ $) NIL (|has| |#1| (-1098)))) (-2829 (($ $) NIL (|has| |#1| (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 28 T CONST)) (-3675 (($) 30 T CONST)) (-2514 (((-1060) $) 23 (|has| |#1| (-760))) (((-1060) $ (-107)) 25 (|has| |#1| (-760))) (((-1163) (-754) $) 26 (|has| |#1| (-760))) (((-1163) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-3348 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 39)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-1098)))) (($ $ $) NIL (|has| |#1| (-1098))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
(((-153 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-156)) (T -153))
NIL
(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|)))
-((-3359 (((-815 |#1|) |#3|) 22)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3359 ((-815 |#1|) |#3|))) (-1005) (-13 (-558 (-815 |#1|)) (-156)) (-150 |#2|)) (T -154))
-((-3359 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-815 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1005)) (-4 *3 (-150 *5)))))
-(-10 -7 (-15 -3359 ((-815 |#1|) |#3|)))
-((-2119 (((-107) $ $) NIL)) (-2536 (((-107) $) 9)) (-2703 (((-107) $ (-107)) 11)) (-3213 (($) 12)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2462 (($ $) 13)) (-2271 (((-787) $) 17)) (-2120 (((-107) $) 8)) (-1724 (((-107) $ (-107)) 10)) (-1584 (((-107) $ $) NIL)))
-(((-155) (-13 (-1005) (-10 -8 (-15 -3213 ($)) (-15 -2120 ((-107) $)) (-15 -2536 ((-107) $)) (-15 -1724 ((-107) $ (-107))) (-15 -2703 ((-107) $ (-107))) (-15 -2462 ($ $))))) (T -155))
-((-3213 (*1 *1) (-5 *1 (-155))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1724 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2703 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2462 (*1 *1 *1) (-5 *1 (-155))))
-(-13 (-1005) (-10 -8 (-15 -3213 ($)) (-15 -2120 ((-107) $)) (-15 -2536 ((-107) $)) (-15 -1724 ((-107) $ (-107))) (-15 -2703 ((-107) $ (-107))) (-15 -2462 ($ $))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-156) (-1188)) (T -156))
-NIL
-(-13 (-963) (-106 $ $) (-10 -7 (-6 (-4194 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 ((|#1| $) 75)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL)) (-1374 (($ $) 19)) (-2740 (($ |#1| (-1057 |#1|)) 48)) (-2560 (((-3 $ "failed") $) 117)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2804 (((-1057 |#1|) $) 82)) (-2233 (((-1057 |#1|) $) 79)) (-3499 (((-1057 |#1|) $) 80)) (-1376 (((-107) $) NIL)) (-1811 (((-1057 |#1|) $) 88)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2332 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2671 (($ $ (-517)) 91)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-3166 (((-1057 |#1|) $) 89)) (-2568 (((-1057 (-377 |#1|)) $) 13)) (-1234 (($ (-377 |#1|)) 17) (($ |#1| (-1057 |#1|) (-1057 |#1|)) 38)) (-3624 (($ $) 93)) (-2271 (((-787) $) 127) (($ (-517)) 51) (($ |#1|) 52) (($ (-377 |#1|)) 36) (($ (-377 (-517))) NIL) (($ $) NIL)) (-4099 (((-703)) 64)) (-2074 (((-107) $ $) NIL)) (-3598 (((-1057 (-377 |#1|)) $) 18)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 25 T CONST)) (-3619 (($) 28 T CONST)) (-1584 (((-107) $ $) 35)) (-1704 (($ $ $) 115)) (-1692 (($ $) 106) (($ $ $) 103)) (-1678 (($ $ $) 101)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-377 |#1|) $) 111) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
-(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -1234 ($ (-377 |#1|))) (-15 -1234 ($ |#1| (-1057 |#1|) (-1057 |#1|))) (-15 -2740 ($ |#1| (-1057 |#1|))) (-15 -2233 ((-1057 |#1|) $)) (-15 -3499 ((-1057 |#1|) $)) (-15 -2804 ((-1057 |#1|) $)) (-15 -1363 (|#1| $)) (-15 -1374 ($ $)) (-15 -3598 ((-1057 (-377 |#1|)) $)) (-15 -2568 ((-1057 (-377 |#1|)) $)) (-15 -1811 ((-1057 |#1|) $)) (-15 -3166 ((-1057 |#1|) $)) (-15 -2671 ($ $ (-517))) (-15 -3624 ($ $)))) (-278)) (T -157))
-((-1234 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-1234 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1057 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-2740 (*1 *1 *2 *3) (-12 (-5 *3 (-1057 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1363 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1057 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-1057 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3624 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
-(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -1234 ($ (-377 |#1|))) (-15 -1234 ($ |#1| (-1057 |#1|) (-1057 |#1|))) (-15 -2740 ($ |#1| (-1057 |#1|))) (-15 -2233 ((-1057 |#1|) $)) (-15 -3499 ((-1057 |#1|) $)) (-15 -2804 ((-1057 |#1|) $)) (-15 -1363 (|#1| $)) (-15 -1374 ($ $)) (-15 -3598 ((-1057 (-377 |#1|)) $)) (-15 -2568 ((-1057 (-377 |#1|)) $)) (-15 -1811 ((-1057 |#1|) $)) (-15 -3166 ((-1057 |#1|) $)) (-15 -2671 ($ $ (-517))) (-15 -3624 ($ $))))
-((-3369 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 40)) (-1749 (((-866 |#1|) (-866 |#1|)) 19)) (-2412 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 36)) (-3305 (((-866 |#1|) (-866 |#1|)) 17)) (-2466 (((-866 |#1|) (-866 |#1|)) 25)) (-4131 (((-866 |#1|) (-866 |#1|)) 24)) (-3467 (((-866 |#1|) (-866 |#1|)) 23)) (-3058 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 37)) (-1299 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 35)) (-2532 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 34)) (-2298 (((-866 |#1|) (-866 |#1|)) 18)) (-3199 (((-1 (-866 |#1|) (-866 |#1|)) |#1| |#1|) 43)) (-2248 (((-866 |#1|) (-866 |#1|)) 8)) (-3255 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 39)) (-1968 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 38)))
-(((-158 |#1|) (-10 -7 (-15 -2248 ((-866 |#1|) (-866 |#1|))) (-15 -3305 ((-866 |#1|) (-866 |#1|))) (-15 -2298 ((-866 |#1|) (-866 |#1|))) (-15 -1749 ((-866 |#1|) (-866 |#1|))) (-15 -3467 ((-866 |#1|) (-866 |#1|))) (-15 -4131 ((-866 |#1|) (-866 |#1|))) (-15 -2466 ((-866 |#1|) (-866 |#1|))) (-15 -2532 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -1299 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2412 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3058 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -1968 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3255 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3369 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3199 ((-1 (-866 |#1|) (-866 |#1|)) |#1| |#1|))) (-13 (-333) (-1097) (-920))) (T -158))
-((-3199 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-3369 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-3058 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-2412 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-1299 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-2532 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1097) (-920))))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))) (-4131 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920))) (-5 *1 (-158 *3)))))
-(-10 -7 (-15 -2248 ((-866 |#1|) (-866 |#1|))) (-15 -3305 ((-866 |#1|) (-866 |#1|))) (-15 -2298 ((-866 |#1|) (-866 |#1|))) (-15 -1749 ((-866 |#1|) (-866 |#1|))) (-15 -3467 ((-866 |#1|) (-866 |#1|))) (-15 -4131 ((-866 |#1|) (-866 |#1|))) (-15 -2466 ((-866 |#1|) (-866 |#1|))) (-15 -2532 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -1299 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2412 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3058 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -1968 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3255 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3369 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3199 ((-1 (-866 |#1|) (-866 |#1|)) |#1| |#1|)))
-((-1699 ((|#2| |#3|) 27)))
-(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -1699 (|#2| |#3|))) (-156) (-1133 |#1|) (-657 |#1| |#2|)) (T -159))
-((-1699 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1133 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
-(-10 -7 (-15 -1699 (|#2| |#3|)))
-((-3544 (((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)) 47 (|has| (-875 |#2|) (-809 |#1|)))))
-(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-875 |#2|) (-809 |#1|)) (-15 -3544 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) |%noBranch|)) (-1005) (-13 (-809 |#1|) (-156)) (-150 |#2|)) (T -160))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-4 *3 (-150 *6)) (-4 (-875 *6) (-809 *5)) (-4 *6 (-13 (-809 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-875 |#2|) (-809 |#1|)) (-15 -3544 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) |%noBranch|))
-((-2826 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-3695 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-3104 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
-(((-161 |#1|) (-10 -7 (-15 -3695 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -3104 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -3104 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -2826 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
-((-2826 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-3104 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-3695 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(-10 -7 (-15 -3695 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -3104 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -3104 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -2826 ((-583 |#1|) (-583 |#1|) |#1|)))
-((-1350 (((-2 (|:| |start| |#2|) (|:| -1510 (-388 |#2|))) |#2|) 61)) (-3671 ((|#1| |#1|) 54)) (-2606 (((-153 |#1|) |#2|) 83)) (-1301 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-1607 ((|#2| |#2|) 82)) (-1410 (((-388 |#2|) |#2| |#1|) 113) (((-388 |#2|) |#2| |#1| (-107)) 80)) (-2803 ((|#1| |#2|) 112)) (-3051 ((|#2| |#2|) 119)) (-3868 (((-388 |#2|) |#2|) 134) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 133)) (-4132 (((-583 (-2 (|:| -1510 (-583 |#2|)) (|:| -3110 |#1|))) |#2| |#2|) 132) (((-583 (-2 (|:| -1510 (-583 |#2|)) (|:| -3110 |#1|))) |#2| |#2| (-107)) 75)) (-3414 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -3414 ((-583 (-153 |#1|)) |#2|)) (-15 -3414 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -4132 ((-583 (-2 (|:| -1510 (-583 |#2|)) (|:| -3110 |#1|))) |#2| |#2| (-107))) (-15 -4132 ((-583 (-2 (|:| -1510 (-583 |#2|)) (|:| -3110 |#1|))) |#2| |#2|)) (-15 -3868 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3868 ((-388 |#2|) |#2| |#1|)) (-15 -3868 ((-388 |#2|) |#2|)) (-15 -3051 (|#2| |#2|)) (-15 -2803 (|#1| |#2|)) (-15 -1410 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1410 ((-388 |#2|) |#2| |#1|)) (-15 -1607 (|#2| |#2|)) (-15 -1301 (|#1| |#2| |#1|)) (-15 -1301 (|#1| |#2|)) (-15 -2606 ((-153 |#1|) |#2|)) (-15 -3671 (|#1| |#1|)) (-15 -1350 ((-2 (|:| |start| |#2|) (|:| -1510 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1133 (-153 |#1|))) (T -162))
-((-1350 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -1510 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-3671 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1133 (-153 *2))))) (-2606 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1133 *2)))) (-1301 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1133 (-153 *2))))) (-1301 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1133 (-153 *2))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1133 (-153 *3))))) (-1410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-1410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-2803 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1133 (-153 *2))))) (-3051 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1133 (-153 *3))))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-3868 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-3868 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-4132 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1510 (-583 *3)) (|:| -3110 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-4132 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1510 (-583 *3)) (|:| -3110 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1133 (-153 *5))))) (-3414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))) (-3414 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))))
-(-10 -7 (-15 -3414 ((-583 (-153 |#1|)) |#2|)) (-15 -3414 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -4132 ((-583 (-2 (|:| -1510 (-583 |#2|)) (|:| -3110 |#1|))) |#2| |#2| (-107))) (-15 -4132 ((-583 (-2 (|:| -1510 (-583 |#2|)) (|:| -3110 |#1|))) |#2| |#2|)) (-15 -3868 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3868 ((-388 |#2|) |#2| |#1|)) (-15 -3868 ((-388 |#2|) |#2|)) (-15 -3051 (|#2| |#2|)) (-15 -2803 (|#1| |#2|)) (-15 -1410 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1410 ((-388 |#2|) |#2| |#1|)) (-15 -1607 (|#2| |#2|)) (-15 -1301 (|#1| |#2| |#1|)) (-15 -1301 (|#1| |#2|)) (-15 -2606 ((-153 |#1|) |#2|)) (-15 -3671 (|#1| |#1|)) (-15 -1350 ((-2 (|:| |start| |#2|) (|:| -1510 (-388 |#2|))) |#2|)))
-((-1977 (((-3 |#2| "failed") |#2|) 14)) (-1521 (((-703) |#2|) 16)) (-4157 ((|#2| |#2| |#2|) 18)))
-(((-163 |#1| |#2|) (-10 -7 (-15 -1977 ((-3 |#2| "failed") |#2|)) (-15 -1521 ((-703) |#2|)) (-15 -4157 (|#2| |#2| |#2|))) (-1111) (-610 |#1|)) (T -163))
-((-4157 (*1 *2 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-1521 (*1 *2 *3) (-12 (-4 *4 (-1111)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-1977 (*1 *2 *2) (|partial| -12 (-4 *3 (-1111)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(-10 -7 (-15 -1977 ((-3 |#2| "failed") |#2|)) (-15 -1521 ((-703) |#2|)) (-15 -4157 (|#2| |#2| |#2|)))
-((-1930 ((|#2| |#2|) 28)) (-4073 (((-107) |#2|) 19)) (-3894 (((-286 |#1|) |#2|) 12)) (-3906 (((-286 |#1|) |#2|) 14)) (-1248 ((|#2| |#2| (-1076)) 68) ((|#2| |#2|) 69)) (-3363 (((-153 (-286 |#1|)) |#2|) 9)) (-3539 ((|#2| |#2| (-1076)) 65) ((|#2| |#2|) 58)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -1248 (|#2| |#2|)) (-15 -1248 (|#2| |#2| (-1076))) (-15 -3539 (|#2| |#2|)) (-15 -3539 (|#2| |#2| (-1076))) (-15 -3894 ((-286 |#1|) |#2|)) (-15 -3906 ((-286 |#1|) |#2|)) (-15 -4073 ((-107) |#2|)) (-15 -1930 (|#2| |#2|)) (-15 -3363 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-954 (-517))) (-13 (-27) (-1097) (-400 (-153 |#1|)))) (T -164))
-((-3363 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4)))))) (-1930 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *3)))))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4)))))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4)))))) (-3894 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4)))))) (-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *4)))))) (-3539 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *3)))))) (-1248 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *4)))))) (-1248 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *3)))))))
-(-10 -7 (-15 -1248 (|#2| |#2|)) (-15 -1248 (|#2| |#2| (-1076))) (-15 -3539 (|#2| |#2|)) (-15 -3539 (|#2| |#2| (-1076))) (-15 -3894 ((-286 |#1|) |#2|)) (-15 -3906 ((-286 |#1|) |#2|)) (-15 -4073 ((-107) |#2|)) (-15 -1930 (|#2| |#2|)) (-15 -3363 ((-153 (-286 |#1|)) |#2|)))
-((-1812 (((-1157 (-623 (-875 |#1|))) (-1157 (-623 |#1|))) 22)) (-2271 (((-1157 (-623 (-377 (-875 |#1|)))) (-1157 (-623 |#1|))) 30)))
-(((-165 |#1|) (-10 -7 (-15 -1812 ((-1157 (-623 (-875 |#1|))) (-1157 (-623 |#1|)))) (-15 -2271 ((-1157 (-623 (-377 (-875 |#1|)))) (-1157 (-623 |#1|))))) (-156)) (T -165))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-1157 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1157 (-623 (-377 (-875 *4))))) (-5 *1 (-165 *4)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1157 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1157 (-623 (-875 *4)))) (-5 *1 (-165 *4)))))
-(-10 -7 (-15 -1812 ((-1157 (-623 (-875 |#1|))) (-1157 (-623 |#1|)))) (-15 -2271 ((-1157 (-623 (-377 (-875 |#1|)))) (-1157 (-623 |#1|)))))
-((-3871 (((-1078 (-377 (-517))) (-1078 (-377 (-517))) (-1078 (-377 (-517)))) 66)) (-3004 (((-1078 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-3035 (((-1078 (-377 (-517))) (-517)) 40)) (-3802 (((-1078 (-377 (-517))) (-517)) 52)) (-3524 (((-377 (-517)) (-1078 (-377 (-517)))) 62)) (-4148 (((-1078 (-377 (-517))) (-517)) 32)) (-1654 (((-1078 (-377 (-517))) (-517)) 48)) (-3833 (((-1078 (-377 (-517))) (-517)) 46)) (-1430 (((-1078 (-377 (-517))) (-1078 (-377 (-517))) (-1078 (-377 (-517)))) 60)) (-3624 (((-1078 (-377 (-517))) (-517)) 25)) (-3889 (((-377 (-517)) (-1078 (-377 (-517))) (-1078 (-377 (-517)))) 64)) (-4012 (((-1078 (-377 (-517))) (-517)) 30)) (-2992 (((-1078 (-377 (-517))) (-583 (-517))) 71)))
-(((-166) (-10 -7 (-15 -3624 ((-1078 (-377 (-517))) (-517))) (-15 -3035 ((-1078 (-377 (-517))) (-517))) (-15 -4148 ((-1078 (-377 (-517))) (-517))) (-15 -4012 ((-1078 (-377 (-517))) (-517))) (-15 -3833 ((-1078 (-377 (-517))) (-517))) (-15 -1654 ((-1078 (-377 (-517))) (-517))) (-15 -3802 ((-1078 (-377 (-517))) (-517))) (-15 -3889 ((-377 (-517)) (-1078 (-377 (-517))) (-1078 (-377 (-517))))) (-15 -1430 ((-1078 (-377 (-517))) (-1078 (-377 (-517))) (-1078 (-377 (-517))))) (-15 -3524 ((-377 (-517)) (-1078 (-377 (-517))))) (-15 -3871 ((-1078 (-377 (-517))) (-1078 (-377 (-517))) (-1078 (-377 (-517))))) (-15 -2992 ((-1078 (-377 (-517))) (-583 (-517)))) (-15 -3004 ((-1078 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
-((-3004 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)))) (-3871 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1078 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-1430 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)))) (-3889 (*1 *2 *3 *3) (-12 (-5 *3 (-1078 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3802 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1654 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-4148 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3624 (*1 *2 *3) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(-10 -7 (-15 -3624 ((-1078 (-377 (-517))) (-517))) (-15 -3035 ((-1078 (-377 (-517))) (-517))) (-15 -4148 ((-1078 (-377 (-517))) (-517))) (-15 -4012 ((-1078 (-377 (-517))) (-517))) (-15 -3833 ((-1078 (-377 (-517))) (-517))) (-15 -1654 ((-1078 (-377 (-517))) (-517))) (-15 -3802 ((-1078 (-377 (-517))) (-517))) (-15 -3889 ((-377 (-517)) (-1078 (-377 (-517))) (-1078 (-377 (-517))))) (-15 -1430 ((-1078 (-377 (-517))) (-1078 (-377 (-517))) (-1078 (-377 (-517))))) (-15 -3524 ((-377 (-517)) (-1078 (-377 (-517))))) (-15 -3871 ((-1078 (-377 (-517))) (-1078 (-377 (-517))) (-1078 (-377 (-517))))) (-15 -2992 ((-1078 (-377 (-517))) (-583 (-517)))) (-15 -3004 ((-1078 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
-((-1629 (((-388 (-1072 (-517))) (-517)) 28)) (-1466 (((-583 (-1072 (-517))) (-517)) 23)) (-1556 (((-1072 (-517)) (-517)) 21)))
-(((-167) (-10 -7 (-15 -1466 ((-583 (-1072 (-517))) (-517))) (-15 -1556 ((-1072 (-517)) (-517))) (-15 -1629 ((-388 (-1072 (-517))) (-517))))) (T -167))
-((-1629 (*1 *2 *3) (-12 (-5 *2 (-388 (-1072 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-1556 (*1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-583 (-1072 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1466 ((-583 (-1072 (-517))) (-517))) (-15 -1556 ((-1072 (-517)) (-517))) (-15 -1629 ((-388 (-1072 (-517))) (-517))))
-((-4096 (((-1057 (-199)) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-3354 (((-583 (-1059)) (-1057 (-199))) NIL)) (-3184 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-3409 (((-583 (-199)) (-286 (-199)) (-1076) (-1000 (-772 (-199)))) NIL)) (-4087 (((-583 (-1059)) (-583 (-199))) NIL)) (-1839 (((-199) (-1000 (-772 (-199)))) 22)) (-2385 (((-199) (-1000 (-772 (-199)))) 23)) (-1816 (((-349) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-1495 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-2636 (((-1059) (-199)) NIL)) (-2632 (((-1059) (-583 (-1059))) 19)) (-1211 (((-952) (-1076) (-1076) (-952)) 12)))
-(((-168) (-10 -7 (-15 -3184 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1495 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1839 ((-199) (-1000 (-772 (-199))))) (-15 -2385 ((-199) (-1000 (-772 (-199))))) (-15 -1816 ((-349) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3409 ((-583 (-199)) (-286 (-199)) (-1076) (-1000 (-772 (-199))))) (-15 -4096 ((-1057 (-199)) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2636 ((-1059) (-199))) (-15 -4087 ((-583 (-1059)) (-583 (-199)))) (-15 -3354 ((-583 (-1059)) (-1057 (-199)))) (-15 -2632 ((-1059) (-583 (-1059)))) (-15 -1211 ((-952) (-1076) (-1076) (-952))))) (T -168))
-((-1211 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-952)) (-5 *3 (-1076)) (-5 *1 (-168)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1059)) (-5 *1 (-168)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-1057 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-168)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-168)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1059)) (-5 *1 (-168)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-168)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1076)) (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(-10 -7 (-15 -3184 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1495 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1839 ((-199) (-1000 (-772 (-199))))) (-15 -2385 ((-199) (-1000 (-772 (-199))))) (-15 -1816 ((-349) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3409 ((-583 (-199)) (-286 (-199)) (-1076) (-1000 (-772 (-199))))) (-15 -4096 ((-1057 (-199)) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2636 ((-1059) (-199))) (-15 -4087 ((-583 (-1059)) (-583 (-199)))) (-15 -3354 ((-583 (-1059)) (-1057 (-199)))) (-15 -2632 ((-1059) (-583 (-1059)))) (-15 -1211 ((-952) (-1076) (-1076) (-952))))
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 53) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-3367 (((-816 |#1|) |#3|) 22)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3367 ((-816 |#1|) |#3|))) (-1006) (-13 (-558 (-816 |#1|)) (-156)) (-150 |#2|)) (T -154))
+((-3367 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-816 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1006)) (-4 *3 (-150 *5)))))
+(-10 -7 (-15 -3367 ((-816 |#1|) |#3|)))
+((-2105 (((-107) $ $) NIL)) (-2529 (((-107) $) 9)) (-2031 (((-107) $ (-107)) 11)) (-3204 (($) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2453 (($ $) 13)) (-2262 (((-787) $) 17)) (-1603 (((-107) $) 8)) (-1712 (((-107) $ (-107)) 10)) (-1572 (((-107) $ $) NIL)))
+(((-155) (-13 (-1006) (-10 -8 (-15 -3204 ($)) (-15 -1603 ((-107) $)) (-15 -2529 ((-107) $)) (-15 -1712 ((-107) $ (-107))) (-15 -2031 ((-107) $ (-107))) (-15 -2453 ($ $))))) (T -155))
+((-3204 (*1 *1) (-5 *1 (-155))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1712 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2031 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2453 (*1 *1 *1) (-5 *1 (-155))))
+(-13 (-1006) (-10 -8 (-15 -3204 ($)) (-15 -1603 ((-107) $)) (-15 -2529 ((-107) $)) (-15 -1712 ((-107) $ (-107))) (-15 -2031 ((-107) $ (-107))) (-15 -2453 ($ $))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-156) (-1189)) (T -156))
+NIL
+(-13 (-964) (-106 $ $) (-10 -7 (-6 (-4197 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 ((|#1| $) 75)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-1439 (($ $) 19)) (-3772 (($ |#1| (-1058 |#1|)) 48)) (-3550 (((-3 $ "failed") $) 117)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3617 (((-1058 |#1|) $) 82)) (-2941 (((-1058 |#1|) $) 79)) (-2832 (((-1058 |#1|) $) 80)) (-1690 (((-107) $) NIL)) (-1815 (((-1058 |#1|) $) 88)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-3175 (($ $ (-517)) 91)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2476 (((-1058 |#1|) $) 89)) (-1234 (((-1058 (-377 |#1|)) $) 13)) (-1309 (($ (-377 |#1|)) 17) (($ |#1| (-1058 |#1|) (-1058 |#1|)) 38)) (-2384 (($ $) 93)) (-2262 (((-787) $) 127) (($ (-517)) 51) (($ |#1|) 52) (($ (-377 |#1|)) 36) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1818 (((-703)) 64)) (-2944 (((-107) $ $) NIL)) (-3053 (((-1058 (-377 |#1|)) $) 18)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 25 T CONST)) (-3675 (($) 28 T CONST)) (-1572 (((-107) $ $) 35)) (-1692 (($ $ $) 115)) (-1680 (($ $) 106) (($ $ $) 103)) (-1666 (($ $ $) 101)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-377 |#1|) $) 111) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -1309 ($ (-377 |#1|))) (-15 -1309 ($ |#1| (-1058 |#1|) (-1058 |#1|))) (-15 -3772 ($ |#1| (-1058 |#1|))) (-15 -2941 ((-1058 |#1|) $)) (-15 -2832 ((-1058 |#1|) $)) (-15 -3617 ((-1058 |#1|) $)) (-15 -2964 (|#1| $)) (-15 -1439 ($ $)) (-15 -3053 ((-1058 (-377 |#1|)) $)) (-15 -1234 ((-1058 (-377 |#1|)) $)) (-15 -1815 ((-1058 |#1|) $)) (-15 -2476 ((-1058 |#1|) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $)))) (-278)) (T -157))
+((-1309 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-1309 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3772 (*1 *1 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2964 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
+(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -1309 ($ (-377 |#1|))) (-15 -1309 ($ |#1| (-1058 |#1|) (-1058 |#1|))) (-15 -3772 ($ |#1| (-1058 |#1|))) (-15 -2941 ((-1058 |#1|) $)) (-15 -2832 ((-1058 |#1|) $)) (-15 -3617 ((-1058 |#1|) $)) (-15 -2964 (|#1| $)) (-15 -1439 ($ $)) (-15 -3053 ((-1058 (-377 |#1|)) $)) (-15 -1234 ((-1058 (-377 |#1|)) $)) (-15 -1815 ((-1058 |#1|) $)) (-15 -2476 ((-1058 |#1|) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $))))
+((-3676 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 40)) (-1277 (((-867 |#1|) (-867 |#1|)) 19)) (-2594 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 36)) (-2835 (((-867 |#1|) (-867 |#1|)) 17)) (-1589 (((-867 |#1|) (-867 |#1|)) 25)) (-3773 (((-867 |#1|) (-867 |#1|)) 24)) (-3196 (((-867 |#1|) (-867 |#1|)) 23)) (-2099 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 37)) (-3584 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 35)) (-2178 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 34)) (-2783 (((-867 |#1|) (-867 |#1|)) 18)) (-3998 (((-1 (-867 |#1|) (-867 |#1|)) |#1| |#1|) 43)) (-1489 (((-867 |#1|) (-867 |#1|)) 8)) (-2524 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 39)) (-3572 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 38)))
+(((-158 |#1|) (-10 -7 (-15 -1489 ((-867 |#1|) (-867 |#1|))) (-15 -2835 ((-867 |#1|) (-867 |#1|))) (-15 -2783 ((-867 |#1|) (-867 |#1|))) (-15 -1277 ((-867 |#1|) (-867 |#1|))) (-15 -3196 ((-867 |#1|) (-867 |#1|))) (-15 -3773 ((-867 |#1|) (-867 |#1|))) (-15 -1589 ((-867 |#1|) (-867 |#1|))) (-15 -2178 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3584 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2594 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2099 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3572 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2524 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3676 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3998 ((-1 (-867 |#1|) (-867 |#1|)) |#1| |#1|))) (-13 (-333) (-1098) (-921))) (T -158))
+((-3998 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2524 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-3572 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2099 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2594 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-3584 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2178 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-3773 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-1277 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-2835 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))))
+(-10 -7 (-15 -1489 ((-867 |#1|) (-867 |#1|))) (-15 -2835 ((-867 |#1|) (-867 |#1|))) (-15 -2783 ((-867 |#1|) (-867 |#1|))) (-15 -1277 ((-867 |#1|) (-867 |#1|))) (-15 -3196 ((-867 |#1|) (-867 |#1|))) (-15 -3773 ((-867 |#1|) (-867 |#1|))) (-15 -1589 ((-867 |#1|) (-867 |#1|))) (-15 -2178 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3584 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2594 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2099 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3572 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2524 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3676 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3998 ((-1 (-867 |#1|) (-867 |#1|)) |#1| |#1|)))
+((-3848 ((|#2| |#3|) 27)))
+(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -3848 (|#2| |#3|))) (-156) (-1134 |#1|) (-657 |#1| |#2|)) (T -159))
+((-3848 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1134 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
+(-10 -7 (-15 -3848 (|#2| |#3|)))
+((-2939 (((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)) 47 (|has| (-876 |#2|) (-810 |#1|)))))
+(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-876 |#2|) (-810 |#1|)) (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) |%noBranch|)) (-1006) (-13 (-810 |#1|) (-156)) (-150 |#2|)) (T -160))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *3 (-150 *6)) (-4 (-876 *6) (-810 *5)) (-4 *6 (-13 (-810 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-876 |#2|) (-810 |#1|)) (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) |%noBranch|))
+((-1262 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-1857 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-2424 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
+(((-161 |#1|) (-10 -7 (-15 -1857 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2424 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2424 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1262 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
+((-1262 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-2424 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-2424 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-1857 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(-10 -7 (-15 -1857 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2424 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2424 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1262 ((-583 |#1|) (-583 |#1|) |#1|)))
+((-4081 (((-2 (|:| |start| |#2|) (|:| -2283 (-388 |#2|))) |#2|) 61)) (-3270 ((|#1| |#1|) 54)) (-2956 (((-153 |#1|) |#2|) 83)) (-3729 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-2286 ((|#2| |#2|) 82)) (-2391 (((-388 |#2|) |#2| |#1|) 113) (((-388 |#2|) |#2| |#1| (-107)) 80)) (-3522 ((|#1| |#2|) 112)) (-3638 ((|#2| |#2|) 119)) (-3896 (((-388 |#2|) |#2|) 134) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 133)) (-3872 (((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2|) 132) (((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2| (-107)) 75)) (-2035 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -2035 ((-583 (-153 |#1|)) |#2|)) (-15 -2035 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2| (-107))) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2|)) (-15 -3896 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3896 ((-388 |#2|) |#2| |#1|)) (-15 -3896 ((-388 |#2|) |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3522 (|#1| |#2|)) (-15 -2391 ((-388 |#2|) |#2| |#1| (-107))) (-15 -2391 ((-388 |#2|) |#2| |#1|)) (-15 -2286 (|#2| |#2|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3729 (|#1| |#2|)) (-15 -2956 ((-153 |#1|) |#2|)) (-15 -3270 (|#1| |#1|)) (-15 -4081 ((-2 (|:| |start| |#2|) (|:| -2283 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1134 (-153 |#1|))) (T -162))
+((-4081 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2283 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3270 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1134 *2)))) (-3729 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-3729 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1134 (-153 *3))))) (-2391 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-2391 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3522 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1134 (-153 *3))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3896 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3872 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1134 (-153 *5))))) (-2035 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))))
+(-10 -7 (-15 -2035 ((-583 (-153 |#1|)) |#2|)) (-15 -2035 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2| (-107))) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2|)) (-15 -3896 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3896 ((-388 |#2|) |#2| |#1|)) (-15 -3896 ((-388 |#2|) |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3522 (|#1| |#2|)) (-15 -2391 ((-388 |#2|) |#2| |#1| (-107))) (-15 -2391 ((-388 |#2|) |#2| |#1|)) (-15 -2286 (|#2| |#2|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3729 (|#1| |#2|)) (-15 -2956 ((-153 |#1|) |#2|)) (-15 -3270 (|#1| |#1|)) (-15 -4081 ((-2 (|:| |start| |#2|) (|:| -2283 (-388 |#2|))) |#2|)))
+((-1538 (((-3 |#2| "failed") |#2|) 14)) (-2039 (((-703) |#2|) 16)) (-2950 ((|#2| |#2| |#2|) 18)))
+(((-163 |#1| |#2|) (-10 -7 (-15 -1538 ((-3 |#2| "failed") |#2|)) (-15 -2039 ((-703) |#2|)) (-15 -2950 (|#2| |#2| |#2|))) (-1112) (-610 |#1|)) (T -163))
+((-2950 (*1 *2 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-2039 (*1 *2 *3) (-12 (-4 *4 (-1112)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-1538 (*1 *2 *2) (|partial| -12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(-10 -7 (-15 -1538 ((-3 |#2| "failed") |#2|)) (-15 -2039 ((-703) |#2|)) (-15 -2950 (|#2| |#2| |#2|)))
+((-3955 ((|#2| |#2|) 28)) (-3511 (((-107) |#2|) 19)) (-3919 (((-286 |#1|) |#2|) 12)) (-3931 (((-286 |#1|) |#2|) 14)) (-1789 ((|#2| |#2| (-1077)) 68) ((|#2| |#2|) 69)) (-3295 (((-153 (-286 |#1|)) |#2|) 9)) (-3646 ((|#2| |#2| (-1077)) 65) ((|#2| |#2|) 58)))
+(((-164 |#1| |#2|) (-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3919 ((-286 |#1|) |#2|)) (-15 -3931 ((-286 |#1|) |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3295 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-955 (-517))) (-13 (-27) (-1098) (-400 (-153 |#1|)))) (T -164))
+((-3295 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) (-1789 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))))
+(-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3919 ((-286 |#1|) |#2|)) (-15 -3931 ((-286 |#1|) |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3295 ((-153 (-286 |#1|)) |#2|)))
+((-3970 (((-1158 (-623 (-876 |#1|))) (-1158 (-623 |#1|))) 22)) (-2262 (((-1158 (-623 (-377 (-876 |#1|)))) (-1158 (-623 |#1|))) 30)))
+(((-165 |#1|) (-10 -7 (-15 -3970 ((-1158 (-623 (-876 |#1|))) (-1158 (-623 |#1|)))) (-15 -2262 ((-1158 (-623 (-377 (-876 |#1|)))) (-1158 (-623 |#1|))))) (-156)) (T -165))
+((-2262 (*1 *2 *3) (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1158 (-623 (-377 (-876 *4))))) (-5 *1 (-165 *4)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1158 (-623 (-876 *4)))) (-5 *1 (-165 *4)))))
+(-10 -7 (-15 -3970 ((-1158 (-623 (-876 |#1|))) (-1158 (-623 |#1|)))) (-15 -2262 ((-1158 (-623 (-377 (-876 |#1|)))) (-1158 (-623 |#1|)))))
+((-3569 (((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517)))) 66)) (-1204 (((-1079 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-3399 (((-1079 (-377 (-517))) (-517)) 40)) (-3356 (((-1079 (-377 (-517))) (-517)) 52)) (-3552 (((-377 (-517)) (-1079 (-377 (-517)))) 62)) (-3361 (((-1079 (-377 (-517))) (-517)) 32)) (-1584 (((-1079 (-377 (-517))) (-517)) 48)) (-1790 (((-1079 (-377 (-517))) (-517)) 46)) (-3317 (((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517)))) 60)) (-2384 (((-1079 (-377 (-517))) (-517)) 25)) (-2313 (((-377 (-517)) (-1079 (-377 (-517))) (-1079 (-377 (-517)))) 64)) (-1872 (((-1079 (-377 (-517))) (-517)) 30)) (-2997 (((-1079 (-377 (-517))) (-583 (-517))) 71)))
+(((-166) (-10 -7 (-15 -2384 ((-1079 (-377 (-517))) (-517))) (-15 -3399 ((-1079 (-377 (-517))) (-517))) (-15 -3361 ((-1079 (-377 (-517))) (-517))) (-15 -1872 ((-1079 (-377 (-517))) (-517))) (-15 -1790 ((-1079 (-377 (-517))) (-517))) (-15 -1584 ((-1079 (-377 (-517))) (-517))) (-15 -3356 ((-1079 (-377 (-517))) (-517))) (-15 -2313 ((-377 (-517)) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3317 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3552 ((-377 (-517)) (-1079 (-377 (-517))))) (-15 -3569 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -2997 ((-1079 (-377 (-517))) (-583 (-517)))) (-15 -1204 ((-1079 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
+((-1204 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-3569 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-2313 (*1 *2 *3 *3) (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1584 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1790 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1872 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3361 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3399 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2384 ((-1079 (-377 (-517))) (-517))) (-15 -3399 ((-1079 (-377 (-517))) (-517))) (-15 -3361 ((-1079 (-377 (-517))) (-517))) (-15 -1872 ((-1079 (-377 (-517))) (-517))) (-15 -1790 ((-1079 (-377 (-517))) (-517))) (-15 -1584 ((-1079 (-377 (-517))) (-517))) (-15 -3356 ((-1079 (-377 (-517))) (-517))) (-15 -2313 ((-377 (-517)) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3317 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3552 ((-377 (-517)) (-1079 (-377 (-517))))) (-15 -3569 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -2997 ((-1079 (-377 (-517))) (-583 (-517)))) (-15 -1204 ((-1079 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
+((-3691 (((-388 (-1073 (-517))) (-517)) 28)) (-3371 (((-583 (-1073 (-517))) (-517)) 23)) (-3585 (((-1073 (-517)) (-517)) 21)))
+(((-167) (-10 -7 (-15 -3371 ((-583 (-1073 (-517))) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -3691 ((-388 (-1073 (-517))) (-517))))) (T -167))
+((-3691 (*1 *2 *3) (-12 (-5 *2 (-388 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-583 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3371 ((-583 (-1073 (-517))) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -3691 ((-388 (-1073 (-517))) (-517))))
+((-1493 (((-1058 (-199)) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-2595 (((-583 (-1060)) (-1058 (-199))) NIL)) (-1860 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-2676 (((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199)))) NIL)) (-2093 (((-583 (-1060)) (-583 (-199))) NIL)) (-1356 (((-199) (-1001 (-772 (-199)))) 22)) (-1817 (((-199) (-1001 (-772 (-199)))) 23)) (-2983 (((-349) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-2710 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-3884 (((-1060) (-199)) NIL)) (-2363 (((-1060) (-583 (-1060))) 19)) (-4023 (((-953) (-1077) (-1077) (-953)) 12)))
+(((-168) (-10 -7 (-15 -1860 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2710 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -2983 ((-349) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -2363 ((-1060) (-583 (-1060)))) (-15 -4023 ((-953) (-1077) (-1077) (-953))))) (T -168))
+((-4023 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-168)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-168)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-168)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-168)))) (-2676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077)) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
+(-10 -7 (-15 -1860 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2710 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -2983 ((-349) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -2363 ((-1060) (-583 (-1060)))) (-15 -4023 ((-953) (-1077) (-1077) (-953))))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 53) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-169) (-719)) (T -169))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 58) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 58) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-170) (-719)) (T -170))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 67) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 67) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-171) (-719)) (T -171))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 54) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 54) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-172) (-719)) (T -172))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 65) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 65) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-173) (-719)) (T -173))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 71) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 71) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-174) (-719)) (T -174))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 78) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 78) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-175) (-719)) (T -175))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 68) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 68) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-176) (-719)) (T -176))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 62)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 62)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-177) (-719)) (T -177))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 60)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 60)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-178) (-719)) (T -178))
NIL
(-719)
-((-2119 (((-107) $ $) NIL)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 89) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 89) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-179) (-719)) (T -179))
NIL
(-719)
-((-2831 (((-3 (-2 (|:| -1407 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 81)) (-3292 (((-517) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-1805 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
-(((-180) (-10 -7 (-15 -2831 ((-3 (-2 (|:| -1407 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1805 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3292 ((-517) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
-((-3292 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-1805 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-2831 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1407 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(-10 -7 (-15 -2831 ((-3 (-2 (|:| -1407 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1805 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3292 ((-517) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-3899 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1383 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 128)) (-2569 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 88)) (-1616 (((-349) (-623 (-286 (-199)))) 111)) (-3685 (((-623 (-286 (-199))) (-1157 (-286 (-199))) (-583 (-1076))) 108)) (-2776 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-3641 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3524 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1076)) (-1157 (-286 (-199)))) 100)) (-1360 (((-349) (-349) (-583 (-349))) 105) (((-349) (-349) (-349)) 103)) (-2430 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
-(((-181) (-10 -7 (-15 -1360 ((-349) (-349) (-349))) (-15 -1360 ((-349) (-349) (-583 (-349)))) (-15 -1616 ((-349) (-623 (-286 (-199))))) (-15 -3685 ((-623 (-286 (-199))) (-1157 (-286 (-199))) (-583 (-1076)))) (-15 -3524 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1076)) (-1157 (-286 (-199))))) (-15 -2569 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1383 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3899 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3641 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2430 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2776 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
-((-2776 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3524 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1076))) (-5 *4 (-1157 (-286 (-199)))) (-5 *1 (-181)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *4 (-583 (-1076))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1360 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
-(-10 -7 (-15 -1360 ((-349) (-349) (-349))) (-15 -1360 ((-349) (-349) (-583 (-349)))) (-15 -1616 ((-349) (-623 (-286 (-199))))) (-15 -3685 ((-623 (-286 (-199))) (-1157 (-286 (-199))) (-583 (-1076)))) (-15 -3524 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1076)) (-1157 (-286 (-199))))) (-15 -2569 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1383 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3899 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3641 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2430 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2776 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2119 (((-107) $ $) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-2342 (((-952) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1584 (((-107) $ $) NIL)))
+((-1804 (((-3 (-2 (|:| -1395 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 81)) (-2408 (((-517) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-1264 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
+(((-180) (-10 -7 (-15 -1804 ((-3 (-2 (|:| -1395 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1264 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2408 ((-517) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
+((-2408 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-1264 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-1804 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1395 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(-10 -7 (-15 -1804 ((-3 (-2 (|:| -1395 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1264 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2408 ((-517) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-1691 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1289 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 128)) (-3595 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 88)) (-2682 (((-349) (-623 (-286 (-199)))) 111)) (-2138 (((-623 (-286 (-199))) (-1158 (-286 (-199))) (-583 (-1077))) 108)) (-4156 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1791 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3552 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1077)) (-1158 (-286 (-199)))) 100)) (-2698 (((-349) (-349) (-583 (-349))) 105) (((-349) (-349) (-349)) 103)) (-2502 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
+(((-181) (-10 -7 (-15 -2698 ((-349) (-349) (-349))) (-15 -2698 ((-349) (-349) (-583 (-349)))) (-15 -2682 ((-349) (-623 (-286 (-199))))) (-15 -2138 ((-623 (-286 (-199))) (-1158 (-286 (-199))) (-583 (-1077)))) (-15 -3552 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1077)) (-1158 (-286 (-199))))) (-15 -3595 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1289 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1691 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1791 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2502 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4156 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
+((-4156 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3552 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1077))) (-5 *4 (-1158 (-286 (-199)))) (-5 *1 (-181)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2698 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2698 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
+(-10 -7 (-15 -2698 ((-349) (-349) (-349))) (-15 -2698 ((-349) (-349) (-583 (-349)))) (-15 -2682 ((-349) (-623 (-286 (-199))))) (-15 -2138 ((-623 (-286 (-199))) (-1158 (-286 (-199))) (-583 (-1077)))) (-15 -3552 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1077)) (-1158 (-286 (-199))))) (-15 -3595 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1289 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1691 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1791 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2502 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4156 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1572 (((-107) $ $) NIL)))
(((-182) (-732)) (T -182))
NIL
(-732)
-((-2119 (((-107) $ $) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-2342 (((-952) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1572 (((-107) $ $) NIL)))
(((-183) (-732)) (T -183))
NIL
(-732)
-((-2119 (((-107) $ $) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-2342 (((-952) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1572 (((-107) $ $) NIL)))
(((-184) (-732)) (T -184))
NIL
(-732)
-((-2119 (((-107) $ $) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-2342 (((-952) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1572 (((-107) $ $) NIL)))
(((-185) (-732)) (T -185))
NIL
(-732)
-((-3367 (((-583 (-1076)) (-1076) (-703)) 22)) (-3098 (((-286 (-199)) (-286 (-199))) 29)) (-1940 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 67)) (-2927 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
-(((-186) (-10 -7 (-15 -3367 ((-583 (-1076)) (-1076) (-703))) (-15 -3098 ((-286 (-199)) (-286 (-199)))) (-15 -2927 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -1940 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))))))) (T -186))
-((-1940 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-2927 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1076))) (-5 *1 (-186)) (-5 *3 (-1076)))))
-(-10 -7 (-15 -3367 ((-583 (-1076)) (-1076) (-703))) (-15 -3098 ((-286 (-199)) (-286 (-199)))) (-15 -2927 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -1940 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))))))
-((-2119 (((-107) $ $) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 17)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-3319 (((-952) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 55)) (-1584 (((-107) $ $) NIL)))
-(((-187) (-818)) (T -187))
-NIL
-(-818)
-((-2119 (((-107) $ $) NIL)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 12)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-3319 (((-952) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) NIL)) (-1584 (((-107) $ $) NIL)))
-(((-188) (-818)) (T -188))
-NIL
-(-818)
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2691 (((-1162) $) 36) (((-1162) $ (-844) (-844)) 38)) (-2609 (($ $ (-908)) 19) (((-219 (-1059)) $ (-1076)) 15)) (-1757 (((-1162) $) 34)) (-2271 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $ $) 27)) (-1678 (($ $ $) 22)))
-(((-189 |#1|) (-13 (-1005) (-10 -8 (-15 -2609 ($ $ (-908))) (-15 -2609 ((-219 (-1059)) $ (-1076))) (-15 -1678 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -2271 ($ (-583 |#1|))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $)) (-15 -2691 ((-1162) $ (-844) (-844))))) (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $))))) (T -189))
-((-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-908)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $))))))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-219 (-1059))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ *3)) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $))))))) (-1678 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $))))))) (-1692 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $))))))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $))))) (-5 *1 (-189 *3)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 (*2 $)) (-15 -2691 (*2 $))))))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 (*2 $)) (-15 -2691 (*2 $))))))) (-2691 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1162)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 (*2 $)) (-15 -2691 (*2 $))))))))
-(-13 (-1005) (-10 -8 (-15 -2609 ($ $ (-908))) (-15 -2609 ((-219 (-1059)) $ (-1076))) (-15 -1678 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -2271 ($ (-583 |#1|))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $)) (-15 -2691 ((-1162) $ (-844) (-844)))))
-((-3134 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3134 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
-((-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1133 (-377 *2))) (-4 *2 (-1133 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
-(-10 -7 (-15 -3134 (|#2| |#4| (-1 |#2| |#2|))))
-((-1893 ((|#2| |#2| (-703) |#2|) 41)) (-3284 ((|#2| |#2| (-703) |#2|) 37)) (-1475 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3765 |#2|)))) 57)) (-2538 (((-583 (-2 (|:| |deg| (-703)) (|:| -3765 |#2|))) |#2|) 52)) (-3497 (((-107) |#2|) 49)) (-2711 (((-388 |#2|) |#2|) 76)) (-3868 (((-388 |#2|) |#2|) 75)) (-1502 ((|#2| |#2| (-703) |#2|) 35)) (-3198 (((-2 (|:| |cont| |#1|) (|:| -1510 (-583 (-2 (|:| |irr| |#2|) (|:| -1992 (-517)))))) |#2| (-107)) 68)))
-(((-191 |#1| |#2|) (-10 -7 (-15 -3868 ((-388 |#2|) |#2|)) (-15 -2711 ((-388 |#2|) |#2|)) (-15 -3198 ((-2 (|:| |cont| |#1|) (|:| -1510 (-583 (-2 (|:| |irr| |#2|) (|:| -1992 (-517)))))) |#2| (-107))) (-15 -2538 ((-583 (-2 (|:| |deg| (-703)) (|:| -3765 |#2|))) |#2|)) (-15 -1475 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3765 |#2|))))) (-15 -1502 (|#2| |#2| (-703) |#2|)) (-15 -3284 (|#2| |#2| (-703) |#2|)) (-15 -1893 (|#2| |#2| (-703) |#2|)) (-15 -3497 ((-107) |#2|))) (-319) (-1133 |#1|)) (T -191))
-((-3497 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1133 *4)))) (-1893 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1133 *4)))) (-3284 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1133 *4)))) (-1502 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1133 *4)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3765 *5)))) (-4 *5 (-1133 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-2538 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3765 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1133 *4)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1133 *5)))) (-2711 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1133 *4)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -3868 ((-388 |#2|) |#2|)) (-15 -2711 ((-388 |#2|) |#2|)) (-15 -3198 ((-2 (|:| |cont| |#1|) (|:| -1510 (-583 (-2 (|:| |irr| |#2|) (|:| -1992 (-517)))))) |#2| (-107))) (-15 -2538 ((-583 (-2 (|:| |deg| (-703)) (|:| -3765 |#2|))) |#2|)) (-15 -1475 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3765 |#2|))))) (-15 -1502 (|#2| |#2| (-703) |#2|)) (-15 -3284 (|#2| |#2| (-703) |#2|)) (-15 -1893 (|#2| |#2| (-703) |#2|)) (-15 -3497 ((-107) |#2|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-517) $) NIL (|has| (-517) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-517) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| (-517) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-954 (-517))))) (-3390 (((-517) $) NIL) (((-1076) $) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-517) (-954 (-517)))) (((-517) $) NIL (|has| (-517) (-954 (-517))))) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| (-517) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-517) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| (-517) (-1052)))) (-1952 (((-107) $) NIL (|has| (-517) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-517) (-779)))) (-3310 (($ (-1 (-517) (-517)) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-517) (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2961 (((-517) $) NIL (|has| (-517) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1076)) (-583 (-517))) NIL (|has| (-517) (-478 (-1076) (-517)))) (($ $ (-1076) (-517)) NIL (|has| (-517) (-478 (-1076) (-517))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-517) $) NIL)) (-2724 (($ (-377 (-517))) 8)) (-3359 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-939))) (((-199) $) NIL (|has| (-517) (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1076)) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL) (((-922 10) $) 9)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-4099 (((-703)) NIL)) (-3599 (((-517) $) NIL (|has| (-517) (-502)))) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL (|has| (-517) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1704 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-192) (-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2271 ((-922 10) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -2724 ($ (-377 (-517))))))) (T -192))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-922 10)) (-5 *1 (-192)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2724 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
-(-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2271 ((-922 10) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -2724 ($ (-377 (-517))))))
-((-2356 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-998 (-772 |#2|)) (-1059)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-998 (-772 |#2|))) 23)) (-2625 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1076) (-772 |#2|) (-772 |#2|) (-107)) 16)))
-(((-193 |#1| |#2|) (-10 -7 (-15 -2356 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-998 (-772 |#2|)))) (-15 -2356 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-998 (-772 |#2|)) (-1059))) (-15 -2625 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1076) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-881) (-29 |#1|))) (T -193))
-((-2625 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1076)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1097) (-881) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-2356 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-998 (-772 *3))) (-5 *5 (-1059)) (-4 *3 (-13 (-1097) (-881) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 *3))) (-4 *3 (-13 (-1097) (-881) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
-(-10 -7 (-15 -2356 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-998 (-772 |#2|)))) (-15 -2356 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-998 (-772 |#2|)) (-1059))) (-15 -2625 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1076) (-772 |#2|) (-772 |#2|) (-107))))
-((-2356 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-377 (-875 |#1|)))) (-1059)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-377 (-875 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-286 |#1|))) (-1059)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-286 |#1|)))) 17)))
-(((-194 |#1|) (-10 -7 (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-286 |#1|))))) (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-286 |#1|))) (-1059))) (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-377 (-875 |#1|)))))) (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-377 (-875 |#1|)))) (-1059)))) (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (T -194))
-((-2356 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-998 (-772 (-377 (-875 *6))))) (-5 *5 (-1059)) (-5 *3 (-377 (-875 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-377 (-875 *5))))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-2356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-998 (-772 (-286 *6)))) (-5 *5 (-1059)) (-4 *6 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-998 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
-(-10 -7 (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-286 |#1|))))) (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-286 |#1|))) (-1059))) (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-377 (-875 |#1|)))))) (-15 -2356 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-998 (-772 (-377 (-875 |#1|)))) (-1059))))
-((-1522 (((-2 (|:| -1694 (-1072 |#1|)) (|:| |deg| (-844))) (-1072 |#1|)) 21)) (-2296 (((-583 (-286 |#2|)) (-286 |#2|) (-844)) 43)))
-(((-195 |#1| |#2|) (-10 -7 (-15 -1522 ((-2 (|:| -1694 (-1072 |#1|)) (|:| |deg| (-844))) (-1072 |#1|))) (-15 -2296 ((-583 (-286 |#2|)) (-286 |#2|) (-844)))) (-963) (-13 (-509) (-779))) (T -195))
-((-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-963)))) (-1522 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -1694 (-1072 *4)) (|:| |deg| (-844)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1072 *4)) (-4 *5 (-13 (-509) (-779))))))
-(-10 -7 (-15 -1522 ((-2 (|:| -1694 (-1072 |#1|)) (|:| |deg| (-844))) (-1072 |#1|))) (-15 -2296 ((-583 (-286 |#2|)) (-286 |#2|) (-844))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2731 ((|#1| $) NIL)) (-2553 ((|#1| $) 25)) (-1851 (((-107) $ (-703)) NIL)) (-1393 (($) NIL T CONST)) (-2809 (($ $) NIL)) (-2549 (($ $) 31)) (-2704 ((|#1| |#1| $) NIL)) (-3394 ((|#1| $) NIL)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3682 (((-703) $) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1803 ((|#1| $) NIL)) (-1835 ((|#1| |#1| $) 28)) (-2320 ((|#1| |#1| $) 30)) (-3241 (($ |#1| $) NIL)) (-1809 (((-703) $) 27)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2656 ((|#1| $) NIL)) (-2079 ((|#1| $) 26)) (-3494 ((|#1| $) 24)) (-4113 ((|#1| $) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3975 ((|#1| |#1| $) NIL)) (-2394 (((-107) $) 9)) (-2452 (($) NIL)) (-1258 ((|#1| $) NIL)) (-3032 (($) NIL) (($ (-583 |#1|)) 16)) (-3145 (((-703) $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3074 ((|#1| $) 13)) (-3181 (($ (-583 |#1|)) NIL)) (-2505 ((|#1| $) NIL)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -3032 ($ (-583 |#1|))))) (-1005)) (T -196))
-((-3032 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-196 *3)))))
-(-13 (-227 |#1|) (-10 -8 (-15 -3032 ($ (-583 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3192 (($ (-286 |#1|)) 23)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3258 (((-107) $) NIL)) (-3228 (((-3 (-286 |#1|) "failed") $) NIL)) (-3390 (((-286 |#1|) $) NIL)) (-2373 (($ $) 31)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-3310 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-2347 (((-286 |#1|) $) NIL)) (-2833 (($ $) 30)) (-1662 (((-1059) $) NIL)) (-1366 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1318 (($ (-703)) NIL)) (-2555 (($ $) 32)) (-3647 (((-517) $) NIL)) (-2271 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-1689 (((-286 |#1|) $ $) NIL)) (-4099 (((-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 25 T CONST)) (-3619 (($) 50 T CONST)) (-1584 (((-107) $ $) 28)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 19)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
-(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-954 (-286 |#1|)) (-10 -8 (-15 -2347 ((-286 |#1|) $)) (-15 -2833 ($ $)) (-15 -2373 ($ $)) (-15 -1689 ((-286 |#1|) $ $)) (-15 -1318 ($ (-703))) (-15 -1366 ((-107) $)) (-15 -3258 ((-107) $)) (-15 -3647 ((-517) $)) (-15 -3310 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -3192 ($ (-286 |#1|))) (-15 -2555 ($ $)))) (-13 (-963) (-779)) (-583 (-1076))) (T -197))
-((-2347 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076))))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-963) (-779))) (-14 *3 (-583 (-1076))))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-963) (-779))) (-14 *3 (-583 (-1076))))) (-1689 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076))))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076))))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076))))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076))))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076))))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-963) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1076))))) (-3192 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-963) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1076))))) (-2555 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-963) (-779))) (-14 *3 (-583 (-1076))))))
-(-13 (-561 (-286 |#1|)) (-954 (-286 |#1|)) (-10 -8 (-15 -2347 ((-286 |#1|) $)) (-15 -2833 ($ $)) (-15 -2373 ($ $)) (-15 -1689 ((-286 |#1|) $ $)) (-15 -1318 ($ (-703))) (-15 -1366 ((-107) $)) (-15 -3258 ((-107) $)) (-15 -3647 ((-517) $)) (-15 -3310 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -3192 ($ (-286 |#1|))) (-15 -2555 ($ $))))
-((-2642 (((-107) (-1059)) 22)) (-2598 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-1262 (((-3 (-107) "failed") (-1072 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-875 |#1|) (-1076) (-772 |#2|) (-772 |#2|) (-107)) 74)))
-(((-198 |#1| |#2|) (-10 -7 (-15 -2642 ((-107) (-1059))) (-15 -2598 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1262 ((-3 (-107) "failed") (-875 |#1|) (-1076) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1262 ((-3 (-107) "failed") (-1072 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-29 |#1|))) (T -198))
-((-1262 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1072 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1097) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-1262 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-875 *6)) (-5 *4 (-1076)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1097) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-2598 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1097) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1097) (-29 *4))))))
-(-10 -7 (-15 -2642 ((-107) (-1059))) (-15 -2598 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1262 ((-3 (-107) "failed") (-875 |#1|) (-1076) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1262 ((-3 (-107) "failed") (-1072 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 89)) (-1363 (((-517) $) 99)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2853 (($ $) NIL)) (-1648 (($ $) 77)) (-1494 (($ $) 65)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3880 (($ $) 56)) (-3820 (((-107) $ $) NIL)) (-1624 (($ $) 75)) (-1471 (($ $) 63)) (-2360 (((-517) $) 116)) (-1670 (($ $) 80)) (-1520 (($ $) 67)) (-1393 (($) NIL T CONST)) (-3983 (($ $) NIL)) (-3228 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3390 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) 92)) (-1255 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3436 (((-844)) 29) (((-844) (-844)) NIL (|has| $ (-6 -4183)))) (-2988 (((-107) $) NIL)) (-2116 (($) 39)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL)) (-1395 (((-517) $) 35)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL)) (-2803 (($ $) NIL)) (-1952 (((-107) $) 88)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) 53) (($) 34 (-12 (-2479 (|has| $ (-6 -4175))) (-2479 (|has| $ (-6 -4183)))))) (-4084 (($ $ $) 52) (($) 33 (-12 (-2479 (|has| $ (-6 -4175))) (-2479 (|has| $ (-6 -4183)))))) (-3699 (((-517) $) 27)) (-1718 (($ $) 30)) (-1849 (($ $) 57)) (-1226 (($ $) 62)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-1871 (((-844) (-517)) NIL (|has| $ (-6 -4183)))) (-4125 (((-1023) $) NIL) (((-517) $) 90)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL)) (-2961 (($ $) NIL)) (-3211 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-844)) 100)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2121 (((-517) $) 28)) (-2699 (($) 38)) (-3870 (($ $) 61)) (-3600 (((-703) $) NIL)) (-2747 (((-1059) (-1059)) 8)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1192 (((-844)) NIL) (((-844) (-844)) NIL (|has| $ (-6 -4183)))) (-2060 (($ $ (-703)) NIL) (($ $) 93)) (-3788 (((-844) (-517)) NIL (|has| $ (-6 -4183)))) (-1682 (($ $) 78)) (-1533 (($ $) 68)) (-1660 (($ $) 79)) (-1507 (($ $) 66)) (-1635 (($ $) 76)) (-1483 (($ $) 64)) (-3359 (((-349) $) 104) (((-199) $) 101) (((-815 (-349)) $) NIL) (((-493) $) 45)) (-2271 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-4099 (((-703)) NIL)) (-3599 (($ $) NIL)) (-2852 (((-844)) 32) (((-844) (-844)) NIL (|has| $ (-6 -4183)))) (-3985 (((-844)) 25)) (-1722 (($ $) 83)) (-1576 (($ $) 71) (($ $ $) 109)) (-2074 (((-107) $ $) NIL)) (-1697 (($ $) 81)) (-1548 (($ $) 69)) (-3489 (($ $) 86)) (-1600 (($ $) 74)) (-2824 (($ $) 84)) (-1613 (($ $) 72)) (-1735 (($ $) 85)) (-1589 (($ $) 73)) (-1709 (($ $) 82)) (-1562 (($ $) 70)) (-2376 (($ $) 117)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 36 T CONST)) (-3619 (($) 37 T CONST)) (-4032 (((-1059) $) 19) (((-1059) $ (-107)) 21) (((-1162) (-754) $) 22) (((-1162) (-754) $ (-107)) 23)) (-3700 (($ $) 96)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-2902 (($ $ $) 98)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 54)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 46)) (-1704 (($ $ $) 87) (($ $ (-517)) 55)) (-1692 (($ $) 47) (($ $ $) 49)) (-1678 (($ $ $) 48)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-844) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-199) (-13 (-374) (-207) (-760) (-1097) (-558 (-493)) (-10 -8 (-15 -1704 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2699 ($)) (-15 -4125 ((-517) $)) (-15 -1718 ($ $)) (-15 -1849 ($ $)) (-15 -1576 ($ $ $)) (-15 -3700 ($ $)) (-15 -2902 ($ $ $)) (-15 -2747 ((-1059) (-1059))) (-15 -1255 ((-377 (-517)) $ (-703))) (-15 -1255 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
-((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2699 (*1 *1) (-5 *1 (-199))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-1718 (*1 *1 *1) (-5 *1 (-199))) (-1849 (*1 *1 *1) (-5 *1 (-199))) (-1576 (*1 *1 *1 *1) (-5 *1 (-199))) (-3700 (*1 *1 *1) (-5 *1 (-199))) (-2902 (*1 *1 *1 *1) (-5 *1 (-199))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-199)))) (-1255 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-1255 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
-(-13 (-374) (-207) (-760) (-1097) (-558 (-493)) (-10 -8 (-15 -1704 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2699 ($)) (-15 -4125 ((-517) $)) (-15 -1718 ($ $)) (-15 -1849 ($ $)) (-15 -1576 ($ $ $)) (-15 -3700 ($ $)) (-15 -2902 ($ $ $)) (-15 -2747 ((-1059) (-1059))) (-15 -1255 ((-377 (-517)) $ (-703))) (-15 -1255 ((-377 (-517)) $ (-703) (-703)))))
-((-3008 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-2471 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-1733 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-2842 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-2661 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-1298 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-1235 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-1807 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-2887 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-2021 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-3700 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-2902 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
-(((-200) (-10 -7 (-15 -3700 ((-199) (-199))) (-15 -3700 ((-153 (-199)) (-153 (-199)))) (-15 -2902 ((-199) (-199) (-199))) (-15 -2902 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2471 ((-199) (-199))) (-15 -2471 ((-153 (-199)) (-153 (-199)))) (-15 -2842 ((-199) (-199))) (-15 -2842 ((-153 (-199)) (-153 (-199)))) (-15 -3008 ((-199) (-703) (-199))) (-15 -3008 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -1235 ((-199) (-199) (-199))) (-15 -1235 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2661 ((-199) (-199) (-199))) (-15 -2661 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1807 ((-199) (-199) (-199))) (-15 -1807 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1298 ((-199) (-199) (-199))) (-15 -1298 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2021 ((-153 (-199)) (-153 (-199)))) (-15 -2021 ((-199) (-199))) (-15 -2887 ((-199) (-199))) (-15 -2887 ((-153 (-199)) (-153 (-199)))) (-15 -1733 ((-199) (-199) (-199))) (-15 -1733 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
-((-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1298 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1298 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1807 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1807 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2661 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2661 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1235 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1235 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3008 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-3008 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-2842 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2842 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2902 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2902 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
-(-10 -7 (-15 -3700 ((-199) (-199))) (-15 -3700 ((-153 (-199)) (-153 (-199)))) (-15 -2902 ((-199) (-199) (-199))) (-15 -2902 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2471 ((-199) (-199))) (-15 -2471 ((-153 (-199)) (-153 (-199)))) (-15 -2842 ((-199) (-199))) (-15 -2842 ((-153 (-199)) (-153 (-199)))) (-15 -3008 ((-199) (-703) (-199))) (-15 -3008 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -1235 ((-199) (-199) (-199))) (-15 -1235 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2661 ((-199) (-199) (-199))) (-15 -2661 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1807 ((-199) (-199) (-199))) (-15 -1807 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1298 ((-199) (-199) (-199))) (-15 -1298 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2021 ((-153 (-199)) (-153 (-199)))) (-15 -2021 ((-199) (-199))) (-15 -2887 ((-199) (-199))) (-15 -2887 ((-153 (-199)) (-153 (-199)))) (-15 -1733 ((-199) (-199) (-199))) (-15 -1733 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3877 (($ (-703) (-703)) NIL)) (-1980 (($ $ $) NIL)) (-1293 (($ (-1157 |#1|)) NIL) (($ $) NIL)) (-3191 (($ |#1| |#1| |#1|) 32)) (-3933 (((-107) $) NIL)) (-2077 (($ $ (-517) (-517)) NIL)) (-3977 (($ $ (-517) (-517)) NIL)) (-2010 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-2256 (($ $) NIL)) (-1223 (((-107) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-3860 (($ $ (-517) (-517) $) NIL)) (-2445 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-2822 (($ $ (-517) (-1157 |#1|)) NIL)) (-2049 (($ $ (-517) (-1157 |#1|)) NIL)) (-3934 (($ |#1| |#1| |#1|) 31)) (-2351 (($ (-703) |#1|) NIL)) (-1393 (($) NIL T CONST)) (-1382 (($ $) NIL (|has| |#1| (-278)))) (-3476 (((-1157 |#1|) $ (-517)) NIL)) (-2622 (($ |#1|) 30)) (-3306 (($ |#1|) 29)) (-2020 (($ |#1|) 28)) (-3737 (((-703) $) NIL (|has| |#1| (-509)))) (-2759 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2566 ((|#1| $ (-517) (-517)) NIL)) (-1534 (((-583 |#1|) $) NIL)) (-2720 (((-703) $) NIL (|has| |#1| (-509)))) (-2620 (((-583 (-1157 |#1|)) $) NIL (|has| |#1| (-509)))) (-1421 (((-703) $) NIL)) (-3213 (($ (-703) (-703) |#1|) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3809 ((|#1| $) NIL (|has| |#1| (-6 (-4194 "*"))))) (-1683 (((-517) $) NIL)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1207 (((-517) $) NIL)) (-3797 (((-517) $) NIL)) (-2371 (($ (-583 (-583 |#1|))) 10)) (-2746 (($ (-1 |#1| |#1|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3704 (((-583 (-583 |#1|)) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3856 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-4070 (($) 11)) (-2234 (($ $ $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-2528 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1832 (((-107) $) NIL)) (-2854 ((|#1| $) NIL (|has| |#1| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-3259 (((-1157 |#1|) $ (-517)) NIL)) (-2271 (($ (-1157 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2909 (((-107) $) NIL)) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1157 |#1|) $ (-1157 |#1|)) 14) (((-1157 |#1|) (-1157 |#1|) $) NIL) (((-866 |#1|) $ (-866 |#1|)) 20)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-201 |#1|) (-13 (-621 |#1| (-1157 |#1|) (-1157 |#1|)) (-10 -8 (-15 * ((-866 |#1|) $ (-866 |#1|))) (-15 -4070 ($)) (-15 -2020 ($ |#1|)) (-15 -3306 ($ |#1|)) (-15 -2622 ($ |#1|)) (-15 -3934 ($ |#1| |#1| |#1|)) (-15 -3191 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1097))) (T -201))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097))) (-5 *1 (-201 *3)))) (-4070 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))) (-2020 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))) (-3306 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))) (-2622 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))) (-3934 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))) (-3191 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))))
-(-13 (-621 |#1| (-1157 |#1|) (-1157 |#1|)) (-10 -8 (-15 * ((-866 |#1|) $ (-866 |#1|))) (-15 -4070 ($)) (-15 -2020 ($ |#1|)) (-15 -3306 ($ |#1|)) (-15 -2622 ($ |#1|)) (-15 -3934 ($ |#1| |#1| |#1|)) (-15 -3191 ($ |#1| |#1| |#1|))))
-((-3690 (($ (-1 (-107) |#2|) $) 16)) (-2457 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 24)) (-2176 (($) NIL) (($ (-583 |#2|)) 11)) (-1584 (((-107) $ $) 22)))
-(((-202 |#1| |#2|) (-10 -8 (-15 -3690 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2457 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -2176 (|#1| (-583 |#2|))) (-15 -2176 (|#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-203 |#2|) (-1005)) (T -202))
-NIL
-(-10 -8 (-15 -3690 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2457 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -2176 (|#1| (-583 |#2|))) (-15 -2176 (|#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-3690 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2455 (($ $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2176 (($) 49) (($ (-583 |#1|)) 48)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 50)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-203 |#1|) (-1188) (-1005)) (T -203))
+((-3375 (((-583 (-1077)) (-1077) (-703)) 22)) (-2066 (((-286 (-199)) (-286 (-199))) 29)) (-3514 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 67)) (-3160 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
+(((-186) (-10 -7 (-15 -3375 ((-583 (-1077)) (-1077) (-703))) (-15 -2066 ((-286 (-199)) (-286 (-199)))) (-15 -3160 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -3514 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))))) (T -186))
+((-3514 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-3160 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1077))) (-5 *1 (-186)) (-5 *3 (-1077)))))
+(-10 -7 (-15 -3375 ((-583 (-1077)) (-1077) (-703))) (-15 -2066 ((-286 (-199)) (-286 (-199)))) (-15 -3160 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -3514 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))))
+((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 17)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-4147 (((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 55)) (-1572 (((-107) $ $) NIL)))
+(((-187) (-819)) (T -187))
+NIL
+(-819)
+((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-4147 (((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) NIL)) (-1572 (((-107) $ $) NIL)))
+(((-188) (-819)) (T -188))
+NIL
+(-819)
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3012 (((-1163) $) 36) (((-1163) $ (-845) (-845)) 38)) (-2612 (($ $ (-909)) 19) (((-219 (-1060)) $ (-1077)) 15)) (-1744 (((-1163) $) 34)) (-2262 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $ $) 27)) (-1666 (($ $ $) 22)))
+(((-189 |#1|) (-13 (-1006) (-10 -8 (-15 -2612 ($ $ (-909))) (-15 -2612 ((-219 (-1060)) $ (-1077))) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -2262 ($ (-583 |#1|))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -3012 ((-1163) $ (-845) (-845))))) (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))) (T -189))
+((-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-219 (-1060))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ *3)) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-1666 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-1680 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))) (-5 *1 (-189 *3)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) (-15 -3012 (*2 $))))))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) (-15 -3012 (*2 $))))))) (-3012 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) (-15 -3012 (*2 $))))))))
+(-13 (-1006) (-10 -8 (-15 -2612 ($ $ (-909))) (-15 -2612 ((-219 (-1060)) $ (-1077))) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -2262 ($ (-583 |#1|))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -3012 ((-1163) $ (-845) (-845)))))
+((-3562 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3562 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
+((-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1134 (-377 *2))) (-4 *2 (-1134 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
+(-10 -7 (-15 -3562 (|#2| |#4| (-1 |#2| |#2|))))
+((-2967 ((|#2| |#2| (-703) |#2|) 41)) (-3091 ((|#2| |#2| (-703) |#2|) 37)) (-2690 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|)))) 57)) (-2725 (((-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))) |#2|) 52)) (-3328 (((-107) |#2|) 49)) (-2470 (((-388 |#2|) |#2|) 76)) (-3896 (((-388 |#2|) |#2|) 75)) (-3298 ((|#2| |#2| (-703) |#2|) 35)) (-3900 (((-2 (|:| |cont| |#1|) (|:| -2283 (-583 (-2 (|:| |irr| |#2|) (|:| -1332 (-517)))))) |#2| (-107)) 68)))
+(((-191 |#1| |#2|) (-10 -7 (-15 -3896 ((-388 |#2|) |#2|)) (-15 -2470 ((-388 |#2|) |#2|)) (-15 -3900 ((-2 (|:| |cont| |#1|) (|:| -2283 (-583 (-2 (|:| |irr| |#2|) (|:| -1332 (-517)))))) |#2| (-107))) (-15 -2725 ((-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))) |#2|)) (-15 -2690 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))))) (-15 -3298 (|#2| |#2| (-703) |#2|)) (-15 -3091 (|#2| |#2| (-703) |#2|)) (-15 -2967 (|#2| |#2| (-703) |#2|)) (-15 -3328 ((-107) |#2|))) (-319) (-1134 |#1|)) (T -191))
+((-3328 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))) (-2967 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1134 *4)))) (-3091 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1134 *4)))) (-3298 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1134 *4)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *5)))) (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-2725 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1134 *5)))) (-2470 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -3896 ((-388 |#2|) |#2|)) (-15 -2470 ((-388 |#2|) |#2|)) (-15 -3900 ((-2 (|:| |cont| |#1|) (|:| -2283 (-583 (-2 (|:| |irr| |#2|) (|:| -1332 (-517)))))) |#2| (-107))) (-15 -2725 ((-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))) |#2|)) (-15 -2690 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))))) (-15 -3298 (|#2| |#2| (-703) |#2|)) (-15 -3091 (|#2| |#2| (-703) |#2|)) (-15 -2967 (|#2| |#2| (-703) |#2|)) (-15 -3328 ((-107) |#2|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-517) $) NIL (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2713 (((-517) $) NIL (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) NIL)) (-3889 (($ (-377 (-517))) 8)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL) (((-923 10) $) 9)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-517) $) NIL (|has| (-517) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1692 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-192) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 10) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -3889 ($ (-377 (-517))))))) (T -192))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-923 10)) (-5 *1 (-192)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 10) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -3889 ($ (-377 (-517))))))
+((-3296 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)) (-1060)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|))) 23)) (-1862 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1077) (-772 |#2|) (-772 |#2|) (-107)) 16)))
+(((-193 |#1| |#2|) (-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)))) (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)) (-1060))) (-15 -1862 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1077) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-29 |#1|))) (T -193))
+((-1862 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1077)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1098) (-882) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-999 (-772 *3))) (-5 *5 (-1060)) (-4 *3 (-13 (-1098) (-882) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-772 *3))) (-4 *3 (-13 (-1098) (-882) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
+(-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)))) (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)) (-1060))) (-15 -1862 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1077) (-772 |#2|) (-772 |#2|) (-107))))
+((-3296 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))) (-1060)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))) (-1060)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|)))) 17)))
+(((-194 |#1|) (-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))) (-1060))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))) (-1060)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (T -194))
+((-3296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-999 (-772 (-377 (-876 *6))))) (-5 *5 (-1060)) (-5 *3 (-377 (-876 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-772 (-377 (-876 *5))))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-999 (-772 (-286 *6)))) (-5 *5 (-1060)) (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-999 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
+(-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))) (-1060))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))) (-1060))))
+((-1510 (((-2 (|:| -2242 (-1073 |#1|)) (|:| |deg| (-845))) (-1073 |#1|)) 21)) (-2287 (((-583 (-286 |#2|)) (-286 |#2|) (-845)) 43)))
+(((-195 |#1| |#2|) (-10 -7 (-15 -1510 ((-2 (|:| -2242 (-1073 |#1|)) (|:| |deg| (-845))) (-1073 |#1|))) (-15 -2287 ((-583 (-286 |#2|)) (-286 |#2|) (-845)))) (-964) (-13 (-509) (-779))) (T -195))
+((-2287 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-964)))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-2 (|:| -2242 (-1073 *4)) (|:| |deg| (-845)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-13 (-509) (-779))))))
+(-10 -7 (-15 -1510 ((-2 (|:| -2242 (-1073 |#1|)) (|:| |deg| (-845))) (-1073 |#1|))) (-15 -2287 ((-583 (-286 |#2|)) (-286 |#2|) (-845))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-4120 ((|#1| $) NIL)) (-2544 ((|#1| $) 25)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2205 (($ $) NIL)) (-3797 (($ $) 31)) (-2098 ((|#1| |#1| $) NIL)) (-3409 ((|#1| $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3728 (((-703) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) NIL)) (-4013 ((|#1| |#1| $) 28)) (-2289 ((|#1| |#1| $) 30)) (-3439 (($ |#1| $) NIL)) (-1795 (((-703) $) 27)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1319 ((|#1| $) NIL)) (-1545 ((|#1| $) 26)) (-3178 ((|#1| $) 24)) (-1551 ((|#1| $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-3461 ((|#1| |#1| $) NIL)) (-1754 (((-107) $) 9)) (-2679 (($) NIL)) (-1903 ((|#1| $) NIL)) (-1785 (($) NIL) (($ (-583 |#1|)) 16)) (-3137 (((-703) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3359 ((|#1| $) 13)) (-2729 (($ (-583 |#1|)) NIL)) (-2522 ((|#1| $) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -1785 ($ (-583 |#1|))))) (-1006)) (T -196))
+((-1785 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-196 *3)))))
+(-13 (-227 |#1|) (-10 -8 (-15 -1785 ($ (-583 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1451 (($ (-286 |#1|)) 23)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2240 (((-107) $) NIL)) (-3220 (((-3 (-286 |#1|) "failed") $) NIL)) (-3402 (((-286 |#1|) $) NIL)) (-2364 (($ $) 31)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3312 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-2336 (((-286 |#1|) $) NIL)) (-3814 (($ $) 30)) (-3232 (((-1060) $) NIL)) (-3176 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($ (-703)) NIL)) (-2539 (($ $) 32)) (-1191 (((-517) $) NIL)) (-2262 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-1939 (((-286 |#1|) $ $) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 25 T CONST)) (-3675 (($) 50 T CONST)) (-1572 (((-107) $ $) 28)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 19)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
+(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-955 (-286 |#1|)) (-10 -8 (-15 -2336 ((-286 |#1|) $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 ((-286 |#1|) $ $)) (-15 -1306 ($ (-703))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3312 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1451 ($ (-286 |#1|))) (-15 -2539 ($ $)))) (-13 (-964) (-779)) (-583 (-1077))) (T -197))
+((-2336 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) (-14 *3 (-583 (-1077))))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) (-14 *3 (-583 (-1077))))) (-1939 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-964) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077))))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-964) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077))))) (-2539 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) (-14 *3 (-583 (-1077))))))
+(-13 (-561 (-286 |#1|)) (-955 (-286 |#1|)) (-10 -8 (-15 -2336 ((-286 |#1|) $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 ((-286 |#1|) $ $)) (-15 -1306 ($ (-703))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3312 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1451 ($ (-286 |#1|))) (-15 -2539 ($ $))))
+((-4100 (((-107) (-1060)) 22)) (-1228 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-4046 (((-3 (-107) "failed") (-1073 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-876 |#1|) (-1077) (-772 |#2|) (-772 |#2|) (-107)) 74)))
+(((-198 |#1| |#2|) (-10 -7 (-15 -4100 ((-107) (-1060))) (-15 -1228 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-876 |#1|) (-1077) (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-1073 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-29 |#1|))) (T -198))
+((-4046 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1073 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1098) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-4046 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-876 *6)) (-5 *4 (-1077)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1098) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-1228 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1098) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1098) (-29 *4))))))
+(-10 -7 (-15 -4100 ((-107) (-1060))) (-15 -1228 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-876 |#1|) (-1077) (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-1073 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 89)) (-2964 (((-517) $) 99)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2147 (($ $) NIL)) (-1636 (($ $) 77)) (-1482 (($ $) 65)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) 56)) (-1765 (((-107) $ $) NIL)) (-1612 (($ $) 75)) (-1459 (($ $) 63)) (-3502 (((-517) $) 116)) (-1659 (($ $) 80)) (-1508 (($ $) 67)) (-3038 (($) NIL T CONST)) (-3164 (($ $) NIL)) (-3220 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3402 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 92)) (-1524 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3456 (((-845)) 29) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-2671 (((-107) $) NIL)) (-2102 (($) 39)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL)) (-3250 (((-517) $) 35)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-3522 (($ $) NIL)) (-2321 (((-107) $) 88)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) 53) (($) 34 (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-4095 (($ $ $) 52) (($) 33 (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-3743 (((-517) $) 27)) (-3815 (($ $) 30)) (-3281 (($ $) 57)) (-1232 (($ $) 62)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2848 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-4130 (((-1024) $) NIL) (((-517) $) 90)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL)) (-2713 (($ $) NIL)) (-3202 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-845)) 100)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1725 (((-517) $) 28)) (-2999 (($) 38)) (-3898 (($ $) 61)) (-3388 (((-703) $) NIL)) (-1826 (((-1060) (-1060)) 8)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-845)) NIL) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-2042 (($ $ (-703)) NIL) (($ $) 93)) (-1753 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-1670 (($ $) 78)) (-1521 (($ $) 68)) (-1647 (($ $) 79)) (-1495 (($ $) 66)) (-1622 (($ $) 76)) (-1471 (($ $) 64)) (-3367 (((-349) $) 104) (((-199) $) 101) (((-816 (-349)) $) NIL) (((-493) $) 45)) (-2262 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-1818 (((-703)) NIL)) (-3126 (($ $) NIL)) (-2076 (((-845)) 32) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-4003 (((-845)) 25)) (-1706 (($ $) 83)) (-1564 (($ $) 71) (($ $ $) 109)) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) 81)) (-1536 (($ $) 69)) (-3517 (($ $) 86)) (-1588 (($ $) 74)) (-2815 (($ $) 84)) (-1601 (($ $) 72)) (-1722 (($ $) 85)) (-1577 (($ $) 73)) (-1698 (($ $) 82)) (-1550 (($ $) 70)) (-2829 (($ $) 117)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 36 T CONST)) (-3675 (($) 37 T CONST)) (-2514 (((-1060) $) 19) (((-1060) $ (-107)) 21) (((-1163) (-754) $) 22) (((-1163) (-754) $ (-107)) 23)) (-4097 (($ $) 96)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-3466 (($ $ $) 98)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 54)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 46)) (-1692 (($ $ $) 87) (($ $ (-517)) 55)) (-1680 (($ $) 47) (($ $ $) 49)) (-1666 (($ $ $) 48)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-845) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-199) (-13 (-374) (-207) (-760) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2999 ($)) (-15 -4130 ((-517) $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -1564 ($ $ $)) (-15 -4097 ($ $)) (-15 -3466 ($ $ $)) (-15 -1826 ((-1060) (-1060))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
+((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2999 (*1 *1) (-5 *1 (-199))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-3815 (*1 *1 *1) (-5 *1 (-199))) (-3281 (*1 *1 *1) (-5 *1 (-199))) (-1564 (*1 *1 *1 *1) (-5 *1 (-199))) (-4097 (*1 *1 *1) (-5 *1 (-199))) (-3466 (*1 *1 *1 *1) (-5 *1 (-199))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-199)))) (-1524 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-1524 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
+(-13 (-374) (-207) (-760) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2999 ($)) (-15 -4130 ((-517) $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -1564 ($ $ $)) (-15 -4097 ($ $)) (-15 -3466 ($ $ $)) (-15 -1826 ((-1060) (-1060))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703)))))
+((-2922 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-3512 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-1661 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-2581 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-3746 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-3518 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-2672 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-2747 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-4113 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-4084 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-4097 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-3466 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
+(((-200) (-10 -7 (-15 -4097 ((-199) (-199))) (-15 -4097 ((-153 (-199)) (-153 (-199)))) (-15 -3466 ((-199) (-199) (-199))) (-15 -3466 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3512 ((-199) (-199))) (-15 -3512 ((-153 (-199)) (-153 (-199)))) (-15 -2581 ((-199) (-199))) (-15 -2581 ((-153 (-199)) (-153 (-199)))) (-15 -2922 ((-199) (-703) (-199))) (-15 -2922 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -2672 ((-199) (-199) (-199))) (-15 -2672 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3746 ((-199) (-199) (-199))) (-15 -3746 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2747 ((-199) (-199) (-199))) (-15 -2747 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3518 ((-199) (-199) (-199))) (-15 -3518 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -4084 ((-153 (-199)) (-153 (-199)))) (-15 -4084 ((-199) (-199))) (-15 -4113 ((-199) (-199))) (-15 -4113 ((-153 (-199)) (-153 (-199)))) (-15 -1661 ((-199) (-199) (-199))) (-15 -1661 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
+((-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3518 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3518 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2747 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2747 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2672 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2672 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
+(-10 -7 (-15 -4097 ((-199) (-199))) (-15 -4097 ((-153 (-199)) (-153 (-199)))) (-15 -3466 ((-199) (-199) (-199))) (-15 -3466 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3512 ((-199) (-199))) (-15 -3512 ((-153 (-199)) (-153 (-199)))) (-15 -2581 ((-199) (-199))) (-15 -2581 ((-153 (-199)) (-153 (-199)))) (-15 -2922 ((-199) (-703) (-199))) (-15 -2922 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -2672 ((-199) (-199) (-199))) (-15 -2672 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3746 ((-199) (-199) (-199))) (-15 -3746 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2747 ((-199) (-199) (-199))) (-15 -2747 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3518 ((-199) (-199) (-199))) (-15 -3518 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -4084 ((-153 (-199)) (-153 (-199)))) (-15 -4084 ((-199) (-199))) (-15 -4113 ((-199) (-199))) (-15 -4113 ((-153 (-199)) (-153 (-199)))) (-15 -1661 ((-199) (-199) (-199))) (-15 -1661 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) NIL)) (-2688 (($ $ $) NIL)) (-1911 (($ (-1158 |#1|)) NIL) (($ $) NIL)) (-3183 (($ |#1| |#1| |#1|) 32)) (-1912 (((-107) $) NIL)) (-1393 (($ $ (-517) (-517)) NIL)) (-3632 (($ $ (-517) (-517)) NIL)) (-3031 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1281 (($ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3382 (($ $ (-517) (-517) $) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3911 (($ $ (-517) (-1158 |#1|)) NIL)) (-3101 (($ $ (-517) (-1158 |#1|)) NIL)) (-2029 (($ |#1| |#1| |#1|) 31)) (-1634 (($ (-703) |#1|) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) NIL (|has| |#1| (-278)))) (-1397 (((-1158 |#1|) $ (-517)) NIL)) (-1893 (($ |#1|) 30)) (-2938 (($ |#1|) 29)) (-3958 (($ |#1|) 28)) (-3778 (((-703) $) NIL (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-3850 (((-703) $) NIL (|has| |#1| (-509)))) (-1671 (((-583 (-1158 |#1|)) $) NIL (|has| |#1| (-509)))) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#1| $) NIL (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#1|))) 10)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3468 (((-583 (-583 |#1|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-3407 (($) 11)) (-3095 (($ $ $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-4025 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1974 (((-107) $) NIL)) (-2533 ((|#1| $) NIL (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-1158 |#1|) $ (-517)) NIL)) (-2262 (($ (-1158 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1158 |#1|) $ (-1158 |#1|)) 14) (((-1158 |#1|) (-1158 |#1|) $) NIL) (((-867 |#1|) $ (-867 |#1|)) 20)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-201 |#1|) (-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 * ((-867 |#1|) $ (-867 |#1|))) (-15 -3407 ($)) (-15 -3958 ($ |#1|)) (-15 -2938 ($ |#1|)) (-15 -1893 ($ |#1|)) (-15 -2029 ($ |#1| |#1| |#1|)) (-15 -3183 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1098))) (T -201))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098))) (-5 *1 (-201 *3)))) (-3407 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-3958 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-2938 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-1893 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-2029 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-3183 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))))
+(-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 * ((-867 |#1|) $ (-867 |#1|))) (-15 -3407 ($)) (-15 -3958 ($ |#1|)) (-15 -2938 ($ |#1|)) (-15 -1893 ($ |#1|)) (-15 -2029 ($ |#1| |#1| |#1|)) (-15 -3183 ($ |#1| |#1| |#1|))))
+((-2582 (($ (-1 (-107) |#2|) $) 16)) (-1749 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 24)) (-3808 (($) NIL) (($ (-583 |#2|)) 11)) (-1572 (((-107) $ $) 22)))
+(((-202 |#1| |#2|) (-10 -8 (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-203 |#2|) (-1006)) (T -202))
+NIL
+(-10 -8 (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-203 |#1|) (-1189) (-1006)) (T -203))
NIL
(-13 (-209 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2060 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-3342 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
-(((-204 |#1| |#2|) (-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -3342 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -3342 (|#1| |#1| (-1076))) (-15 -3342 (|#1| |#1| (-583 (-1076)))) (-15 -3342 (|#1| |#1| (-1076) (-703))) (-15 -3342 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -3342 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3342 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-963)) (T -204))
-NIL
-(-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -3342 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -3342 (|#1| |#1| (-1076))) (-15 -3342 (|#1| |#1| (-583 (-1076)))) (-15 -3342 (|#1| |#1| (-1076) (-703))) (-15 -3342 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -3342 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3342 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2060 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1076)) (-583 (-703))) 44 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 43 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 42 (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) 41 (|has| |#1| (-823 (-1076)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1076)) (-583 (-703))) 48 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 47 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 46 (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) 45 (|has| |#1| (-823 (-1076)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-205 |#1|) (-1188) (-963)) (T -205))
-((-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-963)))) (-2060 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-963)))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-963)))) (-3342 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-963)))))
-(-13 (-963) (-10 -8 (-15 -2060 ($ $ (-1 |t#1| |t#1|))) (-15 -2060 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -3342 ($ $ (-1 |t#1| |t#1|))) (-15 -3342 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |%noBranch|) (IF (|has| |t#1| (-823 (-1076))) (-6 (-823 (-1076))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-823 (-1076)) |has| |#1| (-823 (-1076))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2060 (($ $) NIL) (($ $ (-703)) 10)) (-3342 (($ $) 8) (($ $ (-703)) 12)))
-(((-206 |#1|) (-10 -8 (-15 -3342 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-703))) (-15 -3342 (|#1| |#1|)) (-15 -2060 (|#1| |#1|))) (-207)) (T -206))
-NIL
-(-10 -8 (-15 -3342 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-703))) (-15 -3342 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2060 (($ $) 38) (($ $ (-703)) 36)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $) 37) (($ $ (-703)) 35)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-207) (-1188)) (T -207))
-((-2060 (*1 *1 *1) (-4 *1 (-207))) (-3342 (*1 *1 *1) (-4 *1 (-207))) (-2060 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-3342 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
-(-13 (-963) (-10 -8 (-15 -2060 ($ $)) (-15 -3342 ($ $)) (-15 -2060 ($ $ (-703))) (-15 -3342 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2176 (($) 12) (($ (-583 |#2|)) NIL)) (-2462 (($ $) 14)) (-2288 (($ (-583 |#2|)) 10)) (-2271 (((-787) $) 21)))
-(((-208 |#1| |#2|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -2176 (|#1| (-583 |#2|))) (-15 -2176 (|#1|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -2462 (|#1| |#1|))) (-209 |#2|) (-1005)) (T -208))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -2176 (|#1| (-583 |#2|))) (-15 -2176 (|#1|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -2462 (|#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-3690 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2455 (($ $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2176 (($) 49) (($ (-583 |#1|)) 48)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 50)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-209 |#1|) (-1188) (-1005)) (T -209))
-((-2176 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1005)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-209 *3)))) (-2457 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-209 *2)) (-4 *2 (-1005)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-209 *3)) (-4 *3 (-1005)))) (-3690 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-209 *3)) (-4 *3 (-1005)))))
-(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -2176 ($)) (-15 -2176 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4192)) (PROGN (-15 -2457 ($ |t#1| $)) (-15 -2457 ($ (-1 (-107) |t#1|) $)) (-15 -3690 ($ (-1 (-107) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-4023 (((-2 (|:| |varOrder| (-583 (-1076))) (|:| |inhom| (-3 (-583 (-1157 (-703))) "failed")) (|:| |hom| (-583 (-1157 (-703))))) (-265 (-875 (-517)))) 25)))
-(((-210) (-10 -7 (-15 -4023 ((-2 (|:| |varOrder| (-583 (-1076))) (|:| |inhom| (-3 (-583 (-1157 (-703))) "failed")) (|:| |hom| (-583 (-1157 (-703))))) (-265 (-875 (-517))))))) (T -210))
-((-4023 (*1 *2 *3) (-12 (-5 *3 (-265 (-875 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1076))) (|:| |inhom| (-3 (-583 (-1157 (-703))) "failed")) (|:| |hom| (-583 (-1157 (-703)))))) (-5 *1 (-210)))))
-(-10 -7 (-15 -4023 ((-2 (|:| |varOrder| (-583 (-1076))) (|:| |inhom| (-3 (-583 (-1157 (-703))) "failed")) (|:| |hom| (-583 (-1157 (-703))))) (-265 (-875 (-517))))))
-((-2399 (((-703)) 51)) (-2207 (((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 $) (-1157 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1537 (((-125)) 57)) (-2060 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2271 (((-1157 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-4099 (((-703)) 15)) (-1704 (($ $ |#3|) 54)))
-(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)) (-15 -4099 ((-703))) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2271 (|#1| |#3|)) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2207 ((-623 |#3|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 |#1|) (-1157 |#1|))) (-15 -2399 ((-703))) (-15 -1704 (|#1| |#1| |#3|)) (-15 -1537 ((-125))) (-15 -2271 ((-1157 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1111)) (T -211))
-((-1537 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1111)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2399 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1111)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-4099 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1111)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
-(-10 -8 (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)) (-15 -4099 ((-703))) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2271 (|#1| |#3|)) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2207 ((-623 |#3|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 |#1|) (-1157 |#1|))) (-15 -2399 ((-703))) (-15 -1704 (|#1| |#1| |#3|)) (-15 -1537 ((-125))) (-15 -2271 ((-1157 |#3|) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#2| (-1005)))) (-3097 (((-107) $) 72 (|has| |#2| (-123)))) (-4170 (($ (-844)) 127 (|has| |#2| (-963)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2948 (($ $ $) 123 (|has| |#2| (-725)))) (-2798 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-1851 (((-107) $ (-703)) 8)) (-2399 (((-703)) 109 (|has| |#2| (-338)))) (-2360 (((-517) $) 121 (|has| |#2| (-777)))) (-2445 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4193)))) (-1393 (($) 7 T CONST)) (-3228 (((-3 (-517) "failed") $) 67 (-3993 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-3 (-377 (-517)) "failed") $) 64 (-3993 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1005)))) (-3390 (((-517) $) 68 (-3993 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-377 (-517)) $) 65 (-3993 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) ((|#2| $) 60 (|has| |#2| (-1005)))) (-2207 (((-623 (-517)) (-623 $)) 108 (-3993 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 107 (-3993 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) 106 (|has| |#2| (-963))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-963)))) (-2560 (((-3 $ "failed") $) 99 (|has| |#2| (-963)))) (-2202 (($) 112 (|has| |#2| (-338)))) (-2759 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#2| $ (-517)) 51)) (-2988 (((-107) $) 119 (|has| |#2| (-777)))) (-1534 (((-583 |#2|) $) 30 (|has| $ (-6 -4192)))) (-1376 (((-107) $) 102 (|has| |#2| (-963)))) (-1952 (((-107) $) 120 (|has| |#2| (-777)))) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 118 (-3747 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1903 (((-583 |#2|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 117 (-3747 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2746 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2|) $) 35)) (-3072 (((-844) $) 111 (|has| |#2| (-338)))) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#2| (-1005)))) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-2812 (($ (-844)) 110 (|has| |#2| (-338)))) (-4125 (((-1023) $) 21 (|has| |#2| (-1005)))) (-2429 ((|#2| $) 42 (|has| (-517) (-779)))) (-2846 (($ $ |#2|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3746 ((|#2| $ $) 126 (|has| |#2| (-963)))) (-3909 (($ (-1157 |#2|)) 128)) (-1537 (((-125)) 125 (|has| |#2| (-333)))) (-2060 (($ $) 92 (-3993 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) 90 (-3993 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) 88 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) 87 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) 86 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) 85 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-963)))) (-4137 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4192))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-1157 |#2|) $) 129) (($ (-517)) 66 (-3747 (-3993 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (|has| |#2| (-963)))) (($ (-377 (-517))) 63 (-3993 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (($ |#2|) 62 (|has| |#2| (-1005))) (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-4099 (((-703)) 104 (|has| |#2| (-963)))) (-3602 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4192)))) (-2376 (($ $) 122 (|has| |#2| (-777)))) (-2815 (($ $ (-703)) 100 (|has| |#2| (-963))) (($ $ (-844)) 96 (|has| |#2| (-963)))) (-3610 (($) 71 (|has| |#2| (-123)) CONST)) (-3619 (($) 103 (|has| |#2| (-963)) CONST)) (-3342 (($ $) 91 (-3993 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) 89 (-3993 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) 84 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) 83 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) 82 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) 81 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-963)))) (-1642 (((-107) $ $) 115 (-3747 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1618 (((-107) $ $) 114 (-3747 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1584 (((-107) $ $) 20 (|has| |#2| (-1005)))) (-1630 (((-107) $ $) 116 (-3747 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1608 (((-107) $ $) 113 (-3747 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1704 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1692 (($ $ $) 94 (|has| |#2| (-963))) (($ $) 93 (|has| |#2| (-963)))) (-1678 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-963))) (($ $ (-844)) 97 (|has| |#2| (-963)))) (* (($ $ $) 98 (|has| |#2| (-963))) (($ (-517) $) 95 (|has| |#2| (-963))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-844) $) 70 (|has| |#2| (-25)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-212 |#1| |#2|) (-1188) (-703) (-1111)) (T -212))
-((-3909 (*1 *1 *2) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1111)) (-4 *1 (-212 *3 *4)))) (-4170 (*1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-212 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1111)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1111)) (-4 *2 (-963)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1111)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1111)) (-4 *2 (-659)))))
-(-13 (-550 (-517) |t#2|) (-557 (-1157 |t#2|)) (-10 -8 (-6 -4192) (-15 -3909 ($ (-1157 |t#2|))) (IF (|has| |t#2| (-1005)) (-6 (-381 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-963)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -4170 ($ (-844))) (-15 -3746 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |%noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |%noBranch|) (IF (|has| |t#2| (-6 -4189)) (-6 -4189) |%noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |%noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1164 |t#2|)) |%noBranch|)))
-(((-21) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3747 (|has| |#2| (-1005)) (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3747 (|has| |#2| (-963)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3747 (|has| |#2| (-1005)) (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1157 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-963)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-963))) ((-258 #0=(-517) |#2|) . T) ((-260 #0# |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-963)) ((-381 |#2|) |has| |#2| (-1005)) ((-456 |#2|) . T) ((-550 #0# |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-585 |#2|) -3747 (|has| |#2| (-963)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963))) ((-579 |#2|) |has| |#2| (-963)) ((-650 |#2|) -3747 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3747 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3747 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3747 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3747 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-823 (-1076)) -12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963))) ((-954 (-377 (-517))) -12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005))) ((-954 (-517)) -12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) ((-954 |#2|) |has| |#2| (-1005)) ((-969 |#2|) -3747 (|has| |#2| (-963)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-969 $) |has| |#2| (-156)) ((-963) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-970) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1017) -3747 (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1005) -3747 (|has| |#2| (-1005)) (|has| |#2| (-963)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1111) . T) ((-1164 |#2|) |has| |#2| (-333)))
-((-1532 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-1522 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-3310 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
-(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -1532 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1522 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3310 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1111) (-1111)) (T -213))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1111)) (-4 *2 (-1111)) (-5 *1 (-213 *5 *6 *2)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1111)) (-4 *5 (-1111)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
-(-10 -7 (-15 -1532 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1522 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3310 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
-((-2119 (((-107) $ $) NIL (|has| |#2| (-1005)))) (-3097 (((-107) $) NIL (|has| |#2| (-123)))) (-4170 (($ (-844)) 56 (|has| |#2| (-963)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2948 (($ $ $) 60 (|has| |#2| (-725)))) (-2798 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-1851 (((-107) $ (-703)) 17)) (-2399 (((-703)) NIL (|has| |#2| (-338)))) (-2360 (((-517) $) NIL (|has| |#2| (-777)))) (-2445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1005)))) (-3390 (((-517) $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) ((|#2| $) 27 (|has| |#2| (-1005)))) (-2207 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL (|has| |#2| (-963))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-963)))) (-2560 (((-3 $ "failed") $) 53 (|has| |#2| (-963)))) (-2202 (($) NIL (|has| |#2| (-338)))) (-2759 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ (-517)) 51)) (-2988 (((-107) $) NIL (|has| |#2| (-777)))) (-1534 (((-583 |#2|) $) 15 (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL (|has| |#2| (-963)))) (-1952 (((-107) $) NIL (|has| |#2| (-777)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 20 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1903 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 (((-517) $) 50 (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2746 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2|) $) 41)) (-3072 (((-844) $) NIL (|has| |#2| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#2| (-1005)))) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-2812 (($ (-844)) NIL (|has| |#2| (-338)))) (-4125 (((-1023) $) NIL (|has| |#2| (-1005)))) (-2429 ((|#2| $) NIL (|has| (-517) (-779)))) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3746 ((|#2| $ $) NIL (|has| |#2| (-963)))) (-3909 (($ (-1157 |#2|)) 18)) (-1537 (((-125)) NIL (|has| |#2| (-333)))) (-2060 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)))) (-4137 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1157 |#2|) $) 10) (($ (-517)) NIL (-3747 (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (|has| |#2| (-963)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (($ |#2|) 13 (|has| |#2| (-1005))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-4099 (((-703)) NIL (|has| |#2| (-963)))) (-3602 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2376 (($ $) NIL (|has| |#2| (-777)))) (-2815 (($ $ (-703)) NIL (|has| |#2| (-963))) (($ $ (-844)) NIL (|has| |#2| (-963)))) (-3610 (($) 35 (|has| |#2| (-123)) CONST)) (-3619 (($) 38 (|has| |#2| (-963)) CONST)) (-3342 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)))) (-1642 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1584 (((-107) $ $) 26 (|has| |#2| (-1005)))) (-1630 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1608 (((-107) $ $) 58 (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $ $) NIL (|has| |#2| (-963))) (($ $) NIL (|has| |#2| (-963)))) (-1678 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-963))) (($ $ (-844)) NIL (|has| |#2| (-963)))) (* (($ $ $) 49 (|has| |#2| (-963))) (($ (-517) $) NIL (|has| |#2| (-963))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-844) $) NIL (|has| |#2| (-25)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1111)) (T -214))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-3348 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
+(((-204 |#1| |#2|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1077))) (-15 -3348 (|#1| |#1| (-583 (-1077)))) (-15 -3348 (|#1| |#1| (-1077) (-703))) (-15 -3348 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-964)) (T -204))
+NIL
+(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1077))) (-15 -3348 (|#1| |#1| (-583 (-1077)))) (-15 -3348 (|#1| |#1| (-1077) (-703))) (-15 -3348 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1077)) (-583 (-703))) 44 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 43 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 42 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 41 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1077)) (-583 (-703))) 48 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 47 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 46 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 45 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-205 |#1|) (-1189) (-964)) (T -205))
+((-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-964)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964)))) (-3348 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-964)))))
+(-13 (-964) (-10 -8 (-15 -2042 ($ $ (-1 |t#1| |t#1|))) (-15 -2042 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -3348 ($ $ (-1 |t#1| |t#1|))) (-15 -3348 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |%noBranch|) (IF (|has| |t#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2042 (($ $) NIL) (($ $ (-703)) 10)) (-3348 (($ $) 8) (($ $ (-703)) 12)))
+(((-206 |#1|) (-10 -8 (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1|))) (-207)) (T -206))
+NIL
+(-10 -8 (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $) 38) (($ $ (-703)) 36)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 37) (($ $ (-703)) 35)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-207) (-1189)) (T -207))
+((-2042 (*1 *1 *1) (-4 *1 (-207))) (-3348 (*1 *1 *1) (-4 *1 (-207))) (-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-3348 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
+(-13 (-964) (-10 -8 (-15 -2042 ($ $)) (-15 -3348 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -3348 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3808 (($) 12) (($ (-583 |#2|)) NIL)) (-2453 (($ $) 14)) (-2279 (($ (-583 |#2|)) 10)) (-2262 (((-787) $) 21)))
+(((-208 |#1| |#2|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2453 (|#1| |#1|))) (-209 |#2|) (-1006)) (T -208))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2453 (|#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-209 |#1|) (-1189) (-1006)) (T -209))
+((-3808 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1006)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-209 *3)))) (-1749 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-209 *2)) (-4 *2 (-1006)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3)) (-4 *3 (-1006)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3)) (-4 *3 (-1006)))))
+(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3808 ($)) (-15 -3808 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4195)) (PROGN (-15 -1749 ($ |t#1| $)) (-15 -1749 ($ (-1 (-107) |t#1|) $)) (-15 -2582 ($ (-1 (-107) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2730 (((-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703))))) (-265 (-876 (-517)))) 25)))
+(((-210) (-10 -7 (-15 -2730 ((-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703))))) (-265 (-876 (-517))))))) (T -210))
+((-2730 (*1 *2 *3) (-12 (-5 *3 (-265 (-876 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703)))))) (-5 *1 (-210)))))
+(-10 -7 (-15 -2730 ((-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703))))) (-265 (-876 (-517))))))
+((-2390 (((-703)) 51)) (-2947 (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1470 (((-125)) 57)) (-2042 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2262 (((-1158 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-1818 (((-703)) 15)) (-1692 (($ $ |#3|) 54)))
+(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)) (-15 -1818 ((-703))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2390 ((-703))) (-15 -1692 (|#1| |#1| |#3|)) (-15 -1470 ((-125))) (-15 -2262 ((-1158 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1112)) (T -211))
+((-1470 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1112)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2390 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1818 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
+(-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)) (-15 -1818 ((-703))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2390 ((-703))) (-15 -1692 (|#1| |#1| |#3|)) (-15 -1470 ((-125))) (-15 -2262 ((-1158 |#3|) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#2| (-1006)))) (-1992 (((-107) $) 72 (|has| |#2| (-123)))) (-3622 (($ (-845)) 127 (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-3505 (($ $ $) 123 (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) 8)) (-2390 (((-703)) 109 (|has| |#2| (-338)))) (-3502 (((-517) $) 121 (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-3220 (((-3 (-517) "failed") $) 67 (-4024 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) 64 (-4024 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1006)))) (-3402 (((-517) $) 68 (-4024 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) 65 (-4024 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) 60 (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) 108 (-4024 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 107 (-4024 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 106 (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) 99 (|has| |#2| (-964)))) (-2192 (($) 112 (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) 51)) (-2671 (((-107) $) 119 (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) 30 (|has| $ (-6 -4195)))) (-1690 (((-107) $) 102 (|has| |#2| (-964)))) (-2321 (((-107) $) 120 (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 118 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-3687 (((-583 |#2|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 117 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2737 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) 35)) (-4161 (((-845) $) 111 (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-2803 (($ (-845)) 110 (|has| |#2| (-338)))) (-4130 (((-1024) $) 21 (|has| |#2| (-1006)))) (-2420 ((|#2| $) 42 (|has| (-517) (-779)))) (-2837 (($ $ |#2|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3912 ((|#2| $ $) 126 (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) 128)) (-1470 (((-125)) 125 (|has| |#2| (-333)))) (-2042 (($ $) 92 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) 90 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) 88 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) 87 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) 86 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) 85 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4195))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-1158 |#2|) $) 129) (($ (-517)) 66 (-3786 (-4024 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) 63 (-4024 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) 62 (|has| |#2| (-1006))) (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-1818 (((-703)) 104 (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4195)))) (-2829 (($ $) 122 (|has| |#2| (-777)))) (-2806 (($ $ (-703)) 100 (|has| |#2| (-964))) (($ $ (-845)) 96 (|has| |#2| (-964)))) (-3663 (($) 71 (|has| |#2| (-123)) CONST)) (-3675 (($) 103 (|has| |#2| (-964)) CONST)) (-3348 (($ $) 91 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) 89 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) 84 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) 83 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) 82 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) 81 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-964)))) (-1630 (((-107) $ $) 115 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1606 (((-107) $ $) 114 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1572 (((-107) $ $) 20 (|has| |#2| (-1006)))) (-1618 (((-107) $ $) 116 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1596 (((-107) $ $) 113 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1692 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1680 (($ $ $) 94 (|has| |#2| (-964))) (($ $) 93 (|has| |#2| (-964)))) (-1666 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-964))) (($ $ (-845)) 97 (|has| |#2| (-964)))) (* (($ $ $) 98 (|has| |#2| (-964))) (($ (-517) $) 95 (|has| |#2| (-964))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-845) $) 70 (|has| |#2| (-25)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-212 |#1| |#2|) (-1189) (-703) (-1112)) (T -212))
+((-3935 (*1 *1 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1112)) (-4 *1 (-212 *3 *4)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-212 *3 *4)) (-4 *4 (-964)) (-4 *4 (-1112)))) (-3912 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))))
+(-13 (-550 (-517) |t#2|) (-557 (-1158 |t#2|)) (-10 -8 (-6 -4195) (-15 -3935 ($ (-1158 |t#2|))) (IF (|has| |t#2| (-1006)) (-6 (-381 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-964)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -3622 ($ (-845))) (-15 -3912 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |%noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |%noBranch|) (IF (|has| |t#2| (-6 -4192)) (-6 -4192) |%noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |%noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1165 |t#2|)) |%noBranch|)))
+(((-21) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3786 (|has| |#2| (-1006)) (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3786 (|has| |#2| (-964)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1158 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-964)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-964))) ((-258 #0=(-517) |#2|) . T) ((-260 #0# |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-964)) ((-381 |#2|) |has| |#2| (-1006)) ((-456 |#2|) . T) ((-550 #0# |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-585 |#2|) -3786 (|has| |#2| (-964)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964))) ((-579 |#2|) |has| |#2| (-964)) ((-650 |#2|) -3786 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-824 (-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964))) ((-955 (-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006))) ((-955 (-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) ((-955 |#2|) |has| |#2| (-1006)) ((-970 |#2|) -3786 (|has| |#2| (-964)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-970 $) |has| |#2| (-156)) ((-964) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-971) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1018) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1006) -3786 (|has| |#2| (-1006)) (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1112) . T) ((-1165 |#2|) |has| |#2| (-333)))
+((-1250 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-1510 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-3312 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
+(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -1250 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1510 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3312 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1112) (-1112)) (T -213))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-213 *5 *6 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1112)) (-4 *5 (-1112)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
+(-10 -7 (-15 -1250 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1510 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3312 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
+((-2105 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1992 (((-107) $) NIL (|has| |#2| (-123)))) (-3622 (($ (-845)) 56 (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) 60 (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) 17)) (-2390 (((-703)) NIL (|has| |#2| (-338)))) (-3502 (((-517) $) NIL (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) 27 (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) 53 (|has| |#2| (-964)))) (-2192 (($) NIL (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) 51)) (-2671 (((-107) $) NIL (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) 15 (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#2| (-964)))) (-2321 (((-107) $) NIL (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 20 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 (((-517) $) 50 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) 41)) (-4161 (((-845) $) NIL (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#2| (-338)))) (-4130 (((-1024) $) NIL (|has| |#2| (-1006)))) (-2420 ((|#2| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3912 ((|#2| $ $) NIL (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) 18)) (-1470 (((-125)) NIL (|has| |#2| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#2|) $) 10) (($ (-517)) NIL (-3786 (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) 13 (|has| |#2| (-1006))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#2| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (-3663 (($) 35 (|has| |#2| (-123)) CONST)) (-3675 (($) 38 (|has| |#2| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 26 (|has| |#2| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1596 (((-107) $ $) 58 (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $ $) NIL (|has| |#2| (-964))) (($ $) NIL (|has| |#2| (-964)))) (-1666 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (* (($ $ $) 49 (|has| |#2| (-964))) (($ (-517) $) NIL (|has| |#2| (-964))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-845) $) NIL (|has| |#2| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1112)) (T -214))
NIL
(-212 |#1| |#2|)
-((-3848 (((-517) (-583 (-1059))) 24) (((-517) (-1059)) 19)) (-1900 (((-1162) (-583 (-1059))) 29) (((-1162) (-1059)) 28)) (-1650 (((-1059)) 14)) (-1416 (((-1059) (-517) (-1059)) 16)) (-3569 (((-583 (-1059)) (-583 (-1059)) (-517) (-1059)) 25) (((-1059) (-1059) (-517) (-1059)) 23)) (-3491 (((-583 (-1059)) (-583 (-1059))) 13) (((-583 (-1059)) (-1059)) 11)))
-(((-215) (-10 -7 (-15 -3491 ((-583 (-1059)) (-1059))) (-15 -3491 ((-583 (-1059)) (-583 (-1059)))) (-15 -1650 ((-1059))) (-15 -1416 ((-1059) (-517) (-1059))) (-15 -3569 ((-1059) (-1059) (-517) (-1059))) (-15 -3569 ((-583 (-1059)) (-583 (-1059)) (-517) (-1059))) (-15 -1900 ((-1162) (-1059))) (-15 -1900 ((-1162) (-583 (-1059)))) (-15 -3848 ((-517) (-1059))) (-15 -3848 ((-517) (-583 (-1059)))))) (T -215))
-((-3848 (*1 *2 *3) (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-517)) (-5 *1 (-215)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1162)) (-5 *1 (-215)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-215)))) (-3569 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1059))) (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *1 (-215)))) (-3569 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1650 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-215)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-215)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-215)) (-5 *3 (-1059)))))
-(-10 -7 (-15 -3491 ((-583 (-1059)) (-1059))) (-15 -3491 ((-583 (-1059)) (-583 (-1059)))) (-15 -1650 ((-1059))) (-15 -1416 ((-1059) (-517) (-1059))) (-15 -3569 ((-1059) (-1059) (-517) (-1059))) (-15 -3569 ((-583 (-1059)) (-583 (-1059)) (-517) (-1059))) (-15 -1900 ((-1162) (-1059))) (-15 -1900 ((-1162) (-583 (-1059)))) (-15 -3848 ((-517) (-1059))) (-15 -3848 ((-517) (-583 (-1059)))))
-((-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
-(((-216 |#1|) (-10 -8 (-15 -2815 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2815 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -2815 (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-217)) (T -216))
-NIL
-(-10 -8 (-15 -2815 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2815 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -2815 (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 39)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
-(((-217) (-1188)) (T -217))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2815 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2300 (*1 *1 *1) (-4 *1 (-217))))
-(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2815 ($ $ (-517))) (-15 -2300 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-659) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-1541 (($ $) 57)) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-3573 (($ $ $) 53 (|has| $ (-6 -4193)))) (-2403 (($ $ $) 52 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-1393 (($) 7 T CONST)) (-4124 (($ $) 56)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-3464 (($ $) 55)) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1446 ((|#1| $) 59)) (-1568 (($ $) 58)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47)) (-1844 (((-517) $ $) 44)) (-3028 (((-107) $) 46)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-1753 (($ $ $) 54 (|has| $ (-6 -4193)))) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-218 |#1|) (-1188) (-1111)) (T -218))
-((-1446 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-1541 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-4124 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-3464 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-1753 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-3573 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-218 *2)) (-4 *2 (-1111)))) (-2403 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-218 *2)) (-4 *2 (-1111)))))
-(-13 (-928 |t#1|) (-10 -8 (-15 -1446 (|t#1| $)) (-15 -1568 ($ $)) (-15 -1541 ($ $)) (-15 -4124 ($ $)) (-15 -3464 ($ $)) (IF (|has| $ (-6 -4193)) (PROGN (-15 -1753 ($ $ $)) (-15 -3573 ($ $ $)) (-15 -2403 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-928 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) NIL)) (-2586 ((|#1| $) NIL)) (-1541 (($ $) NIL)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-1420 (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-2163 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-1702 (($ $ $) NIL (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "rest" $) NIL (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) |#1|) $) NIL)) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2576 ((|#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2439 (($ $) NIL) (($ $ (-703)) NIL)) (-1399 (($ $) NIL (|has| |#1| (-1005)))) (-2455 (($ $) 7 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) NIL (|has| |#1| (-1005))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-3013 (((-107) $) NIL)) (-1212 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005))) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4155 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2662 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2324 (($ |#1|) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1446 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3241 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1747 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-4033 (((-107) $) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1124 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-1844 (((-517) $ $) NIL)) (-3275 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-3728 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-2250 (($ (-583 |#1|)) 22)) (-3028 (((-107) $) NIL)) (-3498 (($ $) NIL)) (-3020 (($ $) NIL (|has| $ (-6 -4193)))) (-2453 (((-703) $) NIL)) (-2231 (($ $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-1753 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4110 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2271 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) 14 (|has| $ (-6 -4192)))))
-(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2271 ($ (-583 |#1|))) (-15 -2271 ((-583 |#1|) $)) (-15 -2250 ($ (-583 |#1|))) (-15 -2609 ($ $ "unique")) (-15 -2609 ($ $ "sort")) (-15 -2609 ((-703) $ "count")))) (-779)) (T -219))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2250 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
-(-13 (-603 |#1|) (-10 -8 (-15 -2271 ($ (-583 |#1|))) (-15 -2271 ((-583 |#1|) $)) (-15 -2250 ($ (-583 |#1|))) (-15 -2609 ($ $ "unique")) (-15 -2609 ($ $ "sort")) (-15 -2609 ((-703) $ "count"))))
-((-2416 (((-3 (-703) "failed") |#1| |#1| (-703)) 27)))
-(((-220 |#1|) (-10 -7 (-15 -2416 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
-((-2416 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
-(-10 -7 (-15 -2416 ((-3 (-703) "failed") |#1| |#1| (-703))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-789 |#1|)) $) NIL)) (-1440 (((-1072 $) $ (-789 |#1|)) NIL) (((-1072 |#2|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3062 (($ $) NIL (|has| |#2| (-509)))) (-2190 (((-107) $) NIL (|has| |#2| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1224 (($ $) NIL (|has| |#2| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-789 |#1|) $) NIL)) (-2157 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1873 (($ $ (-583 (-517))) NIL)) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#2| (-832)))) (-3014 (($ $ |#2| (-214 (-3535 |#1|) (-703)) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#2|) (-789 |#1|)) NIL) (($ (-1072 $) (-789 |#1|)) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#2| (-214 (-3535 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-789 |#1|)) NIL)) (-3492 (((-214 (-3535 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3458 (($ $ $) NIL (|has| |#2| (-779)))) (-4084 (($ $ $) NIL (|has| |#2| (-779)))) (-2935 (($ (-1 (-214 (-3535 |#1|) (-703)) (-214 (-3535 |#1|) (-703))) $) NIL)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-789 |#1|) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#2| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2121 (-703))) "failed") $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#2| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#2| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-1220 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2060 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3647 (((-214 (-3535 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3119 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-214 (-3535 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-221 |#1| |#2|) (-13 (-872 |#2| (-214 (-3535 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1873 ($ $ (-583 (-517)))))) (-583 (-1076)) (-963)) (T -221))
-((-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1076))) (-4 *4 (-963)))))
-(-13 (-872 |#2| (-214 (-3535 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1873 ($ $ (-583 (-517))))))
-((-1265 (((-1162) $) 13)) (-2112 (((-1081) $) 11)) (-2271 (((-787) $) 7)))
-(((-222) (-13 (-557 (-787)) (-10 -8 (-15 -2112 ((-1081) $)) (-15 -1265 ((-1162) $))))) (T -222))
-((-2112 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-222)))) (-1265 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-222)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2112 ((-1081) $)) (-15 -1265 ((-1162) $))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-4170 (($ (-844)) NIL (|has| |#4| (-963)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2948 (($ $ $) NIL (|has| |#4| (-725)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| |#4| (-338)))) (-2360 (((-517) $) NIL (|has| |#4| (-777)))) (-2445 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1005))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-954 (-517))) (|has| |#4| (-1005)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-954 (-377 (-517)))) (|has| |#4| (-1005))))) (-3390 ((|#4| $) NIL (|has| |#4| (-1005))) (((-517) $) NIL (-12 (|has| |#4| (-954 (-517))) (|has| |#4| (-1005)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-954 (-377 (-517)))) (|has| |#4| (-1005))))) (-2207 (((-2 (|:| -3016 (-623 |#4|)) (|:| |vec| (-1157 |#4|))) (-623 $) (-1157 $)) NIL (|has| |#4| (-963))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-963))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-963)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-963))))) (-2560 (((-3 $ "failed") $) NIL (|has| |#4| (-963)))) (-2202 (($) NIL (|has| |#4| (-338)))) (-2759 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#4| $ (-517)) NIL)) (-2988 (((-107) $) NIL (|has| |#4| (-777)))) (-1534 (((-583 |#4|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL (|has| |#4| (-963)))) (-1952 (((-107) $) NIL (|has| |#4| (-777)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (-3747 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1903 (((-583 |#4|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (-3747 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2746 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#4| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-2812 (($ (-844)) NIL (|has| |#4| (-338)))) (-4125 (((-1023) $) NIL)) (-2429 ((|#4| $) NIL (|has| (-517) (-779)))) (-2846 (($ $ |#4|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-2891 (((-583 |#4|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3746 ((|#4| $ $) NIL (|has| |#4| (-963)))) (-3909 (($ (-1157 |#4|)) NIL)) (-1537 (((-125)) NIL (|has| |#4| (-333)))) (-2060 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-963))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-963)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-963))))) (-4137 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1157 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1005))) (($ (-517)) NIL (-3747 (-12 (|has| |#4| (-954 (-517))) (|has| |#4| (-1005))) (|has| |#4| (-963)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-954 (-377 (-517)))) (|has| |#4| (-1005))))) (-4099 (((-703)) NIL (|has| |#4| (-963)))) (-3602 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2376 (($ $) NIL (|has| |#4| (-777)))) (-2815 (($ $ (-703)) NIL (|has| |#4| (-963))) (($ $ (-844)) NIL (|has| |#4| (-963)))) (-3610 (($) NIL T CONST)) (-3619 (($) NIL (|has| |#4| (-963)) CONST)) (-3342 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-963))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#4| (-823 (-1076))) (|has| |#4| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-963)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-963))))) (-1642 (((-107) $ $) NIL (-3747 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (-3747 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1608 (((-107) $ $) NIL (-3747 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1704 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-963))) (($ $ (-844)) NIL (|has| |#4| (-963)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-963)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-844) (-963) (-1026 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223))
+((-2824 (((-517) (-583 (-1060))) 24) (((-517) (-1060)) 19)) (-1886 (((-1163) (-583 (-1060))) 29) (((-1163) (-1060)) 28)) (-4171 (((-1060)) 14)) (-2719 (((-1060) (-517) (-1060)) 16)) (-3605 (((-583 (-1060)) (-583 (-1060)) (-517) (-1060)) 25) (((-1060) (-1060) (-517) (-1060)) 23)) (-3519 (((-583 (-1060)) (-583 (-1060))) 13) (((-583 (-1060)) (-1060)) 11)))
+(((-215) (-10 -7 (-15 -3519 ((-583 (-1060)) (-1060))) (-15 -3519 ((-583 (-1060)) (-583 (-1060)))) (-15 -4171 ((-1060))) (-15 -2719 ((-1060) (-517) (-1060))) (-15 -3605 ((-1060) (-1060) (-517) (-1060))) (-15 -3605 ((-583 (-1060)) (-583 (-1060)) (-517) (-1060))) (-15 -1886 ((-1163) (-1060))) (-15 -1886 ((-1163) (-583 (-1060)))) (-15 -2824 ((-517) (-1060))) (-15 -2824 ((-517) (-583 (-1060)))))) (T -215))
+((-2824 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-517)) (-5 *1 (-215)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1163)) (-5 *1 (-215)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-215)))) (-3605 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1060))) (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *1 (-215)))) (-3605 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215)))) (-2719 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215)))) (-4171 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-215)))) (-3519 (*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)))) (-3519 (*1 *2 *3) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)) (-5 *3 (-1060)))))
+(-10 -7 (-15 -3519 ((-583 (-1060)) (-1060))) (-15 -3519 ((-583 (-1060)) (-583 (-1060)))) (-15 -4171 ((-1060))) (-15 -2719 ((-1060) (-517) (-1060))) (-15 -3605 ((-1060) (-1060) (-517) (-1060))) (-15 -3605 ((-583 (-1060)) (-583 (-1060)) (-517) (-1060))) (-15 -1886 ((-1163) (-1060))) (-15 -1886 ((-1163) (-583 (-1060)))) (-15 -2824 ((-517) (-1060))) (-15 -2824 ((-517) (-583 (-1060)))))
+((-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
+(((-216 |#1|) (-10 -8 (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -2806 (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-217)) (T -216))
+NIL
+(-10 -8 (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -2806 (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 39)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
+(((-217) (-1189)) (T -217))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2291 (*1 *1 *1) (-4 *1 (-217))))
+(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2806 ($ $ (-517))) (-15 -2291 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-659) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-1529 (($ $) 57)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-2548 (($ $ $) 53 (|has| $ (-6 -4196)))) (-2220 (($ $ $) 52 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-4129 (($ $) 56)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3487 (($ $) 55)) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 59)) (-2415 (($ $) 58)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3495 (($ $ $) 54 (|has| $ (-6 -4196)))) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-218 |#1|) (-1189) (-1112)) (T -218))
+((-1447 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-2415 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-2548 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-2220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))))
+(-13 (-929 |t#1|) (-10 -8 (-15 -1447 (|t#1| $)) (-15 -2415 ($ $)) (-15 -1529 ($ $)) (-15 -4129 ($ $)) (-15 -3487 ($ $)) (IF (|has| $ (-6 -4196)) (PROGN (-15 -3495 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -2220 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) NIL (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "rest" $) NIL (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2429 (($ $) NIL) (($ $ (-703)) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1006)))) (-2446 (($ $) 7 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006))) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3824 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2315 (($ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-3868 (((-517) $ $) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-2241 (($ (-583 |#1|)) 22)) (-1414 (((-107) $) NIL)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-3495 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4117 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2262 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 14 (|has| $ (-6 -4195)))))
+(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2262 ($ (-583 |#1|))) (-15 -2262 ((-583 |#1|) $)) (-15 -2241 ($ (-583 |#1|))) (-15 -2612 ($ $ "unique")) (-15 -2612 ($ $ "sort")) (-15 -2612 ((-703) $ "count")))) (-779)) (T -219))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2241 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -2262 ($ (-583 |#1|))) (-15 -2262 ((-583 |#1|) $)) (-15 -2241 ($ (-583 |#1|))) (-15 -2612 ($ $ "unique")) (-15 -2612 ($ $ "sort")) (-15 -2612 ((-703) $ "count"))))
+((-2913 (((-3 (-703) "failed") |#1| |#1| (-703)) 27)))
+(((-220 |#1|) (-10 -7 (-15 -2913 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
+((-2913 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
+(-10 -7 (-15 -2913 ((-3 (-703) "failed") |#1| |#1| (-703))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-789 |#1|)) $) NIL)) (-1428 (((-1073 $) $ (-789 |#1|)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3069 (($ $ (-583 (-517))) NIL)) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-214 (-3573 |#1|) (-703)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) NIL) (($ (-1073 $) (-789 |#1|)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-214 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 (((-214 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-214 (-3573 |#1|) (-703)) (-214 (-3573 |#1|) (-703))) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 (((-214 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-214 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-221 |#1| |#2|) (-13 (-873 |#2| (-214 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) (-583 (-1077)) (-964)) (T -221))
+((-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1077))) (-4 *4 (-964)))))
+(-13 (-873 |#2| (-214 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517))))))
+((-1268 (((-1163) $) 13)) (-2267 (((-1082) $) 11)) (-2262 (((-787) $) 7)))
+(((-222) (-13 (-557 (-787)) (-10 -8 (-15 -2267 ((-1082) $)) (-15 -1268 ((-1163) $))))) (T -222))
+((-2267 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-222)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-222)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2267 ((-1082) $)) (-15 -1268 ((-1163) $))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3622 (($ (-845)) NIL (|has| |#4| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#4| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#4| (-338)))) (-3502 (((-517) $) NIL (|has| |#4| (-777)))) (-2436 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1006))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))) (-3402 ((|#4| $) NIL (|has| |#4| (-1006))) (((-517) $) NIL (-12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))) (-2947 (((-2 (|:| -3725 (-623 |#4|)) (|:| |vec| (-1158 |#4|))) (-623 $) (-1158 $)) NIL (|has| |#4| (-964))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-964)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-964))))) (-3550 (((-3 $ "failed") $) NIL (|has| |#4| (-964)))) (-2192 (($) NIL (|has| |#4| (-338)))) (-2750 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#4| $ (-517)) NIL)) (-2671 (((-107) $) NIL (|has| |#4| (-777)))) (-1525 (((-583 |#4|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#4| (-964)))) (-2321 (((-107) $) NIL (|has| |#4| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-3687 (((-583 |#4|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2737 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#4| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#4| (-338)))) (-4130 (((-1024) $) NIL)) (-2420 ((|#4| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#4|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2862 (((-583 |#4|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3912 ((|#4| $ $) NIL (|has| |#4| (-964)))) (-3935 (($ (-1158 |#4|)) NIL)) (-1470 (((-125)) NIL (|has| |#4| (-333)))) (-2042 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-964))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964))))) (-4140 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1006))) (($ (-517)) NIL (-3786 (-12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006))) (|has| |#4| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))) (-1818 (((-703)) NIL (|has| |#4| (-964)))) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#4| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#4| (-964))) (($ $ (-845)) NIL (|has| |#4| (-964)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL (|has| |#4| (-964)) CONST)) (-3348 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-964))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964))))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1596 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1692 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-964))) (($ $ (-845)) NIL (|has| |#4| (-964)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-964)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-845) (-964) (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223))
NIL
(-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-4170 (($ (-844)) NIL (|has| |#3| (-963)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2948 (($ $ $) NIL (|has| |#3| (-725)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| |#3| (-338)))) (-2360 (((-517) $) NIL (|has| |#3| (-777)))) (-2445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1005))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005))))) (-3390 ((|#3| $) NIL (|has| |#3| (-1005))) (((-517) $) NIL (-12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005))))) (-2207 (((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 $) (-1157 $)) NIL (|has| |#3| (-963))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-963))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-963)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-963))))) (-2560 (((-3 $ "failed") $) NIL (|has| |#3| (-963)))) (-2202 (($) NIL (|has| |#3| (-338)))) (-2759 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#3| $ (-517)) NIL)) (-2988 (((-107) $) NIL (|has| |#3| (-777)))) (-1534 (((-583 |#3|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL (|has| |#3| (-963)))) (-1952 (((-107) $) NIL (|has| |#3| (-777)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1903 (((-583 |#3|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2746 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#3| |#3|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#3| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-2812 (($ (-844)) NIL (|has| |#3| (-338)))) (-4125 (((-1023) $) NIL)) (-2429 ((|#3| $) NIL (|has| (-517) (-779)))) (-2846 (($ $ |#3|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-2891 (((-583 |#3|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3746 ((|#3| $ $) NIL (|has| |#3| (-963)))) (-3909 (($ (-1157 |#3|)) NIL)) (-1537 (((-125)) NIL (|has| |#3| (-333)))) (-2060 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-963))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963))))) (-4137 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1157 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1005))) (($ (-517)) NIL (-3747 (-12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005))) (|has| |#3| (-963)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005))))) (-4099 (((-703)) NIL (|has| |#3| (-963)))) (-3602 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-2376 (($ $) NIL (|has| |#3| (-777)))) (-2815 (($ $ (-703)) NIL (|has| |#3| (-963))) (($ $ (-844)) NIL (|has| |#3| (-963)))) (-3610 (($) NIL T CONST)) (-3619 (($) NIL (|has| |#3| (-963)) CONST)) (-3342 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-963))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963))))) (-1642 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1608 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1704 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-963))) (($ $ (-844)) NIL (|has| |#3| (-963)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-963)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-963) (-585 |#2|)) (T -224))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3622 (($ (-845)) NIL (|has| |#3| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#3| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#3| (-338)))) (-3502 (((-517) $) NIL (|has| |#3| (-777)))) (-2436 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1006))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))) (-3402 ((|#3| $) NIL (|has| |#3| (-1006))) (((-517) $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))) (-2947 (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) NIL (|has| |#3| (-964))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964))))) (-3550 (((-3 $ "failed") $) NIL (|has| |#3| (-964)))) (-2192 (($) NIL (|has| |#3| (-338)))) (-2750 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#3| $ (-517)) NIL)) (-2671 (((-107) $) NIL (|has| |#3| (-777)))) (-1525 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#3| (-964)))) (-2321 (((-107) $) NIL (|has| |#3| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-3687 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2737 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#3| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#3| (-338)))) (-4130 (((-1024) $) NIL)) (-2420 ((|#3| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#3|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2862 (((-583 |#3|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3912 ((|#3| $ $) NIL (|has| |#3| (-964)))) (-3935 (($ (-1158 |#3|)) NIL)) (-1470 (((-125)) NIL (|has| |#3| (-333)))) (-2042 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964))))) (-4140 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1006))) (($ (-517)) NIL (-3786 (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (|has| |#3| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))) (-1818 (((-703)) NIL (|has| |#3| (-964)))) (-1272 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#3| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL (|has| |#3| (-964)) CONST)) (-3348 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964))))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1596 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1692 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-964)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-964) (-585 |#2|)) (T -224))
NIL
(-13 (-212 |#1| |#3|) (-585 |#2|))
-((-2774 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-3077 (((-703) $) 49) (((-703) $ |#3|) 52)) (-2431 (($ $) 65)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1395 (((-703) $ |#3|) 39) (((-703) $) 36)) (-3044 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-3301 ((|#4| $) 58)) (-1919 (((-107) $) 56)) (-2626 (($ $) 64)) (-3524 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-2060 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2861 (((-583 |#3|) $) 75)) (-3647 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
-(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3524 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#3| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#3| |#1|)) (-15 -3044 ((-1 |#1| (-703)) |#1|)) (-15 -2431 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -3301 (|#4| |#1|)) (-15 -1919 ((-107) |#1|)) (-15 -3077 ((-703) |#1| |#3|)) (-15 -2774 ((-583 (-703)) |#1| |#3|)) (-15 -3077 ((-703) |#1|)) (-15 -2774 ((-583 (-703)) |#1|)) (-15 -3647 ((-703) |#1| |#3|)) (-15 -1395 ((-703) |#1|)) (-15 -1395 ((-703) |#1| |#3|)) (-15 -2861 ((-583 |#3|) |#1|)) (-15 -3044 ((-1 |#1| (-703)) |#3|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -2271 (|#1| |#3|)) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3647 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3647 ((-703) |#1| |#4|)) (-15 -3228 ((-3 |#4| "failed") |#1|)) (-15 -2271 (|#1| |#4|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#4| |#1|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#4| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3647 (|#5| |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2060 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2060 (|#1| |#1| |#4| (-703))) (-15 -2060 (|#1| |#1| (-583 |#4|))) (-15 -2060 (|#1| |#1| |#4|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-963) (-779) (-239 |#3|) (-725)) (T -225))
-NIL
-(-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3524 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#3| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#3| |#1|)) (-15 -3044 ((-1 |#1| (-703)) |#1|)) (-15 -2431 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -3301 (|#4| |#1|)) (-15 -1919 ((-107) |#1|)) (-15 -3077 ((-703) |#1| |#3|)) (-15 -2774 ((-583 (-703)) |#1| |#3|)) (-15 -3077 ((-703) |#1|)) (-15 -2774 ((-583 (-703)) |#1|)) (-15 -3647 ((-703) |#1| |#3|)) (-15 -1395 ((-703) |#1|)) (-15 -1395 ((-703) |#1| |#3|)) (-15 -2861 ((-583 |#3|) |#1|)) (-15 -3044 ((-1 |#1| (-703)) |#3|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -2271 (|#1| |#3|)) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3647 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3647 ((-703) |#1| |#4|)) (-15 -3228 ((-3 |#4| "failed") |#1|)) (-15 -2271 (|#1| |#4|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#4| |#1|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#4| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3647 (|#5| |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2060 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2060 (|#1| |#1| |#4| (-703))) (-15 -2060 (|#1| |#1| (-583 |#4|))) (-15 -2060 (|#1| |#1| |#4|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2774 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-3077 (((-703) $) 213) (((-703) $ |#2|) 211)) (-2097 (((-583 |#3|) $) 110)) (-1440 (((-1072 $) $ |#3|) 125) (((-1072 |#1|) $) 124)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3062 (($ $) 88 (|has| |#1| (-509)))) (-2190 (((-107) $) 90 (|has| |#1| (-509)))) (-1302 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2798 (((-3 $ "failed") $ $) 19)) (-3327 (((-388 (-1072 $)) (-1072 $)) 100 (|has| |#1| (-832)))) (-1224 (($ $) 98 (|has| |#1| (-421)))) (-4018 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 103 (|has| |#1| (-832)))) (-2431 (($ $) 207)) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-954 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3390 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-954 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-954 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-2157 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2373 (($ $) 154)) (-2207 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-2560 (((-3 $ "failed") $) 34)) (-2683 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2359 (((-583 $) $) 109)) (-1259 (((-107) $) 96 (|has| |#1| (-832)))) (-3014 (($ $ |#1| |#4| $) 172)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| |#3| (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| |#3| (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1395 (((-703) $ |#2|) 217) (((-703) $) 216)) (-1376 (((-107) $) 31)) (-3783 (((-703) $) 169)) (-2086 (($ (-1072 |#1|) |#3|) 117) (($ (-1072 $) |#3|) 116)) (-3794 (((-583 $) $) 126)) (-3982 (((-107) $) 152)) (-2078 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#3|) 120)) (-3492 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3458 (($ $ $) 79 (|has| |#1| (-779)))) (-4084 (($ $ $) 78 (|has| |#1| (-779)))) (-2935 (($ (-1 |#4| |#4|) $) 171)) (-3310 (($ (-1 |#1| |#1|) $) 151)) (-3044 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-2297 (((-3 |#3| "failed") $) 123)) (-2335 (($ $) 149)) (-2347 ((|#1| $) 148)) (-3301 ((|#3| $) 209)) (-2332 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1662 (((-1059) $) 9)) (-1919 (((-107) $) 210)) (-2745 (((-3 (-583 $) "failed") $) 114)) (-1653 (((-3 (-583 $) "failed") $) 115)) (-2670 (((-3 (-2 (|:| |var| |#3|) (|:| -2121 (-703))) "failed") $) 113)) (-2626 (($ $) 208)) (-4125 (((-1023) $) 10)) (-2310 (((-107) $) 166)) (-2321 ((|#1| $) 167)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 95 (|has| |#1| (-421)))) (-2370 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 102 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 101 (|has| |#1| (-832)))) (-3868 (((-388 $) $) 99 (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-1220 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2060 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1076)) 234 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 233 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 232 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 231 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2861 (((-583 |#2|) $) 218)) (-3647 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3359 (((-815 (-349)) $) 82 (-12 (|has| |#3| (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| |#3| (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 104 (-3993 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3747 (|has| |#1| (-954 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) 168)) (-1689 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3974 (((-3 $ "failed") $) 73 (-3747 (-3993 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) 29)) (-2863 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2074 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1076)) 230 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 229 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 228 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 227 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1642 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1704 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-226 |#1| |#2| |#3| |#4|) (-1188) (-963) (-779) (-239 |t#2|) (-725)) (T -226))
-((-3044 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-1395 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3647 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2774 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2626 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2431 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-3044 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
-(-13 (-872 |t#1| |t#4| |t#3|) (-205 |t#1|) (-954 |t#2|) (-10 -8 (-15 -3044 ((-1 $ (-703)) |t#2|)) (-15 -2861 ((-583 |t#2|) $)) (-15 -1395 ((-703) $ |t#2|)) (-15 -1395 ((-703) $)) (-15 -3647 ((-703) $ |t#2|)) (-15 -2774 ((-583 (-703)) $)) (-15 -3077 ((-703) $)) (-15 -2774 ((-583 (-703)) $ |t#2|)) (-15 -3077 ((-703) $ |t#2|)) (-15 -1919 ((-107) $)) (-15 -3301 (|t#3| $)) (-15 -2626 ($ $)) (-15 -2431 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -3044 ((-1 $ (-703)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3747 (|has| |#1| (-832)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 (-1076)) |has| |#1| (-823 (-1076))) ((-823 |#3|) . T) ((-809 (-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) ((-872 |#1| |#4| |#3|) . T) ((-832) |has| |#1| (-832)) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-954 |#2|) . T) ((-954 |#3|) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) |has| |#1| (-832)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-2731 ((|#1| $) 54)) (-2553 ((|#1| $) 44)) (-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-2809 (($ $) 60)) (-2549 (($ $) 48)) (-2704 ((|#1| |#1| $) 46)) (-3394 ((|#1| $) 45)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-3682 (((-703) $) 61)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-1835 ((|#1| |#1| $) 52)) (-2320 ((|#1| |#1| $) 51)) (-3241 (($ |#1| $) 40)) (-1809 (((-703) $) 55)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2656 ((|#1| $) 62)) (-2079 ((|#1| $) 50)) (-3494 ((|#1| $) 49)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3975 ((|#1| |#1| $) 58)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-1258 ((|#1| $) 59)) (-3032 (($) 57) (($ (-583 |#1|)) 56)) (-3145 (((-703) $) 43)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3074 ((|#1| $) 53)) (-3181 (($ (-583 |#1|)) 42)) (-2505 ((|#1| $) 63)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-227 |#1|) (-1188) (-1111)) (T -227))
-((-3032 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-3032 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-4 *1 (-227 *3)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-1835 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-2320 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))) (-2549 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
-(-13 (-1024 |t#1|) (-913 |t#1|) (-10 -8 (-15 -3032 ($)) (-15 -3032 ($ (-583 |t#1|))) (-15 -1809 ((-703) $)) (-15 -2731 (|t#1| $)) (-15 -3074 (|t#1| $)) (-15 -1835 (|t#1| |t#1| $)) (-15 -2320 (|t#1| |t#1| $)) (-15 -2079 (|t#1| $)) (-15 -3494 (|t#1| $)) (-15 -2549 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-913 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1024 |#1|) . T) ((-1111) . T))
-((-1641 (((-1 (-866 (-199)) (-199) (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1550 (((-1036 (-199)) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349))) 160) (((-1036 (-199)) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)) (-583 (-236))) 158) (((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349))) 163) (((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236))) 159) (((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349))) 150) (((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236))) 149) (((-1036 (-199)) (-1 (-866 (-199)) (-199)) (-1000 (-349))) 129) (((-1036 (-199)) (-1 (-866 (-199)) (-199)) (-1000 (-349)) (-583 (-236))) 127) (((-1036 (-199)) (-802 (-1 (-199) (-199))) (-1000 (-349))) 128) (((-1036 (-199)) (-802 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236))) 125)) (-1499 (((-1159) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349))) 162) (((-1159) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)) (-583 (-236))) 161) (((-1159) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349))) 165) (((-1159) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236))) 164) (((-1159) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349))) 152) (((-1159) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236))) 151) (((-1159) (-1 (-866 (-199)) (-199)) (-1000 (-349))) 135) (((-1159) (-1 (-866 (-199)) (-199)) (-1000 (-349)) (-583 (-236))) 134) (((-1159) (-802 (-1 (-199) (-199))) (-1000 (-349))) 133) (((-1159) (-802 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236))) 132) (((-1158) (-800 (-1 (-199) (-199))) (-1000 (-349))) 99) (((-1158) (-800 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236))) 98) (((-1158) (-1 (-199) (-199)) (-1000 (-349))) 95) (((-1158) (-1 (-199) (-199)) (-1000 (-349)) (-583 (-236))) 94)))
-(((-228) (-10 -7 (-15 -1499 ((-1158) (-1 (-199) (-199)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) (-1 (-199) (-199)) (-1000 (-349)))) (-15 -1499 ((-1158) (-800 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) (-800 (-1 (-199) (-199))) (-1000 (-349)))) (-15 -1499 ((-1159) (-802 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-802 (-1 (-199) (-199))) (-1000 (-349)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-802 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-802 (-1 (-199) (-199))) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199)) (-1000 (-349)))) (-15 -1499 ((-1159) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1499 ((-1159) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)))) (-15 -1641 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
-((-1641 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1000 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))))
-(-10 -7 (-15 -1499 ((-1158) (-1 (-199) (-199)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) (-1 (-199) (-199)) (-1000 (-349)))) (-15 -1499 ((-1158) (-800 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) (-800 (-1 (-199) (-199))) (-1000 (-349)))) (-15 -1499 ((-1159) (-802 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-802 (-1 (-199) (-199))) (-1000 (-349)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-802 (-1 (-199) (-199))) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-802 (-1 (-199) (-199))) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199)) (-1000 (-349)))) (-15 -1499 ((-1159) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-349)) (-1000 (-349)))) (-15 -1499 ((-1159) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)))) (-15 -1550 ((-1036 (-199)) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-805 (-1 (-199) (-199) (-199))) (-1000 (-349)) (-1000 (-349)))) (-15 -1641 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-1499 (((-1158) (-265 |#2|) (-1076) (-1076) (-583 (-236))) 93)))
-(((-229 |#1| |#2|) (-10 -7 (-15 -1499 ((-1158) (-265 |#2|) (-1076) (-1076) (-583 (-236))))) (-13 (-509) (-779) (-954 (-517))) (-400 |#1|)) (T -229))
-((-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1076)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-1158)) (-5 *1 (-229 *6 *7)))))
-(-10 -7 (-15 -1499 ((-1158) (-265 |#2|) (-1076) (-1076) (-583 (-236)))))
-((-2744 (((-517) (-517)) 50)) (-3267 (((-517) (-517)) 51)) (-1290 (((-199) (-199)) 52)) (-3426 (((-1159) (-1 (-153 (-199)) (-153 (-199))) (-1000 (-199)) (-1000 (-199))) 49)) (-3424 (((-1159) (-1 (-153 (-199)) (-153 (-199))) (-1000 (-199)) (-1000 (-199)) (-107)) 47)))
-(((-230) (-10 -7 (-15 -3424 ((-1159) (-1 (-153 (-199)) (-153 (-199))) (-1000 (-199)) (-1000 (-199)) (-107))) (-15 -3426 ((-1159) (-1 (-153 (-199)) (-153 (-199))) (-1000 (-199)) (-1000 (-199)))) (-15 -2744 ((-517) (-517))) (-15 -3267 ((-517) (-517))) (-15 -1290 ((-199) (-199))))) (T -230))
-((-1290 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1000 (-199))) (-5 *2 (-1159)) (-5 *1 (-230)))) (-3424 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1000 (-199))) (-5 *5 (-107)) (-5 *2 (-1159)) (-5 *1 (-230)))))
-(-10 -7 (-15 -3424 ((-1159) (-1 (-153 (-199)) (-153 (-199))) (-1000 (-199)) (-1000 (-199)) (-107))) (-15 -3426 ((-1159) (-1 (-153 (-199)) (-153 (-199))) (-1000 (-199)) (-1000 (-199)))) (-15 -2744 ((-517) (-517))) (-15 -3267 ((-517) (-517))) (-15 -1290 ((-199) (-199))))
-((-2271 (((-998 (-349)) (-998 (-286 |#1|))) 16)))
-(((-231 |#1|) (-10 -7 (-15 -2271 ((-998 (-349)) (-998 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-998 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-998 (-349))) (-5 *1 (-231 *4)))))
-(-10 -7 (-15 -2271 ((-998 (-349)) (-998 (-286 |#1|)))))
-((-1550 (((-1036 (-199)) (-805 |#1|) (-998 (-349)) (-998 (-349))) 69) (((-1036 (-199)) (-805 |#1|) (-998 (-349)) (-998 (-349)) (-583 (-236))) 68) (((-1036 (-199)) |#1| (-998 (-349)) (-998 (-349))) 59) (((-1036 (-199)) |#1| (-998 (-349)) (-998 (-349)) (-583 (-236))) 58) (((-1036 (-199)) (-802 |#1|) (-998 (-349))) 50) (((-1036 (-199)) (-802 |#1|) (-998 (-349)) (-583 (-236))) 49)) (-1499 (((-1159) (-805 |#1|) (-998 (-349)) (-998 (-349))) 72) (((-1159) (-805 |#1|) (-998 (-349)) (-998 (-349)) (-583 (-236))) 71) (((-1159) |#1| (-998 (-349)) (-998 (-349))) 62) (((-1159) |#1| (-998 (-349)) (-998 (-349)) (-583 (-236))) 61) (((-1159) (-802 |#1|) (-998 (-349))) 54) (((-1159) (-802 |#1|) (-998 (-349)) (-583 (-236))) 53) (((-1158) (-800 |#1|) (-998 (-349))) 41) (((-1158) (-800 |#1|) (-998 (-349)) (-583 (-236))) 40) (((-1158) |#1| (-998 (-349))) 33) (((-1158) |#1| (-998 (-349)) (-583 (-236))) 32)))
-(((-232 |#1|) (-10 -7 (-15 -1499 ((-1158) |#1| (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) |#1| (-998 (-349)))) (-15 -1499 ((-1158) (-800 |#1|) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) (-800 |#1|) (-998 (-349)))) (-15 -1499 ((-1159) (-802 |#1|) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-802 |#1|) (-998 (-349)))) (-15 -1550 ((-1036 (-199)) (-802 |#1|) (-998 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-802 |#1|) (-998 (-349)))) (-15 -1499 ((-1159) |#1| (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) |#1| (-998 (-349)) (-998 (-349)))) (-15 -1550 ((-1036 (-199)) |#1| (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) |#1| (-998 (-349)) (-998 (-349)))) (-15 -1499 ((-1159) (-805 |#1|) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-805 |#1|) (-998 (-349)) (-998 (-349)))) (-15 -1550 ((-1036 (-199)) (-805 |#1|) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-805 |#1|) (-998 (-349)) (-998 (-349))))) (-13 (-558 (-493)) (-1005))) (T -232))
-((-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 *5)) (-5 *4 (-998 (-349))) (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *5)))) (-1550 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *6)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 *5)) (-5 *4 (-998 (-349))) (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159)) (-5 *1 (-232 *5)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159)) (-5 *1 (-232 *6)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-998 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005))))) (-1550 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005))))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-998 (-349))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005))))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005))))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-998 (-349))) (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *5)))) (-1550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *6)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-998 (-349))) (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159)) (-5 *1 (-232 *5)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159)) (-5 *1 (-232 *6)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-998 (-349))) (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1158)) (-5 *1 (-232 *5)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1158)) (-5 *1 (-232 *6)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-349))) (-5 *2 (-1158)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005))))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005))))))
-(-10 -7 (-15 -1499 ((-1158) |#1| (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) |#1| (-998 (-349)))) (-15 -1499 ((-1158) (-800 |#1|) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1158) (-800 |#1|) (-998 (-349)))) (-15 -1499 ((-1159) (-802 |#1|) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-802 |#1|) (-998 (-349)))) (-15 -1550 ((-1036 (-199)) (-802 |#1|) (-998 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-802 |#1|) (-998 (-349)))) (-15 -1499 ((-1159) |#1| (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) |#1| (-998 (-349)) (-998 (-349)))) (-15 -1550 ((-1036 (-199)) |#1| (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) |#1| (-998 (-349)) (-998 (-349)))) (-15 -1499 ((-1159) (-805 |#1|) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1499 ((-1159) (-805 |#1|) (-998 (-349)) (-998 (-349)))) (-15 -1550 ((-1036 (-199)) (-805 |#1|) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1550 ((-1036 (-199)) (-805 |#1|) (-998 (-349)) (-998 (-349)))))
-((-1499 (((-1159) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1159) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1158) (-583 (-866 (-199))) (-583 (-236))) 13) (((-1158) (-583 (-866 (-199)))) 14) (((-1158) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1158) (-583 (-199)) (-583 (-199))) 19)))
-(((-233) (-10 -7 (-15 -1499 ((-1158) (-583 (-199)) (-583 (-199)))) (-15 -1499 ((-1158) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1499 ((-1158) (-583 (-866 (-199))))) (-15 -1499 ((-1158) (-583 (-866 (-199))) (-583 (-236)))) (-15 -1499 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1499 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
-((-1499 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1499 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-233)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *2 (-1158)) (-5 *1 (-233)))) (-1499 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-233)))) (-1499 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158)) (-5 *1 (-233)))))
-(-10 -7 (-15 -1499 ((-1158) (-583 (-199)) (-583 (-199)))) (-15 -1499 ((-1158) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1499 ((-1158) (-583 (-866 (-199))))) (-15 -1499 ((-1158) (-583 (-866 (-199))) (-583 (-236)))) (-15 -1499 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1499 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
-((-2103 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1263 (((-844) (-583 (-236)) (-844)) 49)) (-2664 (((-844) (-583 (-236)) (-844)) 48)) (-2473 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3127 (((-349) (-583 (-236)) (-349)) 55)) (-2095 (((-844) (-583 (-236)) (-844)) 50)) (-1621 (((-107) (-583 (-236)) (-107)) 26)) (-3094 (((-1059) (-583 (-236)) (-1059)) 19)) (-4143 (((-1059) (-583 (-236)) (-1059)) 25)) (-3218 (((-1036 (-199)) (-583 (-236))) 43)) (-4141 (((-583 (-1000 (-349))) (-583 (-236)) (-583 (-1000 (-349)))) 37)) (-1198 (((-797) (-583 (-236)) (-797)) 31)) (-3529 (((-797) (-583 (-236)) (-797)) 32)) (-2612 (((-1 (-866 (-199)) (-866 (-199))) (-583 (-236)) (-1 (-866 (-199)) (-866 (-199)))) 60)) (-2665 (((-107) (-583 (-236)) (-107)) 15)) (-2984 (((-107) (-583 (-236)) (-107)) 14)))
-(((-234) (-10 -7 (-15 -2984 ((-107) (-583 (-236)) (-107))) (-15 -2665 ((-107) (-583 (-236)) (-107))) (-15 -2103 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3094 ((-1059) (-583 (-236)) (-1059))) (-15 -4143 ((-1059) (-583 (-236)) (-1059))) (-15 -1621 ((-107) (-583 (-236)) (-107))) (-15 -1198 ((-797) (-583 (-236)) (-797))) (-15 -3529 ((-797) (-583 (-236)) (-797))) (-15 -4141 ((-583 (-1000 (-349))) (-583 (-236)) (-583 (-1000 (-349))))) (-15 -2664 ((-844) (-583 (-236)) (-844))) (-15 -1263 ((-844) (-583 (-236)) (-844))) (-15 -3218 ((-1036 (-199)) (-583 (-236)))) (-15 -2095 ((-844) (-583 (-236)) (-844))) (-15 -3127 ((-349) (-583 (-236)) (-349))) (-15 -2612 ((-1 (-866 (-199)) (-866 (-199))) (-583 (-236)) (-1 (-866 (-199)) (-866 (-199))))) (-15 -2473 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
-((-2473 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3127 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2095 (*1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-234)))) (-1263 (*1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2664 (*1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4141 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3529 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1198 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1621 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4143 (*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3094 (*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2103 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2665 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2984 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(-10 -7 (-15 -2984 ((-107) (-583 (-236)) (-107))) (-15 -2665 ((-107) (-583 (-236)) (-107))) (-15 -2103 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3094 ((-1059) (-583 (-236)) (-1059))) (-15 -4143 ((-1059) (-583 (-236)) (-1059))) (-15 -1621 ((-107) (-583 (-236)) (-107))) (-15 -1198 ((-797) (-583 (-236)) (-797))) (-15 -3529 ((-797) (-583 (-236)) (-797))) (-15 -4141 ((-583 (-1000 (-349))) (-583 (-236)) (-583 (-1000 (-349))))) (-15 -2664 ((-844) (-583 (-236)) (-844))) (-15 -1263 ((-844) (-583 (-236)) (-844))) (-15 -3218 ((-1036 (-199)) (-583 (-236)))) (-15 -2095 ((-844) (-583 (-236)) (-844))) (-15 -3127 ((-349) (-583 (-236)) (-349))) (-15 -2612 ((-1 (-866 (-199)) (-866 (-199))) (-583 (-236)) (-1 (-866 (-199)) (-866 (-199))))) (-15 -2473 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
-((-3157 (((-3 |#1| "failed") (-583 (-236)) (-1076)) 17)))
-(((-235 |#1|) (-10 -7 (-15 -3157 ((-3 |#1| "failed") (-583 (-236)) (-1076)))) (-1111)) (T -235))
-((-3157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1076)) (-5 *1 (-235 *2)) (-4 *2 (-1111)))))
-(-10 -7 (-15 -3157 ((-3 |#1| "failed") (-583 (-236)) (-1076))))
-((-2119 (((-107) $ $) NIL)) (-2103 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1263 (($ (-844)) 70)) (-2664 (($ (-844)) 69)) (-1485 (($ (-583 (-349))) 76)) (-3127 (($ (-349)) 55)) (-2095 (($ (-844)) 71)) (-1621 (($ (-107)) 22)) (-3094 (($ (-1059)) 17)) (-4143 (($ (-1059)) 18)) (-3218 (($ (-1036 (-199))) 65)) (-4141 (($ (-583 (-1000 (-349)))) 61)) (-2758 (($ (-583 (-1000 (-349)))) 56) (($ (-583 (-1000 (-377 (-517))))) 60)) (-1232 (($ (-349)) 28) (($ (-797)) 32)) (-2148 (((-107) (-583 $) (-1076)) 85)) (-3157 (((-3 (-51) "failed") (-583 $) (-1076)) 87)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2368 (($ (-349)) 33) (($ (-797)) 34)) (-3784 (($ (-1 (-866 (-199)) (-866 (-199)))) 54)) (-2612 (($ (-1 (-866 (-199)) (-866 (-199)))) 72)) (-3739 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2271 (((-787) $) 81)) (-3674 (($ (-107)) 23) (($ (-583 (-1000 (-349)))) 50)) (-2984 (($ (-107)) 24)) (-1584 (((-107) $ $) 83)))
-(((-236) (-13 (-1005) (-10 -8 (-15 -2984 ($ (-107))) (-15 -3674 ($ (-107))) (-15 -2103 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3094 ($ (-1059))) (-15 -4143 ($ (-1059))) (-15 -1621 ($ (-107))) (-15 -3674 ($ (-583 (-1000 (-349))))) (-15 -3784 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -1232 ($ (-349))) (-15 -1232 ($ (-797))) (-15 -2368 ($ (-349))) (-15 -2368 ($ (-797))) (-15 -3739 ($ (-1 (-199) (-199)))) (-15 -3739 ($ (-1 (-199) (-199) (-199)))) (-15 -3739 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3127 ($ (-349))) (-15 -2758 ($ (-583 (-1000 (-349))))) (-15 -2758 ($ (-583 (-1000 (-377 (-517)))))) (-15 -4141 ($ (-583 (-1000 (-349))))) (-15 -3218 ($ (-1036 (-199)))) (-15 -2664 ($ (-844))) (-15 -1263 ($ (-844))) (-15 -2095 ($ (-844))) (-15 -2612 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -1485 ($ (-583 (-349)))) (-15 -3157 ((-3 (-51) "failed") (-583 $) (-1076))) (-15 -2148 ((-107) (-583 $) (-1076)))))) (T -236))
-((-2984 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-236)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-236)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-236)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236)))) (-1232 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1232 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3127 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-236)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-377 (-517))))) (-5 *1 (-236)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-236)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-236)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-3157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1076)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1076)) (-5 *2 (-107)) (-5 *1 (-236)))))
-(-13 (-1005) (-10 -8 (-15 -2984 ($ (-107))) (-15 -3674 ($ (-107))) (-15 -2103 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3094 ($ (-1059))) (-15 -4143 ($ (-1059))) (-15 -1621 ($ (-107))) (-15 -3674 ($ (-583 (-1000 (-349))))) (-15 -3784 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -1232 ($ (-349))) (-15 -1232 ($ (-797))) (-15 -2368 ($ (-349))) (-15 -2368 ($ (-797))) (-15 -3739 ($ (-1 (-199) (-199)))) (-15 -3739 ($ (-1 (-199) (-199) (-199)))) (-15 -3739 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3127 ($ (-349))) (-15 -2758 ($ (-583 (-1000 (-349))))) (-15 -2758 ($ (-583 (-1000 (-377 (-517)))))) (-15 -4141 ($ (-583 (-1000 (-349))))) (-15 -3218 ($ (-1036 (-199)))) (-15 -2664 ($ (-844))) (-15 -1263 ($ (-844))) (-15 -2095 ($ (-844))) (-15 -2612 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -1485 ($ (-583 (-349)))) (-15 -3157 ((-3 (-51) "failed") (-583 $) (-1076))) (-15 -2148 ((-107) (-583 $) (-1076)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2774 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-3077 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-2097 (((-583 |#3|) $) NIL)) (-1440 (((-1072 $) $ |#3|) NIL) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-2431 (($ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1028 |#1| |#2|) "failed") $) 20)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1028 |#1| |#2|) $) NIL)) (-2157 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-489 |#3|) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))))) (-1395 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#1|) |#3|) NIL) (($ (-1072 $) |#3|) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#3|) NIL)) (-3492 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3044 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-2297 (((-3 |#3| "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-3301 ((|#3| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-1919 (((-107) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| |#3|) (|:| -2121 (-703))) "failed") $) NIL)) (-2626 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-1220 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-2060 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2861 (((-583 |#2|) $) NIL)) (-3647 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-3119 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1028 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-954 (-1028 |#1| |#2|))) (-963) (-779) (-239 |#2|)) (T -237))
-NIL
-(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-954 (-1028 |#1| |#2|)))
-((-3077 (((-703) $) 30)) (-3228 (((-3 |#2| "failed") $) 17)) (-3390 ((|#2| $) 27)) (-2060 (($ $) 12) (($ $ (-703)) 15)) (-2271 (((-787) $) 26) (($ |#2|) 10)) (-1584 (((-107) $ $) 20)) (-1608 (((-107) $ $) 29)))
-(((-238 |#1| |#2|) (-10 -8 (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3077 ((-703) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
-NIL
-(-10 -8 (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3077 ((-703) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3077 (((-703) $) 22)) (-3752 ((|#1| $) 23)) (-3228 (((-3 |#1| "failed") $) 27)) (-3390 ((|#1| $) 26)) (-1395 (((-703) $) 24)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-3044 (($ |#1| (-703)) 25)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2060 (($ $) 21) (($ $ (-703)) 20)) (-2271 (((-787) $) 11) (($ |#1|) 28)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)))
-(((-239 |#1|) (-1188) (-779)) (T -239))
-((-2271 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3044 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2060 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-954 |t#1|) (-10 -8 (-15 -3044 ($ |t#1| (-703))) (-15 -1395 ((-703) $)) (-15 -3752 (|t#1| $)) (-15 -3077 ((-703) $)) (-15 -2060 ($ $)) (-15 -2060 ($ $ (-703))) (-15 -2271 ($ |t#1|))))
-(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-954 |#1|) . T) ((-1005) . T))
-((-2097 (((-583 (-1076)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 40)) (-3367 (((-583 (-1076)) (-286 (-199)) (-703)) 79)) (-1361 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2043 (((-286 (-199)) (-286 (-199))) 65)) (-1411 (((-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-3005 (((-107) (-583 (-286 (-199)))) 83)) (-2590 (((-107) (-286 (-199))) 24)) (-3312 (((-583 (-1059)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))))) 105)) (-3808 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 87)) (-2630 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-1858 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 94)) (-3761 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3683 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-1837 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 100)) (-1328 (((-952) (-1076) (-952)) 33)))
-(((-240) (-10 -7 (-15 -3683 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -1411 ((-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1361 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2043 ((-286 (-199)) (-286 (-199)))) (-15 -3005 ((-107) (-583 (-286 (-199))))) (-15 -3761 ((-107) (-583 (-286 (-199))))) (-15 -3761 ((-107) (-286 (-199)))) (-15 -1858 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2630 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3808 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2590 ((-107) (-286 (-199)))) (-15 -2097 ((-583 (-1076)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -3367 ((-583 (-1076)) (-286 (-199)) (-703))) (-15 -1328 ((-952) (-1076) (-952))) (-15 -1837 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -3312 ((-583 (-1059)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))))))) (T -240))
-((-3312 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))))) (-5 *2 (-583 (-1059))) (-5 *1 (-240)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-1328 (*1 *2 *3 *2) (-12 (-5 *2 (-952)) (-5 *3 (-1076)) (-5 *1 (-240)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1076))) (-5 *1 (-240)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) (-5 *2 (-583 (-1076))) (-5 *1 (-240)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-1361 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-1411 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
-(-10 -7 (-15 -3683 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -1411 ((-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1361 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2043 ((-286 (-199)) (-286 (-199)))) (-15 -3005 ((-107) (-583 (-286 (-199))))) (-15 -3761 ((-107) (-583 (-286 (-199))))) (-15 -3761 ((-107) (-286 (-199)))) (-15 -1858 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2630 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3808 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2590 ((-107) (-286 (-199)))) (-15 -2097 ((-583 (-1076)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -3367 ((-583 (-1076)) (-286 (-199)) (-703))) (-15 -1328 ((-952) (-1076) (-952))) (-15 -1837 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -3312 ((-583 (-1059)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))))))
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-3974 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-3546 (((-703) $) 49) (((-703) $ |#3|) 52)) (-2588 (($ $) 65)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3250 (((-703) $ |#3|) 39) (((-703) $) 36)) (-1203 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-3293 ((|#4| $) 58)) (-1724 (((-107) $) 56)) (-2617 (($ $) 64)) (-3552 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-2042 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2125 (((-583 |#3|) $) 75)) (-1191 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#3| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#3| |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -3293 (|#4| |#1|)) (-15 -1724 ((-107) |#1|)) (-15 -3546 ((-703) |#1| |#3|)) (-15 -3974 ((-583 (-703)) |#1| |#3|)) (-15 -3546 ((-703) |#1|)) (-15 -3974 ((-583 (-703)) |#1|)) (-15 -1191 ((-703) |#1| |#3|)) (-15 -3250 ((-703) |#1|)) (-15 -3250 ((-703) |#1| |#3|)) (-15 -2125 ((-583 |#3|) |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#3|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -1191 ((-703) |#1| |#4|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 (|#5| |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2042 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#4| (-703))) (-15 -2042 (|#1| |#1| (-583 |#4|))) (-15 -2042 (|#1| |#1| |#4|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-964) (-779) (-239 |#3|) (-725)) (T -225))
+NIL
+(-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#3| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#3| |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -3293 (|#4| |#1|)) (-15 -1724 ((-107) |#1|)) (-15 -3546 ((-703) |#1| |#3|)) (-15 -3974 ((-583 (-703)) |#1| |#3|)) (-15 -3546 ((-703) |#1|)) (-15 -3974 ((-583 (-703)) |#1|)) (-15 -1191 ((-703) |#1| |#3|)) (-15 -3250 ((-703) |#1|)) (-15 -3250 ((-703) |#1| |#3|)) (-15 -2125 ((-583 |#3|) |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#3|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -1191 ((-703) |#1| |#4|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 (|#5| |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2042 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#4| (-703))) (-15 -2042 (|#1| |#1| (-583 |#4|))) (-15 -2042 (|#1| |#1| |#4|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3974 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-3546 (((-703) $) 213) (((-703) $ |#2|) 211)) (-2080 (((-583 |#3|) $) 110)) (-1428 (((-1073 $) $ |#3|) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-2588 (($ $) 207)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-2133 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2364 (($ $) 154)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-1760 (($ $ |#1| |#4| $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| |#3| (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| |#3| (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ |#2|) 217) (((-703) $) 216)) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-2069 (($ (-1073 |#1|) |#3|) 117) (($ (-1073 $) |#3|) 116)) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3942 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 |#4| |#4|) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-1203 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1958 (((-3 |#3| "failed") $) 123)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148)) (-3293 ((|#3| $) 209)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3232 (((-1060) $) 9)) (-1724 (((-107) $) 210)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) 113)) (-2617 (($ $) 208)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-3115 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2042 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1077)) 234 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 233 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 232 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 231 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2125 (((-583 |#2|) $) 218)) (-1191 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| |#3| (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| |#3| (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1077)) 230 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 229 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 228 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 227 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-226 |#1| |#2| |#3| |#4|) (-1189) (-964) (-779) (-239 |t#2|) (-725)) (T -226))
+((-1203 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-3250 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1191 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3974 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-3546 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2617 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2588 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-1203 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
+(-13 (-873 |t#1| |t#4| |t#3|) (-205 |t#1|) (-955 |t#2|) (-10 -8 (-15 -1203 ((-1 $ (-703)) |t#2|)) (-15 -2125 ((-583 |t#2|) $)) (-15 -3250 ((-703) $ |t#2|)) (-15 -3250 ((-703) $)) (-15 -1191 ((-703) $ |t#2|)) (-15 -3974 ((-583 (-703)) $)) (-15 -3546 ((-703) $)) (-15 -3974 ((-583 (-703)) $ |t#2|)) (-15 -3546 ((-703) $ |t#2|)) (-15 -1724 ((-107) $)) (-15 -3293 (|t#3| $)) (-15 -2617 ($ $)) (-15 -2588 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -1203 ((-1 $ (-703)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-824 |#3|) . T) ((-810 (-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) ((-873 |#1| |#4| |#3|) . T) ((-833) |has| |#1| (-833)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-955 |#2|) . T) ((-955 |#3|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) |has| |#1| (-833)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-4120 ((|#1| $) 54)) (-2544 ((|#1| $) 44)) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2205 (($ $) 60)) (-3797 (($ $) 48)) (-2098 ((|#1| |#1| $) 46)) (-3409 ((|#1| $) 45)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3728 (((-703) $) 61)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-4013 ((|#1| |#1| $) 52)) (-2289 ((|#1| |#1| $) 51)) (-3439 (($ |#1| $) 40)) (-1795 (((-703) $) 55)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1319 ((|#1| $) 62)) (-1545 ((|#1| $) 50)) (-3178 ((|#1| $) 49)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-3461 ((|#1| |#1| $) 58)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1903 ((|#1| $) 59)) (-1785 (($) 57) (($ (-583 |#1|)) 56)) (-3137 (((-703) $) 43)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3359 ((|#1| $) 53)) (-2729 (($ (-583 |#1|)) 42)) (-2522 ((|#1| $) 63)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-227 |#1|) (-1189) (-1112)) (T -227))
+((-1785 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-227 *3)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-4013 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-2289 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(-13 (-1025 |t#1|) (-914 |t#1|) (-10 -8 (-15 -1785 ($)) (-15 -1785 ($ (-583 |t#1|))) (-15 -1795 ((-703) $)) (-15 -4120 (|t#1| $)) (-15 -3359 (|t#1| $)) (-15 -4013 (|t#1| |t#1| $)) (-15 -2289 (|t#1| |t#1| $)) (-15 -1545 (|t#1| $)) (-15 -3178 (|t#1| $)) (-15 -3797 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-914 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1025 |#1|) . T) ((-1112) . T))
+((-1786 (((-1 (-867 (-199)) (-199) (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1539 (((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349))) 160) (((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 158) (((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 163) (((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 159) (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 150) (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 149) (((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349))) 129) (((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236))) 127) (((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349))) 128) (((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236))) 125)) (-1483 (((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349))) 162) (((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 161) (((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 165) (((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 164) (((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 152) (((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 151) (((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349))) 135) (((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236))) 134) (((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349))) 133) (((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236))) 132) (((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349))) 99) (((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236))) 98) (((-1159) (-1 (-199) (-199)) (-1001 (-349))) 95) (((-1159) (-1 (-199) (-199)) (-1001 (-349)) (-583 (-236))) 94)))
+(((-228) (-10 -7 (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1786 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
+((-1786 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))))
+(-10 -7 (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1786 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-1483 (((-1159) (-265 |#2|) (-1077) (-1077) (-583 (-236))) 93)))
+(((-229 |#1| |#2|) (-10 -7 (-15 -1483 ((-1159) (-265 |#2|) (-1077) (-1077) (-583 (-236))))) (-13 (-509) (-779) (-955 (-517))) (-400 |#1|)) (T -229))
+((-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1077)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-1159)) (-5 *1 (-229 *6 *7)))))
+(-10 -7 (-15 -1483 ((-1159) (-265 |#2|) (-1077) (-1077) (-583 (-236)))))
+((-1599 (((-517) (-517)) 50)) (-2379 (((-517) (-517)) 51)) (-1559 (((-199) (-199)) 52)) (-1327 (((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199))) 49)) (-2414 (((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)) (-107)) 47)))
+(((-230) (-10 -7 (-15 -2414 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)) (-107))) (-15 -1327 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1599 ((-517) (-517))) (-15 -2379 ((-517) (-517))) (-15 -1559 ((-199) (-199))))) (T -230))
+((-1559 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-1327 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199))) (-5 *2 (-1160)) (-5 *1 (-230)))) (-2414 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199))) (-5 *5 (-107)) (-5 *2 (-1160)) (-5 *1 (-230)))))
+(-10 -7 (-15 -2414 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)) (-107))) (-15 -1327 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1599 ((-517) (-517))) (-15 -2379 ((-517) (-517))) (-15 -1559 ((-199) (-199))))
+((-2262 (((-999 (-349)) (-999 (-286 |#1|))) 16)))
+(((-231 |#1|) (-10 -7 (-15 -2262 ((-999 (-349)) (-999 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
+((-2262 (*1 *2 *3) (-12 (-5 *3 (-999 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-999 (-349))) (-5 *1 (-231 *4)))))
+(-10 -7 (-15 -2262 ((-999 (-349)) (-999 (-286 |#1|)))))
+((-1539 (((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349))) 69) (((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236))) 68) (((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349))) 59) (((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236))) 58) (((-1037 (-199)) (-803 |#1|) (-999 (-349))) 50) (((-1037 (-199)) (-803 |#1|) (-999 (-349)) (-583 (-236))) 49)) (-1483 (((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349))) 72) (((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236))) 71) (((-1160) |#1| (-999 (-349)) (-999 (-349))) 62) (((-1160) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236))) 61) (((-1160) (-803 |#1|) (-999 (-349))) 54) (((-1160) (-803 |#1|) (-999 (-349)) (-583 (-236))) 53) (((-1159) (-801 |#1|) (-999 (-349))) 41) (((-1159) (-801 |#1|) (-999 (-349)) (-583 (-236))) 40) (((-1159) |#1| (-999 (-349))) 33) (((-1159) |#1| (-999 (-349)) (-583 (-236))) 32)))
+(((-232 |#1|) (-10 -7 (-15 -1483 ((-1159) |#1| (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) |#1| (-999 (-349)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349))))) (-13 (-558 (-493)) (-1006))) (T -232))
+((-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *5)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *5)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *6)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1160)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *5)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-801 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159)) (-5 *1 (-232 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-801 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159)) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))))
+(-10 -7 (-15 -1483 ((-1159) |#1| (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) |#1| (-999 (-349)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)))))
+((-1483 (((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1159) (-583 (-867 (-199))) (-583 (-236))) 13) (((-1159) (-583 (-867 (-199)))) 14) (((-1159) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1159) (-583 (-199)) (-583 (-199))) 19)))
+(((-233) (-10 -7 (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1483 ((-1159) (-583 (-867 (-199))))) (-15 -1483 ((-1159) (-583 (-867 (-199))) (-583 (-236)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
+((-1483 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1160)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1159)) (-5 *1 (-233)))))
+(-10 -7 (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1483 ((-1159) (-583 (-867 (-199))))) (-15 -1483 ((-1159) (-583 (-867 (-199))) (-583 (-236)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
+((-3427 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-4160 (((-845) (-583 (-236)) (-845)) 49)) (-4015 (((-845) (-583 (-236)) (-845)) 48)) (-2464 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3267 (((-349) (-583 (-236)) (-349)) 55)) (-1424 (((-845) (-583 (-236)) (-845)) 50)) (-4050 (((-107) (-583 (-236)) (-107)) 26)) (-3086 (((-1060) (-583 (-236)) (-1060)) 19)) (-3806 (((-1060) (-583 (-236)) (-1060)) 25)) (-3380 (((-1037 (-199)) (-583 (-236))) 43)) (-1781 (((-583 (-1001 (-349))) (-583 (-236)) (-583 (-1001 (-349)))) 37)) (-2596 (((-798) (-583 (-236)) (-798)) 31)) (-3926 (((-798) (-583 (-236)) (-798)) 32)) (-2077 (((-1 (-867 (-199)) (-867 (-199))) (-583 (-236)) (-1 (-867 (-199)) (-867 (-199)))) 60)) (-4131 (((-107) (-583 (-236)) (-107)) 15)) (-3941 (((-107) (-583 (-236)) (-107)) 14)))
+(((-234) (-10 -7 (-15 -3941 ((-107) (-583 (-236)) (-107))) (-15 -4131 ((-107) (-583 (-236)) (-107))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ((-1060) (-583 (-236)) (-1060))) (-15 -3806 ((-1060) (-583 (-236)) (-1060))) (-15 -4050 ((-107) (-583 (-236)) (-107))) (-15 -2596 ((-798) (-583 (-236)) (-798))) (-15 -3926 ((-798) (-583 (-236)) (-798))) (-15 -1781 ((-583 (-1001 (-349))) (-583 (-236)) (-583 (-1001 (-349))))) (-15 -4015 ((-845) (-583 (-236)) (-845))) (-15 -4160 ((-845) (-583 (-236)) (-845))) (-15 -3380 ((-1037 (-199)) (-583 (-236)))) (-15 -1424 ((-845) (-583 (-236)) (-845))) (-15 -3267 ((-349) (-583 (-236)) (-349))) (-15 -2077 ((-1 (-867 (-199)) (-867 (-199))) (-583 (-236)) (-1 (-867 (-199)) (-867 (-199))))) (-15 -2464 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
+((-2464 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3267 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1424 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-234)))) (-4160 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4015 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1781 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3926 (*1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2596 (*1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4050 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3086 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3427 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4131 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3941 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(-10 -7 (-15 -3941 ((-107) (-583 (-236)) (-107))) (-15 -4131 ((-107) (-583 (-236)) (-107))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ((-1060) (-583 (-236)) (-1060))) (-15 -3806 ((-1060) (-583 (-236)) (-1060))) (-15 -4050 ((-107) (-583 (-236)) (-107))) (-15 -2596 ((-798) (-583 (-236)) (-798))) (-15 -3926 ((-798) (-583 (-236)) (-798))) (-15 -1781 ((-583 (-1001 (-349))) (-583 (-236)) (-583 (-1001 (-349))))) (-15 -4015 ((-845) (-583 (-236)) (-845))) (-15 -4160 ((-845) (-583 (-236)) (-845))) (-15 -3380 ((-1037 (-199)) (-583 (-236)))) (-15 -1424 ((-845) (-583 (-236)) (-845))) (-15 -3267 ((-349) (-583 (-236)) (-349))) (-15 -2077 ((-1 (-867 (-199)) (-867 (-199))) (-583 (-236)) (-1 (-867 (-199)) (-867 (-199))))) (-15 -2464 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
+((-3151 (((-3 |#1| "failed") (-583 (-236)) (-1077)) 17)))
+(((-235 |#1|) (-10 -7 (-15 -3151 ((-3 |#1| "failed") (-583 (-236)) (-1077)))) (-1112)) (T -235))
+((-3151 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *1 (-235 *2)) (-4 *2 (-1112)))))
+(-10 -7 (-15 -3151 ((-3 |#1| "failed") (-583 (-236)) (-1077))))
+((-2105 (((-107) $ $) NIL)) (-3427 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-4160 (($ (-845)) 70)) (-4015 (($ (-845)) 69)) (-1966 (($ (-583 (-349))) 76)) (-3267 (($ (-349)) 55)) (-1424 (($ (-845)) 71)) (-4050 (($ (-107)) 22)) (-3086 (($ (-1060)) 17)) (-3806 (($ (-1060)) 18)) (-3380 (($ (-1037 (-199))) 65)) (-1781 (($ (-583 (-1001 (-349)))) 61)) (-3177 (($ (-583 (-1001 (-349)))) 56) (($ (-583 (-1001 (-377 (-517))))) 60)) (-2330 (($ (-349)) 28) (($ (-798)) 32)) (-2678 (((-107) (-583 $) (-1077)) 85)) (-3151 (((-3 (-51) "failed") (-583 $) (-1077)) 87)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3590 (($ (-349)) 33) (($ (-798)) 34)) (-1372 (($ (-1 (-867 (-199)) (-867 (-199)))) 54)) (-2077 (($ (-1 (-867 (-199)) (-867 (-199)))) 72)) (-1484 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2262 (((-787) $) 81)) (-3501 (($ (-107)) 23) (($ (-583 (-1001 (-349)))) 50)) (-3941 (($ (-107)) 24)) (-1572 (((-107) $ $) 83)))
+(((-236) (-13 (-1006) (-10 -8 (-15 -3941 ($ (-107))) (-15 -3501 ($ (-107))) (-15 -3427 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ($ (-1060))) (-15 -3806 ($ (-1060))) (-15 -4050 ($ (-107))) (-15 -3501 ($ (-583 (-1001 (-349))))) (-15 -1372 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -2330 ($ (-349))) (-15 -2330 ($ (-798))) (-15 -3590 ($ (-349))) (-15 -3590 ($ (-798))) (-15 -1484 ($ (-1 (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3267 ($ (-349))) (-15 -3177 ($ (-583 (-1001 (-349))))) (-15 -3177 ($ (-583 (-1001 (-377 (-517)))))) (-15 -1781 ($ (-583 (-1001 (-349))))) (-15 -3380 ($ (-1037 (-199)))) (-15 -4015 ($ (-845))) (-15 -4160 ($ (-845))) (-15 -1424 ($ (-845))) (-15 -2077 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -1966 ($ (-583 (-349)))) (-15 -3151 ((-3 (-51) "failed") (-583 $) (-1077))) (-15 -2678 ((-107) (-583 $) (-1077)))))) (T -236))
+((-3941 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236)))) (-4050 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-377 (-517))))) (-5 *1 (-236)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-236)))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))) (-1424 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))) (-2077 (*1 *1 *2) (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-3151 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-107)) (-5 *1 (-236)))))
+(-13 (-1006) (-10 -8 (-15 -3941 ($ (-107))) (-15 -3501 ($ (-107))) (-15 -3427 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ($ (-1060))) (-15 -3806 ($ (-1060))) (-15 -4050 ($ (-107))) (-15 -3501 ($ (-583 (-1001 (-349))))) (-15 -1372 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -2330 ($ (-349))) (-15 -2330 ($ (-798))) (-15 -3590 ($ (-349))) (-15 -3590 ($ (-798))) (-15 -1484 ($ (-1 (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3267 ($ (-349))) (-15 -3177 ($ (-583 (-1001 (-349))))) (-15 -3177 ($ (-583 (-1001 (-377 (-517)))))) (-15 -1781 ($ (-583 (-1001 (-349))))) (-15 -3380 ($ (-1037 (-199)))) (-15 -4015 ($ (-845))) (-15 -4160 ($ (-845))) (-15 -1424 ($ (-845))) (-15 -2077 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -1966 ($ (-583 (-349)))) (-15 -3151 ((-3 (-51) "failed") (-583 $) (-1077))) (-15 -2678 ((-107) (-583 $) (-1077)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3974 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-3546 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-2080 (((-583 |#3|) $) NIL)) (-1428 (((-1073 $) $ |#3|) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-2588 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1029 |#1| |#2|) "failed") $) 20)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1029 |#1| |#2|) $) NIL)) (-2133 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 |#3|) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))))) (-3250 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) |#3|) NIL) (($ (-1073 $) |#3|) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) NIL)) (-3942 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1203 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1958 (((-3 |#3| "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3293 ((|#3| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1724 (((-107) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) NIL)) (-2617 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3115 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-2042 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2125 (((-583 |#2|) $) NIL)) (-1191 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1029 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-955 (-1029 |#1| |#2|))) (-964) (-779) (-239 |#2|)) (T -237))
+NIL
+(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-955 (-1029 |#1| |#2|)))
+((-3546 (((-703) $) 30)) (-3220 (((-3 |#2| "failed") $) 17)) (-3402 ((|#2| $) 27)) (-2042 (($ $) 12) (($ $ (-703)) 15)) (-2262 (((-787) $) 26) (($ |#2|) 10)) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 29)))
+(((-238 |#1| |#2|) (-10 -8 (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3546 ((-703) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
+NIL
+(-10 -8 (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3546 ((-703) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-3546 (((-703) $) 22)) (-3791 ((|#1| $) 23)) (-3220 (((-3 |#1| "failed") $) 27)) (-3402 ((|#1| $) 26)) (-3250 (((-703) $) 24)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-1203 (($ |#1| (-703)) 25)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $) 21) (($ $ (-703)) 20)) (-2262 (((-787) $) 11) (($ |#1|) 28)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)))
+(((-239 |#1|) (-1189) (-779)) (T -239))
+((-2262 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1203 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2042 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-955 |t#1|) (-10 -8 (-15 -1203 ($ |t#1| (-703))) (-15 -3250 ((-703) $)) (-15 -3791 (|t#1| $)) (-15 -3546 ((-703) $)) (-15 -2042 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -2262 ($ |t#1|))))
+(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-955 |#1|) . T) ((-1006) . T))
+((-2080 (((-583 (-1077)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 40)) (-3375 (((-583 (-1077)) (-286 (-199)) (-703)) 79)) (-2826 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2757 (((-286 (-199)) (-286 (-199))) 65)) (-2467 (((-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-2584 (((-107) (-583 (-286 (-199)))) 83)) (-1631 (((-107) (-286 (-199))) 24)) (-2189 (((-583 (-1060)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) 105)) (-3360 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 87)) (-2176 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-2795 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 94)) (-3460 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3118 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-1237 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 100)) (-3645 (((-953) (-1077) (-953)) 33)))
+(((-240) (-10 -7 (-15 -3118 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -2467 ((-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2826 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2757 ((-286 (-199)) (-286 (-199)))) (-15 -2584 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-286 (-199)))) (-15 -2795 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2176 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3360 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -1631 ((-107) (-286 (-199)))) (-15 -2080 ((-583 (-1077)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3375 ((-583 (-1077)) (-286 (-199)) (-703))) (-15 -3645 ((-953) (-1077) (-953))) (-15 -1237 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2189 ((-583 (-1060)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))))) (T -240))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) (-5 *2 (-583 (-1060))) (-5 *1 (-240)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-3645 (*1 *2 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-240)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1077))) (-5 *1 (-240)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-583 (-1077))) (-5 *1 (-240)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3360 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2826 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
+(-10 -7 (-15 -3118 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -2467 ((-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2826 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2757 ((-286 (-199)) (-286 (-199)))) (-15 -2584 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-286 (-199)))) (-15 -2795 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2176 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3360 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -1631 ((-107) (-286 (-199)))) (-15 -2080 ((-583 (-1077)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3375 ((-583 (-1077)) (-286 (-199)) (-703))) (-15 -3645 ((-953) (-1077) (-953))) (-15 -1237 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2189 ((-583 (-1060)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-241) (-768)) (T -241))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 54) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 31)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 54) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 31)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-242) (-768)) (T -242))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 73) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 51)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 73) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 51)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-243) (-768)) (T -243))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-244) (-768)) (T -244))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-245) (-768)) (T -245))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-246) (-768)) (T -246))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-1584 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL)))
(((-247) (-768)) (T -247))
NIL
(-768)
-((-2119 (((-107) $ $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2502 (((-583 (-517)) $) 17)) (-3647 (((-703) $) 15)) (-2271 (((-787) $) 21) (($ (-583 (-517))) 13)) (-2115 (($ (-703)) 18)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 9)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 11)))
-(((-248) (-13 (-779) (-10 -8 (-15 -2271 ($ (-583 (-517)))) (-15 -3647 ((-703) $)) (-15 -2502 ((-583 (-517)) $)) (-15 -2115 ($ (-703)))))) (T -248))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
-(-13 (-779) (-10 -8 (-15 -2271 ($ (-583 (-517)))) (-15 -3647 ((-703) $)) (-15 -2502 ((-583 (-517)) $)) (-15 -2115 ($ (-703)))))
-((-1648 ((|#2| |#2|) 77)) (-1494 ((|#2| |#2|) 65)) (-2772 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1624 ((|#2| |#2|) 75)) (-1471 ((|#2| |#2|) 63)) (-1670 ((|#2| |#2|) 79)) (-1520 ((|#2| |#2|) 67)) (-2116 ((|#2|) 46)) (-1934 (((-109) (-109)) 95)) (-1226 ((|#2| |#2|) 61)) (-2084 (((-107) |#2|) 134)) (-1798 ((|#2| |#2|) 180)) (-1472 ((|#2| |#2|) 156)) (-3932 ((|#2|) 59)) (-3393 ((|#2|) 58)) (-3612 ((|#2| |#2|) 176)) (-2413 ((|#2| |#2|) 152)) (-2353 ((|#2| |#2|) 184)) (-1213 ((|#2| |#2|) 160)) (-1920 ((|#2| |#2|) 148)) (-3219 ((|#2| |#2|) 150)) (-3947 ((|#2| |#2|) 186)) (-1973 ((|#2| |#2|) 162)) (-3749 ((|#2| |#2|) 182)) (-1964 ((|#2| |#2|) 158)) (-2679 ((|#2| |#2|) 178)) (-3754 ((|#2| |#2|) 154)) (-1396 ((|#2| |#2|) 192)) (-3239 ((|#2| |#2|) 168)) (-2489 ((|#2| |#2|) 188)) (-1417 ((|#2| |#2|) 164)) (-1233 ((|#2| |#2|) 196)) (-3313 ((|#2| |#2|) 172)) (-3543 ((|#2| |#2|) 198)) (-1846 ((|#2| |#2|) 174)) (-2760 ((|#2| |#2|) 194)) (-3530 ((|#2| |#2|) 170)) (-3756 ((|#2| |#2|) 190)) (-3159 ((|#2| |#2|) 166)) (-3870 ((|#2| |#2|) 62)) (-1682 ((|#2| |#2|) 80)) (-1533 ((|#2| |#2|) 68)) (-1660 ((|#2| |#2|) 78)) (-1507 ((|#2| |#2|) 66)) (-1635 ((|#2| |#2|) 76)) (-1483 ((|#2| |#2|) 64)) (-3750 (((-107) (-109)) 93)) (-1722 ((|#2| |#2|) 83)) (-1576 ((|#2| |#2|) 71)) (-1697 ((|#2| |#2|) 81)) (-1548 ((|#2| |#2|) 69)) (-3489 ((|#2| |#2|) 85)) (-1600 ((|#2| |#2|) 73)) (-2824 ((|#2| |#2|) 86)) (-1613 ((|#2| |#2|) 74)) (-1735 ((|#2| |#2|) 84)) (-1589 ((|#2| |#2|) 72)) (-1709 ((|#2| |#2|) 82)) (-1562 ((|#2| |#2|) 70)))
-(((-249 |#1| |#2|) (-10 -7 (-15 -3870 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -1494 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -2824 (|#2| |#2|)) (-15 -2116 (|#2|)) (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -3393 (|#2|)) (-15 -3932 (|#2|)) (-15 -3219 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -3754 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -1964 (|#2| |#2|)) (-15 -1213 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3159 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -3530 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -2679 (|#2| |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -2760 (|#2| |#2|)) (-15 -1233 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2772 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -2084 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-920))) (T -249))
-((-2084 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-920))))) (-2772 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-920))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1233 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-2760 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-2489 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-2679 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1846 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3530 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3159 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1213 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1964 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3932 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-920))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3393 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-920))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-920))))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-920))))) (-2116 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-920))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-2824 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1494 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-920))))))
-(-10 -7 (-15 -3870 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -1494 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -2824 (|#2| |#2|)) (-15 -2116 (|#2|)) (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -3393 (|#2|)) (-15 -3932 (|#2|)) (-15 -3219 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -3754 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -1964 (|#2| |#2|)) (-15 -1213 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3159 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -3530 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -2679 (|#2| |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -2760 (|#2| |#2|)) (-15 -1233 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2772 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -2084 ((-107) |#2|)))
-((-1543 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1076)) 133)) (-1277 ((|#2| (-377 (-517)) |#2|) 50)) (-3437 ((|#2| |#2| (-556 |#2|)) 126)) (-1217 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1076)) 125)) (-2514 ((|#2| |#2| (-1076)) 19) ((|#2| |#2|) 22)) (-2788 ((|#2| |#2| (-1076)) 139) ((|#2| |#2|) 137)))
-(((-250 |#1| |#2|) (-10 -7 (-15 -2788 (|#2| |#2|)) (-15 -2788 (|#2| |#2| (-1076))) (-15 -1217 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1076))) (-15 -2514 (|#2| |#2|)) (-15 -2514 (|#2| |#2| (-1076))) (-15 -1543 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1076))) (-15 -3437 (|#2| |#2| (-556 |#2|))) (-15 -1277 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -250))
-((-1277 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-1543 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1076)) (-4 *2 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-2514 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))) (-2514 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))) (-1217 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2788 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))) (-2788 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))))
-(-10 -7 (-15 -2788 (|#2| |#2|)) (-15 -2788 (|#2| |#2| (-1076))) (-15 -1217 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1076))) (-15 -2514 (|#2| |#2|)) (-15 -2514 (|#2| |#2| (-1076))) (-15 -1543 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1076))) (-15 -3437 (|#2| |#2| (-556 |#2|))) (-15 -1277 (|#2| (-377 (-517)) |#2|)))
-((-1593 (((-3 |#3| "failed") |#3|) 110)) (-1648 ((|#3| |#3|) 131)) (-3991 (((-3 |#3| "failed") |#3|) 82)) (-1494 ((|#3| |#3|) 121)) (-2410 (((-3 |#3| "failed") |#3|) 58)) (-1624 ((|#3| |#3|) 129)) (-3878 (((-3 |#3| "failed") |#3|) 46)) (-1471 ((|#3| |#3|) 119)) (-3583 (((-3 |#3| "failed") |#3|) 112)) (-1670 ((|#3| |#3|) 133)) (-1922 (((-3 |#3| "failed") |#3|) 84)) (-1520 ((|#3| |#3|) 123)) (-3816 (((-3 |#3| "failed") |#3| (-703)) 36)) (-1974 (((-3 |#3| "failed") |#3|) 74)) (-1226 ((|#3| |#3|) 118)) (-2872 (((-3 |#3| "failed") |#3|) 44)) (-3870 ((|#3| |#3|) 117)) (-1287 (((-3 |#3| "failed") |#3|) 113)) (-1682 ((|#3| |#3|) 134)) (-2284 (((-3 |#3| "failed") |#3|) 85)) (-1533 ((|#3| |#3|) 124)) (-2694 (((-3 |#3| "failed") |#3|) 111)) (-1660 ((|#3| |#3|) 132)) (-3283 (((-3 |#3| "failed") |#3|) 83)) (-1507 ((|#3| |#3|) 122)) (-3425 (((-3 |#3| "failed") |#3|) 60)) (-1635 ((|#3| |#3|) 130)) (-2446 (((-3 |#3| "failed") |#3|) 48)) (-1483 ((|#3| |#3|) 120)) (-2605 (((-3 |#3| "failed") |#3|) 66)) (-1722 ((|#3| |#3|) 137)) (-3216 (((-3 |#3| "failed") |#3|) 104)) (-1576 ((|#3| |#3|) 142)) (-2444 (((-3 |#3| "failed") |#3|) 62)) (-1697 ((|#3| |#3|) 135)) (-1312 (((-3 |#3| "failed") |#3|) 50)) (-1548 ((|#3| |#3|) 125)) (-3501 (((-3 |#3| "failed") |#3|) 70)) (-3489 ((|#3| |#3|) 139)) (-3796 (((-3 |#3| "failed") |#3|) 54)) (-1600 ((|#3| |#3|) 127)) (-1905 (((-3 |#3| "failed") |#3|) 72)) (-2824 ((|#3| |#3|) 140)) (-3251 (((-3 |#3| "failed") |#3|) 56)) (-1613 ((|#3| |#3|) 128)) (-2651 (((-3 |#3| "failed") |#3|) 68)) (-1735 ((|#3| |#3|) 138)) (-4009 (((-3 |#3| "failed") |#3|) 107)) (-1589 ((|#3| |#3|) 143)) (-2602 (((-3 |#3| "failed") |#3|) 64)) (-1709 ((|#3| |#3|) 136)) (-1309 (((-3 |#3| "failed") |#3|) 52)) (-1562 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
-(((-251 |#1| |#2| |#3|) (-13 (-902 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3870 (|#3| |#3|)) (-15 -1226 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1483 (|#3| |#3|)) (-15 -1494 (|#3| |#3|)) (-15 -1507 (|#3| |#3|)) (-15 -1520 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1548 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1589 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1613 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -2824 (|#3| |#3|)))) (-37 (-377 (-517))) (-1148 |#1|) (-1119 |#1| |#2|)) (T -251))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1148 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1119 *4 *5)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1494 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))) (-2824 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4)))))
-(-13 (-902 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3870 (|#3| |#3|)) (-15 -1226 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1483 (|#3| |#3|)) (-15 -1494 (|#3| |#3|)) (-15 -1507 (|#3| |#3|)) (-15 -1520 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1548 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1589 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1613 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -2824 (|#3| |#3|))))
-((-1593 (((-3 |#3| "failed") |#3|) 66)) (-1648 ((|#3| |#3|) 133)) (-3991 (((-3 |#3| "failed") |#3|) 50)) (-1494 ((|#3| |#3|) 121)) (-2410 (((-3 |#3| "failed") |#3|) 62)) (-1624 ((|#3| |#3|) 131)) (-3878 (((-3 |#3| "failed") |#3|) 46)) (-1471 ((|#3| |#3|) 119)) (-3583 (((-3 |#3| "failed") |#3|) 70)) (-1670 ((|#3| |#3|) 135)) (-1922 (((-3 |#3| "failed") |#3|) 54)) (-1520 ((|#3| |#3|) 123)) (-3816 (((-3 |#3| "failed") |#3| (-703)) 35)) (-1974 (((-3 |#3| "failed") |#3|) 44)) (-1226 ((|#3| |#3|) 112)) (-2872 (((-3 |#3| "failed") |#3|) 42)) (-3870 ((|#3| |#3|) 118)) (-1287 (((-3 |#3| "failed") |#3|) 72)) (-1682 ((|#3| |#3|) 136)) (-2284 (((-3 |#3| "failed") |#3|) 56)) (-1533 ((|#3| |#3|) 124)) (-2694 (((-3 |#3| "failed") |#3|) 68)) (-1660 ((|#3| |#3|) 134)) (-3283 (((-3 |#3| "failed") |#3|) 52)) (-1507 ((|#3| |#3|) 122)) (-3425 (((-3 |#3| "failed") |#3|) 64)) (-1635 ((|#3| |#3|) 132)) (-2446 (((-3 |#3| "failed") |#3|) 48)) (-1483 ((|#3| |#3|) 120)) (-2605 (((-3 |#3| "failed") |#3|) 78)) (-1722 ((|#3| |#3|) 139)) (-3216 (((-3 |#3| "failed") |#3|) 58)) (-1576 ((|#3| |#3|) 127)) (-2444 (((-3 |#3| "failed") |#3|) 74)) (-1697 ((|#3| |#3|) 137)) (-1312 (((-3 |#3| "failed") |#3|) 102)) (-1548 ((|#3| |#3|) 125)) (-3501 (((-3 |#3| "failed") |#3|) 82)) (-3489 ((|#3| |#3|) 141)) (-3796 (((-3 |#3| "failed") |#3|) 109)) (-1600 ((|#3| |#3|) 129)) (-1905 (((-3 |#3| "failed") |#3|) 84)) (-2824 ((|#3| |#3|) 142)) (-3251 (((-3 |#3| "failed") |#3|) 111)) (-1613 ((|#3| |#3|) 130)) (-2651 (((-3 |#3| "failed") |#3|) 80)) (-1735 ((|#3| |#3|) 140)) (-4009 (((-3 |#3| "failed") |#3|) 60)) (-1589 ((|#3| |#3|) 128)) (-2602 (((-3 |#3| "failed") |#3|) 76)) (-1709 ((|#3| |#3|) 138)) (-1309 (((-3 |#3| "failed") |#3|) 105)) (-1562 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
-(((-252 |#1| |#2| |#3| |#4|) (-13 (-902 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3870 (|#3| |#3|)) (-15 -1226 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1483 (|#3| |#3|)) (-15 -1494 (|#3| |#3|)) (-15 -1507 (|#3| |#3|)) (-15 -1520 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1548 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1589 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1613 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -2824 (|#3| |#3|)))) (-37 (-377 (-517))) (-1117 |#1|) (-1140 |#1| |#2|) (-902 |#2|)) (T -252))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1117 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1140 *4 *5)) (-4 *6 (-902 *5)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1494 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))) (-2824 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4)))))
-(-13 (-902 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3870 (|#3| |#3|)) (-15 -1226 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1483 (|#3| |#3|)) (-15 -1494 (|#3| |#3|)) (-15 -1507 (|#3| |#3|)) (-15 -1520 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1548 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1589 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1613 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -2824 (|#3| |#3|))))
-((-2325 (($ (-1 (-107) |#2|) $) 23)) (-2455 (($ $) 36)) (-2457 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1423 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-4155 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1747 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3728 (($ $ (-517)) 11) (($ $ (-1124 (-517))) 14)) (-1753 (($ $ |#2|) 29) (($ $ $) NIL)) (-4110 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
-(((-253 |#1| |#2|) (-10 -8 (-15 -4155 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -4155 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2457 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1753 (|#1| |#1| |#1|)) (-15 -1753 (|#1| |#1| |#2|)) (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -3728 (|#1| |#1| (-1124 (-517)))) (-15 -3728 (|#1| |#1| (-517))) (-15 -4110 (|#1| (-583 |#1|))) (-15 -4110 (|#1| |#1| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2325 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1|))) (-254 |#2|) (-1111)) (T -253))
-NIL
-(-10 -8 (-15 -4155 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -4155 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2457 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1753 (|#1| |#1| |#1|)) (-15 -1753 (|#1| |#1| |#2|)) (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -3728 (|#1| |#1| (-1124 (-517)))) (-15 -3728 (|#1| |#1| (-517))) (-15 -4110 (|#1| (-583 |#1|))) (-15 -4110 (|#1| |#1| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2325 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 58 (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) |#1|) $) 85)) (-2325 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-1399 (($ $) 83 (|has| |#1| (-1005)))) (-2455 (($ $) 78 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1005)))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 51)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-4155 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-3241 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-1747 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 42 (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2846 (($ $ |#1|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1124 (-517))) 63)) (-3275 (($ $ (-517)) 91) (($ $ (-1124 (-517))) 90)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 70)) (-1753 (($ $ |#1|) 93) (($ $ $) 92)) (-4110 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-254 |#1|) (-1188) (-1111)) (T -254))
-((-1753 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)))) (-1753 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1111)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))) (-3241 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1111)))) (-3241 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))) (-4155 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))) (-3690 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))) (-2457 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)) (-4 *2 (-1005)))) (-1399 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)) (-4 *2 (-1005)))) (-4155 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)) (-4 *2 (-779)))))
-(-13 (-588 |t#1|) (-10 -8 (-6 -4193) (-15 -1753 ($ $ |t#1|)) (-15 -1753 ($ $ $)) (-15 -3275 ($ $ (-517))) (-15 -3275 ($ $ (-1124 (-517)))) (-15 -2457 ($ (-1 (-107) |t#1|) $)) (-15 -3241 ($ |t#1| $ (-517))) (-15 -3241 ($ $ $ (-517))) (-15 -4155 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3690 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -2457 ($ |t#1| $)) (-15 -1399 ($ $))) |%noBranch|) (IF (|has| |t#1| (-779)) (-15 -4155 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
+((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3837 (((-583 (-517)) $) 17)) (-1191 (((-703) $) 15)) (-2262 (((-787) $) 21) (($ (-583 (-517))) 13)) (-2512 (($ (-703)) 18)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 9)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 11)))
+(((-248) (-13 (-779) (-10 -8 (-15 -2262 ($ (-583 (-517)))) (-15 -1191 ((-703) $)) (-15 -3837 ((-583 (-517)) $)) (-15 -2512 ($ (-703)))))) (T -248))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(-13 (-779) (-10 -8 (-15 -2262 ($ (-583 (-517)))) (-15 -1191 ((-703) $)) (-15 -3837 ((-583 (-517)) $)) (-15 -2512 ($ (-703)))))
+((-1636 ((|#2| |#2|) 77)) (-1482 ((|#2| |#2|) 65)) (-3755 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1612 ((|#2| |#2|) 75)) (-1459 ((|#2| |#2|) 63)) (-1659 ((|#2| |#2|) 79)) (-1508 ((|#2| |#2|) 67)) (-2102 ((|#2|) 46)) (-1325 (((-109) (-109)) 95)) (-1232 ((|#2| |#2|) 61)) (-3807 (((-107) |#2|) 134)) (-2123 ((|#2| |#2|) 180)) (-3596 ((|#2| |#2|) 156)) (-2971 ((|#2|) 59)) (-1365 ((|#2|) 58)) (-2568 ((|#2| |#2|) 176)) (-2656 ((|#2| |#2|) 152)) (-1880 ((|#2| |#2|) 184)) (-4136 ((|#2| |#2|) 160)) (-1845 ((|#2| |#2|) 148)) (-3457 ((|#2| |#2|) 150)) (-2752 ((|#2| |#2|) 186)) (-3100 ((|#2| |#2|) 162)) (-4035 ((|#2| |#2|) 182)) (-1236 ((|#2| |#2|) 158)) (-1928 ((|#2| |#2|) 178)) (-1269 ((|#2| |#2|) 154)) (-2186 ((|#2| |#2|) 192)) (-3282 ((|#2| |#2|) 168)) (-2738 ((|#2| |#2|) 188)) (-4051 ((|#2| |#2|) 164)) (-2412 ((|#2| |#2|) 196)) (-2275 ((|#2| |#2|) 172)) (-2859 ((|#2| |#2|) 198)) (-3979 ((|#2| |#2|) 174)) (-2490 ((|#2| |#2|) 194)) (-4086 ((|#2| |#2|) 170)) (-3276 ((|#2| |#2|) 190)) (-2493 ((|#2| |#2|) 166)) (-3898 ((|#2| |#2|) 62)) (-1670 ((|#2| |#2|) 80)) (-1521 ((|#2| |#2|) 68)) (-1647 ((|#2| |#2|) 78)) (-1495 ((|#2| |#2|) 66)) (-1622 ((|#2| |#2|) 76)) (-1471 ((|#2| |#2|) 64)) (-4116 (((-107) (-109)) 93)) (-1706 ((|#2| |#2|) 83)) (-1564 ((|#2| |#2|) 71)) (-1685 ((|#2| |#2|) 81)) (-1536 ((|#2| |#2|) 69)) (-3517 ((|#2| |#2|) 85)) (-1588 ((|#2| |#2|) 73)) (-2815 ((|#2| |#2|) 86)) (-1601 ((|#2| |#2|) 74)) (-1722 ((|#2| |#2|) 84)) (-1577 ((|#2| |#2|) 72)) (-1698 ((|#2| |#2|) 82)) (-1550 ((|#2| |#2|) 70)))
+(((-249 |#1| |#2|) (-10 -7 (-15 -3898 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1459 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -1508 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2102 (|#2|)) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1365 (|#2|)) (-15 -2971 (|#2|)) (-15 -3457 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -2656 (|#2| |#2|)) (-15 -1269 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -1236 (|#2| |#2|)) (-15 -4136 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2738 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -2859 (|#2| |#2|)) (-15 -3755 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3807 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-921))) (T -249))
+((-3807 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-921))))) (-3755 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-921))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-2859 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2738 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1928 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3282 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4136 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1236 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3596 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1269 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3457 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2971 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1365 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-921))))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-921))))) (-2102 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))))
+(-10 -7 (-15 -3898 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1459 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -1508 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2102 (|#2|)) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1365 (|#2|)) (-15 -2971 (|#2|)) (-15 -3457 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -2656 (|#2| |#2|)) (-15 -1269 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -1236 (|#2| |#2|)) (-15 -4136 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2738 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -2859 (|#2| |#2|)) (-15 -3755 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3807 ((-107) |#2|)))
+((-1998 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1077)) 133)) (-1913 ((|#2| (-377 (-517)) |#2|) 50)) (-3923 ((|#2| |#2| (-556 |#2|)) 126)) (-1276 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1077)) 125)) (-3190 ((|#2| |#2| (-1077)) 19) ((|#2| |#2|) 22)) (-1450 ((|#2| |#2| (-1077)) 139) ((|#2| |#2|) 137)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -1450 (|#2| |#2|)) (-15 -1450 (|#2| |#2| (-1077))) (-15 -1276 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1077))) (-15 -3190 (|#2| |#2|)) (-15 -3190 (|#2| |#2| (-1077))) (-15 -1998 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1077))) (-15 -3923 (|#2| |#2| (-556 |#2|))) (-15 -1913 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -250))
+((-1913 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3923 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-1998 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1077)) (-4 *2 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-1276 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-1450 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))))
+(-10 -7 (-15 -1450 (|#2| |#2|)) (-15 -1450 (|#2| |#2| (-1077))) (-15 -1276 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1077))) (-15 -3190 (|#2| |#2|)) (-15 -3190 (|#2| |#2| (-1077))) (-15 -1998 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1077))) (-15 -3923 (|#2| |#2| (-556 |#2|))) (-15 -1913 (|#2| (-377 (-517)) |#2|)))
+((-3090 (((-3 |#3| "failed") |#3|) 110)) (-1636 ((|#3| |#3|) 131)) (-3543 (((-3 |#3| "failed") |#3|) 82)) (-1482 ((|#3| |#3|) 121)) (-3607 (((-3 |#3| "failed") |#3|) 58)) (-1612 ((|#3| |#3|) 129)) (-2485 (((-3 |#3| "failed") |#3|) 46)) (-1459 ((|#3| |#3|) 119)) (-2488 (((-3 |#3| "failed") |#3|) 112)) (-1659 ((|#3| |#3|) 133)) (-3369 (((-3 |#3| "failed") |#3|) 84)) (-1508 ((|#3| |#3|) 123)) (-1514 (((-3 |#3| "failed") |#3| (-703)) 36)) (-3207 (((-3 |#3| "failed") |#3|) 74)) (-1232 ((|#3| |#3|) 118)) (-2644 (((-3 |#3| "failed") |#3|) 44)) (-3898 ((|#3| |#3|) 117)) (-3051 (((-3 |#3| "failed") |#3|) 113)) (-1670 ((|#3| |#3|) 134)) (-2228 (((-3 |#3| "failed") |#3|) 85)) (-1521 ((|#3| |#3|) 124)) (-2164 (((-3 |#3| "failed") |#3|) 111)) (-1647 ((|#3| |#3|) 132)) (-3013 (((-3 |#3| "failed") |#3|) 83)) (-1495 ((|#3| |#3|) 122)) (-2480 (((-3 |#3| "failed") |#3|) 60)) (-1622 ((|#3| |#3|) 130)) (-3420 (((-3 |#3| "failed") |#3|) 48)) (-1471 ((|#3| |#3|) 120)) (-2831 (((-3 |#3| "failed") |#3|) 66)) (-1706 ((|#3| |#3|) 137)) (-3216 (((-3 |#3| "failed") |#3|) 104)) (-1564 ((|#3| |#3|) 142)) (-3325 (((-3 |#3| "failed") |#3|) 62)) (-1685 ((|#3| |#3|) 135)) (-2094 (((-3 |#3| "failed") |#3|) 50)) (-1536 ((|#3| |#3|) 125)) (-3704 (((-3 |#3| "failed") |#3|) 70)) (-3517 ((|#3| |#3|) 139)) (-3994 (((-3 |#3| "failed") |#3|) 54)) (-1588 ((|#3| |#3|) 127)) (-3875 (((-3 |#3| "failed") |#3|) 72)) (-2815 ((|#3| |#3|) 140)) (-2092 (((-3 |#3| "failed") |#3|) 56)) (-1601 ((|#3| |#3|) 128)) (-1964 (((-3 |#3| "failed") |#3|) 68)) (-1722 ((|#3| |#3|) 138)) (-1556 (((-3 |#3| "failed") |#3|) 107)) (-1577 ((|#3| |#3|) 143)) (-3608 (((-3 |#3| "failed") |#3|) 64)) (-1698 ((|#3| |#3|) 136)) (-3333 (((-3 |#3| "failed") |#3|) 52)) (-1550 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-251 |#1| |#2| |#3|) (-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)))) (-37 (-377 (-517))) (-1149 |#1|) (-1120 |#1| |#2|)) (T -251))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1149 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1120 *4 *5)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))))
+(-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|))))
+((-3090 (((-3 |#3| "failed") |#3|) 66)) (-1636 ((|#3| |#3|) 133)) (-3543 (((-3 |#3| "failed") |#3|) 50)) (-1482 ((|#3| |#3|) 121)) (-3607 (((-3 |#3| "failed") |#3|) 62)) (-1612 ((|#3| |#3|) 131)) (-2485 (((-3 |#3| "failed") |#3|) 46)) (-1459 ((|#3| |#3|) 119)) (-2488 (((-3 |#3| "failed") |#3|) 70)) (-1659 ((|#3| |#3|) 135)) (-3369 (((-3 |#3| "failed") |#3|) 54)) (-1508 ((|#3| |#3|) 123)) (-1514 (((-3 |#3| "failed") |#3| (-703)) 35)) (-3207 (((-3 |#3| "failed") |#3|) 44)) (-1232 ((|#3| |#3|) 112)) (-2644 (((-3 |#3| "failed") |#3|) 42)) (-3898 ((|#3| |#3|) 118)) (-3051 (((-3 |#3| "failed") |#3|) 72)) (-1670 ((|#3| |#3|) 136)) (-2228 (((-3 |#3| "failed") |#3|) 56)) (-1521 ((|#3| |#3|) 124)) (-2164 (((-3 |#3| "failed") |#3|) 68)) (-1647 ((|#3| |#3|) 134)) (-3013 (((-3 |#3| "failed") |#3|) 52)) (-1495 ((|#3| |#3|) 122)) (-2480 (((-3 |#3| "failed") |#3|) 64)) (-1622 ((|#3| |#3|) 132)) (-3420 (((-3 |#3| "failed") |#3|) 48)) (-1471 ((|#3| |#3|) 120)) (-2831 (((-3 |#3| "failed") |#3|) 78)) (-1706 ((|#3| |#3|) 139)) (-3216 (((-3 |#3| "failed") |#3|) 58)) (-1564 ((|#3| |#3|) 127)) (-3325 (((-3 |#3| "failed") |#3|) 74)) (-1685 ((|#3| |#3|) 137)) (-2094 (((-3 |#3| "failed") |#3|) 102)) (-1536 ((|#3| |#3|) 125)) (-3704 (((-3 |#3| "failed") |#3|) 82)) (-3517 ((|#3| |#3|) 141)) (-3994 (((-3 |#3| "failed") |#3|) 109)) (-1588 ((|#3| |#3|) 129)) (-3875 (((-3 |#3| "failed") |#3|) 84)) (-2815 ((|#3| |#3|) 142)) (-2092 (((-3 |#3| "failed") |#3|) 111)) (-1601 ((|#3| |#3|) 130)) (-1964 (((-3 |#3| "failed") |#3|) 80)) (-1722 ((|#3| |#3|) 140)) (-1556 (((-3 |#3| "failed") |#3|) 60)) (-1577 ((|#3| |#3|) 128)) (-3608 (((-3 |#3| "failed") |#3|) 76)) (-1698 ((|#3| |#3|) 138)) (-3333 (((-3 |#3| "failed") |#3|) 105)) (-1550 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-252 |#1| |#2| |#3| |#4|) (-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)))) (-37 (-377 (-517))) (-1118 |#1|) (-1141 |#1| |#2|) (-903 |#2|)) (T -252))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1118 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1141 *4 *5)) (-4 *6 (-903 *5)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))))
+(-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|))))
+((-2317 (($ (-1 (-107) |#2|) $) 23)) (-2446 (($ $) 36)) (-1749 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1423 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2785 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1734 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3779 (($ $ (-517)) 11) (($ $ (-1125 (-517))) 14)) (-3495 (($ $ |#2|) 29) (($ $ $) NIL)) (-4117 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
+(((-253 |#1| |#2|) (-10 -8 (-15 -2785 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|))) (-254 |#2|) (-1112)) (T -253))
+NIL
+(-10 -8 (-15 -2785 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) 85)) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 83 (|has| |#1| (-1006)))) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1006)))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-2785 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-3439 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-1921 (($ $ (-517)) 91) (($ $ (-1125 (-517))) 90)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-3495 (($ $ |#1|) 93) (($ $ $) 92)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-254 |#1|) (-1189) (-1112)) (T -254))
+((-3495 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)))) (-1921 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-1921 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-3439 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1112)))) (-3439 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-2785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-1749 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4196) (-15 -3495 ($ $ |t#1|)) (-15 -3495 ($ $ $)) (-15 -1921 ($ $ (-517))) (-15 -1921 ($ $ (-1125 (-517)))) (-15 -1749 ($ (-1 (-107) |t#1|) $)) (-15 -3439 ($ |t#1| $ (-517))) (-15 -3439 ($ $ $ (-517))) (-15 -2785 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2582 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1749 ($ |t#1| $)) (-15 -3081 ($ $))) |%noBranch|) (IF (|has| |t#1| (-779)) (-15 -2785 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
((** (($ $ $) 10)))
(((-255 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-256)) (T -255))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1226 (($ $) 6)) (-3870 (($ $) 7)) (** (($ $ $) 8)))
-(((-256) (-1188)) (T -256))
-((** (*1 *1 *1 *1) (-4 *1 (-256))) (-3870 (*1 *1 *1) (-4 *1 (-256))) (-1226 (*1 *1 *1) (-4 *1 (-256))))
-(-13 (-10 -8 (-15 -1226 ($ $)) (-15 -3870 ($ $)) (-15 ** ($ $ $))))
-((-2308 (((-583 (-1057 |#1|)) (-1057 |#1|) |#1|) 35)) (-2160 ((|#2| |#2| |#1|) 38)) (-3246 ((|#2| |#2| |#1|) 40)) (-3630 ((|#2| |#2| |#1|) 39)))
-(((-257 |#1| |#2|) (-10 -7 (-15 -2160 (|#2| |#2| |#1|)) (-15 -3630 (|#2| |#2| |#1|)) (-15 -3246 (|#2| |#2| |#1|)) (-15 -2308 ((-583 (-1057 |#1|)) (-1057 |#1|) |#1|))) (-333) (-1148 |#1|)) (T -257))
-((-2308 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1057 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1057 *4)) (-4 *5 (-1148 *4)))) (-3246 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1148 *3)))) (-3630 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1148 *3)))) (-2160 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1148 *3)))))
-(-10 -7 (-15 -2160 (|#2| |#2| |#1|)) (-15 -3630 (|#2| |#2| |#1|)) (-15 -3246 (|#2| |#2| |#1|)) (-15 -2308 ((-583 (-1057 |#1|)) (-1057 |#1|) |#1|)))
-((-2609 ((|#2| $ |#1|) 6)))
-(((-258 |#1| |#2|) (-1188) (-1005) (-1111)) (T -258))
-((-2609 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111)))))
-(-13 (-10 -8 (-15 -2609 (|t#2| $ |t#1|))))
-((-2759 ((|#3| $ |#2| |#3|) 12)) (-2566 ((|#3| $ |#2|) 10)))
-(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -2759 (|#3| |#1| |#2| |#3|)) (-15 -2566 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1005) (-1111)) (T -259))
-NIL
-(-10 -8 (-15 -2759 (|#3| |#1| |#2| |#3|)) (-15 -2566 (|#3| |#1| |#2|)))
-((-2445 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4193)))) (-2759 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) 11)) (-2609 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-260 |#1| |#2|) (-1188) (-1005) (-1111)) (T -260))
-((-2609 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111)))) (-2566 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111)))) (-2445 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111)))) (-2759 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111)))))
-(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -2609 (|t#2| $ |t#1| |t#2|)) (-15 -2566 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4193)) (PROGN (-15 -2445 (|t#2| $ |t#1| |t#2|)) (-15 -2759 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((-1232 (($ $) 6)) (-3898 (($ $) 7)) (** (($ $ $) 8)))
+(((-256) (-1189)) (T -256))
+((** (*1 *1 *1 *1) (-4 *1 (-256))) (-3898 (*1 *1 *1) (-4 *1 (-256))) (-1232 (*1 *1 *1) (-4 *1 (-256))))
+(-13 (-10 -8 (-15 -1232 ($ $)) (-15 -3898 ($ $)) (-15 ** ($ $ $))))
+((-2068 (((-583 (-1058 |#1|)) (-1058 |#1|) |#1|) 35)) (-2233 ((|#2| |#2| |#1|) 38)) (-2652 ((|#2| |#2| |#1|) 40)) (-3677 ((|#2| |#2| |#1|) 39)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -2233 (|#2| |#2| |#1|)) (-15 -3677 (|#2| |#2| |#1|)) (-15 -2652 (|#2| |#2| |#1|)) (-15 -2068 ((-583 (-1058 |#1|)) (-1058 |#1|) |#1|))) (-333) (-1149 |#1|)) (T -257))
+((-2068 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1058 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1058 *4)) (-4 *5 (-1149 *4)))) (-2652 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))) (-3677 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))) (-2233 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))))
+(-10 -7 (-15 -2233 (|#2| |#2| |#1|)) (-15 -3677 (|#2| |#2| |#1|)) (-15 -2652 (|#2| |#2| |#1|)) (-15 -2068 ((-583 (-1058 |#1|)) (-1058 |#1|) |#1|)))
+((-2612 ((|#2| $ |#1|) 6)))
+(((-258 |#1| |#2|) (-1189) (-1006) (-1112)) (T -258))
+((-2612 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))))
+(-13 (-10 -8 (-15 -2612 (|t#2| $ |t#1|))))
+((-2750 ((|#3| $ |#2| |#3|) 12)) (-2557 ((|#3| $ |#2|) 10)))
+(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -2750 (|#3| |#1| |#2| |#3|)) (-15 -2557 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1006) (-1112)) (T -259))
+NIL
+(-10 -8 (-15 -2750 (|#3| |#1| |#2| |#3|)) (-15 -2557 (|#3| |#1| |#2|)))
+((-2436 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4196)))) (-2750 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 11)) (-2612 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-260 |#1| |#2|) (-1189) (-1006) (-1112)) (T -260))
+((-2612 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-2750 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))))
+(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -2612 (|t#2| $ |t#1| |t#2|)) (-15 -2557 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -2750 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-258 |#1| |#2|) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 35)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 40)) (-3062 (($ $) 38)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) 33)) (-1522 (($ |#2| |#3|) 19)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1673 ((|#3| $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 20)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3600 (((-703) $) 34)) (-2609 ((|#2| $ |#2|) 42)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 24)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 29 T CONST)) (-3619 (($) 36 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 37)))
-(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -1673 (|#3| $)) (-15 -2271 (|#2| $)) (-15 -1522 ($ |#2| |#3|)) (-15 -2599 ((-3 $ "failed") $ $)) (-15 -2560 ((-3 $ "failed") $)) (-15 -2300 ($ $)) (-15 -2609 (|#2| $ |#2|)))) (-156) (-1133 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
-((-2560 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1133 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1673 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1133 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2271 (*1 *2 *1) (-12 (-4 *2 (-1133 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1522 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1133 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2599 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1133 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2300 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1133 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2609 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1133 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-278) (-10 -8 (-15 -1673 (|#3| $)) (-15 -2271 (|#2| $)) (-15 -1522 ($ |#2| |#3|)) (-15 -2599 ((-3 $ "failed") $ $)) (-15 -2560 ((-3 $ "failed") $)) (-15 -2300 ($ $)) (-15 -2609 (|#2| $ |#2|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-262) (-1188)) (T -262))
-NIL
-(-13 (-963) (-106 $ $) (-10 -7 (-6 -4185)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2962 (((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|)))) 84)) (-3224 (((-583 (-623 (-377 (-875 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|)))))) (-623 (-377 (-875 |#1|)))) 79) (((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|))) (-623 (-377 (-875 |#1|))) (-703) (-703)) 37)) (-4024 (((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|)))) 81)) (-4075 (((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|))) (-623 (-377 (-875 |#1|)))) 61)) (-3447 (((-583 (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (-623 (-377 (-875 |#1|)))) 60)) (-1699 (((-875 |#1|) (-623 (-377 (-875 |#1|)))) 48) (((-875 |#1|) (-623 (-377 (-875 |#1|))) (-1076)) 49)))
-(((-263 |#1|) (-10 -7 (-15 -1699 ((-875 |#1|) (-623 (-377 (-875 |#1|))) (-1076))) (-15 -1699 ((-875 |#1|) (-623 (-377 (-875 |#1|))))) (-15 -3447 ((-583 (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (-623 (-377 (-875 |#1|))))) (-15 -4075 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|))) (-623 (-377 (-875 |#1|))))) (-15 -3224 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|))) (-623 (-377 (-875 |#1|))) (-703) (-703))) (-15 -3224 ((-583 (-623 (-377 (-875 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|)))))) (-623 (-377 (-875 |#1|))))) (-15 -2962 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|))))) (-15 -4024 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|)))))) (-421)) (T -263))
-((-4024 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1066 (-1076) (-875 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))) (-2962 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1066 (-1076) (-875 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-875 *5)) (-1066 (-1076) (-875 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))) (-3224 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-875 *6)) (-1066 (-1076) (-875 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-875 *6)))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-875 *5)) (-1066 (-1076) (-875 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-875 *4)) (-1066 (-1076) (-875 *4))))) (-5 *1 (-263 *4)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-5 *2 (-875 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-875 *5)))) (-5 *4 (-1076)) (-5 *2 (-875 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
-(-10 -7 (-15 -1699 ((-875 |#1|) (-623 (-377 (-875 |#1|))) (-1076))) (-15 -1699 ((-875 |#1|) (-623 (-377 (-875 |#1|))))) (-15 -3447 ((-583 (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (-623 (-377 (-875 |#1|))))) (-15 -4075 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|))) (-623 (-377 (-875 |#1|))))) (-15 -3224 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|))) (-623 (-377 (-875 |#1|))) (-703) (-703))) (-15 -3224 ((-583 (-623 (-377 (-875 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|)))))) (-623 (-377 (-875 |#1|))))) (-15 -2962 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|))))) (-15 -4024 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1066 (-1076) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|))))))
-((-3310 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
-(((-264 |#1| |#2|) (-10 -7 (-15 -3310 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1111) (-1111)) (T -264))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
-(-10 -7 (-15 -3310 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3097 (((-107) $) NIL (|has| |#1| (-21)))) (-3182 (($ $) 22)) (-2798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3915 (($ $ $) 93 (|has| |#1| (-273)))) (-1393 (($) NIL (-3747 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-3056 (($ $) 8 (|has| |#1| (-21)))) (-3995 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-2515 ((|#1| $) 21)) (-2560 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-1376 (((-107) $) NIL (|has| |#1| (-659)))) (-3310 (($ (-1 |#1| |#1|) $) 24)) (-2508 ((|#1| $) 9)) (-2921 (($ $) 57 (|has| |#1| (-21)))) (-4105 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-2300 (($ $) 70 (-3747 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2818 (((-583 $) $) 19 (|has| |#1| (-509)))) (-3524 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-1076) |#1|) 27 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1076) |#1|)))) (-2968 (($ |#1| |#1|) 17)) (-1537 (((-125)) 88 (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) 85 (|has| |#1| (-823 (-1076))))) (-1842 (($ $ $) NIL (|has| |#1| (-442)))) (-2059 (($ $ $) NIL (|has| |#1| (-442)))) (-2271 (($ (-517)) NIL (|has| |#1| (-963))) (((-107) $) 45 (|has| |#1| (-1005))) (((-787) $) 44 (|has| |#1| (-1005)))) (-4099 (((-703)) 73 (|has| |#1| (-963)))) (-2815 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-844)) NIL (|has| |#1| (-1017)))) (-3610 (($) 55 (|has| |#1| (-21)) CONST)) (-3619 (($) 63 (|has| |#1| (-659)) CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076))))) (-1584 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1005)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3747 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1692 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1678 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-844)) NIL (|has| |#1| (-1017)))) (* (($ $ |#1|) 61 (|has| |#1| (-1017))) (($ |#1| $) 60 (|has| |#1| (-1017))) (($ $ $) 59 (|has| |#1| (-1017))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-844) $) NIL (|has| |#1| (-25)))))
-(((-265 |#1|) (-13 (-1111) (-10 -8 (-15 -1584 ($ |#1| |#1|)) (-15 -2968 ($ |#1| |#1|)) (-15 -3182 ($ $)) (-15 -2508 (|#1| $)) (-15 -2515 (|#1| $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1076) |#1|)) (-6 (-478 (-1076) |#1|)) |%noBranch|) (IF (|has| |#1| (-1005)) (PROGN (-6 (-1005)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3524 ($ $ $)) (-15 -3524 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1678 ($ |#1| $)) (-15 -1678 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2921 ($ $)) (-15 -3056 ($ $)) (-15 -1692 ($ |#1| $)) (-15 -1692 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1017)) (PROGN (-6 (-1017)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -4105 ((-3 $ "failed") $)) (-15 -3995 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -4105 ((-3 $ "failed") $)) (-15 -3995 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-6 (-963)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -2818 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-823 (-1076))) (-6 (-823 (-1076))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1164 |#1|)) (-15 -1704 ($ $ $)) (-15 -2300 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3915 ($ $ $)) |%noBranch|))) (-1111)) (T -265))
-((-1584 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111)))) (-2968 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111)))) (-3182 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111)))) (-2508 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111)))) (-2515 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-265 *3)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)) (-5 *1 (-265 *2)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1005)) (-4 *3 (-1111)) (-5 *1 (-265 *3)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1111)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1111)))) (-2921 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111)))) (-3056 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111)))) (-1692 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111)))) (-4105 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1111)))) (-3995 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1111)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1111)))) (-3915 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1111)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1017)) (-4 *2 (-1111)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1017)) (-4 *2 (-1111)))) (-1704 (*1 *1 *1 *1) (-3747 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1111))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1111))))) (-2300 (*1 *1 *1) (-3747 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1111))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1111))))))
-(-13 (-1111) (-10 -8 (-15 -1584 ($ |#1| |#1|)) (-15 -2968 ($ |#1| |#1|)) (-15 -3182 ($ $)) (-15 -2508 (|#1| $)) (-15 -2515 (|#1| $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1076) |#1|)) (-6 (-478 (-1076) |#1|)) |%noBranch|) (IF (|has| |#1| (-1005)) (PROGN (-6 (-1005)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3524 ($ $ $)) (-15 -3524 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1678 ($ |#1| $)) (-15 -1678 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2921 ($ $)) (-15 -3056 ($ $)) (-15 -1692 ($ |#1| $)) (-15 -1692 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1017)) (PROGN (-6 (-1017)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -4105 ((-3 $ "failed") $)) (-15 -3995 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -4105 ((-3 $ "failed") $)) (-15 -3995 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-6 (-963)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -2818 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-823 (-1076))) (-6 (-823 (-1076))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1164 |#1|)) (-15 -1704 ($ $ $)) (-15 -2300 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3915 ($ $ $)) |%noBranch|)))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#2| $ |#1| |#2|) NIL)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1882 (((-583 |#1|) $) NIL)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2817 (((-583 |#1|) $) NIL)) (-3130 (((-107) |#1| $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-266 |#1| |#2|) (-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192))) (-1005) (-1005)) (T -266))
-NIL
-(-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192)))
-((-3110 (((-282) (-1059) (-583 (-1059))) 16) (((-282) (-1059) (-1059)) 15) (((-282) (-583 (-1059))) 14) (((-282) (-1059)) 12)))
-(((-267) (-10 -7 (-15 -3110 ((-282) (-1059))) (-15 -3110 ((-282) (-583 (-1059)))) (-15 -3110 ((-282) (-1059) (-1059))) (-15 -3110 ((-282) (-1059) (-583 (-1059)))))) (T -267))
-((-3110 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1059))) (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3110 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-282)) (-5 *1 (-267)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-267)))))
-(-10 -7 (-15 -3110 ((-282) (-1059))) (-15 -3110 ((-282) (-583 (-1059)))) (-15 -3110 ((-282) (-1059) (-1059))) (-15 -3110 ((-282) (-1059) (-583 (-1059)))))
-((-3310 ((|#2| (-1 |#2| |#1|) (-1059) (-556 |#1|)) 17)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -3310 (|#2| (-1 |#2| |#1|) (-1059) (-556 |#1|)))) (-273) (-1111)) (T -268))
-((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1059)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1111)) (-5 *1 (-268 *6 *2)))))
-(-10 -7 (-15 -3310 (|#2| (-1 |#2| |#1|) (-1059) (-556 |#1|))))
-((-3310 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
-(((-269 |#1| |#2|) (-10 -7 (-15 -3310 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
-(-10 -7 (-15 -3310 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
-((-2038 (((-107) (-199)) 10)))
-(((-270 |#1| |#2|) (-10 -7 (-15 -2038 ((-107) (-199)))) (-199) (-199)) (T -270))
-((-2038 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2038 ((-107) (-199))))
-((-3087 (((-1057 (-199)) (-286 (-199)) (-583 (-1076)) (-1000 (-772 (-199)))) 88)) (-4096 (((-1057 (-199)) (-1157 (-286 (-199))) (-583 (-1076)) (-1000 (-772 (-199)))) 103) (((-1057 (-199)) (-286 (-199)) (-583 (-1076)) (-1000 (-772 (-199)))) 58)) (-3354 (((-583 (-1059)) (-1057 (-199))) NIL)) (-3409 (((-583 (-199)) (-286 (-199)) (-1076) (-1000 (-772 (-199)))) 55)) (-3503 (((-583 (-199)) (-875 (-377 (-517))) (-1076) (-1000 (-772 (-199)))) 47)) (-4087 (((-583 (-1059)) (-583 (-199))) NIL)) (-1839 (((-199) (-1000 (-772 (-199)))) 23)) (-2385 (((-199) (-1000 (-772 (-199)))) 24)) (-3106 (((-107) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-2636 (((-1059) (-199)) NIL)))
-(((-271) (-10 -7 (-15 -1839 ((-199) (-1000 (-772 (-199))))) (-15 -2385 ((-199) (-1000 (-772 (-199))))) (-15 -3106 ((-107) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3409 ((-583 (-199)) (-286 (-199)) (-1076) (-1000 (-772 (-199))))) (-15 -3087 ((-1057 (-199)) (-286 (-199)) (-583 (-1076)) (-1000 (-772 (-199))))) (-15 -4096 ((-1057 (-199)) (-286 (-199)) (-583 (-1076)) (-1000 (-772 (-199))))) (-15 -4096 ((-1057 (-199)) (-1157 (-286 (-199))) (-583 (-1076)) (-1000 (-772 (-199))))) (-15 -3503 ((-583 (-199)) (-875 (-377 (-517))) (-1076) (-1000 (-772 (-199))))) (-15 -2636 ((-1059) (-199))) (-15 -4087 ((-583 (-1059)) (-583 (-199)))) (-15 -3354 ((-583 (-1059)) (-1057 (-199)))))) (T -271))
-((-3354 (*1 *2 *3) (-12 (-5 *3 (-1057 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-271)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-271)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1059)) (-5 *1 (-271)))) (-3503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *4 (-1076)) (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *4 (-583 (-1076))) (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-271)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1076))) (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-271)))) (-3087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1076))) (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-271)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1076)) (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
-(-10 -7 (-15 -1839 ((-199) (-1000 (-772 (-199))))) (-15 -2385 ((-199) (-1000 (-772 (-199))))) (-15 -3106 ((-107) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3409 ((-583 (-199)) (-286 (-199)) (-1076) (-1000 (-772 (-199))))) (-15 -3087 ((-1057 (-199)) (-286 (-199)) (-583 (-1076)) (-1000 (-772 (-199))))) (-15 -4096 ((-1057 (-199)) (-286 (-199)) (-583 (-1076)) (-1000 (-772 (-199))))) (-15 -4096 ((-1057 (-199)) (-1157 (-286 (-199))) (-583 (-1076)) (-1000 (-772 (-199))))) (-15 -3503 ((-583 (-199)) (-875 (-377 (-517))) (-1076) (-1000 (-772 (-199))))) (-15 -2636 ((-1059) (-199))) (-15 -4087 ((-583 (-1059)) (-583 (-199)))) (-15 -3354 ((-583 (-1059)) (-1057 (-199)))))
-((-3834 (((-583 (-556 $)) $) 28)) (-3915 (($ $ (-265 $)) 81) (($ $ (-583 (-265 $))) 121) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3228 (((-3 (-556 $) "failed") $) 111)) (-3390 (((-556 $) $) 110)) (-3659 (($ $) 19) (($ (-583 $)) 55)) (-1194 (((-583 (-109)) $) 37)) (-1934 (((-109) (-109)) 91)) (-2686 (((-107) $) 129)) (-3310 (($ (-1 $ $) (-556 $)) 89)) (-3971 (((-3 (-556 $) "failed") $) 93)) (-1398 (($ (-109) $) 61) (($ (-109) (-583 $)) 99)) (-2066 (((-107) $ (-109)) 115) (((-107) $ (-1076)) 114)) (-1809 (((-703) $) 45)) (-1647 (((-107) $ $) 59) (((-107) $ (-1076)) 50)) (-1766 (((-107) $) 127)) (-3524 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 119) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ $))) 84) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1076) (-1 $ (-583 $))) 69) (($ $ (-1076) (-1 $ $)) 75) (($ $ (-583 (-109)) (-583 (-1 $ $))) 83) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 85) (($ $ (-109) (-1 $ (-583 $))) 71) (($ $ (-109) (-1 $ $)) 77)) (-2609 (($ (-109) $) 62) (($ (-109) $ $) 63) (($ (-109) $ $ $) 64) (($ (-109) $ $ $ $) 65) (($ (-109) (-583 $)) 107)) (-1457 (($ $) 52) (($ $ $) 117)) (-3440 (($ $) 17) (($ (-583 $)) 54)) (-3750 (((-107) (-109)) 22)))
-(((-272 |#1|) (-10 -8 (-15 -2686 ((-107) |#1|)) (-15 -1766 ((-107) |#1|)) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| |#1|)))) (-15 -1647 ((-107) |#1| (-1076))) (-15 -1647 ((-107) |#1| |#1|)) (-15 -3310 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1398 (|#1| (-109) (-583 |#1|))) (-15 -1398 (|#1| (-109) |#1|)) (-15 -2066 ((-107) |#1| (-1076))) (-15 -2066 ((-107) |#1| (-109))) (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -1194 ((-583 (-109)) |#1|)) (-15 -3834 ((-583 (-556 |#1|)) |#1|)) (-15 -3971 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1809 ((-703) |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -3659 (|#1| (-583 |#1|))) (-15 -3659 (|#1| |#1|)) (-15 -3440 (|#1| (-583 |#1|))) (-15 -3440 (|#1| |#1|)) (-15 -3915 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3915 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3915 (|#1| |#1| (-265 |#1|))) (-15 -2609 (|#1| (-109) (-583 |#1|))) (-15 -2609 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3524 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3390 ((-556 |#1|) |#1|)) (-15 -3228 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
-((-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
-(-10 -8 (-15 -2686 ((-107) |#1|)) (-15 -1766 ((-107) |#1|)) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| |#1|)))) (-15 -1647 ((-107) |#1| (-1076))) (-15 -1647 ((-107) |#1| |#1|)) (-15 -3310 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1398 (|#1| (-109) (-583 |#1|))) (-15 -1398 (|#1| (-109) |#1|)) (-15 -2066 ((-107) |#1| (-1076))) (-15 -2066 ((-107) |#1| (-109))) (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -1194 ((-583 (-109)) |#1|)) (-15 -3834 ((-583 (-556 |#1|)) |#1|)) (-15 -3971 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1809 ((-703) |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -3659 (|#1| (-583 |#1|))) (-15 -3659 (|#1| |#1|)) (-15 -3440 (|#1| (-583 |#1|))) (-15 -3440 (|#1| |#1|)) (-15 -3915 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3915 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3915 (|#1| |#1| (-265 |#1|))) (-15 -2609 (|#1| (-109) (-583 |#1|))) (-15 -2609 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3524 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3390 ((-556 |#1|) |#1|)) (-15 -3228 ((-3 (-556 |#1|) "failed") |#1|)))
-((-2119 (((-107) $ $) 7)) (-3834 (((-583 (-556 $)) $) 44)) (-3915 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-3228 (((-3 (-556 $) "failed") $) 69)) (-3390 (((-556 $) $) 68)) (-3659 (($ $) 51) (($ (-583 $)) 50)) (-1194 (((-583 (-109)) $) 43)) (-1934 (((-109) (-109)) 42)) (-2686 (((-107) $) 22 (|has| $ (-954 (-517))))) (-3760 (((-1072 $) (-556 $)) 25 (|has| $ (-963)))) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-3310 (($ (-1 $ $) (-556 $)) 36)) (-3971 (((-3 (-556 $) "failed") $) 46)) (-1662 (((-1059) $) 9)) (-1424 (((-583 (-556 $)) $) 45)) (-1398 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-2066 (((-107) $ (-109)) 40) (((-107) $ (-1076)) 39)) (-1809 (((-703) $) 47)) (-4125 (((-1023) $) 10)) (-1647 (((-107) $ $) 35) (((-107) $ (-1076)) 34)) (-1766 (((-107) $) 23 (|has| $ (-954 (-517))))) (-3524 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1076)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1076) (-1 $ (-583 $))) 31) (($ $ (-1076) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-2609 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1457 (($ $) 49) (($ $ $) 48)) (-2387 (($ $) 24 (|has| $ (-963)))) (-2271 (((-787) $) 11) (($ (-556 $)) 70)) (-3440 (($ $) 53) (($ (-583 $)) 52)) (-3750 (((-107) (-109)) 41)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)))
-(((-273) (-1188)) (T -273))
-((-2609 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2609 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2609 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2609 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3915 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-3915 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-3915 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3440 (*1 *1 *1) (-4 *1 (-273))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3659 (*1 *1 *1) (-4 *1 (-273))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1457 (*1 *1 *1) (-4 *1 (-273))) (-1457 (*1 *1 *1 *1) (-4 *1 (-273))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-3971 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-1194 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-1934 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-3750 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-2066 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-2066 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1076)) (-5 *2 (-107)))) (-1398 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1398 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3310 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-1647 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-1647 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1076)) (-5 *2 (-107)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-963)) (-4 *1 (-273)) (-5 *2 (-1072 *1)))) (-2387 (*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-273)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-954 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-954 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
-(-13 (-779) (-954 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -2609 ($ (-109) $)) (-15 -2609 ($ (-109) $ $)) (-15 -2609 ($ (-109) $ $ $)) (-15 -2609 ($ (-109) $ $ $ $)) (-15 -2609 ($ (-109) (-583 $))) (-15 -3915 ($ $ (-265 $))) (-15 -3915 ($ $ (-583 (-265 $)))) (-15 -3915 ($ $ (-583 (-556 $)) (-583 $))) (-15 -3440 ($ $)) (-15 -3440 ($ (-583 $))) (-15 -3659 ($ $)) (-15 -3659 ($ (-583 $))) (-15 -1457 ($ $)) (-15 -1457 ($ $ $)) (-15 -1809 ((-703) $)) (-15 -3971 ((-3 (-556 $) "failed") $)) (-15 -1424 ((-583 (-556 $)) $)) (-15 -3834 ((-583 (-556 $)) $)) (-15 -1194 ((-583 (-109)) $)) (-15 -1934 ((-109) (-109))) (-15 -3750 ((-107) (-109))) (-15 -2066 ((-107) $ (-109))) (-15 -2066 ((-107) $ (-1076))) (-15 -1398 ($ (-109) $)) (-15 -1398 ($ (-109) (-583 $))) (-15 -3310 ($ (-1 $ $) (-556 $))) (-15 -1647 ((-107) $ $)) (-15 -1647 ((-107) $ (-1076))) (-15 -3524 ($ $ (-583 (-1076)) (-583 (-1 $ $)))) (-15 -3524 ($ $ (-583 (-1076)) (-583 (-1 $ (-583 $))))) (-15 -3524 ($ $ (-1076) (-1 $ (-583 $)))) (-15 -3524 ($ $ (-1076) (-1 $ $))) (-15 -3524 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -3524 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -3524 ($ $ (-109) (-1 $ (-583 $)))) (-15 -3524 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-963)) (PROGN (-15 -3760 ((-1072 $) (-556 $))) (-15 -2387 ($ $))) |%noBranch|) (IF (|has| $ (-954 (-517))) (PROGN (-15 -1766 ((-107) $)) (-15 -2686 ((-107) $))) |%noBranch|)))
-(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-954 (-556 $)) . T) ((-1005) . T))
-((-1215 (((-583 |#1|) (-583 |#1|)) 10)))
-(((-274 |#1|) (-10 -7 (-15 -1215 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
-((-1215 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
-(-10 -7 (-15 -1215 ((-583 |#1|) (-583 |#1|))))
-((-3310 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -3310 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-963) (-963)) (T -275))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
-(-10 -7 (-15 -3310 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
-((-3999 (((-1157 (-286 (-349))) (-1157 (-286 (-199)))) 105)) (-2130 (((-1000 (-772 (-199))) (-1000 (-772 (-349)))) 39)) (-3354 (((-583 (-1059)) (-1057 (-199))) 87)) (-2643 (((-286 (-349)) (-875 (-199))) 49)) (-2346 (((-199) (-875 (-199))) 45)) (-3766 (((-1059) (-349)) 167)) (-1627 (((-772 (-199)) (-772 (-349))) 33)) (-2035 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1157 (-286 (-199)))) 142)) (-1686 (((-952) (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952)))) 180) (((-952) (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) 178)) (-3016 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-1551 (((-1157 (-632)) (-583 (-199))) 94)) (-4087 (((-583 (-1059)) (-583 (-199))) 74)) (-1756 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-2038 (((-107) (-199) (-1000 (-772 (-199)))) 109)) (-1987 (((-952) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-1839 (((-199) (-1000 (-772 (-199)))) 107)) (-2385 (((-199) (-1000 (-772 (-199)))) 108)) (-3684 (((-199) (-377 (-517))) 26)) (-2971 (((-1059) (-349)) 72)) (-4048 (((-199) (-349)) 17)) (-1837 (((-349) (-1157 (-286 (-199)))) 153)) (-1288 (((-286 (-199)) (-286 (-349))) 23)) (-2888 (((-377 (-517)) (-286 (-199))) 52)) (-2006 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-2903 (((-286 (-349)) (-286 (-199))) 98)) (-3518 (((-199) (-286 (-199))) 53)) (-2209 (((-583 (-199)) (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) 63)) (-1267 (((-1000 (-772 (-199))) (-1000 (-772 (-199)))) 60)) (-2636 (((-1059) (-199)) 71)) (-2213 (((-632) (-199)) 90)) (-3504 (((-377 (-517)) (-199)) 54)) (-3778 (((-286 (-349)) (-199)) 48)) (-3359 (((-583 (-1000 (-772 (-199)))) (-583 (-1000 (-772 (-349))))) 42)) (-4110 (((-952) (-583 (-952))) 163) (((-952) (-952) (-952)) 160)) (-3351 (((-952) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
-(((-276) (-10 -7 (-15 -4048 ((-199) (-349))) (-15 -1288 ((-286 (-199)) (-286 (-349)))) (-15 -1627 ((-772 (-199)) (-772 (-349)))) (-15 -2130 ((-1000 (-772 (-199))) (-1000 (-772 (-349))))) (-15 -3359 ((-583 (-1000 (-772 (-199)))) (-583 (-1000 (-772 (-349)))))) (-15 -3504 ((-377 (-517)) (-199))) (-15 -2888 ((-377 (-517)) (-286 (-199)))) (-15 -3518 ((-199) (-286 (-199)))) (-15 -1756 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1837 ((-349) (-1157 (-286 (-199))))) (-15 -2035 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1157 (-286 (-199))))) (-15 -2006 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1267 ((-1000 (-772 (-199))) (-1000 (-772 (-199))))) (-15 -2209 ((-583 (-199)) (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))) (-15 -2213 ((-632) (-199))) (-15 -1551 ((-1157 (-632)) (-583 (-199)))) (-15 -2903 ((-286 (-349)) (-286 (-199)))) (-15 -3999 ((-1157 (-286 (-349))) (-1157 (-286 (-199))))) (-15 -2038 ((-107) (-199) (-1000 (-772 (-199))))) (-15 -2636 ((-1059) (-199))) (-15 -2971 ((-1059) (-349))) (-15 -4087 ((-583 (-1059)) (-583 (-199)))) (-15 -3354 ((-583 (-1059)) (-1057 (-199)))) (-15 -1839 ((-199) (-1000 (-772 (-199))))) (-15 -2385 ((-199) (-1000 (-772 (-199))))) (-15 -4110 ((-952) (-952) (-952))) (-15 -4110 ((-952) (-583 (-952)))) (-15 -3766 ((-1059) (-349))) (-15 -1686 ((-952) (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))))) (-15 -1686 ((-952) (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))))) (-15 -3351 ((-952) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1987 ((-952) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2643 ((-286 (-349)) (-875 (-199)))) (-15 -2346 ((-199) (-875 (-199)))) (-15 -3778 ((-286 (-349)) (-199))) (-15 -3684 ((-199) (-377 (-517)))) (-15 -3016 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
-((-3016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-875 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-875 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-952)) (-5 *1 (-276)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-952)) (-5 *1 (-276)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952)))) (-5 *2 (-952)) (-5 *1 (-276)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *2 (-952)) (-5 *1 (-276)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1059)) (-5 *1 (-276)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-583 (-952))) (-5 *2 (-952)) (-5 *1 (-276)))) (-4110 (*1 *2 *2 *2) (-12 (-5 *2 (-952)) (-5 *1 (-276)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-1057 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-276)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-276)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1059)) (-5 *1 (-276)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1059)) (-5 *1 (-276)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *4 (-1000 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *2 (-1157 (-286 (-349)))) (-5 *1 (-276)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1157 (-632))) (-5 *1 (-276)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-1267 (*1 *2 *2) (-12 (-5 *2 (-1000 (-772 (-199)))) (-5 *1 (-276)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-1756 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-583 (-1000 (-772 (-349))))) (-5 *2 (-583 (-1000 (-772 (-199))))) (-5 *1 (-276)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-1000 (-772 (-349)))) (-5 *2 (-1000 (-772 (-199)))) (-5 *1 (-276)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
-(-10 -7 (-15 -4048 ((-199) (-349))) (-15 -1288 ((-286 (-199)) (-286 (-349)))) (-15 -1627 ((-772 (-199)) (-772 (-349)))) (-15 -2130 ((-1000 (-772 (-199))) (-1000 (-772 (-349))))) (-15 -3359 ((-583 (-1000 (-772 (-199)))) (-583 (-1000 (-772 (-349)))))) (-15 -3504 ((-377 (-517)) (-199))) (-15 -2888 ((-377 (-517)) (-286 (-199)))) (-15 -3518 ((-199) (-286 (-199)))) (-15 -1756 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1837 ((-349) (-1157 (-286 (-199))))) (-15 -2035 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1157 (-286 (-199))))) (-15 -2006 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1267 ((-1000 (-772 (-199))) (-1000 (-772 (-199))))) (-15 -2209 ((-583 (-199)) (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))) (-15 -2213 ((-632) (-199))) (-15 -1551 ((-1157 (-632)) (-583 (-199)))) (-15 -2903 ((-286 (-349)) (-286 (-199)))) (-15 -3999 ((-1157 (-286 (-349))) (-1157 (-286 (-199))))) (-15 -2038 ((-107) (-199) (-1000 (-772 (-199))))) (-15 -2636 ((-1059) (-199))) (-15 -2971 ((-1059) (-349))) (-15 -4087 ((-583 (-1059)) (-583 (-199)))) (-15 -3354 ((-583 (-1059)) (-1057 (-199)))) (-15 -1839 ((-199) (-1000 (-772 (-199))))) (-15 -2385 ((-199) (-1000 (-772 (-199))))) (-15 -4110 ((-952) (-952) (-952))) (-15 -4110 ((-952) (-583 (-952)))) (-15 -3766 ((-1059) (-349))) (-15 -1686 ((-952) (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))))) (-15 -1686 ((-952) (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))))) (-15 -3351 ((-952) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1987 ((-952) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2643 ((-286 (-349)) (-875 (-199)))) (-15 -2346 ((-199) (-875 (-199)))) (-15 -3778 ((-286 (-349)) (-199))) (-15 -3684 ((-199) (-377 (-517)))) (-15 -3016 ((-623 (-199)) (-583 (-199)) (-703))))
-((-3820 (((-107) $ $) 11)) (-2379 (($ $ $) 15)) (-2354 (($ $ $) 14)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 44)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 53)) (-2370 (($ $ $) 21) (($ (-583 $)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2329 (((-3 $ "failed") $ $) 17)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 46)))
-(((-277 |#1|) (-10 -8 (-15 -3037 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3572 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3572 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1318 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -3820 ((-107) |#1| |#1|)) (-15 -3006 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1762 ((-2 (|:| -1582 (-583 |#1|)) (|:| -1318 |#1|)) (-583 |#1|))) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
-NIL
-(-10 -8 (-15 -3037 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3572 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3572 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1318 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -3820 ((-107) |#1| |#1|)) (-15 -3006 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1762 ((-2 (|:| -1582 (-583 |#1|)) (|:| -1318 |#1|)) (-583 |#1|))) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1376 (((-107) $) 31)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-278) (-1188)) (T -278))
-((-3820 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-3853 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-278)))) (-2354 (*1 *1 *1 *1) (-4 *1 (-278))) (-2379 (*1 *1 *1 *1) (-4 *1 (-278))) (-3572 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1318 *1))) (-4 *1 (-278)))) (-3572 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-3037 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
-(-13 (-843) (-10 -8 (-15 -3820 ((-107) $ $)) (-15 -3600 ((-703) $)) (-15 -3853 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2354 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -3572 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $)) (-15 -3572 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3037 ((-3 (-583 $) "failed") (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3524 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
-(((-279 |#1| |#2|) (-10 -8 (-15 -3524 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3524 (|#1| |#1| (-265 |#2|))) (-15 -3524 (|#1| |#1| |#2| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1005)) (T -279))
-NIL
-(-10 -8 (-15 -3524 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3524 (|#1| |#1| (-265 |#2|))) (-15 -3524 (|#1| |#1| |#2| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
-((-3524 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
-(((-280 |#1|) (-1188) (-1005)) (T -280))
-((-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1005)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1005)))))
-(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -3524 ($ $ (-265 |t#1|))) (-15 -3524 ($ $ (-583 (-265 |t#1|))))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 35)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 40)) (-2491 (($ $) 38)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) 33)) (-1510 (($ |#2| |#3|) 19)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 ((|#3| $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 20)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1503 (((-3 $ "failed") $ $) NIL)) (-3388 (((-703) $) 34)) (-2612 ((|#2| $ |#2|) 42)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 24)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 29 T CONST)) (-3675 (($) 36 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 37)))
+(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -2263 (|#3| $)) (-15 -2262 (|#2| $)) (-15 -1510 ($ |#2| |#3|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)) (-15 -2612 (|#2| $ |#2|)))) (-156) (-1134 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
+((-3550 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2263 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1134 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1510 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1134 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1503 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2291 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2612 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1134 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-278) (-10 -8 (-15 -2263 (|#3| $)) (-15 -2262 (|#2| $)) (-15 -1510 ($ |#2| |#3|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)) (-15 -2612 (|#2| $ |#2|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-262) (-1189)) (T -262))
+NIL
+(-13 (-964) (-106 $ $) (-10 -7 (-6 -4188)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2816 (((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))) 84)) (-2550 (((-583 (-623 (-377 (-876 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|)))))) (-623 (-377 (-876 |#1|)))) 79) (((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))) (-703) (-703)) 37)) (-2869 (((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))) 81)) (-3597 (((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|)))) 61)) (-3357 (((-583 (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (-623 (-377 (-876 |#1|)))) 60)) (-3848 (((-876 |#1|) (-623 (-377 (-876 |#1|)))) 48) (((-876 |#1|) (-623 (-377 (-876 |#1|))) (-1077)) 49)))
+(((-263 |#1|) (-10 -7 (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))) (-1077))) (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))))) (-15 -3357 ((-583 (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (-623 (-377 (-876 |#1|))))) (-15 -3597 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))) (-703) (-703))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|)))))) (-623 (-377 (-876 |#1|))))) (-15 -2816 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|))))) (-15 -2869 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))))) (-421)) (T -263))
+((-2869 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4)))))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4)))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5)))))) (-2550 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-876 *6)) (-1067 (-1077) (-876 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-876 *6)))))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5)))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4))))) (-5 *1 (-263 *4)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-5 *2 (-876 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-876 *5)))) (-5 *4 (-1077)) (-5 *2 (-876 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
+(-10 -7 (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))) (-1077))) (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))))) (-15 -3357 ((-583 (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (-623 (-377 (-876 |#1|))))) (-15 -3597 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))) (-703) (-703))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|)))))) (-623 (-377 (-876 |#1|))))) (-15 -2816 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|))))) (-15 -2869 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|))))))
+((-3312 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
+(((-264 |#1| |#2|) (-10 -7 (-15 -3312 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1112) (-1112)) (T -264))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
+(-10 -7 (-15 -3312 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1992 (((-107) $) NIL (|has| |#1| (-21)))) (-3326 (($ $) 22)) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3939 (($ $ $) 93 (|has| |#1| (-273)))) (-3038 (($) NIL (-3786 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-3080 (($ $) 8 (|has| |#1| (-21)))) (-3699 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-2506 ((|#1| $) 21)) (-3550 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-1690 (((-107) $) NIL (|has| |#1| (-659)))) (-3312 (($ (-1 |#1| |#1|) $) 24)) (-2499 ((|#1| $) 9)) (-3613 (($ $) 57 (|has| |#1| (-21)))) (-4167 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2291 (($ $) 70 (-3786 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1755 (((-583 $) $) 19 (|has| |#1| (-509)))) (-3552 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-1077) |#1|) 27 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1077) |#1|)))) (-2960 (($ |#1| |#1|) 17)) (-1470 (((-125)) 88 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 85 (|has| |#1| (-824 (-1077))))) (-1853 (($ $ $) NIL (|has| |#1| (-442)))) (-1970 (($ $ $) NIL (|has| |#1| (-442)))) (-2262 (($ (-517)) NIL (|has| |#1| (-964))) (((-107) $) 45 (|has| |#1| (-1006))) (((-787) $) 44 (|has| |#1| (-1006)))) (-1818 (((-703)) 73 (|has| |#1| (-964)))) (-2806 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-845)) NIL (|has| |#1| (-1018)))) (-3663 (($) 55 (|has| |#1| (-21)) CONST)) (-3675 (($) 63 (|has| |#1| (-659)) CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077))))) (-1572 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3786 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1680 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1666 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-845)) NIL (|has| |#1| (-1018)))) (* (($ $ |#1|) 61 (|has| |#1| (-1018))) (($ |#1| $) 60 (|has| |#1| (-1018))) (($ $ $) 59 (|has| |#1| (-1018))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-845) $) NIL (|has| |#1| (-25)))))
+(((-265 |#1|) (-13 (-1112) (-10 -8 (-15 -1572 ($ |#1| |#1|)) (-15 -2960 ($ |#1| |#1|)) (-15 -3326 ($ $)) (-15 -2499 (|#1| $)) (-15 -2506 (|#1| $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1077) |#1|)) (-6 (-478 (-1077) |#1|)) |%noBranch|) (IF (|has| |#1| (-1006)) (PROGN (-6 (-1006)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3552 ($ $ $)) (-15 -3552 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1666 ($ |#1| $)) (-15 -1666 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3613 ($ $)) (-15 -3080 ($ $)) (-15 -1680 ($ |#1| $)) (-15 -1680 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-6 (-964)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -1755 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1165 |#1|)) (-15 -1692 ($ $ $)) (-15 -2291 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3939 ($ $ $)) |%noBranch|))) (-1112)) (T -265))
+((-1572 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-2960 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-3326 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-2499 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-2506 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-265 *3)))) (-3552 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)) (-5 *1 (-265 *2)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1006)) (-4 *3 (-1112)) (-5 *1 (-265 *3)))) (-1666 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112)))) (-1666 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112)))) (-3613 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-3080 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-1680 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-1680 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-4167 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112)))) (-3699 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1112)))) (-3939 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1112)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112)))) (-1692 (*1 *1 *1 *1) (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112))))) (-2291 (*1 *1 *1) (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112))))))
+(-13 (-1112) (-10 -8 (-15 -1572 ($ |#1| |#1|)) (-15 -2960 ($ |#1| |#1|)) (-15 -3326 ($ $)) (-15 -2499 (|#1| $)) (-15 -2506 (|#1| $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1077) |#1|)) (-6 (-478 (-1077) |#1|)) |%noBranch|) (IF (|has| |#1| (-1006)) (PROGN (-6 (-1006)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3552 ($ $ $)) (-15 -3552 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1666 ($ |#1| $)) (-15 -1666 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3613 ($ $)) (-15 -3080 ($ $)) (-15 -1680 ($ |#1| $)) (-15 -1680 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-6 (-964)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -1755 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1165 |#1|)) (-15 -1692 ($ $ $)) (-15 -2291 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3939 ($ $ $)) |%noBranch|)))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-266 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006)) (T -266))
+NIL
+(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195)))
+((-3113 (((-282) (-1060) (-583 (-1060))) 16) (((-282) (-1060) (-1060)) 15) (((-282) (-583 (-1060))) 14) (((-282) (-1060)) 12)))
+(((-267) (-10 -7 (-15 -3113 ((-282) (-1060))) (-15 -3113 ((-282) (-583 (-1060)))) (-15 -3113 ((-282) (-1060) (-1060))) (-15 -3113 ((-282) (-1060) (-583 (-1060)))))) (T -267))
+((-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1060))) (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3113 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-282)) (-5 *1 (-267)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))))
+(-10 -7 (-15 -3113 ((-282) (-1060))) (-15 -3113 ((-282) (-583 (-1060)))) (-15 -3113 ((-282) (-1060) (-1060))) (-15 -3113 ((-282) (-1060) (-583 (-1060)))))
+((-3312 ((|#2| (-1 |#2| |#1|) (-1060) (-556 |#1|)) 17)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-1060) (-556 |#1|)))) (-273) (-1112)) (T -268))
+((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1060)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1112)) (-5 *1 (-268 *6 *2)))))
+(-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-1060) (-556 |#1|))))
+((-3312 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
+(-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
+((-3558 (((-107) (-199)) 10)))
+(((-270 |#1| |#2|) (-10 -7 (-15 -3558 ((-107) (-199)))) (-199) (-199)) (T -270))
+((-3558 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -3558 ((-107) (-199))))
+((-2454 (((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199)))) 88)) (-1493 (((-1058 (-199)) (-1158 (-286 (-199))) (-583 (-1077)) (-1001 (-772 (-199)))) 103) (((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199)))) 58)) (-2595 (((-583 (-1060)) (-1058 (-199))) NIL)) (-2676 (((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199)))) 55)) (-3680 (((-583 (-199)) (-876 (-377 (-517))) (-1077) (-1001 (-772 (-199)))) 47)) (-2093 (((-583 (-1060)) (-583 (-199))) NIL)) (-1356 (((-199) (-1001 (-772 (-199)))) 23)) (-1817 (((-199) (-1001 (-772 (-199)))) 24)) (-1362 (((-107) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-3884 (((-1060) (-199)) NIL)))
+(((-271) (-10 -7 (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -1362 ((-107) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -2454 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-1158 (-286 (-199))) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -3680 ((-583 (-199)) (-876 (-377 (-517))) (-1077) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))))) (T -271))
+((-2595 (*1 *2 *3) (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-271)))) (-3680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *4 (-1077)) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077))) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077))) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077))) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) (-2676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077)) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
+(-10 -7 (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -1362 ((-107) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -2454 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-1158 (-286 (-199))) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -3680 ((-583 (-199)) (-876 (-377 (-517))) (-1077) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))))
+((-3864 (((-583 (-556 $)) $) 28)) (-3939 (($ $ (-265 $)) 81) (($ $ (-583 (-265 $))) 121) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3220 (((-3 (-556 $) "failed") $) 111)) (-3402 (((-556 $) $) 110)) (-3314 (($ $) 19) (($ (-583 $)) 55)) (-3854 (((-583 (-109)) $) 37)) (-1325 (((-109) (-109)) 91)) (-3448 (((-107) $) 129)) (-3312 (($ (-1 $ $) (-556 $)) 89)) (-1858 (((-3 (-556 $) "failed") $) 93)) (-1385 (($ (-109) $) 61) (($ (-109) (-583 $)) 99)) (-3731 (((-107) $ (-109)) 115) (((-107) $ (-1077)) 114)) (-1795 (((-703) $) 45)) (-4060 (((-107) $ $) 59) (((-107) $ (-1077)) 50)) (-2278 (((-107) $) 127)) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 119) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 84) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) 69) (($ $ (-1077) (-1 $ $)) 75) (($ $ (-583 (-109)) (-583 (-1 $ $))) 83) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 85) (($ $ (-109) (-1 $ (-583 $))) 71) (($ $ (-109) (-1 $ $)) 77)) (-2612 (($ (-109) $) 62) (($ (-109) $ $) 63) (($ (-109) $ $ $) 64) (($ (-109) $ $ $ $) 65) (($ (-109) (-583 $)) 107)) (-1816 (($ $) 52) (($ $ $) 117)) (-3488 (($ $) 17) (($ (-583 $)) 54)) (-4116 (((-107) (-109)) 22)))
+(((-272 |#1|) (-10 -8 (-15 -3448 ((-107) |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4060 ((-107) |#1| (-1077))) (-15 -4060 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1385 (|#1| (-109) (-583 |#1|))) (-15 -1385 (|#1| (-109) |#1|)) (-15 -3731 ((-107) |#1| (-1077))) (-15 -3731 ((-107) |#1| (-109))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -3854 ((-583 (-109)) |#1|)) (-15 -3864 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1795 ((-703) |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -3314 (|#1| (-583 |#1|))) (-15 -3314 (|#1| |#1|)) (-15 -3488 (|#1| (-583 |#1|))) (-15 -3488 (|#1| |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
+((-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
+(-10 -8 (-15 -3448 ((-107) |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4060 ((-107) |#1| (-1077))) (-15 -4060 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1385 (|#1| (-109) (-583 |#1|))) (-15 -1385 (|#1| (-109) |#1|)) (-15 -3731 ((-107) |#1| (-1077))) (-15 -3731 ((-107) |#1| (-109))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -3854 ((-583 (-109)) |#1|)) (-15 -3864 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1795 ((-703) |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -3314 (|#1| (-583 |#1|))) (-15 -3314 (|#1| |#1|)) (-15 -3488 (|#1| (-583 |#1|))) (-15 -3488 (|#1| |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|)))
+((-2105 (((-107) $ $) 7)) (-3864 (((-583 (-556 $)) $) 44)) (-3939 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-3220 (((-3 (-556 $) "failed") $) 69)) (-3402 (((-556 $) $) 68)) (-3314 (($ $) 51) (($ (-583 $)) 50)) (-3854 (((-583 (-109)) $) 43)) (-1325 (((-109) (-109)) 42)) (-3448 (((-107) $) 22 (|has| $ (-955 (-517))))) (-3419 (((-1073 $) (-556 $)) 25 (|has| $ (-964)))) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3312 (($ (-1 $ $) (-556 $)) 36)) (-1858 (((-3 (-556 $) "failed") $) 46)) (-3232 (((-1060) $) 9)) (-1412 (((-583 (-556 $)) $) 45)) (-1385 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3731 (((-107) $ (-109)) 40) (((-107) $ (-1077)) 39)) (-1795 (((-703) $) 47)) (-4130 (((-1024) $) 10)) (-4060 (((-107) $ $) 35) (((-107) $ (-1077)) 34)) (-2278 (((-107) $) 23 (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1077) (-1 $ (-583 $))) 31) (($ $ (-1077) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-2612 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1816 (($ $) 49) (($ $ $) 48)) (-2819 (($ $) 24 (|has| $ (-964)))) (-2262 (((-787) $) 11) (($ (-556 $)) 70)) (-3488 (($ $) 53) (($ (-583 $)) 52)) (-4116 (((-107) (-109)) 41)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)))
+(((-273) (-1189)) (T -273))
+((-2612 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3488 (*1 *1 *1) (-4 *1 (-273))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3314 (*1 *1 *1) (-4 *1 (-273))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1816 (*1 *1 *1) (-4 *1 (-273))) (-1816 (*1 *1 *1 *1) (-4 *1 (-273))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-1858 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-1325 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-4116 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-3731 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-3731 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107)))) (-1385 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1385 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-4060 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-4060 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-964)) (-4 *1 (-273)) (-5 *2 (-1073 *1)))) (-2819 (*1 *1 *1) (-12 (-4 *1 (-964)) (-4 *1 (-273)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
+(-13 (-779) (-955 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -2612 ($ (-109) $)) (-15 -2612 ($ (-109) $ $)) (-15 -2612 ($ (-109) $ $ $)) (-15 -2612 ($ (-109) $ $ $ $)) (-15 -2612 ($ (-109) (-583 $))) (-15 -3939 ($ $ (-265 $))) (-15 -3939 ($ $ (-583 (-265 $)))) (-15 -3939 ($ $ (-583 (-556 $)) (-583 $))) (-15 -3488 ($ $)) (-15 -3488 ($ (-583 $))) (-15 -3314 ($ $)) (-15 -3314 ($ (-583 $))) (-15 -1816 ($ $)) (-15 -1816 ($ $ $)) (-15 -1795 ((-703) $)) (-15 -1858 ((-3 (-556 $) "failed") $)) (-15 -1412 ((-583 (-556 $)) $)) (-15 -3864 ((-583 (-556 $)) $)) (-15 -3854 ((-583 (-109)) $)) (-15 -1325 ((-109) (-109))) (-15 -4116 ((-107) (-109))) (-15 -3731 ((-107) $ (-109))) (-15 -3731 ((-107) $ (-1077))) (-15 -1385 ($ (-109) $)) (-15 -1385 ($ (-109) (-583 $))) (-15 -3312 ($ (-1 $ $) (-556 $))) (-15 -4060 ((-107) $ $)) (-15 -4060 ((-107) $ (-1077))) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-1 $ $)))) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-1 $ (-583 $))))) (-15 -3552 ($ $ (-1077) (-1 $ (-583 $)))) (-15 -3552 ($ $ (-1077) (-1 $ $))) (-15 -3552 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -3552 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -3552 ($ $ (-109) (-1 $ (-583 $)))) (-15 -3552 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-964)) (PROGN (-15 -3419 ((-1073 $) (-556 $))) (-15 -2819 ($ $))) |%noBranch|) (IF (|has| $ (-955 (-517))) (PROGN (-15 -2278 ((-107) $)) (-15 -3448 ((-107) $))) |%noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-955 (-556 $)) . T) ((-1006) . T))
+((-4101 (((-583 |#1|) (-583 |#1|)) 10)))
+(((-274 |#1|) (-10 -7 (-15 -4101 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
+((-4101 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(-10 -7 (-15 -4101 ((-583 |#1|) (-583 |#1|))))
+((-3312 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -3312 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-964) (-964)) (T -275))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
+(-10 -7 (-15 -3312 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
+((-3045 (((-1158 (-286 (-349))) (-1158 (-286 (-199)))) 105)) (-4106 (((-1001 (-772 (-199))) (-1001 (-772 (-349)))) 39)) (-2595 (((-583 (-1060)) (-1058 (-199))) 87)) (-3203 (((-286 (-349)) (-876 (-199))) 49)) (-1371 (((-199) (-876 (-199))) 45)) (-3681 (((-1060) (-349)) 167)) (-2050 (((-772 (-199)) (-772 (-349))) 33)) (-3423 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1158 (-286 (-199)))) 142)) (-2770 (((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) 180) (((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) 178)) (-3725 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-1303 (((-1158 (-632)) (-583 (-199))) 94)) (-2093 (((-583 (-1060)) (-583 (-199))) 74)) (-1742 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-3558 (((-107) (-199) (-1001 (-772 (-199)))) 109)) (-2139 (((-953) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-1356 (((-199) (-1001 (-772 (-199)))) 107)) (-1817 (((-199) (-1001 (-772 (-199)))) 108)) (-3209 (((-199) (-377 (-517))) 26)) (-2437 (((-1060) (-349)) 72)) (-4000 (((-199) (-349)) 17)) (-1237 (((-349) (-1158 (-286 (-199)))) 153)) (-3180 (((-286 (-199)) (-286 (-349))) 23)) (-1199 (((-377 (-517)) (-286 (-199))) 52)) (-3694 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-3536 (((-286 (-349)) (-286 (-199))) 98)) (-4071 (((-199) (-286 (-199))) 53)) (-1509 (((-583 (-199)) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) 63)) (-1417 (((-1001 (-772 (-199))) (-1001 (-772 (-199)))) 60)) (-3884 (((-1060) (-199)) 71)) (-2878 (((-632) (-199)) 90)) (-2252 (((-377 (-517)) (-199)) 54)) (-2239 (((-286 (-349)) (-199)) 48)) (-3367 (((-583 (-1001 (-772 (-199)))) (-583 (-1001 (-772 (-349))))) 42)) (-4117 (((-953) (-583 (-953))) 163) (((-953) (-953) (-953)) 160)) (-3440 (((-953) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
+(((-276) (-10 -7 (-15 -4000 ((-199) (-349))) (-15 -3180 ((-286 (-199)) (-286 (-349)))) (-15 -2050 ((-772 (-199)) (-772 (-349)))) (-15 -4106 ((-1001 (-772 (-199))) (-1001 (-772 (-349))))) (-15 -3367 ((-583 (-1001 (-772 (-199)))) (-583 (-1001 (-772 (-349)))))) (-15 -2252 ((-377 (-517)) (-199))) (-15 -1199 ((-377 (-517)) (-286 (-199)))) (-15 -4071 ((-199) (-286 (-199)))) (-15 -1742 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1237 ((-349) (-1158 (-286 (-199))))) (-15 -3423 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1158 (-286 (-199))))) (-15 -3694 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1417 ((-1001 (-772 (-199))) (-1001 (-772 (-199))))) (-15 -1509 ((-583 (-199)) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-15 -2878 ((-632) (-199))) (-15 -1303 ((-1158 (-632)) (-583 (-199)))) (-15 -3536 ((-286 (-349)) (-286 (-199)))) (-15 -3045 ((-1158 (-286 (-349))) (-1158 (-286 (-199))))) (-15 -3558 ((-107) (-199) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2437 ((-1060) (-349))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -4117 ((-953) (-953) (-953))) (-15 -4117 ((-953) (-583 (-953)))) (-15 -3681 ((-1060) (-349))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))) (-15 -3440 ((-953) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2139 ((-953) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3203 ((-286 (-349)) (-876 (-199)))) (-15 -1371 ((-199) (-876 (-199)))) (-15 -2239 ((-286 (-349)) (-199))) (-15 -3209 ((-199) (-377 (-517)))) (-15 -3725 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
+((-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-876 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-876 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-953)) (-5 *1 (-276)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-953)) (-5 *1 (-276)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) (-5 *2 (-953)) (-5 *1 (-276)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *2 (-953)) (-5 *1 (-276)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-583 (-953))) (-5 *2 (-953)) (-5 *1 (-276)))) (-4117 (*1 *2 *2 *2) (-12 (-5 *2 (-953)) (-5 *1 (-276)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-276)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1001 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-1158 (-286 (-349)))) (-5 *1 (-276)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158 (-632))) (-5 *1 (-276)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-1001 (-772 (-199)))) (-5 *1 (-276)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-1742 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1199 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-583 (-1001 (-772 (-349))))) (-5 *2 (-583 (-1001 (-772 (-199))))) (-5 *1 (-276)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-349)))) (-5 *2 (-1001 (-772 (-199)))) (-5 *1 (-276)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(-10 -7 (-15 -4000 ((-199) (-349))) (-15 -3180 ((-286 (-199)) (-286 (-349)))) (-15 -2050 ((-772 (-199)) (-772 (-349)))) (-15 -4106 ((-1001 (-772 (-199))) (-1001 (-772 (-349))))) (-15 -3367 ((-583 (-1001 (-772 (-199)))) (-583 (-1001 (-772 (-349)))))) (-15 -2252 ((-377 (-517)) (-199))) (-15 -1199 ((-377 (-517)) (-286 (-199)))) (-15 -4071 ((-199) (-286 (-199)))) (-15 -1742 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1237 ((-349) (-1158 (-286 (-199))))) (-15 -3423 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1158 (-286 (-199))))) (-15 -3694 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1417 ((-1001 (-772 (-199))) (-1001 (-772 (-199))))) (-15 -1509 ((-583 (-199)) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-15 -2878 ((-632) (-199))) (-15 -1303 ((-1158 (-632)) (-583 (-199)))) (-15 -3536 ((-286 (-349)) (-286 (-199)))) (-15 -3045 ((-1158 (-286 (-349))) (-1158 (-286 (-199))))) (-15 -3558 ((-107) (-199) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2437 ((-1060) (-349))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -4117 ((-953) (-953) (-953))) (-15 -4117 ((-953) (-583 (-953)))) (-15 -3681 ((-1060) (-349))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))) (-15 -3440 ((-953) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2139 ((-953) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3203 ((-286 (-349)) (-876 (-199)))) (-15 -1371 ((-199) (-876 (-199)))) (-15 -2239 ((-286 (-349)) (-199))) (-15 -3209 ((-199) (-377 (-517)))) (-15 -3725 ((-623 (-199)) (-583 (-199)) (-703))))
+((-1765 (((-107) $ $) 11)) (-2383 (($ $ $) 15)) (-2356 (($ $ $) 14)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 44)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 53)) (-2361 (($ $ $) 21) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2333 (((-3 $ "failed") $ $) 17)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 46)))
+(((-277 |#1|) (-10 -8 (-15 -1731 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2501 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -1765 ((-107) |#1| |#1|)) (-15 -2677 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3106 ((-2 (|:| -1570 (-583 |#1|)) (|:| -1306 |#1|)) (-583 |#1|))) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
+NIL
+(-10 -8 (-15 -1731 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2501 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -1765 ((-107) |#1| |#1|)) (-15 -2677 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3106 ((-2 (|:| -1570 (-583 |#1|)) (|:| -1306 |#1|)) (-583 |#1|))) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-278) (-1189)) (T -278))
+((-1765 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-2018 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-278)))) (-2356 (*1 *1 *1 *1) (-4 *1 (-278))) (-2383 (*1 *1 *1 *1) (-4 *1 (-278))) (-2501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) (-4 *1 (-278)))) (-2501 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-1731 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(-13 (-844) (-10 -8 (-15 -1765 ((-107) $ $)) (-15 -3388 ((-703) $)) (-15 -2018 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2356 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2501 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $)) (-15 -2501 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1731 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3552 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
+(((-279 |#1| |#2|) (-10 -8 (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1006)) (T -279))
+NIL
+(-10 -8 (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
+((-3552 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
+(((-280 |#1|) (-1189) (-1006)) (T -280))
+((-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1006)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1006)))))
+(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -3552 ($ $ (-265 |t#1|))) (-15 -3552 ($ $ (-583 (-265 |t#1|))))))
(((-478 |#1| |#1|) . T))
-((-3524 ((|#1| (-1 |#1| (-517)) (-1078 (-377 (-517)))) 24)))
-(((-281 |#1|) (-10 -7 (-15 -3524 (|#1| (-1 |#1| (-517)) (-1078 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
-((-3524 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1078 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
-(-10 -7 (-15 -3524 (|#1| (-1 |#1| (-517)) (-1078 (-377 (-517))))))
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 7)) (-1584 (((-107) $ $) 9)))
-(((-282) (-1005)) (T -282))
-NIL
-(-1005)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 62)) (-1363 (((-1143 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-1143 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-517)))) (((-3 (-1142 |#2| |#3| |#4|) "failed") $) 24)) (-3390 (((-1143 |#1| |#2| |#3| |#4|) $) NIL) (((-1076) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-517)))) (((-517) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-517)))) (((-1142 |#2| |#3| |#4|) $) NIL)) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-1143 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1157 (-1143 |#1| |#2| |#3| |#4|)))) (-623 $) (-1157 $)) NIL) (((-623 (-1143 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-1143 |#1| |#2| |#3| |#4|) $) 21)) (-2243 (((-3 $ "failed") $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-1052)))) (-1952 (((-107) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-779)))) (-4084 (($ $ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-779)))) (-3310 (($ (-1 (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|)) $) NIL)) (-2450 (((-3 (-772 |#2|) "failed") $) 76)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-278)))) (-2961 (((-1143 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-1143 |#1| |#2| |#3| |#4|)) (-583 (-1143 |#1| |#2| |#3| |#4|))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-280 (-1143 |#1| |#2| |#3| |#4|)))) (($ $ (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-280 (-1143 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1143 |#1| |#2| |#3| |#4|))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-280 (-1143 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1143 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-280 (-1143 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1076)) (-583 (-1143 |#1| |#2| |#3| |#4|))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-478 (-1076) (-1143 |#1| |#2| |#3| |#4|)))) (($ $ (-1076) (-1143 |#1| |#2| |#3| |#4|)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-478 (-1076) (-1143 |#1| |#2| |#3| |#4|))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-1143 |#1| |#2| |#3| |#4|)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-258 (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1076)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-1 (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-1143 |#1| |#2| |#3| |#4|) $) 17)) (-3359 (((-815 (-517)) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-939))) (((-199) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1143 |#1| |#2| |#3| |#4|) (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1143 |#1| |#2| |#3| |#4|)) 28) (($ (-1076)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-954 (-1076)))) (($ (-1142 |#2| |#3| |#4|)) 36)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-1143 |#1| |#2| |#3| |#4|) (-832))) (|has| (-1143 |#1| |#2| |#3| |#4|) (-132))))) (-4099 (((-703)) NIL)) (-3599 (((-1143 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-502)))) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 41 T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1076)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-823 (-1076)))) (($ $ (-1 (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-1143 |#1| |#2| |#3| |#4|) (-779)))) (-1704 (($ $ $) 33) (($ (-1143 |#1| |#2| |#3| |#4|) (-1143 |#1| |#2| |#3| |#4|)) 30)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1143 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1143 |#1| |#2| |#3| |#4|)) NIL)))
-(((-283 |#1| |#2| |#3| |#4|) (-13 (-911 (-1143 |#1| |#2| |#3| |#4|)) (-954 (-1142 |#2| |#3| |#4|)) (-10 -8 (-15 -2450 ((-3 (-772 |#2|) "failed") $)) (-15 -2271 ($ (-1142 |#2| |#3| |#4|))))) (-13 (-779) (-954 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1097) (-400 |#1|)) (-1076) |#2|) (T -283))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1142 *4 *5 *6)) (-4 *4 (-13 (-27) (-1097) (-400 *3))) (-14 *5 (-1076)) (-14 *6 *4) (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-2450 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1097) (-400 *3))) (-14 *5 (-1076)) (-14 *6 *4))))
-(-13 (-911 (-1143 |#1| |#2| |#3| |#4|)) (-954 (-1142 |#2| |#3| |#4|)) (-10 -8 (-15 -2450 ((-3 (-772 |#2|) "failed") $)) (-15 -2271 ($ (-1142 |#2| |#3| |#4|)))))
-((-3310 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -3310 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
-(-10 -7 (-15 -3310 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
-((-2145 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1076)) 21)) (-3433 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1076)) 47)) (-2165 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1076)) 42)) (-2154 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1076)) 34)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -2145 ((-51) (-1076))) (-15 -2145 ((-51) |#2|)) (-15 -2145 ((-51) |#2| (-703))) (-15 -2145 ((-51) |#2| (-265 |#2|))) (-15 -2145 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2154 ((-51) (-1076))) (-15 -2154 ((-51) |#2|)) (-15 -2154 ((-51) |#2| (-517))) (-15 -2154 ((-51) |#2| (-265 |#2|))) (-15 -2154 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2165 ((-51) (-1076))) (-15 -2165 ((-51) |#2|)) (-15 -2165 ((-51) |#2| (-377 (-517)))) (-15 -2165 ((-51) |#2| (-265 |#2|))) (-15 -2165 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3433 ((-51) (-1076))) (-15 -3433 ((-51) |#2|)) (-15 -3433 ((-51) |#2| (-377 (-517)))) (-15 -3433 ((-51) |#2| (-265 |#2|))) (-15 -3433 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -285))
-((-3433 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-3433 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1097) (-400 *4))))) (-2165 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2165 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1097) (-400 *4))))) (-2154 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-954 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-954 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2154 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1097) (-400 *4))))) (-2145 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1097) (-400 *4))))))
-(-10 -7 (-15 -2145 ((-51) (-1076))) (-15 -2145 ((-51) |#2|)) (-15 -2145 ((-51) |#2| (-703))) (-15 -2145 ((-51) |#2| (-265 |#2|))) (-15 -2145 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2154 ((-51) (-1076))) (-15 -2154 ((-51) |#2|)) (-15 -2154 ((-51) |#2| (-517))) (-15 -2154 ((-51) |#2| (-265 |#2|))) (-15 -2154 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2165 ((-51) (-1076))) (-15 -2165 ((-51) |#2|)) (-15 -2165 ((-51) |#2| (-377 (-517)))) (-15 -2165 ((-51) |#2| (-265 |#2|))) (-15 -2165 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3433 ((-51) (-1076))) (-15 -3433 ((-51) |#2|)) (-15 -3433 ((-51) |#2| (-377 (-517)))) (-15 -3433 ((-51) |#2| (-265 |#2|))) (-15 -3433 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
-((-2119 (((-107) $ $) NIL)) (-3087 (((-583 $) $ (-1076)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1072 $) (-1076)) NIL (|has| |#1| (-509))) (((-583 $) (-1072 $)) NIL (|has| |#1| (-509))) (((-583 $) (-875 $)) NIL (|has| |#1| (-509)))) (-3477 (($ $ (-1076)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1072 $) (-1076)) NIL (|has| |#1| (-509))) (($ (-1072 $)) NIL (|has| |#1| (-509))) (($ (-875 $)) NIL (|has| |#1| (-509)))) (-3097 (((-107) $) 27 (-3747 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))))) (-2097 (((-583 (-1076)) $) 345)) (-1440 (((-377 (-1072 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-3834 (((-583 (-556 $)) $) NIL)) (-1648 (($ $) 154 (|has| |#1| (-509)))) (-1494 (($ $) 130 (|has| |#1| (-509)))) (-2648 (($ $ (-998 $)) 215 (|has| |#1| (-509))) (($ $ (-1076)) 211 (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) NIL (-3747 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))))) (-3915 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 361) (($ $ (-583 (-556 $)) (-583 $)) 404)) (-3327 (((-388 (-1072 $)) (-1072 $)) 289 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-1224 (($ $) NIL (|has| |#1| (-509)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3880 (($ $) NIL (|has| |#1| (-509)))) (-3820 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1624 (($ $) 150 (|has| |#1| (-509)))) (-1471 (($ $) 126 (|has| |#1| (-509)))) (-2972 (($ $ (-517)) 64 (|has| |#1| (-509)))) (-1670 (($ $) 158 (|has| |#1| (-509)))) (-1520 (($ $) 134 (|has| |#1| (-509)))) (-1393 (($) NIL (-3747 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017))) CONST)) (-3322 (((-583 $) $ (-1076)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1072 $) (-1076)) NIL (|has| |#1| (-509))) (((-583 $) (-1072 $)) NIL (|has| |#1| (-509))) (((-583 $) (-875 $)) NIL (|has| |#1| (-509)))) (-3522 (($ $ (-1076)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1072 $) (-1076)) 117 (|has| |#1| (-509))) (($ (-1072 $)) NIL (|has| |#1| (-509))) (($ (-875 $)) NIL (|has| |#1| (-509)))) (-3228 (((-3 (-556 $) "failed") $) 17) (((-3 (-1076) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-875 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-875 |#1|) "failed") $) NIL (|has| |#1| (-963))) (((-3 (-377 (-517)) "failed") $) 45 (-3747 (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-3390 (((-556 $) $) 11) (((-1076) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-875 |#1|)) $) NIL (|has| |#1| (-509))) (((-875 |#1|) $) NIL (|has| |#1| (-963))) (((-377 (-517)) $) 302 (-3747 (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-2379 (($ $ $) NIL (|has| |#1| (-509)))) (-2207 (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 110 (|has| |#1| (-963))) (((-623 |#1|) (-623 $)) 102 (|has| |#1| (-963))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))))) (-1522 (($ $) 84 (|has| |#1| (-509)))) (-2560 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017))))) (-2354 (($ $ $) NIL (|has| |#1| (-509)))) (-3196 (($ $ (-998 $)) 219 (|has| |#1| (-509))) (($ $ (-1076)) 217 (|has| |#1| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-1259 (((-107) $) NIL (|has| |#1| (-509)))) (-3008 (($ $ $) 185 (|has| |#1| (-509)))) (-2116 (($) 120 (|has| |#1| (-509)))) (-2144 (($ $ $) 205 (|has| |#1| (-509)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 367 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 373 (|has| |#1| (-809 (-349))))) (-3659 (($ $) NIL) (($ (-583 $)) NIL)) (-1194 (((-583 (-109)) $) NIL)) (-1934 (((-109) (-109)) 260)) (-1376 (((-107) $) 25 (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017))))) (-2686 (((-107) $) NIL (|has| $ (-954 (-517))))) (-1862 (($ $) 66 (|has| |#1| (-963)))) (-3826 (((-1028 |#1| (-556 $)) $) 79 (|has| |#1| (-963)))) (-4000 (((-107) $) 46 (|has| |#1| (-509)))) (-2092 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3760 (((-1072 $) (-556 $)) 261 (|has| $ (-963)))) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 $ $) (-556 $)) 400)) (-3971 (((-3 (-556 $) "failed") $) NIL)) (-1226 (($ $) 124 (|has| |#1| (-509)))) (-2180 (($ $) 230 (|has| |#1| (-509)))) (-2332 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-1662 (((-1059) $) NIL)) (-1424 (((-583 (-556 $)) $) 48)) (-1398 (($ (-109) $) NIL) (($ (-109) (-583 $)) 405)) (-2745 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1017)))) (-1480 (((-3 (-2 (|:| |val| $) (|:| -2121 (-517))) "failed") $) NIL (|has| |#1| (-963)))) (-1653 (((-3 (-583 $) "failed") $) 408 (|has| |#1| (-25)))) (-2859 (((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2670 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $) NIL (|has| |#1| (-1017))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-963))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-1076)) NIL (|has| |#1| (-963)))) (-2066 (((-107) $ (-109)) NIL) (((-107) $ (-1076)) 52)) (-2300 (($ $) NIL (-3747 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-2483 (($ $ (-1076)) 234 (|has| |#1| (-509))) (($ $ (-998 $)) 236 (|has| |#1| (-509)))) (-1809 (((-703) $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) 43)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 282 (|has| |#1| (-509)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-1647 (((-107) $ $) NIL) (((-107) $ (-1076)) NIL)) (-2953 (($ $ (-1076)) 209 (|has| |#1| (-509))) (($ $) 207 (|has| |#1| (-509)))) (-1691 (($ $) 201 (|has| |#1| (-509)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 287 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3868 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-509)))) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3870 (($ $) 122 (|has| |#1| (-509)))) (-1766 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3524 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 399) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1076) (-1 $ (-583 $))) NIL) (($ $ (-1076) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 355) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1076)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1076)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1076)) 342 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-963))) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-963))) (($ $ (-1076) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-963))) (($ $ (-1076) (-703) (-1 $ $)) NIL (|has| |#1| (-963)))) (-3600 (((-703) $) NIL (|has| |#1| (-509)))) (-1422 (($ $) 222 (|has| |#1| (-509)))) (-2609 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-1457 (($ $) NIL) (($ $ $) NIL)) (-1460 (($ $) 232 (|has| |#1| (-509)))) (-2842 (($ $) 183 (|has| |#1| (-509)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-963))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-963))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-963))) (($ $ (-1076)) NIL (|has| |#1| (-963)))) (-2484 (($ $) 67 (|has| |#1| (-509)))) (-2098 (((-1028 |#1| (-556 $)) $) 81 (|has| |#1| (-509)))) (-2387 (($ $) 300 (|has| $ (-963)))) (-1682 (($ $) 160 (|has| |#1| (-509)))) (-1533 (($ $) 136 (|has| |#1| (-509)))) (-1660 (($ $) 156 (|has| |#1| (-509)))) (-1507 (($ $) 132 (|has| |#1| (-509)))) (-1635 (($ $) 152 (|has| |#1| (-509)))) (-1483 (($ $) 128 (|has| |#1| (-509)))) (-3359 (((-815 (-517)) $) NIL (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#1| (-558 (-815 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 340 (|has| |#1| (-558 (-493))))) (-1842 (($ $ $) NIL (|has| |#1| (-442)))) (-2059 (($ $ $) NIL (|has| |#1| (-442)))) (-2271 (((-787) $) 398) (($ (-556 $)) 389) (($ (-1076)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 294 (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517))))) (($ (-1028 |#1| (-556 $))) 83 (|has| |#1| (-963))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-875 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-875 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-875 |#1|))) NIL (|has| |#1| (-509))) (($ (-875 |#1|)) NIL (|has| |#1| (-963))) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-509)) (|has| |#1| (-954 (-377 (-517)))))) (($ (-517)) 34 (-3747 (|has| |#1| (-954 (-517))) (|has| |#1| (-963))))) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL (|has| |#1| (-963)))) (-3440 (($ $) NIL) (($ (-583 $)) NIL)) (-1917 (($ $ $) 203 (|has| |#1| (-509)))) (-2661 (($ $ $) 189 (|has| |#1| (-509)))) (-1298 (($ $ $) 193 (|has| |#1| (-509)))) (-1235 (($ $ $) 187 (|has| |#1| (-509)))) (-1807 (($ $ $) 191 (|has| |#1| (-509)))) (-3750 (((-107) (-109)) 9)) (-1722 (($ $) 166 (|has| |#1| (-509)))) (-1576 (($ $) 142 (|has| |#1| (-509)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) 162 (|has| |#1| (-509)))) (-1548 (($ $) 138 (|has| |#1| (-509)))) (-3489 (($ $) 170 (|has| |#1| (-509)))) (-1600 (($ $) 146 (|has| |#1| (-509)))) (-3513 (($ (-1076) $) NIL) (($ (-1076) $ $) NIL) (($ (-1076) $ $ $) NIL) (($ (-1076) $ $ $ $) NIL) (($ (-1076) (-583 $)) NIL)) (-2887 (($ $) 197 (|has| |#1| (-509)))) (-2021 (($ $) 195 (|has| |#1| (-509)))) (-2824 (($ $) 172 (|has| |#1| (-509)))) (-1613 (($ $) 148 (|has| |#1| (-509)))) (-1735 (($ $) 168 (|has| |#1| (-509)))) (-1589 (($ $) 144 (|has| |#1| (-509)))) (-1709 (($ $) 164 (|has| |#1| (-509)))) (-1562 (($ $) 140 (|has| |#1| (-509)))) (-2376 (($ $) 175 (|has| |#1| (-509)))) (-2815 (($ $ (-517)) NIL (-3747 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017)))) (($ $ (-844)) NIL (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017))))) (-3610 (($) 20 (-3747 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))) CONST)) (-1558 (($ $) 226 (|has| |#1| (-509)))) (-3619 (($) 22 (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017))) CONST)) (-3700 (($ $) 177 (|has| |#1| (-509))) (($ $ $) 179 (|has| |#1| (-509)))) (-3604 (($ $) 224 (|has| |#1| (-509)))) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-963))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-963))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-963))) (($ $ (-1076)) NIL (|has| |#1| (-963)))) (-3329 (($ $) 228 (|has| |#1| (-509)))) (-2902 (($ $ $) 181 (|has| |#1| (-509)))) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 76)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 75)) (-1704 (($ (-1028 |#1| (-556 $)) (-1028 |#1| (-556 $))) 93 (|has| |#1| (-509))) (($ $ $) 42 (-3747 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1692 (($ $ $) 40 (-3747 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))))) (($ $) 29 (-3747 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))))) (-1678 (($ $ $) 38 (-3747 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))))) (** (($ $ $) 61 (|has| |#1| (-509))) (($ $ (-377 (-517))) 297 (|has| |#1| (-509))) (($ $ (-517)) 71 (-3747 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 68 (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017)))) (($ $ (-844)) 73 (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3747 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) (|has| |#1| (-1017)))) (($ (-517) $) 32 (-3747 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))))) (($ (-703) $) NIL (-3747 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))))) (($ (-844) $) NIL (-3747 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))))))
-(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1097)) (-6 (-145)) (-6 (-569)) (-6 (-1040)) (-15 -1522 ($ $)) (-15 -4000 ((-107) $)) (-15 -2972 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -3442 ((-388 (-1072 $)) (-1072 $))) (-15 -3327 ((-388 (-1072 $)) (-1072 $)))) |%noBranch|) (IF (|has| |#1| (-954 (-517))) (-6 (-954 (-47))) |%noBranch|)) |%noBranch|))) (-779)) (T -286))
-((-1522 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2972 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-388 (-1072 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1072 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-3327 (*1 *2 *3) (-12 (-5 *2 (-388 (-1072 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1072 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
-(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1097)) (-6 (-145)) (-6 (-569)) (-6 (-1040)) (-15 -1522 ($ $)) (-15 -4000 ((-107) $)) (-15 -2972 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -3442 ((-388 (-1072 $)) (-1072 $))) (-15 -3327 ((-388 (-1072 $)) (-1072 $)))) |%noBranch|) (IF (|has| |#1| (-954 (-517))) (-6 (-954 (-47))) |%noBranch|)) |%noBranch|)))
-((-4117 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -4117 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -4117 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -4117 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -4117 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -4117 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -4117 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -4117 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -4117 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -4117 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -4117 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
-((-4117 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-4117 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-4117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-4117 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-4117 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-4117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-4117 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-4117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-4117 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-4117 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
-(-10 -7 (-15 -4117 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -4117 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -4117 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -4117 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -4117 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -4117 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -4117 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -4117 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -4117 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -4117 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
-((-1931 (((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-199) (-517) (-1059)) 46) (((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-199) (-517)) 47) (((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-1 (-199) (-199)) (-517) (-1059)) 43) (((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-1 (-199) (-199)) (-517)) 44)) (-1487 (((-1 (-199) (-199)) (-199)) 45)))
-(((-288) (-10 -7 (-15 -1487 ((-1 (-199) (-199)) (-199))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-1 (-199) (-199)) (-517))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-1 (-199) (-199)) (-517) (-1059))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-199) (-517))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-199) (-517) (-1059))))) (T -288))
-((-1931 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1000 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1059)) (-5 *2 (-1107 (-849))) (-5 *1 (-288)))) (-1931 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1000 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1107 (-849))) (-5 *1 (-288)))) (-1931 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1000 (-199))) (-5 *6 (-517)) (-5 *7 (-1059)) (-5 *2 (-1107 (-849))) (-5 *1 (-288)))) (-1931 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1000 (-199))) (-5 *6 (-517)) (-5 *2 (-1107 (-849))) (-5 *1 (-288)))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
-(-10 -7 (-15 -1487 ((-1 (-199) (-199)) (-199))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-1 (-199) (-199)) (-517))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-1 (-199) (-199)) (-517) (-1059))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-199) (-517))) (-15 -1931 ((-1107 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-199) (-517) (-1059))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 24)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) 31)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-377 (-517))) NIL) (($ $ (-991) (-377 (-517))) NIL) (($ $ (-583 (-991)) (-583 (-377 (-517)))) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2356 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097)))))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) NIL)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3154 (((-377 (-517)) $) 16)) (-3804 (($ (-1142 |#1| |#2| |#3|)) 11)) (-2121 (((-1142 |#1| |#2| |#3|) $) 12)) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3647 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 10)) (-2271 (((-787) $) 37) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) 29)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) NIL)) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 26)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 32)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-289 |#1| |#2| |#3|) (-13 (-1138 |#1|) (-724) (-10 -8 (-15 -3804 ($ (-1142 |#1| |#2| |#3|))) (-15 -2121 ((-1142 |#1| |#2| |#3|) $)) (-15 -3154 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1076) |#1|) (T -289))
-((-3804 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1076)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-1142 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1076)) (-14 *5 *3))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1076)) (-14 *5 *3))))
-(-13 (-1138 |#1|) (-724) (-10 -8 (-15 -3804 ($ (-1142 |#1| |#2| |#3|))) (-15 -2121 ((-1142 |#1| |#2| |#3|) $)) (-15 -3154 ((-377 (-517)) $))))
-((-2092 (((-2 (|:| -2121 (-703)) (|:| -1582 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1226 (((-583 (-2 (|:| -1582 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
-(((-290 |#1|) (-10 -7 (-15 -2092 ((-2 (|:| -2121 (-703)) (|:| -1582 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1226 ((-583 (-2 (|:| -1582 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
-((-1226 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1582 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
-(-10 -7 (-15 -2092 ((-2 (|:| -2121 (-703)) (|:| -1582 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1226 ((-583 (-2 (|:| -1582 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
-((-2097 (((-583 |#2|) (-1072 |#4|)) 43)) (-2203 ((|#3| (-517)) 46)) (-3951 (((-1072 |#4|) (-1072 |#3|)) 30)) (-3384 (((-1072 |#4|) (-1072 |#4|) (-517)) 56)) (-3188 (((-1072 |#3|) (-1072 |#4|)) 21)) (-3647 (((-583 (-703)) (-1072 |#4|) (-583 |#2|)) 40)) (-2382 (((-1072 |#3|) (-1072 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
-(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-1072 |#3|) (-1072 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3647 ((-583 (-703)) (-1072 |#4|) (-583 |#2|))) (-15 -2097 ((-583 |#2|) (-1072 |#4|))) (-15 -3188 ((-1072 |#3|) (-1072 |#4|))) (-15 -3951 ((-1072 |#4|) (-1072 |#3|))) (-15 -3384 ((-1072 |#4|) (-1072 |#4|) (-517))) (-15 -2203 (|#3| (-517)))) (-725) (-779) (-963) (-872 |#3| |#1| |#2|)) (T -291))
-((-2203 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-963)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-872 *2 *4 *5)))) (-3384 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 *7)) (-5 *3 (-517)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-5 *1 (-291 *4 *5 *6 *7)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-1072 *6)) (-4 *6 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1072 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-1072 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-5 *2 (-1072 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-1072 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-872 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-963)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-2382 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1072 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-963)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1072 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2382 ((-1072 |#3|) (-1072 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3647 ((-583 (-703)) (-1072 |#4|) (-583 |#2|))) (-15 -2097 ((-583 |#2|) (-1072 |#4|))) (-15 -3188 ((-1072 |#3|) (-1072 |#4|))) (-15 -3951 ((-1072 |#4|) (-1072 |#3|))) (-15 -3384 ((-1072 |#4|) (-1072 |#4|) (-517))) (-15 -2203 (|#3| (-517))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 14)) (-1928 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-517)))) $) 18)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2399 (((-703) $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-1789 ((|#1| $ (-517)) NIL)) (-3806 (((-517) $ (-517)) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-3912 (($ (-1 |#1| |#1|) $) NIL)) (-2577 (($ (-1 (-517) (-517)) $) 10)) (-1662 (((-1059) $) NIL)) (-3616 (($ $ $) NIL (|has| (-517) (-724)))) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL) (($ |#1|) NIL)) (-1689 (((-517) |#1| $) NIL)) (-3610 (($) 15 T CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1692 (($ $) 11) (($ $ $) 20)) (-1678 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
-(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1005)) (T -292))
+((-3552 ((|#1| (-1 |#1| (-517)) (-1079 (-377 (-517)))) 24)))
+(((-281 |#1|) (-10 -7 (-15 -3552 (|#1| (-1 |#1| (-517)) (-1079 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
+((-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1079 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
+(-10 -7 (-15 -3552 (|#1| (-1 |#1| (-517)) (-1079 (-377 (-517))))))
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 7)) (-1572 (((-107) $ $) 9)))
+(((-282) (-1006)) (T -282))
+NIL
+(-1006)
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 62)) (-2964 (((-1144 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1144 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-3 (-1143 |#2| |#3| |#4|) "failed") $) 24)) (-3402 (((-1144 |#1| |#2| |#3| |#4|) $) NIL) (((-1077) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-517) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-1143 |#2| |#3| |#4|) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-1144 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1158 (-1144 |#1| |#2| |#3| |#4|)))) (-623 $) (-1158 $)) NIL) (((-623 (-1144 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-1144 |#1| |#2| |#3| |#4|) $) 21)) (-1639 (((-3 $ "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-1053)))) (-2321 (((-107) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-4095 (($ $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-3312 (($ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) $) NIL)) (-3588 (((-3 (-772 |#2|) "failed") $) 76)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-278)))) (-2713 (((-1144 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-1144 |#1| |#2| |#3| |#4|)) (-583 (-1144 |#1| |#2| |#3| |#4|))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1144 |#1| |#2| |#3| |#4|))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1144 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1077)) (-583 (-1144 |#1| |#2| |#3| |#4|))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-478 (-1077) (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-1077) (-1144 |#1| |#2| |#3| |#4|)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-478 (-1077) (-1144 |#1| |#2| |#3| |#4|))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-1144 |#1| |#2| |#3| |#4|)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-258 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1077)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-1144 |#1| |#2| |#3| |#4|) $) 17)) (-3367 (((-816 (-517)) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-940))) (((-199) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1144 |#1| |#2| |#3| |#4|) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1144 |#1| |#2| |#3| |#4|)) 28) (($ (-1077)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-1077)))) (($ (-1143 |#2| |#3| |#4|)) 36)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-1144 |#1| |#2| |#3| |#4|) (-833))) (|has| (-1144 |#1| |#2| |#3| |#4|) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-1144 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 41 T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1077)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1692 (($ $ $) 33) (($ (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) 30)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1144 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1144 |#1| |#2| |#3| |#4|)) NIL)))
+(((-283 |#1| |#2| |#3| |#4|) (-13 (-912 (-1144 |#1| |#2| |#3| |#4|)) (-955 (-1143 |#2| |#3| |#4|)) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2262 ($ (-1143 |#2| |#3| |#4|))))) (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1098) (-400 |#1|)) (-1077) |#2|) (T -283))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1143 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4) (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-3588 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4))))
+(-13 (-912 (-1144 |#1| |#2| |#3| |#4|)) (-955 (-1143 |#2| |#3| |#4|)) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2262 ($ (-1143 |#2| |#3| |#4|)))))
+((-3312 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -3312 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
+(-10 -7 (-15 -3312 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
+((-2131 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1077)) 21)) (-3452 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1077)) 47)) (-2151 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1077)) 42)) (-2140 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1077)) 34)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -2131 ((-51) (-1077))) (-15 -2131 ((-51) |#2|)) (-15 -2131 ((-51) |#2| (-703))) (-15 -2131 ((-51) |#2| (-265 |#2|))) (-15 -2131 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2140 ((-51) (-1077))) (-15 -2140 ((-51) |#2|)) (-15 -2140 ((-51) |#2| (-517))) (-15 -2140 ((-51) |#2| (-265 |#2|))) (-15 -2140 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2151 ((-51) (-1077))) (-15 -2151 ((-51) |#2|)) (-15 -2151 ((-51) |#2| (-377 (-517)))) (-15 -2151 ((-51) |#2| (-265 |#2|))) (-15 -2151 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3452 ((-51) (-1077))) (-15 -3452 ((-51) |#2|)) (-15 -3452 ((-51) |#2| (-377 (-517)))) (-15 -3452 ((-51) |#2| (-265 |#2|))) (-15 -3452 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -285))
+((-3452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-3452 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))) (-2151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2151 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))) (-2140 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-955 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2140 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))))
+(-10 -7 (-15 -2131 ((-51) (-1077))) (-15 -2131 ((-51) |#2|)) (-15 -2131 ((-51) |#2| (-703))) (-15 -2131 ((-51) |#2| (-265 |#2|))) (-15 -2131 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2140 ((-51) (-1077))) (-15 -2140 ((-51) |#2|)) (-15 -2140 ((-51) |#2| (-517))) (-15 -2140 ((-51) |#2| (-265 |#2|))) (-15 -2140 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2151 ((-51) (-1077))) (-15 -2151 ((-51) |#2|)) (-15 -2151 ((-51) |#2| (-377 (-517)))) (-15 -2151 ((-51) |#2| (-265 |#2|))) (-15 -2151 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3452 ((-51) (-1077))) (-15 -3452 ((-51) |#2|)) (-15 -3452 ((-51) |#2| (-377 (-517)))) (-15 -3452 ((-51) |#2| (-265 |#2|))) (-15 -3452 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
+((-2105 (((-107) $ $) NIL)) (-2454 (((-583 $) $ (-1077)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $) (-1077)) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $)) NIL (|has| |#1| (-509))) (((-583 $) (-876 $)) NIL (|has| |#1| (-509)))) (-1480 (($ $ (-1077)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1073 $) (-1077)) NIL (|has| |#1| (-509))) (($ (-1073 $)) NIL (|has| |#1| (-509))) (($ (-876 $)) NIL (|has| |#1| (-509)))) (-1992 (((-107) $) 27 (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-2080 (((-583 (-1077)) $) 345)) (-1428 (((-377 (-1073 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-3864 (((-583 (-556 $)) $) NIL)) (-1636 (($ $) 154 (|has| |#1| (-509)))) (-1482 (($ $) 130 (|has| |#1| (-509)))) (-2755 (($ $ (-999 $)) 215 (|has| |#1| (-509))) (($ $ (-1077)) 211 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 361) (($ $ (-583 (-556 $)) (-583 $)) 404)) (-1453 (((-388 (-1073 $)) (-1073 $)) 289 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-1322 (($ $) NIL (|has| |#1| (-509)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3908 (($ $) NIL (|has| |#1| (-509)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1612 (($ $) 150 (|has| |#1| (-509)))) (-1459 (($ $) 126 (|has| |#1| (-509)))) (-3696 (($ $ (-517)) 64 (|has| |#1| (-509)))) (-1659 (($ $) 158 (|has| |#1| (-509)))) (-1508 (($ $) 134 (|has| |#1| (-509)))) (-3038 (($) NIL (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))) CONST)) (-2726 (((-583 $) $ (-1077)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $) (-1077)) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $)) NIL (|has| |#1| (-509))) (((-583 $) (-876 $)) NIL (|has| |#1| (-509)))) (-1454 (($ $ (-1077)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1073 $) (-1077)) 117 (|has| |#1| (-509))) (($ (-1073 $)) NIL (|has| |#1| (-509))) (($ (-876 $)) NIL (|has| |#1| (-509)))) (-3220 (((-3 (-556 $) "failed") $) 17) (((-3 (-1077) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-876 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-876 |#1|) "failed") $) NIL (|has| |#1| (-964))) (((-3 (-377 (-517)) "failed") $) 45 (-3786 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 (((-556 $) $) 11) (((-1077) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-876 |#1|)) $) NIL (|has| |#1| (-509))) (((-876 |#1|) $) NIL (|has| |#1| (-964))) (((-377 (-517)) $) 302 (-3786 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-2383 (($ $ $) NIL (|has| |#1| (-509)))) (-2947 (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 110 (|has| |#1| (-964))) (((-623 |#1|) (-623 $)) 102 (|has| |#1| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (-1510 (($ $) 84 (|has| |#1| (-509)))) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (-2356 (($ $ $) NIL (|has| |#1| (-509)))) (-1983 (($ $ (-999 $)) 219 (|has| |#1| (-509))) (($ $ (-1077)) 217 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-2022 (((-107) $) NIL (|has| |#1| (-509)))) (-2922 (($ $ $) 185 (|has| |#1| (-509)))) (-2102 (($) 120 (|has| |#1| (-509)))) (-3624 (($ $ $) 205 (|has| |#1| (-509)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 367 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 373 (|has| |#1| (-810 (-349))))) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) 260)) (-1690 (((-107) $) 25 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3662 (($ $) 66 (|has| |#1| (-964)))) (-3858 (((-1029 |#1| (-556 $)) $) 79 (|has| |#1| (-964)))) (-3168 (((-107) $) 46 (|has| |#1| (-509)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3419 (((-1073 $) (-556 $)) 261 (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) 400)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-1232 (($ $) 124 (|has| |#1| (-509)))) (-2168 (($ $) 230 (|has| |#1| (-509)))) (-2323 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) 48)) (-1385 (($ (-109) $) NIL) (($ (-109) (-583 $)) 405)) (-1743 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1018)))) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) NIL (|has| |#1| (-964)))) (-1442 (((-3 (-583 $) "failed") $) 408 (|has| |#1| (-25)))) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 412 (|has| |#1| (-25)))) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) NIL (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) NIL (|has| |#1| (-964)))) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) 52)) (-2291 (($ $) NIL (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1329 (($ $ (-1077)) 234 (|has| |#1| (-509))) (($ $ (-999 $)) 236 (|has| |#1| (-509)))) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 43)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 282 (|has| |#1| (-509)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-2995 (($ $ (-1077)) 209 (|has| |#1| (-509))) (($ $) 207 (|has| |#1| (-509)))) (-2038 (($ $) 201 (|has| |#1| (-509)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 287 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-509)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3898 (($ $) 122 (|has| |#1| (-509)))) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 399) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 355) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1077)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1077)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1077)) 342 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ $)) NIL (|has| |#1| (-964)))) (-3388 (((-703) $) NIL (|has| |#1| (-509)))) (-1410 (($ $) 222 (|has| |#1| (-509)))) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-1816 (($ $) NIL) (($ $ $) NIL)) (-1446 (($ $) 232 (|has| |#1| (-509)))) (-2581 (($ $) 183 (|has| |#1| (-509)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-964))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-964))) (($ $ (-1077)) NIL (|has| |#1| (-964)))) (-1463 (($ $) 67 (|has| |#1| (-509)))) (-2082 (((-1029 |#1| (-556 $)) $) 81 (|has| |#1| (-509)))) (-2819 (($ $) 300 (|has| $ (-964)))) (-1670 (($ $) 160 (|has| |#1| (-509)))) (-1521 (($ $) 136 (|has| |#1| (-509)))) (-1647 (($ $) 156 (|has| |#1| (-509)))) (-1495 (($ $) 132 (|has| |#1| (-509)))) (-1622 (($ $) 152 (|has| |#1| (-509)))) (-1471 (($ $) 128 (|has| |#1| (-509)))) (-3367 (((-816 (-517)) $) NIL (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#1| (-558 (-816 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 340 (|has| |#1| (-558 (-493))))) (-1853 (($ $ $) NIL (|has| |#1| (-442)))) (-1970 (($ $ $) NIL (|has| |#1| (-442)))) (-2262 (((-787) $) 398) (($ (-556 $)) 389) (($ (-1077)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 294 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) (($ (-1029 |#1| (-556 $))) 83 (|has| |#1| (-964))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-876 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-876 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-876 |#1|))) NIL (|has| |#1| (-509))) (($ (-876 |#1|)) NIL (|has| |#1| (-964))) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-509)) (|has| |#1| (-955 (-377 (-517)))))) (($ (-517)) 34 (-3786 (|has| |#1| (-955 (-517))) (|has| |#1| (-964))))) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL (|has| |#1| (-964)))) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-1462 (($ $ $) 203 (|has| |#1| (-509)))) (-3746 (($ $ $) 189 (|has| |#1| (-509)))) (-3518 (($ $ $) 193 (|has| |#1| (-509)))) (-2672 (($ $ $) 187 (|has| |#1| (-509)))) (-2747 (($ $ $) 191 (|has| |#1| (-509)))) (-4116 (((-107) (-109)) 9)) (-1706 (($ $) 166 (|has| |#1| (-509)))) (-1564 (($ $) 142 (|has| |#1| (-509)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 162 (|has| |#1| (-509)))) (-1536 (($ $) 138 (|has| |#1| (-509)))) (-3517 (($ $) 170 (|has| |#1| (-509)))) (-1588 (($ $) 146 (|has| |#1| (-509)))) (-3540 (($ (-1077) $) NIL) (($ (-1077) $ $) NIL) (($ (-1077) $ $ $) NIL) (($ (-1077) $ $ $ $) NIL) (($ (-1077) (-583 $)) NIL)) (-4113 (($ $) 197 (|has| |#1| (-509)))) (-4084 (($ $) 195 (|has| |#1| (-509)))) (-2815 (($ $) 172 (|has| |#1| (-509)))) (-1601 (($ $) 148 (|has| |#1| (-509)))) (-1722 (($ $) 168 (|has| |#1| (-509)))) (-1577 (($ $) 144 (|has| |#1| (-509)))) (-1698 (($ $) 164 (|has| |#1| (-509)))) (-1550 (($ $) 140 (|has| |#1| (-509)))) (-2829 (($ $) 175 (|has| |#1| (-509)))) (-2806 (($ $ (-517)) NIL (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018)))) (($ $ (-845)) NIL (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (-3663 (($) 20 (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) CONST)) (-2641 (($ $) 226 (|has| |#1| (-509)))) (-3675 (($) 22 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))) CONST)) (-4097 (($ $) 177 (|has| |#1| (-509))) (($ $ $) 179 (|has| |#1| (-509)))) (-1418 (($ $) 224 (|has| |#1| (-509)))) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-964))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-964))) (($ $ (-1077)) NIL (|has| |#1| (-964)))) (-1717 (($ $) 228 (|has| |#1| (-509)))) (-3466 (($ $ $) 181 (|has| |#1| (-509)))) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 76)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 75)) (-1692 (($ (-1029 |#1| (-556 $)) (-1029 |#1| (-556 $))) 93 (|has| |#1| (-509))) (($ $ $) 42 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1680 (($ $ $) 40 (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (($ $) 29 (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-1666 (($ $ $) 38 (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (** (($ $ $) 61 (|has| |#1| (-509))) (($ $ (-377 (-517))) 297 (|has| |#1| (-509))) (($ $ (-517)) 71 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 68 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018)))) (($ $ (-845)) 73 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018)))) (($ (-517) $) 32 (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (($ (-703) $) NIL (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (($ (-845) $) NIL (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))))
+(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1098)) (-6 (-145)) (-6 (-569)) (-6 (-1041)) (-15 -1510 ($ $)) (-15 -3168 ((-107) $)) (-15 -3696 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -1195 ((-388 (-1073 $)) (-1073 $))) (-15 -1453 ((-388 (-1073 $)) (-1073 $)))) |%noBranch|) (IF (|has| |#1| (-955 (-517))) (-6 (-955 (-47))) |%noBranch|)) |%noBranch|))) (-779)) (T -286))
+((-1510 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-3696 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1195 (*1 *2 *3) (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-1453 (*1 *2 *3) (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
+(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1098)) (-6 (-145)) (-6 (-569)) (-6 (-1041)) (-15 -1510 ($ $)) (-15 -3168 ((-107) $)) (-15 -3696 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -1195 ((-388 (-1073 $)) (-1073 $))) (-15 -1453 ((-388 (-1073 $)) (-1073 $)))) |%noBranch|) (IF (|has| |#1| (-955 (-517))) (-6 (-955 (-47))) |%noBranch|)) |%noBranch|)))
+((-3722 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
+((-3722 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3722 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3722 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3722 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3722 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3722 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3722 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3722 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3722 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3722 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
+(-10 -7 (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-4033 (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517) (-1060)) 46) (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517)) 47) (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517) (-1060)) 43) (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517)) 44)) (-3352 (((-1 (-199) (-199)) (-199)) 45)))
+(((-288) (-10 -7 (-15 -3352 ((-1 (-199) (-199)) (-199))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517) (-1060))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517) (-1060))))) (T -288))
+((-4033 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1060)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-4033 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-4033 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *7 (-1060)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-4033 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-3352 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(-10 -7 (-15 -3352 ((-1 (-199) (-199)) (-199))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517) (-1060))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517) (-1060))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 24)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 31)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) NIL) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2351 (((-377 (-517)) $) 16)) (-3054 (($ (-1143 |#1| |#2| |#3|)) 11)) (-1725 (((-1143 |#1| |#2| |#3|) $) 12)) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 10)) (-2262 (((-787) $) 37) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 29)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) NIL)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 26)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 32)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-289 |#1| |#2| |#3|) (-13 (-1139 |#1|) (-724) (-10 -8 (-15 -3054 ($ (-1143 |#1| |#2| |#3|))) (-15 -1725 ((-1143 |#1| |#2| |#3|) $)) (-15 -2351 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1077) |#1|) (T -289))
+((-3054 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1143 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3))))
+(-13 (-1139 |#1|) (-724) (-10 -8 (-15 -3054 ($ (-1143 |#1| |#2| |#3|))) (-15 -1725 ((-1143 |#1| |#2| |#3|) $)) (-15 -2351 ((-377 (-517)) $))))
+((-2940 (((-2 (|:| -1725 (-703)) (|:| -1570 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1232 (((-583 (-2 (|:| -1570 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
+(((-290 |#1|) (-10 -7 (-15 -2940 ((-2 (|:| -1725 (-703)) (|:| -1570 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1232 ((-583 (-2 (|:| -1570 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
+((-1232 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1570 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
+(-10 -7 (-15 -2940 ((-2 (|:| -1725 (-703)) (|:| -1570 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1232 ((-583 (-2 (|:| -1570 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
+((-2080 (((-583 |#2|) (-1073 |#4|)) 43)) (-3683 ((|#3| (-517)) 46)) (-1344 (((-1073 |#4|) (-1073 |#3|)) 30)) (-1640 (((-1073 |#4|) (-1073 |#4|) (-517)) 56)) (-2929 (((-1073 |#3|) (-1073 |#4|)) 21)) (-1191 (((-583 (-703)) (-1073 |#4|) (-583 |#2|)) 40)) (-1560 (((-1073 |#3|) (-1073 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
+(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1560 ((-1073 |#3|) (-1073 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -1191 ((-583 (-703)) (-1073 |#4|) (-583 |#2|))) (-15 -2080 ((-583 |#2|) (-1073 |#4|))) (-15 -2929 ((-1073 |#3|) (-1073 |#4|))) (-15 -1344 ((-1073 |#4|) (-1073 |#3|))) (-15 -1640 ((-1073 |#4|) (-1073 |#4|) (-517))) (-15 -3683 (|#3| (-517)))) (-725) (-779) (-964) (-873 |#3| |#1| |#2|)) (T -291))
+((-3683 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-964)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-873 *2 *4 *5)))) (-1640 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *7)) (-5 *3 (-517)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1073 *6)) (-4 *6 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1073 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-1073 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1191 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-873 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-964)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-1560 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-964)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1073 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1560 ((-1073 |#3|) (-1073 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -1191 ((-583 (-703)) (-1073 |#4|) (-583 |#2|))) (-15 -2080 ((-583 |#2|) (-1073 |#4|))) (-15 -2929 ((-1073 |#3|) (-1073 |#4|))) (-15 -1344 ((-1073 |#4|) (-1073 |#3|))) (-15 -1640 ((-1073 |#4|) (-1073 |#4|) (-517))) (-15 -3683 (|#3| (-517))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 14)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $) 18)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2115 ((|#1| $ (-517)) NIL)) (-2013 (((-517) $ (-517)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3027 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (($ (-1 (-517) (-517)) $) 10)) (-3232 (((-1060) $) NIL)) (-3041 (($ $ $) NIL (|has| (-517) (-724)))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1939 (((-517) |#1| $) NIL)) (-3663 (($) 15 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1680 (($ $) 11) (($ $ $) 20)) (-1666 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
+(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1006)) (T -292))
NIL
(-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1928 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))) $) 27)) (-2798 (((-3 $ "failed") $ $) 19)) (-2399 (((-703) $) 28)) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 32)) (-3390 ((|#1| $) 31)) (-1789 ((|#1| $ (-517)) 25)) (-3806 ((|#2| $ (-517)) 26)) (-3912 (($ (-1 |#1| |#1|) $) 22)) (-2577 (($ (-1 |#2| |#2|) $) 23)) (-1662 (((-1059) $) 9)) (-3616 (($ $ $) 21 (|has| |#2| (-724)))) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ |#1|) 33)) (-1689 ((|#2| |#1| $) 24)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1678 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
-(((-293 |#1| |#2|) (-1188) (-1005) (-123)) (T -293))
-((-1678 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-123)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-123)) (-5 *2 (-703)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 *4)))))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1005)) (-4 *2 (-123)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1005)))) (-1689 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-123)))) (-2577 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-123)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-123)))) (-3616 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-123)) (-4 *3 (-724)))))
-(-13 (-123) (-954 |t#1|) (-10 -8 (-15 -1678 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2399 ((-703) $)) (-15 -1928 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3870 |t#2|))) $)) (-15 -3806 (|t#2| $ (-517))) (-15 -1789 (|t#1| $ (-517))) (-15 -1689 (|t#2| |t#1| $)) (-15 -2577 ($ (-1 |t#2| |t#2|) $)) (-15 -3912 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3616 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-954 |#1|) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1928 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2399 (((-703) $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-1789 ((|#1| $ (-517)) NIL)) (-3806 (((-703) $ (-517)) NIL)) (-3912 (($ (-1 |#1| |#1|) $) NIL)) (-2577 (($ (-1 (-703) (-703)) $) NIL)) (-1662 (((-1059) $) NIL)) (-3616 (($ $ $) NIL (|has| (-703) (-724)))) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL) (($ |#1|) NIL)) (-1689 (((-703) |#1| $) NIL)) (-3610 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
-(((-294 |#1|) (-293 |#1| (-703)) (-1005)) (T -294))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $) 27)) (-1783 (((-3 $ "failed") $ $) 19)) (-2390 (((-703) $) 28)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 32)) (-3402 ((|#1| $) 31)) (-2115 ((|#1| $ (-517)) 25)) (-2013 ((|#2| $ (-517)) 26)) (-3027 (($ (-1 |#1| |#1|) $) 22)) (-2198 (($ (-1 |#2| |#2|) $) 23)) (-3232 (((-1060) $) 9)) (-3041 (($ $ $) 21 (|has| |#2| (-724)))) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ |#1|) 33)) (-1939 ((|#2| |#1| $) 24)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
+(((-293 |#1| |#2|) (-1189) (-1006) (-123)) (T -293))
+((-1666 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)) (-5 *2 (-703)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1006)) (-4 *2 (-123)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1006)))) (-1939 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123)))) (-2198 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123)) (-4 *3 (-724)))))
+(-13 (-123) (-955 |t#1|) (-10 -8 (-15 -1666 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2390 ((-703) $)) (-15 -3747 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3898 |t#2|))) $)) (-15 -2013 (|t#2| $ (-517))) (-15 -2115 (|t#1| $ (-517))) (-15 -1939 (|t#2| |t#1| $)) (-15 -2198 ($ (-1 |t#2| |t#2|) $)) (-15 -3027 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3041 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-955 |#1|) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2115 ((|#1| $ (-517)) NIL)) (-2013 (((-703) $ (-517)) NIL)) (-3027 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (($ (-1 (-703) (-703)) $) NIL)) (-3232 (((-1060) $) NIL)) (-3041 (($ $ $) NIL (|has| (-703) (-724)))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1939 (((-703) |#1| $) NIL)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
+(((-294 |#1|) (-293 |#1| (-703)) (-1006)) (T -294))
NIL
(-293 |#1| (-703))
-((-2683 (($ $) 53)) (-3014 (($ $ |#2| |#3| $) 14)) (-2935 (($ (-1 |#3| |#3|) $) 35)) (-2310 (((-107) $) 27)) (-2321 ((|#2| $) 29)) (-2329 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3119 ((|#2| $) 49)) (-1998 (((-583 |#2|) $) 38)) (-2863 (($ $ $ (-703)) 23)) (-1704 (($ $ |#2|) 42)))
-(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2683 (|#1| |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2863 (|#1| |#1| |#1| (-703))) (-15 -3014 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2935 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1998 ((-583 |#2|) |#1|)) (-15 -2321 (|#2| |#1|)) (-15 -2310 ((-107) |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1704 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-963) (-724)) (T -295))
-NIL
-(-10 -8 (-15 -2683 (|#1| |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2863 (|#1| |#1| |#1| (-703))) (-15 -3014 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2935 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1998 ((-583 |#2|) |#1|)) (-15 -2321 (|#2| |#1|)) (-15 -2310 ((-107) |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1704 (|#1| |#1| |#2|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 90 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3390 (((-517) $) 91 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 86)) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-2683 (($ $) 75 (|has| |#1| (-421)))) (-3014 (($ $ |#1| |#2| $) 79)) (-1376 (((-107) $) 31)) (-3783 (((-703) $) 82)) (-3982 (((-107) $) 62)) (-2078 (($ |#1| |#2|) 61)) (-3492 ((|#2| $) 81)) (-2935 (($ (-1 |#2| |#2|) $) 80)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2310 (((-107) $) 85)) (-2321 ((|#1| $) 84)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-3647 ((|#2| $) 64)) (-3119 ((|#1| $) 76 (|has| |#1| (-421)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3747 (|has| |#1| (-954 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1998 (((-583 |#1|) $) 83)) (-1689 ((|#1| $ |#2|) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-2863 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-296 |#1| |#2|) (-1188) (-963) (-724)) (T -296))
-((-2310 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-5 *2 (-703)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-2935 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)))) (-3014 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)))) (-2863 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2329 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)) (-4 *2 (-509)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)) (-4 *2 (-421)))) (-2683 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)) (-4 *2 (-421)))))
-(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -2310 ((-107) $)) (-15 -2321 (|t#1| $)) (-15 -1998 ((-583 |t#1|) $)) (-15 -3783 ((-703) $)) (-15 -3492 (|t#2| $)) (-15 -2935 ($ (-1 |t#2| |t#2|) $)) (-15 -3014 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2863 ($ $ $ (-703))) |%noBranch|) (IF (|has| |t#1| (-509)) (-15 -2329 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3119 (|t#1| $)) (-15 -2683 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-3168 (((-107) (-107)) NIL)) (-2445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) |#1|) $) NIL)) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-1399 (($ $) NIL (|has| |#1| (-1005)))) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) NIL (|has| |#1| (-1005))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-2141 (($ $ (-517)) NIL)) (-3869 (((-703) $) NIL)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4155 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3241 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-4081 (($ (-583 |#1|)) NIL)) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-3275 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-1753 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -4081 ($ (-583 |#1|))) (-15 -3869 ((-703) $)) (-15 -2141 ($ $ (-517))) (-15 -3168 ((-107) (-107))))) (-1111)) (T -297))
-((-4081 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-297 *3)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1111)))) (-2141 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1111)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1111)))))
-(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -4081 ($ (-583 |#1|))) (-15 -3869 ((-703) $)) (-15 -2141 ($ $ (-517))) (-15 -3168 ((-107) (-107)))))
-((-2928 (((-107) $) 42)) (-1305 (((-703)) 22)) (-2009 ((|#2| $) 46) (($ $ (-844)) 103)) (-2399 (((-703)) 97)) (-3898 (($ (-1157 |#2|)) 20)) (-2548 (((-107) $) 115)) (-2803 ((|#2| $) 48) (($ $ (-844)) 101)) (-2766 (((-1072 |#2|) $) NIL) (((-1072 $) $ (-844)) 94)) (-3018 (((-1072 |#2|) $) 83)) (-1425 (((-1072 |#2|) $) 80) (((-3 (-1072 |#2|) "failed") $ $) 77)) (-2421 (($ $ (-1072 |#2|)) 53)) (-2402 (((-765 (-844))) 28) (((-844)) 43)) (-1537 (((-125)) 25)) (-3647 (((-765 (-844)) $) 30) (((-844) $) 116)) (-1426 (($) 109)) (-3784 (((-1157 |#2|) $) NIL) (((-623 |#2|) (-1157 $)) 39)) (-3974 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1999 (((-107) $) 41)))
-(((-298 |#1| |#2|) (-10 -8 (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -2399 ((-703))) (-15 -3974 (|#1| |#1|)) (-15 -1425 ((-3 (-1072 |#2|) "failed") |#1| |#1|)) (-15 -1425 ((-1072 |#2|) |#1|)) (-15 -3018 ((-1072 |#2|) |#1|)) (-15 -2421 (|#1| |#1| (-1072 |#2|))) (-15 -2548 ((-107) |#1|)) (-15 -1426 (|#1|)) (-15 -2009 (|#1| |#1| (-844))) (-15 -2803 (|#1| |#1| (-844))) (-15 -2766 ((-1072 |#1|) |#1| (-844))) (-15 -2009 (|#2| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -3647 ((-844) |#1|)) (-15 -2402 ((-844))) (-15 -2766 ((-1072 |#2|) |#1|)) (-15 -3898 (|#1| (-1157 |#2|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -1305 ((-703))) (-15 -2402 ((-765 (-844)))) (-15 -3647 ((-765 (-844)) |#1|)) (-15 -2928 ((-107) |#1|)) (-15 -1999 ((-107) |#1|)) (-15 -1537 ((-125)))) (-299 |#2|) (-333)) (T -298))
-((-1537 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2402 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-844))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-1305 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2402 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-844)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2399 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
-(-10 -8 (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -2399 ((-703))) (-15 -3974 (|#1| |#1|)) (-15 -1425 ((-3 (-1072 |#2|) "failed") |#1| |#1|)) (-15 -1425 ((-1072 |#2|) |#1|)) (-15 -3018 ((-1072 |#2|) |#1|)) (-15 -2421 (|#1| |#1| (-1072 |#2|))) (-15 -2548 ((-107) |#1|)) (-15 -1426 (|#1|)) (-15 -2009 (|#1| |#1| (-844))) (-15 -2803 (|#1| |#1| (-844))) (-15 -2766 ((-1072 |#1|) |#1| (-844))) (-15 -2009 (|#2| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -3647 ((-844) |#1|)) (-15 -2402 ((-844))) (-15 -2766 ((-1072 |#2|) |#1|)) (-15 -3898 (|#1| (-1157 |#2|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -1305 ((-703))) (-15 -2402 ((-765 (-844)))) (-15 -3647 ((-765 (-844)) |#1|)) (-15 -2928 ((-107) |#1|)) (-15 -1999 ((-107) |#1|)) (-15 -1537 ((-125))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2928 (((-107) $) 94)) (-1305 (((-703)) 90)) (-2009 ((|#1| $) 140) (($ $ (-844)) 137 (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3820 (((-107) $ $) 59)) (-2399 (((-703)) 112 (|has| |#1| (-338)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 101)) (-3390 ((|#1| $) 100)) (-3898 (($ (-1157 |#1|)) 146)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2202 (($) 109 (|has| |#1| (-338)))) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1304 (($) 124 (|has| |#1| (-338)))) (-3459 (((-107) $) 125 (|has| |#1| (-338)))) (-2855 (($ $ (-703)) 87 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) 71)) (-1395 (((-844) $) 127 (|has| |#1| (-338))) (((-765 (-844)) $) 84 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) 31)) (-3669 (($) 135 (|has| |#1| (-338)))) (-2548 (((-107) $) 134 (|has| |#1| (-338)))) (-2803 ((|#1| $) 141) (($ $ (-844)) 138 (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2766 (((-1072 |#1|) $) 145) (((-1072 $) $ (-844)) 139 (|has| |#1| (-338)))) (-3072 (((-844) $) 110 (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) 131 (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) 132 (|has| |#1| (-338)))) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-2587 (($) 114 (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) 111 (|has| |#1| (-338)))) (-1603 (((-107) $) 93)) (-4125 (((-1023) $) 10)) (-1318 (($) 133 (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 121 (|has| |#1| (-338)))) (-3868 (((-388 $) $) 74)) (-2402 (((-765 (-844))) 91) (((-844)) 143)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2192 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) 99)) (-2060 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) 92) (((-844) $) 142)) (-2387 (((-1072 |#1|)) 144)) (-1758 (($) 123 (|has| |#1| (-338)))) (-1426 (($) 136 (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) 148) (((-623 |#1|) (-1157 $)) 147)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-3974 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) 29)) (-1492 (((-1157 $)) 150) (((-1157 $) (-844)) 149)) (-2074 (((-107) $ $) 39)) (-1999 (((-107) $) 95)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3629 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-3342 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 64) (($ $ |#1|) 98)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-299 |#1|) (-1188) (-333)) (T -299))
-((-1492 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1157 *1)) (-4 *1 (-299 *3)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-844)) (-4 *4 (-333)) (-5 *2 (-1157 *1)) (-4 *1 (-299 *4)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1157 *3)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1072 *3)))) (-2387 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1072 *3)))) (-2402 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-2766 (*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1072 *1)) (-4 *1 (-299 *4)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1426 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3669 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-1318 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2421 (*1 *1 *1 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1072 *3)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1072 *3)))) (-1425 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1072 *3)))))
-(-13 (-1174 |t#1|) (-954 |t#1|) (-10 -8 (-15 -1492 ((-1157 $))) (-15 -1492 ((-1157 $) (-844))) (-15 -3784 ((-1157 |t#1|) $)) (-15 -3784 ((-623 |t#1|) (-1157 $))) (-15 -3898 ($ (-1157 |t#1|))) (-15 -2766 ((-1072 |t#1|) $)) (-15 -2387 ((-1072 |t#1|))) (-15 -2402 ((-844))) (-15 -3647 ((-844) $)) (-15 -2803 (|t#1| $)) (-15 -2009 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -2766 ((-1072 $) $ (-844))) (-15 -2803 ($ $ (-844))) (-15 -2009 ($ $ (-844))) (-15 -1426 ($)) (-15 -3669 ($)) (-15 -2548 ((-107) $)) (-15 -1318 ($)) (-15 -2421 ($ $ (-1072 |t#1|))) (-15 -3018 ((-1072 |t#1|) $)) (-15 -1425 ((-1072 |t#1|) $)) (-15 -1425 ((-3 (-1072 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3747 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1174 |#1|) . T) ((-333) . T) ((-372) -3747 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-954 |#1|) . T) ((-969 #0#) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) |has| |#1| (-338)) ((-1115) . T) ((-1164 |#1|) . T))
-((-2119 (((-107) $ $) NIL)) (-3003 (($ (-1075) $) 88)) (-1473 (($) 76)) (-2601 (((-1023) (-1023)) 11)) (-1685 (($) 77)) (-2732 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-2526 (($ (-1075) $) 89)) (-3415 (($ (-583 (-787))) 79)) (-2719 (((-1162) $) 73)) (-3376 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3029 (($ (-1023)) 45)) (-2309 (((-1009) $) 25)) (-2517 (($ (-998 (-875 (-517))) $) 85) (($ (-998 (-875 (-517))) (-875 (-517)) $) 86)) (-2561 (($ (-1023)) 87)) (-1886 (($ (-1075) $) 110) (($ (-1075) $ $) 111)) (-3349 (($ (-1076) (-583 (-1076))) 75)) (-4042 (($ (-1059)) 82) (($ (-583 (-1059))) 80)) (-2271 (((-787) $) 113)) (-2516 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1076)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1076)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1075)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2394 (-107)) (|:| -3121 (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1059))) (|:| |callBranch| (-1059)) (|:| |forBranch| (-2 (|:| -2758 (-998 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1023)) (|:| |loopBranch| (-2 (|:| |switch| (-1075)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2989 (-1076)) (|:| |contents| (-583 (-1076))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2573 (($ (-1059)) 182)) (-1728 (($ (-583 $)) 109)) (-2249 (($ (-1076) (-1059)) 115) (($ (-1076) (-286 (-634))) 155) (($ (-1076) (-286 (-632))) 156) (($ (-1076) (-286 (-627))) 157) (($ (-1076) (-623 (-634))) 118) (($ (-1076) (-623 (-632))) 121) (($ (-1076) (-623 (-627))) 124) (($ (-1076) (-1157 (-634))) 127) (($ (-1076) (-1157 (-632))) 130) (($ (-1076) (-1157 (-627))) 133) (($ (-1076) (-623 (-286 (-634)))) 136) (($ (-1076) (-623 (-286 (-632)))) 139) (($ (-1076) (-623 (-286 (-627)))) 142) (($ (-1076) (-1157 (-286 (-634)))) 145) (($ (-1076) (-1157 (-286 (-632)))) 148) (($ (-1076) (-1157 (-286 (-627)))) 151) (($ (-1076) (-583 (-875 (-517))) (-286 (-634))) 152) (($ (-1076) (-583 (-875 (-517))) (-286 (-632))) 153) (($ (-1076) (-583 (-875 (-517))) (-286 (-627))) 154) (($ (-1076) (-286 (-517))) 179) (($ (-1076) (-286 (-349))) 180) (($ (-1076) (-286 (-153 (-349)))) 181) (($ (-1076) (-623 (-286 (-517)))) 160) (($ (-1076) (-623 (-286 (-349)))) 163) (($ (-1076) (-623 (-286 (-153 (-349))))) 166) (($ (-1076) (-1157 (-286 (-517)))) 169) (($ (-1076) (-1157 (-286 (-349)))) 172) (($ (-1076) (-1157 (-286 (-153 (-349))))) 175) (($ (-1076) (-583 (-875 (-517))) (-286 (-517))) 176) (($ (-1076) (-583 (-875 (-517))) (-286 (-349))) 177) (($ (-1076) (-583 (-875 (-517))) (-286 (-153 (-349)))) 178)) (-1584 (((-107) $ $) NIL)))
-(((-300) (-13 (-1005) (-10 -8 (-15 -2271 ((-787) $)) (-15 -2517 ($ (-998 (-875 (-517))) $)) (-15 -2517 ($ (-998 (-875 (-517))) (-875 (-517)) $)) (-15 -3003 ($ (-1075) $)) (-15 -2526 ($ (-1075) $)) (-15 -3029 ($ (-1023))) (-15 -2561 ($ (-1023))) (-15 -4042 ($ (-1059))) (-15 -4042 ($ (-583 (-1059)))) (-15 -2573 ($ (-1059))) (-15 -2732 ($)) (-15 -2732 ($ (-286 (-632)))) (-15 -2732 ($ (-286 (-634)))) (-15 -2732 ($ (-286 (-627)))) (-15 -2732 ($ (-286 (-349)))) (-15 -2732 ($ (-286 (-517)))) (-15 -2732 ($ (-286 (-153 (-349))))) (-15 -1886 ($ (-1075) $)) (-15 -1886 ($ (-1075) $ $)) (-15 -2249 ($ (-1076) (-1059))) (-15 -2249 ($ (-1076) (-286 (-634)))) (-15 -2249 ($ (-1076) (-286 (-632)))) (-15 -2249 ($ (-1076) (-286 (-627)))) (-15 -2249 ($ (-1076) (-623 (-634)))) (-15 -2249 ($ (-1076) (-623 (-632)))) (-15 -2249 ($ (-1076) (-623 (-627)))) (-15 -2249 ($ (-1076) (-1157 (-634)))) (-15 -2249 ($ (-1076) (-1157 (-632)))) (-15 -2249 ($ (-1076) (-1157 (-627)))) (-15 -2249 ($ (-1076) (-623 (-286 (-634))))) (-15 -2249 ($ (-1076) (-623 (-286 (-632))))) (-15 -2249 ($ (-1076) (-623 (-286 (-627))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-634))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-632))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-627))))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-634)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-632)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-627)))) (-15 -2249 ($ (-1076) (-286 (-517)))) (-15 -2249 ($ (-1076) (-286 (-349)))) (-15 -2249 ($ (-1076) (-286 (-153 (-349))))) (-15 -2249 ($ (-1076) (-623 (-286 (-517))))) (-15 -2249 ($ (-1076) (-623 (-286 (-349))))) (-15 -2249 ($ (-1076) (-623 (-286 (-153 (-349)))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-517))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-349))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-153 (-349)))))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-517)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-349)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-153 (-349))))) (-15 -1728 ($ (-583 $))) (-15 -1473 ($)) (-15 -1685 ($)) (-15 -3415 ($ (-583 (-787)))) (-15 -3349 ($ (-1076) (-583 (-1076)))) (-15 -3376 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2516 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1076)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1076)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1075)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2394 (-107)) (|:| -3121 (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1059))) (|:| |callBranch| (-1059)) (|:| |forBranch| (-2 (|:| -2758 (-998 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1023)) (|:| |loopBranch| (-2 (|:| |switch| (-1075)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2989 (-1076)) (|:| |contents| (-583 (-1076))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -2719 ((-1162) $)) (-15 -2309 ((-1009) $)) (-15 -2601 ((-1023) (-1023)))))) (T -300))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-998 (-875 (-517)))) (-5 *1 (-300)))) (-2517 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-998 (-875 (-517)))) (-5 *3 (-875 (-517))) (-5 *1 (-300)))) (-3003 (*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))) (-2526 (*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-300)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-300)))) (-4042 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-300)))) (-4042 (*1 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-300)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-300)))) (-2732 (*1 *1) (-5 *1 (-300))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1886 (*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))) (-1886 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1059)) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-634))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-632))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-627))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-634)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-632)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-627)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-517)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-349)))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-2249 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-1473 (*1 *1) (-5 *1 (-300))) (-1685 (*1 *1) (-5 *1 (-300))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-3349 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1076)) (-5 *1 (-300)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1076)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1076)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1075)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -2394 (-107)) (|:| -3121 (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1059))) (|:| |callBranch| (-1059)) (|:| |forBranch| (-2 (|:| -2758 (-998 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1023)) (|:| |loopBranch| (-2 (|:| |switch| (-1075)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -2989 (-1076)) (|:| |contents| (-583 (-1076))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-300)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-300)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-300)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ((-787) $)) (-15 -2517 ($ (-998 (-875 (-517))) $)) (-15 -2517 ($ (-998 (-875 (-517))) (-875 (-517)) $)) (-15 -3003 ($ (-1075) $)) (-15 -2526 ($ (-1075) $)) (-15 -3029 ($ (-1023))) (-15 -2561 ($ (-1023))) (-15 -4042 ($ (-1059))) (-15 -4042 ($ (-583 (-1059)))) (-15 -2573 ($ (-1059))) (-15 -2732 ($)) (-15 -2732 ($ (-286 (-632)))) (-15 -2732 ($ (-286 (-634)))) (-15 -2732 ($ (-286 (-627)))) (-15 -2732 ($ (-286 (-349)))) (-15 -2732 ($ (-286 (-517)))) (-15 -2732 ($ (-286 (-153 (-349))))) (-15 -1886 ($ (-1075) $)) (-15 -1886 ($ (-1075) $ $)) (-15 -2249 ($ (-1076) (-1059))) (-15 -2249 ($ (-1076) (-286 (-634)))) (-15 -2249 ($ (-1076) (-286 (-632)))) (-15 -2249 ($ (-1076) (-286 (-627)))) (-15 -2249 ($ (-1076) (-623 (-634)))) (-15 -2249 ($ (-1076) (-623 (-632)))) (-15 -2249 ($ (-1076) (-623 (-627)))) (-15 -2249 ($ (-1076) (-1157 (-634)))) (-15 -2249 ($ (-1076) (-1157 (-632)))) (-15 -2249 ($ (-1076) (-1157 (-627)))) (-15 -2249 ($ (-1076) (-623 (-286 (-634))))) (-15 -2249 ($ (-1076) (-623 (-286 (-632))))) (-15 -2249 ($ (-1076) (-623 (-286 (-627))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-634))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-632))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-627))))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-634)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-632)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-627)))) (-15 -2249 ($ (-1076) (-286 (-517)))) (-15 -2249 ($ (-1076) (-286 (-349)))) (-15 -2249 ($ (-1076) (-286 (-153 (-349))))) (-15 -2249 ($ (-1076) (-623 (-286 (-517))))) (-15 -2249 ($ (-1076) (-623 (-286 (-349))))) (-15 -2249 ($ (-1076) (-623 (-286 (-153 (-349)))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-517))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-349))))) (-15 -2249 ($ (-1076) (-1157 (-286 (-153 (-349)))))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-517)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-349)))) (-15 -2249 ($ (-1076) (-583 (-875 (-517))) (-286 (-153 (-349))))) (-15 -1728 ($ (-583 $))) (-15 -1473 ($)) (-15 -1685 ($)) (-15 -3415 ($ (-583 (-787)))) (-15 -3349 ($ (-1076) (-583 (-1076)))) (-15 -3376 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2516 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1076)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1076)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1075)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2394 (-107)) (|:| -3121 (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1059))) (|:| |callBranch| (-1059)) (|:| |forBranch| (-2 (|:| -2758 (-998 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1023)) (|:| |loopBranch| (-2 (|:| |switch| (-1075)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2989 (-1076)) (|:| |contents| (-583 (-1076))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -2719 ((-1162) $)) (-15 -2309 ((-1009) $)) (-15 -2601 ((-1023) (-1023)))))
-((-2119 (((-107) $ $) NIL)) (-2026 (((-107) $) 11)) (-1471 (($ |#1|) 8)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1483 (($ |#1|) 9)) (-2271 (((-787) $) 17)) (-3229 ((|#1| $) 12)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 19)))
-(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1471 ($ |#1|)) (-15 -1483 ($ |#1|)) (-15 -2026 ((-107) $)) (-15 -3229 (|#1| $)))) (-779)) (T -301))
-((-1471 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1483 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-3229 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
-(-13 (-779) (-10 -8 (-15 -1471 ($ |#1|)) (-15 -1483 ($ |#1|)) (-15 -2026 ((-107) $)) (-15 -3229 (|#1| $))))
-((-3787 (((-300) (-1076) (-875 (-517))) 22)) (-1549 (((-300) (-1076) (-875 (-517))) 26)) (-2022 (((-300) (-1076) (-998 (-875 (-517))) (-998 (-875 (-517)))) 25) (((-300) (-1076) (-875 (-517)) (-875 (-517))) 23)) (-1693 (((-300) (-1076) (-875 (-517))) 30)))
-(((-302) (-10 -7 (-15 -3787 ((-300) (-1076) (-875 (-517)))) (-15 -2022 ((-300) (-1076) (-875 (-517)) (-875 (-517)))) (-15 -2022 ((-300) (-1076) (-998 (-875 (-517))) (-998 (-875 (-517))))) (-15 -1549 ((-300) (-1076) (-875 (-517)))) (-15 -1693 ((-300) (-1076) (-875 (-517)))))) (T -302))
-((-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2022 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-998 (-875 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2022 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(-10 -7 (-15 -3787 ((-300) (-1076) (-875 (-517)))) (-15 -2022 ((-300) (-1076) (-875 (-517)) (-875 (-517)))) (-15 -2022 ((-300) (-1076) (-998 (-875 (-517))) (-998 (-875 (-517))))) (-15 -1549 ((-300) (-1076) (-875 (-517)))) (-15 -1693 ((-300) (-1076) (-875 (-517)))))
-((-3310 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
-(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3310 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1133 |#5|) (-1133 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1133 *9)) (-4 *11 (-1133 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
-(-10 -7 (-15 -3310 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
-((-3135 (((-107) $) 14)))
-(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3135 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1133 |#2|) (-1133 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
-NIL
-(-10 -8 (-15 -3135 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1522 (($ $) 26)) (-3135 (((-107) $) 25)) (-1662 (((-1059) $) 9)) (-3917 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-4125 (((-1023) $) 10)) (-1318 (((-3 |#4| "failed") $) 24)) (-3152 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2352 (((-2 (|:| -3186 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
-(((-305 |#1| |#2| |#3| |#4|) (-1188) (-333) (-1133 |t#1|) (-1133 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
-((-3917 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-3152 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-3152 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1133 *2)) (-4 *4 (-1133 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-3152 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1133 *2)) (-4 *5 (-1133 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3186 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1133 *2)) (-4 *4 (-1133 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-1318 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-3152 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3917 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -3152 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -3152 ($ |t#4|)) (-15 -3152 ($ |t#1| |t#1|)) (-15 -3152 ($ |t#1| |t#1| (-517))) (-15 -2352 ((-2 (|:| -3186 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1522 ($ $)) (-15 -3135 ((-107) $)) (-15 -1318 ((-3 |t#4| "failed") $)) (-15 -3152 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1522 (($ $) 32)) (-3135 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-3757 (((-1157 |#4|) $) 124)) (-3917 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-4125 (((-1023) $) NIL)) (-1318 (((-3 |#4| "failed") $) 35)) (-2810 (((-1157 |#4|) $) 117)) (-3152 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2352 (((-2 (|:| -3186 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2271 (((-787) $) 17)) (-3610 (($) 14 T CONST)) (-1584 (((-107) $ $) 20)) (-1692 (($ $) 27) (($ $ $) NIL)) (-1678 (($ $ $) 25)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
-(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2810 ((-1157 |#4|) $)) (-15 -3757 ((-1157 |#4|) $)))) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
-((-2810 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-1157 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-1157 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2810 ((-1157 |#4|) $)) (-15 -3757 ((-1157 |#4|) $))))
-((-3524 (($ $ (-1076) |#2|) NIL) (($ $ (-583 (-1076)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-2609 (($ $ |#2|) 11)))
-(((-307 |#1| |#2|) (-10 -8 (-15 -2609 (|#1| |#1| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#2| |#2|)) (-15 -3524 (|#1| |#1| (-265 |#2|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 |#2|))) (-15 -3524 (|#1| |#1| (-1076) |#2|))) (-308 |#2|) (-1005)) (T -307))
-NIL
-(-10 -8 (-15 -2609 (|#1| |#1| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#2| |#2|)) (-15 -3524 (|#1| |#1| (-265 |#2|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 |#2|))) (-15 -3524 (|#1| |#1| (-1076) |#2|)))
-((-3310 (($ (-1 |#1| |#1|) $) 6)) (-3524 (($ $ (-1076) |#1|) 17 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-2609 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
-(((-308 |#1|) (-1188) (-1005)) (T -308))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1005)))))
-(-13 (-10 -8 (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-478 (-1076) |t#1|)) (-6 (-478 (-1076) |t#1|)) |%noBranch|)))
-(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-1076)) $) NIL)) (-2424 (((-107)) 88) (((-107) (-107)) 89)) (-3834 (((-583 (-556 $)) $) NIL)) (-1648 (($ $) NIL)) (-1494 (($ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3915 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3880 (($ $) NIL)) (-1624 (($ $) NIL)) (-1471 (($ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 70) (((-3 $ "failed") (-1076)) 94) (((-3 $ "failed") (-286 (-517))) 57 (|has| |#3| (-954 (-517)))) (((-3 $ "failed") (-377 (-875 (-517)))) 63 (|has| |#3| (-954 (-517)))) (((-3 $ "failed") (-875 (-517))) 58 (|has| |#3| (-954 (-517)))) (((-3 $ "failed") (-286 (-349))) 75 (|has| |#3| (-954 (-349)))) (((-3 $ "failed") (-377 (-875 (-349)))) 81 (|has| |#3| (-954 (-349)))) (((-3 $ "failed") (-875 (-349))) 76 (|has| |#3| (-954 (-349))))) (-3390 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 71) (($ (-1076)) 95) (($ (-286 (-517))) 59 (|has| |#3| (-954 (-517)))) (($ (-377 (-875 (-517)))) 64 (|has| |#3| (-954 (-517)))) (($ (-875 (-517))) 60 (|has| |#3| (-954 (-517)))) (($ (-286 (-349))) 77 (|has| |#3| (-954 (-349)))) (($ (-377 (-875 (-349)))) 82 (|has| |#3| (-954 (-349)))) (($ (-875 (-349))) 78 (|has| |#3| (-954 (-349))))) (-2560 (((-3 $ "failed") $) NIL)) (-2116 (($) 10)) (-3659 (($ $) NIL) (($ (-583 $)) NIL)) (-1194 (((-583 (-109)) $) NIL)) (-1934 (((-109) (-109)) NIL)) (-1376 (((-107) $) NIL)) (-2686 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3760 (((-1072 $) (-556 $)) NIL (|has| $ (-963)))) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 $ $) (-556 $)) NIL)) (-3971 (((-3 (-556 $) "failed") $) NIL)) (-1849 (($ $) 91)) (-1226 (($ $) NIL)) (-1662 (((-1059) $) NIL)) (-1424 (((-583 (-556 $)) $) NIL)) (-1398 (($ (-109) $) 90) (($ (-109) (-583 $)) NIL)) (-2066 (((-107) $ (-109)) NIL) (((-107) $ (-1076)) NIL)) (-1809 (((-703) $) NIL)) (-4125 (((-1023) $) NIL)) (-1647 (((-107) $ $) NIL) (((-107) $ (-1076)) NIL)) (-3870 (($ $) NIL)) (-1766 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3524 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1076) (-1 $ (-583 $))) NIL) (($ $ (-1076) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-2609 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1457 (($ $) NIL) (($ $ $) NIL)) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL)) (-2387 (($ $) NIL (|has| $ (-963)))) (-1635 (($ $) NIL)) (-1483 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 93)) (-4099 (((-703)) NIL)) (-3440 (($ $) NIL) (($ (-583 $)) NIL)) (-3750 (((-107) (-109)) NIL)) (-1576 (($ $) NIL)) (-1548 (($ $) NIL)) (-1562 (($ $) NIL)) (-2376 (($ $) NIL)) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3610 (($) 92 T CONST)) (-3619 (($) 22 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
-(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-954 |#3|) (-823 (-1076)) (-10 -8 (-15 -3390 ($ (-286 |#3|))) (-15 -3228 ((-3 $ "failed") (-286 |#3|))) (-15 -3390 ($ (-1076))) (-15 -3228 ((-3 $ "failed") (-1076))) (-15 -2271 ((-286 |#3|) $)) (IF (|has| |#3| (-954 (-517))) (PROGN (-15 -3390 ($ (-286 (-517)))) (-15 -3228 ((-3 $ "failed") (-286 (-517)))) (-15 -3390 ($ (-377 (-875 (-517))))) (-15 -3228 ((-3 $ "failed") (-377 (-875 (-517))))) (-15 -3390 ($ (-875 (-517)))) (-15 -3228 ((-3 $ "failed") (-875 (-517))))) |%noBranch|) (IF (|has| |#3| (-954 (-349))) (PROGN (-15 -3390 ($ (-286 (-349)))) (-15 -3228 ((-3 $ "failed") (-286 (-349)))) (-15 -3390 ($ (-377 (-875 (-349))))) (-15 -3228 ((-3 $ "failed") (-377 (-875 (-349))))) (-15 -3390 ($ (-875 (-349)))) (-15 -3228 ((-3 $ "failed") (-875 (-349))))) |%noBranch|) (-15 -2376 ($ $)) (-15 -3880 ($ $)) (-15 -3870 ($ $)) (-15 -1226 ($ $)) (-15 -1849 ($ $)) (-15 -1471 ($ $)) (-15 -1483 ($ $)) (-15 -1494 ($ $)) (-15 -1548 ($ $)) (-15 -1562 ($ $)) (-15 -1576 ($ $)) (-15 -1624 ($ $)) (-15 -1635 ($ $)) (-15 -1648 ($ $)) (-15 -2116 ($)) (-15 -2097 ((-583 (-1076)) $)) (-15 -2424 ((-107))) (-15 -2424 ((-107) (-107))))) (-583 (-1076)) (-583 (-1076)) (-357)) (T -309))
-((-3390 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-3880 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1226 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1849 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1471 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1483 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1494 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1548 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1562 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-2116 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076))) (-14 *3 (-583 (-1076))) (-4 *4 (-357)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-2424 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357)))))
-(-13 (-273) (-37 |#3|) (-954 |#3|) (-823 (-1076)) (-10 -8 (-15 -3390 ($ (-286 |#3|))) (-15 -3228 ((-3 $ "failed") (-286 |#3|))) (-15 -3390 ($ (-1076))) (-15 -3228 ((-3 $ "failed") (-1076))) (-15 -2271 ((-286 |#3|) $)) (IF (|has| |#3| (-954 (-517))) (PROGN (-15 -3390 ($ (-286 (-517)))) (-15 -3228 ((-3 $ "failed") (-286 (-517)))) (-15 -3390 ($ (-377 (-875 (-517))))) (-15 -3228 ((-3 $ "failed") (-377 (-875 (-517))))) (-15 -3390 ($ (-875 (-517)))) (-15 -3228 ((-3 $ "failed") (-875 (-517))))) |%noBranch|) (IF (|has| |#3| (-954 (-349))) (PROGN (-15 -3390 ($ (-286 (-349)))) (-15 -3228 ((-3 $ "failed") (-286 (-349)))) (-15 -3390 ($ (-377 (-875 (-349))))) (-15 -3228 ((-3 $ "failed") (-377 (-875 (-349))))) (-15 -3390 ($ (-875 (-349)))) (-15 -3228 ((-3 $ "failed") (-875 (-349))))) |%noBranch|) (-15 -2376 ($ $)) (-15 -3880 ($ $)) (-15 -3870 ($ $)) (-15 -1226 ($ $)) (-15 -1849 ($ $)) (-15 -1471 ($ $)) (-15 -1483 ($ $)) (-15 -1494 ($ $)) (-15 -1548 ($ $)) (-15 -1562 ($ $)) (-15 -1576 ($ $)) (-15 -1624 ($ $)) (-15 -1635 ($ $)) (-15 -1648 ($ $)) (-15 -2116 ($)) (-15 -2097 ((-583 (-1076)) $)) (-15 -2424 ((-107))) (-15 -2424 ((-107) (-107)))))
-((-3310 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3310 (|#8| (-1 |#5| |#1|) |#4|))) (-1115) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1115) (-1133 |#5|) (-1133 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1115)) (-4 *8 (-1115)) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *9 (-1133 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1133 (-377 *9))))))
-(-10 -7 (-15 -3310 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3593 (((-2 (|:| |num| (-1157 |#3|)) (|:| |den| |#3|)) $) 38)) (-3898 (($ (-1157 (-377 |#3|)) (-1157 $)) NIL) (($ (-1157 (-377 |#3|))) NIL) (($ (-1157 |#3|) |#3|) 159)) (-1484 (((-1157 $) (-1157 $)) 143)) (-2525 (((-583 (-583 |#2|))) 116)) (-2940 (((-107) |#2| |#2|) 72)) (-2683 (($ $) 137)) (-2894 (((-703)) 31)) (-3117 (((-1157 $) (-1157 $)) 196)) (-2557 (((-583 (-875 |#2|)) (-1076)) 109)) (-3966 (((-107) $) 156)) (-2253 (((-107) $) 24) (((-107) $ |#2|) 29) (((-107) $ |#3|) 200)) (-4078 (((-3 |#3| "failed")) 49)) (-2111 (((-703)) 168)) (-2609 ((|#2| $ |#2| |#2|) 130)) (-2532 (((-3 |#3| "failed")) 67)) (-2060 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3895 (((-1157 $) (-1157 $)) 149)) (-2967 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-3444 (((-107)) 33)))
-(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2525 ((-583 (-583 |#2|)))) (-15 -2557 ((-583 (-875 |#2|)) (-1076))) (-15 -2967 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4078 ((-3 |#3| "failed"))) (-15 -2532 ((-3 |#3| "failed"))) (-15 -2609 (|#2| |#1| |#2| |#2|)) (-15 -2683 (|#1| |#1|)) (-15 -3898 (|#1| (-1157 |#3|) |#3|)) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2253 ((-107) |#1| |#3|)) (-15 -2253 ((-107) |#1| |#2|)) (-15 -3593 ((-2 (|:| |num| (-1157 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1484 ((-1157 |#1|) (-1157 |#1|))) (-15 -3117 ((-1157 |#1|) (-1157 |#1|))) (-15 -3895 ((-1157 |#1|) (-1157 |#1|))) (-15 -2253 ((-107) |#1|)) (-15 -3966 ((-107) |#1|)) (-15 -2940 ((-107) |#2| |#2|)) (-15 -3444 ((-107))) (-15 -2111 ((-703))) (-15 -2894 ((-703))) (-15 -2060 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2060 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3898 (|#1| (-1157 (-377 |#3|)))) (-15 -3898 (|#1| (-1157 (-377 |#3|)) (-1157 |#1|)))) (-312 |#2| |#3| |#4|) (-1115) (-1133 |#2|) (-1133 (-377 |#3|))) (T -311))
-((-2894 (*1 *2) (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2111 (*1 *2) (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3444 (*1 *2) (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2940 (*1 *2 *3 *3) (-12 (-4 *3 (-1115)) (-4 *5 (-1133 *3)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-2532 (*1 *2) (|partial| -12 (-4 *4 (-1115)) (-4 *5 (-1133 (-377 *2))) (-4 *2 (-1133 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-4078 (*1 *2) (|partial| -12 (-4 *4 (-1115)) (-4 *5 (-1133 (-377 *2))) (-4 *2 (-1133 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *5 (-1115)) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-5 *2 (-583 (-875 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-2525 (*1 *2) (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
-(-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2525 ((-583 (-583 |#2|)))) (-15 -2557 ((-583 (-875 |#2|)) (-1076))) (-15 -2967 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4078 ((-3 |#3| "failed"))) (-15 -2532 ((-3 |#3| "failed"))) (-15 -2609 (|#2| |#1| |#2| |#2|)) (-15 -2683 (|#1| |#1|)) (-15 -3898 (|#1| (-1157 |#3|) |#3|)) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2253 ((-107) |#1| |#3|)) (-15 -2253 ((-107) |#1| |#2|)) (-15 -3593 ((-2 (|:| |num| (-1157 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1484 ((-1157 |#1|) (-1157 |#1|))) (-15 -3117 ((-1157 |#1|) (-1157 |#1|))) (-15 -3895 ((-1157 |#1|) (-1157 |#1|))) (-15 -2253 ((-107) |#1|)) (-15 -3966 ((-107) |#1|)) (-15 -2940 ((-107) |#2| |#2|)) (-15 -3444 ((-107))) (-15 -2111 ((-703))) (-15 -2894 ((-703))) (-15 -2060 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2060 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3898 (|#1| (-1157 (-377 |#3|)))) (-15 -3898 (|#1| (-1157 (-377 |#3|)) (-1157 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3593 (((-2 (|:| |num| (-1157 |#2|)) (|:| |den| |#2|)) $) 196)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-3062 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2190 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-2133 (((-623 (-377 |#2|)) (-1157 $)) 46) (((-623 (-377 |#2|))) 61)) (-2009 (((-377 |#2|) $) 52)) (-1768 (((-1085 (-844) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-4018 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-3820 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-2399 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-1315 (((-107)) 213)) (-1711 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-954 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3390 (((-517) $) 170 (|has| (-377 |#2|) (-954 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-954 (-377 (-517))))) (((-377 |#2|) $) 165)) (-3898 (($ (-1157 (-377 |#2|)) (-1157 $)) 48) (($ (-1157 (-377 |#2|))) 64) (($ (-1157 |#2|) |#2|) 189)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2379 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-2637 (((-623 (-377 |#2|)) $ (-1157 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-2207 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-377 |#2|))) (|:| |vec| (-1157 (-377 |#2|)))) (-623 $) (-1157 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-1484 (((-1157 $) (-1157 $)) 201)) (-1522 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-2560 (((-3 $ "failed") $) 34)) (-2525 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-2940 (((-107) |#1| |#1|) 217)) (-3737 (((-844)) 54)) (-2202 (($) 90 (|has| (-377 |#2|) (-338)))) (-3411 (((-107)) 210)) (-3523 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2354 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-2683 (($ $) 188)) (-1304 (($) 149 (|has| (-377 |#2|) (-319)))) (-3459 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2855 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-1259 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-1395 (((-844) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-844)) $) 138 (|has| (-377 |#2|) (-319)))) (-1376 (((-107) $) 31)) (-2894 (((-703)) 220)) (-3117 (((-1157 $) (-1157 $)) 202)) (-2803 (((-377 |#2|) $) 51)) (-2557 (((-583 (-875 |#1|)) (-1076)) 183 (|has| |#1| (-333)))) (-2243 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-2766 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-3072 (((-844) $) 89 (|has| (-377 |#2|) (-338)))) (-1509 ((|#3| $) 156)) (-2332 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-1662 (((-1059) $) 9)) (-3665 (((-623 (-377 |#2|))) 197)) (-4088 (((-623 (-377 |#2|))) 199)) (-2300 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-1418 (($ (-1157 |#2|) |#2|) 194)) (-1554 (((-623 (-377 |#2|))) 198)) (-3705 (((-623 (-377 |#2|))) 200)) (-3885 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2581 (((-2 (|:| |num| (-1157 |#2|)) (|:| |den| |#2|)) $) 195)) (-4093 (((-1157 $)) 206)) (-3847 (((-1157 $)) 207)) (-3966 (((-107) $) 205)) (-2253 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2587 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-2812 (($ (-844)) 88 (|has| (-377 |#2|) (-338)))) (-4078 (((-3 |#2| "failed")) 185)) (-4125 (((-1023) $) 10)) (-2111 (((-703)) 219)) (-1318 (($) 160)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 101 (|has| (-377 |#2|) (-333)))) (-2370 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3868 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2329 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3600 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-2609 ((|#1| $ |#1| |#1|) 187)) (-2532 (((-3 |#2| "failed")) 186)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-1220 (((-377 |#2|) (-1157 $)) 47) (((-377 |#2|)) 60)) (-2192 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-2060 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1076)) (-583 (-703))) 130 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-1076) (-703)) 131 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1076))) 132 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-1076)) 133 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3993 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3993 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3973 (((-623 (-377 |#2|)) (-1157 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2387 ((|#3|) 159)) (-1758 (($) 148 (|has| (-377 |#2|) (-319)))) (-3784 (((-1157 (-377 |#2|)) $ (-1157 $)) 50) (((-623 (-377 |#2|)) (-1157 $) (-1157 $)) 49) (((-1157 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1157 $)) 65)) (-3359 (((-1157 (-377 |#2|)) $) 63) (($ (-1157 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-3895 (((-1157 $) (-1157 $)) 203)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3747 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-954 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-3974 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-1699 ((|#3| $) 45)) (-4099 (((-703)) 29)) (-4168 (((-107)) 216)) (-3957 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-1492 (((-1157 $)) 67)) (-2074 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-2967 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3444 (((-107)) 218)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1076)) (-583 (-703))) 126 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-1076) (-703)) 127 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1076))) 128 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-1076)) 129 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) (-3993 (|has| (-377 |#2|) (-823 (-1076))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3993 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3747 (-3993 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3993 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
-(((-312 |#1| |#2| |#3|) (-1188) (-1115) (-1133 |t#1|) (-1133 (-377 |t#2|))) (T -312))
-((-2894 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-703)))) (-2111 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-703)))) (-3444 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-2940 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-4168 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-3957 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-3957 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107)))) (-1315 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-1711 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-1711 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107)))) (-3411 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-3523 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-3523 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107)))) (-3847 (*1 *2) (-12 (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)))) (-4093 (*1 *2) (-12 (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-2253 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))) (-3705 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-4088 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1554 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3665 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1157 *4)) (|:| |den| *4))))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1157 *4)) (|:| |den| *4))))) (-1418 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1133 *4)) (-4 *4 (-1115)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1133 (-377 *3))))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-2253 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))) (-2253 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1133 *4)) (-4 *4 (-1115)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1133 (-377 *3))))) (-2683 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-1133 *2)) (-4 *4 (-1133 (-377 *3))))) (-2609 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-1133 *2)) (-4 *4 (-1133 (-377 *3))))) (-2532 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1115)) (-4 *4 (-1133 (-377 *2))) (-4 *2 (-1133 *3)))) (-4078 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1115)) (-4 *4 (-1133 (-377 *2))) (-4 *2 (-1133 *3)))) (-2967 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-1115)) (-4 *6 (-1133 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-875 *4))))) (-2525 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
-(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -2894 ((-703))) (-15 -2111 ((-703))) (-15 -3444 ((-107))) (-15 -2940 ((-107) |t#1| |t#1|)) (-15 -4168 ((-107))) (-15 -3957 ((-107) |t#1|)) (-15 -3957 ((-107) |t#2|)) (-15 -1315 ((-107))) (-15 -1711 ((-107) |t#1|)) (-15 -1711 ((-107) |t#2|)) (-15 -3411 ((-107))) (-15 -3523 ((-107) |t#1|)) (-15 -3523 ((-107) |t#2|)) (-15 -3847 ((-1157 $))) (-15 -4093 ((-1157 $))) (-15 -3966 ((-107) $)) (-15 -2253 ((-107) $)) (-15 -3895 ((-1157 $) (-1157 $))) (-15 -3117 ((-1157 $) (-1157 $))) (-15 -1484 ((-1157 $) (-1157 $))) (-15 -3705 ((-623 (-377 |t#2|)))) (-15 -4088 ((-623 (-377 |t#2|)))) (-15 -1554 ((-623 (-377 |t#2|)))) (-15 -3665 ((-623 (-377 |t#2|)))) (-15 -3593 ((-2 (|:| |num| (-1157 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3898 ($ (-1157 |t#2|) |t#2|)) (-15 -2581 ((-2 (|:| |num| (-1157 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1418 ($ (-1157 |t#2|) |t#2|)) (-15 -3885 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2253 ((-107) $ |t#1|)) (-15 -2253 ((-107) $ |t#2|)) (-15 -2060 ($ $ (-1 |t#2| |t#2|))) (-15 -3898 ($ (-1157 |t#2|) |t#2|)) (-15 -2683 ($ $)) (-15 -2609 (|t#1| $ |t#1| |t#1|)) (-15 -2532 ((-3 |t#2| "failed"))) (-15 -4078 ((-3 |t#2| "failed"))) (-15 -2967 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2557 ((-583 (-875 |t#1|)) (-1076))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -2525 ((-583 (-583 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 #1=(-377 |#2|)) . T) ((-37 $) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 #0# #0#) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 #1#) |has| (-377 |#2|) (-333)) ((-207) -3747 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3747 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 #1# |#3|) . T) ((-379 #1# |#3|) . T) ((-347 #1#) . T) ((-381 #1#) . T) ((-421) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #0#) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #1#) . T) ((-585 $) . T) ((-579 #1#) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 #0#) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 #1#) . T) ((-650 $) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 #1# |#3|) . T) ((-659) . T) ((-823 (-1076)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076)))) ((-843) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-954 (-377 (-517))) |has| (-377 |#2|) (-954 (-377 (-517)))) ((-954 #1#) . T) ((-954 (-517)) |has| (-377 |#2|) (-954 (-517))) ((-969 #0#) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-969 #1#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) |has| (-377 |#2|) (-319)) ((-1115) -3747 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-833 |#1|) (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| (-833 |#1|) (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-833 |#1|) "failed") $) NIL)) (-3390 (((-833 |#1|) $) NIL)) (-3898 (($ (-1157 (-833 |#1|))) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-833 |#1|) (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-833 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| (-833 |#1|) (-338)))) (-3459 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338)))) (($ $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| (-833 |#1|) (-338))) (((-765 (-844)) $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| (-833 |#1|) (-338)))) (-2548 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2803 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| (-833 |#1|) (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 (-833 |#1|)) $) NIL) (((-1072 $) $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-3072 (((-844) $) NIL (|has| (-833 |#1|) (-338)))) (-3018 (((-1072 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338)))) (-1425 (((-1072 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-1072 (-833 |#1|)) "failed") $ $) NIL (|has| (-833 |#1|) (-338)))) (-2421 (($ $ (-1072 (-833 |#1|))) NIL (|has| (-833 |#1|) (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-833 |#1|) (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1206 (((-880 (-1023))) NIL)) (-1318 (($) NIL (|has| (-833 |#1|) (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-833 |#1|) (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 (-833 |#1|))) NIL)) (-1758 (($) NIL (|has| (-833 |#1|) (-338)))) (-1426 (($) NIL (|has| (-833 |#1|) (-338)))) (-3784 (((-1157 (-833 |#1|)) $) NIL) (((-623 (-833 |#1|)) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| (-833 |#1|) (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-833 |#1|)) NIL)) (-3974 (($ $) NIL (|has| (-833 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3342 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ (-833 |#1|)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-833 |#1|)) NIL) (($ (-833 |#1|) $) NIL)))
-(((-313 |#1| |#2|) (-13 (-299 (-833 |#1|)) (-10 -7 (-15 -1206 ((-880 (-1023)))))) (-844) (-844)) (T -313))
-((-1206 (*1 *2) (-12 (-5 *2 (-880 (-1023))) (-5 *1 (-313 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))))
-(-13 (-299 (-833 |#1|)) (-10 -7 (-15 -1206 ((-880 (-1023))))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 46)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 114)) (-3390 ((|#1| $) 85)) (-3898 (($ (-1157 |#1|)) 103)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) 97 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) 129 (|has| |#1| (-338)))) (-3459 (((-107) $) 49 (|has| |#1| (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) 47 (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) 131 (|has| |#1| (-338)))) (-2548 (((-107) $) NIL (|has| |#1| (-338)))) (-2803 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 |#1|) $) 89) (((-1072 $) $ (-844)) NIL (|has| |#1| (-338)))) (-3072 (((-844) $) 139 (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) NIL (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) NIL (|has| |#1| (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 146)) (-2587 (($) NIL (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) 70 (|has| |#1| (-338)))) (-1603 (((-107) $) 117)) (-4125 (((-1023) $) NIL)) (-1206 (((-880 (-1023))) 44)) (-1318 (($) 127 (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 92 (|has| |#1| (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) 67) (((-844)) 68)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) 130 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 124 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 |#1|)) 95)) (-1758 (($) 128 (|has| |#1| (-338)))) (-1426 (($) 136 (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) 59) (((-623 |#1|) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) 142) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-3974 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) 138)) (-1492 (((-1157 $)) 116) (((-1157 $) (-844)) 72)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 32 T CONST)) (-3619 (($) 19 T CONST)) (-3629 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3342 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1584 (((-107) $ $) 48)) (-1704 (($ $ $) 144) (($ $ |#1|) 145)) (-1692 (($ $) 126) (($ $ $) NIL)) (-1678 (($ $ $) 61)) (** (($ $ (-844)) 148) (($ $ (-703)) 149) (($ $ (-517)) 147)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1206 ((-880 (-1023)))))) (-319) (-1072 |#1|)) (T -314))
-((-1206 (*1 *2) (-12 (-5 *2 (-880 (-1023))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1072 *3)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -1206 ((-880 (-1023))))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-3898 (($ (-1157 |#1|)) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| |#1| (-338)))) (-3459 (((-107) $) NIL (|has| |#1| (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| |#1| (-338)))) (-2548 (((-107) $) NIL (|has| |#1| (-338)))) (-2803 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 |#1|) $) NIL) (((-1072 $) $ (-844)) NIL (|has| |#1| (-338)))) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) NIL (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) NIL (|has| |#1| (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1206 (((-880 (-1023))) NIL)) (-1318 (($) NIL (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| |#1| (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 |#1|)) NIL)) (-1758 (($) NIL (|has| |#1| (-338)))) (-1426 (($) NIL (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) NIL) (((-623 |#1|) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3974 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3342 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1206 ((-880 (-1023)))))) (-319) (-844)) (T -315))
-((-1206 (*1 *2) (-12 (-5 *2 (-880 (-1023))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -1206 ((-880 (-1023))))))
-((-3910 (((-703) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) 40)) (-1665 (((-880 (-1023)) (-1072 |#1|)) 85)) (-3949 (((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) (-1072 |#1|)) 78)) (-1707 (((-623 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) 86)) (-3099 (((-3 (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) "failed") (-844)) 10)) (-2012 (((-3 (-1072 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) (-844)) 15)))
-(((-316 |#1|) (-10 -7 (-15 -1665 ((-880 (-1023)) (-1072 |#1|))) (-15 -3949 ((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) (-1072 |#1|))) (-15 -1707 ((-623 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -3910 ((-703) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -3099 ((-3 (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) "failed") (-844))) (-15 -2012 ((-3 (-1072 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) (-844)))) (-319)) (T -316))
-((-2012 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-3 (-1072 *4) (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3099 (*1 *2 *3) (|partial| -12 (-5 *3 (-844)) (-5 *2 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023)))))) (-5 *1 (-316 *4)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-880 (-1023))) (-5 *1 (-316 *4)))))
-(-10 -7 (-15 -1665 ((-880 (-1023)) (-1072 |#1|))) (-15 -3949 ((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) (-1072 |#1|))) (-15 -1707 ((-623 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -3910 ((-703) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -3099 ((-3 (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) "failed") (-844))) (-15 -2012 ((-3 (-1072 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) (-844))))
-((-2271 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
-(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2271 (|#3| |#1|)) (-15 -2271 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
-((-2271 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2271 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
-(-10 -7 (-15 -2271 (|#3| |#1|)) (-15 -2271 (|#1| |#3|)))
-((-3459 (((-107) $) 51)) (-1395 (((-765 (-844)) $) 21) (((-844) $) 52)) (-2243 (((-3 $ "failed") $) 16)) (-2587 (($) 9)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 92)) (-2192 (((-3 (-703) "failed") $ $) 71) (((-703) $) 60)) (-2060 (($ $ (-703)) NIL) (($ $) 8)) (-1758 (($) 45)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 33)) (-3974 (((-3 $ "failed") $) 39) (($ $) 38)))
-(((-318 |#1|) (-10 -8 (-15 -1395 ((-844) |#1|)) (-15 -2192 ((-703) |#1|)) (-15 -3459 ((-107) |#1|)) (-15 -1758 (|#1|)) (-15 -1818 ((-3 (-1157 |#1|) "failed") (-623 |#1|))) (-15 -3974 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -2192 ((-3 (-703) "failed") |#1| |#1|)) (-15 -1395 ((-765 (-844)) |#1|)) (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)))) (-319)) (T -318))
-NIL
-(-10 -8 (-15 -1395 ((-844) |#1|)) (-15 -2192 ((-703) |#1|)) (-15 -3459 ((-107) |#1|)) (-15 -1758 (|#1|)) (-15 -1818 ((-3 (-1157 |#1|) "failed") (-623 |#1|))) (-15 -3974 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -2192 ((-3 (-703) "failed") |#1| |#1|)) (-15 -1395 ((-765 (-844)) |#1|)) (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-1768 (((-1085 (-844) (-703)) (-517)) 93)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3820 (((-107) $ $) 59)) (-2399 (((-703)) 103)) (-1393 (($) 17 T CONST)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2202 (($) 106)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1304 (($) 91)) (-3459 (((-107) $) 90)) (-2855 (($ $) 79) (($ $ (-703)) 78)) (-1259 (((-107) $) 71)) (-1395 (((-765 (-844)) $) 81) (((-844) $) 88)) (-1376 (((-107) $) 31)) (-2243 (((-3 $ "failed") $) 102)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3072 (((-844) $) 105)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-2587 (($) 101 T CONST)) (-2812 (($ (-844)) 104)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 94)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2192 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-2060 (($ $ (-703)) 99) (($ $) 97)) (-1758 (($) 92)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 95)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-3974 (((-3 $ "failed") $) 82) (($ $) 96)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-703)) 100) (($ $) 98)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 64)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-319) (-1188)) (T -319))
-((-3974 (*1 *1 *1) (-4 *1 (-319))) (-1818 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1157 *1)))) (-4005 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))))) (-1768 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1085 (-844) (-703))))) (-1758 (*1 *1) (-4 *1 (-319))) (-1304 (*1 *1) (-4 *1 (-319))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-844)))) (-1717 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-372) (-338) (-1052) (-207) (-10 -8 (-15 -3974 ($ $)) (-15 -1818 ((-3 (-1157 $) "failed") (-623 $))) (-15 -4005 ((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517)))))) (-15 -1768 ((-1085 (-844) (-703)) (-517))) (-15 -1758 ($)) (-15 -1304 ($)) (-15 -3459 ((-107) $)) (-15 -2192 ((-703) $)) (-15 -1395 ((-844) $)) (-15 -1717 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) . T) ((-1115) . T))
-((-3086 (((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-3847 (((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
-(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -3847 ((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -3086 ((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))) (-1133 |#1|) (-379 |#1| |#2|)) (T -320))
-((-3086 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *2 (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3847 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *2 (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(-10 -7 (-15 -3847 ((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -3086 ((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-833 |#1|) (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3910 (((-703)) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| (-833 |#1|) (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-833 |#1|) "failed") $) NIL)) (-3390 (((-833 |#1|) $) NIL)) (-3898 (($ (-1157 (-833 |#1|))) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-833 |#1|) (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-833 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| (-833 |#1|) (-338)))) (-3459 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338)))) (($ $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| (-833 |#1|) (-338))) (((-765 (-844)) $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| (-833 |#1|) (-338)))) (-2548 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2803 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| (-833 |#1|) (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 (-833 |#1|)) $) NIL) (((-1072 $) $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-3072 (((-844) $) NIL (|has| (-833 |#1|) (-338)))) (-3018 (((-1072 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338)))) (-1425 (((-1072 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-1072 (-833 |#1|)) "failed") $ $) NIL (|has| (-833 |#1|) (-338)))) (-2421 (($ $ (-1072 (-833 |#1|))) NIL (|has| (-833 |#1|) (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-833 |#1|) (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-4085 (((-1157 (-583 (-2 (|:| -3121 (-833 |#1|)) (|:| -2812 (-1023)))))) NIL)) (-4025 (((-623 (-833 |#1|))) NIL)) (-1318 (($) NIL (|has| (-833 |#1|) (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-833 |#1|) (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 (-833 |#1|))) NIL)) (-1758 (($) NIL (|has| (-833 |#1|) (-338)))) (-1426 (($) NIL (|has| (-833 |#1|) (-338)))) (-3784 (((-1157 (-833 |#1|)) $) NIL) (((-623 (-833 |#1|)) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| (-833 |#1|) (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-833 |#1|)) NIL)) (-3974 (($ $) NIL (|has| (-833 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3342 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ (-833 |#1|)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-833 |#1|)) NIL) (($ (-833 |#1|) $) NIL)))
-(((-321 |#1| |#2|) (-13 (-299 (-833 |#1|)) (-10 -7 (-15 -4085 ((-1157 (-583 (-2 (|:| -3121 (-833 |#1|)) (|:| -2812 (-1023))))))) (-15 -4025 ((-623 (-833 |#1|)))) (-15 -3910 ((-703))))) (-844) (-844)) (T -321))
-((-4085 (*1 *2) (-12 (-5 *2 (-1157 (-583 (-2 (|:| -3121 (-833 *3)) (|:| -2812 (-1023)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-4025 (*1 *2) (-12 (-5 *2 (-623 (-833 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-3910 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))))
-(-13 (-299 (-833 |#1|)) (-10 -7 (-15 -4085 ((-1157 (-583 (-2 (|:| -3121 (-833 |#1|)) (|:| -2812 (-1023))))))) (-15 -4025 ((-623 (-833 |#1|)))) (-15 -3910 ((-703)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 75)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 ((|#1| $) 93) (($ $ (-844)) 91 (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) 149 (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3910 (((-703)) 90)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) 163 (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 112)) (-3390 ((|#1| $) 92)) (-3898 (($ (-1157 |#1|)) 56)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) 159 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) 150 (|has| |#1| (-338)))) (-3459 (((-107) $) NIL (|has| |#1| (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) 98 (|has| |#1| (-338)))) (-2548 (((-107) $) 176 (|has| |#1| (-338)))) (-2803 ((|#1| $) 95) (($ $ (-844)) 94 (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 |#1|) $) 188) (((-1072 $) $ (-844)) NIL (|has| |#1| (-338)))) (-3072 (((-844) $) 134 (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) 74 (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) 71 (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) 83 (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) 70 (|has| |#1| (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 191)) (-2587 (($) NIL (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) 137 (|has| |#1| (-338)))) (-1603 (((-107) $) 108)) (-4125 (((-1023) $) NIL)) (-4085 (((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) 84)) (-4025 (((-623 |#1|)) 88)) (-1318 (($) 97 (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 151 (|has| |#1| (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) 152)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) 63)) (-2387 (((-1072 |#1|)) 153)) (-1758 (($) 133 (|has| |#1| (-338)))) (-1426 (($) NIL (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) 106) (((-623 |#1|) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) 124) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 55)) (-3974 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) 157)) (-1492 (((-1157 $)) 173) (((-1157 $) (-844)) 101)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 29 T CONST)) (-3619 (($) 22 T CONST)) (-3629 (($ $) 107 (|has| |#1| (-338))) (($ $ (-703)) 99 (|has| |#1| (-338)))) (-3342 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1584 (((-107) $ $) 59)) (-1704 (($ $ $) 104) (($ $ |#1|) 105)) (-1692 (($ $) 178) (($ $ $) 182)) (-1678 (($ $ $) 180)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 138)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 143) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -4085 ((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -4025 ((-623 |#1|))) (-15 -3910 ((-703))))) (-319) (-3 (-1072 |#1|) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (T -322))
-((-4085 (*1 *2) (-12 (-5 *2 (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1072 *3) *2)))) (-4025 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1072 *3) (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023))))))))) (-3910 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1072 *3) (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023))))))))))
-(-13 (-299 |#1|) (-10 -7 (-15 -4085 ((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -4025 ((-623 |#1|))) (-15 -3910 ((-703)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3910 (((-703)) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-3898 (($ (-1157 |#1|)) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| |#1| (-338)))) (-3459 (((-107) $) NIL (|has| |#1| (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| |#1| (-338)))) (-2548 (((-107) $) NIL (|has| |#1| (-338)))) (-2803 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 |#1|) $) NIL) (((-1072 $) $ (-844)) NIL (|has| |#1| (-338)))) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) NIL (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) NIL (|has| |#1| (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-4085 (((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023)))))) NIL)) (-4025 (((-623 |#1|)) NIL)) (-1318 (($) NIL (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| |#1| (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 |#1|)) NIL)) (-1758 (($) NIL (|has| |#1| (-338)))) (-1426 (($) NIL (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) NIL) (((-623 |#1|) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3974 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3342 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -4085 ((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -4025 ((-623 |#1|))) (-15 -3910 ((-703))))) (-319) (-844)) (T -323))
-((-4085 (*1 *2) (-12 (-5 *2 (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))) (-4025 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))) (-3910 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -4085 ((-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))))) (-15 -4025 ((-623 |#1|))) (-15 -3910 ((-703)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-833 |#1|) (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| (-833 |#1|) (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-833 |#1|) "failed") $) NIL)) (-3390 (((-833 |#1|) $) NIL)) (-3898 (($ (-1157 (-833 |#1|))) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-833 |#1|) (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-833 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| (-833 |#1|) (-338)))) (-3459 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338)))) (($ $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| (-833 |#1|) (-338))) (((-765 (-844)) $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| (-833 |#1|) (-338)))) (-2548 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2803 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| (-833 |#1|) (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 (-833 |#1|)) $) NIL) (((-1072 $) $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-3072 (((-844) $) NIL (|has| (-833 |#1|) (-338)))) (-3018 (((-1072 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338)))) (-1425 (((-1072 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-1072 (-833 |#1|)) "failed") $ $) NIL (|has| (-833 |#1|) (-338)))) (-2421 (($ $ (-1072 (-833 |#1|))) NIL (|has| (-833 |#1|) (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-833 |#1|) (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1318 (($) NIL (|has| (-833 |#1|) (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-833 |#1|) (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 (-833 |#1|))) NIL)) (-1758 (($) NIL (|has| (-833 |#1|) (-338)))) (-1426 (($) NIL (|has| (-833 |#1|) (-338)))) (-3784 (((-1157 (-833 |#1|)) $) NIL) (((-623 (-833 |#1|)) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| (-833 |#1|) (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-833 |#1|)) NIL)) (-3974 (($ $) NIL (|has| (-833 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3342 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ (-833 |#1|)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-833 |#1|)) NIL) (($ (-833 |#1|) $) NIL)))
-(((-324 |#1| |#2|) (-299 (-833 |#1|)) (-844) (-844)) (T -324))
-NIL
-(-299 (-833 |#1|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) 139 (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 91)) (-3390 ((|#1| $) 88)) (-3898 (($ (-1157 |#1|)) 83)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) 80 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) 39 (|has| |#1| (-338)))) (-3459 (((-107) $) NIL (|has| |#1| (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) 120 (|has| |#1| (-338)))) (-2548 (((-107) $) 72 (|has| |#1| (-338)))) (-2803 ((|#1| $) 38) (($ $ (-844)) 40 (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 |#1|) $) 62) (((-1072 $) $ (-844)) NIL (|has| |#1| (-338)))) (-3072 (((-844) $) 95 (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) NIL (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) NIL (|has| |#1| (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) 93 (|has| |#1| (-338)))) (-1603 (((-107) $) 141)) (-4125 (((-1023) $) NIL)) (-1318 (($) 35 (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 113 (|has| |#1| (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) 138)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) 56)) (-2387 (((-1072 |#1|)) 86)) (-1758 (($) 125 (|has| |#1| (-338)))) (-1426 (($) NIL (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) 50) (((-623 |#1|) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) 137) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-3974 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) 143)) (-1492 (((-1157 $)) 107) (((-1157 $) (-844)) 46)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 109 T CONST)) (-3619 (($) 31 T CONST)) (-3629 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3342 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1584 (((-107) $ $) 105)) (-1704 (($ $ $) 97) (($ $ |#1|) 98)) (-1692 (($ $) 78) (($ $ $) 103)) (-1678 (($ $ $) 101)) (** (($ $ (-844)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 129)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
-(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1072 |#1|)) (T -325))
+((-4172 (($ $) 53)) (-1760 (($ $ |#2| |#3| $) 14)) (-1542 (($ (-1 |#3| |#3|) $) 35)) (-2301 (((-107) $) 27)) (-2311 ((|#2| $) 29)) (-2333 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-4094 ((|#2| $) 49)) (-3186 (((-583 |#2|) $) 38)) (-2308 (($ $ $ (-703)) 23)) (-1692 (($ $ |#2|) 42)))
+(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-703))) (-15 -1760 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1542 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1692 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-964) (-724)) (T -295))
+NIL
+(-10 -8 (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-703))) (-15 -1760 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1542 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1692 (|#1| |#1| |#2|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 90 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3402 (((-517) $) 91 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 86)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 75 (|has| |#1| (-421)))) (-1760 (($ $ |#1| |#2| $) 79)) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 82)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61)) (-3942 ((|#2| $) 81)) (-1542 (($ (-1 |#2| |#2|) $) 80)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 85)) (-2311 ((|#1| $) 84)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-1191 ((|#2| $) 64)) (-4094 ((|#1| $) 76 (|has| |#1| (-421)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-3186 (((-583 |#1|) $) 83)) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-296 |#1| |#2|) (-1189) (-964) (-724)) (T -296))
+((-2301 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-703)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-1542 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)))) (-1760 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-2308 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *2 (-509)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)) (-4 *2 (-421)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *2 (-421)))))
+(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -2301 ((-107) $)) (-15 -2311 (|t#1| $)) (-15 -3186 ((-583 |t#1|) $)) (-15 -2516 ((-703) $)) (-15 -3942 (|t#2| $)) (-15 -1542 ($ (-1 |t#2| |t#2|) $)) (-15 -1760 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2308 ($ $ $ (-703))) |%noBranch|) (IF (|has| |t#1| (-509)) (-15 -2333 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -4094 (|t#1| $)) (-15 -4172 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2404 (((-107) (-107)) NIL)) (-2436 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-3528 (($ $ (-517)) NIL)) (-4157 (((-703) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2900 (($ (-583 |#1|)) NIL)) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-3495 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107))))) (-1112)) (T -297))
+((-2900 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-297 *3)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107)))))
+((-2090 (((-107) $) 42)) (-3578 (((-703)) 22)) (-1991 ((|#2| $) 46) (($ $ (-845)) 103)) (-2390 (((-703)) 97)) (-3539 (($ (-1158 |#2|)) 20)) (-3715 (((-107) $) 115)) (-3522 ((|#2| $) 48) (($ $ (-845)) 101)) (-1914 (((-1073 |#2|) $) NIL) (((-1073 $) $ (-845)) 94)) (-3905 (((-1073 |#2|) $) 83)) (-3211 (((-1073 |#2|) $) 80) (((-3 (-1073 |#2|) "failed") $ $) 77)) (-3063 (($ $ (-1073 |#2|)) 53)) (-2177 (((-765 (-845))) 28) (((-845)) 43)) (-1470 (((-125)) 25)) (-1191 (((-765 (-845)) $) 30) (((-845) $) 116)) (-3297 (($) 109)) (-1372 (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $)) 39)) (-3385 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3275 (((-107) $) 41)))
+(((-298 |#1| |#2|) (-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2390 ((-703))) (-15 -3385 (|#1| |#1|)) (-15 -3211 ((-3 (-1073 |#2|) "failed") |#1| |#1|)) (-15 -3211 ((-1073 |#2|) |#1|)) (-15 -3905 ((-1073 |#2|) |#1|)) (-15 -3063 (|#1| |#1| (-1073 |#2|))) (-15 -3715 ((-107) |#1|)) (-15 -3297 (|#1|)) (-15 -1991 (|#1| |#1| (-845))) (-15 -3522 (|#1| |#1| (-845))) (-15 -1914 ((-1073 |#1|) |#1| (-845))) (-15 -1991 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1191 ((-845) |#1|)) (-15 -2177 ((-845))) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -3578 ((-703))) (-15 -2177 ((-765 (-845)))) (-15 -1191 ((-765 (-845)) |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|)) (-15 -1470 ((-125)))) (-299 |#2|) (-333)) (T -298))
+((-1470 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2177 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-845))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3578 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2177 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-845)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2390 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
+(-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2390 ((-703))) (-15 -3385 (|#1| |#1|)) (-15 -3211 ((-3 (-1073 |#2|) "failed") |#1| |#1|)) (-15 -3211 ((-1073 |#2|) |#1|)) (-15 -3905 ((-1073 |#2|) |#1|)) (-15 -3063 (|#1| |#1| (-1073 |#2|))) (-15 -3715 ((-107) |#1|)) (-15 -3297 (|#1|)) (-15 -1991 (|#1| |#1| (-845))) (-15 -3522 (|#1| |#1| (-845))) (-15 -1914 ((-1073 |#1|) |#1| (-845))) (-15 -1991 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1191 ((-845) |#1|)) (-15 -2177 ((-845))) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -3578 ((-703))) (-15 -2177 ((-765 (-845)))) (-15 -1191 ((-765 (-845)) |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|)) (-15 -1470 ((-125))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2090 (((-107) $) 94)) (-3578 (((-703)) 90)) (-1991 ((|#1| $) 140) (($ $ (-845)) 137 (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-2390 (((-703)) 112 (|has| |#1| (-338)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 101)) (-3402 ((|#1| $) 100)) (-3539 (($ (-1158 |#1|)) 146)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2192 (($) 109 (|has| |#1| (-338)))) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-4169 (($) 124 (|has| |#1| (-338)))) (-2634 (((-107) $) 125 (|has| |#1| (-338)))) (-2627 (($ $ (-703)) 87 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) 71)) (-3250 (((-845) $) 127 (|has| |#1| (-338))) (((-765 (-845)) $) 84 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) 31)) (-1222 (($) 135 (|has| |#1| (-338)))) (-3715 (((-107) $) 134 (|has| |#1| (-338)))) (-3522 ((|#1| $) 141) (($ $ (-845)) 138 (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1914 (((-1073 |#1|) $) 145) (((-1073 $) $ (-845)) 139 (|has| |#1| (-338)))) (-4161 (((-845) $) 110 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) 131 (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) 132 (|has| |#1| (-338)))) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2578 (($) 114 (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 111 (|has| |#1| (-338)))) (-1333 (((-107) $) 93)) (-4130 (((-1024) $) 10)) (-1306 (($) 133 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 121 (|has| |#1| (-338)))) (-3896 (((-388 $) $) 74)) (-2177 (((-765 (-845))) 91) (((-845)) 143)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) 99)) (-2042 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) 92) (((-845) $) 142)) (-2819 (((-1073 |#1|)) 144)) (-3718 (($) 123 (|has| |#1| (-338)))) (-3297 (($) 136 (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 148) (((-623 |#1|) (-1158 $)) 147)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-3385 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 150) (((-1158 $) (-845)) 149)) (-2944 (((-107) $ $) 39)) (-3275 (((-107) $) 95)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-4115 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-3348 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64) (($ $ |#1|) 98)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-299 |#1|) (-1189) (-333)) (T -299))
+((-3700 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1158 *1)) (-4 *1 (-299 *3)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-845)) (-4 *4 (-333)) (-5 *2 (-1158 *1)) (-4 *1 (-299 *4)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1158 *3)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3)))) (-2819 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3)))) (-2177 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1073 *1)) (-4 *1 (-299 *4)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1991 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-3297 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-1222 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-1306 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1073 *3)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1073 *3)))) (-3211 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1073 *3)))))
+(-13 (-1175 |t#1|) (-955 |t#1|) (-10 -8 (-15 -3700 ((-1158 $))) (-15 -3700 ((-1158 $) (-845))) (-15 -1372 ((-1158 |t#1|) $)) (-15 -1372 ((-623 |t#1|) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|))) (-15 -1914 ((-1073 |t#1|) $)) (-15 -2819 ((-1073 |t#1|))) (-15 -2177 ((-845))) (-15 -1191 ((-845) $)) (-15 -3522 (|t#1| $)) (-15 -1991 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -1914 ((-1073 $) $ (-845))) (-15 -3522 ($ $ (-845))) (-15 -1991 ($ $ (-845))) (-15 -3297 ($)) (-15 -1222 ($)) (-15 -3715 ((-107) $)) (-15 -1306 ($)) (-15 -3063 ($ $ (-1073 |t#1|))) (-15 -3905 ((-1073 |t#1|) $)) (-15 -3211 ((-1073 |t#1|) $)) (-15 -3211 ((-3 (-1073 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1175 |#1|) . T) ((-333) . T) ((-372) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-338)) ((-1116) . T) ((-1165 |#1|) . T))
+((-2105 (((-107) $ $) NIL)) (-4082 (($ (-1076) $) 88)) (-1460 (($) 76)) (-3503 (((-1024) (-1024)) 11)) (-1673 (($) 77)) (-1257 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-3880 (($ (-1076) $) 89)) (-2150 (($ (-583 (-787))) 79)) (-3783 (((-1163) $) 73)) (-3387 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1523 (($ (-1024)) 45)) (-1270 (((-1010) $) 25)) (-3260 (($ (-999 (-876 (-517))) $) 85) (($ (-999 (-876 (-517))) (-876 (-517)) $) 86)) (-2552 (($ (-1024)) 87)) (-1873 (($ (-1076) $) 110) (($ (-1076) $ $) 111)) (-3355 (($ (-1077) (-583 (-1077))) 75)) (-4056 (($ (-1060)) 82) (($ (-583 (-1060))) 80)) (-2262 (((-787) $) 113)) (-2507 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2564 (($ (-1060)) 182)) (-2881 (($ (-583 $)) 109)) (-1587 (($ (-1077) (-1060)) 115) (($ (-1077) (-286 (-634))) 155) (($ (-1077) (-286 (-632))) 156) (($ (-1077) (-286 (-627))) 157) (($ (-1077) (-623 (-634))) 118) (($ (-1077) (-623 (-632))) 121) (($ (-1077) (-623 (-627))) 124) (($ (-1077) (-1158 (-634))) 127) (($ (-1077) (-1158 (-632))) 130) (($ (-1077) (-1158 (-627))) 133) (($ (-1077) (-623 (-286 (-634)))) 136) (($ (-1077) (-623 (-286 (-632)))) 139) (($ (-1077) (-623 (-286 (-627)))) 142) (($ (-1077) (-1158 (-286 (-634)))) 145) (($ (-1077) (-1158 (-286 (-632)))) 148) (($ (-1077) (-1158 (-286 (-627)))) 151) (($ (-1077) (-583 (-876 (-517))) (-286 (-634))) 152) (($ (-1077) (-583 (-876 (-517))) (-286 (-632))) 153) (($ (-1077) (-583 (-876 (-517))) (-286 (-627))) 154) (($ (-1077) (-286 (-517))) 179) (($ (-1077) (-286 (-349))) 180) (($ (-1077) (-286 (-153 (-349)))) 181) (($ (-1077) (-623 (-286 (-517)))) 160) (($ (-1077) (-623 (-286 (-349)))) 163) (($ (-1077) (-623 (-286 (-153 (-349))))) 166) (($ (-1077) (-1158 (-286 (-517)))) 169) (($ (-1077) (-1158 (-286 (-349)))) 172) (($ (-1077) (-1158 (-286 (-153 (-349))))) 175) (($ (-1077) (-583 (-876 (-517))) (-286 (-517))) 176) (($ (-1077) (-583 (-876 (-517))) (-286 (-349))) 177) (($ (-1077) (-583 (-876 (-517))) (-286 (-153 (-349)))) 178)) (-1572 (((-107) $ $) NIL)))
+(((-300) (-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -3260 ($ (-999 (-876 (-517))) $)) (-15 -3260 ($ (-999 (-876 (-517))) (-876 (-517)) $)) (-15 -4082 ($ (-1076) $)) (-15 -3880 ($ (-1076) $)) (-15 -1523 ($ (-1024))) (-15 -2552 ($ (-1024))) (-15 -4056 ($ (-1060))) (-15 -4056 ($ (-583 (-1060)))) (-15 -2564 ($ (-1060))) (-15 -1257 ($)) (-15 -1257 ($ (-286 (-632)))) (-15 -1257 ($ (-286 (-634)))) (-15 -1257 ($ (-286 (-627)))) (-15 -1257 ($ (-286 (-349)))) (-15 -1257 ($ (-286 (-517)))) (-15 -1257 ($ (-286 (-153 (-349))))) (-15 -1873 ($ (-1076) $)) (-15 -1873 ($ (-1076) $ $)) (-15 -1587 ($ (-1077) (-1060))) (-15 -1587 ($ (-1077) (-286 (-634)))) (-15 -1587 ($ (-1077) (-286 (-632)))) (-15 -1587 ($ (-1077) (-286 (-627)))) (-15 -1587 ($ (-1077) (-623 (-634)))) (-15 -1587 ($ (-1077) (-623 (-632)))) (-15 -1587 ($ (-1077) (-623 (-627)))) (-15 -1587 ($ (-1077) (-1158 (-634)))) (-15 -1587 ($ (-1077) (-1158 (-632)))) (-15 -1587 ($ (-1077) (-1158 (-627)))) (-15 -1587 ($ (-1077) (-623 (-286 (-634))))) (-15 -1587 ($ (-1077) (-623 (-286 (-632))))) (-15 -1587 ($ (-1077) (-623 (-286 (-627))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-634))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-632))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-627))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-634)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-632)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-627)))) (-15 -1587 ($ (-1077) (-286 (-517)))) (-15 -1587 ($ (-1077) (-286 (-349)))) (-15 -1587 ($ (-1077) (-286 (-153 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-517))))) (-15 -1587 ($ (-1077) (-623 (-286 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-517))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-349))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-517)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-349)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-153 (-349))))) (-15 -2881 ($ (-583 $))) (-15 -1460 ($)) (-15 -1673 ($)) (-15 -2150 ($ (-583 (-787)))) (-15 -3355 ($ (-1077) (-583 (-1077)))) (-15 -3387 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2507 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3783 ((-1163) $)) (-15 -1270 ((-1010) $)) (-15 -3503 ((-1024) (-1024)))))) (T -300))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-3260 (*1 *1 *2 *1) (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *1 (-300)))) (-3260 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *3 (-876 (-517))) (-5 *1 (-300)))) (-4082 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-300)))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300)))) (-1257 (*1 *1) (-5 *1 (-300))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1873 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-1873 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-634)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-632)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-627)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-517)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-349)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-1460 (*1 *1) (-5 *1 (-300))) (-1673 (*1 *1) (-5 *1 (-300))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-300)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-300)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-300)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -3260 ($ (-999 (-876 (-517))) $)) (-15 -3260 ($ (-999 (-876 (-517))) (-876 (-517)) $)) (-15 -4082 ($ (-1076) $)) (-15 -3880 ($ (-1076) $)) (-15 -1523 ($ (-1024))) (-15 -2552 ($ (-1024))) (-15 -4056 ($ (-1060))) (-15 -4056 ($ (-583 (-1060)))) (-15 -2564 ($ (-1060))) (-15 -1257 ($)) (-15 -1257 ($ (-286 (-632)))) (-15 -1257 ($ (-286 (-634)))) (-15 -1257 ($ (-286 (-627)))) (-15 -1257 ($ (-286 (-349)))) (-15 -1257 ($ (-286 (-517)))) (-15 -1257 ($ (-286 (-153 (-349))))) (-15 -1873 ($ (-1076) $)) (-15 -1873 ($ (-1076) $ $)) (-15 -1587 ($ (-1077) (-1060))) (-15 -1587 ($ (-1077) (-286 (-634)))) (-15 -1587 ($ (-1077) (-286 (-632)))) (-15 -1587 ($ (-1077) (-286 (-627)))) (-15 -1587 ($ (-1077) (-623 (-634)))) (-15 -1587 ($ (-1077) (-623 (-632)))) (-15 -1587 ($ (-1077) (-623 (-627)))) (-15 -1587 ($ (-1077) (-1158 (-634)))) (-15 -1587 ($ (-1077) (-1158 (-632)))) (-15 -1587 ($ (-1077) (-1158 (-627)))) (-15 -1587 ($ (-1077) (-623 (-286 (-634))))) (-15 -1587 ($ (-1077) (-623 (-286 (-632))))) (-15 -1587 ($ (-1077) (-623 (-286 (-627))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-634))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-632))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-627))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-634)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-632)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-627)))) (-15 -1587 ($ (-1077) (-286 (-517)))) (-15 -1587 ($ (-1077) (-286 (-349)))) (-15 -1587 ($ (-1077) (-286 (-153 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-517))))) (-15 -1587 ($ (-1077) (-623 (-286 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-517))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-349))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-517)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-349)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-153 (-349))))) (-15 -2881 ($ (-583 $))) (-15 -1460 ($)) (-15 -1673 ($)) (-15 -2150 ($ (-583 (-787)))) (-15 -3355 ($ (-1077) (-583 (-1077)))) (-15 -3387 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2507 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3783 ((-1163) $)) (-15 -1270 ((-1010) $)) (-15 -3503 ((-1024) (-1024)))))
+((-2105 (((-107) $ $) NIL)) (-1597 (((-107) $) 11)) (-1459 (($ |#1|) 8)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1471 (($ |#1|) 9)) (-2262 (((-787) $) 17)) (-2842 ((|#1| $) 12)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 19)))
+(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1459 ($ |#1|)) (-15 -1471 ($ |#1|)) (-15 -1597 ((-107) $)) (-15 -2842 (|#1| $)))) (-779)) (T -301))
+((-1459 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1471 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-2842 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
+(-13 (-779) (-10 -8 (-15 -1459 ($ |#1|)) (-15 -1471 ($ |#1|)) (-15 -1597 ((-107) $)) (-15 -2842 (|#1| $))))
+((-1633 (((-300) (-1077) (-876 (-517))) 22)) (-1231 (((-300) (-1077) (-876 (-517))) 26)) (-1196 (((-300) (-1077) (-999 (-876 (-517))) (-999 (-876 (-517)))) 25) (((-300) (-1077) (-876 (-517)) (-876 (-517))) 23)) (-2156 (((-300) (-1077) (-876 (-517))) 30)))
+(((-302) (-10 -7 (-15 -1633 ((-300) (-1077) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-876 (-517)) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-999 (-876 (-517))) (-999 (-876 (-517))))) (-15 -1231 ((-300) (-1077) (-876 (-517)))) (-15 -2156 ((-300) (-1077) (-876 (-517)))))) (T -302))
+((-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1231 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1196 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-999 (-876 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1196 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(-10 -7 (-15 -1633 ((-300) (-1077) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-876 (-517)) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-999 (-876 (-517))) (-999 (-876 (-517))))) (-15 -1231 ((-300) (-1077) (-876 (-517)))) (-15 -2156 ((-300) (-1077) (-876 (-517)))))
+((-3312 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
+(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1134 |#5|) (-1134 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1134 *9)) (-4 *11 (-1134 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
+(-10 -7 (-15 -3312 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
+((-3615 (((-107) $) 14)))
+(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3615 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1134 |#2|) (-1134 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
+NIL
+(-10 -8 (-15 -3615 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-1510 (($ $) 26)) (-3615 (((-107) $) 25)) (-3232 (((-1060) $) 9)) (-4162 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-4130 (((-1024) $) 10)) (-1306 (((-3 |#4| "failed") $) 24)) (-2227 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1784 (((-2 (|:| -3179 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-305 |#1| |#2| |#3| |#4|) (-1189) (-333) (-1134 |t#1|) (-1134 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
+((-4162 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-2227 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-2227 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-2227 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1134 *2)) (-4 *5 (-1134 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3179 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-1510 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-1306 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-2227 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4162 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -2227 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -2227 ($ |t#4|)) (-15 -2227 ($ |t#1| |t#1|)) (-15 -2227 ($ |t#1| |t#1| (-517))) (-15 -1784 ((-2 (|:| -3179 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1510 ($ $)) (-15 -3615 ((-107) $)) (-15 -1306 ((-3 |t#4| "failed") $)) (-15 -2227 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ $) 32)) (-3615 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-3335 (((-1158 |#4|) $) 124)) (-4162 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-4130 (((-1024) $) NIL)) (-1306 (((-3 |#4| "failed") $) 35)) (-1864 (((-1158 |#4|) $) 117)) (-2227 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-1784 (((-2 (|:| -3179 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2262 (((-787) $) 17)) (-3663 (($) 14 T CONST)) (-1572 (((-107) $ $) 20)) (-1680 (($ $) 27) (($ $ $) NIL)) (-1666 (($ $ $) 25)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
+(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1864 ((-1158 |#4|) $)) (-15 -3335 ((-1158 |#4|) $)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
+((-1864 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3335 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1864 ((-1158 |#4|) $)) (-15 -3335 ((-1158 |#4|) $))))
+((-3552 (($ $ (-1077) |#2|) NIL) (($ $ (-583 (-1077)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-2612 (($ $ |#2|) 11)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -2612 (|#1| |#1| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-1077) |#2|))) (-308 |#2|) (-1006)) (T -307))
+NIL
+(-10 -8 (-15 -2612 (|#1| |#1| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-1077) |#2|)))
+((-3312 (($ (-1 |#1| |#1|) $) 6)) (-3552 (($ $ (-1077) |#1|) 17 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-2612 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
+(((-308 |#1|) (-1189) (-1006)) (T -308))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1006)))))
+(-13 (-10 -8 (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-478 (-1077) |t#1|)) (-6 (-478 (-1077) |t#1|)) |%noBranch|)))
+(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-1077)) $) NIL)) (-1573 (((-107)) 88) (((-107) (-107)) 89)) (-3864 (((-583 (-556 $)) $) NIL)) (-1636 (($ $) NIL)) (-1482 (($ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3908 (($ $) NIL)) (-1612 (($ $) NIL)) (-1459 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 70) (((-3 $ "failed") (-1077)) 94) (((-3 $ "failed") (-286 (-517))) 57 (|has| |#3| (-955 (-517)))) (((-3 $ "failed") (-377 (-876 (-517)))) 63 (|has| |#3| (-955 (-517)))) (((-3 $ "failed") (-876 (-517))) 58 (|has| |#3| (-955 (-517)))) (((-3 $ "failed") (-286 (-349))) 75 (|has| |#3| (-955 (-349)))) (((-3 $ "failed") (-377 (-876 (-349)))) 81 (|has| |#3| (-955 (-349)))) (((-3 $ "failed") (-876 (-349))) 76 (|has| |#3| (-955 (-349))))) (-3402 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 71) (($ (-1077)) 95) (($ (-286 (-517))) 59 (|has| |#3| (-955 (-517)))) (($ (-377 (-876 (-517)))) 64 (|has| |#3| (-955 (-517)))) (($ (-876 (-517))) 60 (|has| |#3| (-955 (-517)))) (($ (-286 (-349))) 77 (|has| |#3| (-955 (-349)))) (($ (-377 (-876 (-349)))) 82 (|has| |#3| (-955 (-349)))) (($ (-876 (-349))) 78 (|has| |#3| (-955 (-349))))) (-3550 (((-3 $ "failed") $) NIL)) (-2102 (($) 10)) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) NIL)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3419 (((-1073 $) (-556 $)) NIL (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) NIL)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-3281 (($ $) 91)) (-1232 (($ $) NIL)) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) NIL)) (-1385 (($ (-109) $) 90) (($ (-109) (-583 $)) NIL)) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) NIL)) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-3898 (($ $) NIL)) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1816 (($ $) NIL) (($ $ $) NIL)) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL)) (-2819 (($ $) NIL (|has| $ (-964)))) (-1622 (($ $) NIL)) (-1471 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 93)) (-1818 (((-703)) NIL)) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-4116 (((-107) (-109)) NIL)) (-1564 (($ $) NIL)) (-1536 (($ $) NIL)) (-1550 (($ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 92 T CONST)) (-3675 (($) 22 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL)))
+(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-955 |#3|) (-824 (-1077)) (-10 -8 (-15 -3402 ($ (-286 |#3|))) (-15 -3220 ((-3 $ "failed") (-286 |#3|))) (-15 -3402 ($ (-1077))) (-15 -3220 ((-3 $ "failed") (-1077))) (-15 -2262 ((-286 |#3|) $)) (IF (|has| |#3| (-955 (-517))) (PROGN (-15 -3402 ($ (-286 (-517)))) (-15 -3220 ((-3 $ "failed") (-286 (-517)))) (-15 -3402 ($ (-377 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-517))))) (-15 -3402 ($ (-876 (-517)))) (-15 -3220 ((-3 $ "failed") (-876 (-517))))) |%noBranch|) (IF (|has| |#3| (-955 (-349))) (PROGN (-15 -3402 ($ (-286 (-349)))) (-15 -3220 ((-3 $ "failed") (-286 (-349)))) (-15 -3402 ($ (-377 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-349))))) (-15 -3402 ($ (-876 (-349)))) (-15 -3220 ((-3 $ "failed") (-876 (-349))))) |%noBranch|) (-15 -2829 ($ $)) (-15 -3908 ($ $)) (-15 -3898 ($ $)) (-15 -1232 ($ $)) (-15 -3281 ($ $)) (-15 -1459 ($ $)) (-15 -1471 ($ $)) (-15 -1482 ($ $)) (-15 -1536 ($ $)) (-15 -1550 ($ $)) (-15 -1564 ($ $)) (-15 -1612 ($ $)) (-15 -1622 ($ $)) (-15 -1636 ($ $)) (-15 -2102 ($)) (-15 -2080 ((-583 (-1077)) $)) (-15 -1573 ((-107))) (-15 -1573 ((-107) (-107))))) (-583 (-1077)) (-583 (-1077)) (-357)) (T -309))
+((-3402 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-2829 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1232 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-3281 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1471 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1482 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1536 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1550 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1564 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1612 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1622 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1636 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-2102 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-1573 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-1573 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))))
+(-13 (-273) (-37 |#3|) (-955 |#3|) (-824 (-1077)) (-10 -8 (-15 -3402 ($ (-286 |#3|))) (-15 -3220 ((-3 $ "failed") (-286 |#3|))) (-15 -3402 ($ (-1077))) (-15 -3220 ((-3 $ "failed") (-1077))) (-15 -2262 ((-286 |#3|) $)) (IF (|has| |#3| (-955 (-517))) (PROGN (-15 -3402 ($ (-286 (-517)))) (-15 -3220 ((-3 $ "failed") (-286 (-517)))) (-15 -3402 ($ (-377 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-517))))) (-15 -3402 ($ (-876 (-517)))) (-15 -3220 ((-3 $ "failed") (-876 (-517))))) |%noBranch|) (IF (|has| |#3| (-955 (-349))) (PROGN (-15 -3402 ($ (-286 (-349)))) (-15 -3220 ((-3 $ "failed") (-286 (-349)))) (-15 -3402 ($ (-377 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-349))))) (-15 -3402 ($ (-876 (-349)))) (-15 -3220 ((-3 $ "failed") (-876 (-349))))) |%noBranch|) (-15 -2829 ($ $)) (-15 -3908 ($ $)) (-15 -3898 ($ $)) (-15 -1232 ($ $)) (-15 -3281 ($ $)) (-15 -1459 ($ $)) (-15 -1471 ($ $)) (-15 -1482 ($ $)) (-15 -1536 ($ $)) (-15 -1550 ($ $)) (-15 -1564 ($ $)) (-15 -1612 ($ $)) (-15 -1622 ($ $)) (-15 -1636 ($ $)) (-15 -2102 ($)) (-15 -2080 ((-583 (-1077)) $)) (-15 -1573 ((-107))) (-15 -1573 ((-107) (-107)))))
+((-3312 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|))) (-1116) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1116) (-1134 |#5|) (-1134 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1116)) (-4 *8 (-1116)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *9 (-1134 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1134 (-377 *9))))))
+(-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2861 (((-2 (|:| |num| (-1158 |#3|)) (|:| |den| |#3|)) $) 38)) (-3539 (($ (-1158 (-377 |#3|)) (-1158 $)) NIL) (($ (-1158 (-377 |#3|))) NIL) (($ (-1158 |#3|) |#3|) 159)) (-1852 (((-1158 $) (-1158 $)) 143)) (-3810 (((-583 (-583 |#2|))) 116)) (-3881 (((-107) |#2| |#2|) 72)) (-4172 (($ $) 137)) (-3128 (((-703)) 31)) (-3947 (((-1158 $) (-1158 $)) 196)) (-2784 (((-583 (-876 |#2|)) (-1077)) 109)) (-3093 (((-107) $) 156)) (-3138 (((-107) $) 24) (((-107) $ |#2|) 29) (((-107) $ |#3|) 200)) (-2645 (((-3 |#3| "failed")) 49)) (-2224 (((-703)) 168)) (-2612 ((|#2| $ |#2| |#2|) 130)) (-2178 (((-3 |#3| "failed")) 67)) (-2042 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-1697 (((-1158 $) (-1158 $)) 149)) (-2159 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-1288 (((-107)) 33)))
+(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3810 ((-583 (-583 |#2|)))) (-15 -2784 ((-583 (-876 |#2|)) (-1077))) (-15 -2159 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2645 ((-3 |#3| "failed"))) (-15 -2178 ((-3 |#3| "failed"))) (-15 -2612 (|#2| |#1| |#2| |#2|)) (-15 -4172 (|#1| |#1|)) (-15 -3539 (|#1| (-1158 |#3|) |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3138 ((-107) |#1| |#3|)) (-15 -3138 ((-107) |#1| |#2|)) (-15 -2861 ((-2 (|:| |num| (-1158 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1852 ((-1158 |#1|) (-1158 |#1|))) (-15 -3947 ((-1158 |#1|) (-1158 |#1|))) (-15 -1697 ((-1158 |#1|) (-1158 |#1|))) (-15 -3138 ((-107) |#1|)) (-15 -3093 ((-107) |#1|)) (-15 -3881 ((-107) |#2| |#2|)) (-15 -1288 ((-107))) (-15 -2224 ((-703))) (-15 -3128 ((-703))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3539 (|#1| (-1158 (-377 |#3|)))) (-15 -3539 (|#1| (-1158 (-377 |#3|)) (-1158 |#1|)))) (-312 |#2| |#3| |#4|) (-1116) (-1134 |#2|) (-1134 (-377 |#3|))) (T -311))
+((-3128 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2224 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1288 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3881 (*1 *2 *3 *3) (-12 (-4 *3 (-1116)) (-4 *5 (-1134 *3)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-2178 (*1 *2) (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2645 (*1 *2) (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *5 (-1116)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-5 *2 (-583 (-876 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3810 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
+(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3810 ((-583 (-583 |#2|)))) (-15 -2784 ((-583 (-876 |#2|)) (-1077))) (-15 -2159 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2645 ((-3 |#3| "failed"))) (-15 -2178 ((-3 |#3| "failed"))) (-15 -2612 (|#2| |#1| |#2| |#2|)) (-15 -4172 (|#1| |#1|)) (-15 -3539 (|#1| (-1158 |#3|) |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3138 ((-107) |#1| |#3|)) (-15 -3138 ((-107) |#1| |#2|)) (-15 -2861 ((-2 (|:| |num| (-1158 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1852 ((-1158 |#1|) (-1158 |#1|))) (-15 -3947 ((-1158 |#1|) (-1158 |#1|))) (-15 -1697 ((-1158 |#1|) (-1158 |#1|))) (-15 -3138 ((-107) |#1|)) (-15 -3093 ((-107) |#1|)) (-15 -3881 ((-107) |#2| |#2|)) (-15 -1288 ((-107))) (-15 -2224 ((-703))) (-15 -3128 ((-703))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3539 (|#1| (-1158 (-377 |#3|)))) (-15 -3539 (|#1| (-1158 (-377 |#3|)) (-1158 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2861 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 196)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-2491 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2025 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-1278 (((-623 (-377 |#2|)) (-1158 $)) 46) (((-623 (-377 |#2|))) 61)) (-1991 (((-377 |#2|) $) 52)) (-2461 (((-1086 (-845) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-3306 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-1765 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-2390 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-2401 (((-107)) 213)) (-1369 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3402 (((-517) $) 170 (|has| (-377 |#2|) (-955 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-377 |#2|) $) 165)) (-3539 (($ (-1158 (-377 |#2|)) (-1158 $)) 48) (($ (-1158 (-377 |#2|))) 64) (($ (-1158 |#2|) |#2|) 189)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-4028 (((-623 (-377 |#2|)) $ (-1158 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-2947 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-377 |#2|))) (|:| |vec| (-1158 (-377 |#2|)))) (-623 $) (-1158 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-1852 (((-1158 $) (-1158 $)) 201)) (-1510 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3550 (((-3 $ "failed") $) 34)) (-3810 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3881 (((-107) |#1| |#1|) 217)) (-3778 (((-845)) 54)) (-2192 (($) 90 (|has| (-377 |#2|) (-338)))) (-2897 (((-107)) 210)) (-1607 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2356 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-4172 (($ $) 188)) (-4169 (($) 149 (|has| (-377 |#2|) (-319)))) (-2634 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2627 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-2022 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-3250 (((-845) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-845)) $) 138 (|has| (-377 |#2|) (-319)))) (-1690 (((-107) $) 31)) (-3128 (((-703)) 220)) (-3947 (((-1158 $) (-1158 $)) 202)) (-3522 (((-377 |#2|) $) 51)) (-2784 (((-583 (-876 |#1|)) (-1077)) 183 (|has| |#1| (-333)))) (-1639 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-1914 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-4161 (((-845) $) 89 (|has| (-377 |#2|) (-338)))) (-1497 ((|#3| $) 156)) (-2323 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-3232 (((-1060) $) 9)) (-2765 (((-623 (-377 |#2|))) 197)) (-2160 (((-623 (-377 |#2|))) 199)) (-2291 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-1792 (($ (-1158 |#2|) |#2|) 194)) (-3444 (((-623 (-377 |#2|))) 198)) (-3564 (((-623 (-377 |#2|))) 200)) (-2303 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2067 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 195)) (-2474 (((-1158 $)) 206)) (-2734 (((-1158 $)) 207)) (-3093 (((-107) $) 205)) (-3138 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2578 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-2803 (($ (-845)) 88 (|has| (-377 |#2|) (-338)))) (-2645 (((-3 |#2| "failed")) 185)) (-4130 (((-1024) $) 10)) (-2224 (((-703)) 219)) (-1306 (($) 160)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 101 (|has| (-377 |#2|) (-333)))) (-2361 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3896 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2333 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3388 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-2612 ((|#1| $ |#1| |#1|) 187)) (-2178 (((-3 |#2| "failed")) 186)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-3115 (((-377 |#2|) (-1158 $)) 47) (((-377 |#2|)) 60)) (-3667 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-2042 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1077)) (-583 (-703))) 130 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077) (-703)) 131 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1077))) 132 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077)) 133 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3248 (((-623 (-377 |#2|)) (-1158 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2819 ((|#3|) 159)) (-3718 (($) 148 (|has| (-377 |#2|) (-319)))) (-1372 (((-1158 (-377 |#2|)) $ (-1158 $)) 50) (((-623 (-377 |#2|)) (-1158 $) (-1158 $)) 49) (((-1158 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1158 $)) 65)) (-3367 (((-1158 (-377 |#2|)) $) 63) (($ (-1158 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-1697 (((-1158 $) (-1158 $)) 203)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3786 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-955 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-3385 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-3848 ((|#3| $) 45)) (-1818 (((-703)) 29)) (-3471 (((-107)) 216)) (-3788 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-3700 (((-1158 $)) 67)) (-2944 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-2159 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1288 (((-107)) 218)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1077)) (-583 (-703))) 126 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077) (-703)) 127 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1077))) 128 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077)) 129 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
+(((-312 |#1| |#2| |#3|) (-1189) (-1116) (-1134 |t#1|) (-1134 (-377 |t#2|))) (T -312))
+((-3128 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703)))) (-2224 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703)))) (-1288 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3881 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3471 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3788 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3788 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2401 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1369 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1369 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2897 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1607 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1607 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2734 (*1 *2) (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)))) (-2474 (*1 *2) (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-3564 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2160 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3444 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2765 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4))))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4))))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3))))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-3138 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3138 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3))))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))))) (-2612 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))))) (-2178 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116)) (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3)))) (-2645 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116)) (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3)))) (-2159 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-1116)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-876 *4))))) (-3810 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -3128 ((-703))) (-15 -2224 ((-703))) (-15 -1288 ((-107))) (-15 -3881 ((-107) |t#1| |t#1|)) (-15 -3471 ((-107))) (-15 -3788 ((-107) |t#1|)) (-15 -3788 ((-107) |t#2|)) (-15 -2401 ((-107))) (-15 -1369 ((-107) |t#1|)) (-15 -1369 ((-107) |t#2|)) (-15 -2897 ((-107))) (-15 -1607 ((-107) |t#1|)) (-15 -1607 ((-107) |t#2|)) (-15 -2734 ((-1158 $))) (-15 -2474 ((-1158 $))) (-15 -3093 ((-107) $)) (-15 -3138 ((-107) $)) (-15 -1697 ((-1158 $) (-1158 $))) (-15 -3947 ((-1158 $) (-1158 $))) (-15 -1852 ((-1158 $) (-1158 $))) (-15 -3564 ((-623 (-377 |t#2|)))) (-15 -2160 ((-623 (-377 |t#2|)))) (-15 -3444 ((-623 (-377 |t#2|)))) (-15 -2765 ((-623 (-377 |t#2|)))) (-15 -2861 ((-2 (|:| |num| (-1158 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3539 ($ (-1158 |t#2|) |t#2|)) (-15 -2067 ((-2 (|:| |num| (-1158 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1792 ($ (-1158 |t#2|) |t#2|)) (-15 -2303 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3138 ((-107) $ |t#1|)) (-15 -3138 ((-107) $ |t#2|)) (-15 -2042 ($ $ (-1 |t#2| |t#2|))) (-15 -3539 ($ (-1158 |t#2|) |t#2|)) (-15 -4172 ($ $)) (-15 -2612 (|t#1| $ |t#1| |t#1|)) (-15 -2178 ((-3 |t#2| "failed"))) (-15 -2645 ((-3 |t#2| "failed"))) (-15 -2159 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2784 ((-583 (-876 |t#1|)) (-1077))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -3810 ((-583 (-583 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 #1=(-377 |#2|)) . T) ((-37 $) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 #0# #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 #1#) |has| (-377 |#2|) (-333)) ((-207) -3786 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3786 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 #1# |#3|) . T) ((-379 #1# |#3|) . T) ((-347 #1#) . T) ((-381 #1#) . T) ((-421) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #1#) . T) ((-585 $) . T) ((-579 #1#) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 #1#) . T) ((-650 $) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 #1# |#3|) . T) ((-659) . T) ((-824 (-1077)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) ((-844) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-955 (-377 (-517))) |has| (-377 |#2|) (-955 (-377 (-517)))) ((-955 #1#) . T) ((-955 (-517)) |has| (-377 |#2|) (-955 (-517))) ((-970 #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-970 #1#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| (-377 |#2|) (-319)) ((-1116) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-834 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-834 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-834 |#1|) "failed") $) NIL)) (-3402 (((-834 |#1|) $) NIL)) (-3539 (($ (-1158 (-834 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-834 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-834 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-834 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-834 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-834 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-3522 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-834 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-834 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-834 |#1|) (-338)))) (-3905 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338)))) (-3211 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-1073 (-834 |#1|)) "failed") $ $) NIL (|has| (-834 |#1|) (-338)))) (-3063 (($ $ (-1073 (-834 |#1|))) NIL (|has| (-834 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-834 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-2288 (((-881 (-1024))) NIL)) (-1306 (($) NIL (|has| (-834 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-834 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-834 |#1|))) NIL)) (-3718 (($) NIL (|has| (-834 |#1|) (-338)))) (-3297 (($) NIL (|has| (-834 |#1|) (-338)))) (-1372 (((-1158 (-834 |#1|)) $) NIL) (((-623 (-834 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-834 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-834 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-834 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-834 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-834 |#1|)) NIL) (($ (-834 |#1|) $) NIL)))
+(((-313 |#1| |#2|) (-13 (-299 (-834 |#1|)) (-10 -7 (-15 -2288 ((-881 (-1024)))))) (-845) (-845)) (T -313))
+((-2288 (*1 *2) (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-313 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))))
+(-13 (-299 (-834 |#1|)) (-10 -7 (-15 -2288 ((-881 (-1024))))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 46)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 114)) (-3402 ((|#1| $) 85)) (-3539 (($ (-1158 |#1|)) 103)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) 97 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 129 (|has| |#1| (-338)))) (-2634 (((-107) $) 49 (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) 47 (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) 131 (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) 89) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) 139 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 146)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 70 (|has| |#1| (-338)))) (-1333 (((-107) $) 117)) (-4130 (((-1024) $) NIL)) (-2288 (((-881 (-1024))) 44)) (-1306 (($) 127 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 92 (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) 67) (((-845)) 68)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) 130 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 124 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) 95)) (-3718 (($) 128 (|has| |#1| (-338)))) (-3297 (($) 136 (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 59) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) 142) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 138)) (-3700 (((-1158 $)) 116) (((-1158 $) (-845)) 72)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 32 T CONST)) (-3675 (($) 19 T CONST)) (-4115 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) 48)) (-1692 (($ $ $) 144) (($ $ |#1|) 145)) (-1680 (($ $) 126) (($ $ $) NIL)) (-1666 (($ $ $) 61)) (** (($ $ (-845)) 148) (($ $ (-703)) 149) (($ $ (-517)) 147)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024)))))) (-319) (-1073 |#1|)) (T -314))
+((-2288 (*1 *2) (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1073 *3)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024))))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) NIL) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-2288 (((-881 (-1024))) NIL)) (-1306 (($) NIL (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) NIL)) (-3718 (($) NIL (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024)))))) (-319) (-845)) (T -315))
+((-2288 (*1 *2) (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024))))))
+((-1266 (((-703) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) 40)) (-3477 (((-881 (-1024)) (-1073 |#1|)) 85)) (-2992 (((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) (-1073 |#1|)) 78)) (-2911 (((-623 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) 86)) (-2126 (((-3 (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) "failed") (-845)) 10)) (-3161 (((-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) (-845)) 15)))
+(((-316 |#1|) (-10 -7 (-15 -3477 ((-881 (-1024)) (-1073 |#1|))) (-15 -2992 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) (-1073 |#1|))) (-15 -2911 ((-623 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -1266 ((-703) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -2126 ((-3 (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) "failed") (-845))) (-15 -3161 ((-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) (-845)))) (-319)) (T -316))
+((-3161 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-3 (-1073 *4) (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-2126 (*1 *2 *3) (|partial| -12 (-5 *3 (-845)) (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-5 *1 (-316 *4)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-881 (-1024))) (-5 *1 (-316 *4)))))
+(-10 -7 (-15 -3477 ((-881 (-1024)) (-1073 |#1|))) (-15 -2992 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) (-1073 |#1|))) (-15 -2911 ((-623 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -1266 ((-703) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -2126 ((-3 (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) "failed") (-845))) (-15 -3161 ((-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) (-845))))
+((-2262 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
+(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2262 (|#3| |#1|)) (-15 -2262 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
+((-2262 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2262 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
+(-10 -7 (-15 -2262 (|#3| |#1|)) (-15 -2262 (|#1| |#3|)))
+((-2634 (((-107) $) 51)) (-3250 (((-765 (-845)) $) 21) (((-845) $) 52)) (-1639 (((-3 $ "failed") $) 16)) (-2578 (($) 9)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 92)) (-3667 (((-3 (-703) "failed") $ $) 71) (((-703) $) 60)) (-2042 (($ $ (-703)) NIL) (($ $) 8)) (-3718 (($) 45)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 33)) (-3385 (((-3 $ "failed") $) 39) (($ $) 38)))
+(((-318 |#1|) (-10 -8 (-15 -3250 ((-845) |#1|)) (-15 -3667 ((-703) |#1|)) (-15 -2634 ((-107) |#1|)) (-15 -3718 (|#1|)) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -3385 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3667 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3250 ((-765 (-845)) |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)))) (-319)) (T -318))
+NIL
+(-10 -8 (-15 -3250 ((-845) |#1|)) (-15 -3667 ((-703) |#1|)) (-15 -2634 ((-107) |#1|)) (-15 -3718 (|#1|)) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -3385 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3667 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3250 ((-765 (-845)) |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2461 (((-1086 (-845) (-703)) (-517)) 93)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-2390 (((-703)) 103)) (-3038 (($) 17 T CONST)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2192 (($) 106)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-4169 (($) 91)) (-2634 (((-107) $) 90)) (-2627 (($ $) 79) (($ $ (-703)) 78)) (-2022 (((-107) $) 71)) (-3250 (((-765 (-845)) $) 81) (((-845) $) 88)) (-1690 (((-107) $) 31)) (-1639 (((-3 $ "failed") $) 102)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4161 (((-845) $) 105)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2578 (($) 101 T CONST)) (-2803 (($ (-845)) 104)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 94)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-2042 (($ $ (-703)) 99) (($ $) 97)) (-3718 (($) 92)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 95)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-3385 (((-3 $ "failed") $) 82) (($ $) 96)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-703)) 100) (($ $) 98)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-319) (-1189)) (T -319))
+((-3385 (*1 *1 *1) (-4 *1 (-319))) (-2767 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1158 *1)))) (-2445 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))))) (-2461 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1086 (-845) (-703))))) (-3718 (*1 *1) (-4 *1 (-319))) (-4169 (*1 *1) (-4 *1 (-319))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-845)))) (-3735 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-372) (-338) (-1053) (-207) (-10 -8 (-15 -3385 ($ $)) (-15 -2767 ((-3 (-1158 $) "failed") (-623 $))) (-15 -2445 ((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517)))))) (-15 -2461 ((-1086 (-845) (-703)) (-517))) (-15 -3718 ($)) (-15 -4169 ($)) (-15 -2634 ((-107) $)) (-15 -3667 ((-703) $)) (-15 -3250 ((-845) $)) (-15 -3735 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) . T) ((-1116) . T))
+((-1486 (((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-2734 (((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
+(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))) (-1134 |#1|) (-379 |#1| |#2|)) (T -320))
+((-1486 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2734 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-834 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1266 (((-703)) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-834 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-834 |#1|) "failed") $) NIL)) (-3402 (((-834 |#1|) $) NIL)) (-3539 (($ (-1158 (-834 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-834 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-834 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-834 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-834 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-834 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-3522 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-834 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-834 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-834 |#1|) (-338)))) (-3905 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338)))) (-3211 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-1073 (-834 |#1|)) "failed") $ $) NIL (|has| (-834 |#1|) (-338)))) (-3063 (($ $ (-1073 (-834 |#1|))) NIL (|has| (-834 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-834 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-3155 (((-1158 (-583 (-2 (|:| -3112 (-834 |#1|)) (|:| -2803 (-1024)))))) NIL)) (-3009 (((-623 (-834 |#1|))) NIL)) (-1306 (($) NIL (|has| (-834 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-834 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-834 |#1|))) NIL)) (-3718 (($) NIL (|has| (-834 |#1|) (-338)))) (-3297 (($) NIL (|has| (-834 |#1|) (-338)))) (-1372 (((-1158 (-834 |#1|)) $) NIL) (((-623 (-834 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-834 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-834 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-834 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-834 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-834 |#1|)) NIL) (($ (-834 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-13 (-299 (-834 |#1|)) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 (-834 |#1|)) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 (-834 |#1|)))) (-15 -1266 ((-703))))) (-845) (-845)) (T -321))
+((-3155 (*1 *2) (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 (-834 *3)) (|:| -2803 (-1024)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-3009 (*1 *2) (-12 (-5 *2 (-623 (-834 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-1266 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))))
+(-13 (-299 (-834 |#1|)) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 (-834 |#1|)) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 (-834 |#1|)))) (-15 -1266 ((-703)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 75)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) 93) (($ $ (-845)) 91 (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 149 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1266 (((-703)) 90)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) 163 (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 112)) (-3402 ((|#1| $) 92)) (-3539 (($ (-1158 |#1|)) 56)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) 159 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 150 (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) 98 (|has| |#1| (-338)))) (-3715 (((-107) $) 176 (|has| |#1| (-338)))) (-3522 ((|#1| $) 95) (($ $ (-845)) 94 (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) 188) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) 134 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) 74 (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) 71 (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) 83 (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) 70 (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 191)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 137 (|has| |#1| (-338)))) (-1333 (((-107) $) 108)) (-4130 (((-1024) $) NIL)) (-3155 (((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) 84)) (-3009 (((-623 |#1|)) 88)) (-1306 (($) 97 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 151 (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) 152)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) 63)) (-2819 (((-1073 |#1|)) 153)) (-3718 (($) 133 (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 106) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) 124) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 55)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 157)) (-3700 (((-1158 $)) 173) (((-1158 $) (-845)) 101)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 29 T CONST)) (-3675 (($) 22 T CONST)) (-4115 (($ $) 107 (|has| |#1| (-338))) (($ $ (-703)) 99 (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) 59)) (-1692 (($ $ $) 104) (($ $ |#1|) 105)) (-1680 (($ $) 178) (($ $ $) 182)) (-1666 (($ $ $) 180)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 138)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 143) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703))))) (-319) (-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (T -322))
+((-3155 (*1 *2) (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) *2)))) (-3009 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))))) (-1266 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))))))
+(-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1266 (((-703)) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) NIL) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-3155 (((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) NIL)) (-3009 (((-623 |#1|)) NIL)) (-1306 (($) NIL (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) NIL)) (-3718 (($) NIL (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703))))) (-319) (-845)) (T -323))
+((-3155 (*1 *2) (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))) (-3009 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))) (-1266 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-834 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-834 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-834 |#1|) "failed") $) NIL)) (-3402 (((-834 |#1|) $) NIL)) (-3539 (($ (-1158 (-834 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-834 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-834 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-834 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-834 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-834 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-3522 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-834 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-834 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-834 |#1|) (-338)))) (-3905 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338)))) (-3211 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-1073 (-834 |#1|)) "failed") $ $) NIL (|has| (-834 |#1|) (-338)))) (-3063 (($ $ (-1073 (-834 |#1|))) NIL (|has| (-834 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-834 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| (-834 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-834 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-834 |#1|))) NIL)) (-3718 (($) NIL (|has| (-834 |#1|) (-338)))) (-3297 (($) NIL (|has| (-834 |#1|) (-338)))) (-1372 (((-1158 (-834 |#1|)) $) NIL) (((-623 (-834 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-834 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-834 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-834 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-834 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-834 |#1|)) NIL) (($ (-834 |#1|) $) NIL)))
+(((-324 |#1| |#2|) (-299 (-834 |#1|)) (-845) (-845)) (T -324))
+NIL
+(-299 (-834 |#1|))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) 139 (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 91)) (-3402 ((|#1| $) 88)) (-3539 (($ (-1158 |#1|)) 83)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) 80 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 39 (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) 120 (|has| |#1| (-338)))) (-3715 (((-107) $) 72 (|has| |#1| (-338)))) (-3522 ((|#1| $) 38) (($ $ (-845)) 40 (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) 62) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) 95 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 93 (|has| |#1| (-338)))) (-1333 (((-107) $) 141)) (-4130 (((-1024) $) NIL)) (-1306 (($) 35 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 113 (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) 138)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) 56)) (-2819 (((-1073 |#1|)) 86)) (-3718 (($) 125 (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 50) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) 137) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 143)) (-3700 (((-1158 $)) 107) (((-1158 $) (-845)) 46)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 109 T CONST)) (-3675 (($) 31 T CONST)) (-4115 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) 105)) (-1692 (($ $ $) 97) (($ $ |#1|) 98)) (-1680 (($ $) 78) (($ $ $) 103)) (-1666 (($ $ $) 101)) (** (($ $ (-845)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 129)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
+(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1073 |#1|)) (T -325))
NIL
(-299 |#1|)
-((-2681 ((|#1| (-1072 |#2|)) 51)))
-(((-326 |#1| |#2|) (-10 -7 (-15 -2681 (|#1| (-1072 |#2|)))) (-13 (-372) (-10 -7 (-15 -2271 (|#1| |#2|)) (-15 -3072 ((-844) |#1|)) (-15 -1492 ((-1157 |#1|) (-844))) (-15 -3629 (|#1| |#1|)))) (-319)) (T -326))
-((-2681 (*1 *2 *3) (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2271 (*2 *4)) (-15 -3072 ((-844) *2)) (-15 -1492 ((-1157 *2) (-844))) (-15 -3629 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
-(-10 -7 (-15 -2681 (|#1| (-1072 |#2|))))
-((-2572 (((-880 (-1072 |#1|)) (-1072 |#1|)) 37)) (-2202 (((-1072 |#1|) (-844) (-844)) 110) (((-1072 |#1|) (-844)) 109)) (-3459 (((-107) (-1072 |#1|)) 82)) (-4069 (((-844) (-844)) 72)) (-3176 (((-844) (-844)) 74)) (-1959 (((-844) (-844)) 70)) (-2548 (((-107) (-1072 |#1|)) 86)) (-3955 (((-3 (-1072 |#1|) "failed") (-1072 |#1|)) 98)) (-3815 (((-3 (-1072 |#1|) "failed") (-1072 |#1|)) 101)) (-3204 (((-3 (-1072 |#1|) "failed") (-1072 |#1|)) 100)) (-3108 (((-3 (-1072 |#1|) "failed") (-1072 |#1|)) 99)) (-4094 (((-3 (-1072 |#1|) "failed") (-1072 |#1|)) 95)) (-3207 (((-1072 |#1|) (-1072 |#1|)) 63)) (-3295 (((-1072 |#1|) (-844)) 104)) (-3865 (((-1072 |#1|) (-844)) 107)) (-3474 (((-1072 |#1|) (-844)) 106)) (-2088 (((-1072 |#1|) (-844)) 105)) (-3849 (((-1072 |#1|) (-844)) 102)))
-(((-327 |#1|) (-10 -7 (-15 -3459 ((-107) (-1072 |#1|))) (-15 -2548 ((-107) (-1072 |#1|))) (-15 -1959 ((-844) (-844))) (-15 -4069 ((-844) (-844))) (-15 -3176 ((-844) (-844))) (-15 -3849 ((-1072 |#1|) (-844))) (-15 -3295 ((-1072 |#1|) (-844))) (-15 -2088 ((-1072 |#1|) (-844))) (-15 -3474 ((-1072 |#1|) (-844))) (-15 -3865 ((-1072 |#1|) (-844))) (-15 -4094 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3955 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3108 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3204 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3815 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -2202 ((-1072 |#1|) (-844))) (-15 -2202 ((-1072 |#1|) (-844) (-844))) (-15 -3207 ((-1072 |#1|) (-1072 |#1|))) (-15 -2572 ((-880 (-1072 |#1|)) (-1072 |#1|)))) (-319)) (T -327))
-((-2572 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-880 (-1072 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1072 *4)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2202 (*1 *2 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3815 (*1 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3204 (*1 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3108 (*1 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3955 (*1 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-4094 (*1 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
-(-10 -7 (-15 -3459 ((-107) (-1072 |#1|))) (-15 -2548 ((-107) (-1072 |#1|))) (-15 -1959 ((-844) (-844))) (-15 -4069 ((-844) (-844))) (-15 -3176 ((-844) (-844))) (-15 -3849 ((-1072 |#1|) (-844))) (-15 -3295 ((-1072 |#1|) (-844))) (-15 -2088 ((-1072 |#1|) (-844))) (-15 -3474 ((-1072 |#1|) (-844))) (-15 -3865 ((-1072 |#1|) (-844))) (-15 -4094 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3955 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3108 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3204 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3815 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -2202 ((-1072 |#1|) (-844))) (-15 -2202 ((-1072 |#1|) (-844) (-844))) (-15 -3207 ((-1072 |#1|) (-1072 |#1|))) (-15 -2572 ((-880 (-1072 |#1|)) (-1072 |#1|))))
-((-2019 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 34)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2019 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1133 |#1|) (-1133 |#2|)) (T -328))
-((-2019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
-(-10 -7 (-15 -2019 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-3898 (($ (-1157 |#1|)) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| |#1| (-338)))) (-3459 (((-107) $) NIL (|has| |#1| (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| |#1| (-338)))) (-2548 (((-107) $) NIL (|has| |#1| (-338)))) (-2803 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 |#1|) $) NIL) (((-1072 $) $ (-844)) NIL (|has| |#1| (-338)))) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-3018 (((-1072 |#1|) $) NIL (|has| |#1| (-338)))) (-1425 (((-1072 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1072 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2421 (($ $ (-1072 |#1|)) NIL (|has| |#1| (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| |#1| (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1318 (($) NIL (|has| |#1| (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| |#1| (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 |#1|)) NIL)) (-1758 (($) NIL (|has| |#1| (-338)))) (-1426 (($) NIL (|has| |#1| (-338)))) (-3784 (((-1157 |#1|) $) NIL) (((-623 |#1|) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3974 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3342 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-329 |#1| |#2|) (-299 |#1|) (-319) (-844)) (T -329))
+((-3902 ((|#1| (-1073 |#2|)) 51)))
+(((-326 |#1| |#2|) (-10 -7 (-15 -3902 (|#1| (-1073 |#2|)))) (-13 (-372) (-10 -7 (-15 -2262 (|#1| |#2|)) (-15 -4161 ((-845) |#1|)) (-15 -3700 ((-1158 |#1|) (-845))) (-15 -4115 (|#1| |#1|)))) (-319)) (T -326))
+((-3902 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2262 (*2 *4)) (-15 -4161 ((-845) *2)) (-15 -3700 ((-1158 *2) (-845))) (-15 -4115 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
+(-10 -7 (-15 -3902 (|#1| (-1073 |#2|))))
+((-3855 (((-881 (-1073 |#1|)) (-1073 |#1|)) 37)) (-2192 (((-1073 |#1|) (-845) (-845)) 110) (((-1073 |#1|) (-845)) 109)) (-2634 (((-107) (-1073 |#1|)) 82)) (-3368 (((-845) (-845)) 72)) (-1441 (((-845) (-845)) 74)) (-1900 (((-845) (-845)) 70)) (-3715 (((-107) (-1073 |#1|)) 86)) (-1865 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 98)) (-3226 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 101)) (-1340 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 100)) (-1578 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 99)) (-2537 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 95)) (-1665 (((-1073 |#1|) (-1073 |#1|)) 63)) (-3865 (((-1073 |#1|) (-845)) 104)) (-3719 (((-1073 |#1|) (-845)) 107)) (-2465 (((-1073 |#1|) (-845)) 106)) (-4163 (((-1073 |#1|) (-845)) 105)) (-2893 (((-1073 |#1|) (-845)) 102)))
+(((-327 |#1|) (-10 -7 (-15 -2634 ((-107) (-1073 |#1|))) (-15 -3715 ((-107) (-1073 |#1|))) (-15 -1900 ((-845) (-845))) (-15 -3368 ((-845) (-845))) (-15 -1441 ((-845) (-845))) (-15 -2893 ((-1073 |#1|) (-845))) (-15 -3865 ((-1073 |#1|) (-845))) (-15 -4163 ((-1073 |#1|) (-845))) (-15 -2465 ((-1073 |#1|) (-845))) (-15 -3719 ((-1073 |#1|) (-845))) (-15 -2537 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1865 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1578 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1340 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -3226 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2192 ((-1073 |#1|) (-845))) (-15 -2192 ((-1073 |#1|) (-845) (-845))) (-15 -1665 ((-1073 |#1|) (-1073 |#1|))) (-15 -3855 ((-881 (-1073 |#1|)) (-1073 |#1|)))) (-319)) (T -327))
+((-3855 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-881 (-1073 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1073 *4)))) (-1665 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2192 (*1 *2 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3226 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1340 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1578 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1865 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2537 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1900 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
+(-10 -7 (-15 -2634 ((-107) (-1073 |#1|))) (-15 -3715 ((-107) (-1073 |#1|))) (-15 -1900 ((-845) (-845))) (-15 -3368 ((-845) (-845))) (-15 -1441 ((-845) (-845))) (-15 -2893 ((-1073 |#1|) (-845))) (-15 -3865 ((-1073 |#1|) (-845))) (-15 -4163 ((-1073 |#1|) (-845))) (-15 -2465 ((-1073 |#1|) (-845))) (-15 -3719 ((-1073 |#1|) (-845))) (-15 -2537 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1865 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1578 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1340 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -3226 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2192 ((-1073 |#1|) (-845))) (-15 -2192 ((-1073 |#1|) (-845) (-845))) (-15 -1665 ((-1073 |#1|) (-1073 |#1|))) (-15 -3855 ((-881 (-1073 |#1|)) (-1073 |#1|))))
+((-3862 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 34)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -3862 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1134 |#1|) (-1134 |#2|)) (T -328))
+((-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
+(-10 -7 (-15 -3862 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) NIL) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) NIL)) (-3718 (($) NIL (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-329 |#1| |#2|) (-299 |#1|) (-319) (-845)) (T -329))
NIL
(-299 |#1|)
-((-2464 (((-107) (-583 (-875 |#1|))) 32)) (-1375 (((-583 (-875 |#1|)) (-583 (-875 |#1|))) 43)) (-1236 (((-3 (-583 (-875 |#1|)) "failed") (-583 (-875 |#1|))) 39)))
-(((-330 |#1| |#2|) (-10 -7 (-15 -2464 ((-107) (-583 (-875 |#1|)))) (-15 -1236 ((-3 (-583 (-875 |#1|)) "failed") (-583 (-875 |#1|)))) (-15 -1375 ((-583 (-875 |#1|)) (-583 (-875 |#1|))))) (-421) (-583 (-1076))) (T -330))
-((-1375 (*1 *2 *2) (-12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1076))))) (-1236 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1076))))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1076))))))
-(-10 -7 (-15 -2464 ((-107) (-583 (-875 |#1|)))) (-15 -1236 ((-3 (-583 (-875 |#1|)) "failed") (-583 (-875 |#1|)))) (-15 -1375 ((-583 (-875 |#1|)) (-583 (-875 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-2399 (((-703) $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) 14)) (-1789 ((|#1| $ (-517)) NIL)) (-1879 (((-517) $ (-517)) NIL)) (-3912 (($ (-1 |#1| |#1|) $) 32)) (-3208 (($ (-1 (-517) (-517)) $) 24)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 26)) (-4125 (((-1023) $) NIL)) (-1510 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-517)))) $) 28)) (-1842 (($ $ $) NIL)) (-2059 (($ $ $) NIL)) (-2271 (((-787) $) 38) (($ |#1|) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3619 (($) 9 T CONST)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-331 |#1|) (-13 (-442) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2399 ((-703) $)) (-15 -1879 ((-517) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -3208 ($ (-1 (-517) (-517)) $)) (-15 -3912 ($ (-1 |#1| |#1|) $)) (-15 -1510 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-517)))) $)))) (-1005)) (T -331))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1005)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1005)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1005)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1005)))) (-1879 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1005)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1005)))) (-3208 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1005)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-331 *3)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1005)))))
-(-13 (-442) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2399 ((-703) $)) (-15 -1879 ((-517) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -3208 ($ (-1 (-517) (-517)) $)) (-15 -3912 ($ (-1 |#1| |#1|) $)) (-15 -1510 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-517)))) $))))
-((-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 13)) (-3062 (($ $) 14)) (-4018 (((-388 $) $) 30)) (-1259 (((-107) $) 26)) (-2300 (($ $) 19)) (-2370 (($ $ $) 23) (($ (-583 $)) NIL)) (-3868 (((-388 $) $) 31)) (-2329 (((-3 $ "failed") $ $) 22)) (-3600 (((-703) $) 25)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 35)) (-2074 (((-107) $ $) 16)) (-1704 (($ $ $) 33)))
-(((-332 |#1|) (-10 -8 (-15 -1704 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -1259 ((-107) |#1|)) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3853 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -3600 ((-703) |#1|)) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2074 ((-107) |#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -2559 ((-2 (|:| -1485 |#1|) (|:| -4179 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
-NIL
-(-10 -8 (-15 -1704 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -1259 ((-107) |#1|)) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3853 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -3600 ((-703) |#1|)) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2074 ((-107) |#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -2559 ((-2 (|:| -1485 |#1|) (|:| -4179 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1259 (((-107) $) 71)) (-1376 (((-107) $) 31)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 64)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-333) (-1188)) (T -333))
-((-1704 (*1 *1 *1 *1) (-4 *1 (-333))))
-(-13 (-278) (-1115) (-217) (-10 -8 (-15 -1704 ($ $ $)) (-6 -4190) (-6 -4184)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-2119 (((-107) $ $) 7)) (-2225 ((|#2| $ |#2|) 13)) (-3506 (($ $ (-1059)) 18)) (-2045 ((|#2| $) 14)) (-3676 (($ |#1|) 20) (($ |#1| (-1059)) 19)) (-2989 ((|#1| $) 16)) (-1662 (((-1059) $) 9)) (-2964 (((-1059) $) 15)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-2307 (($ $) 17)) (-1584 (((-107) $ $) 6)))
-(((-334 |#1| |#2|) (-1188) (-1005) (-1005)) (T -334))
-((-3676 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3676 (*1 *1 *2 *3) (-12 (-5 *3 (-1059)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1005)) (-4 *4 (-1005)))) (-3506 (*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-1059)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-2225 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))))
-(-13 (-1005) (-10 -8 (-15 -3676 ($ |t#1|)) (-15 -3676 ($ |t#1| (-1059))) (-15 -3506 ($ $ (-1059))) (-15 -2307 ($ $)) (-15 -2989 (|t#1| $)) (-15 -2964 ((-1059) $)) (-15 -2045 (|t#2| $)) (-15 -2225 (|t#2| $ |t#2|))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-2225 ((|#1| $ |#1|) 29)) (-3506 (($ $ (-1059)) 22)) (-1540 (((-3 |#1| "failed") $) 28)) (-2045 ((|#1| $) 26)) (-3676 (($ (-358)) 21) (($ (-358) (-1059)) 20)) (-2989 (((-358) $) 24)) (-1662 (((-1059) $) NIL)) (-2964 (((-1059) $) 25)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 19)) (-2307 (($ $) 23)) (-1584 (((-107) $ $) 18)))
-(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -1540 ((-3 |#1| "failed") $)))) (-1005)) (T -335))
-((-1540 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1005)))))
-(-13 (-334 (-358) |#1|) (-10 -8 (-15 -1540 ((-3 |#1| "failed") $))))
-((-2520 (((-1157 (-623 |#2|)) (-1157 $)) 61)) (-1397 (((-623 |#2|) (-1157 $)) 119)) (-4049 ((|#2| $) 32)) (-1292 (((-623 |#2|) $ (-1157 $)) 123)) (-2093 (((-3 $ "failed") $) 75)) (-2554 ((|#2| $) 35)) (-2208 (((-1072 |#2|) $) 83)) (-3245 ((|#2| (-1157 $)) 106)) (-1284 (((-1072 |#2|) $) 28)) (-3462 (((-107)) 100)) (-3898 (($ (-1157 |#2|) (-1157 $)) 113)) (-2560 (((-3 $ "failed") $) 79)) (-3453 (((-107)) 95)) (-2185 (((-107)) 90)) (-1573 (((-107)) 53)) (-1344 (((-623 |#2|) (-1157 $)) 117)) (-1412 ((|#2| $) 31)) (-3358 (((-623 |#2|) $ (-1157 $)) 122)) (-1590 (((-3 $ "failed") $) 73)) (-2666 ((|#2| $) 34)) (-2292 (((-1072 |#2|) $) 82)) (-3829 ((|#2| (-1157 $)) 104)) (-3764 (((-1072 |#2|) $) 26)) (-2541 (((-107)) 99)) (-3886 (((-107)) 92)) (-2031 (((-107)) 51)) (-1321 (((-107)) 87)) (-3129 (((-107)) 101)) (-3784 (((-1157 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) (-1157 $) (-1157 $)) 111)) (-1266 (((-107)) 97)) (-2689 (((-583 (-1157 |#2|))) 86)) (-3365 (((-107)) 98)) (-2436 (((-107)) 96)) (-4056 (((-107)) 46)) (-2014 (((-107)) 102)))
-(((-336 |#1| |#2|) (-10 -8 (-15 -2208 ((-1072 |#2|) |#1|)) (-15 -2292 ((-1072 |#2|) |#1|)) (-15 -2689 ((-583 (-1157 |#2|)))) (-15 -2093 ((-3 |#1| "failed") |#1|)) (-15 -1590 ((-3 |#1| "failed") |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 -2185 ((-107))) (-15 -3886 ((-107))) (-15 -3453 ((-107))) (-15 -2031 ((-107))) (-15 -1573 ((-107))) (-15 -1321 ((-107))) (-15 -2014 ((-107))) (-15 -3129 ((-107))) (-15 -3462 ((-107))) (-15 -2541 ((-107))) (-15 -4056 ((-107))) (-15 -3365 ((-107))) (-15 -2436 ((-107))) (-15 -1266 ((-107))) (-15 -1284 ((-1072 |#2|) |#1|)) (-15 -3764 ((-1072 |#2|) |#1|)) (-15 -1397 ((-623 |#2|) (-1157 |#1|))) (-15 -1344 ((-623 |#2|) (-1157 |#1|))) (-15 -3245 (|#2| (-1157 |#1|))) (-15 -3829 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2554 (|#2| |#1|)) (-15 -2666 (|#2| |#1|)) (-15 -4049 (|#2| |#1|)) (-15 -1412 (|#2| |#1|)) (-15 -1292 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -3358 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -2520 ((-1157 (-623 |#2|)) (-1157 |#1|)))) (-337 |#2|) (-156)) (T -336))
-((-1266 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2436 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3365 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4056 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2541 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3462 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3129 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2014 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1321 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1573 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2031 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3453 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3886 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2185 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2689 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1157 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
-(-10 -8 (-15 -2208 ((-1072 |#2|) |#1|)) (-15 -2292 ((-1072 |#2|) |#1|)) (-15 -2689 ((-583 (-1157 |#2|)))) (-15 -2093 ((-3 |#1| "failed") |#1|)) (-15 -1590 ((-3 |#1| "failed") |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 -2185 ((-107))) (-15 -3886 ((-107))) (-15 -3453 ((-107))) (-15 -2031 ((-107))) (-15 -1573 ((-107))) (-15 -1321 ((-107))) (-15 -2014 ((-107))) (-15 -3129 ((-107))) (-15 -3462 ((-107))) (-15 -2541 ((-107))) (-15 -4056 ((-107))) (-15 -3365 ((-107))) (-15 -2436 ((-107))) (-15 -1266 ((-107))) (-15 -1284 ((-1072 |#2|) |#1|)) (-15 -3764 ((-1072 |#2|) |#1|)) (-15 -1397 ((-623 |#2|) (-1157 |#1|))) (-15 -1344 ((-623 |#2|) (-1157 |#1|))) (-15 -3245 (|#2| (-1157 |#1|))) (-15 -3829 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2554 (|#2| |#1|)) (-15 -2666 (|#2| |#1|)) (-15 -4049 (|#2| |#1|)) (-15 -1412 (|#2| |#1|)) (-15 -1292 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -3358 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -2520 ((-1157 (-623 |#2|)) (-1157 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1485 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) 19)) (-2520 (((-1157 (-623 |#1|)) (-1157 $)) 78)) (-2823 (((-1157 $)) 81)) (-1393 (($) 17 T CONST)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-2244 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-1397 (((-623 |#1|) (-1157 $)) 65)) (-4049 ((|#1| $) 74)) (-1292 (((-623 |#1|) $ (-1157 $)) 76)) (-2093 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3614 (($ $ (-844)) 28)) (-2554 ((|#1| $) 72)) (-2208 (((-1072 |#1|) $) 42 (|has| |#1| (-509)))) (-3245 ((|#1| (-1157 $)) 67)) (-1284 (((-1072 |#1|) $) 63)) (-3462 (((-107)) 57)) (-3898 (($ (-1157 |#1|) (-1157 $)) 69)) (-2560 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3737 (((-844)) 80)) (-1864 (((-107)) 54)) (-2193 (($ $ (-844)) 33)) (-3453 (((-107)) 50)) (-2185 (((-107)) 48)) (-1573 (((-107)) 52)) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1737 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1344 (((-623 |#1|) (-1157 $)) 66)) (-1412 ((|#1| $) 75)) (-3358 (((-623 |#1|) $ (-1157 $)) 77)) (-1590 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-3200 (($ $ (-844)) 29)) (-2666 ((|#1| $) 73)) (-2292 (((-1072 |#1|) $) 43 (|has| |#1| (-509)))) (-3829 ((|#1| (-1157 $)) 68)) (-3764 (((-1072 |#1|) $) 64)) (-2541 (((-107)) 58)) (-1662 (((-1059) $) 9)) (-3886 (((-107)) 49)) (-2031 (((-107)) 51)) (-1321 (((-107)) 53)) (-4125 (((-1023) $) 10)) (-3129 (((-107)) 56)) (-3784 (((-1157 |#1|) $ (-1157 $)) 71) (((-623 |#1|) (-1157 $) (-1157 $)) 70)) (-3435 (((-583 (-875 |#1|)) (-1157 $)) 79)) (-2059 (($ $ $) 25)) (-1266 (((-107)) 62)) (-2271 (((-787) $) 11)) (-2689 (((-583 (-1157 |#1|))) 44 (|has| |#1| (-509)))) (-3100 (($ $ $ $) 26)) (-3365 (((-107)) 60)) (-2951 (($ $ $) 24)) (-2436 (((-107)) 61)) (-4056 (((-107)) 59)) (-2014 (((-107)) 55)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-337 |#1|) (-1188) (-156)) (T -337))
-((-2823 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1157 *1)) (-4 *1 (-337 *3)))) (-3737 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-844)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-875 *4))))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1157 (-623 *4))))) (-3358 (*1 *2 *1 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1157 *4)))) (-3784 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1072 *3)))) (-1284 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1072 *3)))) (-1266 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2436 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3365 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4056 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2541 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3462 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3129 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2014 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1864 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1321 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1573 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2031 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3453 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3886 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2185 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2560 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1590 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2093 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2689 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1157 *3))))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1072 *3)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1072 *3)))) (-1431 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1492 (-583 *1)))) (-4 *1 (-337 *3)))) (-1444 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1492 (-583 *1)))) (-4 *1 (-337 *3)))) (-1737 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-2244 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1485 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(-13 (-677 |t#1|) (-10 -8 (-15 -2823 ((-1157 $))) (-15 -3737 ((-844))) (-15 -3435 ((-583 (-875 |t#1|)) (-1157 $))) (-15 -2520 ((-1157 (-623 |t#1|)) (-1157 $))) (-15 -3358 ((-623 |t#1|) $ (-1157 $))) (-15 -1292 ((-623 |t#1|) $ (-1157 $))) (-15 -1412 (|t#1| $)) (-15 -4049 (|t#1| $)) (-15 -2666 (|t#1| $)) (-15 -2554 (|t#1| $)) (-15 -3784 ((-1157 |t#1|) $ (-1157 $))) (-15 -3784 ((-623 |t#1|) (-1157 $) (-1157 $))) (-15 -3898 ($ (-1157 |t#1|) (-1157 $))) (-15 -3829 (|t#1| (-1157 $))) (-15 -3245 (|t#1| (-1157 $))) (-15 -1344 ((-623 |t#1|) (-1157 $))) (-15 -1397 ((-623 |t#1|) (-1157 $))) (-15 -3764 ((-1072 |t#1|) $)) (-15 -1284 ((-1072 |t#1|) $)) (-15 -1266 ((-107))) (-15 -2436 ((-107))) (-15 -3365 ((-107))) (-15 -4056 ((-107))) (-15 -2541 ((-107))) (-15 -3462 ((-107))) (-15 -3129 ((-107))) (-15 -2014 ((-107))) (-15 -1864 ((-107))) (-15 -1321 ((-107))) (-15 -1573 ((-107))) (-15 -2031 ((-107))) (-15 -3453 ((-107))) (-15 -3886 ((-107))) (-15 -2185 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -2560 ((-3 $ "failed") $)) (-15 -1590 ((-3 $ "failed") $)) (-15 -2093 ((-3 $ "failed") $)) (-15 -2689 ((-583 (-1157 |t#1|)))) (-15 -2292 ((-1072 |t#1|) $)) (-15 -2208 ((-1072 |t#1|) $)) (-15 -1431 ((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed"))) (-15 -1444 ((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed"))) (-15 -1737 ((-3 $ "failed"))) (-15 -2244 ((-3 $ "failed"))) (-15 -1485 ((-3 $ "failed"))) (-6 -4189)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-2399 (((-703)) 16)) (-2202 (($) 13)) (-3072 (((-844) $) 14)) (-1662 (((-1059) $) 9)) (-2812 (($ (-844)) 15)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-338) (-1188)) (T -338))
-((-2399 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-338)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-844)))) (-2202 (*1 *1) (-4 *1 (-338))))
-(-13 (-1005) (-10 -8 (-15 -2399 ((-703))) (-15 -2812 ($ (-844))) (-15 -3072 ((-844) $)) (-15 -2202 ($))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2133 (((-623 |#2|) (-1157 $)) 40)) (-3898 (($ (-1157 |#2|) (-1157 $)) 35)) (-2637 (((-623 |#2|) $ (-1157 $)) 43)) (-1220 ((|#2| (-1157 $)) 13)) (-3784 (((-1157 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) (-1157 $) (-1157 $)) 25)))
-(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -2133 ((-623 |#2|) (-1157 |#1|))) (-15 -1220 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2637 ((-623 |#2|) |#1| (-1157 |#1|)))) (-340 |#2| |#3|) (-156) (-1133 |#2|)) (T -339))
-NIL
-(-10 -8 (-15 -2133 ((-623 |#2|) (-1157 |#1|))) (-15 -1220 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2637 ((-623 |#2|) |#1| (-1157 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2133 (((-623 |#1|) (-1157 $)) 46)) (-2009 ((|#1| $) 52)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3898 (($ (-1157 |#1|) (-1157 $)) 48)) (-2637 (((-623 |#1|) $ (-1157 $)) 53)) (-2560 (((-3 $ "failed") $) 34)) (-3737 (((-844)) 54)) (-1376 (((-107) $) 31)) (-2803 ((|#1| $) 51)) (-2766 ((|#2| $) 44 (|has| |#1| (-333)))) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1220 ((|#1| (-1157 $)) 47)) (-3784 (((-1157 |#1|) $ (-1157 $)) 50) (((-623 |#1|) (-1157 $) (-1157 $)) 49)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-3974 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1699 ((|#2| $) 45)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-340 |#1| |#2|) (-1188) (-156) (-1133 |t#1|)) (T -340))
-((-3737 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-844)))) (-2637 (*1 *2 *1 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-623 *4)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1133 *2)) (-4 *2 (-156)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1133 *2)) (-4 *2 (-156)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-1157 *4)))) (-3784 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-623 *4)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1133 *4)))) (-1220 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1133 *2)) (-4 *2 (-156)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-623 *4)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1133 *3)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1133 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3737 ((-844))) (-15 -2637 ((-623 |t#1|) $ (-1157 $))) (-15 -2009 (|t#1| $)) (-15 -2803 (|t#1| $)) (-15 -3784 ((-1157 |t#1|) $ (-1157 $))) (-15 -3784 ((-623 |t#1|) (-1157 $) (-1157 $))) (-15 -3898 ($ (-1157 |t#1|) (-1157 $))) (-15 -1220 (|t#1| (-1157 $))) (-15 -2133 ((-623 |t#1|) (-1157 $))) (-15 -1699 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -2766 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1532 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1522 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3310 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1522 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1532 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1111) (-343 |#1|) (-1111) (-343 |#3|)) (T -341))
-((-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
-(-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1522 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1532 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2166 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-1420 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-2163 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-1908 (($ $) 25)) (-1212 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-2662 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-342 |#1| |#2|) (-10 -8 (-15 -1420 (|#1| |#1|)) (-15 -1420 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2166 ((-107) |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -1212 ((-517) |#2| |#1| (-517))) (-15 -1212 ((-517) |#2| |#1|)) (-15 -1212 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2166 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2163 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -2662 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1111)) (T -342))
-NIL
-(-10 -8 (-15 -1420 (|#1| |#1|)) (-15 -1420 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2166 ((-107) |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -1212 ((-517) |#2| |#1| (-517))) (-15 -1212 ((-517) |#2| |#1|)) (-15 -1212 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2166 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2163 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -2662 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4193))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2549 (($ $) 90 (|has| $ (-6 -4193)))) (-1908 (($ $) 100)) (-2455 (($ $) 78 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 51)) (-1212 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 87 (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 86 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 42 (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2846 (($ $ |#1|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1124 (-517))) 63)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 91 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 70)) (-4110 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-1630 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-343 |#1|) (-1188) (-1111)) (T -343))
-((-2662 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1111)))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1111)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1111)))) (-2166 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1111)) (-5 *2 (-107)))) (-1212 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1111)) (-5 *2 (-517)))) (-1212 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-517)))) (-1212 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1111)) (-4 *3 (-1005)))) (-2662 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1111)) (-4 *2 (-779)))) (-2163 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1111)) (-4 *2 (-779)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1111)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1901 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4193)) (-4 *1 (-343 *3)) (-4 *3 (-1111)))) (-2549 (*1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-343 *2)) (-4 *2 (-1111)))) (-1420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4193)) (-4 *1 (-343 *3)) (-4 *3 (-1111)))) (-1420 (*1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-343 *2)) (-4 *2 (-1111)) (-4 *2 (-779)))))
-(-13 (-588 |t#1|) (-10 -8 (-6 -4192) (-15 -2662 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -1908 ($ $)) (-15 -2163 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2166 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -1212 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -1212 ((-517) |t#1| $)) (-15 -1212 ((-517) |t#1| $ (-517)))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -2662 ($ $ $)) (-15 -2163 ($ $)) (-15 -2166 ((-107) $))) |%noBranch|) (IF (|has| $ (-6 -4193)) (PROGN (-15 -1901 ($ $ $ (-517))) (-15 -2549 ($ $)) (-15 -1420 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -1420 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1005) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-1111) . T))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3367 (((-583 |#1|) $) 32)) (-3038 (($ $ (-703)) 33)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-4097 (((-1179 |#1| |#2|) (-1179 |#1| |#2|) $) 36)) (-1591 (($ $) 34)) (-1674 (((-1179 |#1| |#2|) (-1179 |#1| |#2|) $) 37)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-3524 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-3647 (((-703) $) 38)) (-2288 (($ $ $) 29)) (-2271 (((-787) $) 11) (($ |#1|) 41) (((-1170 |#1| |#2|) $) 40) (((-1179 |#1| |#2|) $) 39)) (-1582 ((|#2| (-1179 |#1| |#2|) $) 42)) (-3610 (($) 18 T CONST)) (-2789 (($ (-608 |#1|)) 35)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-344 |#1| |#2|) (-1188) (-779) (-156)) (T -344))
-((-1582 (*1 *2 *3 *1) (-12 (-5 *3 (-1179 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2271 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1170 *3 *4)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1179 *3 *4)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-1674 (*1 *2 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-4097 (*1 *2 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2789 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3038 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-3524 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
-(-13 (-574 |t#2|) (-10 -8 (-15 -1582 (|t#2| (-1179 |t#1| |t#2|) $)) (-15 -2271 ($ |t#1|)) (-15 -2271 ((-1170 |t#1| |t#2|) $)) (-15 -2271 ((-1179 |t#1| |t#2|) $)) (-15 -3647 ((-703) $)) (-15 -1674 ((-1179 |t#1| |t#2|) (-1179 |t#1| |t#2|) $)) (-15 -4097 ((-1179 |t#1| |t#2|) (-1179 |t#1| |t#2|) $)) (-15 -2789 ($ (-608 |t#1|))) (-15 -1591 ($ $)) (-15 -3038 ($ $ (-703))) (-15 -3367 ((-583 |t#1|) $)) (-15 -3524 ($ $ |t#1| $)) (-15 -3524 ($ $ (-583 |t#1|) (-583 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-969 |#2|) . T) ((-1005) . T))
-((-2327 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 24)) (-1796 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2715 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
-(((-345 |#1| |#2|) (-10 -7 (-15 -1796 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2715 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2327 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1111) (-13 (-343 |#1|) (-10 -7 (-6 -4193)))) (T -345))
-((-2327 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))))) (-2715 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))))) (-1796 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))))))
-(-10 -7 (-15 -1796 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2715 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2327 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
-((-2207 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 19) (((-623 (-517)) (-623 $)) 13)))
-(((-346 |#1| |#2|) (-10 -8 (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-963)) (T -346))
-NIL
-(-10 -8 (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 |#2|) (-623 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2207 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 35) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-347 |#1|) (-1188) (-963)) (T -347))
+((-3210 (((-107) (-583 (-876 |#1|))) 32)) (-1582 (((-583 (-876 |#1|)) (-583 (-876 |#1|))) 43)) (-4002 (((-3 (-583 (-876 |#1|)) "failed") (-583 (-876 |#1|))) 39)))
+(((-330 |#1| |#2|) (-10 -7 (-15 -3210 ((-107) (-583 (-876 |#1|)))) (-15 -4002 ((-3 (-583 (-876 |#1|)) "failed") (-583 (-876 |#1|)))) (-15 -1582 ((-583 (-876 |#1|)) (-583 (-876 |#1|))))) (-421) (-583 (-1077))) (T -330))
+((-1582 (*1 *2 *2) (-12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1077))))) (-4002 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1077))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1077))))))
+(-10 -7 (-15 -3210 ((-107) (-583 (-876 |#1|)))) (-15 -4002 ((-3 (-583 (-876 |#1|)) "failed") (-583 (-876 |#1|)))) (-15 -1582 ((-583 (-876 |#1|)) (-583 (-876 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) 14)) (-2115 ((|#1| $ (-517)) NIL)) (-2395 (((-517) $ (-517)) NIL)) (-3027 (($ (-1 |#1| |#1|) $) 32)) (-1838 (($ (-1 (-517) (-517)) $) 24)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 26)) (-4130 (((-1024) $) NIL)) (-2283 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $) 28)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 38) (($ |#1|) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 9 T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-331 |#1|) (-13 (-442) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2390 ((-703) $)) (-15 -2395 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-517) (-517)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $)))) (-1006)) (T -331))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) (-2395 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-331 *3)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1006)))))
+(-13 (-442) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2390 ((-703) $)) (-15 -2395 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-517) (-517)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $))))
+((-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 13)) (-2491 (($ $) 14)) (-3306 (((-388 $) $) 30)) (-2022 (((-107) $) 26)) (-2291 (($ $) 19)) (-2361 (($ $ $) 23) (($ (-583 $)) NIL)) (-3896 (((-388 $) $) 31)) (-2333 (((-3 $ "failed") $ $) 22)) (-3388 (((-703) $) 25)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 35)) (-2944 (((-107) $ $) 16)) (-1692 (($ $ $) 33)))
+(((-332 |#1|) (-10 -8 (-15 -1692 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
+NIL
+(-10 -8 (-15 -1692 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-333) (-1189)) (T -333))
+((-1692 (*1 *1 *1 *1) (-4 *1 (-333))))
+(-13 (-278) (-1116) (-217) (-10 -8 (-15 -1692 ($ $ $)) (-6 -4193) (-6 -4187)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-2105 (((-107) $ $) 7)) (-3188 ((|#2| $ |#2|) 13)) (-3010 (($ $ (-1060)) 18)) (-2872 ((|#2| $) 14)) (-3723 (($ |#1|) 20) (($ |#1| (-1060)) 19)) (-2981 ((|#1| $) 16)) (-3232 (((-1060) $) 9)) (-3048 (((-1060) $) 15)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3604 (($ $) 17)) (-1572 (((-107) $ $) 6)))
+(((-334 |#1| |#2|) (-1189) (-1006) (-1006)) (T -334))
+((-3723 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3723 (*1 *1 *2 *3) (-12 (-5 *3 (-1060)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1006)) (-4 *4 (-1006)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3604 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-1060)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3188 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))))
+(-13 (-1006) (-10 -8 (-15 -3723 ($ |t#1|)) (-15 -3723 ($ |t#1| (-1060))) (-15 -3010 ($ $ (-1060))) (-15 -3604 ($ $)) (-15 -2981 (|t#1| $)) (-15 -3048 ((-1060) $)) (-15 -2872 (|t#2| $)) (-15 -3188 (|t#2| $ |t#2|))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-3188 ((|#1| $ |#1|) 29)) (-3010 (($ $ (-1060)) 22)) (-1774 (((-3 |#1| "failed") $) 28)) (-2872 ((|#1| $) 26)) (-3723 (($ (-358)) 21) (($ (-358) (-1060)) 20)) (-2981 (((-358) $) 24)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) 25)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 19)) (-3604 (($ $) 23)) (-1572 (((-107) $ $) 18)))
+(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -1774 ((-3 |#1| "failed") $)))) (-1006)) (T -335))
+((-1774 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1006)))))
+(-13 (-334 (-358) |#1|) (-10 -8 (-15 -1774 ((-3 |#1| "failed") $))))
+((-3449 (((-1158 (-623 |#2|)) (-1158 $)) 61)) (-2998 (((-623 |#2|) (-1158 $)) 119)) (-2496 ((|#2| $) 32)) (-1793 (((-623 |#2|) $ (-1158 $)) 123)) (-3071 (((-3 $ "failed") $) 75)) (-4132 ((|#2| $) 35)) (-1363 (((-1073 |#2|) $) 83)) (-3708 ((|#2| (-1158 $)) 106)) (-2740 (((-1073 |#2|) $) 28)) (-2889 (((-107)) 100)) (-3539 (($ (-1158 |#2|) (-1158 $)) 113)) (-3550 (((-3 $ "failed") $) 79)) (-3544 (((-107)) 95)) (-4016 (((-107)) 90)) (-1627 (((-107)) 53)) (-1830 (((-623 |#2|) (-1158 $)) 117)) (-2002 ((|#2| $) 31)) (-4044 (((-623 |#2|) $ (-1158 $)) 122)) (-2680 (((-3 $ "failed") $) 73)) (-1249 ((|#2| $) 34)) (-3556 (((-1073 |#2|) $) 82)) (-1274 ((|#2| (-1158 $)) 104)) (-3570 (((-1073 |#2|) $) 26)) (-1878 (((-107)) 99)) (-2455 (((-107)) 92)) (-4102 (((-107)) 51)) (-2032 (((-107)) 87)) (-3377 (((-107)) 101)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) 111)) (-1293 (((-107)) 97)) (-3741 (((-583 (-1158 |#2|))) 86)) (-3450 (((-107)) 98)) (-3014 (((-107)) 96)) (-1901 (((-107)) 46)) (-1555 (((-107)) 102)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -1363 ((-1073 |#2|) |#1|)) (-15 -3556 ((-1073 |#2|) |#1|)) (-15 -3741 ((-583 (-1158 |#2|)))) (-15 -3071 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-3 |#1| "failed") |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -4016 ((-107))) (-15 -2455 ((-107))) (-15 -3544 ((-107))) (-15 -4102 ((-107))) (-15 -1627 ((-107))) (-15 -2032 ((-107))) (-15 -1555 ((-107))) (-15 -3377 ((-107))) (-15 -2889 ((-107))) (-15 -1878 ((-107))) (-15 -1901 ((-107))) (-15 -3450 ((-107))) (-15 -3014 ((-107))) (-15 -1293 ((-107))) (-15 -2740 ((-1073 |#2|) |#1|)) (-15 -3570 ((-1073 |#2|) |#1|)) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4132 (|#2| |#1|)) (-15 -1249 (|#2| |#1|)) (-15 -2496 (|#2| |#1|)) (-15 -2002 (|#2| |#1|)) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|)))) (-337 |#2|) (-156)) (T -336))
+((-1293 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3014 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3450 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1901 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2889 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3377 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1555 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2032 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1627 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4102 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3544 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2455 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4016 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3741 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1158 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
+(-10 -8 (-15 -1363 ((-1073 |#2|) |#1|)) (-15 -3556 ((-1073 |#2|) |#1|)) (-15 -3741 ((-583 (-1158 |#2|)))) (-15 -3071 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-3 |#1| "failed") |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -4016 ((-107))) (-15 -2455 ((-107))) (-15 -3544 ((-107))) (-15 -4102 ((-107))) (-15 -1627 ((-107))) (-15 -2032 ((-107))) (-15 -1555 ((-107))) (-15 -3377 ((-107))) (-15 -2889 ((-107))) (-15 -1878 ((-107))) (-15 -1901 ((-107))) (-15 -3450 ((-107))) (-15 -3014 ((-107))) (-15 -1293 ((-107))) (-15 -2740 ((-1073 |#2|) |#1|)) (-15 -3570 ((-1073 |#2|) |#1|)) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4132 (|#2| |#1|)) (-15 -1249 (|#2| |#1|)) (-15 -2496 (|#2| |#1|)) (-15 -2002 (|#2| |#1|)) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1966 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3449 (((-1158 (-623 |#1|)) (-1158 $)) 78)) (-4026 (((-1158 $)) 81)) (-3038 (($) 17 T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1745 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2998 (((-623 |#1|) (-1158 $)) 65)) (-2496 ((|#1| $) 74)) (-1793 (((-623 |#1|) $ (-1158 $)) 76)) (-3071 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2823 (($ $ (-845)) 28)) (-4132 ((|#1| $) 72)) (-1363 (((-1073 |#1|) $) 42 (|has| |#1| (-509)))) (-3708 ((|#1| (-1158 $)) 67)) (-2740 (((-1073 |#1|) $) 63)) (-2889 (((-107)) 57)) (-3539 (($ (-1158 |#1|) (-1158 $)) 69)) (-3550 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3778 (((-845)) 80)) (-3874 (((-107)) 54)) (-1768 (($ $ (-845)) 33)) (-3544 (((-107)) 50)) (-4016 (((-107)) 48)) (-1627 (((-107)) 52)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3277 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1830 (((-623 |#1|) (-1158 $)) 66)) (-2002 ((|#1| $) 75)) (-4044 (((-623 |#1|) $ (-1158 $)) 77)) (-2680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-4119 (($ $ (-845)) 29)) (-1249 ((|#1| $) 73)) (-3556 (((-1073 |#1|) $) 43 (|has| |#1| (-509)))) (-1274 ((|#1| (-1158 $)) 68)) (-3570 (((-1073 |#1|) $) 64)) (-1878 (((-107)) 58)) (-3232 (((-1060) $) 9)) (-2455 (((-107)) 49)) (-4102 (((-107)) 51)) (-2032 (((-107)) 53)) (-4130 (((-1024) $) 10)) (-3377 (((-107)) 56)) (-1372 (((-1158 |#1|) $ (-1158 $)) 71) (((-623 |#1|) (-1158 $) (-1158 $)) 70)) (-3861 (((-583 (-876 |#1|)) (-1158 $)) 79)) (-1970 (($ $ $) 25)) (-1293 (((-107)) 62)) (-2262 (((-787) $) 11)) (-3741 (((-583 (-1158 |#1|))) 44 (|has| |#1| (-509)))) (-2182 (($ $ $ $) 26)) (-3450 (((-107)) 60)) (-2742 (($ $ $) 24)) (-3014 (((-107)) 61)) (-1901 (((-107)) 59)) (-1555 (((-107)) 55)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-337 |#1|) (-1189) (-156)) (T -337))
+((-4026 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-337 *3)))) (-3778 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-845)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-876 *4))))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1158 (-623 *4))))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1793 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1249 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1372 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1158 *4)))) (-1372 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3)))) (-1293 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3014 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3450 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1901 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1878 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2889 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3377 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1555 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3874 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2032 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1627 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4102 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3544 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2455 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4016 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3550 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2680 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3071 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3741 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1158 *3))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1073 *3)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1073 *3)))) (-3742 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1)))) (-4 *1 (-337 *3)))) (-1963 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1)))) (-4 *1 (-337 *3)))) (-3277 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1745 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1966 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(-13 (-677 |t#1|) (-10 -8 (-15 -4026 ((-1158 $))) (-15 -3778 ((-845))) (-15 -3861 ((-583 (-876 |t#1|)) (-1158 $))) (-15 -3449 ((-1158 (-623 |t#1|)) (-1158 $))) (-15 -4044 ((-623 |t#1|) $ (-1158 $))) (-15 -1793 ((-623 |t#1|) $ (-1158 $))) (-15 -2002 (|t#1| $)) (-15 -2496 (|t#1| $)) (-15 -1249 (|t#1| $)) (-15 -4132 (|t#1| $)) (-15 -1372 ((-1158 |t#1|) $ (-1158 $))) (-15 -1372 ((-623 |t#1|) (-1158 $) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|) (-1158 $))) (-15 -1274 (|t#1| (-1158 $))) (-15 -3708 (|t#1| (-1158 $))) (-15 -1830 ((-623 |t#1|) (-1158 $))) (-15 -2998 ((-623 |t#1|) (-1158 $))) (-15 -3570 ((-1073 |t#1|) $)) (-15 -2740 ((-1073 |t#1|) $)) (-15 -1293 ((-107))) (-15 -3014 ((-107))) (-15 -3450 ((-107))) (-15 -1901 ((-107))) (-15 -1878 ((-107))) (-15 -2889 ((-107))) (-15 -3377 ((-107))) (-15 -1555 ((-107))) (-15 -3874 ((-107))) (-15 -2032 ((-107))) (-15 -1627 ((-107))) (-15 -4102 ((-107))) (-15 -3544 ((-107))) (-15 -2455 ((-107))) (-15 -4016 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3550 ((-3 $ "failed") $)) (-15 -2680 ((-3 $ "failed") $)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3741 ((-583 (-1158 |t#1|)))) (-15 -3556 ((-1073 |t#1|) $)) (-15 -1363 ((-1073 |t#1|) $)) (-15 -3742 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -3277 ((-3 $ "failed"))) (-15 -1745 ((-3 $ "failed"))) (-15 -1966 ((-3 $ "failed"))) (-6 -4192)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-2390 (((-703)) 16)) (-2192 (($) 13)) (-4161 (((-845) $) 14)) (-3232 (((-1060) $) 9)) (-2803 (($ (-845)) 15)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-338) (-1189)) (T -338))
+((-2390 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-2803 (*1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-338)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-845)))) (-2192 (*1 *1) (-4 *1 (-338))))
+(-13 (-1006) (-10 -8 (-15 -2390 ((-703))) (-15 -2803 ($ (-845))) (-15 -4161 ((-845) $)) (-15 -2192 ($))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-1278 (((-623 |#2|) (-1158 $)) 40)) (-3539 (($ (-1158 |#2|) (-1158 $)) 35)) (-4028 (((-623 |#2|) $ (-1158 $)) 43)) (-3115 ((|#2| (-1158 $)) 13)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) 25)))
+(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|)))) (-340 |#2| |#3|) (-156) (-1134 |#2|)) (T -339))
+NIL
+(-10 -8 (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1278 (((-623 |#1|) (-1158 $)) 46)) (-1991 ((|#1| $) 52)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48)) (-4028 (((-623 |#1|) $ (-1158 $)) 53)) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-845)) 54)) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 51)) (-1914 ((|#2| $) 44 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3115 ((|#1| (-1158 $)) 47)) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-3385 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3848 ((|#2| $) 45)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-340 |#1| |#2|) (-1189) (-156) (-1134 |t#1|)) (T -340))
+((-3778 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-845)))) (-4028 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) (-1372 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *4)))) (-1372 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1134 *4)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1134 *2)) (-4 *2 (-156)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1134 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3778 ((-845))) (-15 -4028 ((-623 |t#1|) $ (-1158 $))) (-15 -1991 (|t#1| $)) (-15 -3522 (|t#1| $)) (-15 -1372 ((-1158 |t#1|) $ (-1158 $))) (-15 -1372 ((-623 |t#1|) (-1158 $) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|) (-1158 $))) (-15 -3115 (|t#1| (-1158 $))) (-15 -1278 ((-623 |t#1|) (-1158 $))) (-15 -3848 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -1914 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-1250 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1510 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3312 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1112) (-343 |#1|) (-1112) (-343 |#3|)) (T -341))
+((-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
+(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2508 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-4109 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-2149 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-1894 (($ $) 25)) (-1210 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-3824 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-342 |#1| |#2|) (-10 -8 (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2149 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1894 (|#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1112)) (T -342))
+NIL
+(-10 -8 (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2149 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1894 (|#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-343 |#1|) (-1189) (-1112)) (T -343))
+((-3824 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-1894 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-2508 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-1210 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112)) (-5 *2 (-517)))) (-1210 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-517)))) (-1210 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) (-2149 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1704 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-3797 (*1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112)))) (-4109 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4196)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-4109 (*1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4195) (-15 -3824 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -1894 ($ $)) (-15 -2149 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2508 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -1210 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1210 ((-517) |t#1| $)) (-15 -1210 ((-517) |t#1| $ (-517)))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -3824 ($ $ $)) (-15 -2149 ($ $)) (-15 -2508 ((-107) $))) |%noBranch|) (IF (|has| $ (-6 -4196)) (PROGN (-15 -1704 ($ $ $ (-517))) (-15 -3797 ($ $)) (-15 -4109 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -4109 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3375 (((-583 |#1|) $) 32)) (-1855 (($ $ (-703)) 33)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-1586 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 36)) (-2833 (($ $) 34)) (-2388 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 37)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3552 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-1191 (((-703) $) 38)) (-2279 (($ $ $) 29)) (-2262 (((-787) $) 11) (($ |#1|) 41) (((-1171 |#1| |#2|) $) 40) (((-1180 |#1| |#2|) $) 39)) (-1570 ((|#2| (-1180 |#1| |#2|) $) 42)) (-3663 (($) 18 T CONST)) (-1590 (($ (-608 |#1|)) 35)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-344 |#1| |#2|) (-1189) (-779) (-156)) (T -344))
+((-1570 (*1 *2 *3 *1) (-12 (-5 *3 (-1180 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2262 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1171 *3 *4)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1180 *3 *4)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-2388 (*1 *2 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1586 (*1 *2 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-2833 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-3552 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
+(-13 (-574 |t#2|) (-10 -8 (-15 -1570 (|t#2| (-1180 |t#1| |t#2|) $)) (-15 -2262 ($ |t#1|)) (-15 -2262 ((-1171 |t#1| |t#2|) $)) (-15 -2262 ((-1180 |t#1| |t#2|) $)) (-15 -1191 ((-703) $)) (-15 -2388 ((-1180 |t#1| |t#2|) (-1180 |t#1| |t#2|) $)) (-15 -1586 ((-1180 |t#1| |t#2|) (-1180 |t#1| |t#2|) $)) (-15 -1590 ($ (-608 |t#1|))) (-15 -2833 ($ $)) (-15 -1855 ($ $ (-703))) (-15 -3375 ((-583 |t#1|) $)) (-15 -3552 ($ $ |t#1| $)) (-15 -3552 ($ $ (-583 |t#1|) (-583 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-970 |#2|) . T) ((-1006) . T))
+((-1399 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 24)) (-2853 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-1625 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
+(((-345 |#1| |#2|) (-10 -7 (-15 -2853 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1625 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1399 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1112) (-13 (-343 |#1|) (-10 -7 (-6 -4196)))) (T -345))
+((-1399 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))) (-1625 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))) (-2853 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))))
+(-10 -7 (-15 -2853 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1625 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1399 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
+((-2947 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 19) (((-623 (-517)) (-623 $)) 13)))
+(((-346 |#1| |#2|) (-10 -8 (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-964)) (T -346))
+NIL
+(-10 -8 (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 |#2|) (-623 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2947 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 35) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-347 |#1|) (-1189) (-964)) (T -347))
NIL
(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-517))) (-6 (-579 (-517))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1583 (((-583 (-265 (-875 (-153 |#1|)))) (-265 (-377 (-875 (-153 (-517))))) |#1|) 50) (((-583 (-265 (-875 (-153 |#1|)))) (-377 (-875 (-153 (-517)))) |#1|) 49) (((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-265 (-377 (-875 (-153 (-517)))))) |#1|) 45) (((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-377 (-875 (-153 (-517))))) |#1|) 39)) (-3666 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-875 (-153 (-517))))) (-583 (-1076)) |#1|) 27) (((-583 (-153 |#1|)) (-377 (-875 (-153 (-517)))) |#1|) 15)))
-(((-348 |#1|) (-10 -7 (-15 -1583 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -1583 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-265 (-377 (-875 (-153 (-517)))))) |#1|)) (-15 -1583 ((-583 (-265 (-875 (-153 |#1|)))) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -1583 ((-583 (-265 (-875 (-153 |#1|)))) (-265 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -3666 ((-583 (-153 |#1|)) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -3666 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-875 (-153 (-517))))) (-583 (-1076)) |#1|))) (-13 (-333) (-777))) (T -348))
-((-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517)))))) (-5 *4 (-583 (-1076))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 (-153 (-517)))))) (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-153 (-517))))) (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-875 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -1583 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -1583 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-265 (-377 (-875 (-153 (-517)))))) |#1|)) (-15 -1583 ((-583 (-265 (-875 (-153 |#1|)))) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -1583 ((-583 (-265 (-875 (-153 |#1|)))) (-265 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -3666 ((-583 (-153 |#1|)) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -3666 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-875 (-153 (-517))))) (-583 (-1076)) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 33)) (-1363 (((-517) $) 55)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2853 (($ $) 110)) (-1648 (($ $) 82)) (-1494 (($ $) 71)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3880 (($ $) 44)) (-3820 (((-107) $ $) NIL)) (-1624 (($ $) 80)) (-1471 (($ $) 69)) (-2360 (((-517) $) 64)) (-2142 (($ $ (-517)) 62)) (-1670 (($ $) NIL)) (-1520 (($ $) NIL)) (-1393 (($) NIL T CONST)) (-3983 (($ $) 112)) (-3228 (((-3 (-517) "failed") $) 188) (((-3 (-377 (-517)) "failed") $) 184)) (-3390 (((-517) $) 186) (((-377 (-517)) $) 182)) (-2379 (($ $ $) NIL)) (-3901 (((-517) $ $) 102)) (-2560 (((-3 $ "failed") $) 114)) (-1255 (((-377 (-517)) $ (-703)) 189) (((-377 (-517)) $ (-703) (-703)) 181)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3436 (((-844)) 73) (((-844) (-844)) 98 (|has| $ (-6 -4183)))) (-2988 (((-107) $) 106)) (-2116 (($) 40)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL)) (-2963 (((-1162) (-703)) 151)) (-3714 (((-1162)) 156) (((-1162) (-703)) 157)) (-3348 (((-1162)) 158) (((-1162) (-703)) 159)) (-2710 (((-1162)) 154) (((-1162) (-703)) 155)) (-1395 (((-517) $) 58)) (-1376 (((-107) $) 104)) (-2092 (($ $ (-517)) NIL)) (-2788 (($ $) 48)) (-2803 (($ $) NIL)) (-1952 (((-107) $) 35)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4175))) (-2479 (|has| $ (-6 -4183)))))) (-4084 (($ $ $) NIL) (($) 99 (-12 (-2479 (|has| $ (-6 -4175))) (-2479 (|has| $ (-6 -4183)))))) (-3699 (((-517) $) 17)) (-1718 (($) 87) (($ $) 92)) (-1849 (($) 91) (($ $) 93)) (-1226 (($ $) 83)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 116)) (-1871 (((-844) (-517)) 43 (|has| $ (-6 -4183)))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) 53)) (-2961 (($ $) 109)) (-3211 (($ (-517) (-517)) 107) (($ (-517) (-517) (-844)) 108)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2121 (((-517) $) 19)) (-2699 (($) 94)) (-3870 (($ $) 79)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1192 (((-844)) 100) (((-844) (-844)) 101 (|has| $ (-6 -4183)))) (-2060 (($ $ (-703)) NIL) (($ $) 115)) (-3788 (((-844) (-517)) 47 (|has| $ (-6 -4183)))) (-1682 (($ $) NIL)) (-1533 (($ $) NIL)) (-1660 (($ $) NIL)) (-1507 (($ $) NIL)) (-1635 (($ $) 81)) (-1483 (($ $) 70)) (-3359 (((-349) $) 174) (((-199) $) 176) (((-815 (-349)) $) NIL) (((-1059) $) 161) (((-493) $) 172) (($ (-199)) 180)) (-2271 (((-787) $) 163) (($ (-517)) 185) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 185) (($ (-377 (-517))) NIL) (((-199) $) 177)) (-4099 (((-703)) NIL)) (-3599 (($ $) 111)) (-2852 (((-844)) 54) (((-844) (-844)) 66 (|has| $ (-6 -4183)))) (-3985 (((-844)) 103)) (-1722 (($ $) 86)) (-1576 (($ $) 46) (($ $ $) 52)) (-2074 (((-107) $ $) NIL)) (-1697 (($ $) 84)) (-1548 (($ $) 37)) (-3489 (($ $) NIL)) (-1600 (($ $) NIL)) (-2824 (($ $) NIL)) (-1613 (($ $) NIL)) (-1735 (($ $) NIL)) (-1589 (($ $) NIL)) (-1709 (($ $) 85)) (-1562 (($ $) 49)) (-2376 (($ $) 51)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 34 T CONST)) (-3619 (($) 38 T CONST)) (-4032 (((-1059) $) 27) (((-1059) $ (-107)) 29) (((-1162) (-754) $) 30) (((-1162) (-754) $ (-107)) 31)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 39)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 42)) (-1704 (($ $ $) 45) (($ $ (-517)) 41)) (-1692 (($ $) 36) (($ $ $) 50)) (-1678 (($ $ $) 61)) (** (($ $ (-844)) 67) (($ $ (-703)) NIL) (($ $ (-517)) 88) (($ $ (-377 (-517))) 125) (($ $ $) 117)) (* (($ (-844) $) 65) (($ (-703) $) NIL) (($ (-517) $) 68) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-349) (-13 (-374) (-207) (-558 (-1059)) (-760) (-557 (-199)) (-1097) (-558 (-493)) (-10 -8 (-15 -1704 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2788 ($ $)) (-15 -3901 ((-517) $ $)) (-15 -2142 ($ $ (-517))) (-15 -1255 ((-377 (-517)) $ (-703))) (-15 -1255 ((-377 (-517)) $ (-703) (-703))) (-15 -1718 ($)) (-15 -1849 ($)) (-15 -2699 ($)) (-15 -1576 ($ $ $)) (-15 -1718 ($ $)) (-15 -1849 ($ $)) (-15 -3359 ($ (-199))) (-15 -3348 ((-1162))) (-15 -3348 ((-1162) (-703))) (-15 -2710 ((-1162))) (-15 -2710 ((-1162) (-703))) (-15 -3714 ((-1162))) (-15 -3714 ((-1162) (-703))) (-15 -2963 ((-1162) (-703))) (-6 -4183) (-6 -4175)))) (T -349))
-((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2788 (*1 *1 *1) (-5 *1 (-349))) (-3901 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2142 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1255 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-1255 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-1718 (*1 *1) (-5 *1 (-349))) (-1849 (*1 *1) (-5 *1 (-349))) (-2699 (*1 *1) (-5 *1 (-349))) (-1576 (*1 *1 *1 *1) (-5 *1 (-349))) (-1718 (*1 *1 *1) (-5 *1 (-349))) (-1849 (*1 *1 *1) (-5 *1 (-349))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3348 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-349)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349)))) (-2710 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-349)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349)))) (-3714 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-349)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349)))))
-(-13 (-374) (-207) (-558 (-1059)) (-760) (-557 (-199)) (-1097) (-558 (-493)) (-10 -8 (-15 -1704 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2788 ($ $)) (-15 -3901 ((-517) $ $)) (-15 -2142 ($ $ (-517))) (-15 -1255 ((-377 (-517)) $ (-703))) (-15 -1255 ((-377 (-517)) $ (-703) (-703))) (-15 -1718 ($)) (-15 -1849 ($)) (-15 -2699 ($)) (-15 -1576 ($ $ $)) (-15 -1718 ($ $)) (-15 -1849 ($ $)) (-15 -3359 ($ (-199))) (-15 -3348 ((-1162))) (-15 -3348 ((-1162) (-703))) (-15 -2710 ((-1162))) (-15 -2710 ((-1162) (-703))) (-15 -3714 ((-1162))) (-15 -3714 ((-1162) (-703))) (-15 -2963 ((-1162) (-703))) (-6 -4183) (-6 -4175)))
-((-1516 (((-583 (-265 (-875 |#1|))) (-265 (-377 (-875 (-517)))) |#1|) 46) (((-583 (-265 (-875 |#1|))) (-377 (-875 (-517))) |#1|) 45) (((-583 (-583 (-265 (-875 |#1|)))) (-583 (-265 (-377 (-875 (-517))))) |#1|) 41) (((-583 (-583 (-265 (-875 |#1|)))) (-583 (-377 (-875 (-517)))) |#1|) 35)) (-2073 (((-583 |#1|) (-377 (-875 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-875 (-517)))) (-583 (-1076)) |#1|) 30)))
-(((-350 |#1|) (-10 -7 (-15 -1516 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-377 (-875 (-517)))) |#1|)) (-15 -1516 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-265 (-377 (-875 (-517))))) |#1|)) (-15 -1516 ((-583 (-265 (-875 |#1|))) (-377 (-875 (-517))) |#1|)) (-15 -1516 ((-583 (-265 (-875 |#1|))) (-265 (-377 (-875 (-517)))) |#1|)) (-15 -2073 ((-583 (-583 |#1|)) (-583 (-377 (-875 (-517)))) (-583 (-1076)) |#1|)) (-15 -2073 ((-583 |#1|) (-377 (-875 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
-((-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-875 (-517))))) (-5 *4 (-583 (-1076))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 (-517))))) (-5 *2 (-583 (-265 (-875 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 (-265 (-875 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-875 (-517)))))) (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 (-517))))) (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
-(-10 -7 (-15 -1516 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-377 (-875 (-517)))) |#1|)) (-15 -1516 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-265 (-377 (-875 (-517))))) |#1|)) (-15 -1516 ((-583 (-265 (-875 |#1|))) (-377 (-875 (-517))) |#1|)) (-15 -1516 ((-583 (-265 (-875 |#1|))) (-265 (-377 (-875 (-517)))) |#1|)) (-15 -2073 ((-583 (-583 |#1|)) (-583 (-377 (-875 (-517)))) (-583 (-1076)) |#1|)) (-15 -2073 ((-583 |#1|) (-377 (-875 (-517))) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) 25)) (-3390 ((|#2| $) 27)) (-2373 (($ $) NIL)) (-3783 (((-703) $) 10)) (-3794 (((-583 $) $) 20)) (-3982 (((-107) $) NIL)) (-2425 (($ |#2| |#1|) 18)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2124 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2335 ((|#2| $) 15)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 44) (($ |#2|) 26)) (-1998 (((-583 |#1|) $) 17)) (-1689 ((|#1| $ |#2|) 46)) (-3610 (($) 28 T CONST)) (-1452 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
-(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-963) (-779)) (T -351))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-963)) (-4 *2 (-779)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-1354 (((-583 (-265 (-876 (-153 |#1|)))) (-265 (-377 (-876 (-153 (-517))))) |#1|) 50) (((-583 (-265 (-876 (-153 |#1|)))) (-377 (-876 (-153 (-517)))) |#1|) 49) (((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-265 (-377 (-876 (-153 (-517)))))) |#1|) 45) (((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-377 (-876 (-153 (-517))))) |#1|) 39)) (-2914 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-876 (-153 (-517))))) (-583 (-1077)) |#1|) 27) (((-583 (-153 |#1|)) (-377 (-876 (-153 (-517)))) |#1|) 15)))
+(((-348 |#1|) (-10 -7 (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-265 (-377 (-876 (-153 (-517)))))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-265 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -2914 ((-583 (-153 |#1|)) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -2914 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-876 (-153 (-517))))) (-583 (-1077)) |#1|))) (-13 (-333) (-777))) (T -348))
+((-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517)))))) (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 (-153 (-517)))))) (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-153 (-517))))) (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-876 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-265 (-377 (-876 (-153 (-517)))))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-265 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -2914 ((-583 (-153 |#1|)) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -2914 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-876 (-153 (-517))))) (-583 (-1077)) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 33)) (-2964 (((-517) $) 55)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2147 (($ $) 110)) (-1636 (($ $) 82)) (-1482 (($ $) 71)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) 44)) (-1765 (((-107) $ $) NIL)) (-1612 (($ $) 80)) (-1459 (($ $) 69)) (-3502 (((-517) $) 64)) (-2127 (($ $ (-517)) 62)) (-1659 (($ $) NIL)) (-1508 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3164 (($ $) 112)) (-3220 (((-3 (-517) "failed") $) 188) (((-3 (-377 (-517)) "failed") $) 184)) (-3402 (((-517) $) 186) (((-377 (-517)) $) 182)) (-2383 (($ $ $) NIL)) (-1933 (((-517) $ $) 102)) (-3550 (((-3 $ "failed") $) 114)) (-1524 (((-377 (-517)) $ (-703)) 189) (((-377 (-517)) $ (-703) (-703)) 181)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3456 (((-845)) 73) (((-845) (-845)) 98 (|has| $ (-6 -4186)))) (-2671 (((-107) $) 106)) (-2102 (($) 40)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL)) (-2921 (((-1163) (-703)) 151)) (-1348 (((-1163)) 156) (((-1163) (-703)) 157)) (-3229 (((-1163)) 158) (((-1163) (-703)) 159)) (-2396 (((-1163)) 154) (((-1163) (-703)) 155)) (-3250 (((-517) $) 58)) (-1690 (((-107) $) 104)) (-2940 (($ $ (-517)) NIL)) (-1450 (($ $) 48)) (-3522 (($ $) NIL)) (-2321 (((-107) $) 35)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-4095 (($ $ $) NIL) (($) 99 (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-3743 (((-517) $) 17)) (-3815 (($) 87) (($ $) 92)) (-3281 (($) 91) (($ $) 93)) (-1232 (($ $) 83)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 116)) (-2848 (((-845) (-517)) 43 (|has| $ (-6 -4186)))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) 53)) (-2713 (($ $) 109)) (-3202 (($ (-517) (-517)) 107) (($ (-517) (-517) (-845)) 108)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1725 (((-517) $) 19)) (-2999 (($) 94)) (-3898 (($ $) 79)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-845)) 100) (((-845) (-845)) 101 (|has| $ (-6 -4186)))) (-2042 (($ $ (-703)) NIL) (($ $) 115)) (-1753 (((-845) (-517)) 47 (|has| $ (-6 -4186)))) (-1670 (($ $) NIL)) (-1521 (($ $) NIL)) (-1647 (($ $) NIL)) (-1495 (($ $) NIL)) (-1622 (($ $) 81)) (-1471 (($ $) 70)) (-3367 (((-349) $) 174) (((-199) $) 176) (((-816 (-349)) $) NIL) (((-1060) $) 161) (((-493) $) 172) (($ (-199)) 180)) (-2262 (((-787) $) 163) (($ (-517)) 185) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 185) (($ (-377 (-517))) NIL) (((-199) $) 177)) (-1818 (((-703)) NIL)) (-3126 (($ $) 111)) (-2076 (((-845)) 54) (((-845) (-845)) 66 (|has| $ (-6 -4186)))) (-4003 (((-845)) 103)) (-1706 (($ $) 86)) (-1564 (($ $) 46) (($ $ $) 52)) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) 84)) (-1536 (($ $) 37)) (-3517 (($ $) NIL)) (-1588 (($ $) NIL)) (-2815 (($ $) NIL)) (-1601 (($ $) NIL)) (-1722 (($ $) NIL)) (-1577 (($ $) NIL)) (-1698 (($ $) 85)) (-1550 (($ $) 49)) (-2829 (($ $) 51)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 34 T CONST)) (-3675 (($) 38 T CONST)) (-2514 (((-1060) $) 27) (((-1060) $ (-107)) 29) (((-1163) (-754) $) 30) (((-1163) (-754) $ (-107)) 31)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 39)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 42)) (-1692 (($ $ $) 45) (($ $ (-517)) 41)) (-1680 (($ $) 36) (($ $ $) 50)) (-1666 (($ $ $) 61)) (** (($ $ (-845)) 67) (($ $ (-703)) NIL) (($ $ (-517)) 88) (($ $ (-377 (-517))) 125) (($ $ $) 117)) (* (($ (-845) $) 65) (($ (-703) $) NIL) (($ (-517) $) 68) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-349) (-13 (-374) (-207) (-558 (-1060)) (-760) (-557 (-199)) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1450 ($ $)) (-15 -1933 ((-517) $ $)) (-15 -2127 ($ $ (-517))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703))) (-15 -3815 ($)) (-15 -3281 ($)) (-15 -2999 ($)) (-15 -1564 ($ $ $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -3367 ($ (-199))) (-15 -3229 ((-1163))) (-15 -3229 ((-1163) (-703))) (-15 -2396 ((-1163))) (-15 -2396 ((-1163) (-703))) (-15 -1348 ((-1163))) (-15 -1348 ((-1163) (-703))) (-15 -2921 ((-1163) (-703))) (-6 -4186) (-6 -4178)))) (T -349))
+((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1450 (*1 *1 *1) (-5 *1 (-349))) (-1933 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1524 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-1524 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3815 (*1 *1) (-5 *1 (-349))) (-3281 (*1 *1) (-5 *1 (-349))) (-2999 (*1 *1) (-5 *1 (-349))) (-1564 (*1 *1 *1 *1) (-5 *1 (-349))) (-3815 (*1 *1 *1) (-5 *1 (-349))) (-3281 (*1 *1 *1) (-5 *1 (-349))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3229 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) (-2396 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) (-1348 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))))
+(-13 (-374) (-207) (-558 (-1060)) (-760) (-557 (-199)) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1450 ($ $)) (-15 -1933 ((-517) $ $)) (-15 -2127 ($ $ (-517))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703))) (-15 -3815 ($)) (-15 -3281 ($)) (-15 -2999 ($)) (-15 -1564 ($ $ $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -3367 ($ (-199))) (-15 -3229 ((-1163))) (-15 -3229 ((-1163) (-703))) (-15 -2396 ((-1163))) (-15 -2396 ((-1163) (-703))) (-15 -1348 ((-1163))) (-15 -1348 ((-1163) (-703))) (-15 -2921 ((-1163) (-703))) (-6 -4186) (-6 -4178)))
+((-1993 (((-583 (-265 (-876 |#1|))) (-265 (-377 (-876 (-517)))) |#1|) 46) (((-583 (-265 (-876 |#1|))) (-377 (-876 (-517))) |#1|) 45) (((-583 (-583 (-265 (-876 |#1|)))) (-583 (-265 (-377 (-876 (-517))))) |#1|) 41) (((-583 (-583 (-265 (-876 |#1|)))) (-583 (-377 (-876 (-517)))) |#1|) 35)) (-2817 (((-583 |#1|) (-377 (-876 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-876 (-517)))) (-583 (-1077)) |#1|) 30)))
+(((-350 |#1|) (-10 -7 (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-377 (-876 (-517)))) |#1|)) (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-265 (-377 (-876 (-517))))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-377 (-876 (-517))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-265 (-377 (-876 (-517)))) |#1|)) (-15 -2817 ((-583 (-583 |#1|)) (-583 (-377 (-876 (-517)))) (-583 (-1077)) |#1|)) (-15 -2817 ((-583 |#1|) (-377 (-876 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
+((-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-876 (-517))))) (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 (-517))))) (-5 *2 (-583 (-265 (-876 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 (-265 (-876 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-876 (-517)))))) (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 (-517))))) (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
+(-10 -7 (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-377 (-876 (-517)))) |#1|)) (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-265 (-377 (-876 (-517))))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-377 (-876 (-517))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-265 (-377 (-876 (-517)))) |#1|)) (-15 -2817 ((-583 (-583 |#1|)) (-583 (-377 (-876 (-517)))) (-583 (-1077)) |#1|)) (-15 -2817 ((-583 |#1|) (-377 (-876 (-517))) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 25)) (-3402 ((|#2| $) 27)) (-2364 (($ $) NIL)) (-2516 (((-703) $) 10)) (-1300 (((-583 $) $) 20)) (-3022 (((-107) $) NIL)) (-2416 (($ |#2| |#1|) 18)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3758 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2325 ((|#2| $) 15)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 44) (($ |#2|) 26)) (-3186 (((-583 |#1|) $) 17)) (-1939 ((|#1| $ |#2|) 46)) (-3663 (($) 28 T CONST)) (-1226 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-964) (-779)) (T -351))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779)))))
(-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#2| "failed") $) 44)) (-3390 ((|#2| $) 43)) (-2373 (($ $) 30)) (-3783 (((-703) $) 34)) (-3794 (((-583 $) $) 35)) (-3982 (((-107) $) 38)) (-2425 (($ |#2| |#1|) 39)) (-3310 (($ (-1 |#1| |#1|) $) 40)) (-2124 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2335 ((|#2| $) 33)) (-2347 ((|#1| $) 32)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ |#2|) 45)) (-1998 (((-583 |#1|) $) 36)) (-1689 ((|#1| $ |#2|) 41)) (-3610 (($) 18 T CONST)) (-1452 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-352 |#1| |#2|) (-1188) (-963) (-1005)) (T -352))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1005)))) (-1689 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-963)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005)))) (-2425 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1005)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-107)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-583 *3)))) (-3794 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-703)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1005)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-963)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1005)))))
-(-13 (-106 |t#1| |t#1|) (-954 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1689 (|t#1| $ |t#2|)) (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (-15 -2425 ($ |t#2| |t#1|)) (-15 -3982 ((-107) $)) (-15 -1452 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1998 ((-583 |t#1|) $)) (-15 -3794 ((-583 $) $)) (-15 -3783 ((-703) $)) (-15 -2335 (|t#2| $)) (-15 -2347 (|t#1| $)) (-15 -2124 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2373 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-954 |#2|) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-1898 (((-1162) $) 7)) (-2271 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 11)))
-(((-353) (-1188)) (T -353))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) (-4 *1 (-353)))))
-(-13 (-365) (-10 -8 (-15 -2271 ($ (-623 (-632)))) (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-300))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1111) . T))
-((-3228 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-875 (-349)))) 17) (((-3 $ "failed") (-623 (-875 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 11)) (-3390 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-875 (-349)))) 18) (($ (-623 (-875 (-517)))) 16) (($ (-623 (-377 (-875 (-349))))) 14) (($ (-623 (-377 (-875 (-517))))) 12)) (-1898 (((-1162) $) 7)) (-2271 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 23)))
-(((-354) (-1188)) (T -354))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) (-4 *1 (-354)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354)))))
-(-13 (-365) (-10 -8 (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-300))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))) (-15 -3390 ($ (-623 (-286 (-349))))) (-15 -3228 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3390 ($ (-623 (-286 (-517))))) (-15 -3228 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3390 ($ (-623 (-875 (-349))))) (-15 -3228 ((-3 $ "failed") (-623 (-875 (-349))))) (-15 -3390 ($ (-623 (-875 (-517))))) (-15 -3228 ((-3 $ "failed") (-623 (-875 (-517))))) (-15 -3390 ($ (-623 (-377 (-875 (-349)))))) (-15 -3228 ((-3 $ "failed") (-623 (-377 (-875 (-349)))))) (-15 -3390 ($ (-623 (-377 (-875 (-517)))))) (-15 -3228 ((-3 $ "failed") (-623 (-377 (-875 (-517))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2078 (($ |#1| |#2|) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3153 ((|#2| $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 28)) (-3610 (($) 12 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|))) (-963) (-779)) (T -355))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#2| "failed") $) 44)) (-3402 ((|#2| $) 43)) (-2364 (($ $) 30)) (-2516 (((-703) $) 34)) (-1300 (((-583 $) $) 35)) (-3022 (((-107) $) 38)) (-2416 (($ |#2| |#1|) 39)) (-3312 (($ (-1 |#1| |#1|) $) 40)) (-3758 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2325 ((|#2| $) 33)) (-2336 ((|#1| $) 32)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ |#2|) 45)) (-3186 (((-583 |#1|) $) 36)) (-1939 ((|#1| $ |#2|) 41)) (-3663 (($) 18 T CONST)) (-1226 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-352 |#1| |#2|) (-1189) (-964) (-1006)) (T -352))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006)))) (-1939 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)))) (-2416 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-107)))) (-1226 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 *3)))) (-1300 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-703)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006)))))
+(-13 (-106 |t#1| |t#1|) (-955 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1939 (|t#1| $ |t#2|)) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -2416 ($ |t#2| |t#1|)) (-15 -3022 ((-107) $)) (-15 -1226 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3186 ((-583 |t#1|) $)) (-15 -1300 ((-583 $) $)) (-15 -2516 ((-703) $)) (-15 -2325 (|t#2| $)) (-15 -2336 (|t#1| $)) (-15 -3758 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2364 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-955 |#2|) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 11)))
+(((-353) (-1189)) (T -353))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-353)))))
+(-13 (-365) (-10 -8 (-15 -2262 ($ (-623 (-632)))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1112) . T))
+((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-876 (-349)))) 17) (((-3 $ "failed") (-623 (-876 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 11)) (-3402 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-876 (-349)))) 18) (($ (-623 (-876 (-517)))) 16) (($ (-623 (-377 (-876 (-349))))) 14) (($ (-623 (-377 (-876 (-517))))) 12)) (-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 23)))
+(((-354) (-1189)) (T -354))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354)))))
+(-13 (-365) (-10 -8 (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -3402 ($ (-623 (-286 (-349))))) (-15 -3220 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3402 ($ (-623 (-286 (-517))))) (-15 -3220 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3402 ($ (-623 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-623 (-876 (-349))))) (-15 -3402 ($ (-623 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-623 (-876 (-517))))) (-15 -3402 ($ (-623 (-377 (-876 (-349)))))) (-15 -3220 ((-3 $ "failed") (-623 (-377 (-876 (-349)))))) (-15 -3402 ($ (-623 (-377 (-876 (-517)))))) (-15 -3220 ((-3 $ "failed") (-623 (-377 (-876 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 28)) (-3663 (($) 12 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|))) (-964) (-779)) (T -355))
NIL
(-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-2399 (((-703) $) 57)) (-1393 (($) NIL T CONST)) (-4097 (((-3 $ "failed") $ $) 59)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-3628 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1376 (((-107) $) 14)) (-1789 ((|#1| $ (-517)) NIL)) (-1879 (((-703) $ (-517)) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-3912 (($ (-1 |#1| |#1|) $) 37)) (-3208 (($ (-1 (-703) (-703)) $) 34)) (-1674 (((-3 $ "failed") $ $) 50)) (-1662 (((-1059) $) NIL)) (-2869 (($ $ $) 25)) (-2475 (($ $ $) 23)) (-4125 (((-1023) $) NIL)) (-1510 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $) 31)) (-3853 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2271 (((-787) $) 21) (($ |#1|) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3619 (($) 9 T CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 41)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) 61 (|has| |#1| (-779)))) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
-(((-356 |#1|) (-13 (-659) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2475 ($ $ $)) (-15 -2869 ($ $ $)) (-15 -1674 ((-3 $ "failed") $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -3853 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3628 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2399 ((-703) $)) (-15 -1510 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $)) (-15 -1879 ((-703) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -3208 ($ (-1 (-703) (-703)) $)) (-15 -3912 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1005)) (T -356))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (-2475 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (-2869 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (-1674 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (-4097 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (-3853 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1005)))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1005)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1005)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1005)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1005)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1005)))) (-3208 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1005)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-356 *3)))))
-(-13 (-659) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2475 ($ $ $)) (-15 -2869 ($ $ $)) (-15 -1674 ((-3 $ "failed") $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -3853 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3628 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2399 ((-703) $)) (-15 -1510 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $)) (-15 -1879 ((-703) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -3208 ($ (-1 (-703) (-703)) $)) (-15 -3912 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 47)) (-3390 (((-517) $) 46)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-3458 (($ $ $) 54)) (-4084 (($ $ $) 53)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ $) 42)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 51)) (-1618 (((-107) $ $) 50)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 52)) (-1608 (((-107) $ $) 49)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-357) (-1188)) (T -357))
-NIL
-(-13 (-509) (-779) (-954 (-517)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-954 (-517)) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3724 (((-107) $) 20)) (-2820 (((-107) $) 19)) (-3213 (($ (-1059) (-1059) (-1059)) 21)) (-2989 (((-1059) $) 16)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2610 (($ (-1059) (-1059) (-1059)) 14)) (-1358 (((-1059) $) 17)) (-3620 (((-107) $) 18)) (-1325 (((-1059) $) 15)) (-2271 (((-787) $) 12) (($ (-1059)) 13) (((-1059) $) 9)) (-1584 (((-107) $ $) 7)))
+((-2105 (((-107) $ $) NIL)) (-2390 (((-703) $) 57)) (-3038 (($) NIL T CONST)) (-1586 (((-3 $ "failed") $ $) 59)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3997 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1690 (((-107) $) 14)) (-2115 ((|#1| $ (-517)) NIL)) (-2395 (((-703) $ (-517)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3027 (($ (-1 |#1| |#1|) $) 37)) (-1838 (($ (-1 (-703) (-703)) $) 34)) (-2388 (((-3 $ "failed") $ $) 50)) (-3232 (((-1060) $) NIL)) (-4045 (($ $ $) 25)) (-3759 (($ $ $) 23)) (-4130 (((-1024) $) NIL)) (-2283 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $) 31)) (-2018 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2262 (((-787) $) 21) (($ |#1|) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3675 (($) 9 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 41)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) 61 (|has| |#1| (-779)))) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
+(((-356 |#1|) (-13 (-659) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2018 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-703) (-703)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1006)) (T -356))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-3759 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-1586 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-2018 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1006)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-356 *3)))))
+(-13 (-659) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2018 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-703) (-703)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 47)) (-3402 (((-517) $) 46)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3480 (($ $ $) 54)) (-4095 (($ $ $) 53)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 51)) (-1606 (((-107) $ $) 50)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 52)) (-1596 (((-107) $ $) 49)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-357) (-1189)) (T -357))
+NIL
+(-13 (-509) (-779) (-955 (-517)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-955 (-517)) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-2023 (((-107) $) 20)) (-1994 (((-107) $) 19)) (-3204 (($ (-1060) (-1060) (-1060)) 21)) (-2981 (((-1060) $) 16)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2600 (($ (-1060) (-1060) (-1060)) 14)) (-3630 (((-1060) $) 17)) (-2075 (((-107) $) 18)) (-1314 (((-1060) $) 15)) (-2262 (((-787) $) 12) (($ (-1060)) 13) (((-1060) $) 9)) (-1572 (((-107) $ $) 7)))
(((-358) (-359)) (T -358))
NIL
(-359)
-((-2119 (((-107) $ $) 7)) (-3724 (((-107) $) 14)) (-2820 (((-107) $) 15)) (-3213 (($ (-1059) (-1059) (-1059)) 13)) (-2989 (((-1059) $) 18)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2610 (($ (-1059) (-1059) (-1059)) 20)) (-1358 (((-1059) $) 17)) (-3620 (((-107) $) 16)) (-1325 (((-1059) $) 19)) (-2271 (((-787) $) 11) (($ (-1059)) 22) (((-1059) $) 21)) (-1584 (((-107) $ $) 6)))
-(((-359) (-1188)) (T -359))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-359)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059)))) (-2610 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-359)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3213 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-359)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-1059))) (-15 -2271 ((-1059) $)) (-15 -2610 ($ (-1059) (-1059) (-1059))) (-15 -1325 ((-1059) $)) (-15 -2989 ((-1059) $)) (-15 -1358 ((-1059) $)) (-15 -3620 ((-107) $)) (-15 -2820 ((-107) $)) (-15 -3724 ((-107) $)) (-15 -3213 ($ (-1059) (-1059) (-1059)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2931 (((-787) $) 50)) (-1393 (($) NIL T CONST)) (-3614 (($ $ (-844)) NIL)) (-2193 (($ $ (-844)) NIL)) (-3200 (($ $ (-844)) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1318 (($ (-703)) 26)) (-1537 (((-703)) 15)) (-1623 (((-787) $) 52)) (-2059 (($ $ $) NIL)) (-2271 (((-787) $) NIL)) (-3100 (($ $ $ $) NIL)) (-2951 (($ $ $) NIL)) (-3610 (($) 20 T CONST)) (-1584 (((-107) $ $) 28)) (-1692 (($ $) 34) (($ $ $) 36)) (-1678 (($ $ $) 37)) (** (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -1537 ((-703))) (-15 -1623 ((-787) $)) (-15 -2931 ((-787) $)) (-15 -1318 ($ (-703))))) (-703) (-703) (-156)) (T -360))
-((-1537 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
-(-13 (-677 |#3|) (-10 -8 (-15 -1537 ((-703))) (-15 -1623 ((-787) $)) (-15 -2931 ((-787) $)) (-15 -1318 ($ (-703)))))
-((-2827 (((-1059)) 10)) (-1746 (((-1048 (-1059))) 28)) (-1869 (((-1162) (-1059)) 25) (((-1162) (-358)) 24)) (-1883 (((-1162)) 26)) (-2973 (((-1048 (-1059))) 27)))
-(((-361) (-10 -7 (-15 -2973 ((-1048 (-1059)))) (-15 -1746 ((-1048 (-1059)))) (-15 -1883 ((-1162))) (-15 -1869 ((-1162) (-358))) (-15 -1869 ((-1162) (-1059))) (-15 -2827 ((-1059))))) (T -361))
-((-2827 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-361)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-361)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1162)) (-5 *1 (-361)))) (-1883 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-361)))) (-1746 (*1 *2) (-12 (-5 *2 (-1048 (-1059))) (-5 *1 (-361)))) (-2973 (*1 *2) (-12 (-5 *2 (-1048 (-1059))) (-5 *1 (-361)))))
-(-10 -7 (-15 -2973 ((-1048 (-1059)))) (-15 -1746 ((-1048 (-1059)))) (-15 -1883 ((-1162))) (-15 -1869 ((-1162) (-358))) (-15 -1869 ((-1162) (-1059))) (-15 -2827 ((-1059))))
-((-1395 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
-(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1395 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
-((-1395 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1395 ((-703) (-306 |#1| |#2| |#3| |#4|))))
-((-2271 (((-364) |#1|) 11)))
-(((-363 |#1|) (-10 -7 (-15 -2271 ((-364) |#1|))) (-1005)) (T -363))
-((-2271 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1005)))))
-(-10 -7 (-15 -2271 ((-364) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-4061 (((-583 (-1059)) $ (-583 (-1059))) 37)) (-1840 (((-583 (-1059)) $ (-583 (-1059))) 38)) (-1963 (((-583 (-1059)) $ (-583 (-1059))) 39)) (-1477 (((-583 (-1059)) $) 34)) (-3213 (($) 23)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1367 (((-583 (-1059)) $) 35)) (-3452 (((-583 (-1059)) $) 36)) (-1757 (((-1162) $ (-517)) 32) (((-1162) $) 33)) (-3359 (($ (-787) (-517)) 29)) (-2271 (((-787) $) 41) (($ (-787)) 25)) (-1584 (((-107) $ $) NIL)))
-(((-364) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-787))) (-15 -3359 ($ (-787) (-517))) (-15 -1757 ((-1162) $ (-517))) (-15 -1757 ((-1162) $)) (-15 -3452 ((-583 (-1059)) $)) (-15 -1367 ((-583 (-1059)) $)) (-15 -3213 ($)) (-15 -1477 ((-583 (-1059)) $)) (-15 -1963 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -1840 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -4061 ((-583 (-1059)) $ (-583 (-1059))))))) (T -364))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3359 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-364)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-364)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))) (-3213 (*1 *1) (-5 *1 (-364))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))) (-1963 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))) (-1840 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))) (-4061 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-787))) (-15 -3359 ($ (-787) (-517))) (-15 -1757 ((-1162) $ (-517))) (-15 -1757 ((-1162) $)) (-15 -3452 ((-583 (-1059)) $)) (-15 -1367 ((-583 (-1059)) $)) (-15 -3213 ($)) (-15 -1477 ((-583 (-1059)) $)) (-15 -1963 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -1840 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -4061 ((-583 (-1059)) $ (-583 (-1059))))))
-((-1898 (((-1162) $) 7)) (-2271 (((-787) $) 8)))
-(((-365) (-1188)) (T -365))
-((-1898 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1162)))))
-(-13 (-1111) (-557 (-787)) (-10 -8 (-15 -1898 ((-1162) $))))
-(((-557 (-787)) . T) ((-1111) . T))
-((-3228 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-875 (-349))) 17) (((-3 $ "failed") (-875 (-517))) 15) (((-3 $ "failed") (-377 (-875 (-349)))) 13) (((-3 $ "failed") (-377 (-875 (-517)))) 11)) (-3390 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-875 (-349))) 18) (($ (-875 (-517))) 16) (($ (-377 (-875 (-349)))) 14) (($ (-377 (-875 (-517)))) 12)) (-1898 (((-1162) $) 7)) (-2271 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 23)))
-(((-366) (-1188)) (T -366))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) (-4 *1 (-366)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-875 (-349))) (-4 *1 (-366)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-349))) (-4 *1 (-366)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-366)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-517))) (-4 *1 (-366)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366)))))
-(-13 (-365) (-10 -8 (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-300))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))) (-15 -3390 ($ (-286 (-349)))) (-15 -3228 ((-3 $ "failed") (-286 (-349)))) (-15 -3390 ($ (-286 (-517)))) (-15 -3228 ((-3 $ "failed") (-286 (-517)))) (-15 -3390 ($ (-875 (-349)))) (-15 -3228 ((-3 $ "failed") (-875 (-349)))) (-15 -3390 ($ (-875 (-517)))) (-15 -3228 ((-3 $ "failed") (-875 (-517)))) (-15 -3390 ($ (-377 (-875 (-349))))) (-15 -3228 ((-3 $ "failed") (-377 (-875 (-349))))) (-15 -3390 ($ (-377 (-875 (-517))))) (-15 -3228 ((-3 $ "failed") (-377 (-875 (-517)))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1111) . T))
-((-2607 (((-583 (-1059)) (-583 (-1059))) 8)) (-1898 (((-1162) (-358)) 27)) (-1981 (((-1009) (-1076) (-583 (-1076)) (-1079) (-583 (-1076))) 59) (((-1009) (-1076) (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076)))) (-583 (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076))))) (-583 (-1076)) (-1076)) 35) (((-1009) (-1076) (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076)))) (-583 (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076))))) (-583 (-1076))) 34)))
-(((-367) (-10 -7 (-15 -1981 ((-1009) (-1076) (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076)))) (-583 (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076))))) (-583 (-1076)))) (-15 -1981 ((-1009) (-1076) (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076)))) (-583 (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076))))) (-583 (-1076)) (-1076))) (-15 -1981 ((-1009) (-1076) (-583 (-1076)) (-1079) (-583 (-1076)))) (-15 -1898 ((-1162) (-358))) (-15 -2607 ((-583 (-1059)) (-583 (-1059)))))) (T -367))
-((-2607 (*1 *2 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-367)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1162)) (-5 *1 (-367)))) (-1981 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1076))) (-5 *5 (-1079)) (-5 *3 (-1076)) (-5 *2 (-1009)) (-5 *1 (-367)))) (-1981 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1076))))) (-5 *6 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1009)) (-5 *1 (-367)))) (-1981 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1076))))) (-5 *6 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1009)) (-5 *1 (-367)))))
-(-10 -7 (-15 -1981 ((-1009) (-1076) (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076)))) (-583 (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076))))) (-583 (-1076)))) (-15 -1981 ((-1009) (-1076) (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076)))) (-583 (-583 (-3 (|:| |array| (-583 (-1076))) (|:| |scalar| (-1076))))) (-583 (-1076)) (-1076))) (-15 -1981 ((-1009) (-1076) (-583 (-1076)) (-1079) (-583 (-1076)))) (-15 -1898 ((-1162) (-358))) (-15 -2607 ((-583 (-1059)) (-583 (-1059)))))
-((-1898 (((-1162) $) 37)) (-2271 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
-(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2271 ($ (-300))) (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))) (-15 -2271 ($ (-286 (-634)))) (-15 -2271 ($ (-286 (-632)))) (-15 -2271 ($ (-286 (-627)))) (-15 -2271 ($ (-265 (-286 (-634))))) (-15 -2271 ($ (-265 (-286 (-632))))) (-15 -2271 ($ (-265 (-286 (-627))))) (-15 -2271 ($ (-286 (-517)))) (-15 -2271 ($ (-286 (-349)))) (-15 -2271 ($ (-286 (-153 (-349))))) (-15 -2271 ($ (-265 (-286 (-517))))) (-15 -2271 ($ (-265 (-286 (-349))))) (-15 -2271 ($ (-265 (-286 (-153 (-349)))))))) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-1076)) (-1080)) (T -368))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-14 *5 (-583 (-1076))) (-14 *6 (-1080)))))
-(-13 (-365) (-10 -8 (-15 -2271 ($ (-300))) (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))) (-15 -2271 ($ (-286 (-634)))) (-15 -2271 ($ (-286 (-632)))) (-15 -2271 ($ (-286 (-627)))) (-15 -2271 ($ (-265 (-286 (-634))))) (-15 -2271 ($ (-265 (-286 (-632))))) (-15 -2271 ($ (-265 (-286 (-627))))) (-15 -2271 ($ (-286 (-517)))) (-15 -2271 ($ (-286 (-349)))) (-15 -2271 ($ (-286 (-153 (-349))))) (-15 -2271 ($ (-265 (-286 (-517))))) (-15 -2271 ($ (-265 (-286 (-349))))) (-15 -2271 ($ (-265 (-286 (-153 (-349))))))))
-((-2119 (((-107) $ $) NIL)) (-3190 ((|#2| $) 36)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-4013 (($ (-377 |#2|)) 84)) (-2198 (((-583 (-2 (|:| -2121 (-703)) (|:| -3569 |#2|) (|:| |num| |#2|))) $) 37)) (-2060 (($ $) 32) (($ $ (-703)) 34)) (-3359 (((-377 |#2|) $) 46)) (-2288 (($ (-583 (-2 (|:| -2121 (-703)) (|:| -3569 |#2|) (|:| |num| |#2|)))) 31)) (-2271 (((-787) $) 120)) (-3342 (($ $) 33) (($ $ (-703)) 35)) (-1584 (((-107) $ $) NIL)) (-1678 (($ |#2| $) 39)))
-(((-369 |#1| |#2|) (-13 (-1005) (-558 (-377 |#2|)) (-10 -8 (-15 -1678 ($ |#2| $)) (-15 -4013 ($ (-377 |#2|))) (-15 -3190 (|#2| $)) (-15 -2198 ((-583 (-2 (|:| -2121 (-703)) (|:| -3569 |#2|) (|:| |num| |#2|))) $)) (-15 -2288 ($ (-583 (-2 (|:| -2121 (-703)) (|:| -3569 |#2|) (|:| |num| |#2|))))) (-15 -2060 ($ $)) (-15 -3342 ($ $)) (-15 -2060 ($ $ (-703))) (-15 -3342 ($ $ (-703))))) (-13 (-333) (-134)) (-1133 |#1|)) (T -369))
-((-1678 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1133 *3)))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-3190 (*1 *2 *1) (-12 (-4 *2 (-1133 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-2198 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2121 (-703)) (|:| -3569 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1133 *3)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2121 (-703)) (|:| -3569 *4) (|:| |num| *4)))) (-4 *4 (-1133 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-2060 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1133 *2)))) (-3342 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1133 *2)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1133 *3)))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1133 *3)))))
-(-13 (-1005) (-558 (-377 |#2|)) (-10 -8 (-15 -1678 ($ |#2| $)) (-15 -4013 ($ (-377 |#2|))) (-15 -3190 (|#2| $)) (-15 -2198 ((-583 (-2 (|:| -2121 (-703)) (|:| -3569 |#2|) (|:| |num| |#2|))) $)) (-15 -2288 ($ (-583 (-2 (|:| -2121 (-703)) (|:| -3569 |#2|) (|:| |num| |#2|))))) (-15 -2060 ($ $)) (-15 -3342 ($ $)) (-15 -2060 ($ $ (-703))) (-15 -3342 ($ $ (-703)))))
-((-2119 (((-107) $ $) 9 (-3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 15 (|has| |#1| (-809 (-349)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 14 (|has| |#1| (-809 (-517))))) (-1662 (((-1059) $) 13 (-3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-4125 (((-1023) $) 12 (-3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-2271 (((-787) $) 11 (-3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-1584 (((-107) $ $) 10 (-3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))))
-(((-370 |#1|) (-1188) (-1111)) (T -370))
-NIL
-(-13 (-1111) (-10 -7 (IF (|has| |t#1| (-809 (-517))) (-6 (-809 (-517))) |%noBranch|) (IF (|has| |t#1| (-809 (-349))) (-6 (-809 (-349))) |%noBranch|)))
-(((-97) -3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))) ((-557 (-787)) -3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-1005) -3747 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))) ((-1111) . T))
-((-2855 (($ $) 10) (($ $ (-703)) 11)))
-(((-371 |#1|) (-10 -8 (-15 -2855 (|#1| |#1| (-703))) (-15 -2855 (|#1| |#1|))) (-372)) (T -371))
-NIL
-(-10 -8 (-15 -2855 (|#1| |#1| (-703))) (-15 -2855 (|#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-2855 (($ $) 79) (($ $ (-703)) 78)) (-1259 (((-107) $) 71)) (-1395 (((-765 (-844)) $) 81)) (-1376 (((-107) $) 31)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2192 (((-3 (-703) "failed") $ $) 80)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-3974 (((-3 $ "failed") $) 82)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 64)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-372) (-1188)) (T -372))
-((-1395 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-844))))) (-2192 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2855 (*1 *1 *1) (-4 *1 (-372))) (-2855 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
-(-13 (-333) (-132) (-10 -8 (-15 -1395 ((-765 (-844)) $)) (-15 -2192 ((-3 (-703) "failed") $ $)) (-15 -2855 ($ $)) (-15 -2855 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-3211 (($ (-517) (-517)) 11) (($ (-517) (-517) (-844)) NIL)) (-1192 (((-844)) 16) (((-844) (-844)) NIL)))
-(((-373 |#1|) (-10 -8 (-15 -1192 ((-844) (-844))) (-15 -1192 ((-844))) (-15 -3211 (|#1| (-517) (-517) (-844))) (-15 -3211 (|#1| (-517) (-517)))) (-374)) (T -373))
-((-1192 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-1192 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
-(-10 -8 (-15 -1192 ((-844) (-844))) (-15 -1192 ((-844))) (-15 -3211 (|#1| (-517) (-517) (-844))) (-15 -3211 (|#1| (-517) (-517))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1363 (((-517) $) 89)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2853 (($ $) 87)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3880 (($ $) 97)) (-3820 (((-107) $ $) 59)) (-2360 (((-517) $) 114)) (-1393 (($) 17 T CONST)) (-3983 (($ $) 86)) (-3228 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3390 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1259 (((-107) $) 71)) (-3436 (((-844)) 130) (((-844) (-844)) 127 (|has| $ (-6 -4183)))) (-2988 (((-107) $) 112)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 93)) (-1395 (((-517) $) 136)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 96)) (-2803 (($ $) 92)) (-1952 (((-107) $) 113)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3458 (($ $ $) 111) (($) 124 (-12 (-2479 (|has| $ (-6 -4183))) (-2479 (|has| $ (-6 -4175)))))) (-4084 (($ $ $) 110) (($) 123 (-12 (-2479 (|has| $ (-6 -4183))) (-2479 (|has| $ (-6 -4175)))))) (-3699 (((-517) $) 133)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-1871 (((-844) (-517)) 126 (|has| $ (-6 -4183)))) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2041 (($ $) 88)) (-2961 (($ $) 90)) (-3211 (($ (-517) (-517)) 138) (($ (-517) (-517) (-844)) 137)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2121 (((-517) $) 134)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-1192 (((-844)) 131) (((-844) (-844)) 128 (|has| $ (-6 -4183)))) (-3788 (((-844) (-517)) 125 (|has| $ (-6 -4183)))) (-3359 (((-349) $) 105) (((-199) $) 104) (((-815 (-349)) $) 94)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-4099 (((-703)) 29)) (-3599 (($ $) 91)) (-2852 (((-844)) 132) (((-844) (-844)) 129 (|has| $ (-6 -4183)))) (-3985 (((-844)) 135)) (-2074 (((-107) $ $) 39)) (-2376 (($ $) 115)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 108)) (-1618 (((-107) $ $) 107)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 109)) (-1608 (((-107) $ $) 106)) (-1704 (($ $ $) 64)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-374) (-1188)) (T -374))
-((-3211 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-3211 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-4 *1 (-374)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3985 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2852 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-1192 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-3436 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4183)) (-4 *1 (-374)))) (-1192 (*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4183)) (-4 *1 (-374)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4183)) (-4 *1 (-374)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4183)) (-4 *1 (-374)) (-5 *2 (-844)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4183)) (-4 *1 (-374)) (-5 *2 (-844)))) (-3458 (*1 *1) (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4183))) (-2479 (|has| *1 (-6 -4175))))) (-4084 (*1 *1) (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4183))) (-2479 (|has| *1 (-6 -4175))))))
-(-13 (-972) (-10 -8 (-6 -2204) (-15 -3211 ($ (-517) (-517))) (-15 -3211 ($ (-517) (-517) (-844))) (-15 -1395 ((-517) $)) (-15 -3985 ((-844))) (-15 -2121 ((-517) $)) (-15 -3699 ((-517) $)) (-15 -2852 ((-844))) (-15 -1192 ((-844))) (-15 -3436 ((-844))) (IF (|has| $ (-6 -4183)) (PROGN (-15 -2852 ((-844) (-844))) (-15 -1192 ((-844) (-844))) (-15 -3436 ((-844) (-844))) (-15 -1871 ((-844) (-517))) (-15 -3788 ((-844) (-517)))) |%noBranch|) (IF (|has| $ (-6 -4175)) |%noBranch| (IF (|has| $ (-6 -4183)) |%noBranch| (PROGN (-15 -3458 ($)) (-15 -4084 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-815 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-809 (-349)) . T) ((-843) . T) ((-920) . T) ((-939) . T) ((-972) . T) ((-954 (-377 (-517))) . T) ((-954 (-517)) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-3310 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -3310 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
-(-10 -7 (-15 -3310 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
-((-3310 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
-(((-376 |#1| |#2|) (-10 -7 (-15 -3310 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
-(-10 -7 (-15 -3310 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 13)) (-1363 ((|#1| $) 21 (|has| |#1| (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| |#1| (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 17) (((-3 (-1076) "failed") $) NIL (|has| |#1| (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517))))) (-3390 ((|#1| $) 15) (((-1076) $) NIL (|has| |#1| (-954 (-1076)))) (((-377 (-517)) $) 67 (|has| |#1| (-954 (-517)))) (((-517) $) NIL (|has| |#1| (-954 (-517))))) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) 50)) (-2202 (($) NIL (|has| |#1| (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| |#1| (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| |#1| (-809 (-349))))) (-1376 (((-107) $) 64)) (-1862 (($ $) NIL)) (-3826 ((|#1| $) 71)) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-1052)))) (-1952 (((-107) $) NIL (|has| |#1| (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| |#1| (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 97)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| |#1| (-278)))) (-2961 ((|#1| $) 28 (|has| |#1| (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 133 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 129 (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-478 (-1076) |#1|)))) (-3600 (((-703) $) NIL)) (-2609 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2484 (($ $) NIL)) (-2098 ((|#1| $) 73)) (-3359 (((-815 (-517)) $) NIL (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#1| (-558 (-815 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-939))) (((-199) $) NIL (|has| |#1| (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1076)) NIL (|has| |#1| (-954 (-1076))))) (-3974 (((-3 $ "failed") $) 99 (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) 100)) (-3599 ((|#1| $) 26 (|has| |#1| (-502)))) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 22 T CONST)) (-3619 (($) 8 T CONST)) (-4032 (((-1059) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1059) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1162) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1162) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-3342 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 56)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1704 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1692 (($ $) 25) (($ $ $) 55)) (-1678 (($ $ $) 53)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-377 |#1|) (-13 (-911 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4179)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4190)) (-6 -4179) |%noBranch|) |%noBranch|) |%noBranch|))) (-509)) (T -377))
-NIL
-(-13 (-911 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4179)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4190)) (-6 -4179) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-2133 (((-623 |#2|) (-1157 $)) NIL) (((-623 |#2|)) 18)) (-3898 (($ (-1157 |#2|) (-1157 $)) NIL) (($ (-1157 |#2|)) 26)) (-2637 (((-623 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) $) 22)) (-2766 ((|#3| $) 59)) (-1220 ((|#2| (-1157 $)) NIL) ((|#2|) 20)) (-3784 (((-1157 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) (-1157 $) (-1157 $)) NIL) (((-1157 |#2|) $) NIL) (((-623 |#2|) (-1157 $)) 24)) (-3359 (((-1157 |#2|) $) 11) (($ (-1157 |#2|)) 13)) (-1699 ((|#3| $) 51)))
-(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2637 ((-623 |#2|) |#1|)) (-15 -1220 (|#2|)) (-15 -2133 ((-623 |#2|))) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -3898 (|#1| (-1157 |#2|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -2766 (|#3| |#1|)) (-15 -1699 (|#3| |#1|)) (-15 -2133 ((-623 |#2|) (-1157 |#1|))) (-15 -1220 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2637 ((-623 |#2|) |#1| (-1157 |#1|)))) (-379 |#2| |#3|) (-156) (-1133 |#2|)) (T -378))
-((-2133 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-1220 (*1 *2) (-12 (-4 *4 (-1133 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
-(-10 -8 (-15 -2637 ((-623 |#2|) |#1|)) (-15 -1220 (|#2|)) (-15 -2133 ((-623 |#2|))) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -3898 (|#1| (-1157 |#2|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -2766 (|#3| |#1|)) (-15 -1699 (|#3| |#1|)) (-15 -2133 ((-623 |#2|) (-1157 |#1|))) (-15 -1220 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -2637 ((-623 |#2|) |#1| (-1157 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2133 (((-623 |#1|) (-1157 $)) 46) (((-623 |#1|)) 61)) (-2009 ((|#1| $) 52)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3898 (($ (-1157 |#1|) (-1157 $)) 48) (($ (-1157 |#1|)) 64)) (-2637 (((-623 |#1|) $ (-1157 $)) 53) (((-623 |#1|) $) 59)) (-2560 (((-3 $ "failed") $) 34)) (-3737 (((-844)) 54)) (-1376 (((-107) $) 31)) (-2803 ((|#1| $) 51)) (-2766 ((|#2| $) 44 (|has| |#1| (-333)))) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1220 ((|#1| (-1157 $)) 47) ((|#1|) 60)) (-3784 (((-1157 |#1|) $ (-1157 $)) 50) (((-623 |#1|) (-1157 $) (-1157 $)) 49) (((-1157 |#1|) $) 66) (((-623 |#1|) (-1157 $)) 65)) (-3359 (((-1157 |#1|) $) 63) (($ (-1157 |#1|)) 62)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-3974 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1699 ((|#2| $) 45)) (-4099 (((-703)) 29)) (-1492 (((-1157 $)) 67)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-379 |#1| |#2|) (-1188) (-156) (-1133 |t#1|)) (T -379))
-((-1492 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-1157 *1)) (-4 *1 (-379 *3 *4)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-1157 *3)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-623 *4)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1133 *3)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-1157 *3)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1133 *3)))) (-2133 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-623 *3)))) (-1220 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1133 *2)) (-4 *2 (-156)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-623 *3)))))
-(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -1492 ((-1157 $))) (-15 -3784 ((-1157 |t#1|) $)) (-15 -3784 ((-623 |t#1|) (-1157 $))) (-15 -3898 ($ (-1157 |t#1|))) (-15 -3359 ((-1157 |t#1|) $)) (-15 -3359 ($ (-1157 |t#1|))) (-15 -2133 ((-623 |t#1|))) (-15 -1220 (|t#1|)) (-15 -2637 ((-623 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2271 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
-(((-380 |#1| |#2|) (-10 -8 (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -2271 (|#1| (-517))) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|))) (-381 |#2|) (-1111)) (T -380))
-NIL
-(-10 -8 (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -2271 (|#1| (-517))) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)))
-((-3228 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-954 (-517))))) (-3390 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-954 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-954 (-517))))) (-2271 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-954 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-954 (-517))))))
-(((-381 |#1|) (-1188) (-1111)) (T -381))
-NIL
-(-13 (-954 |t#1|) (-10 -7 (IF (|has| |t#1| (-954 (-517))) (-6 (-954 (-517))) |%noBranch|) (IF (|has| |t#1| (-954 (-377 (-517)))) (-6 (-954 (-377 (-517)))) |%noBranch|)))
-(((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T))
-((-3310 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
-(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3310 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-911 |#1|) (-1133 |#2|) (-13 (-379 |#2| |#3|) (-954 |#2|)) (-278) (-911 |#5|) (-1133 |#6|) (-13 (-379 |#6| |#7|) (-954 |#6|))) (T -382))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-911 *5)) (-4 *7 (-1133 *6)) (-4 *8 (-13 (-379 *6 *7) (-954 *6))) (-4 *9 (-278)) (-4 *10 (-911 *9)) (-4 *11 (-1133 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-954 *10))))))
-(-10 -7 (-15 -3310 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
-((-2119 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-2397 ((|#4| (-703) (-1157 |#4|)) 55)) (-1376 (((-107) $) NIL)) (-3826 (((-1157 |#4|) $) 17)) (-2803 ((|#2| $) 53)) (-3308 (($ $) 136)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 98)) (-3917 (($ (-1157 |#4|)) 97)) (-4125 (((-1023) $) NIL)) (-2098 ((|#1| $) 18)) (-1842 (($ $ $) NIL)) (-2059 (($ $ $) NIL)) (-2271 (((-787) $) 131)) (-1492 (((-1157 |#4|) $) 126)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3619 (($) 11 T CONST)) (-1584 (((-107) $ $) 39)) (-1704 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
-(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -3917 ($ (-1157 |#4|))) (-15 -1492 ((-1157 |#4|) $)) (-15 -2803 (|#2| $)) (-15 -3826 ((-1157 |#4|) $)) (-15 -2098 (|#1| $)) (-15 -3308 ($ $)) (-15 -2397 (|#4| (-703) (-1157 |#4|))))) (-278) (-911 |#1|) (-1133 |#2|) (-13 (-379 |#2| |#3|) (-954 |#2|))) (T -383))
-((-3917 (*1 *1 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-13 (-379 *4 *5) (-954 *4))) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1492 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-5 *2 (-1157 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-954 *4))))) (-2803 (*1 *2 *1) (-12 (-4 *4 (-1133 *2)) (-4 *2 (-911 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-954 *2))))) (-3826 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-5 *2 (-1157 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-954 *4))))) (-2098 (*1 *2 *1) (-12 (-4 *3 (-911 *2)) (-4 *4 (-1133 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-954 *3))))) (-3308 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-911 *2)) (-4 *4 (-1133 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-954 *3))))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1157 *2)) (-4 *5 (-278)) (-4 *6 (-911 *5)) (-4 *2 (-13 (-379 *6 *7) (-954 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1133 *6)))))
-(-13 (-442) (-10 -8 (-15 -3917 ($ (-1157 |#4|))) (-15 -1492 ((-1157 |#4|) $)) (-15 -2803 (|#2| $)) (-15 -3826 ((-1157 |#4|) $)) (-15 -2098 (|#1| $)) (-15 -3308 ($ $)) (-15 -2397 (|#4| (-703) (-1157 |#4|)))))
-((-2119 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-2803 ((|#2| $) 60)) (-3350 (($ (-1157 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-954 |#2|)))) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 34)) (-1492 (((-1157 |#4|) $) 26)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3619 (($) 23 T CONST)) (-1584 (((-107) $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
-(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -1492 ((-1157 |#4|) $)) (-15 -2803 (|#2| $)) (-15 -3350 ($ (-1157 |#4|))) (IF (|has| |#4| (-954 |#2|)) (-15 -3350 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-278) (-911 |#1|) (-1133 |#2|) (-379 |#2| |#3|) (-1157 |#4|)) (T -384))
-((-1492 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-5 *2 (-1157 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-2803 (*1 *2 *1) (-12 (-4 *4 (-1133 *2)) (-4 *2 (-911 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1157 *5)))) (-3350 (*1 *1 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3350 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-954 *4)) (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1157 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
-(-13 (-659) (-10 -8 (-15 -1492 ((-1157 |#4|) $)) (-15 -2803 (|#2| $)) (-15 -3350 ($ (-1157 |#4|))) (IF (|has| |#4| (-954 |#2|)) (-15 -3350 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3310 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
-(-10 -7 (-15 -3310 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1485 (((-3 $ "failed")) 85)) (-2520 (((-1157 (-623 |#2|)) (-1157 $)) NIL) (((-1157 (-623 |#2|))) 90)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) 84)) (-2244 (((-3 $ "failed")) 83)) (-1397 (((-623 |#2|) (-1157 $)) NIL) (((-623 |#2|)) 101)) (-1292 (((-623 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) $) 109)) (-1679 (((-1072 (-875 |#2|))) 54)) (-3245 ((|#2| (-1157 $)) NIL) ((|#2|) 105)) (-3898 (($ (-1157 |#2|) (-1157 $)) NIL) (($ (-1157 |#2|)) 112)) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) 82)) (-1737 (((-3 $ "failed")) 74)) (-1344 (((-623 |#2|) (-1157 $)) NIL) (((-623 |#2|)) 99)) (-3358 (((-623 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) $) 107)) (-1467 (((-1072 (-875 |#2|))) 53)) (-3829 ((|#2| (-1157 $)) NIL) ((|#2|) 103)) (-3784 (((-1157 |#2|) $ (-1157 $)) NIL) (((-623 |#2|) (-1157 $) (-1157 $)) NIL) (((-1157 |#2|) $) NIL) (((-623 |#2|) (-1157 $)) 111)) (-3359 (((-1157 |#2|) $) 95) (($ (-1157 |#2|)) 97)) (-3435 (((-583 (-875 |#2|)) (-1157 $)) NIL) (((-583 (-875 |#2|))) 93)) (-2375 (($ (-623 |#2|) $) 89)))
-(((-386 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| (-623 |#2|) |#1|)) (-15 -1679 ((-1072 (-875 |#2|)))) (-15 -1467 ((-1072 (-875 |#2|)))) (-15 -1292 ((-623 |#2|) |#1|)) (-15 -3358 ((-623 |#2|) |#1|)) (-15 -1397 ((-623 |#2|))) (-15 -1344 ((-623 |#2|))) (-15 -3245 (|#2|)) (-15 -3829 (|#2|)) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -3898 (|#1| (-1157 |#2|))) (-15 -3435 ((-583 (-875 |#2|)))) (-15 -2520 ((-1157 (-623 |#2|)))) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -1485 ((-3 |#1| "failed"))) (-15 -2244 ((-3 |#1| "failed"))) (-15 -1737 ((-3 |#1| "failed"))) (-15 -1444 ((-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed"))) (-15 -1431 ((-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed"))) (-15 -1397 ((-623 |#2|) (-1157 |#1|))) (-15 -1344 ((-623 |#2|) (-1157 |#1|))) (-15 -3245 (|#2| (-1157 |#1|))) (-15 -3829 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -1292 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -3358 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -2520 ((-1157 (-623 |#2|)) (-1157 |#1|))) (-15 -3435 ((-583 (-875 |#2|)) (-1157 |#1|)))) (-387 |#2|) (-156)) (T -386))
-((-2520 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1157 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3435 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-875 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3829 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-3245 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-1344 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1397 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1467 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1072 (-875 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1679 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1072 (-875 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
-(-10 -8 (-15 -2375 (|#1| (-623 |#2|) |#1|)) (-15 -1679 ((-1072 (-875 |#2|)))) (-15 -1467 ((-1072 (-875 |#2|)))) (-15 -1292 ((-623 |#2|) |#1|)) (-15 -3358 ((-623 |#2|) |#1|)) (-15 -1397 ((-623 |#2|))) (-15 -1344 ((-623 |#2|))) (-15 -3245 (|#2|)) (-15 -3829 (|#2|)) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -3898 (|#1| (-1157 |#2|))) (-15 -3435 ((-583 (-875 |#2|)))) (-15 -2520 ((-1157 (-623 |#2|)))) (-15 -3784 ((-623 |#2|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1|)) (-15 -1485 ((-3 |#1| "failed"))) (-15 -2244 ((-3 |#1| "failed"))) (-15 -1737 ((-3 |#1| "failed"))) (-15 -1444 ((-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed"))) (-15 -1431 ((-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed"))) (-15 -1397 ((-623 |#2|) (-1157 |#1|))) (-15 -1344 ((-623 |#2|) (-1157 |#1|))) (-15 -3245 (|#2| (-1157 |#1|))) (-15 -3829 (|#2| (-1157 |#1|))) (-15 -3898 (|#1| (-1157 |#2|) (-1157 |#1|))) (-15 -3784 ((-623 |#2|) (-1157 |#1|) (-1157 |#1|))) (-15 -3784 ((-1157 |#2|) |#1| (-1157 |#1|))) (-15 -1292 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -3358 ((-623 |#2|) |#1| (-1157 |#1|))) (-15 -2520 ((-1157 (-623 |#2|)) (-1157 |#1|))) (-15 -3435 ((-583 (-875 |#2|)) (-1157 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1485 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) 19)) (-2520 (((-1157 (-623 |#1|)) (-1157 $)) 78) (((-1157 (-623 |#1|))) 100)) (-2823 (((-1157 $)) 81)) (-1393 (($) 17 T CONST)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-2244 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-1397 (((-623 |#1|) (-1157 $)) 65) (((-623 |#1|)) 92)) (-4049 ((|#1| $) 74)) (-1292 (((-623 |#1|) $ (-1157 $)) 76) (((-623 |#1|) $) 90)) (-2093 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-1679 (((-1072 (-875 |#1|))) 88 (|has| |#1| (-333)))) (-3614 (($ $ (-844)) 28)) (-2554 ((|#1| $) 72)) (-2208 (((-1072 |#1|) $) 42 (|has| |#1| (-509)))) (-3245 ((|#1| (-1157 $)) 67) ((|#1|) 94)) (-1284 (((-1072 |#1|) $) 63)) (-3462 (((-107)) 57)) (-3898 (($ (-1157 |#1|) (-1157 $)) 69) (($ (-1157 |#1|)) 98)) (-2560 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3737 (((-844)) 80)) (-1864 (((-107)) 54)) (-2193 (($ $ (-844)) 33)) (-3453 (((-107)) 50)) (-2185 (((-107)) 48)) (-1573 (((-107)) 52)) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1737 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1344 (((-623 |#1|) (-1157 $)) 66) (((-623 |#1|)) 93)) (-1412 ((|#1| $) 75)) (-3358 (((-623 |#1|) $ (-1157 $)) 77) (((-623 |#1|) $) 91)) (-1590 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-1467 (((-1072 (-875 |#1|))) 89 (|has| |#1| (-333)))) (-3200 (($ $ (-844)) 29)) (-2666 ((|#1| $) 73)) (-2292 (((-1072 |#1|) $) 43 (|has| |#1| (-509)))) (-3829 ((|#1| (-1157 $)) 68) ((|#1|) 95)) (-3764 (((-1072 |#1|) $) 64)) (-2541 (((-107)) 58)) (-1662 (((-1059) $) 9)) (-3886 (((-107)) 49)) (-2031 (((-107)) 51)) (-1321 (((-107)) 53)) (-4125 (((-1023) $) 10)) (-3129 (((-107)) 56)) (-2609 ((|#1| $ (-517)) 101)) (-3784 (((-1157 |#1|) $ (-1157 $)) 71) (((-623 |#1|) (-1157 $) (-1157 $)) 70) (((-1157 |#1|) $) 103) (((-623 |#1|) (-1157 $)) 102)) (-3359 (((-1157 |#1|) $) 97) (($ (-1157 |#1|)) 96)) (-3435 (((-583 (-875 |#1|)) (-1157 $)) 79) (((-583 (-875 |#1|))) 99)) (-2059 (($ $ $) 25)) (-1266 (((-107)) 62)) (-2271 (((-787) $) 11)) (-1492 (((-1157 $)) 104)) (-2689 (((-583 (-1157 |#1|))) 44 (|has| |#1| (-509)))) (-3100 (($ $ $ $) 26)) (-3365 (((-107)) 60)) (-2375 (($ (-623 |#1|) $) 87)) (-2951 (($ $ $) 24)) (-2436 (((-107)) 61)) (-4056 (((-107)) 59)) (-2014 (((-107)) 55)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-387 |#1|) (-1188) (-156)) (T -387))
-((-1492 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1157 *1)) (-4 *1 (-387 *3)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1157 *3)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2520 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1157 (-623 *3))))) (-3435 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-875 *3))))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1157 *3)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3829 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3245 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-1344 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1397 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1467 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1072 (-875 *3))))) (-1679 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1072 (-875 *3))))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
-(-13 (-337 |t#1|) (-10 -8 (-15 -1492 ((-1157 $))) (-15 -3784 ((-1157 |t#1|) $)) (-15 -3784 ((-623 |t#1|) (-1157 $))) (-15 -2609 (|t#1| $ (-517))) (-15 -2520 ((-1157 (-623 |t#1|)))) (-15 -3435 ((-583 (-875 |t#1|)))) (-15 -3898 ($ (-1157 |t#1|))) (-15 -3359 ((-1157 |t#1|) $)) (-15 -3359 ($ (-1157 |t#1|))) (-15 -3829 (|t#1|)) (-15 -3245 (|t#1|)) (-15 -1344 ((-623 |t#1|))) (-15 -1397 ((-623 |t#1|))) (-15 -3358 ((-623 |t#1|) $)) (-15 -1292 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -1467 ((-1072 (-875 |t#1|)))) (-15 -1679 ((-1072 (-875 |t#1|))))) |%noBranch|) (-15 -2375 ($ (-623 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 41)) (-1891 (($ $) 56)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 143)) (-3062 (($ $) NIL)) (-2190 (((-107) $) 35)) (-1485 ((|#1| $) 12)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-1115)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-1115)))) (-1552 (($ |#1| (-517)) 30)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 54)) (-2560 (((-3 $ "failed") $) 128)) (-2518 (((-3 (-377 (-517)) "failed") $) 62 (|has| |#1| (-502)))) (-3000 (((-107) $) 58 (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) 60 (|has| |#1| (-502)))) (-3779 (($ |#1| (-517)) 32)) (-1259 (((-107) $) 149 (|has| |#1| (-1115)))) (-1376 (((-107) $) 42)) (-3091 (((-703) $) 37)) (-1823 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-1789 ((|#1| $ (-517)) 133)) (-4050 (((-517) $ (-517)) 132)) (-1739 (($ |#1| (-517)) 29)) (-3310 (($ (-1 |#1| |#1|) $) 140)) (-1744 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 57)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-1564 (($ |#1| (-517)) 31)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-3095 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1510 (((-583 (-2 (|:| -3868 |#1|) (|:| -2121 (-517)))) $) 53)) (-3807 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3868 (((-388 $) $) NIL (|has| |#1| (-1115)))) (-2329 (((-3 $ "failed") $ $) 135)) (-2121 (((-517) $) 129)) (-2296 ((|#1| $) 55)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) $) NIL (|has| |#1| (-478 (-1076) $))) (($ $ (-583 (-1076)) (-583 $)) 83 (|has| |#1| (-478 (-1076) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-2609 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-2060 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3359 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-939))) (((-199) $) 92 (|has| |#1| (-939)))) (-2271 (((-787) $) 111) (($ (-517)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517)))))) (-4099 (((-703)) 47)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 39 T CONST)) (-3619 (($) 38 T CONST)) (-3342 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1584 (((-107) $ $) 93)) (-1692 (($ $) 125) (($ $ $) NIL)) (-1678 (($ $ $) 137)) (** (($ $ (-844)) NIL) (($ $ (-703)) 99)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
-(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2296 (|#1| $)) (-15 -2121 ((-517) $)) (-15 -1744 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3807 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1739 ($ |#1| (-517))) (-15 -1510 ((-583 (-2 (|:| -3868 |#1|) (|:| -2121 (-517)))) $)) (-15 -1564 ($ |#1| (-517))) (-15 -4050 ((-517) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -1823 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -3091 ((-703) $)) (-15 -3779 ($ |#1| (-517))) (-15 -1552 ($ |#1| (-517))) (-15 -3095 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1485 (|#1| $)) (-15 -1891 ($ $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-939)) (-6 (-939)) |%noBranch|) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1076) $)) (-6 (-478 (-1076) $)) |%noBranch|))) (-509)) (T -388))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-2296 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1744 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1739 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3868 *3) (|:| -2121 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-4050 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1823 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3779 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1552 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3095 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1485 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1891 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-2518 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
-(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2296 (|#1| $)) (-15 -2121 ((-517) $)) (-15 -1744 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3807 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1739 ($ |#1| (-517))) (-15 -1510 ((-583 (-2 (|:| -3868 |#1|) (|:| -2121 (-517)))) $)) (-15 -1564 ($ |#1| (-517))) (-15 -4050 ((-517) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -1823 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -3091 ((-703) $)) (-15 -3779 ($ |#1| (-517))) (-15 -1552 ($ |#1| (-517))) (-15 -3095 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1485 (|#1| $)) (-15 -1891 ($ $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-939)) (-6 (-939)) |%noBranch|) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1076) $)) (-6 (-478 (-1076) $)) |%noBranch|)))
-((-3574 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-3486 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
-(((-389 |#1|) (-10 -7 (-15 -3574 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -3486 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
-((-3486 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-3574 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
-(-10 -7 (-15 -3574 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -3486 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
-((-3930 ((|#2| |#2|) 161)) (-2398 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107)) 55)))
-(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2398 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107))) (-15 -3930 (|#2| |#2|))) (-13 (-421) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|)) (-1076) |#2|) (T -390))
-((-3930 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1097) (-400 *3))) (-14 *4 (-1076)) (-14 *5 *2))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1097) (-400 *5))) (-14 *6 (-1076)) (-14 *7 *3))))
-(-10 -7 (-15 -2398 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107))) (-15 -3930 (|#2| |#2|)))
-((-3310 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-963) (-779)) (-400 |#1|) (-13 (-963) (-779)) (-400 |#3|)) (T -391))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-963) (-779))) (-4 *6 (-13 (-963) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
-(-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3930 ((|#2| |#2|) 88)) (-2741 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107) (-1059)) 46)) (-2404 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107) (-1059)) 153)))
-(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2741 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107) (-1059))) (-15 -2404 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107) (-1059))) (-15 -3930 (|#2| |#2|))) (-13 (-421) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|) (-10 -8 (-15 -2271 ($ |#3|)))) (-777) (-13 (-1135 |#2| |#3|) (-333) (-1097) (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $)))) (-902 |#4|) (-1076)) (T -392))
-((-3930 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1097) (-400 *3) (-10 -8 (-15 -2271 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1135 *2 *4) (-333) (-1097) (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-902 *5)) (-14 *7 (-1076)))) (-2404 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1097) (-400 *6) (-10 -8 (-15 -2271 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1135 *3 *7) (-333) (-1097) (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-902 *8)) (-14 *10 (-1076)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1097) (-400 *6) (-10 -8 (-15 -2271 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1135 *3 *7) (-333) (-1097) (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-902 *8)) (-14 *10 (-1076)))))
-(-10 -7 (-15 -2741 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107) (-1059))) (-15 -2404 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-107) (-1059))) (-15 -3930 (|#2| |#2|)))
-((-1532 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1522 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3310 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1522 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1532 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1005) (-395 |#1|) (-1005) (-395 |#3|)) (T -393))
-((-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1005)) (-4 *5 (-1005)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1005)) (-4 *2 (-1005)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
-(-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1522 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1532 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2778 (($) 44)) (-2384 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2834 (($ $ $) 39)) (-1961 (((-107) $ $) 28)) (-2399 (((-703)) 47)) (-1884 (($ (-583 |#2|)) 20) (($) NIL)) (-2202 (($) 53)) (-3458 ((|#2| $) 61)) (-4084 ((|#2| $) 59)) (-3072 (((-844) $) 55)) (-2259 (($ $ $) 35)) (-2812 (($ (-844)) 50)) (-1216 (($ $ |#2|) NIL) (($ $ $) 38)) (-4137 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2288 (($ (-583 |#2|)) 24)) (-1695 (($ $) 46)) (-2271 (((-787) $) 33)) (-2521 (((-703) $) 21)) (-3075 (($ (-583 |#2|)) 19) (($) NIL)) (-1584 (((-107) $ $) 16)) (-1608 (((-107) $ $) 13)))
-(((-394 |#1| |#2|) (-10 -8 (-15 -2399 ((-703))) (-15 -2812 (|#1| (-844))) (-15 -3072 ((-844) |#1|)) (-15 -2202 (|#1|)) (-15 -3458 (|#2| |#1|)) (-15 -4084 (|#2| |#1|)) (-15 -2778 (|#1|)) (-15 -1695 (|#1| |#1|)) (-15 -2521 ((-703) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -3075 (|#1|)) (-15 -3075 (|#1| (-583 |#2|))) (-15 -1884 (|#1|)) (-15 -1884 (|#1| (-583 |#2|))) (-15 -2259 (|#1| |#1| |#1|)) (-15 -1216 (|#1| |#1| |#1|)) (-15 -1216 (|#1| |#1| |#2|)) (-15 -2834 (|#1| |#1| |#1|)) (-15 -1961 ((-107) |#1| |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -2384 (|#1| |#1| |#2|)) (-15 -2384 (|#1| |#2| |#1|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -4137 ((-703) |#2| |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1005)) (T -394))
-((-2399 (*1 *2) (-12 (-4 *4 (-1005)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
-(-10 -8 (-15 -2399 ((-703))) (-15 -2812 (|#1| (-844))) (-15 -3072 ((-844) |#1|)) (-15 -2202 (|#1|)) (-15 -3458 (|#2| |#1|)) (-15 -4084 (|#2| |#1|)) (-15 -2778 (|#1|)) (-15 -1695 (|#1| |#1|)) (-15 -2521 ((-703) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -3075 (|#1|)) (-15 -3075 (|#1| (-583 |#2|))) (-15 -1884 (|#1|)) (-15 -1884 (|#1| (-583 |#2|))) (-15 -2259 (|#1| |#1| |#1|)) (-15 -1216 (|#1| |#1| |#1|)) (-15 -1216 (|#1| |#1| |#2|)) (-15 -2834 (|#1| |#1| |#1|)) (-15 -1961 ((-107) |#1| |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -2384 (|#1| |#1| |#2|)) (-15 -2384 (|#1| |#2| |#1|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -4137 ((-703) |#2| |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)))
-((-2119 (((-107) $ $) 19)) (-2778 (($) 67 (|has| |#1| (-338)))) (-2384 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2834 (($ $ $) 78)) (-1961 (((-107) $ $) 79)) (-1851 (((-107) $ (-703)) 8)) (-2399 (((-703)) 61 (|has| |#1| (-338)))) (-1884 (($ (-583 |#1|)) 74) (($) 73)) (-3690 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2455 (($ $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4192)))) (-2202 (($) 64 (|has| |#1| (-338)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-3458 ((|#1| $) 65 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-4084 ((|#1| $) 66 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-3072 (((-844) $) 63 (|has| |#1| (-338)))) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22)) (-2259 (($ $ $) 75)) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-2812 (($ (-844)) 62 (|has| |#1| (-338)))) (-4125 (((-1023) $) 21)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-1216 (($ $ |#1|) 77) (($ $ $) 76)) (-2176 (($) 49) (($ (-583 |#1|)) 48)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 50)) (-1695 (($ $) 68 (|has| |#1| (-338)))) (-2271 (((-787) $) 18)) (-2521 (((-703) $) 69)) (-3075 (($ (-583 |#1|)) 72) (($) 71)) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20)) (-1608 (((-107) $ $) 70)) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-395 |#1|) (-1188) (-1005)) (T -395))
-((-2521 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1005)) (-5 *2 (-703)))) (-1695 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1005)) (-4 *2 (-338)))) (-2778 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1005)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1005)) (-4 *2 (-779)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1005)) (-4 *2 (-779)))))
-(-13 (-203 |t#1|) (-1003 |t#1|) (-10 -8 (-6 -4192) (-15 -2521 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -1695 ($ $)) (-15 -2778 ($))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -4084 (|t#1| $)) (-15 -3458 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1003 |#1|) . T) ((-1005) . T) ((-1111) . T))
-((-1687 (((-534 |#2|) |#2| (-1076)) 35)) (-1956 (((-534 |#2|) |#2| (-1076)) 19)) (-2848 ((|#2| |#2| (-1076)) 24)))
-(((-396 |#1| |#2|) (-10 -7 (-15 -1956 ((-534 |#2|) |#2| (-1076))) (-15 -1687 ((-534 |#2|) |#2| (-1076))) (-15 -2848 (|#2| |#2| (-1076)))) (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-29 |#1|))) (T -396))
-((-2848 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1097) (-29 *4))))) (-1687 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1097) (-29 *5))))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1097) (-29 *5))))))
-(-10 -7 (-15 -1956 ((-534 |#2|) |#2| (-1076))) (-15 -1687 ((-534 |#2|) |#2| (-1076))) (-15 -2848 (|#2| |#2| (-1076))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-3045 (($ |#2| |#1|) 35)) (-2033 (($ |#2| |#1|) 33)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-4099 (((-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 10 T CONST)) (-3619 (($) 16 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 34)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4179)) (IF (|has| |#1| (-6 -4179)) (-6 -4179) |%noBranch|) |%noBranch|) (-15 -2271 ($ |#1|)) (-15 -2271 ($ (-301 |#2|))) (-15 -3045 ($ |#2| |#1|)) (-15 -2033 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
-((-2271 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-3045 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-2033 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4179)) (IF (|has| |#1| (-6 -4179)) (-6 -4179) |%noBranch|) |%noBranch|) (-15 -2271 ($ |#1|)) (-15 -2271 ($ (-301 |#2|))) (-15 -3045 ($ |#2| |#1|)) (-15 -2033 ($ |#2| |#1|))))
-((-2356 (((-3 |#2| (-583 |#2|)) |#2| (-1076)) 105)))
-(((-398 |#1| |#2|) (-10 -7 (-15 -2356 ((-3 |#2| (-583 |#2|)) |#2| (-1076)))) (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-881) (-29 |#1|))) (T -398))
-((-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1097) (-881) (-29 *5))))))
-(-10 -7 (-15 -2356 ((-3 |#2| (-583 |#2|)) |#2| (-1076))))
-((-2097 (((-583 (-1076)) $) 72)) (-1440 (((-377 (-1072 $)) $ (-556 $)) 269)) (-3915 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 234)) (-3228 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1076) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-377 (-875 |#2|)) "failed") $) 320) (((-3 (-875 |#2|) "failed") $) 232) (((-3 (-377 (-517)) "failed") $) NIL)) (-3390 (((-556 $) $) NIL) (((-1076) $) 30) (((-517) $) NIL) ((|#2| $) 228) (((-377 (-875 |#2|)) $) 301) (((-875 |#2|) $) 229) (((-377 (-517)) $) NIL)) (-1934 (((-109) (-109)) 47)) (-1862 (($ $) 87)) (-3971 (((-3 (-556 $) "failed") $) 225)) (-1424 (((-583 (-556 $)) $) 226)) (-2745 (((-3 (-583 $) "failed") $) 244)) (-1480 (((-3 (-2 (|:| |val| $) (|:| -2121 (-517))) "failed") $) 251)) (-1653 (((-3 (-583 $) "failed") $) 242)) (-2859 (((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 $))) "failed") $) 260)) (-2670 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $) 248) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-109)) 215) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-1076)) 217)) (-2310 (((-107) $) 19)) (-2321 ((|#2| $) 21)) (-3524 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1076) (-1 $ (-583 $))) NIL) (($ $ (-1076) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1076)) 57) (($ $ (-583 (-1076))) 237) (($ $) 238) (($ $ (-109) $ (-1076)) 60) (($ $ (-583 (-109)) (-583 $) (-1076)) 67) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 239) (($ $ (-1076) (-703) (-1 $ (-583 $))) 94) (($ $ (-1076) (-703) (-1 $ $)) 93)) (-2609 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) 235)) (-2484 (($ $) 280)) (-3359 (((-815 (-517)) $) 254) (((-815 (-349)) $) 257) (($ (-388 $)) 316) (((-493) $) NIL)) (-2271 (((-787) $) 236) (($ (-556 $)) 84) (($ (-1076)) 26) (($ |#2|) NIL) (($ (-1028 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 285) (($ (-875 (-377 |#2|))) 325) (($ (-377 (-875 (-377 |#2|)))) 297) (($ (-377 (-875 |#2|))) 291) (($ $) NIL) (($ (-875 |#2|)) 184) (($ (-377 (-517))) 330) (($ (-517)) NIL)) (-4099 (((-703)) 79)) (-3750 (((-107) (-109)) 41)) (-3513 (($ (-1076) $) 33) (($ (-1076) $ $) 34) (($ (-1076) $ $ $) 35) (($ (-1076) $ $ $ $) 36) (($ (-1076) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
-(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-844) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4099 ((-703))) (-15 -2271 (|#1| (-517))) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3359 ((-493) |#1|)) (-15 -3390 ((-875 |#2|) |#1|)) (-15 -3228 ((-3 (-875 |#2|) "failed") |#1|)) (-15 -2271 (|#1| (-875 |#2|))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3390 ((-377 (-875 |#2|)) |#1|)) (-15 -3228 ((-3 (-377 (-875 |#2|)) "failed") |#1|)) (-15 -2271 (|#1| (-377 (-875 |#2|)))) (-15 -1440 ((-377 (-1072 |#1|)) |#1| (-556 |#1|))) (-15 -2271 (|#1| (-377 (-875 (-377 |#2|))))) (-15 -2271 (|#1| (-875 (-377 |#2|)))) (-15 -2271 (|#1| (-377 |#2|))) (-15 -2484 (|#1| |#1|)) (-15 -3359 (|#1| (-388 |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-703) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1480 ((-3 (-2 (|:| |val| |#1|) (|:| -2121 (-517))) "failed") |#1|)) (-15 -2670 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2121 (-517))) "failed") |#1| (-1076))) (-15 -2670 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2121 (-517))) "failed") |#1| (-109))) (-15 -1862 (|#1| |#1|)) (-15 -2271 (|#1| (-1028 |#2| (-556 |#1|)))) (-15 -2859 ((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1653 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2670 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2121 (-517))) "failed") |#1|)) (-15 -2745 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1076))) (-15 -3524 (|#1| |#1| (-109) |#1| (-1076))) (-15 -3524 (|#1| |#1|)) (-15 -3524 (|#1| |#1| (-583 (-1076)))) (-15 -3524 (|#1| |#1| (-1076))) (-15 -3513 (|#1| (-1076) (-583 |#1|))) (-15 -3513 (|#1| (-1076) |#1| |#1| |#1| |#1|)) (-15 -3513 (|#1| (-1076) |#1| |#1| |#1|)) (-15 -3513 (|#1| (-1076) |#1| |#1|)) (-15 -3513 (|#1| (-1076) |#1|)) (-15 -2097 ((-583 (-1076)) |#1|)) (-15 -2321 (|#2| |#1|)) (-15 -2310 ((-107) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3390 ((-1076) |#1|)) (-15 -3228 ((-3 (-1076) "failed") |#1|)) (-15 -2271 (|#1| (-1076))) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| |#1|)))) (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -1424 ((-583 (-556 |#1|)) |#1|)) (-15 -3971 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3915 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3915 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3915 (|#1| |#1| (-265 |#1|))) (-15 -2609 (|#1| (-109) (-583 |#1|))) (-15 -2609 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3524 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3390 ((-556 |#1|) |#1|)) (-15 -3228 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2271 (|#1| (-556 |#1|))) (-15 -2271 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
-((-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-4099 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
-(-10 -8 (-15 * (|#1| (-844) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4099 ((-703))) (-15 -2271 (|#1| (-517))) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3359 ((-493) |#1|)) (-15 -3390 ((-875 |#2|) |#1|)) (-15 -3228 ((-3 (-875 |#2|) "failed") |#1|)) (-15 -2271 (|#1| (-875 |#2|))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3390 ((-377 (-875 |#2|)) |#1|)) (-15 -3228 ((-3 (-377 (-875 |#2|)) "failed") |#1|)) (-15 -2271 (|#1| (-377 (-875 |#2|)))) (-15 -1440 ((-377 (-1072 |#1|)) |#1| (-556 |#1|))) (-15 -2271 (|#1| (-377 (-875 (-377 |#2|))))) (-15 -2271 (|#1| (-875 (-377 |#2|)))) (-15 -2271 (|#1| (-377 |#2|))) (-15 -2484 (|#1| |#1|)) (-15 -3359 (|#1| (-388 |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-703) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1480 ((-3 (-2 (|:| |val| |#1|) (|:| -2121 (-517))) "failed") |#1|)) (-15 -2670 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2121 (-517))) "failed") |#1| (-1076))) (-15 -2670 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2121 (-517))) "failed") |#1| (-109))) (-15 -1862 (|#1| |#1|)) (-15 -2271 (|#1| (-1028 |#2| (-556 |#1|)))) (-15 -2859 ((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1653 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2670 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2121 (-517))) "failed") |#1|)) (-15 -2745 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1076))) (-15 -3524 (|#1| |#1| (-109) |#1| (-1076))) (-15 -3524 (|#1| |#1|)) (-15 -3524 (|#1| |#1| (-583 (-1076)))) (-15 -3524 (|#1| |#1| (-1076))) (-15 -3513 (|#1| (-1076) (-583 |#1|))) (-15 -3513 (|#1| (-1076) |#1| |#1| |#1| |#1|)) (-15 -3513 (|#1| (-1076) |#1| |#1| |#1|)) (-15 -3513 (|#1| (-1076) |#1| |#1|)) (-15 -3513 (|#1| (-1076) |#1|)) (-15 -2097 ((-583 (-1076)) |#1|)) (-15 -2321 (|#2| |#1|)) (-15 -2310 ((-107) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3390 ((-1076) |#1|)) (-15 -3228 ((-3 (-1076) "failed") |#1|)) (-15 -2271 (|#1| (-1076))) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| |#1|))) (-15 -3524 (|#1| |#1| (-1076) (-1 |#1| (-583 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3524 (|#1| |#1| (-583 (-1076)) (-583 (-1 |#1| |#1|)))) (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -1424 ((-583 (-556 |#1|)) |#1|)) (-15 -3971 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3915 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3915 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3915 (|#1| |#1| (-265 |#1|))) (-15 -2609 (|#1| (-109) (-583 |#1|))) (-15 -2609 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1| |#1|)) (-15 -2609 (|#1| (-109) |#1|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3524 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3524 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3390 ((-556 |#1|) |#1|)) (-15 -3228 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2271 (|#1| (-556 |#1|))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 116 (|has| |#1| (-25)))) (-2097 (((-583 (-1076)) $) 203)) (-1440 (((-377 (-1072 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-3062 (($ $) 144 (|has| |#1| (-509)))) (-2190 (((-107) $) 146 (|has| |#1| (-509)))) (-3834 (((-583 (-556 $)) $) 44)) (-2798 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3915 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1224 (($ $) 163 (|has| |#1| (-509)))) (-4018 (((-388 $) $) 164 (|has| |#1| (-509)))) (-3820 (((-107) $ $) 154 (|has| |#1| (-509)))) (-1393 (($) 102 (-3747 (|has| |#1| (-1017)) (|has| |#1| (-25))) CONST)) (-3228 (((-3 (-556 $) "failed") $) 69) (((-3 (-1076) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-954 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-875 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-875 |#1|) "failed") $) 123 (|has| |#1| (-963))) (((-3 (-377 (-517)) "failed") $) 95 (-3747 (-12 (|has| |#1| (-954 (-517))) (|has| |#1| (-509))) (|has| |#1| (-954 (-377 (-517))))))) (-3390 (((-556 $) $) 68) (((-1076) $) 215) (((-517) $) 210 (|has| |#1| (-954 (-517)))) ((|#1| $) 206) (((-377 (-875 |#1|)) $) 168 (|has| |#1| (-509))) (((-875 |#1|) $) 122 (|has| |#1| (-963))) (((-377 (-517)) $) 94 (-3747 (-12 (|has| |#1| (-954 (-517))) (|has| |#1| (-509))) (|has| |#1| (-954 (-377 (-517))))))) (-2379 (($ $ $) 158 (|has| |#1| (-509)))) (-2207 (((-623 (-517)) (-623 $)) 137 (-3993 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 136 (-3993 (|has| |#1| (-579 (-517))) (|has| |#1| (-963)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 135 (|has| |#1| (-963))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-963)))) (-2560 (((-3 $ "failed") $) 105 (|has| |#1| (-1017)))) (-2354 (($ $ $) 157 (|has| |#1| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-1259 (((-107) $) 165 (|has| |#1| (-509)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 212 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 211 (|has| |#1| (-809 (-349))))) (-3659 (($ $) 51) (($ (-583 $)) 50)) (-1194 (((-583 (-109)) $) 43)) (-1934 (((-109) (-109)) 42)) (-1376 (((-107) $) 103 (|has| |#1| (-1017)))) (-2686 (((-107) $) 22 (|has| $ (-954 (-517))))) (-1862 (($ $) 186 (|has| |#1| (-963)))) (-3826 (((-1028 |#1| (-556 $)) $) 187 (|has| |#1| (-963)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-3760 (((-1072 $) (-556 $)) 25 (|has| $ (-963)))) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-3310 (($ (-1 $ $) (-556 $)) 36)) (-3971 (((-3 (-556 $) "failed") $) 46)) (-2332 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-1662 (((-1059) $) 9)) (-1424 (((-583 (-556 $)) $) 45)) (-1398 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-2745 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1017)))) (-1480 (((-3 (-2 (|:| |val| $) (|:| -2121 (-517))) "failed") $) 183 (|has| |#1| (-963)))) (-1653 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-2859 (((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2670 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $) 191 (|has| |#1| (-1017))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-963))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-1076)) 184 (|has| |#1| (-963)))) (-2066 (((-107) $ (-109)) 40) (((-107) $ (-1076)) 39)) (-2300 (($ $) 107 (-3747 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1809 (((-703) $) 47)) (-4125 (((-1023) $) 10)) (-2310 (((-107) $) 205)) (-2321 ((|#1| $) 204)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 151 (|has| |#1| (-509)))) (-2370 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-1647 (((-107) $ $) 35) (((-107) $ (-1076)) 34)) (-3868 (((-388 $) $) 162 (|has| |#1| (-509)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 159 (|has| |#1| (-509)))) (-2329 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-1766 (((-107) $) 23 (|has| $ (-954 (-517))))) (-3524 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1076)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1076) (-1 $ (-583 $))) 31) (($ $ (-1076) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1076)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1076))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1076)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1076)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-963))) (($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-963))) (($ $ (-1076) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-963))) (($ $ (-1076) (-703) (-1 $ $)) 179 (|has| |#1| (-963)))) (-3600 (((-703) $) 155 (|has| |#1| (-509)))) (-2609 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 156 (|has| |#1| (-509)))) (-1457 (($ $) 49) (($ $ $) 48)) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) 128 (|has| |#1| (-963))) (($ $ (-1076) (-703)) 127 (|has| |#1| (-963))) (($ $ (-583 (-1076))) 126 (|has| |#1| (-963))) (($ $ (-1076)) 125 (|has| |#1| (-963)))) (-2484 (($ $) 176 (|has| |#1| (-509)))) (-2098 (((-1028 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2387 (($ $) 24 (|has| $ (-963)))) (-3359 (((-815 (-517)) $) 214 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 213 (|has| |#1| (-558 (-815 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1842 (($ $ $) 111 (|has| |#1| (-442)))) (-2059 (($ $ $) 112 (|has| |#1| (-442)))) (-2271 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1076)) 217) (($ |#1|) 208) (($ (-1028 |#1| (-556 $))) 188 (|has| |#1| (-963))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-875 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-875 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-875 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-875 |#1|)) 124 (|has| |#1| (-963))) (($ (-377 (-517))) 96 (-3747 (|has| |#1| (-509)) (-12 (|has| |#1| (-954 (-517))) (|has| |#1| (-509))) (|has| |#1| (-954 (-377 (-517)))))) (($ (-517)) 93 (-3747 (|has| |#1| (-963)) (|has| |#1| (-954 (-517)))))) (-3974 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-4099 (((-703)) 133 (|has| |#1| (-963)))) (-3440 (($ $) 53) (($ (-583 $)) 52)) (-3750 (((-107) (-109)) 41)) (-2074 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3513 (($ (-1076) $) 202) (($ (-1076) $ $) 201) (($ (-1076) $ $ $) 200) (($ (-1076) $ $ $ $) 199) (($ (-1076) (-583 $)) 198)) (-2815 (($ $ (-517)) 110 (-3747 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1017))) (($ $ (-844)) 100 (|has| |#1| (-1017)))) (-3610 (($) 115 (|has| |#1| (-25)) CONST)) (-3619 (($) 101 (|has| |#1| (-1017)) CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) 132 (|has| |#1| (-963))) (($ $ (-1076) (-703)) 131 (|has| |#1| (-963))) (($ $ (-583 (-1076))) 130 (|has| |#1| (-963))) (($ $ (-1076)) 129 (|has| |#1| (-963)))) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1704 (($ (-1028 |#1| (-556 $)) (-1028 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3747 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1692 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1678 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3747 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1017))) (($ $ (-844)) 99 (|has| |#1| (-1017)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-844) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1017)))))
-(((-400 |#1|) (-1188) (-779)) (T -400))
-((-2310 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1076))))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3513 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3513 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3513 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1076))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3524 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-3524 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1076)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-3524 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1076)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-2745 (*1 *2 *1) (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-2670 (*1 *2 *1) (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2121 (-517)))) (-4 *1 (-400 *3)))) (-1653 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1582 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1028 *3 (-556 *1))) (-4 *3 (-963)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-3826 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *3 (-779)) (-5 *2 (-1028 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1862 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-963)))) (-2670 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-963)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2121 (-517)))) (-4 *1 (-400 *4)))) (-2670 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1076)) (-4 *4 (-963)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2121 (-517)))) (-4 *1 (-400 *4)))) (-1480 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2121 (-517)))) (-4 *1 (-400 *3)))) (-3524 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-963)))) (-3524 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-963)))) (-3524 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-963)))) (-3524 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-963)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2098 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1028 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1704 (*1 *1 *2 *2) (-12 (-5 *2 (-1028 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-875 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1440 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1072 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1017)))))
-(-13 (-273) (-954 (-1076)) (-807 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2310 ((-107) $)) (-15 -2321 (|t#1| $)) (-15 -2097 ((-583 (-1076)) $)) (-15 -3513 ($ (-1076) $)) (-15 -3513 ($ (-1076) $ $)) (-15 -3513 ($ (-1076) $ $ $)) (-15 -3513 ($ (-1076) $ $ $ $)) (-15 -3513 ($ (-1076) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -3524 ($ $ (-1076))) (-15 -3524 ($ $ (-583 (-1076)))) (-15 -3524 ($ $)) (-15 -3524 ($ $ (-109) $ (-1076))) (-15 -3524 ($ $ (-583 (-109)) (-583 $) (-1076)))) |%noBranch|) (IF (|has| |t#1| (-1017)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -2745 ((-3 (-583 $) "failed") $)) (-15 -2670 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1653 ((-3 (-583 $) "failed") $)) (-15 -2859 ((-3 (-2 (|:| -1582 (-517)) (|:| |var| (-556 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-6 (-963)) (-6 (-954 (-875 |t#1|))) (-6 (-823 (-1076))) (-6 (-347 |t#1|)) (-15 -2271 ($ (-1028 |t#1| (-556 $)))) (-15 -3826 ((-1028 |t#1| (-556 $)) $)) (-15 -1862 ($ $)) (-15 -2670 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-109))) (-15 -2670 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2121 (-517))) "failed") $ (-1076))) (-15 -1480 ((-3 (-2 (|:| |val| $) (|:| -2121 (-517))) "failed") $)) (-15 -3524 ($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -3524 ($ $ (-583 (-1076)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -3524 ($ $ (-1076) (-703) (-1 $ (-583 $)))) (-15 -3524 ($ $ (-1076) (-703) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-954 (-377 (-875 |t#1|)))) (-15 -3359 ($ (-388 $))) (-15 -2098 ((-1028 |t#1| (-556 $)) $)) (-15 -2484 ($ $)) (-15 -1704 ($ (-1028 |t#1| (-556 $)) (-1028 |t#1| (-556 $)))) (-15 -2271 ($ (-377 |t#1|))) (-15 -2271 ($ (-875 (-377 |t#1|)))) (-15 -2271 ($ (-377 (-875 (-377 |t#1|))))) (-15 -1440 ((-377 (-1072 $)) $ (-556 $))) (IF (|has| |t#1| (-954 (-517))) (-6 (-954 (-377 (-517)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-963)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-963))) ((-579 |#1|) |has| |#1| (-963)) ((-650 #0#) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3747 (|has| |#1| (-1017)) (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-823 (-1076)) |has| |#1| (-963)) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-843) |has| |#1| (-509)) ((-954 (-377 (-517))) -3747 (|has| |#1| (-954 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-954 (-517))))) ((-954 (-377 (-875 |#1|))) |has| |#1| (-509)) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 (-556 $)) . T) ((-954 (-875 |#1|)) |has| |#1| (-963)) ((-954 (-1076)) . T) ((-954 |#1|) . T) ((-969 #0#) |has| |#1| (-509)) ((-969 |#1|) |has| |#1| (-156)) ((-969 $) |has| |#1| (-509)) ((-963) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-970) -3747 (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1017) -3747 (|has| |#1| (-1017)) (|has| |#1| (-963)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1005) . T) ((-1111) . T) ((-1115) |has| |#1| (-509)))
-((-3008 ((|#2| |#2| |#2|) 33)) (-1934 (((-109) (-109)) 44)) (-2451 ((|#2| |#2|) 66)) (-1281 ((|#2| |#2|) 69)) (-2842 ((|#2| |#2|) 32)) (-2661 ((|#2| |#2| |#2|) 35)) (-1298 ((|#2| |#2| |#2|) 37)) (-1235 ((|#2| |#2| |#2|) 34)) (-1807 ((|#2| |#2| |#2|) 36)) (-3750 (((-107) (-109)) 42)) (-2887 ((|#2| |#2|) 39)) (-2021 ((|#2| |#2|) 38)) (-2376 ((|#2| |#2|) 27)) (-3700 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2902 ((|#2| |#2| |#2|) 31)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -2376 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -3700 (|#2| |#2| |#2|)) (-15 -2902 (|#2| |#2| |#2|)) (-15 -2842 (|#2| |#2|)) (-15 -3008 (|#2| |#2| |#2|)) (-15 -1235 (|#2| |#2| |#2|)) (-15 -2661 (|#2| |#2| |#2|)) (-15 -1807 (|#2| |#2| |#2|)) (-15 -1298 (|#2| |#2| |#2|)) (-15 -2021 (|#2| |#2|)) (-15 -2887 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -2451 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
-((-2451 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1281 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2887 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2021 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1298 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1807 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2661 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1235 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3008 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2842 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2902 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3700 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2376 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
-(-10 -7 (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -2376 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -3700 (|#2| |#2| |#2|)) (-15 -2902 (|#2| |#2| |#2|)) (-15 -2842 (|#2| |#2|)) (-15 -3008 (|#2| |#2| |#2|)) (-15 -1235 (|#2| |#2| |#2|)) (-15 -2661 (|#2| |#2| |#2|)) (-15 -1807 (|#2| |#2| |#2|)) (-15 -1298 (|#2| |#2| |#2|)) (-15 -2021 (|#2| |#2|)) (-15 -2887 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)))
-((-1304 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1072 |#2|)) (|:| |pol2| (-1072 |#2|)) (|:| |prim| (-1072 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1072 |#2|))) (|:| |prim| (-1072 |#2|))) (-583 |#2|)) 58)))
-(((-402 |#1| |#2|) (-10 -7 (-15 -1304 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1072 |#2|))) (|:| |prim| (-1072 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -1304 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1072 |#2|)) (|:| |pol2| (-1072 |#2|)) (|:| |prim| (-1072 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
-((-1304 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1072 *3)) (|:| |pol2| (-1072 *3)) (|:| |prim| (-1072 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1072 *5))) (|:| |prim| (-1072 *5)))) (-5 *1 (-402 *4 *5)))))
-(-10 -7 (-15 -1304 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1072 |#2|))) (|:| |prim| (-1072 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -1304 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1072 |#2|)) (|:| |pol2| (-1072 |#2|)) (|:| |prim| (-1072 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3107 (((-1162)) 18)) (-2469 (((-1072 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
-(((-403 |#1| |#2|) (-10 -7 (-15 -2469 ((-377 (-517)) |#2|)) (-15 -2469 ((-1072 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3107 ((-1162)))) (-13 (-779) (-509) (-954 (-517))) (-400 |#1|)) (T -403))
-((-3107 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-1162)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
-(-10 -7 (-15 -2469 ((-377 (-517)) |#2|)) (-15 -2469 ((-1072 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3107 ((-1162))))
-((-4073 (((-107) $) 28)) (-3726 (((-107) $) 30)) (-2982 (((-107) $) 31)) (-2422 (((-107) $) 34)) (-4158 (((-107) $) 29)) (-3585 (((-107) $) 33)) (-2271 (((-787) $) 18) (($ (-1059)) 27) (($ (-1076)) 23) (((-1076) $) 22) (((-1009) $) 21)) (-1476 (((-107) $) 32)) (-1584 (((-107) $ $) 15)))
-(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2271 ($ (-1059))) (-15 -2271 ($ (-1076))) (-15 -2271 ((-1076) $)) (-15 -2271 ((-1009) $)) (-15 -4073 ((-107) $)) (-15 -4158 ((-107) $)) (-15 -2982 ((-107) $)) (-15 -3585 ((-107) $)) (-15 -2422 ((-107) $)) (-15 -1476 ((-107) $)) (-15 -3726 ((-107) $)) (-15 -1584 ((-107) $ $))))) (T -404))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-404)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-404)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-404)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-404)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1584 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2271 ($ (-1059))) (-15 -2271 ($ (-1076))) (-15 -2271 ((-1076) $)) (-15 -2271 ((-1009) $)) (-15 -4073 ((-107) $)) (-15 -4158 ((-107) $)) (-15 -2982 ((-107) $)) (-15 -3585 ((-107) $)) (-15 -2422 ((-107) $)) (-15 -1476 ((-107) $)) (-15 -3726 ((-107) $)) (-15 -1584 ((-107) $ $))))
-((-2247 (((-3 (-388 (-1072 (-377 (-517)))) "failed") |#3|) 69)) (-1303 (((-388 |#3|) |#3|) 33)) (-2016 (((-3 (-388 (-1072 (-47))) "failed") |#3|) 27 (|has| |#2| (-954 (-47))))) (-3956 (((-3 (|:| |overq| (-1072 (-377 (-517)))) (|:| |overan| (-1072 (-47))) (|:| -3212 (-107))) |#3|) 35)))
-(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -1303 ((-388 |#3|) |#3|)) (-15 -2247 ((-3 (-388 (-1072 (-377 (-517)))) "failed") |#3|)) (-15 -3956 ((-3 (|:| |overq| (-1072 (-377 (-517)))) (|:| |overan| (-1072 (-47))) (|:| -3212 (-107))) |#3|)) (IF (|has| |#2| (-954 (-47))) (-15 -2016 ((-3 (-388 (-1072 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-509) (-779) (-954 (-517))) (-400 |#1|) (-1133 |#2|)) (T -405))
-((-2016 (*1 *2 *3) (|partial| -12 (-4 *5 (-954 (-47))) (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1072 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))) (-3956 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1072 (-377 (-517)))) (|:| |overan| (-1072 (-47))) (|:| -3212 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))) (-2247 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1072 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))) (-1303 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))))
-(-10 -7 (-15 -1303 ((-388 |#3|) |#3|)) (-15 -2247 ((-3 (-388 (-1072 (-377 (-517)))) "failed") |#3|)) (-15 -3956 ((-3 (|:| |overq| (-1072 (-377 (-517)))) (|:| |overan| (-1072 (-47))) (|:| -3212 (-107))) |#3|)) (IF (|has| |#2| (-954 (-47))) (-15 -2016 ((-3 (-388 (-1072 (-47))) "failed") |#3|)) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-2225 (((-1059) $ (-1059)) NIL)) (-3506 (($ $ (-1059)) NIL)) (-2045 (((-1059) $) NIL)) (-1557 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-3676 (($ (-358)) NIL) (($ (-358) (-1059)) NIL)) (-2989 (((-358) $) NIL)) (-1662 (((-1059) $) NIL)) (-2964 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1508 (((-1162) (-1059)) 9)) (-3936 (((-1162) (-1059)) 10)) (-3578 (((-1162)) 11)) (-2271 (((-787) $) NIL)) (-2307 (($ $) 35)) (-1584 (((-107) $ $) NIL)))
-(((-406) (-13 (-334 (-358) (-1059)) (-10 -7 (-15 -1557 ((-358) (-358) (-358))) (-15 -1557 ((-358) (-358))) (-15 -1508 ((-1162) (-1059))) (-15 -3936 ((-1162) (-1059))) (-15 -3578 ((-1162)))))) (T -406))
-((-1557 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-406)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-406)))) (-3578 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-406)))))
-(-13 (-334 (-358) (-1059)) (-10 -7 (-15 -1557 ((-358) (-358) (-358))) (-15 -1557 ((-358) (-358))) (-15 -1508 ((-1162) (-1059))) (-15 -3936 ((-1162) (-1059))) (-15 -3578 ((-1162)))))
-((-2119 (((-107) $ $) NIL)) (-3128 (((-3 (|:| |fst| (-404)) (|:| -2044 "void")) $) 10)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-4095 (($) 31)) (-4027 (($) 37)) (-1984 (($) 33)) (-2965 (($) 35)) (-1274 (($) 32)) (-2680 (($) 34)) (-1902 (($) 36)) (-3149 (((-107) $) 8)) (-2205 (((-583 (-875 (-517))) $) 16)) (-2288 (($ (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-1076)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-875 (-517))) (-107)) 26)) (-2271 (((-787) $) 21) (($ (-404)) 28)) (-1584 (((-107) $ $) NIL)))
-(((-407) (-13 (-1005) (-10 -8 (-15 -2271 ((-787) $)) (-15 -2271 ($ (-404))) (-15 -3128 ((-3 (|:| |fst| (-404)) (|:| -2044 "void")) $)) (-15 -2205 ((-583 (-875 (-517))) $)) (-15 -3149 ((-107) $)) (-15 -2288 ($ (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-1076)) (-107))) (-15 -2288 ($ (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-875 (-517))) (-107))) (-15 -4095 ($)) (-15 -1274 ($)) (-15 -1984 ($)) (-15 -4027 ($)) (-15 -2680 ($)) (-15 -2965 ($)) (-15 -1902 ($))))) (T -407))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *1 (-407)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-583 (-875 (-517)))) (-5 *1 (-407)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *3 (-583 (-1076))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-4095 (*1 *1) (-5 *1 (-407))) (-1274 (*1 *1) (-5 *1 (-407))) (-1984 (*1 *1) (-5 *1 (-407))) (-4027 (*1 *1) (-5 *1 (-407))) (-2680 (*1 *1) (-5 *1 (-407))) (-2965 (*1 *1) (-5 *1 (-407))) (-1902 (*1 *1) (-5 *1 (-407))))
-(-13 (-1005) (-10 -8 (-15 -2271 ((-787) $)) (-15 -2271 ($ (-404))) (-15 -3128 ((-3 (|:| |fst| (-404)) (|:| -2044 "void")) $)) (-15 -2205 ((-583 (-875 (-517))) $)) (-15 -3149 ((-107) $)) (-15 -2288 ($ (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-1076)) (-107))) (-15 -2288 ($ (-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-583 (-875 (-517))) (-107))) (-15 -4095 ($)) (-15 -1274 ($)) (-15 -1984 ($)) (-15 -4027 ($)) (-15 -2680 ($)) (-15 -2965 ($)) (-15 -1902 ($))))
-((-2119 (((-107) $ $) NIL)) (-2989 (((-1076) $) 8)) (-1662 (((-1059) $) 16)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 13)))
-(((-408 |#1|) (-13 (-1005) (-10 -8 (-15 -2989 ((-1076) $)))) (-1076)) (T -408))
-((-2989 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-408 *3)) (-14 *3 *2))))
-(-13 (-1005) (-10 -8 (-15 -2989 ((-1076) $))))
-((-1898 (((-1162) $) 7)) (-2271 (((-787) $) 8) (($ (-1157 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 11)))
-(((-409) (-1188)) (T -409))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-632))) (-4 *1 (-409)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) (-4 *1 (-409)))))
-(-13 (-365) (-10 -8 (-15 -2271 ($ (-1157 (-632)))) (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-300))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1111) . T))
-((-3228 (((-3 $ "failed") (-1157 (-286 (-349)))) 21) (((-3 $ "failed") (-1157 (-286 (-517)))) 19) (((-3 $ "failed") (-1157 (-875 (-349)))) 17) (((-3 $ "failed") (-1157 (-875 (-517)))) 15) (((-3 $ "failed") (-1157 (-377 (-875 (-349))))) 13) (((-3 $ "failed") (-1157 (-377 (-875 (-517))))) 11)) (-3390 (($ (-1157 (-286 (-349)))) 22) (($ (-1157 (-286 (-517)))) 20) (($ (-1157 (-875 (-349)))) 18) (($ (-1157 (-875 (-517)))) 16) (($ (-1157 (-377 (-875 (-349))))) 14) (($ (-1157 (-377 (-875 (-517))))) 12)) (-1898 (((-1162) $) 7)) (-2271 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) 23)))
-(((-410) (-1188)) (T -410))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300))))) (-4 *1 (-410)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1157 (-286 (-349)))) (-4 *1 (-410)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1157 (-286 (-349)))) (-4 *1 (-410)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1157 (-286 (-517)))) (-4 *1 (-410)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1157 (-286 (-517)))) (-4 *1 (-410)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1157 (-875 (-349)))) (-4 *1 (-410)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1157 (-875 (-349)))) (-4 *1 (-410)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1157 (-875 (-517)))) (-4 *1 (-410)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1157 (-875 (-517)))) (-4 *1 (-410)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1157 (-377 (-875 (-349))))) (-4 *1 (-410)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1157 (-377 (-875 (-349))))) (-4 *1 (-410)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1157 (-377 (-875 (-517))))) (-4 *1 (-410)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-1157 (-377 (-875 (-517))))) (-4 *1 (-410)))))
-(-13 (-365) (-10 -8 (-15 -2271 ($ (-583 (-300)))) (-15 -2271 ($ (-300))) (-15 -2271 ($ (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))) (-15 -3390 ($ (-1157 (-286 (-349))))) (-15 -3228 ((-3 $ "failed") (-1157 (-286 (-349))))) (-15 -3390 ($ (-1157 (-286 (-517))))) (-15 -3228 ((-3 $ "failed") (-1157 (-286 (-517))))) (-15 -3390 ($ (-1157 (-875 (-349))))) (-15 -3228 ((-3 $ "failed") (-1157 (-875 (-349))))) (-15 -3390 ($ (-1157 (-875 (-517))))) (-15 -3228 ((-3 $ "failed") (-1157 (-875 (-517))))) (-15 -3390 ($ (-1157 (-377 (-875 (-349)))))) (-15 -3228 ((-3 $ "failed") (-1157 (-377 (-875 (-349)))))) (-15 -3390 ($ (-1157 (-377 (-875 (-517)))))) (-15 -3228 ((-3 $ "failed") (-1157 (-377 (-875 (-517))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1111) . T))
-((-1953 (((-107)) 17)) (-3282 (((-107) (-107)) 18)) (-2701 (((-107)) 13)) (-3511 (((-107) (-107)) 14)) (-1595 (((-107)) 15)) (-1773 (((-107) (-107)) 16)) (-3089 (((-844) (-844)) 21) (((-844)) 20)) (-3091 (((-703) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517))))) 42)) (-1544 (((-844) (-844)) 23) (((-844)) 22)) (-3471 (((-2 (|:| -2357 (-517)) (|:| -1510 (-583 |#1|))) |#1|) 62)) (-1744 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517))))))) 124)) (-4123 (((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107)) 150)) (-2711 (((-388 |#1|) |#1| (-703) (-703)) 163) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 160) (((-388 |#1|) |#1| (-583 (-703))) 162) (((-388 |#1|) |#1| (-703)) 161) (((-388 |#1|) |#1|) 159)) (-2782 (((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703) (-107)) 165) (((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703)) 166) (((-3 |#1| "failed") (-844) |#1| (-583 (-703))) 168) (((-3 |#1| "failed") (-844) |#1| (-703)) 167) (((-3 |#1| "failed") (-844) |#1|) 169)) (-3868 (((-388 |#1|) |#1| (-703) (-703)) 158) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 154) (((-388 |#1|) |#1| (-583 (-703))) 156) (((-388 |#1|) |#1| (-703)) 155) (((-388 |#1|) |#1|) 153)) (-1356 (((-107) |#1|) 37)) (-2682 (((-670 (-703)) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517))))) 67)) (-1720 (((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107) (-1007 (-703)) (-703)) 152)))
-(((-411 |#1|) (-10 -7 (-15 -1744 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))))) (-15 -2682 ((-670 (-703)) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))))) (-15 -1544 ((-844))) (-15 -1544 ((-844) (-844))) (-15 -3089 ((-844))) (-15 -3089 ((-844) (-844))) (-15 -3091 ((-703) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))))) (-15 -3471 ((-2 (|:| -2357 (-517)) (|:| -1510 (-583 |#1|))) |#1|)) (-15 -1953 ((-107))) (-15 -3282 ((-107) (-107))) (-15 -2701 ((-107))) (-15 -3511 ((-107) (-107))) (-15 -1356 ((-107) |#1|)) (-15 -1595 ((-107))) (-15 -1773 ((-107) (-107))) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3868 ((-388 |#1|) |#1| (-703))) (-15 -3868 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3868 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3868 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2711 ((-388 |#1|) |#1|)) (-15 -2711 ((-388 |#1|) |#1| (-703))) (-15 -2711 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -2711 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -2711 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1|)) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-703))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703) (-107))) (-15 -4123 ((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107))) (-15 -1720 ((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107) (-1007 (-703)) (-703)))) (-1133 (-517))) (T -411))
-((-1720 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1007 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-4123 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2782 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517))))) (-2782 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517))))) (-2782 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517))))) (-2782 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517))))) (-2782 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-844)) (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517))))) (-2711 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2711 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2711 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2711 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3868 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3868 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-1595 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-1356 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3511 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2701 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-1953 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2357 (-517)) (|:| -1510 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3868 *4) (|:| -3647 (-517))))) (-4 *4 (-1133 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-3089 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-3089 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-1544 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3868 *4) (|:| -3647 (-517))))) (-4 *4 (-1133 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| *4) (|:| -1992 (-517))))))) (-4 *4 (-1133 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
-(-10 -7 (-15 -1744 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))))) (-15 -2682 ((-670 (-703)) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))))) (-15 -1544 ((-844))) (-15 -1544 ((-844) (-844))) (-15 -3089 ((-844))) (-15 -3089 ((-844) (-844))) (-15 -3091 ((-703) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))))) (-15 -3471 ((-2 (|:| -2357 (-517)) (|:| -1510 (-583 |#1|))) |#1|)) (-15 -1953 ((-107))) (-15 -3282 ((-107) (-107))) (-15 -2701 ((-107))) (-15 -3511 ((-107) (-107))) (-15 -1356 ((-107) |#1|)) (-15 -1595 ((-107))) (-15 -1773 ((-107) (-107))) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3868 ((-388 |#1|) |#1| (-703))) (-15 -3868 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3868 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3868 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2711 ((-388 |#1|) |#1|)) (-15 -2711 ((-388 |#1|) |#1| (-703))) (-15 -2711 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -2711 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -2711 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1|)) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-703))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703))) (-15 -2782 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703) (-107))) (-15 -4123 ((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107))) (-15 -1720 ((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107) (-1007 (-703)) (-703))))
-((-3278 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-1637 (((-517) |#2|) 55)) (-1474 ((|#3| |#2|) 25)) (-2803 ((|#3| |#2| (-844)) 14)) (-3682 ((|#3| |#2|) 15)) (-1668 ((|#3| |#2|) 9)) (-1809 ((|#3| |#2|) 10)) (-4106 ((|#3| |#2| (-844)) 62) ((|#3| |#2|) 30)) (-1622 (((-517) |#2|) 57)))
-(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -1622 ((-517) |#2|)) (-15 -4106 (|#3| |#2|)) (-15 -4106 (|#3| |#2| (-844))) (-15 -1637 ((-517) |#2|)) (-15 -3278 ((-517) |#2| (-703))) (-15 -3278 ((-517) |#2|)) (-15 -2803 (|#3| |#2| (-844))) (-15 -1474 (|#3| |#2|)) (-15 -1668 (|#3| |#2|)) (-15 -1809 (|#3| |#2|)) (-15 -3682 (|#3| |#2|))) (-963) (-1133 |#1|) (-13 (-374) (-954 |#1|) (-333) (-1097) (-256))) (T -412))
-((-3682 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))) (-1668 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *5 (-963)) (-4 *2 (-13 (-374) (-954 *5) (-333) (-1097) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1133 *5)))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1133 *4)) (-4 *5 (-13 (-374) (-954 *4) (-333) (-1097) (-256))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1133 *5)) (-4 *6 (-13 (-374) (-954 *5) (-333) (-1097) (-256))))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1133 *4)) (-4 *5 (-13 (-374) (-954 *4) (-333) (-1097) (-256))))) (-4106 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *5 (-963)) (-4 *2 (-13 (-374) (-954 *5) (-333) (-1097) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1133 *5)))) (-4106 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))) (-1622 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1133 *4)) (-4 *5 (-13 (-374) (-954 *4) (-333) (-1097) (-256))))))
-(-10 -7 (-15 -1622 ((-517) |#2|)) (-15 -4106 (|#3| |#2|)) (-15 -4106 (|#3| |#2| (-844))) (-15 -1637 ((-517) |#2|)) (-15 -3278 ((-517) |#2| (-703))) (-15 -3278 ((-517) |#2|)) (-15 -2803 (|#3| |#2| (-844))) (-15 -1474 (|#3| |#2|)) (-15 -1668 (|#3| |#2|)) (-15 -1809 (|#3| |#2|)) (-15 -3682 (|#3| |#2|)))
-((-2647 ((|#2| (-1157 |#1|)) 36)) (-3225 ((|#2| |#2| |#1|) 49)) (-1657 ((|#2| |#2| |#1|) 41)) (-1908 ((|#2| |#2|) 38)) (-1831 (((-107) |#2|) 30)) (-1991 (((-583 |#2|) (-844) (-388 |#2|)) 16)) (-2782 ((|#2| (-844) (-388 |#2|)) 21)) (-2682 (((-670 (-703)) (-388 |#2|)) 25)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -1831 ((-107) |#2|)) (-15 -2647 (|#2| (-1157 |#1|))) (-15 -1908 (|#2| |#2|)) (-15 -1657 (|#2| |#2| |#1|)) (-15 -3225 (|#2| |#2| |#1|)) (-15 -2682 ((-670 (-703)) (-388 |#2|))) (-15 -2782 (|#2| (-844) (-388 |#2|))) (-15 -1991 ((-583 |#2|) (-844) (-388 |#2|)))) (-963) (-1133 |#1|)) (T -413))
-((-1991 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-388 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-963)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-388 *2)) (-4 *2 (-1133 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-963)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-963)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-3225 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1133 *3)))) (-1657 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1133 *3)))) (-1908 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1133 *3)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-963)) (-4 *2 (-1133 *4)) (-5 *1 (-413 *4 *2)))) (-1831 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -1831 ((-107) |#2|)) (-15 -2647 (|#2| (-1157 |#1|))) (-15 -1908 (|#2| |#2|)) (-15 -1657 (|#2| |#2| |#1|)) (-15 -3225 (|#2| |#2| |#1|)) (-15 -2682 ((-670 (-703)) (-388 |#2|))) (-15 -2782 (|#2| (-844) (-388 |#2|))) (-15 -1991 ((-583 |#2|) (-844) (-388 |#2|))))
-((-1596 (((-703)) 41)) (-2131 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-1666 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-2912 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-2911 (((-703)) 40) (((-703) (-703)) 39)) (-2802 ((|#1| (-703) (-517)) 29)) (-3385 (((-1162)) 43)))
-(((-414 |#1|) (-10 -7 (-15 -2802 (|#1| (-703) (-517))) (-15 -2911 ((-703) (-703))) (-15 -2911 ((-703))) (-15 -1596 ((-703))) (-15 -3385 ((-1162))) (IF (|has| |#1| (-374)) (PROGN (-15 -2912 ((-517) |#1|)) (-15 -1666 ((-517) |#1|)) (-15 -2131 ((-703) (-703))) (-15 -2131 ((-703)))) |%noBranch|)) (-963)) (T -414))
-((-2131 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))) (-1666 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))) (-2912 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))) (-3385 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-414 *3)) (-4 *3 (-963)))) (-1596 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-963)))) (-2911 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-963)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-963)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-963)))))
-(-10 -7 (-15 -2802 (|#1| (-703) (-517))) (-15 -2911 ((-703) (-703))) (-15 -2911 ((-703))) (-15 -1596 ((-703))) (-15 -3385 ((-1162))) (IF (|has| |#1| (-374)) (PROGN (-15 -2912 ((-517) |#1|)) (-15 -1666 ((-517) |#1|)) (-15 -2131 ((-703) (-703))) (-15 -2131 ((-703)))) |%noBranch|))
-((-3296 (((-583 (-517)) (-517)) 59)) (-1259 (((-107) (-153 (-517))) 63)) (-3868 (((-388 (-153 (-517))) (-153 (-517))) 58)))
-(((-415) (-10 -7 (-15 -3868 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3296 ((-583 (-517)) (-517))) (-15 -1259 ((-107) (-153 (-517)))))) (T -415))
-((-1259 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-3296 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
-(-10 -7 (-15 -3868 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3296 ((-583 (-517)) (-517))) (-15 -1259 ((-107) (-153 (-517)))))
-((-4126 ((|#4| |#4| (-583 |#4|)) 59)) (-4062 (((-583 |#4|) (-583 |#4|) (-1059) (-1059)) 17) (((-583 |#4|) (-583 |#4|) (-1059)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
-(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4126 (|#4| |#4| (-583 |#4|))) (-15 -4062 ((-583 |#4|) (-583 |#4|))) (-15 -4062 ((-583 |#4|) (-583 |#4|) (-1059))) (-15 -4062 ((-583 |#4|) (-583 |#4|) (-1059) (-1059)))) (-278) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -416))
-((-4062 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-4062 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-4126 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
-(-10 -7 (-15 -4126 (|#4| |#4| (-583 |#4|))) (-15 -4062 ((-583 |#4|) (-583 |#4|))) (-15 -4062 ((-583 |#4|) (-583 |#4|) (-1059))) (-15 -4062 ((-583 |#4|) (-583 |#4|) (-1059) (-1059))))
-((-1585 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 71) (((-583 (-583 |#4|)) (-583 |#4|)) 70) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 64) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 65)) (-2723 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 41) (((-583 (-583 |#4|)) (-583 |#4|)) 61)))
-(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2723 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2723 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -417))
-((-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1585 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1585 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1585 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(-10 -7 (-15 -2723 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2723 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1585 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
-((-2753 (((-703) |#4|) 12)) (-2986 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|)))) 31)) (-1370 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-4114 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3113 ((|#4| |#4| (-583 |#4|)) 40)) (-1300 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 69)) (-1197 (((-1162) |#4|) 42)) (-4041 (((-1162) (-583 |#4|)) 51)) (-2164 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 48)) (-2897 (((-1162) (-517)) 77)) (-4140 (((-583 |#4|) (-583 |#4|)) 75)) (-4010 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|)) |#4| (-703)) 25)) (-3408 (((-517) |#4|) 76)) (-1386 ((|#4| |#4|) 29)) (-2149 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 55)) (-3391 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 87)) (-1271 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2467 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2906 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2725 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3959 (((-107) |#2| |#2|) 56)) (-1677 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4154 (((-107) |#2| |#2| |#2| |#2|) 59)) (-2140 ((|#4| |#4| (-583 |#4|)) 70)))
-(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2140 (|#4| |#4| (-583 |#4|))) (-15 -3113 (|#4| |#4| (-583 |#4|))) (-15 -2149 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2467 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3959 ((-107) |#2| |#2|)) (-15 -4154 ((-107) |#2| |#2| |#2| |#2|)) (-15 -1677 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2725 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2906 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1300 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1386 (|#4| |#4|)) (-15 -2986 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|))))) (-15 -4114 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1370 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4140 ((-583 |#4|) (-583 |#4|))) (-15 -3408 ((-517) |#4|)) (-15 -1197 ((-1162) |#4|)) (-15 -2164 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -3391 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -4041 ((-1162) (-583 |#4|))) (-15 -2897 ((-1162) (-517))) (-15 -1271 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4010 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|)) |#4| (-703))) (-15 -2753 ((-703) |#4|))) (-421) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -418))
-((-2753 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-4010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1694 *4))) (-5 *5 (-703)) (-4 *4 (-872 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-1271 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1162)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1162)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3391 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2164 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-1197 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1162)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-872 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-2986 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 *3)))) (-5 *4 (-703)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))) (-1300 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-2906 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-872 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1677 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-4154 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))) (-3959 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2149 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2140 (|#4| |#4| (-583 |#4|))) (-15 -3113 (|#4| |#4| (-583 |#4|))) (-15 -2149 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2467 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3959 ((-107) |#2| |#2|)) (-15 -4154 ((-107) |#2| |#2| |#2| |#2|)) (-15 -1677 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2725 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2906 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1300 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1386 (|#4| |#4|)) (-15 -2986 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|))))) (-15 -4114 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1370 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4140 ((-583 |#4|) (-583 |#4|))) (-15 -3408 ((-517) |#4|)) (-15 -1197 ((-1162) |#4|)) (-15 -2164 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -3391 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -4041 ((-1162) (-583 |#4|))) (-15 -2897 ((-1162) (-517))) (-15 -1271 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4010 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1694 |#4|)) |#4| (-703))) (-15 -2753 ((-703) |#4|)))
-((-2862 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1375 (((-583 |#4|) (-583 |#4|) (-1059) (-1059)) 42) (((-583 |#4|) (-583 |#4|) (-1059)) 41) (((-583 |#4|) (-583 |#4|)) 36)))
-(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1375 ((-583 |#4|) (-583 |#4|))) (-15 -1375 ((-583 |#4|) (-583 |#4|) (-1059))) (-15 -1375 ((-583 |#4|) (-583 |#4|) (-1059) (-1059))) (IF (|has| |#1| (-333)) (-15 -2862 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-421) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -419))
-((-2862 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1375 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1375 ((-583 |#4|) (-583 |#4|))) (-15 -1375 ((-583 |#4|) (-583 |#4|) (-1059))) (-15 -1375 ((-583 |#4|) (-583 |#4|) (-1059) (-1059))) (IF (|has| |#1| (-333)) (-15 -2862 (|#4| |#4| (-583 |#4|))) |%noBranch|))
-((-2332 (($ $ $) 14) (($ (-583 $)) 21)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 41)) (-2370 (($ $ $) NIL) (($ (-583 $)) 22)))
-(((-420 |#1|) (-10 -8 (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -2332 (|#1| (-583 |#1|))) (-15 -2332 (|#1| |#1| |#1|)) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2370 (|#1| |#1| |#1|))) (-421)) (T -420))
-NIL
-(-10 -8 (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -2332 (|#1| (-583 |#1|))) (-15 -2332 (|#1| |#1| |#1|)) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2370 (|#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2329 (((-3 $ "failed") $ $) 42)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-421) (-1188)) (T -421))
-((-2370 (*1 *1 *1 *1) (-4 *1 (-421))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2332 (*1 *1 *1 *1) (-4 *1 (-421))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-421)))))
-(-13 (-509) (-10 -8 (-15 -2370 ($ $ $)) (-15 -2370 ($ (-583 $))) (-15 -2332 ($ $ $)) (-15 -2332 ($ (-583 $))) (-15 -1943 ((-1072 $) (-1072 $) (-1072 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1485 (((-3 $ "failed")) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-2520 (((-1157 (-623 (-377 (-875 |#1|)))) (-1157 $)) NIL) (((-1157 (-623 (-377 (-875 |#1|))))) NIL)) (-2823 (((-1157 $)) NIL)) (-1393 (($) NIL T CONST)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL)) (-2244 (((-3 $ "failed")) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-1397 (((-623 (-377 (-875 |#1|))) (-1157 $)) NIL) (((-623 (-377 (-875 |#1|)))) NIL)) (-4049 (((-377 (-875 |#1|)) $) NIL)) (-1292 (((-623 (-377 (-875 |#1|))) $ (-1157 $)) NIL) (((-623 (-377 (-875 |#1|))) $) NIL)) (-2093 (((-3 $ "failed") $) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-1679 (((-1072 (-875 (-377 (-875 |#1|))))) NIL (|has| (-377 (-875 |#1|)) (-333))) (((-1072 (-377 (-875 |#1|)))) 79 (|has| |#1| (-509)))) (-3614 (($ $ (-844)) NIL)) (-2554 (((-377 (-875 |#1|)) $) NIL)) (-2208 (((-1072 (-377 (-875 |#1|))) $) 77 (|has| (-377 (-875 |#1|)) (-509)))) (-3245 (((-377 (-875 |#1|)) (-1157 $)) NIL) (((-377 (-875 |#1|))) NIL)) (-1284 (((-1072 (-377 (-875 |#1|))) $) NIL)) (-3462 (((-107)) NIL)) (-3898 (($ (-1157 (-377 (-875 |#1|))) (-1157 $)) 97) (($ (-1157 (-377 (-875 |#1|)))) NIL)) (-2560 (((-3 $ "failed") $) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-3737 (((-844)) NIL)) (-1864 (((-107)) NIL)) (-2193 (($ $ (-844)) NIL)) (-3453 (((-107)) NIL)) (-2185 (((-107)) NIL)) (-1573 (((-107)) NIL)) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL)) (-1737 (((-3 $ "failed")) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-1344 (((-623 (-377 (-875 |#1|))) (-1157 $)) NIL) (((-623 (-377 (-875 |#1|)))) NIL)) (-1412 (((-377 (-875 |#1|)) $) NIL)) (-3358 (((-623 (-377 (-875 |#1|))) $ (-1157 $)) NIL) (((-623 (-377 (-875 |#1|))) $) NIL)) (-1590 (((-3 $ "failed") $) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-1467 (((-1072 (-875 (-377 (-875 |#1|))))) NIL (|has| (-377 (-875 |#1|)) (-333))) (((-1072 (-377 (-875 |#1|)))) 78 (|has| |#1| (-509)))) (-3200 (($ $ (-844)) NIL)) (-2666 (((-377 (-875 |#1|)) $) NIL)) (-2292 (((-1072 (-377 (-875 |#1|))) $) 72 (|has| (-377 (-875 |#1|)) (-509)))) (-3829 (((-377 (-875 |#1|)) (-1157 $)) NIL) (((-377 (-875 |#1|))) NIL)) (-3764 (((-1072 (-377 (-875 |#1|))) $) NIL)) (-2541 (((-107)) NIL)) (-1662 (((-1059) $) NIL)) (-3886 (((-107)) NIL)) (-2031 (((-107)) NIL)) (-1321 (((-107)) NIL)) (-4125 (((-1023) $) NIL)) (-1667 (((-377 (-875 |#1|)) $ $) 66 (|has| |#1| (-509)))) (-4063 (((-377 (-875 |#1|)) $) 65 (|has| |#1| (-509)))) (-1577 (((-377 (-875 |#1|)) $) 89 (|has| |#1| (-509)))) (-2867 (((-1072 (-377 (-875 |#1|))) $) 83 (|has| |#1| (-509)))) (-3867 (((-377 (-875 |#1|))) 67 (|has| |#1| (-509)))) (-1847 (((-377 (-875 |#1|)) $ $) 54 (|has| |#1| (-509)))) (-2063 (((-377 (-875 |#1|)) $) 53 (|has| |#1| (-509)))) (-1799 (((-377 (-875 |#1|)) $) 88 (|has| |#1| (-509)))) (-1204 (((-1072 (-377 (-875 |#1|))) $) 82 (|has| |#1| (-509)))) (-1913 (((-377 (-875 |#1|))) 64 (|has| |#1| (-509)))) (-3052 (($) 95) (($ (-1076)) 101) (($ (-1157 (-1076))) 100) (($ (-1157 $)) 90) (($ (-1076) (-1157 $)) 99) (($ (-1157 (-1076)) (-1157 $)) 98)) (-3129 (((-107)) NIL)) (-2609 (((-377 (-875 |#1|)) $ (-517)) NIL)) (-3784 (((-1157 (-377 (-875 |#1|))) $ (-1157 $)) 92) (((-623 (-377 (-875 |#1|))) (-1157 $) (-1157 $)) NIL) (((-1157 (-377 (-875 |#1|))) $) 37) (((-623 (-377 (-875 |#1|))) (-1157 $)) NIL)) (-3359 (((-1157 (-377 (-875 |#1|))) $) NIL) (($ (-1157 (-377 (-875 |#1|)))) 34)) (-3435 (((-583 (-875 (-377 (-875 |#1|)))) (-1157 $)) NIL) (((-583 (-875 (-377 (-875 |#1|))))) NIL) (((-583 (-875 |#1|)) (-1157 $)) 93 (|has| |#1| (-509))) (((-583 (-875 |#1|))) 94 (|has| |#1| (-509)))) (-2059 (($ $ $) NIL)) (-1266 (((-107)) NIL)) (-2271 (((-787) $) NIL) (($ (-1157 (-377 (-875 |#1|)))) NIL)) (-1492 (((-1157 $)) 56)) (-2689 (((-583 (-1157 (-377 (-875 |#1|))))) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-3100 (($ $ $ $) NIL)) (-3365 (((-107)) NIL)) (-2375 (($ (-623 (-377 (-875 |#1|))) $) NIL)) (-2951 (($ $ $) NIL)) (-2436 (((-107)) NIL)) (-4056 (((-107)) NIL)) (-2014 (((-107)) NIL)) (-3610 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) 91)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-875 |#1|))) NIL) (($ (-377 (-875 |#1|)) $) NIL) (($ (-1043 |#2| (-377 (-875 |#1|))) $) NIL)))
-(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-875 |#1|))) (-585 (-1043 |#2| (-377 (-875 |#1|)))) (-10 -8 (-15 -2271 ($ (-1157 (-377 (-875 |#1|))))) (-15 -1431 ((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed"))) (-15 -1444 ((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed"))) (-15 -3052 ($)) (-15 -3052 ($ (-1076))) (-15 -3052 ($ (-1157 (-1076)))) (-15 -3052 ($ (-1157 $))) (-15 -3052 ($ (-1076) (-1157 $))) (-15 -3052 ($ (-1157 (-1076)) (-1157 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -1467 ((-1072 (-377 (-875 |#1|))))) (-15 -1204 ((-1072 (-377 (-875 |#1|))) $)) (-15 -2063 ((-377 (-875 |#1|)) $)) (-15 -1799 ((-377 (-875 |#1|)) $)) (-15 -1679 ((-1072 (-377 (-875 |#1|))))) (-15 -2867 ((-1072 (-377 (-875 |#1|))) $)) (-15 -4063 ((-377 (-875 |#1|)) $)) (-15 -1577 ((-377 (-875 |#1|)) $)) (-15 -1847 ((-377 (-875 |#1|)) $ $)) (-15 -1913 ((-377 (-875 |#1|)))) (-15 -1667 ((-377 (-875 |#1|)) $ $)) (-15 -3867 ((-377 (-875 |#1|)))) (-15 -3435 ((-583 (-875 |#1|)) (-1157 $))) (-15 -3435 ((-583 (-875 |#1|))))) |%noBranch|))) (-156) (-844) (-583 (-1076)) (-1157 (-623 |#1|))) (T -422))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1157 (-377 (-875 *3)))) (-4 *3 (-156)) (-14 *6 (-1157 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))))) (-1431 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1492 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1444 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1492 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-3052 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-844)) (-14 *4 (-583 (-1076))) (-14 *5 (-1157 (-623 *2))))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 *2)) (-14 *6 (-1157 (-623 *3))))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-1157 (-1076))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-1157 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844)) (-14 *6 (-583 *2)) (-14 *7 (-1157 (-623 *4))))) (-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 (-1076))) (-5 *3 (-1157 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844)) (-14 *6 (-583 (-1076))) (-14 *7 (-1157 (-623 *4))))) (-1467 (*1 *2) (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1204 (*1 *2 *1) (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1679 (*1 *2) (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1847 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1913 (*1 *2) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-1667 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-3867 (*1 *2) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-1157 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-875 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-844)) (-14 *6 (-583 (-1076))) (-14 *7 (-1157 (-623 *4))))) (-3435 (*1 *2) (-12 (-5 *2 (-583 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(-13 (-387 (-377 (-875 |#1|))) (-585 (-1043 |#2| (-377 (-875 |#1|)))) (-10 -8 (-15 -2271 ($ (-1157 (-377 (-875 |#1|))))) (-15 -1431 ((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed"))) (-15 -1444 ((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed"))) (-15 -3052 ($)) (-15 -3052 ($ (-1076))) (-15 -3052 ($ (-1157 (-1076)))) (-15 -3052 ($ (-1157 $))) (-15 -3052 ($ (-1076) (-1157 $))) (-15 -3052 ($ (-1157 (-1076)) (-1157 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -1467 ((-1072 (-377 (-875 |#1|))))) (-15 -1204 ((-1072 (-377 (-875 |#1|))) $)) (-15 -2063 ((-377 (-875 |#1|)) $)) (-15 -1799 ((-377 (-875 |#1|)) $)) (-15 -1679 ((-1072 (-377 (-875 |#1|))))) (-15 -2867 ((-1072 (-377 (-875 |#1|))) $)) (-15 -4063 ((-377 (-875 |#1|)) $)) (-15 -1577 ((-377 (-875 |#1|)) $)) (-15 -1847 ((-377 (-875 |#1|)) $ $)) (-15 -1913 ((-377 (-875 |#1|)))) (-15 -1667 ((-377 (-875 |#1|)) $ $)) (-15 -3867 ((-377 (-875 |#1|)))) (-15 -3435 ((-583 (-875 |#1|)) (-1157 $))) (-15 -3435 ((-583 (-875 |#1|))))) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 13)) (-2097 (((-583 (-789 |#1|)) $) 74)) (-1440 (((-1072 $) $ (-789 |#1|)) 46) (((-1072 |#2|) $) 116)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3062 (($ $) NIL (|has| |#2| (-509)))) (-2190 (((-107) $) NIL (|has| |#2| (-509)))) (-1302 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1224 (($ $) NIL (|has| |#2| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3390 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-789 |#1|) $) NIL)) (-2157 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1873 (($ $ (-583 (-517))) 79)) (-2373 (($ $) 68)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#2| (-832)))) (-3014 (($ $ |#2| |#3| $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) 58)) (-2086 (($ (-1072 |#2|) (-789 |#1|)) 121) (($ (-1072 $) (-789 |#1|)) 52)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) 59)) (-2078 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-789 |#1|)) NIL)) (-3492 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-3458 (($ $ $) NIL (|has| |#2| (-779)))) (-4084 (($ $ $) NIL (|has| |#2| (-779)))) (-2935 (($ (-1 |#3| |#3|) $) NIL)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-789 |#1|) "failed") $) 39)) (-2335 (($ $) NIL)) (-2347 ((|#2| $) 41)) (-2332 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2121 (-703))) "failed") $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) 40)) (-2321 ((|#2| $) 114)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#2| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 126 (|has| |#2| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 86) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 89) (($ $ (-789 |#1|) $) 84) (($ $ (-583 (-789 |#1|)) (-583 $)) 105)) (-1220 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2060 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3647 ((|#3| $) 67) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3119 ((|#2| $) 123 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2271 (((-787) $) 142) (($ (-517)) NIL) (($ |#2|) 85) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3747 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 16 T CONST)) (-3619 (($) 25 T CONST)) (-3342 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1704 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 110)) (** (($ $ (-844)) NIL) (($ $ (-703)) 108)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-423 |#1| |#2| |#3|) (-13 (-872 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -1873 ($ $ (-583 (-517)))))) (-583 (-1076)) (-963) (-212 (-3535 |#1|) (-703))) (T -423))
-((-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1076))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-963)) (-4 *5 (-212 (-3535 *3) (-703))))))
-(-13 (-872 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -1873 ($ $ (-583 (-517))))))
-((-2574 (((-107) |#1| (-583 |#2|)) 66)) (-1916 (((-3 (-1157 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 75)) (-2805 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1157 (-583 |#2|))) 77)) (-1769 ((|#2| |#2| |#1|) 28)) (-2615 (((-703) |#2| (-583 |#2|)) 20)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -1769 (|#2| |#2| |#1|)) (-15 -2615 ((-703) |#2| (-583 |#2|))) (-15 -1916 ((-3 (-1157 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2805 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1157 (-583 |#2|)))) (-15 -2574 ((-107) |#1| (-583 |#2|)))) (-278) (-1133 |#1|)) (T -424))
-((-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1133 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-2805 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1157 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1133 *4)))) (-1916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1133 *4)) (-5 *2 (-1157 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-1769 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1133 *3)))))
-(-10 -7 (-15 -1769 (|#2| |#2| |#1|)) (-15 -2615 ((-703) |#2| (-583 |#2|))) (-15 -1916 ((-3 (-1157 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2805 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1157 (-583 |#2|)))) (-15 -2574 ((-107) |#1| (-583 |#2|))))
-((-3868 (((-388 |#5|) |#5|) 24)))
-(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3868 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076))))) (-725) (-509) (-509) (-872 |#4| |#2| |#1|)) (T -425))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-872 *7 *5 *4)))))
-(-10 -7 (-15 -3868 ((-388 |#5|) |#5|)))
-((-3366 ((|#3|) 36)) (-1943 (((-1072 |#4|) (-1072 |#4|) (-1072 |#4|)) 32)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1943 ((-1072 |#4|) (-1072 |#4|) (-1072 |#4|))) (-15 -3366 (|#3|))) (-725) (-779) (-832) (-872 |#3| |#1| |#2|)) (T -426))
-((-3366 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-872 *2 *3 *4)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-832)) (-5 *1 (-426 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1943 ((-1072 |#4|) (-1072 |#4|) (-1072 |#4|))) (-15 -3366 (|#3|)))
-((-3868 (((-388 (-1072 |#1|)) (-1072 |#1|)) 41)))
-(((-427 |#1|) (-10 -7 (-15 -3868 ((-388 (-1072 |#1|)) (-1072 |#1|)))) (-278)) (T -427))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1072 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1072 *4)))))
-(-10 -7 (-15 -3868 ((-388 (-1072 |#1|)) (-1072 |#1|))))
-((-2145 (((-51) |#2| (-1076) (-265 |#2|) (-1124 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-703))) 41) (((-51) |#2| (-1076) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-3433 (((-51) |#2| (-1076) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1076) (-265 |#2|) (-1124 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-517))) 77) (((-51) |#2| (-1076) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-2165 (((-51) |#2| (-1076) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517))) 64)) (-2154 (((-51) |#2| (-1076) (-265 |#2|) (-1124 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-517))) 47)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -2145 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2145 ((-51) |#2| (-1076) (-265 |#2|))) (-15 -2145 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-703)))) (-15 -2145 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-703)))) (-15 -2154 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-517)))) (-15 -2154 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-517)))) (-15 -2165 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))) (-15 -2165 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))) (-15 -3433 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3433 ((-51) |#2| (-1076) (-265 |#2|))) (-15 -3433 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-517)))) (-15 -3433 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-517)))) (-15 -3433 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))) (-15 -3433 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -428))
-((-3433 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1124 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1097) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1124 (-517))) (-4 *7 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-2165 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1124 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1097) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1124 (-517))) (-4 *7 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2145 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-703))) (-4 *3 (-13 (-27) (-1097) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2145 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1124 (-703))) (-4 *7 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2145 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
-(-10 -7 (-15 -2145 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2145 ((-51) |#2| (-1076) (-265 |#2|))) (-15 -2145 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-703)))) (-15 -2145 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-703)))) (-15 -2154 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-517)))) (-15 -2154 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-517)))) (-15 -2165 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))) (-15 -2165 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))) (-15 -3433 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3433 ((-51) |#2| (-1076) (-265 |#2|))) (-15 -3433 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1124 (-517)))) (-15 -3433 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-517)))) (-15 -3433 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))) (-15 -3433 ((-51) |#2| (-1076) (-265 |#2|) (-1124 (-377 (-517))) (-377 (-517)))))
-((-1769 ((|#2| |#2| |#1|) 15)) (-1316 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-844)) 69)) (-2366 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-844)) 60)))
-(((-429 |#1| |#2|) (-10 -7 (-15 -2366 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-844))) (-15 -1316 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-844))) (-15 -1769 (|#2| |#2| |#1|))) (-278) (-1133 |#1|)) (T -429))
-((-1769 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1133 *3)))) (-1316 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-844)) (-4 *3 (-1133 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-2366 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-844)) (-4 *5 (-278)) (-4 *3 (-1133 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
-(-10 -7 (-15 -2366 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-844))) (-15 -1316 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-844))) (-15 -1769 (|#2| |#2| |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 28)) (-4170 (($ |#3|) 25)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2373 (($ $) 32)) (-3290 (($ |#2| |#4| $) 33)) (-2078 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-2335 (((-646 |#3| |#4| |#5|) $) 15)) (-1208 ((|#3| $) 19)) (-2889 ((|#4| $) 17)) (-2347 ((|#2| $) 29)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-2775 (($ |#2| |#3| |#4|) 26)) (-3610 (($) 36 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 34)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2347 (|#2| $)) (-15 -2335 ((-646 |#3| |#4| |#5|) $)) (-15 -2889 (|#4| $)) (-15 -1208 (|#3| $)) (-15 -2373 ($ $)) (-15 -2078 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -4170 ($ |#3|)) (-15 -2775 ($ |#2| |#3| |#4|)) (-15 -3290 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1076)) (-156) (-779) (-212 (-3535 |#1|) (-703)) (-1 (-107) (-2 (|:| -2812 |#3|) (|:| -2121 |#4|)) (-2 (|:| -2812 |#3|) (|:| -2121 |#4|))) (-872 |#2| |#4| (-789 |#1|))) (T -430))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156)) (-4 *6 (-212 (-3535 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *6)) (-2 (|:| -2812 *5) (|:| -2121 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-872 *4 *6 (-789 *3))))) (-2347 (*1 *2 *1) (-12 (-14 *3 (-583 (-1076))) (-4 *5 (-212 (-3535 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2812 *4) (|:| -2121 *5)) (-2 (|:| -2812 *4) (|:| -2121 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-872 *2 *5 (-789 *3))))) (-2335 (*1 *2 *1) (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156)) (-4 *6 (-212 (-3535 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *6)) (-2 (|:| -2812 *5) (|:| -2121 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-872 *4 *6 (-789 *3))))) (-2889 (*1 *2 *1) (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *2)) (-2 (|:| -2812 *5) (|:| -2121 *2)))) (-4 *2 (-212 (-3535 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-872 *4 *2 (-789 *3))))) (-1208 (*1 *2 *1) (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156)) (-4 *5 (-212 (-3535 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *5)) (-2 (|:| -2812 *2) (|:| -2121 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-872 *4 *5 (-789 *3))))) (-2373 (*1 *1 *1) (-12 (-14 *2 (-583 (-1076))) (-4 *3 (-156)) (-4 *5 (-212 (-3535 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2812 *4) (|:| -2121 *5)) (-2 (|:| -2812 *4) (|:| -2121 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-872 *3 *5 (-789 *2))))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-3535 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *6)) (-2 (|:| -2812 *5) (|:| -2121 *6)))) (-14 *4 (-583 (-1076))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-872 *2 *6 (-789 *4))))) (-4170 (*1 *1 *2) (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156)) (-4 *5 (-212 (-3535 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *5)) (-2 (|:| -2812 *2) (|:| -2121 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-872 *4 *5 (-789 *3))))) (-2775 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1076))) (-4 *2 (-156)) (-4 *4 (-212 (-3535 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2812 *3) (|:| -2121 *4)) (-2 (|:| -2812 *3) (|:| -2121 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-872 *2 *4 (-789 *5))))) (-3290 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1076))) (-4 *2 (-156)) (-4 *3 (-212 (-3535 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *3)) (-2 (|:| -2812 *5) (|:| -2121 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-872 *2 *3 (-789 *4))))))
-(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2347 (|#2| $)) (-15 -2335 ((-646 |#3| |#4| |#5|) $)) (-15 -2889 (|#4| $)) (-15 -1208 (|#3| $)) (-15 -2373 ($ $)) (-15 -2078 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -4170 ($ |#3|)) (-15 -2775 ($ |#2| |#3| |#4|)) (-15 -3290 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-1243 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
-(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1243 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-872 |#3| |#1| |#2|) (-13 (-954 (-377 (-517))) (-333) (-10 -8 (-15 -2271 ($ |#4|)) (-15 -3826 (|#4| $)) (-15 -2098 (|#4| $))))) (T -431))
-((-1243 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-872 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-954 (-377 (-517))) (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))))
-(-10 -7 (-15 -1243 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2119 (((-107) $ $) NIL)) (-2097 (((-583 |#3|) $) 41)) (-2687 (((-107) $) NIL)) (-3389 (((-107) $) NIL (|has| |#1| (-509)))) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2325 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-3338 (((-107) $) NIL (|has| |#1| (-509)))) (-1605 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2893 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2501 (((-107) $) NIL (|has| |#1| (-509)))) (-2567 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 47)) (-3390 (($ (-583 |#4|)) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4192)))) (-1534 (((-583 |#4|) $) 18 (|has| $ (-6 -4192)))) (-3024 ((|#3| $) 45)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#4|) $) 14 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-2746 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 21)) (-2241 (((-583 |#3|) $) NIL)) (-2621 (((-107) |#3| $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-4125 (((-1023) $) NIL)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3644 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 39)) (-2452 (($) 17)) (-4137 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) 16)) (-3359 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2288 (($ (-583 |#4|)) 13)) (-4028 (($ $ |#3|) NIL)) (-1409 (($ $ |#3|) NIL)) (-4159 (($ $ |#3|) NIL)) (-2271 (((-787) $) 38) (((-583 |#4|) $) 48)) (-3602 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 30)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-432 |#1| |#2| |#3| |#4|) (-13 (-895 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3359 ($ (-583 |#4|))) (-6 -4192) (-6 -4193))) (-963) (-725) (-779) (-977 |#1| |#2| |#3|)) (T -432))
-((-3359 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
-(-13 (-895 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3359 ($ (-583 |#4|))) (-6 -4192) (-6 -4193)))
-((-3610 (($) 11)) (-3619 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -3619 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3610 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
-NIL
-(-10 -8 (-15 -3619 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3610 (|#1|)))
-((-2119 (((-107) $ $) 7)) (-3228 (((-3 |#1| "failed") $) 26)) (-3390 ((|#1| $) 25)) (-3196 (($ $ $) 23)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-3647 ((|#2| $) 19)) (-2271 (((-787) $) 11) (($ |#1|) 27)) (-3610 (($) 18 T CONST)) (-3619 (($) 24 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 15) (($ $ $) 13)) (-1678 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-434 |#1| |#2|) (-1188) (-156) (-23)) (T -434))
-((-3619 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-439 |t#1| |t#2|) (-954 |t#1|) (-10 -8 (-15 (-3619) ($) -1385) (-15 -3196 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-954 |#1|) . T) ((-1005) . T))
-((-3996 (((-1157 (-1157 (-517))) (-1157 (-1157 (-517))) (-844)) 18)) (-2913 (((-1157 (-1157 (-517))) (-844)) 16)))
-(((-435) (-10 -7 (-15 -3996 ((-1157 (-1157 (-517))) (-1157 (-1157 (-517))) (-844))) (-15 -2913 ((-1157 (-1157 (-517))) (-844))))) (T -435))
-((-2913 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1157 (-1157 (-517)))) (-5 *1 (-435)))) (-3996 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-1157 (-517)))) (-5 *3 (-844)) (-5 *1 (-435)))))
-(-10 -7 (-15 -3996 ((-1157 (-1157 (-517))) (-1157 (-1157 (-517))) (-844))) (-15 -2913 ((-1157 (-1157 (-517))) (-844))))
-((-2161 (((-517) (-517)) 30) (((-517)) 22)) (-2194 (((-517) (-517)) 26) (((-517)) 18)) (-2490 (((-517) (-517)) 28) (((-517)) 20)) (-1824 (((-107) (-107)) 12) (((-107)) 10)) (-2839 (((-107) (-107)) 11) (((-107)) 9)) (-2984 (((-107) (-107)) 24) (((-107)) 15)))
-(((-436) (-10 -7 (-15 -2839 ((-107))) (-15 -1824 ((-107))) (-15 -2839 ((-107) (-107))) (-15 -1824 ((-107) (-107))) (-15 -2984 ((-107))) (-15 -2490 ((-517))) (-15 -2194 ((-517))) (-15 -2161 ((-517))) (-15 -2984 ((-107) (-107))) (-15 -2490 ((-517) (-517))) (-15 -2194 ((-517) (-517))) (-15 -2161 ((-517) (-517))))) (T -436))
-((-2161 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2161 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2194 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2490 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2984 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2839 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-1824 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2839 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(-10 -7 (-15 -2839 ((-107))) (-15 -1824 ((-107))) (-15 -2839 ((-107) (-107))) (-15 -1824 ((-107) (-107))) (-15 -2984 ((-107))) (-15 -2490 ((-517))) (-15 -2194 ((-517))) (-15 -2161 ((-517))) (-15 -2984 ((-107) (-107))) (-15 -2490 ((-517) (-517))) (-15 -2194 ((-517) (-517))) (-15 -2161 ((-517) (-517))))
-((-2119 (((-107) $ $) NIL)) (-2473 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 91)) (-4141 (((-583 (-1000 (-349))) $) 14) (((-583 (-1000 (-349))) $ (-583 (-1000 (-349)))) 88)) (-2736 (((-583 (-583 (-866 (-199)))) (-583 (-583 (-866 (-199)))) (-583 (-797))) 42)) (-2013 (((-583 (-583 (-866 (-199)))) $) 84)) (-3416 (((-1162) $ (-866 (-199)) (-797)) 104)) (-1238 (($ $) 83) (($ (-583 (-583 (-866 (-199))))) 94) (($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844))) 93) (($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)) (-583 (-236))) 95)) (-1662 (((-1059) $) NIL)) (-2585 (((-517) $) 66)) (-4125 (((-1023) $) NIL)) (-2263 (($) 92)) (-2543 (((-583 (-199)) (-583 (-583 (-866 (-199))))) 52)) (-2764 (((-1162) $ (-583 (-866 (-199))) (-797) (-797) (-844)) 98) (((-1162) $ (-866 (-199))) 100) (((-1162) $ (-866 (-199)) (-797) (-797) (-844)) 99)) (-2271 (((-787) $) 110) (($ (-583 (-583 (-866 (-199))))) 105)) (-4171 (((-1162) $ (-866 (-199))) 103)) (-1584 (((-107) $ $) NIL)))
-(((-437) (-13 (-1005) (-10 -8 (-15 -2263 ($)) (-15 -1238 ($ $)) (-15 -1238 ($ (-583 (-583 (-866 (-199)))))) (-15 -1238 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)))) (-15 -1238 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)) (-583 (-236)))) (-15 -2013 ((-583 (-583 (-866 (-199)))) $)) (-15 -2585 ((-517) $)) (-15 -4141 ((-583 (-1000 (-349))) $)) (-15 -4141 ((-583 (-1000 (-349))) $ (-583 (-1000 (-349))))) (-15 -2473 ((-583 (-349)) $)) (-15 -2473 ((-583 (-349)) $ (-583 (-349)))) (-15 -2764 ((-1162) $ (-583 (-866 (-199))) (-797) (-797) (-844))) (-15 -2764 ((-1162) $ (-866 (-199)))) (-15 -2764 ((-1162) $ (-866 (-199)) (-797) (-797) (-844))) (-15 -4171 ((-1162) $ (-866 (-199)))) (-15 -3416 ((-1162) $ (-866 (-199)) (-797))) (-15 -2271 ($ (-583 (-583 (-866 (-199)))))) (-15 -2271 ((-787) $)) (-15 -2736 ((-583 (-583 (-866 (-199)))) (-583 (-583 (-866 (-199)))) (-583 (-797)))) (-15 -2543 ((-583 (-199)) (-583 (-583 (-866 (-199))))))))) (T -437))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-2263 (*1 *1) (-5 *1 (-437))) (-1238 (*1 *1 *1) (-5 *1 (-437))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))) (-1238 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-844))) (-5 *1 (-437)))) (-1238 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-844))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-437)))) (-4141 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-437)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2473 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2764 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *2 (-1162)) (-5 *1 (-437)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1162)) (-5 *1 (-437)))) (-2764 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *2 (-1162)) (-5 *1 (-437)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1162)) (-5 *1 (-437)))) (-3416 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *2 (-1162)) (-5 *1 (-437)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))) (-2736 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
-(-13 (-1005) (-10 -8 (-15 -2263 ($)) (-15 -1238 ($ $)) (-15 -1238 ($ (-583 (-583 (-866 (-199)))))) (-15 -1238 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)))) (-15 -1238 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)) (-583 (-236)))) (-15 -2013 ((-583 (-583 (-866 (-199)))) $)) (-15 -2585 ((-517) $)) (-15 -4141 ((-583 (-1000 (-349))) $)) (-15 -4141 ((-583 (-1000 (-349))) $ (-583 (-1000 (-349))))) (-15 -2473 ((-583 (-349)) $)) (-15 -2473 ((-583 (-349)) $ (-583 (-349)))) (-15 -2764 ((-1162) $ (-583 (-866 (-199))) (-797) (-797) (-844))) (-15 -2764 ((-1162) $ (-866 (-199)))) (-15 -2764 ((-1162) $ (-866 (-199)) (-797) (-797) (-844))) (-15 -4171 ((-1162) $ (-866 (-199)))) (-15 -3416 ((-1162) $ (-866 (-199)) (-797))) (-15 -2271 ($ (-583 (-583 (-866 (-199)))))) (-15 -2271 ((-787) $)) (-15 -2736 ((-583 (-583 (-866 (-199)))) (-583 (-583 (-866 (-199)))) (-583 (-797)))) (-15 -2543 ((-583 (-199)) (-583 (-583 (-866 (-199))))))))
-((-1692 (($ $) NIL) (($ $ $) 11)))
-(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
-NIL
-(-10 -8 (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-3647 ((|#2| $) 19)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 15) (($ $ $) 13)) (-1678 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-439 |#1| |#2|) (-1188) (-156) (-23)) (T -439))
-((-3647 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-3610 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1692 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1678 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1692 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-1005) (-10 -8 (-15 -3647 (|t#2| $)) (-15 (-3610) ($) -1385) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1692 ($ $)) (-15 -1678 ($ $ $)) (-15 -1692 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2056 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 90)) (-1906 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-1227 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
-(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -1906 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2056 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1227 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1076)) (-421) (-421)) (T -440))
-((-1227 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1076))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2056 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1076))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(-10 -7 (-15 -1906 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2056 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1227 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
-((-2560 (((-3 $ "failed") $) 11)) (-1842 (($ $ $) 20)) (-2059 (($ $ $) 21)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1704 (($ $ $) 9)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
-(((-441 |#1|) (-10 -8 (-15 -2059 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#1| |#1|)) (-15 -2815 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1704 (|#1| |#1| |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 -2815 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2815 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844)))) (-442)) (T -441))
-NIL
-(-10 -8 (-15 -2059 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#1| |#1|)) (-15 -2815 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1704 (|#1| |#1| |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 -2815 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2815 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-1393 (($) 20 T CONST)) (-2560 (((-3 $ "failed") $) 16)) (-1376 (((-107) $) 19)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 27)) (-4125 (((-1023) $) 10)) (-1842 (($ $ $) 23)) (-2059 (($ $ $) 22)) (-2271 (((-787) $) 11)) (-2815 (($ $ (-844)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3619 (($) 21 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 26)) (** (($ $ (-844)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
-(((-442) (-1188)) (T -442))
-((-2300 (*1 *1 *1) (-4 *1 (-442))) (-1704 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2815 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1842 (*1 *1 *1 *1) (-4 *1 (-442))) (-2059 (*1 *1 *1 *1) (-4 *1 (-442))))
-(-13 (-659) (-10 -8 (-15 -2300 ($ $)) (-15 -1704 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2815 ($ $ (-517))) (-6 -4189) (-15 -1842 ($ $ $)) (-15 -2059 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 17)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-377 (-517))) NIL) (($ $ (-991) (-377 (-517))) NIL) (($ $ (-583 (-991)) (-583 (-377 (-517)))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) 22)) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2356 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 33 (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) NIL)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1153 |#2|)) 15)) (-3647 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1153 |#2|)) NIL) (($ (-1142 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 18)) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) 24)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-443 |#1| |#2| |#3|) (-13 (-1138 |#1|) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2271 ($ (-1142 |#1| |#2| |#3|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -443))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1076)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1138 |#1|) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2271 ($ (-1142 |#1| |#2| |#3|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#2| $ |#1| |#2|) 18)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) 19)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) 16)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1882 (((-583 |#1|) $) NIL)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2817 (((-583 |#1|) $) NIL)) (-3130 (((-107) |#1| $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-444 |#1| |#2| |#3| |#4|) (-1088 |#1| |#2|) (-1005) (-1005) (-1088 |#1| |#2|) |#2|) (T -444))
-NIL
-(-1088 |#1| |#2|)
-((-2119 (((-107) $ $) NIL)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2265 (((-583 $) (-583 |#4|)) NIL)) (-2097 (((-583 |#3|) $) NIL)) (-2687 (((-107) $) NIL)) (-3389 (((-107) $) NIL (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3939 ((|#4| |#4| $) NIL)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2325 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1393 (($) NIL T CONST)) (-3338 (((-107) $) 26 (|has| |#1| (-509)))) (-1605 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2893 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2501 (((-107) $) NIL (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2567 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3390 (($ (-583 |#4|)) NIL)) (-2439 (((-3 $ "failed") $) 39)) (-3777 ((|#4| |#4| $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-2639 ((|#4| |#4| $) NIL)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) NIL)) (-1534 (((-583 |#4|) $) 16 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3024 ((|#3| $) 33)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#4|) $) 17 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-2746 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 21)) (-2241 (((-583 |#3|) $) NIL)) (-2621 (((-107) |#3| $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-1446 (((-3 |#4| "failed") $) 37)) (-3568 (((-583 |#4|) $) NIL)) (-1732 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3998 ((|#4| |#4| $) NIL)) (-2958 (((-107) $ $) NIL)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-3 |#4| "failed") $) 35)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3439 (((-3 $ "failed") $ |#4|) 47)) (-2671 (($ $ |#4|) NIL)) (-3644 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 15)) (-2452 (($) 13)) (-3647 (((-703) $) NIL)) (-4137 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) 12)) (-3359 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 20)) (-4028 (($ $ |#3|) 42)) (-1409 (($ $ |#3|) 44)) (-1888 (($ $) NIL)) (-4159 (($ $ |#3|) NIL)) (-2271 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3057 (((-703) $) NIL (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3602 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) NIL)) (-1999 (((-107) |#3| $) NIL)) (-1584 (((-107) $ $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-445 |#1| |#2| |#3| |#4|) (-1105 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-977 |#1| |#2| |#3|)) (T -445))
-NIL
-(-1105 |#1| |#2| |#3| |#4|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3390 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2116 (($) 18)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-3359 (((-349) $) 22) (((-199) $) 25) (((-377 (-1072 (-517))) $) 19) (((-493) $) 53)) (-2271 (((-787) $) 51) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 36 T CONST)) (-3619 (($) 11 T CONST)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-446) (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))) (-939) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1072 (-517)))) (-558 (-493)) (-10 -8 (-15 -2116 ($))))) (T -446))
-((-2116 (*1 *1) (-5 *1 (-446))))
-(-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))) (-939) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1072 (-517)))) (-558 (-493)) (-10 -8 (-15 -2116 ($))))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#2| $ |#1| |#2|) 16)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) 20)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) 18)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1882 (((-583 |#1|) $) 13)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2817 (((-583 |#1|) $) NIL)) (-3130 (((-107) |#1| $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 19)) (-2609 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 11 (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3535 (((-703) $) 15 (|has| $ (-6 -4192)))))
-(((-447 |#1| |#2| |#3|) (-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192))) (-1005) (-1005) (-1059)) (T -447))
-NIL
-(-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192)))
-((-2880 (((-517) (-517) (-517)) 7)) (-3863 (((-107) (-517) (-517) (-517) (-517)) 11)) (-2266 (((-1157 (-583 (-517))) (-703) (-703)) 23)))
-(((-448) (-10 -7 (-15 -2880 ((-517) (-517) (-517))) (-15 -3863 ((-107) (-517) (-517) (-517) (-517))) (-15 -2266 ((-1157 (-583 (-517))) (-703) (-703))))) (T -448))
-((-2266 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1157 (-583 (-517)))) (-5 *1 (-448)))) (-3863 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
-(-10 -7 (-15 -2880 ((-517) (-517) (-517))) (-15 -3863 ((-107) (-517) (-517) (-517) (-517))) (-15 -2266 ((-1157 (-583 (-517))) (-703) (-703))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-789 |#1|)) $) NIL)) (-1440 (((-1072 $) $ (-789 |#1|)) NIL) (((-1072 |#2|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3062 (($ $) NIL (|has| |#2| (-509)))) (-2190 (((-107) $) NIL (|has| |#2| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1224 (($ $) NIL (|has| |#2| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-789 |#1|) $) NIL)) (-2157 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1873 (($ $ (-583 (-517))) NIL)) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#2| (-832)))) (-3014 (($ $ |#2| (-450 (-3535 |#1|) (-703)) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#2|) (-789 |#1|)) NIL) (($ (-1072 $) (-789 |#1|)) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#2| (-450 (-3535 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-789 |#1|)) NIL)) (-3492 (((-450 (-3535 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3458 (($ $ $) NIL (|has| |#2| (-779)))) (-4084 (($ $ $) NIL (|has| |#2| (-779)))) (-2935 (($ (-1 (-450 (-3535 |#1|) (-703)) (-450 (-3535 |#1|) (-703))) $) NIL)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-789 |#1|) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#2| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2121 (-703))) "failed") $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#2| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#2| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-1220 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2060 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3647 (((-450 (-3535 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3119 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-450 (-3535 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-449 |#1| |#2|) (-13 (-872 |#2| (-450 (-3535 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1873 ($ $ (-583 (-517)))))) (-583 (-1076)) (-963)) (T -449))
-((-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1076))) (-4 *4 (-963)))))
-(-13 (-872 |#2| (-450 (-3535 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -1873 ($ $ (-583 (-517))))))
-((-2119 (((-107) $ $) NIL (|has| |#2| (-1005)))) (-3097 (((-107) $) NIL (|has| |#2| (-123)))) (-4170 (($ (-844)) NIL (|has| |#2| (-963)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2948 (($ $ $) NIL (|has| |#2| (-725)))) (-2798 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| |#2| (-338)))) (-2360 (((-517) $) NIL (|has| |#2| (-777)))) (-2445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1005)))) (-3390 (((-517) $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) ((|#2| $) NIL (|has| |#2| (-1005)))) (-2207 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL (|has| |#2| (-963))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-963)))) (-2560 (((-3 $ "failed") $) NIL (|has| |#2| (-963)))) (-2202 (($) NIL (|has| |#2| (-338)))) (-2759 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ (-517)) 11)) (-2988 (((-107) $) NIL (|has| |#2| (-777)))) (-1534 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL (|has| |#2| (-963)))) (-1952 (((-107) $) NIL (|has| |#2| (-777)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1903 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2746 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#2| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#2| (-1005)))) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-2812 (($ (-844)) NIL (|has| |#2| (-338)))) (-4125 (((-1023) $) NIL (|has| |#2| (-1005)))) (-2429 ((|#2| $) NIL (|has| (-517) (-779)))) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3746 ((|#2| $ $) NIL (|has| |#2| (-963)))) (-3909 (($ (-1157 |#2|)) NIL)) (-1537 (((-125)) NIL (|has| |#2| (-333)))) (-2060 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)))) (-4137 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1157 |#2|) $) NIL) (($ (-517)) NIL (-3747 (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (|has| |#2| (-963)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (($ |#2|) NIL (|has| |#2| (-1005))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-4099 (((-703)) NIL (|has| |#2| (-963)))) (-3602 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2376 (($ $) NIL (|has| |#2| (-777)))) (-2815 (($ $ (-703)) NIL (|has| |#2| (-963))) (($ $ (-844)) NIL (|has| |#2| (-963)))) (-3610 (($) NIL (|has| |#2| (-123)) CONST)) (-3619 (($) NIL (|has| |#2| (-963)) CONST)) (-3342 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)))) (-1642 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1584 (((-107) $ $) NIL (|has| |#2| (-1005)))) (-1630 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1608 (((-107) $ $) 15 (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $ $) NIL (|has| |#2| (-963))) (($ $) NIL (|has| |#2| (-963)))) (-1678 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-963))) (($ $ (-844)) NIL (|has| |#2| (-963)))) (* (($ $ $) NIL (|has| |#2| (-963))) (($ (-517) $) NIL (|has| |#2| (-963))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-844) $) NIL (|has| |#2| (-25)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
+((-2105 (((-107) $ $) 7)) (-2023 (((-107) $) 14)) (-1994 (((-107) $) 15)) (-3204 (($ (-1060) (-1060) (-1060)) 13)) (-2981 (((-1060) $) 18)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2600 (($ (-1060) (-1060) (-1060)) 20)) (-3630 (((-1060) $) 17)) (-2075 (((-107) $) 16)) (-1314 (((-1060) $) 19)) (-2262 (((-787) $) 11) (($ (-1060)) 22) (((-1060) $) 21)) (-1572 (((-107) $ $) 6)))
+(((-359) (-1189)) (T -359))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-2600 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-2075 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3204 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-1060))) (-15 -2262 ((-1060) $)) (-15 -2600 ($ (-1060) (-1060) (-1060))) (-15 -1314 ((-1060) $)) (-15 -2981 ((-1060) $)) (-15 -3630 ((-1060) $)) (-15 -2075 ((-107) $)) (-15 -1994 ((-107) $)) (-15 -2023 ((-107) $)) (-15 -3204 ($ (-1060) (-1060) (-1060)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2348 (((-787) $) 50)) (-3038 (($) NIL T CONST)) (-2823 (($ $ (-845)) NIL)) (-1768 (($ $ (-845)) NIL)) (-4119 (($ $ (-845)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($ (-703)) 26)) (-1470 (((-703)) 15)) (-3255 (((-787) $) 52)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) NIL)) (-2182 (($ $ $ $) NIL)) (-2742 (($ $ $) NIL)) (-3663 (($) 20 T CONST)) (-1572 (((-107) $ $) 28)) (-1680 (($ $) 34) (($ $ $) 36)) (-1666 (($ $ $) 37)) (** (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -1470 ((-703))) (-15 -3255 ((-787) $)) (-15 -2348 ((-787) $)) (-15 -1306 ($ (-703))))) (-703) (-703) (-156)) (T -360))
+((-1470 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
+(-13 (-677 |#3|) (-10 -8 (-15 -1470 ((-703))) (-15 -3255 ((-787) $)) (-15 -2348 ((-787) $)) (-15 -1306 ($ (-703)))))
+((-1366 (((-1060)) 10)) (-4092 (((-1049 (-1060))) 28)) (-1856 (((-1163) (-1060)) 25) (((-1163) (-358)) 24)) (-1870 (((-1163)) 26)) (-3775 (((-1049 (-1060))) 27)))
+(((-361) (-10 -7 (-15 -3775 ((-1049 (-1060)))) (-15 -4092 ((-1049 (-1060)))) (-15 -1870 ((-1163))) (-15 -1856 ((-1163) (-358))) (-15 -1856 ((-1163) (-1060))) (-15 -1366 ((-1060))))) (T -361))
+((-1366 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-361)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-361)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-361)))) (-1870 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-361)))) (-4092 (*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361)))) (-3775 (*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361)))))
+(-10 -7 (-15 -3775 ((-1049 (-1060)))) (-15 -4092 ((-1049 (-1060)))) (-15 -1870 ((-1163))) (-15 -1856 ((-1163) (-358))) (-15 -1856 ((-1163) (-1060))) (-15 -1366 ((-1060))))
+((-3250 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
+(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
+((-3250 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|))))
+((-2262 (((-364) |#1|) 11)))
+(((-363 |#1|) (-10 -7 (-15 -2262 ((-364) |#1|))) (-1006)) (T -363))
+((-2262 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1006)))))
+(-10 -7 (-15 -2262 ((-364) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-3999 (((-583 (-1060)) $ (-583 (-1060))) 37)) (-1490 (((-583 (-1060)) $ (-583 (-1060))) 38)) (-4128 (((-583 (-1060)) $ (-583 (-1060))) 39)) (-2969 (((-583 (-1060)) $) 34)) (-3204 (($) 23)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1358 (((-583 (-1060)) $) 35)) (-3504 (((-583 (-1060)) $) 36)) (-1744 (((-1163) $ (-517)) 32) (((-1163) $) 33)) (-3367 (($ (-787) (-517)) 29)) (-2262 (((-787) $) 41) (($ (-787)) 25)) (-1572 (((-107) $ $) NIL)))
+(((-364) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -1358 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1490 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060))))))) (T -364))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3367 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-364)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-364)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-3204 (*1 *1) (-5 *1 (-364))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-4128 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-1490 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-3999 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -1358 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1490 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060))))))
+((-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8)))
+(((-365) (-1189)) (T -365))
+((-1885 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1163)))))
+(-13 (-1112) (-557 (-787)) (-10 -8 (-15 -1885 ((-1163) $))))
+(((-557 (-787)) . T) ((-1112) . T))
+((-3220 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-876 (-349))) 17) (((-3 $ "failed") (-876 (-517))) 15) (((-3 $ "failed") (-377 (-876 (-349)))) 13) (((-3 $ "failed") (-377 (-876 (-517)))) 11)) (-3402 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-876 (-349))) 18) (($ (-876 (-517))) 16) (($ (-377 (-876 (-349)))) 14) (($ (-377 (-876 (-517)))) 12)) (-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 23)))
+(((-366) (-1189)) (T -366))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-349))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-349))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-517))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366)))))
+(-13 (-365) (-10 -8 (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -3402 ($ (-286 (-349)))) (-15 -3220 ((-3 $ "failed") (-286 (-349)))) (-15 -3402 ($ (-286 (-517)))) (-15 -3220 ((-3 $ "failed") (-286 (-517)))) (-15 -3402 ($ (-876 (-349)))) (-15 -3220 ((-3 $ "failed") (-876 (-349)))) (-15 -3402 ($ (-876 (-517)))) (-15 -3220 ((-3 $ "failed") (-876 (-517)))) (-15 -3402 ($ (-377 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-349))))) (-15 -3402 ($ (-377 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-517)))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1112) . T))
+((-3121 (((-583 (-1060)) (-583 (-1060))) 8)) (-1885 (((-1163) (-358)) 27)) (-2789 (((-1010) (-1077) (-583 (-1077)) (-1080) (-583 (-1077))) 59) (((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)) (-1077)) 35) (((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077))) 34)))
+(((-367) (-10 -7 (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)))) (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)) (-1077))) (-15 -2789 ((-1010) (-1077) (-583 (-1077)) (-1080) (-583 (-1077)))) (-15 -1885 ((-1163) (-358))) (-15 -3121 ((-583 (-1060)) (-583 (-1060)))))) (T -367))
+((-3121 (*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-367)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-367)))) (-2789 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1077))) (-5 *5 (-1080)) (-5 *3 (-1077)) (-5 *2 (-1010)) (-5 *1 (-367)))) (-2789 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077))))) (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010)) (-5 *1 (-367)))) (-2789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077))))) (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010)) (-5 *1 (-367)))))
+(-10 -7 (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)))) (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)) (-1077))) (-15 -2789 ((-1010) (-1077) (-583 (-1077)) (-1080) (-583 (-1077)))) (-15 -1885 ((-1163) (-358))) (-15 -3121 ((-583 (-1060)) (-583 (-1060)))))
+((-1885 (((-1163) $) 37)) (-2262 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
+(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2262 ($ (-300))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -2262 ($ (-286 (-634)))) (-15 -2262 ($ (-286 (-632)))) (-15 -2262 ($ (-286 (-627)))) (-15 -2262 ($ (-265 (-286 (-634))))) (-15 -2262 ($ (-265 (-286 (-632))))) (-15 -2262 ($ (-265 (-286 (-627))))) (-15 -2262 ($ (-286 (-517)))) (-15 -2262 ($ (-286 (-349)))) (-15 -2262 ($ (-286 (-153 (-349))))) (-15 -2262 ($ (-265 (-286 (-517))))) (-15 -2262 ($ (-265 (-286 (-349))))) (-15 -2262 ($ (-265 (-286 (-153 (-349)))))))) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-1081)) (T -368))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))))
+(-13 (-365) (-10 -8 (-15 -2262 ($ (-300))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -2262 ($ (-286 (-634)))) (-15 -2262 ($ (-286 (-632)))) (-15 -2262 ($ (-286 (-627)))) (-15 -2262 ($ (-265 (-286 (-634))))) (-15 -2262 ($ (-265 (-286 (-632))))) (-15 -2262 ($ (-265 (-286 (-627))))) (-15 -2262 ($ (-286 (-517)))) (-15 -2262 ($ (-286 (-349)))) (-15 -2262 ($ (-286 (-153 (-349))))) (-15 -2262 ($ (-265 (-286 (-517))))) (-15 -2262 ($ (-265 (-286 (-349))))) (-15 -2262 ($ (-265 (-286 (-153 (-349))))))))
+((-2105 (((-107) $ $) NIL)) (-3191 ((|#2| $) 36)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3774 (($ (-377 |#2|)) 84)) (-3119 (((-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))) $) 37)) (-2042 (($ $) 32) (($ $ (-703)) 34)) (-3367 (((-377 |#2|) $) 46)) (-2279 (($ (-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|)))) 31)) (-2262 (((-787) $) 120)) (-3348 (($ $) 33) (($ $ (-703)) 35)) (-1572 (((-107) $ $) NIL)) (-1666 (($ |#2| $) 39)))
+(((-369 |#1| |#2|) (-13 (-1006) (-558 (-377 |#2|)) (-10 -8 (-15 -1666 ($ |#2| $)) (-15 -3774 ($ (-377 |#2|))) (-15 -3191 (|#2| $)) (-15 -3119 ((-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))))) (-15 -2042 ($ $)) (-15 -3348 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -3348 ($ $ (-703))))) (-13 (-333) (-134)) (-1134 |#1|)) (T -369))
+((-1666 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1134 *3)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-3191 (*1 *2 *1) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4)))) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-2042 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1134 *2)))) (-3348 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1134 *2)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3)))))
+(-13 (-1006) (-558 (-377 |#2|)) (-10 -8 (-15 -1666 ($ |#2| $)) (-15 -3774 ($ (-377 |#2|))) (-15 -3191 (|#2| $)) (-15 -3119 ((-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))))) (-15 -2042 ($ $)) (-15 -3348 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -3348 ($ $ (-703)))))
+((-2105 (((-107) $ $) 9 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 15 (|has| |#1| (-810 (-349)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 14 (|has| |#1| (-810 (-517))))) (-3232 (((-1060) $) 13 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-4130 (((-1024) $) 12 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-2262 (((-787) $) 11 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-1572 (((-107) $ $) 10 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))))
+(((-370 |#1|) (-1189) (-1112)) (T -370))
+NIL
+(-13 (-1112) (-10 -7 (IF (|has| |t#1| (-810 (-517))) (-6 (-810 (-517))) |%noBranch|) (IF (|has| |t#1| (-810 (-349))) (-6 (-810 (-349))) |%noBranch|)))
+(((-97) -3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))) ((-557 (-787)) -3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-1006) -3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))) ((-1112) . T))
+((-2627 (($ $) 10) (($ $ (-703)) 11)))
+(((-371 |#1|) (-10 -8 (-15 -2627 (|#1| |#1| (-703))) (-15 -2627 (|#1| |#1|))) (-372)) (T -371))
+NIL
+(-10 -8 (-15 -2627 (|#1| |#1| (-703))) (-15 -2627 (|#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2627 (($ $) 79) (($ $ (-703)) 78)) (-2022 (((-107) $) 71)) (-3250 (((-765 (-845)) $) 81)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-3 (-703) "failed") $ $) 80)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-3385 (((-3 $ "failed") $) 82)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-372) (-1189)) (T -372))
+((-3250 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-845))))) (-3667 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2627 (*1 *1 *1) (-4 *1 (-372))) (-2627 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(-13 (-333) (-132) (-10 -8 (-15 -3250 ((-765 (-845)) $)) (-15 -3667 ((-3 (-703) "failed") $ $)) (-15 -2627 ($ $)) (-15 -2627 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-3202 (($ (-517) (-517)) 11) (($ (-517) (-517) (-845)) NIL)) (-3685 (((-845)) 16) (((-845) (-845)) NIL)))
+(((-373 |#1|) (-10 -8 (-15 -3685 ((-845) (-845))) (-15 -3685 ((-845))) (-15 -3202 (|#1| (-517) (-517) (-845))) (-15 -3202 (|#1| (-517) (-517)))) (-374)) (T -373))
+((-3685 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
+(-10 -8 (-15 -3685 ((-845) (-845))) (-15 -3685 ((-845))) (-15 -3202 (|#1| (-517) (-517) (-845))) (-15 -3202 (|#1| (-517) (-517))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 (((-517) $) 89)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2147 (($ $) 87)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 97)) (-1765 (((-107) $ $) 59)) (-3502 (((-517) $) 114)) (-3038 (($) 17 T CONST)) (-3164 (($ $) 86)) (-3220 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3402 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-3456 (((-845)) 130) (((-845) (-845)) 127 (|has| $ (-6 -4186)))) (-2671 (((-107) $) 112)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 93)) (-3250 (((-517) $) 136)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 96)) (-3522 (($ $) 92)) (-2321 (((-107) $) 113)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3480 (($ $ $) 111) (($) 124 (-12 (-2479 (|has| $ (-6 -4186))) (-2479 (|has| $ (-6 -4178)))))) (-4095 (($ $ $) 110) (($) 123 (-12 (-2479 (|has| $ (-6 -4186))) (-2479 (|has| $ (-6 -4178)))))) (-3743 (((-517) $) 133)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2848 (((-845) (-517)) 126 (|has| $ (-6 -4186)))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2590 (($ $) 88)) (-2713 (($ $) 90)) (-3202 (($ (-517) (-517)) 138) (($ (-517) (-517) (-845)) 137)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-1725 (((-517) $) 134)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3685 (((-845)) 131) (((-845) (-845)) 128 (|has| $ (-6 -4186)))) (-1753 (((-845) (-517)) 125 (|has| $ (-6 -4186)))) (-3367 (((-349) $) 105) (((-199) $) 104) (((-816 (-349)) $) 94)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1818 (((-703)) 29)) (-3126 (($ $) 91)) (-2076 (((-845)) 132) (((-845) (-845)) 129 (|has| $ (-6 -4186)))) (-4003 (((-845)) 135)) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 115)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 108)) (-1606 (((-107) $ $) 107)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 109)) (-1596 (((-107) $ $) 106)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-374) (-1189)) (T -374))
+((-3202 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-3202 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-4 *1 (-374)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-4003 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2076 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-3685 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-3456 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374)) (-5 *2 (-845)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374)) (-5 *2 (-845)))) (-3480 (*1 *1) (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186))) (-2479 (|has| *1 (-6 -4178))))) (-4095 (*1 *1) (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186))) (-2479 (|has| *1 (-6 -4178))))))
+(-13 (-973) (-10 -8 (-6 -2194) (-15 -3202 ($ (-517) (-517))) (-15 -3202 ($ (-517) (-517) (-845))) (-15 -3250 ((-517) $)) (-15 -4003 ((-845))) (-15 -1725 ((-517) $)) (-15 -3743 ((-517) $)) (-15 -2076 ((-845))) (-15 -3685 ((-845))) (-15 -3456 ((-845))) (IF (|has| $ (-6 -4186)) (PROGN (-15 -2076 ((-845) (-845))) (-15 -3685 ((-845) (-845))) (-15 -3456 ((-845) (-845))) (-15 -2848 ((-845) (-517))) (-15 -1753 ((-845) (-517)))) |%noBranch|) (IF (|has| $ (-6 -4178)) |%noBranch| (IF (|has| $ (-6 -4186)) |%noBranch| (PROGN (-15 -3480 ($)) (-15 -4095 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-816 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-810 (-349)) . T) ((-844) . T) ((-921) . T) ((-940) . T) ((-973) . T) ((-955 (-377 (-517))) . T) ((-955 (-517)) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-3312 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -3312 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
+(-10 -7 (-15 -3312 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-3312 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
+(((-376 |#1| |#2|) (-10 -7 (-15 -3312 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
+(-10 -7 (-15 -3312 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 13)) (-2964 ((|#1| $) 21 (|has| |#1| (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| |#1| (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 17) (((-3 (-1077) "failed") $) NIL (|has| |#1| (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517))))) (-3402 ((|#1| $) 15) (((-1077) $) NIL (|has| |#1| (-955 (-1077)))) (((-377 (-517)) $) 67 (|has| |#1| (-955 (-517)))) (((-517) $) NIL (|has| |#1| (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 50)) (-2192 (($) NIL (|has| |#1| (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| |#1| (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| |#1| (-810 (-349))))) (-1690 (((-107) $) 64)) (-3662 (($ $) NIL)) (-3858 ((|#1| $) 71)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2321 (((-107) $) NIL (|has| |#1| (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 97)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| |#1| (-278)))) (-2713 ((|#1| $) 28 (|has| |#1| (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 133 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 129 (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) NIL)) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1463 (($ $) NIL)) (-2082 ((|#1| $) 73)) (-3367 (((-816 (-517)) $) NIL (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#1| (-558 (-816 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-940))) (((-199) $) NIL (|has| |#1| (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1077)) NIL (|has| |#1| (-955 (-1077))))) (-3385 (((-3 $ "failed") $) 99 (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 100)) (-3126 ((|#1| $) 26 (|has| |#1| (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| |#1| (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 22 T CONST)) (-3675 (($) 8 T CONST)) (-2514 (((-1060) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1060) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1163) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1163) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-3348 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 56)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1692 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1680 (($ $) 25) (($ $ $) 55)) (-1666 (($ $ $) 53)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-377 |#1|) (-13 (-912 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4182)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4193)) (-6 -4182) |%noBranch|) |%noBranch|) |%noBranch|))) (-509)) (T -377))
+NIL
+(-13 (-912 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4182)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4193)) (-6 -4182) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-1278 (((-623 |#2|) (-1158 $)) NIL) (((-623 |#2|)) 18)) (-3539 (($ (-1158 |#2|) (-1158 $)) NIL) (($ (-1158 |#2|)) 26)) (-4028 (((-623 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) $) 22)) (-1914 ((|#3| $) 59)) (-3115 ((|#2| (-1158 $)) NIL) ((|#2|) 20)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $)) 24)) (-3367 (((-1158 |#2|) $) 11) (($ (-1158 |#2|)) 13)) (-3848 ((|#3| $) 51)))
+(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -4028 ((-623 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -1278 ((-623 |#2|))) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 (|#3| |#1|)) (-15 -3848 (|#3| |#1|)) (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|)))) (-379 |#2| |#3|) (-156) (-1134 |#2|)) (T -378))
+((-1278 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-3115 (*1 *2) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
+(-10 -8 (-15 -4028 ((-623 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -1278 ((-623 |#2|))) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 (|#3| |#1|)) (-15 -3848 (|#3| |#1|)) (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1278 (((-623 |#1|) (-1158 $)) 46) (((-623 |#1|)) 61)) (-1991 ((|#1| $) 52)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48) (($ (-1158 |#1|)) 64)) (-4028 (((-623 |#1|) $ (-1158 $)) 53) (((-623 |#1|) $) 59)) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-845)) 54)) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 51)) (-1914 ((|#2| $) 44 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3115 ((|#1| (-1158 $)) 47) ((|#1|) 60)) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49) (((-1158 |#1|) $) 66) (((-623 |#1|) (-1158 $)) 65)) (-3367 (((-1158 |#1|) $) 63) (($ (-1158 |#1|)) 62)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-3385 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3848 ((|#2| $) 45)) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 67)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-379 |#1| |#2|) (-1189) (-156) (-1134 |t#1|)) (T -379))
+((-3700 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *1)) (-4 *1 (-379 *3 *4)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *3)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1134 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *3)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1134 *3)))) (-1278 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-623 *3)))) (-3115 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-623 *3)))))
+(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -3700 ((-1158 $))) (-15 -1372 ((-1158 |t#1|) $)) (-15 -1372 ((-623 |t#1|) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|))) (-15 -3367 ((-1158 |t#1|) $)) (-15 -3367 ($ (-1158 |t#1|))) (-15 -1278 ((-623 |t#1|))) (-15 -3115 (|t#1|)) (-15 -4028 ((-623 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2262 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
+(((-380 |#1| |#2|) (-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|))) (-381 |#2|) (-1112)) (T -380))
+NIL
+(-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)))
+((-3220 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-955 (-517))))) (-3402 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-955 (-517))))) (-2262 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-955 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-955 (-517))))))
+(((-381 |#1|) (-1189) (-1112)) (T -381))
+NIL
+(-13 (-955 |t#1|) (-10 -7 (IF (|has| |t#1| (-955 (-517))) (-6 (-955 (-517))) |%noBranch|) (IF (|has| |t#1| (-955 (-377 (-517)))) (-6 (-955 (-377 (-517)))) |%noBranch|)))
+(((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T))
+((-3312 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
+(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-912 |#1|) (-1134 |#2|) (-13 (-379 |#2| |#3|) (-955 |#2|)) (-278) (-912 |#5|) (-1134 |#6|) (-13 (-379 |#6| |#7|) (-955 |#6|))) (T -382))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-912 *5)) (-4 *7 (-1134 *6)) (-4 *8 (-13 (-379 *6 *7) (-955 *6))) (-4 *9 (-278)) (-4 *10 (-912 *9)) (-4 *11 (-1134 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-955 *10))))))
+(-10 -7 (-15 -3312 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
+((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1956 ((|#4| (-703) (-1158 |#4|)) 55)) (-1690 (((-107) $) NIL)) (-3858 (((-1158 |#4|) $) 17)) (-3522 ((|#2| $) 53)) (-1980 (($ $) 136)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 98)) (-4162 (($ (-1158 |#4|)) 97)) (-4130 (((-1024) $) NIL)) (-2082 ((|#1| $) 18)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 131)) (-3700 (((-1158 |#4|) $) 126)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 11 T CONST)) (-1572 (((-107) $ $) 39)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
+(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -4162 ($ (-1158 |#4|))) (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3858 ((-1158 |#4|) $)) (-15 -2082 (|#1| $)) (-15 -1980 ($ $)) (-15 -1956 (|#4| (-703) (-1158 |#4|))))) (-278) (-912 |#1|) (-1134 |#2|) (-13 (-379 |#2| |#3|) (-955 |#2|))) (T -383))
+((-4162 (*1 *1 *2) (-12 (-5 *2 (-1158 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-3700 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))))) (-3522 (*1 *2 *1) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-955 *2))))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))))) (-2082 (*1 *2 *1) (-12 (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3))))) (-1980 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3))))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1158 *2)) (-4 *5 (-278)) (-4 *6 (-912 *5)) (-4 *2 (-13 (-379 *6 *7) (-955 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1134 *6)))))
+(-13 (-442) (-10 -8 (-15 -4162 ($ (-1158 |#4|))) (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3858 ((-1158 |#4|) $)) (-15 -2082 (|#1| $)) (-15 -1980 ($ $)) (-15 -1956 (|#4| (-703) (-1158 |#4|)))))
+((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3522 ((|#2| $) 60)) (-3344 (($ (-1158 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-955 |#2|)))) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 34)) (-3700 (((-1158 |#4|) $) 26)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3675 (($) 23 T CONST)) (-1572 (((-107) $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
+(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3344 ($ (-1158 |#4|))) (IF (|has| |#4| (-955 |#2|)) (-15 -3344 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-278) (-912 |#1|) (-1134 |#2|) (-379 |#2| |#3|) (-1158 |#4|)) (T -384))
+((-3700 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-3522 (*1 *2 *1) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1158 *5)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-1158 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-955 *4)) (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
+(-13 (-659) (-10 -8 (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3344 ($ (-1158 |#4|))) (IF (|has| |#4| (-955 |#2|)) (-15 -3344 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3312 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
+(-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1966 (((-3 $ "failed")) 85)) (-3449 (((-1158 (-623 |#2|)) (-1158 $)) NIL) (((-1158 (-623 |#2|))) 90)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 84)) (-1745 (((-3 $ "failed")) 83)) (-2998 (((-623 |#2|) (-1158 $)) NIL) (((-623 |#2|)) 101)) (-1793 (((-623 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) $) 109)) (-3928 (((-1073 (-876 |#2|))) 54)) (-3708 ((|#2| (-1158 $)) NIL) ((|#2|) 105)) (-3539 (($ (-1158 |#2|) (-1158 $)) NIL) (($ (-1158 |#2|)) 112)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 82)) (-3277 (((-3 $ "failed")) 74)) (-1830 (((-623 |#2|) (-1158 $)) NIL) (((-623 |#2|)) 99)) (-4044 (((-623 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) $) 107)) (-3221 (((-1073 (-876 |#2|))) 53)) (-1274 ((|#2| (-1158 $)) NIL) ((|#2|) 103)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $)) 111)) (-3367 (((-1158 |#2|) $) 95) (($ (-1158 |#2|)) 97)) (-3861 (((-583 (-876 |#2|)) (-1158 $)) NIL) (((-583 (-876 |#2|))) 93)) (-2365 (($ (-623 |#2|) $) 89)))
+(((-386 |#1| |#2|) (-10 -8 (-15 -2365 (|#1| (-623 |#2|) |#1|)) (-15 -3928 ((-1073 (-876 |#2|)))) (-15 -3221 ((-1073 (-876 |#2|)))) (-15 -1793 ((-623 |#2|) |#1|)) (-15 -4044 ((-623 |#2|) |#1|)) (-15 -2998 ((-623 |#2|))) (-15 -1830 ((-623 |#2|))) (-15 -3708 (|#2|)) (-15 -1274 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -3861 ((-583 (-876 |#2|)))) (-15 -3449 ((-1158 (-623 |#2|)))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1966 ((-3 |#1| "failed"))) (-15 -1745 ((-3 |#1| "failed"))) (-15 -3277 ((-3 |#1| "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -3742 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|))) (-15 -3861 ((-583 (-876 |#2|)) (-1158 |#1|)))) (-387 |#2|) (-156)) (T -386))
+((-3449 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3861 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-876 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1274 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-3708 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-1830 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2998 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3221 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
+(-10 -8 (-15 -2365 (|#1| (-623 |#2|) |#1|)) (-15 -3928 ((-1073 (-876 |#2|)))) (-15 -3221 ((-1073 (-876 |#2|)))) (-15 -1793 ((-623 |#2|) |#1|)) (-15 -4044 ((-623 |#2|) |#1|)) (-15 -2998 ((-623 |#2|))) (-15 -1830 ((-623 |#2|))) (-15 -3708 (|#2|)) (-15 -1274 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -3861 ((-583 (-876 |#2|)))) (-15 -3449 ((-1158 (-623 |#2|)))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1966 ((-3 |#1| "failed"))) (-15 -1745 ((-3 |#1| "failed"))) (-15 -3277 ((-3 |#1| "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -3742 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|))) (-15 -3861 ((-583 (-876 |#2|)) (-1158 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1966 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3449 (((-1158 (-623 |#1|)) (-1158 $)) 78) (((-1158 (-623 |#1|))) 100)) (-4026 (((-1158 $)) 81)) (-3038 (($) 17 T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1745 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2998 (((-623 |#1|) (-1158 $)) 65) (((-623 |#1|)) 92)) (-2496 ((|#1| $) 74)) (-1793 (((-623 |#1|) $ (-1158 $)) 76) (((-623 |#1|) $) 90)) (-3071 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3928 (((-1073 (-876 |#1|))) 88 (|has| |#1| (-333)))) (-2823 (($ $ (-845)) 28)) (-4132 ((|#1| $) 72)) (-1363 (((-1073 |#1|) $) 42 (|has| |#1| (-509)))) (-3708 ((|#1| (-1158 $)) 67) ((|#1|) 94)) (-2740 (((-1073 |#1|) $) 63)) (-2889 (((-107)) 57)) (-3539 (($ (-1158 |#1|) (-1158 $)) 69) (($ (-1158 |#1|)) 98)) (-3550 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3778 (((-845)) 80)) (-3874 (((-107)) 54)) (-1768 (($ $ (-845)) 33)) (-3544 (((-107)) 50)) (-4016 (((-107)) 48)) (-1627 (((-107)) 52)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3277 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1830 (((-623 |#1|) (-1158 $)) 66) (((-623 |#1|)) 93)) (-2002 ((|#1| $) 75)) (-4044 (((-623 |#1|) $ (-1158 $)) 77) (((-623 |#1|) $) 91)) (-2680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-3221 (((-1073 (-876 |#1|))) 89 (|has| |#1| (-333)))) (-4119 (($ $ (-845)) 29)) (-1249 ((|#1| $) 73)) (-3556 (((-1073 |#1|) $) 43 (|has| |#1| (-509)))) (-1274 ((|#1| (-1158 $)) 68) ((|#1|) 95)) (-3570 (((-1073 |#1|) $) 64)) (-1878 (((-107)) 58)) (-3232 (((-1060) $) 9)) (-2455 (((-107)) 49)) (-4102 (((-107)) 51)) (-2032 (((-107)) 53)) (-4130 (((-1024) $) 10)) (-3377 (((-107)) 56)) (-2612 ((|#1| $ (-517)) 101)) (-1372 (((-1158 |#1|) $ (-1158 $)) 71) (((-623 |#1|) (-1158 $) (-1158 $)) 70) (((-1158 |#1|) $) 103) (((-623 |#1|) (-1158 $)) 102)) (-3367 (((-1158 |#1|) $) 97) (($ (-1158 |#1|)) 96)) (-3861 (((-583 (-876 |#1|)) (-1158 $)) 79) (((-583 (-876 |#1|))) 99)) (-1970 (($ $ $) 25)) (-1293 (((-107)) 62)) (-2262 (((-787) $) 11)) (-3700 (((-1158 $)) 104)) (-3741 (((-583 (-1158 |#1|))) 44 (|has| |#1| (-509)))) (-2182 (($ $ $ $) 26)) (-3450 (((-107)) 60)) (-2365 (($ (-623 |#1|) $) 87)) (-2742 (($ $ $) 24)) (-3014 (((-107)) 61)) (-1901 (((-107)) 59)) (-1555 (((-107)) 55)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-387 |#1|) (-1189) (-156)) (T -387))
+((-3700 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-387 *3)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3449 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 (-623 *3))))) (-3861 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-876 *3))))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-1274 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3708 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-1830 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2998 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3221 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1073 (-876 *3))))) (-3928 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1073 (-876 *3))))) (-2365 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
+(-13 (-337 |t#1|) (-10 -8 (-15 -3700 ((-1158 $))) (-15 -1372 ((-1158 |t#1|) $)) (-15 -1372 ((-623 |t#1|) (-1158 $))) (-15 -2612 (|t#1| $ (-517))) (-15 -3449 ((-1158 (-623 |t#1|)))) (-15 -3861 ((-583 (-876 |t#1|)))) (-15 -3539 ($ (-1158 |t#1|))) (-15 -3367 ((-1158 |t#1|) $)) (-15 -3367 ($ (-1158 |t#1|))) (-15 -1274 (|t#1|)) (-15 -3708 (|t#1|)) (-15 -1830 ((-623 |t#1|))) (-15 -2998 ((-623 |t#1|))) (-15 -4044 ((-623 |t#1|) $)) (-15 -1793 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3221 ((-1073 (-876 |t#1|)))) (-15 -3928 ((-1073 (-876 |t#1|))))) |%noBranch|) (-15 -2365 ($ (-623 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 41)) (-2739 (($ $) 56)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 143)) (-2491 (($ $) NIL)) (-2025 (((-107) $) 35)) (-1966 ((|#1| $) 12)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-1116)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-1116)))) (-3283 (($ |#1| (-517)) 30)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 54)) (-3550 (((-3 $ "failed") $) 128)) (-3389 (((-3 (-377 (-517)) "failed") $) 62 (|has| |#1| (-502)))) (-3748 (((-107) $) 58 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 60 (|has| |#1| (-502)))) (-2293 (($ |#1| (-517)) 32)) (-2022 (((-107) $) 149 (|has| |#1| (-1116)))) (-1690 (((-107) $) 42)) (-2865 (((-703) $) 37)) (-4063 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-2115 ((|#1| $ (-517)) 133)) (-1337 (((-517) $ (-517)) 132)) (-1600 (($ |#1| (-517)) 29)) (-3312 (($ (-1 |#1| |#1|) $) 140)) (-3878 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 57)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-3217 (($ |#1| (-517)) 31)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-3055 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2283 (((-583 (-2 (|:| -3896 |#1|) (|:| -1725 (-517)))) $) 53)) (-2780 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3896 (((-388 $) $) NIL (|has| |#1| (-1116)))) (-2333 (((-3 $ "failed") $ $) 135)) (-1725 (((-517) $) 129)) (-2287 ((|#1| $) 55)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) $) NIL (|has| |#1| (-478 (-1077) $))) (($ $ (-583 (-1077)) (-583 $)) 83 (|has| |#1| (-478 (-1077) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-2612 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-2042 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3367 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-940))) (((-199) $) 92 (|has| |#1| (-940)))) (-2262 (((-787) $) 111) (($ (-517)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517)))))) (-1818 (((-703)) 47)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 39 T CONST)) (-3675 (($) 38 T CONST)) (-3348 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-107) $ $) 93)) (-1680 (($ $) 125) (($ $ $) NIL)) (-1666 (($ $ $) 137)) (** (($ $ (-845)) NIL) (($ $ (-703)) 99)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
+(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2287 (|#1| $)) (-15 -1725 ((-517) $)) (-15 -3878 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -2780 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1600 ($ |#1| (-517))) (-15 -2283 ((-583 (-2 (|:| -3896 |#1|) (|:| -1725 (-517)))) $)) (-15 -3217 ($ |#1| (-517))) (-15 -1337 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -4063 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2865 ((-703) $)) (-15 -2293 ($ |#1| (-517))) (-15 -3283 ($ |#1| (-517))) (-15 -3055 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1966 (|#1| $)) (-15 -2739 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-940)) (-6 (-940)) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1077) $)) (-6 (-478 (-1077) $)) |%noBranch|))) (-509)) (T -388))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-2287 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3878 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1600 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1725 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1337 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-4063 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3055 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1966 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2739 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3389 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
+(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2287 (|#1| $)) (-15 -1725 ((-517) $)) (-15 -3878 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -2780 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1600 ($ |#1| (-517))) (-15 -2283 ((-583 (-2 (|:| -3896 |#1|) (|:| -1725 (-517)))) $)) (-15 -3217 ($ |#1| (-517))) (-15 -1337 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -4063 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2865 ((-703) $)) (-15 -2293 ($ |#1| (-517))) (-15 -3283 ($ |#1| (-517))) (-15 -3055 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1966 (|#1| $)) (-15 -2739 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-940)) (-6 (-940)) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1077) $)) (-6 (-478 (-1077) $)) |%noBranch|)))
+((-2104 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-2694 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
+(((-389 |#1|) (-10 -7 (-15 -2104 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2694 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
+((-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
+(-10 -7 (-15 -2104 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2694 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
+((-2744 ((|#2| |#2|) 161)) (-2037 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107)) 55)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2037 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107))) (-15 -2744 (|#2| |#2|))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|)) (-1077) |#2|) (T -390))
+((-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1098) (-400 *3))) (-14 *4 (-1077)) (-14 *5 *2))) (-2037 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-14 *6 (-1077)) (-14 *7 *3))))
+(-10 -7 (-15 -2037 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107))) (-15 -2744 (|#2| |#2|)))
+((-3312 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-964) (-779)) (-400 |#1|) (-13 (-964) (-779)) (-400 |#3|)) (T -391))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-964) (-779))) (-4 *6 (-13 (-964) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
+(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2744 ((|#2| |#2|) 88)) (-3098 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060)) 46)) (-2270 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060)) 153)))
+(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3098 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2270 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2744 (|#2| |#2|))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|) (-10 -8 (-15 -2262 ($ |#3|)))) (-777) (-13 (-1136 |#2| |#3|) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $)))) (-903 |#4|) (-1077)) (T -392))
+((-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1098) (-400 *3) (-10 -8 (-15 -2262 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1136 *2 *4) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-903 *5)) (-14 *7 (-1077)))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1136 *3 *7) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8)) (-14 *10 (-1077)))) (-3098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1136 *3 *7) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8)) (-14 *10 (-1077)))))
+(-10 -7 (-15 -3098 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2270 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2744 (|#2| |#2|)))
+((-1250 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1510 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3312 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1006) (-395 |#1|) (-1006) (-395 |#3|)) (T -393))
+((-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1006)) (-4 *5 (-1006)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1006)) (-4 *2 (-1006)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
+(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3963 (($) 44)) (-2374 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-4020 (($ $ $) 39)) (-3873 (((-107) $ $) 28)) (-2390 (((-703)) 47)) (-1871 (($ (-583 |#2|)) 20) (($) NIL)) (-2192 (($) 53)) (-3480 ((|#2| $) 61)) (-4095 ((|#2| $) 59)) (-4161 (((-845) $) 55)) (-2187 (($ $ $) 35)) (-2803 (($ (-845)) 50)) (-1201 (($ $ |#2|) NIL) (($ $ $) 38)) (-4140 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2279 (($ (-583 |#2|)) 24)) (-2332 (($ $) 46)) (-2262 (((-787) $) 33)) (-3515 (((-703) $) 21)) (-3066 (($ (-583 |#2|)) 19) (($) NIL)) (-1572 (((-107) $ $) 16)) (-1596 (((-107) $ $) 13)))
+(((-394 |#1| |#2|) (-10 -8 (-15 -2390 ((-703))) (-15 -2803 (|#1| (-845))) (-15 -4161 ((-845) |#1|)) (-15 -2192 (|#1|)) (-15 -3480 (|#2| |#1|)) (-15 -4095 (|#2| |#1|)) (-15 -3963 (|#1|)) (-15 -2332 (|#1| |#1|)) (-15 -3515 ((-703) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3066 (|#1|)) (-15 -3066 (|#1| (-583 |#2|))) (-15 -1871 (|#1|)) (-15 -1871 (|#1| (-583 |#2|))) (-15 -2187 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3873 ((-107) |#1| |#1|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#2| |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1006)) (T -394))
+((-2390 (*1 *2) (-12 (-4 *4 (-1006)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
+(-10 -8 (-15 -2390 ((-703))) (-15 -2803 (|#1| (-845))) (-15 -4161 ((-845) |#1|)) (-15 -2192 (|#1|)) (-15 -3480 (|#2| |#1|)) (-15 -4095 (|#2| |#1|)) (-15 -3963 (|#1|)) (-15 -2332 (|#1| |#1|)) (-15 -3515 ((-703) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3066 (|#1|)) (-15 -3066 (|#1| (-583 |#2|))) (-15 -1871 (|#1|)) (-15 -1871 (|#1| (-583 |#2|))) (-15 -2187 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3873 ((-107) |#1| |#1|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#2| |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)))
+((-2105 (((-107) $ $) 19)) (-3963 (($) 67 (|has| |#1| (-338)))) (-2374 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-4020 (($ $ $) 78)) (-3873 (((-107) $ $) 79)) (-3443 (((-107) $ (-703)) 8)) (-2390 (((-703)) 61 (|has| |#1| (-338)))) (-1871 (($ (-583 |#1|)) 74) (($) 73)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-2192 (($) 64 (|has| |#1| (-338)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3480 ((|#1| $) 65 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-4095 ((|#1| $) 66 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-4161 (((-845) $) 63 (|has| |#1| (-338)))) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22)) (-2187 (($ $ $) 75)) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-2803 (($ (-845)) 62 (|has| |#1| (-338)))) (-4130 (((-1024) $) 21)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1201 (($ $ |#1|) 77) (($ $ $) 76)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2332 (($ $) 68 (|has| |#1| (-338)))) (-2262 (((-787) $) 18)) (-3515 (((-703) $) 69)) (-3066 (($ (-583 |#1|)) 72) (($) 71)) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 70)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-395 |#1|) (-1189) (-1006)) (T -395))
+((-3515 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1006)) (-5 *2 (-703)))) (-2332 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-338)))) (-3963 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1006)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779)))))
+(-13 (-203 |t#1|) (-1004 |t#1|) (-10 -8 (-6 -4195) (-15 -3515 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -2332 ($ $)) (-15 -3963 ($))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -4095 (|t#1| $)) (-15 -3480 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1004 |#1|) . T) ((-1006) . T) ((-1112) . T))
+((-2892 (((-534 |#2|) |#2| (-1077)) 35)) (-1513 (((-534 |#2|) |#2| (-1077)) 19)) (-2984 ((|#2| |#2| (-1077)) 24)))
+(((-396 |#1| |#2|) (-10 -7 (-15 -1513 ((-534 |#2|) |#2| (-1077))) (-15 -2892 ((-534 |#2|) |#2| (-1077))) (-15 -2984 (|#2| |#2| (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-29 |#1|))) (T -396))
+((-2984 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1098) (-29 *4))))) (-2892 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1098) (-29 *5))))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1098) (-29 *5))))))
+(-10 -7 (-15 -1513 ((-534 |#2|) |#2| (-1077))) (-15 -2892 ((-534 |#2|) |#2| (-1077))) (-15 -2984 (|#2| |#2| (-1077))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-1286 (($ |#2| |#1|) 35)) (-3239 (($ |#2| |#1|) 33)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 10 T CONST)) (-3675 (($) 16 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 34)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4182)) (IF (|has| |#1| (-6 -4182)) (-6 -4182) |%noBranch|) |%noBranch|) (-15 -2262 ($ |#1|)) (-15 -2262 ($ (-301 |#2|))) (-15 -1286 ($ |#2| |#1|)) (-15 -3239 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
+((-2262 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-1286 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-3239 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4182)) (IF (|has| |#1| (-6 -4182)) (-6 -4182) |%noBranch|) |%noBranch|) (-15 -2262 ($ |#1|)) (-15 -2262 ($ (-301 |#2|))) (-15 -1286 ($ |#2| |#1|)) (-15 -3239 ($ |#2| |#1|))))
+((-3296 (((-3 |#2| (-583 |#2|)) |#2| (-1077)) 105)))
+(((-398 |#1| |#2|) (-10 -7 (-15 -3296 ((-3 |#2| (-583 |#2|)) |#2| (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-29 |#1|))) (T -398))
+((-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1098) (-882) (-29 *5))))))
+(-10 -7 (-15 -3296 ((-3 |#2| (-583 |#2|)) |#2| (-1077))))
+((-2080 (((-583 (-1077)) $) 72)) (-1428 (((-377 (-1073 $)) $ (-556 $)) 269)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 234)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1077) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-377 (-876 |#2|)) "failed") $) 320) (((-3 (-876 |#2|) "failed") $) 232) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-556 $) $) NIL) (((-1077) $) 30) (((-517) $) NIL) ((|#2| $) 228) (((-377 (-876 |#2|)) $) 301) (((-876 |#2|) $) 229) (((-377 (-517)) $) NIL)) (-1325 (((-109) (-109)) 47)) (-3662 (($ $) 87)) (-1858 (((-3 (-556 $) "failed") $) 225)) (-1412 (((-583 (-556 $)) $) 226)) (-1743 (((-3 (-583 $) "failed") $) 244)) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) 251)) (-1442 (((-3 (-583 $) "failed") $) 242)) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 260)) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) 248) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) 215) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) 217)) (-2301 (((-107) $) 19)) (-2311 ((|#2| $) 21)) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1077)) 57) (($ $ (-583 (-1077))) 237) (($ $) 238) (($ $ (-109) $ (-1077)) 60) (($ $ (-583 (-109)) (-583 $) (-1077)) 67) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 239) (($ $ (-1077) (-703) (-1 $ (-583 $))) 94) (($ $ (-1077) (-703) (-1 $ $)) 93)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) 235)) (-1463 (($ $) 280)) (-3367 (((-816 (-517)) $) 254) (((-816 (-349)) $) 257) (($ (-388 $)) 316) (((-493) $) NIL)) (-2262 (((-787) $) 236) (($ (-556 $)) 84) (($ (-1077)) 26) (($ |#2|) NIL) (($ (-1029 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 285) (($ (-876 (-377 |#2|))) 325) (($ (-377 (-876 (-377 |#2|)))) 297) (($ (-377 (-876 |#2|))) 291) (($ $) NIL) (($ (-876 |#2|)) 184) (($ (-377 (-517))) 330) (($ (-517)) NIL)) (-1818 (((-703)) 79)) (-4116 (((-107) (-109)) 41)) (-3540 (($ (-1077) $) 33) (($ (-1077) $ $) 34) (($ (-1077) $ $ $) 35) (($ (-1077) $ $ $ $) 36) (($ (-1077) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL)))
+(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-845) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1818 ((-703))) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-876 |#2|) |#1|)) (-15 -3220 ((-3 (-876 |#2|) "failed") |#1|)) (-15 -2262 (|#1| (-876 |#2|))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3402 ((-377 (-876 |#2|)) |#1|)) (-15 -3220 ((-3 (-377 (-876 |#2|)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-876 |#2|)))) (-15 -1428 ((-377 (-1073 |#1|)) |#1| (-556 |#1|))) (-15 -2262 (|#1| (-377 (-876 (-377 |#2|))))) (-15 -2262 (|#1| (-876 (-377 |#2|)))) (-15 -2262 (|#1| (-377 |#2|))) (-15 -1463 (|#1| |#1|)) (-15 -3367 (|#1| (-388 |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1481 ((-3 (-2 (|:| |val| |#1|) (|:| -1725 (-517))) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-1077))) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-109))) (-15 -3662 (|#1| |#1|)) (-15 -2262 (|#1| (-1029 |#2| (-556 |#1|)))) (-15 -3102 ((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1077))) (-15 -3552 (|#1| |#1| (-109) |#1| (-1077))) (-15 -3552 (|#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 (-1077)))) (-15 -3552 (|#1| |#1| (-1077))) (-15 -3540 (|#1| (-1077) (-583 |#1|))) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1|)) (-15 -2080 ((-583 (-1077)) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1412 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2262 (|#1| (-556 |#1|))) (-15 -2262 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
+((-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-1818 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
+(-10 -8 (-15 * (|#1| (-845) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1818 ((-703))) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-876 |#2|) |#1|)) (-15 -3220 ((-3 (-876 |#2|) "failed") |#1|)) (-15 -2262 (|#1| (-876 |#2|))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3402 ((-377 (-876 |#2|)) |#1|)) (-15 -3220 ((-3 (-377 (-876 |#2|)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-876 |#2|)))) (-15 -1428 ((-377 (-1073 |#1|)) |#1| (-556 |#1|))) (-15 -2262 (|#1| (-377 (-876 (-377 |#2|))))) (-15 -2262 (|#1| (-876 (-377 |#2|)))) (-15 -2262 (|#1| (-377 |#2|))) (-15 -1463 (|#1| |#1|)) (-15 -3367 (|#1| (-388 |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1481 ((-3 (-2 (|:| |val| |#1|) (|:| -1725 (-517))) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-1077))) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-109))) (-15 -3662 (|#1| |#1|)) (-15 -2262 (|#1| (-1029 |#2| (-556 |#1|)))) (-15 -3102 ((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1077))) (-15 -3552 (|#1| |#1| (-109) |#1| (-1077))) (-15 -3552 (|#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 (-1077)))) (-15 -3552 (|#1| |#1| (-1077))) (-15 -3540 (|#1| (-1077) (-583 |#1|))) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1|)) (-15 -2080 ((-583 (-1077)) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1412 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2262 (|#1| (-556 |#1|))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 116 (|has| |#1| (-25)))) (-2080 (((-583 (-1077)) $) 203)) (-1428 (((-377 (-1073 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-2491 (($ $) 144 (|has| |#1| (-509)))) (-2025 (((-107) $) 146 (|has| |#1| (-509)))) (-3864 (((-583 (-556 $)) $) 44)) (-1783 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3939 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1322 (($ $) 163 (|has| |#1| (-509)))) (-3306 (((-388 $) $) 164 (|has| |#1| (-509)))) (-1765 (((-107) $ $) 154 (|has| |#1| (-509)))) (-3038 (($) 102 (-3786 (|has| |#1| (-1018)) (|has| |#1| (-25))) CONST)) (-3220 (((-3 (-556 $) "failed") $) 69) (((-3 (-1077) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-955 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-876 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-876 |#1|) "failed") $) 123 (|has| |#1| (-964))) (((-3 (-377 (-517)) "failed") $) 95 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 (((-556 $) $) 68) (((-1077) $) 215) (((-517) $) 210 (|has| |#1| (-955 (-517)))) ((|#1| $) 206) (((-377 (-876 |#1|)) $) 168 (|has| |#1| (-509))) (((-876 |#1|) $) 122 (|has| |#1| (-964))) (((-377 (-517)) $) 94 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-2383 (($ $ $) 158 (|has| |#1| (-509)))) (-2947 (((-623 (-517)) (-623 $)) 137 (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 136 (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 135 (|has| |#1| (-964))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-964)))) (-3550 (((-3 $ "failed") $) 105 (|has| |#1| (-1018)))) (-2356 (($ $ $) 157 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-2022 (((-107) $) 165 (|has| |#1| (-509)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 212 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 211 (|has| |#1| (-810 (-349))))) (-3314 (($ $) 51) (($ (-583 $)) 50)) (-3854 (((-583 (-109)) $) 43)) (-1325 (((-109) (-109)) 42)) (-1690 (((-107) $) 103 (|has| |#1| (-1018)))) (-3448 (((-107) $) 22 (|has| $ (-955 (-517))))) (-3662 (($ $) 186 (|has| |#1| (-964)))) (-3858 (((-1029 |#1| (-556 $)) $) 187 (|has| |#1| (-964)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-3419 (((-1073 $) (-556 $)) 25 (|has| $ (-964)))) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3312 (($ (-1 $ $) (-556 $)) 36)) (-1858 (((-3 (-556 $) "failed") $) 46)) (-2323 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-3232 (((-1060) $) 9)) (-1412 (((-583 (-556 $)) $) 45)) (-1385 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-1743 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1018)))) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) 183 (|has| |#1| (-964)))) (-1442 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) 191 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) 184 (|has| |#1| (-964)))) (-3731 (((-107) $ (-109)) 40) (((-107) $ (-1077)) 39)) (-2291 (($ $) 107 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1795 (((-703) $) 47)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 205)) (-2311 ((|#1| $) 204)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 151 (|has| |#1| (-509)))) (-2361 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-4060 (((-107) $ $) 35) (((-107) $ (-1077)) 34)) (-3896 (((-388 $) $) 162 (|has| |#1| (-509)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 159 (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-2278 (((-107) $) 23 (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1077) (-1 $ (-583 $))) 31) (($ $ (-1077) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1077)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1077)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1077)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ $)) 179 (|has| |#1| (-964)))) (-3388 (((-703) $) 155 (|has| |#1| (-509)))) (-2612 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 156 (|has| |#1| (-509)))) (-1816 (($ $) 49) (($ $ $) 48)) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 128 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 127 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 126 (|has| |#1| (-964))) (($ $ (-1077)) 125 (|has| |#1| (-964)))) (-1463 (($ $) 176 (|has| |#1| (-509)))) (-2082 (((-1029 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2819 (($ $) 24 (|has| $ (-964)))) (-3367 (((-816 (-517)) $) 214 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 213 (|has| |#1| (-558 (-816 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1853 (($ $ $) 111 (|has| |#1| (-442)))) (-1970 (($ $ $) 112 (|has| |#1| (-442)))) (-2262 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1077)) 217) (($ |#1|) 208) (($ (-1029 |#1| (-556 $))) 188 (|has| |#1| (-964))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-876 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-876 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-876 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-876 |#1|)) 124 (|has| |#1| (-964))) (($ (-377 (-517))) 96 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517)))))) (($ (-517)) 93 (-3786 (|has| |#1| (-964)) (|has| |#1| (-955 (-517)))))) (-3385 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-1818 (((-703)) 133 (|has| |#1| (-964)))) (-3488 (($ $) 53) (($ (-583 $)) 52)) (-4116 (((-107) (-109)) 41)) (-2944 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3540 (($ (-1077) $) 202) (($ (-1077) $ $) 201) (($ (-1077) $ $ $) 200) (($ (-1077) $ $ $ $) 199) (($ (-1077) (-583 $)) 198)) (-2806 (($ $ (-517)) 110 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1018))) (($ $ (-845)) 100 (|has| |#1| (-1018)))) (-3663 (($) 115 (|has| |#1| (-25)) CONST)) (-3675 (($) 101 (|has| |#1| (-1018)) CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 132 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 131 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 130 (|has| |#1| (-964))) (($ $ (-1077)) 129 (|has| |#1| (-964)))) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1692 (($ (-1029 |#1| (-556 $)) (-1029 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1680 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1666 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1018))) (($ $ (-845)) 99 (|has| |#1| (-1018)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-845) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1018)))))
+(((-400 |#1|) (-1189) (-779)) (T -400))
+((-2301 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1077))))) (-3540 (*1 *1 *2 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1077))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3552 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-3552 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1077)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1077)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-1743 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3044 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) (-4 *1 (-400 *3)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3102 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1570 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-964)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-3662 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-964)))) (-3044 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-964)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) (-4 *1 (-400 *4)))) (-3044 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-964)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) (-4 *1 (-400 *4)))) (-1481 (*1 *2 *1) (|partial| -12 (-4 *3 (-964)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -1725 (-517)))) (-4 *1 (-400 *3)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2082 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1463 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1692 (*1 *1 *2 *2) (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-876 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1073 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1018)))))
+(-13 (-273) (-955 (-1077)) (-808 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2301 ((-107) $)) (-15 -2311 (|t#1| $)) (-15 -2080 ((-583 (-1077)) $)) (-15 -3540 ($ (-1077) $)) (-15 -3540 ($ (-1077) $ $)) (-15 -3540 ($ (-1077) $ $ $)) (-15 -3540 ($ (-1077) $ $ $ $)) (-15 -3540 ($ (-1077) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -3552 ($ $ (-1077))) (-15 -3552 ($ $ (-583 (-1077)))) (-15 -3552 ($ $)) (-15 -3552 ($ $ (-109) $ (-1077))) (-15 -3552 ($ $ (-583 (-109)) (-583 $) (-1077)))) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -3102 ((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-964)) (PROGN (-6 (-964)) (-6 (-955 (-876 |t#1|))) (-6 (-824 (-1077))) (-6 (-347 |t#1|)) (-15 -2262 ($ (-1029 |t#1| (-556 $)))) (-15 -3858 ((-1029 |t#1| (-556 $)) $)) (-15 -3662 ($ $)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109))) (-15 -3044 ((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077))) (-15 -1481 ((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $)) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -3552 ($ $ (-1077) (-703) (-1 $ (-583 $)))) (-15 -3552 ($ $ (-1077) (-703) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-955 (-377 (-876 |t#1|)))) (-15 -3367 ($ (-388 $))) (-15 -2082 ((-1029 |t#1| (-556 $)) $)) (-15 -1463 ($ $)) (-15 -1692 ($ (-1029 |t#1| (-556 $)) (-1029 |t#1| (-556 $)))) (-15 -2262 ($ (-377 |t#1|))) (-15 -2262 ($ (-876 (-377 |t#1|)))) (-15 -2262 ($ (-377 (-876 (-377 |t#1|))))) (-15 -1428 ((-377 (-1073 $)) $ (-556 $))) (IF (|has| |t#1| (-955 (-517))) (-6 (-955 (-377 (-517)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-964)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) ((-579 |#1|) |has| |#1| (-964)) ((-650 #0#) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3786 (|has| |#1| (-1018)) (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-824 (-1077)) |has| |#1| (-964)) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-844) |has| |#1| (-509)) ((-955 (-377 (-517))) -3786 (|has| |#1| (-955 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) ((-955 (-377 (-876 |#1|))) |has| |#1| (-509)) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 (-556 $)) . T) ((-955 (-876 |#1|)) |has| |#1| (-964)) ((-955 (-1077)) . T) ((-955 |#1|) . T) ((-970 #0#) |has| |#1| (-509)) ((-970 |#1|) |has| |#1| (-156)) ((-970 $) |has| |#1| (-509)) ((-964) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-971) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1018) -3786 (|has| |#1| (-1018)) (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1006) . T) ((-1112) . T) ((-1116) |has| |#1| (-509)))
+((-2922 ((|#2| |#2| |#2|) 33)) (-1325 (((-109) (-109)) 44)) (-3668 ((|#2| |#2|) 66)) (-3554 ((|#2| |#2|) 69)) (-2581 ((|#2| |#2|) 32)) (-3746 ((|#2| |#2| |#2|) 35)) (-3518 ((|#2| |#2| |#2|) 37)) (-2672 ((|#2| |#2| |#2|) 34)) (-2747 ((|#2| |#2| |#2|) 36)) (-4116 (((-107) (-109)) 42)) (-4113 ((|#2| |#2|) 39)) (-4084 ((|#2| |#2|) 38)) (-2829 ((|#2| |#2|) 27)) (-4097 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3466 ((|#2| |#2| |#2|) 31)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -2829 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4097 (|#2| |#2| |#2|)) (-15 -3466 (|#2| |#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -2922 (|#2| |#2| |#2|)) (-15 -2672 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -2747 (|#2| |#2| |#2|)) (-15 -3518 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -3554 (|#2| |#2|)) (-15 -3668 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
+((-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3554 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3518 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2747 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2672 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2922 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3466 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4097 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -2829 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4097 (|#2| |#2| |#2|)) (-15 -3466 (|#2| |#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -2922 (|#2| |#2| |#2|)) (-15 -2672 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -2747 (|#2| |#2| |#2|)) (-15 -3518 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -3554 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)))
+((-4169 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1073 |#2|)) (|:| |pol2| (-1073 |#2|)) (|:| |prim| (-1073 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1073 |#2|))) (|:| |prim| (-1073 |#2|))) (-583 |#2|)) 58)))
+(((-402 |#1| |#2|) (-10 -7 (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1073 |#2|))) (|:| |prim| (-1073 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1073 |#2|)) (|:| |pol2| (-1073 |#2|)) (|:| |prim| (-1073 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
+((-4169 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1073 *3)) (|:| |pol2| (-1073 *3)) (|:| |prim| (-1073 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1073 *5))) (|:| |prim| (-1073 *5)))) (-5 *1 (-402 *4 *5)))))
+(-10 -7 (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1073 |#2|))) (|:| |prim| (-1073 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1073 |#2|)) (|:| |pol2| (-1073 |#2|)) (|:| |prim| (-1073 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1472 (((-1163)) 18)) (-3914 (((-1073 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
+(((-403 |#1| |#2|) (-10 -7 (-15 -3914 ((-377 (-517)) |#2|)) (-15 -3914 ((-1073 (-377 (-517))) |#2| (-556 |#2|))) (-15 -1472 ((-1163)))) (-13 (-779) (-509) (-955 (-517))) (-400 |#1|)) (T -403))
+((-1472 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-1163)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-3914 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
+(-10 -7 (-15 -3914 ((-377 (-517)) |#2|)) (-15 -3914 ((-1073 (-377 (-517))) |#2| (-556 |#2|))) (-15 -1472 ((-1163))))
+((-3511 (((-107) $) 28)) (-2219 (((-107) $) 30)) (-3744 (((-107) $) 31)) (-3143 (((-107) $) 34)) (-3043 (((-107) $) 29)) (-1988 (((-107) $) 33)) (-2262 (((-787) $) 18) (($ (-1060)) 27) (($ (-1077)) 23) (((-1077) $) 22) (((-1010) $) 21)) (-2801 (((-107) $) 32)) (-1572 (((-107) $ $) 15)))
+(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1060))) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2262 ((-1010) $)) (-15 -3511 ((-107) $)) (-15 -3043 ((-107) $)) (-15 -3744 ((-107) $)) (-15 -1988 ((-107) $)) (-15 -3143 ((-107) $)) (-15 -2801 ((-107) $)) (-15 -2219 ((-107) $)) (-15 -1572 ((-107) $ $))))) (T -404))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-404)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-404)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-404)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-404)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1060))) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2262 ((-1010) $)) (-15 -3511 ((-107) $)) (-15 -3043 ((-107) $)) (-15 -3744 ((-107) $)) (-15 -1988 ((-107) $)) (-15 -3143 ((-107) $)) (-15 -2801 ((-107) $)) (-15 -2219 ((-107) $)) (-15 -1572 ((-107) $ $))))
+((-1239 (((-3 (-388 (-1073 (-377 (-517)))) "failed") |#3|) 69)) (-2748 (((-388 |#3|) |#3|) 33)) (-1810 (((-3 (-388 (-1073 (-47))) "failed") |#3|) 27 (|has| |#2| (-955 (-47))))) (-3706 (((-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))) |#3|) 35)))
+(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -2748 ((-388 |#3|) |#3|)) (-15 -1239 ((-3 (-388 (-1073 (-377 (-517)))) "failed") |#3|)) (-15 -3706 ((-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))) |#3|)) (IF (|has| |#2| (-955 (-47))) (-15 -1810 ((-3 (-388 (-1073 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-509) (-779) (-955 (-517))) (-400 |#1|) (-1134 |#2|)) (T -405))
+((-1810 (*1 *2 *3) (|partial| -12 (-4 *5 (-955 (-47))) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1073 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-1239 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1073 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))))
+(-10 -7 (-15 -2748 ((-388 |#3|) |#3|)) (-15 -1239 ((-3 (-388 (-1073 (-377 (-517)))) "failed") |#3|)) (-15 -3706 ((-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))) |#3|)) (IF (|has| |#2| (-955 (-47))) (-15 -1810 ((-3 (-388 (-1073 (-47))) "failed") |#3|)) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-3188 (((-1060) $ (-1060)) NIL)) (-3010 (($ $ (-1060)) NIL)) (-2872 (((-1060) $) NIL)) (-3664 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-3723 (($ (-358)) NIL) (($ (-358) (-1060)) NIL)) (-2981 (((-358) $) NIL)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2234 (((-1163) (-1060)) 9)) (-2215 (((-1163) (-1060)) 10)) (-2475 (((-1163)) 11)) (-2262 (((-787) $) NIL)) (-3604 (($ $) 35)) (-1572 (((-107) $ $) NIL)))
+(((-406) (-13 (-334 (-358) (-1060)) (-10 -7 (-15 -3664 ((-358) (-358) (-358))) (-15 -3664 ((-358) (-358))) (-15 -2234 ((-1163) (-1060))) (-15 -2215 ((-1163) (-1060))) (-15 -2475 ((-1163)))))) (T -406))
+((-3664 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406)))) (-2475 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-406)))))
+(-13 (-334 (-358) (-1060)) (-10 -7 (-15 -3664 ((-358) (-358) (-358))) (-15 -3664 ((-358) (-358))) (-15 -2234 ((-1163) (-1060))) (-15 -2215 ((-1163) (-1060))) (-15 -2475 ((-1163)))))
+((-2105 (((-107) $ $) NIL)) (-3324 (((-3 (|:| |fst| (-404)) (|:| -2026 "void")) $) 10)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1404 (($) 31)) (-3123 (($) 37)) (-1918 (($) 33)) (-1945 (($) 35)) (-1511 (($) 32)) (-3794 (($) 34)) (-1827 (($) 36)) (-2049 (((-107) $) 8)) (-2705 (((-583 (-876 (-517))) $) 16)) (-2279 (($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-876 (-517))) (-107)) 26)) (-2262 (((-787) $) 21) (($ (-404)) 28)) (-1572 (((-107) $ $) NIL)))
+(((-407) (-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -2262 ($ (-404))) (-15 -3324 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -2705 ((-583 (-876 (-517))) $)) (-15 -2049 ((-107) $)) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-107))) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-876 (-517))) (-107))) (-15 -1404 ($)) (-15 -1511 ($)) (-15 -1918 ($)) (-15 -3123 ($)) (-15 -3794 ($)) (-15 -1945 ($)) (-15 -1827 ($))))) (T -407))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *1 (-407)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-583 (-876 (-517)))) (-5 *1 (-407)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *3 (-583 (-1077))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-1404 (*1 *1) (-5 *1 (-407))) (-1511 (*1 *1) (-5 *1 (-407))) (-1918 (*1 *1) (-5 *1 (-407))) (-3123 (*1 *1) (-5 *1 (-407))) (-3794 (*1 *1) (-5 *1 (-407))) (-1945 (*1 *1) (-5 *1 (-407))) (-1827 (*1 *1) (-5 *1 (-407))))
+(-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -2262 ($ (-404))) (-15 -3324 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -2705 ((-583 (-876 (-517))) $)) (-15 -2049 ((-107) $)) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-107))) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-876 (-517))) (-107))) (-15 -1404 ($)) (-15 -1511 ($)) (-15 -1918 ($)) (-15 -3123 ($)) (-15 -3794 ($)) (-15 -1945 ($)) (-15 -1827 ($))))
+((-2105 (((-107) $ $) NIL)) (-2981 (((-1077) $) 8)) (-3232 (((-1060) $) 16)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 13)))
+(((-408 |#1|) (-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $)))) (-1077)) (T -408))
+((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-408 *3)) (-14 *3 *2))))
+(-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $))))
+((-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-1158 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 11)))
+(((-409) (-1189)) (T -409))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-632))) (-4 *1 (-409)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-409)))))
+(-13 (-365) (-10 -8 (-15 -2262 ($ (-1158 (-632)))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1112) . T))
+((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 21) (((-3 $ "failed") (-1158 (-286 (-517)))) 19) (((-3 $ "failed") (-1158 (-876 (-349)))) 17) (((-3 $ "failed") (-1158 (-876 (-517)))) 15) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 13) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 11)) (-3402 (($ (-1158 (-286 (-349)))) 22) (($ (-1158 (-286 (-517)))) 20) (($ (-1158 (-876 (-349)))) 18) (($ (-1158 (-876 (-517)))) 16) (($ (-1158 (-377 (-876 (-349))))) 14) (($ (-1158 (-377 (-876 (-517))))) 12)) (-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 23)))
+(((-410) (-1189)) (T -410))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410)))))
+(-13 (-365) (-10 -8 (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -3402 ($ (-1158 (-286 (-349))))) (-15 -3220 ((-3 $ "failed") (-1158 (-286 (-349))))) (-15 -3402 ($ (-1158 (-286 (-517))))) (-15 -3220 ((-3 $ "failed") (-1158 (-286 (-517))))) (-15 -3402 ($ (-1158 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-1158 (-876 (-349))))) (-15 -3402 ($ (-1158 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-1158 (-876 (-517))))) (-15 -3402 ($ (-1158 (-377 (-876 (-349)))))) (-15 -3220 ((-3 $ "failed") (-1158 (-377 (-876 (-349)))))) (-15 -3402 ($ (-1158 (-377 (-876 (-517)))))) (-15 -3220 ((-3 $ "failed") (-1158 (-377 (-876 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1112) . T))
+((-2426 (((-107)) 17)) (-1516 (((-107) (-107)) 18)) (-3166 (((-107)) 13)) (-1689 (((-107) (-107)) 14)) (-2134 (((-107)) 15)) (-1801 (((-107) (-107)) 16)) (-2633 (((-845) (-845)) 21) (((-845)) 20)) (-2865 (((-703) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517))))) 42)) (-3826 (((-845) (-845)) 23) (((-845)) 22)) (-2247 (((-2 (|:| -3374 (-517)) (|:| -2283 (-583 |#1|))) |#1|) 62)) (-3878 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517))))))) 124)) (-3185 (((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)) 150)) (-2470 (((-388 |#1|) |#1| (-703) (-703)) 163) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 160) (((-388 |#1|) |#1| (-583 (-703))) 162) (((-388 |#1|) |#1| (-703)) 161) (((-388 |#1|) |#1|) 159)) (-2684 (((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703) (-107)) 165) (((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703)) 166) (((-3 |#1| "failed") (-845) |#1| (-583 (-703))) 168) (((-3 |#1| "failed") (-845) |#1| (-703)) 167) (((-3 |#1| "failed") (-845) |#1|) 169)) (-3896 (((-388 |#1|) |#1| (-703) (-703)) 158) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 154) (((-388 |#1|) |#1| (-583 (-703))) 156) (((-388 |#1|) |#1| (-703)) 155) (((-388 |#1|) |#1|) 153)) (-3478 (((-107) |#1|) 37)) (-4048 (((-670 (-703)) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517))))) 67)) (-4029 (((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107) (-1008 (-703)) (-703)) 152)))
+(((-411 |#1|) (-10 -7 (-15 -3878 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))))) (-15 -4048 ((-670 (-703)) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -3826 ((-845))) (-15 -3826 ((-845) (-845))) (-15 -2633 ((-845))) (-15 -2633 ((-845) (-845))) (-15 -2865 ((-703) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -2247 ((-2 (|:| -3374 (-517)) (|:| -2283 (-583 |#1|))) |#1|)) (-15 -2426 ((-107))) (-15 -1516 ((-107) (-107))) (-15 -3166 ((-107))) (-15 -1689 ((-107) (-107))) (-15 -3478 ((-107) |#1|)) (-15 -2134 ((-107))) (-15 -1801 ((-107) (-107))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1| (-703))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3896 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1| (-703))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -2470 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1|)) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703) (-107))) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107))) (-15 -4029 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107) (-1008 (-703)) (-703)))) (-1134 (-517))) (T -411))
+((-4029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1008 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-845)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2470 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-1801 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2134 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3478 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3166 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2426 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2247 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3374 (-517)) (|:| -2283 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517))))) (-4 *4 (-1134 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2633 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3826 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517))))) (-4 *4 (-1134 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *4) (|:| -1332 (-517))))))) (-4 *4 (-1134 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(-10 -7 (-15 -3878 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))))) (-15 -4048 ((-670 (-703)) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -3826 ((-845))) (-15 -3826 ((-845) (-845))) (-15 -2633 ((-845))) (-15 -2633 ((-845) (-845))) (-15 -2865 ((-703) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -2247 ((-2 (|:| -3374 (-517)) (|:| -2283 (-583 |#1|))) |#1|)) (-15 -2426 ((-107))) (-15 -1516 ((-107) (-107))) (-15 -3166 ((-107))) (-15 -1689 ((-107) (-107))) (-15 -3478 ((-107) |#1|)) (-15 -2134 ((-107))) (-15 -1801 ((-107) (-107))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1| (-703))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3896 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1| (-703))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -2470 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1|)) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703) (-107))) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107))) (-15 -4029 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107) (-1008 (-703)) (-703))))
+((-4073 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-3153 (((-517) |#2|) 55)) (-2574 ((|#3| |#2|) 25)) (-3522 ((|#3| |#2| (-845)) 14)) (-3728 ((|#3| |#2|) 15)) (-1984 ((|#3| |#2|) 9)) (-1795 ((|#3| |#2|) 10)) (-1260 ((|#3| |#2| (-845)) 62) ((|#3| |#2|) 30)) (-3170 (((-517) |#2|) 57)))
+(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3170 ((-517) |#2|)) (-15 -1260 (|#3| |#2|)) (-15 -1260 (|#3| |#2| (-845))) (-15 -3153 ((-517) |#2|)) (-15 -4073 ((-517) |#2| (-703))) (-15 -4073 ((-517) |#2|)) (-15 -3522 (|#3| |#2| (-845))) (-15 -2574 (|#3| |#2|)) (-15 -1984 (|#3| |#2|)) (-15 -1795 (|#3| |#2|)) (-15 -3728 (|#3| |#2|))) (-964) (-1134 |#1|) (-13 (-374) (-955 |#1|) (-333) (-1098) (-256))) (T -412))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-1984 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-2574 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-3522 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *5 (-964)) (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5)))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1134 *4)) (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))) (-4073 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1134 *5)) (-4 *6 (-13 (-374) (-955 *5) (-333) (-1098) (-256))))) (-3153 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1134 *4)) (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))) (-1260 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *5 (-964)) (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-3170 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1134 *4)) (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))))
+(-10 -7 (-15 -3170 ((-517) |#2|)) (-15 -1260 (|#3| |#2|)) (-15 -1260 (|#3| |#2| (-845))) (-15 -3153 ((-517) |#2|)) (-15 -4073 ((-517) |#2| (-703))) (-15 -4073 ((-517) |#2|)) (-15 -3522 (|#3| |#2| (-845))) (-15 -2574 (|#3| |#2|)) (-15 -1984 (|#3| |#2|)) (-15 -1795 (|#3| |#2|)) (-15 -3728 (|#3| |#2|)))
+((-3365 ((|#2| (-1158 |#1|)) 36)) (-2619 ((|#2| |#2| |#1|) 49)) (-3777 ((|#2| |#2| |#1|) 41)) (-1894 ((|#2| |#2|) 38)) (-1837 (((-107) |#2|) 30)) (-2432 (((-583 |#2|) (-845) (-388 |#2|)) 16)) (-2684 ((|#2| (-845) (-388 |#2|)) 21)) (-4048 (((-670 (-703)) (-388 |#2|)) 25)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -1837 ((-107) |#2|)) (-15 -3365 (|#2| (-1158 |#1|))) (-15 -1894 (|#2| |#2|)) (-15 -3777 (|#2| |#2| |#1|)) (-15 -2619 (|#2| |#2| |#1|)) (-15 -4048 ((-670 (-703)) (-388 |#2|))) (-15 -2684 (|#2| (-845) (-388 |#2|))) (-15 -2432 ((-583 |#2|) (-845) (-388 |#2|)))) (-964) (-1134 |#1|)) (T -413))
+((-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-388 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-964)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-388 *2)) (-4 *2 (-1134 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-964)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-964)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-2619 (*1 *2 *2 *3) (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) (-3777 (*1 *2 *2 *3) (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) (-1894 (*1 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-964)) (-4 *2 (-1134 *4)) (-5 *1 (-413 *4 *2)))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -1837 ((-107) |#2|)) (-15 -3365 (|#2| (-1158 |#1|))) (-15 -1894 (|#2| |#2|)) (-15 -3777 (|#2| |#2| |#1|)) (-15 -2619 (|#2| |#2| |#1|)) (-15 -4048 ((-670 (-703)) (-388 |#2|))) (-15 -2684 (|#2| (-845) (-388 |#2|))) (-15 -2432 ((-583 |#2|) (-845) (-388 |#2|))))
+((-1374 (((-703)) 41)) (-4159 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-3548 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-1531 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-1396 (((-703)) 40) (((-703) (-703)) 39)) (-3401 ((|#1| (-703) (-517)) 29)) (-1758 (((-1163)) 43)))
+(((-414 |#1|) (-10 -7 (-15 -3401 (|#1| (-703) (-517))) (-15 -1396 ((-703) (-703))) (-15 -1396 ((-703))) (-15 -1374 ((-703))) (-15 -1758 ((-1163))) (IF (|has| |#1| (-374)) (PROGN (-15 -1531 ((-517) |#1|)) (-15 -3548 ((-517) |#1|)) (-15 -4159 ((-703) (-703))) (-15 -4159 ((-703)))) |%noBranch|)) (-964)) (T -414))
+((-4159 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-3548 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-1531 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-1758 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-1374 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-1396 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-964)))))
+(-10 -7 (-15 -3401 (|#1| (-703) (-517))) (-15 -1396 ((-703) (-703))) (-15 -1396 ((-703))) (-15 -1374 ((-703))) (-15 -1758 ((-1163))) (IF (|has| |#1| (-374)) (PROGN (-15 -1531 ((-517) |#1|)) (-15 -3548 ((-517) |#1|)) (-15 -4159 ((-703) (-703))) (-15 -4159 ((-703)))) |%noBranch|))
+((-3971 (((-583 (-517)) (-517)) 59)) (-2022 (((-107) (-153 (-517))) 63)) (-3896 (((-388 (-153 (-517))) (-153 (-517))) 58)))
+(((-415) (-10 -7 (-15 -3896 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3971 ((-583 (-517)) (-517))) (-15 -2022 ((-107) (-153 (-517)))))) (T -415))
+((-2022 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-3971 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
+(-10 -7 (-15 -3896 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3971 ((-583 (-517)) (-517))) (-15 -2022 ((-107) (-153 (-517)))))
+((-1440 ((|#4| |#4| (-583 |#4|)) 59)) (-4072 (((-583 |#4|) (-583 |#4|) (-1060) (-1060)) 17) (((-583 |#4|) (-583 |#4|) (-1060)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1440 (|#4| |#4| (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060) (-1060)))) (-278) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -416))
+((-4072 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1440 (|#4| |#4| (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060) (-1060))))
+((-3394 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 71) (((-583 (-583 |#4|)) (-583 |#4|)) 70) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 64) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 65)) (-3771 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 41) (((-583 (-583 |#4|)) (-583 |#4|)) 61)))
+(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -417))
+((-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3394 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3394 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(-10 -7 (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
+((-1833 (((-703) |#4|) 12)) (-4152 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)))) 31)) (-2268 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3321 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3740 ((|#4| |#4| (-583 |#4|)) 40)) (-3655 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 69)) (-2510 (((-1163) |#4|) 42)) (-2238 (((-1163) (-583 |#4|)) 51)) (-2447 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 48)) (-1626 (((-1163) (-517)) 77)) (-1617 (((-583 |#4|) (-583 |#4|)) 75)) (-1663 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)) |#4| (-703)) 25)) (-2583 (((-517) |#4|) 76)) (-3428 ((|#4| |#4|) 29)) (-2766 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 55)) (-4118 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 87)) (-3766 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1953 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2715 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-1477 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3988 (((-107) |#2| |#2|) 56)) (-3813 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2685 (((-107) |#2| |#2| |#2| |#2|) 59)) (-3489 ((|#4| |#4| (-583 |#4|)) 70)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3489 (|#4| |#4| (-583 |#4|))) (-15 -3740 (|#4| |#4| (-583 |#4|))) (-15 -2766 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -1953 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3988 ((-107) |#2| |#2|)) (-15 -2685 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3813 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1477 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3655 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3428 (|#4| |#4|)) (-15 -4152 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))))) (-15 -3321 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2268 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1617 ((-583 |#4|) (-583 |#4|))) (-15 -2583 ((-517) |#4|)) (-15 -2510 ((-1163) |#4|)) (-15 -2447 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -4118 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -2238 ((-1163) (-583 |#4|))) (-15 -1626 ((-1163) (-517))) (-15 -3766 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1663 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)) |#4| (-703))) (-15 -1833 ((-703) |#4|))) (-421) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -418))
+((-1833 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -2242 *4))) (-5 *5 (-703)) (-4 *4 (-873 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-3766 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *7)))) (-4118 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2447 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2268 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-873 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-4152 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 *3)))) (-5 *4 (-703)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) (-3655 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-2715 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-873 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-2685 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5)))) (-3988 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2766 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3740 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-3489 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3489 (|#4| |#4| (-583 |#4|))) (-15 -3740 (|#4| |#4| (-583 |#4|))) (-15 -2766 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -1953 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3988 ((-107) |#2| |#2|)) (-15 -2685 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3813 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1477 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3655 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3428 (|#4| |#4|)) (-15 -4152 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))))) (-15 -3321 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2268 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1617 ((-583 |#4|) (-583 |#4|))) (-15 -2583 ((-517) |#4|)) (-15 -2510 ((-1163) |#4|)) (-15 -2447 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -4118 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -2238 ((-1163) (-583 |#4|))) (-15 -1626 ((-1163) (-517))) (-15 -3766 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1663 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)) |#4| (-703))) (-15 -1833 ((-703) |#4|)))
+((-2223 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1582 (((-583 |#4|) (-583 |#4|) (-1060) (-1060)) 42) (((-583 |#4|) (-583 |#4|) (-1060)) 41) (((-583 |#4|) (-583 |#4|)) 36)))
+(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1582 ((-583 |#4|) (-583 |#4|))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060) (-1060))) (IF (|has| |#1| (-333)) (-15 -2223 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-421) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -419))
+((-2223 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1582 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1582 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1582 ((-583 |#4|) (-583 |#4|))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060) (-1060))) (IF (|has| |#1| (-333)) (-15 -2223 (|#4| |#4| (-583 |#4|))) |%noBranch|))
+((-2323 (($ $ $) 14) (($ (-583 $)) 21)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 41)) (-2361 (($ $ $) NIL) (($ (-583 $)) 22)))
+(((-420 |#1|) (-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2323 (|#1| (-583 |#1|))) (-15 -2323 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|))) (-421)) (T -420))
+NIL
+(-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2323 (|#1| (-583 |#1|))) (-15 -2323 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-421) (-1189)) (T -421))
+((-2361 (*1 *1 *1 *1) (-4 *1 (-421))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2323 (*1 *1 *1 *1) (-4 *1 (-421))) (-2323 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-421)))))
+(-13 (-509) (-10 -8 (-15 -2361 ($ $ $)) (-15 -2361 ($ (-583 $))) (-15 -2323 ($ $ $)) (-15 -2323 ($ (-583 $))) (-15 -2664 ((-1073 $) (-1073 $) (-1073 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 (-377 (-876 |#1|)))) (-1158 $)) NIL) (((-1158 (-623 (-377 (-876 |#1|))))) NIL)) (-4026 (((-1158 $)) NIL)) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL)) (-1745 (((-3 $ "failed")) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-2998 (((-623 (-377 (-876 |#1|))) (-1158 $)) NIL) (((-623 (-377 (-876 |#1|)))) NIL)) (-2496 (((-377 (-876 |#1|)) $) NIL)) (-1793 (((-623 (-377 (-876 |#1|))) $ (-1158 $)) NIL) (((-623 (-377 (-876 |#1|))) $) NIL)) (-3071 (((-3 $ "failed") $) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-3928 (((-1073 (-876 (-377 (-876 |#1|))))) NIL (|has| (-377 (-876 |#1|)) (-333))) (((-1073 (-377 (-876 |#1|)))) 79 (|has| |#1| (-509)))) (-2823 (($ $ (-845)) NIL)) (-4132 (((-377 (-876 |#1|)) $) NIL)) (-1363 (((-1073 (-377 (-876 |#1|))) $) 77 (|has| (-377 (-876 |#1|)) (-509)))) (-3708 (((-377 (-876 |#1|)) (-1158 $)) NIL) (((-377 (-876 |#1|))) NIL)) (-2740 (((-1073 (-377 (-876 |#1|))) $) NIL)) (-2889 (((-107)) NIL)) (-3539 (($ (-1158 (-377 (-876 |#1|))) (-1158 $)) 97) (($ (-1158 (-377 (-876 |#1|)))) NIL)) (-3550 (((-3 $ "failed") $) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-3778 (((-845)) NIL)) (-3874 (((-107)) NIL)) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL)) (-4016 (((-107)) NIL)) (-1627 (((-107)) NIL)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL)) (-3277 (((-3 $ "failed")) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-1830 (((-623 (-377 (-876 |#1|))) (-1158 $)) NIL) (((-623 (-377 (-876 |#1|)))) NIL)) (-2002 (((-377 (-876 |#1|)) $) NIL)) (-4044 (((-623 (-377 (-876 |#1|))) $ (-1158 $)) NIL) (((-623 (-377 (-876 |#1|))) $) NIL)) (-2680 (((-3 $ "failed") $) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-3221 (((-1073 (-876 (-377 (-876 |#1|))))) NIL (|has| (-377 (-876 |#1|)) (-333))) (((-1073 (-377 (-876 |#1|)))) 78 (|has| |#1| (-509)))) (-4119 (($ $ (-845)) NIL)) (-1249 (((-377 (-876 |#1|)) $) NIL)) (-3556 (((-1073 (-377 (-876 |#1|))) $) 72 (|has| (-377 (-876 |#1|)) (-509)))) (-1274 (((-377 (-876 |#1|)) (-1158 $)) NIL) (((-377 (-876 |#1|))) NIL)) (-3570 (((-1073 (-377 (-876 |#1|))) $) NIL)) (-1878 (((-107)) NIL)) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL)) (-4102 (((-107)) NIL)) (-2032 (((-107)) NIL)) (-4130 (((-1024) $) NIL)) (-3628 (((-377 (-876 |#1|)) $ $) 66 (|has| |#1| (-509)))) (-4137 (((-377 (-876 |#1|)) $) 65 (|has| |#1| (-509)))) (-2033 (((-377 (-876 |#1|)) $) 89 (|has| |#1| (-509)))) (-3809 (((-1073 (-377 (-876 |#1|))) $) 83 (|has| |#1| (-509)))) (-2735 (((-377 (-876 |#1|))) 67 (|has| |#1| (-509)))) (-4153 (((-377 (-876 |#1|)) $ $) 54 (|has| |#1| (-509)))) (-2235 (((-377 (-876 |#1|)) $) 53 (|has| |#1| (-509)))) (-2206 (((-377 (-876 |#1|)) $) 88 (|has| |#1| (-509)))) (-2106 (((-1073 (-377 (-876 |#1|))) $) 82 (|has| |#1| (-509)))) (-2836 (((-377 (-876 |#1|))) 64 (|has| |#1| (-509)))) (-2609 (($) 95) (($ (-1077)) 101) (($ (-1158 (-1077))) 100) (($ (-1158 $)) 90) (($ (-1077) (-1158 $)) 99) (($ (-1158 (-1077)) (-1158 $)) 98)) (-3377 (((-107)) NIL)) (-2612 (((-377 (-876 |#1|)) $ (-517)) NIL)) (-1372 (((-1158 (-377 (-876 |#1|))) $ (-1158 $)) 92) (((-623 (-377 (-876 |#1|))) (-1158 $) (-1158 $)) NIL) (((-1158 (-377 (-876 |#1|))) $) 37) (((-623 (-377 (-876 |#1|))) (-1158 $)) NIL)) (-3367 (((-1158 (-377 (-876 |#1|))) $) NIL) (($ (-1158 (-377 (-876 |#1|)))) 34)) (-3861 (((-583 (-876 (-377 (-876 |#1|)))) (-1158 $)) NIL) (((-583 (-876 (-377 (-876 |#1|))))) NIL) (((-583 (-876 |#1|)) (-1158 $)) 93 (|has| |#1| (-509))) (((-583 (-876 |#1|))) 94 (|has| |#1| (-509)))) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL)) (-2262 (((-787) $) NIL) (($ (-1158 (-377 (-876 |#1|)))) NIL)) (-3700 (((-1158 $)) 56)) (-3741 (((-583 (-1158 (-377 (-876 |#1|))))) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL)) (-2365 (($ (-623 (-377 (-876 |#1|))) $) NIL)) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL)) (-1901 (((-107)) NIL)) (-1555 (((-107)) NIL)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) 91)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-876 |#1|))) NIL) (($ (-377 (-876 |#1|)) $) NIL) (($ (-1044 |#2| (-377 (-876 |#1|))) $) NIL)))
+(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-876 |#1|))) (-585 (-1044 |#2| (-377 (-876 |#1|)))) (-10 -8 (-15 -2262 ($ (-1158 (-377 (-876 |#1|))))) (-15 -3742 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -2609 ($)) (-15 -2609 ($ (-1077))) (-15 -2609 ($ (-1158 (-1077)))) (-15 -2609 ($ (-1158 $))) (-15 -2609 ($ (-1077) (-1158 $))) (-15 -2609 ($ (-1158 (-1077)) (-1158 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -3221 ((-1073 (-377 (-876 |#1|))))) (-15 -2106 ((-1073 (-377 (-876 |#1|))) $)) (-15 -2235 ((-377 (-876 |#1|)) $)) (-15 -2206 ((-377 (-876 |#1|)) $)) (-15 -3928 ((-1073 (-377 (-876 |#1|))))) (-15 -3809 ((-1073 (-377 (-876 |#1|))) $)) (-15 -4137 ((-377 (-876 |#1|)) $)) (-15 -2033 ((-377 (-876 |#1|)) $)) (-15 -4153 ((-377 (-876 |#1|)) $ $)) (-15 -2836 ((-377 (-876 |#1|)))) (-15 -3628 ((-377 (-876 |#1|)) $ $)) (-15 -2735 ((-377 (-876 |#1|)))) (-15 -3861 ((-583 (-876 |#1|)) (-1158 $))) (-15 -3861 ((-583 (-876 |#1|))))) |%noBranch|))) (-156) (-845) (-583 (-1077)) (-1158 (-623 |#1|))) (T -422))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 *3)))) (-4 *3 (-156)) (-14 *6 (-1158 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))))) (-3742 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3700 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-1963 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3700 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-845)) (-14 *4 (-583 (-1077))) (-14 *5 (-1158 (-623 *2))))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 *2)) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1158 (-1077))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1158 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845)) (-14 *6 (-583 *2)) (-14 *7 (-1158 (-623 *4))))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 (-1077))) (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845)) (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4))))) (-3221 (*1 *2) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3928 (*1 *2) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-4153 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2836 (*1 *2) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2735 (*1 *2) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-876 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-845)) (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4))))) (-3861 (*1 *2) (-12 (-5 *2 (-583 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(-13 (-387 (-377 (-876 |#1|))) (-585 (-1044 |#2| (-377 (-876 |#1|)))) (-10 -8 (-15 -2262 ($ (-1158 (-377 (-876 |#1|))))) (-15 -3742 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -2609 ($)) (-15 -2609 ($ (-1077))) (-15 -2609 ($ (-1158 (-1077)))) (-15 -2609 ($ (-1158 $))) (-15 -2609 ($ (-1077) (-1158 $))) (-15 -2609 ($ (-1158 (-1077)) (-1158 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -3221 ((-1073 (-377 (-876 |#1|))))) (-15 -2106 ((-1073 (-377 (-876 |#1|))) $)) (-15 -2235 ((-377 (-876 |#1|)) $)) (-15 -2206 ((-377 (-876 |#1|)) $)) (-15 -3928 ((-1073 (-377 (-876 |#1|))))) (-15 -3809 ((-1073 (-377 (-876 |#1|))) $)) (-15 -4137 ((-377 (-876 |#1|)) $)) (-15 -2033 ((-377 (-876 |#1|)) $)) (-15 -4153 ((-377 (-876 |#1|)) $ $)) (-15 -2836 ((-377 (-876 |#1|)))) (-15 -3628 ((-377 (-876 |#1|)) $ $)) (-15 -2735 ((-377 (-876 |#1|)))) (-15 -3861 ((-583 (-876 |#1|)) (-1158 $))) (-15 -3861 ((-583 (-876 |#1|))))) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 13)) (-2080 (((-583 (-789 |#1|)) $) 74)) (-1428 (((-1073 $) $ (-789 |#1|)) 46) (((-1073 |#2|) $) 116)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3069 (($ $ (-583 (-517))) 79)) (-2364 (($ $) 68)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| |#3| $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 58)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) 121) (($ (-1073 $) (-789 |#1|)) 52)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) 59)) (-2059 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 |#3| |#3|) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) 39)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) 41)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 40)) (-2311 ((|#2| $) 114)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 126 (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 86) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 89) (($ $ (-789 |#1|) $) 84) (($ $ (-583 (-789 |#1|)) (-583 $)) 105)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 ((|#3| $) 67) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) 123 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) 142) (($ (-517)) NIL) (($ |#2|) 85) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 16 T CONST)) (-3675 (($) 25 T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 110)) (** (($ $ (-845)) NIL) (($ $ (-703)) 108)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-423 |#1| |#2| |#3|) (-13 (-873 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) (-583 (-1077)) (-964) (-212 (-3573 |#1|) (-703))) (T -423))
+((-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1077))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-964)) (-4 *5 (-212 (-3573 *3) (-703))))))
+(-13 (-873 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517))))))
+((-3284 (((-107) |#1| (-583 |#2|)) 66)) (-1338 (((-3 (-1158 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 75)) (-2443 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1158 (-583 |#2|))) 77)) (-2563 ((|#2| |#2| |#1|) 28)) (-1642 (((-703) |#2| (-583 |#2|)) 20)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -2563 (|#2| |#2| |#1|)) (-15 -1642 ((-703) |#2| (-583 |#2|))) (-15 -1338 ((-3 (-1158 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2443 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1158 (-583 |#2|)))) (-15 -3284 ((-107) |#1| (-583 |#2|)))) (-278) (-1134 |#1|)) (T -424))
+((-3284 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1134 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1158 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1134 *4)))) (-1338 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1134 *4)) (-5 *2 (-1158 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-2563 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1134 *3)))))
+(-10 -7 (-15 -2563 (|#2| |#2| |#1|)) (-15 -1642 ((-703) |#2| (-583 |#2|))) (-15 -1338 ((-3 (-1158 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2443 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1158 (-583 |#2|)))) (-15 -3284 ((-107) |#1| (-583 |#2|))))
+((-3896 (((-388 |#5|) |#5|) 24)))
+(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3896 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077))))) (-725) (-509) (-509) (-873 |#4| |#2| |#1|)) (T -425))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-873 *7 *5 *4)))))
+(-10 -7 (-15 -3896 ((-388 |#5|) |#5|)))
+((-3526 ((|#3|) 36)) (-2664 (((-1073 |#4|) (-1073 |#4|) (-1073 |#4|)) 32)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2664 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3526 (|#3|))) (-725) (-779) (-833) (-873 |#3| |#1| |#2|)) (T -426))
+((-3526 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-873 *2 *3 *4)))) (-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-426 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2664 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3526 (|#3|)))
+((-3896 (((-388 (-1073 |#1|)) (-1073 |#1|)) 41)))
+(((-427 |#1|) (-10 -7 (-15 -3896 ((-388 (-1073 |#1|)) (-1073 |#1|)))) (-278)) (T -427))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1073 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1073 *4)))))
+(-10 -7 (-15 -3896 ((-388 (-1073 |#1|)) (-1073 |#1|))))
+((-2131 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-703))) 41) (((-51) |#2| (-1077) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-3452 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517))) 77) (((-51) |#2| (-1077) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-2151 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 64)) (-2140 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517))) 47)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-703)))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-703)))) (-15 -2140 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -2140 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -2151 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -2151 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -428))
+((-3452 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-3452 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-3452 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517))) (-4 *7 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-2151 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2151 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2140 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2140 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517))) (-4 *7 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-703))) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-703))) (-4 *7 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
+(-10 -7 (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-703)))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-703)))) (-15 -2140 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -2140 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -2151 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -2151 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))))
+((-2563 ((|#2| |#2| |#1|) 15)) (-2466 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-845)) 69)) (-1653 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-845)) 60)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -1653 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-845))) (-15 -2466 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-845))) (-15 -2563 (|#2| |#2| |#1|))) (-278) (-1134 |#1|)) (T -429))
+((-2563 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1134 *3)))) (-2466 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-845)) (-4 *3 (-1134 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-1653 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-845)) (-4 *5 (-278)) (-4 *3 (-1134 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(-10 -7 (-15 -1653 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-845))) (-15 -2466 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-845))) (-15 -2563 (|#2| |#2| |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 28)) (-3622 (($ |#3|) 25)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) 32)) (-1299 (($ |#2| |#4| $) 33)) (-2059 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-2325 (((-646 |#3| |#4| |#5|) $) 15)) (-3657 ((|#3| $) 19)) (-2569 ((|#4| $) 17)) (-2336 ((|#2| $) 29)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-4055 (($ |#2| |#3| |#4|) 26)) (-3663 (($) 36 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 34)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2336 (|#2| $)) (-15 -2325 ((-646 |#3| |#4| |#5|) $)) (-15 -2569 (|#4| $)) (-15 -3657 (|#3| $)) (-15 -2364 ($ $)) (-15 -2059 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -3622 ($ |#3|)) (-15 -4055 ($ |#2| |#3| |#4|)) (-15 -1299 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1077)) (-156) (-779) (-212 (-3573 |#1|) (-703)) (-1 (-107) (-2 (|:| -2803 |#3|) (|:| -1725 |#4|)) (-2 (|:| -2803 |#3|) (|:| -1725 |#4|))) (-873 |#2| |#4| (-789 |#1|))) (T -430))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *6 (-212 (-3573 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) (-2 (|:| -2803 *5) (|:| -1725 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-873 *4 *6 (-789 *3))))) (-2336 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *5 (-212 (-3573 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5)) (-2 (|:| -2803 *4) (|:| -1725 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-873 *2 *5 (-789 *3))))) (-2325 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *6 (-212 (-3573 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) (-2 (|:| -2803 *5) (|:| -1725 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-873 *4 *6 (-789 *3))))) (-2569 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *2)) (-2 (|:| -2803 *5) (|:| -1725 *2)))) (-4 *2 (-212 (-3573 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-873 *4 *2 (-789 *3))))) (-3657 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *5 (-212 (-3573 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5)) (-2 (|:| -2803 *2) (|:| -1725 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-873 *4 *5 (-789 *3))))) (-2364 (*1 *1 *1) (-12 (-14 *2 (-583 (-1077))) (-4 *3 (-156)) (-4 *5 (-212 (-3573 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5)) (-2 (|:| -2803 *4) (|:| -1725 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-873 *3 *5 (-789 *2))))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-3573 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) (-2 (|:| -2803 *5) (|:| -1725 *6)))) (-14 *4 (-583 (-1077))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-873 *2 *6 (-789 *4))))) (-3622 (*1 *1 *2) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *5 (-212 (-3573 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5)) (-2 (|:| -2803 *2) (|:| -1725 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-873 *4 *5 (-789 *3))))) (-4055 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1077))) (-4 *2 (-156)) (-4 *4 (-212 (-3573 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *4)) (-2 (|:| -2803 *3) (|:| -1725 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-873 *2 *4 (-789 *5))))) (-1299 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1077))) (-4 *2 (-156)) (-4 *3 (-212 (-3573 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *3)) (-2 (|:| -2803 *5) (|:| -1725 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-873 *2 *3 (-789 *4))))))
+(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2336 (|#2| $)) (-15 -2325 ((-646 |#3| |#4| |#5|) $)) (-15 -2569 (|#4| $)) (-15 -3657 (|#3| $)) (-15 -2364 ($ $)) (-15 -2059 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -3622 ($ |#3|)) (-15 -4055 ($ |#2| |#3| |#4|)) (-15 -1299 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-3366 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
+(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-873 |#3| |#1| |#2|) (-13 (-955 (-377 (-517))) (-333) (-10 -8 (-15 -2262 ($ |#4|)) (-15 -3858 (|#4| $)) (-15 -2082 (|#4| $))))) (T -431))
+((-3366 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-873 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-955 (-377 (-517))) (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))))
+(-10 -7 (-15 -3366 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2105 (((-107) $ $) NIL)) (-2080 (((-583 |#3|) $) 41)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) NIL (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 47)) (-3402 (($ (-583 |#4|)) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195)))) (-1525 (((-583 |#4|) $) 18 (|has| $ (-6 -4195)))) (-2772 ((|#3| $) 45)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 14 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-4130 (((-1024) $) NIL)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 39)) (-2679 (($) 17)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 16)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2279 (($ (-583 |#4|)) 13)) (-3231 (($ $ |#3|) NIL)) (-2316 (($ $ |#3|) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 38) (((-583 |#4|) $) 48)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 30)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-432 |#1| |#2| |#3| |#4|) (-13 (-896 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3367 ($ (-583 |#4|))) (-6 -4195) (-6 -4196))) (-964) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -432))
+((-3367 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
+(-13 (-896 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3367 ($ (-583 |#4|))) (-6 -4195) (-6 -4196)))
+((-3663 (($) 11)) (-3675 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -3675 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3663 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
+NIL
+(-10 -8 (-15 -3675 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3663 (|#1|)))
+((-2105 (((-107) $ $) 7)) (-3220 (((-3 |#1| "failed") $) 26)) (-3402 ((|#1| $) 25)) (-1983 (($ $ $) 23)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 ((|#2| $) 19)) (-2262 (((-787) $) 11) (($ |#1|) 27)) (-3663 (($) 18 T CONST)) (-3675 (($) 24 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 15) (($ $ $) 13)) (-1666 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-434 |#1| |#2|) (-1189) (-156) (-23)) (T -434))
+((-3675 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1983 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-439 |t#1| |t#2|) (-955 |t#1|) (-10 -8 (-15 (-3675) ($) -1373) (-15 -1983 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-955 |#1|) . T) ((-1006) . T))
+((-2674 (((-1158 (-1158 (-517))) (-1158 (-1158 (-517))) (-845)) 18)) (-1656 (((-1158 (-1158 (-517))) (-845)) 16)))
+(((-435) (-10 -7 (-15 -2674 ((-1158 (-1158 (-517))) (-1158 (-1158 (-517))) (-845))) (-15 -1656 ((-1158 (-1158 (-517))) (-845))))) (T -435))
+((-1656 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 (-517)))) (-5 *1 (-435)))) (-2674 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 (-1158 (-517)))) (-5 *3 (-845)) (-5 *1 (-435)))))
+(-10 -7 (-15 -2674 ((-1158 (-1158 (-517))) (-1158 (-1158 (-517))) (-845))) (-15 -1656 ((-1158 (-1158 (-517))) (-845))))
+((-2305 (((-517) (-517)) 30) (((-517)) 22)) (-1931 (((-517) (-517)) 26) (((-517)) 18)) (-2876 (((-517) (-517)) 28) (((-517)) 20)) (-3057 (((-107) (-107)) 12) (((-107)) 10)) (-3463 (((-107) (-107)) 11) (((-107)) 9)) (-3941 (((-107) (-107)) 24) (((-107)) 15)))
+(((-436) (-10 -7 (-15 -3463 ((-107))) (-15 -3057 ((-107))) (-15 -3463 ((-107) (-107))) (-15 -3057 ((-107) (-107))) (-15 -3941 ((-107))) (-15 -2876 ((-517))) (-15 -1931 ((-517))) (-15 -2305 ((-517))) (-15 -3941 ((-107) (-107))) (-15 -2876 ((-517) (-517))) (-15 -1931 ((-517) (-517))) (-15 -2305 ((-517) (-517))))) (T -436))
+((-2305 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2305 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1931 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2876 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3941 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3057 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3463 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(-10 -7 (-15 -3463 ((-107))) (-15 -3057 ((-107))) (-15 -3463 ((-107) (-107))) (-15 -3057 ((-107) (-107))) (-15 -3941 ((-107))) (-15 -2876 ((-517))) (-15 -1931 ((-517))) (-15 -2305 ((-517))) (-15 -3941 ((-107) (-107))) (-15 -2876 ((-517) (-517))) (-15 -1931 ((-517) (-517))) (-15 -2305 ((-517) (-517))))
+((-2105 (((-107) $ $) NIL)) (-2464 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 91)) (-1781 (((-583 (-1001 (-349))) $) 14) (((-583 (-1001 (-349))) $ (-583 (-1001 (-349)))) 88)) (-1613 (((-583 (-583 (-867 (-199)))) (-583 (-583 (-867 (-199)))) (-583 (-798))) 42)) (-1402 (((-583 (-583 (-867 (-199)))) $) 84)) (-3432 (((-1163) $ (-867 (-199)) (-798)) 104)) (-1728 (($ $) 83) (($ (-583 (-583 (-867 (-199))))) 94) (($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845))) 93) (($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)) (-583 (-236))) 95)) (-3232 (((-1060) $) NIL)) (-2576 (((-517) $) 66)) (-4130 (((-1024) $) NIL)) (-1936 (($) 92)) (-2079 (((-583 (-199)) (-583 (-583 (-867 (-199))))) 52)) (-1662 (((-1163) $ (-583 (-867 (-199))) (-798) (-798) (-845)) 98) (((-1163) $ (-867 (-199))) 100) (((-1163) $ (-867 (-199)) (-798) (-798) (-845)) 99)) (-2262 (((-787) $) 110) (($ (-583 (-583 (-867 (-199))))) 105)) (-3665 (((-1163) $ (-867 (-199))) 103)) (-1572 (((-107) $ $) NIL)))
+(((-437) (-13 (-1006) (-10 -8 (-15 -1936 ($)) (-15 -1728 ($ $)) (-15 -1728 ($ (-583 (-583 (-867 (-199)))))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)) (-583 (-236)))) (-15 -1402 ((-583 (-583 (-867 (-199)))) $)) (-15 -2576 ((-517) $)) (-15 -1781 ((-583 (-1001 (-349))) $)) (-15 -1781 ((-583 (-1001 (-349))) $ (-583 (-1001 (-349))))) (-15 -2464 ((-583 (-349)) $)) (-15 -2464 ((-583 (-349)) $ (-583 (-349)))) (-15 -1662 ((-1163) $ (-583 (-867 (-199))) (-798) (-798) (-845))) (-15 -1662 ((-1163) $ (-867 (-199)))) (-15 -1662 ((-1163) $ (-867 (-199)) (-798) (-798) (-845))) (-15 -3665 ((-1163) $ (-867 (-199)))) (-15 -3432 ((-1163) $ (-867 (-199)) (-798))) (-15 -2262 ($ (-583 (-583 (-867 (-199)))))) (-15 -2262 ((-787) $)) (-15 -1613 ((-583 (-583 (-867 (-199)))) (-583 (-583 (-867 (-199)))) (-583 (-798)))) (-15 -2079 ((-583 (-199)) (-583 (-583 (-867 (-199))))))))) (T -437))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-1936 (*1 *1) (-5 *1 (-437))) (-1728 (*1 *1 *1) (-5 *1 (-437))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) (-1728 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) (-5 *4 (-583 (-845))) (-5 *1 (-437)))) (-1728 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) (-5 *4 (-583 (-845))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437)))) (-1781 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2464 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-1662 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *2 (-1163)) (-5 *1 (-437)))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437)))) (-1662 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *2 (-1163)) (-5 *1 (-437)))) (-3665 (*1 *2 *1 *3) (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437)))) (-3432 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-437)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) (-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) (-5 *1 (-437)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
+(-13 (-1006) (-10 -8 (-15 -1936 ($)) (-15 -1728 ($ $)) (-15 -1728 ($ (-583 (-583 (-867 (-199)))))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)) (-583 (-236)))) (-15 -1402 ((-583 (-583 (-867 (-199)))) $)) (-15 -2576 ((-517) $)) (-15 -1781 ((-583 (-1001 (-349))) $)) (-15 -1781 ((-583 (-1001 (-349))) $ (-583 (-1001 (-349))))) (-15 -2464 ((-583 (-349)) $)) (-15 -2464 ((-583 (-349)) $ (-583 (-349)))) (-15 -1662 ((-1163) $ (-583 (-867 (-199))) (-798) (-798) (-845))) (-15 -1662 ((-1163) $ (-867 (-199)))) (-15 -1662 ((-1163) $ (-867 (-199)) (-798) (-798) (-845))) (-15 -3665 ((-1163) $ (-867 (-199)))) (-15 -3432 ((-1163) $ (-867 (-199)) (-798))) (-15 -2262 ($ (-583 (-583 (-867 (-199)))))) (-15 -2262 ((-787) $)) (-15 -1613 ((-583 (-583 (-867 (-199)))) (-583 (-583 (-867 (-199)))) (-583 (-798)))) (-15 -2079 ((-583 (-199)) (-583 (-583 (-867 (-199))))))))
+((-1680 (($ $) NIL) (($ $ $) 11)))
+(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
+NIL
+(-10 -8 (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 ((|#2| $) 19)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 15) (($ $ $) 13)) (-1666 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-439 |#1| |#2|) (-1189) (-156) (-23)) (T -439))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-3663 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-1006) (-10 -8 (-15 -1191 (|t#2| $)) (-15 (-3663) ($) -1373) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1680 ($ $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2796 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 90)) (-3972 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-2161 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
+(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2161 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1077)) (-421) (-421)) (T -440))
+((-2161 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2796 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(-10 -7 (-15 -3972 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2161 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
+((-3550 (((-3 $ "failed") $) 11)) (-1853 (($ $ $) 20)) (-1970 (($ $ $) 21)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1692 (($ $ $) 9)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
+(((-441 |#1|) (-10 -8 (-15 -1970 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) (-442)) (T -441))
+NIL
+(-10 -8 (-15 -1970 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-3038 (($) 20 T CONST)) (-3550 (((-3 $ "failed") $) 16)) (-1690 (((-107) $) 19)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 27)) (-4130 (((-1024) $) 10)) (-1853 (($ $ $) 23)) (-1970 (($ $ $) 22)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3675 (($) 21 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 26)) (** (($ $ (-845)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-442) (-1189)) (T -442))
+((-2291 (*1 *1 *1) (-4 *1 (-442))) (-1692 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1853 (*1 *1 *1 *1) (-4 *1 (-442))) (-1970 (*1 *1 *1 *1) (-4 *1 (-442))))
+(-13 (-659) (-10 -8 (-15 -2291 ($ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2806 ($ $ (-517))) (-6 -4192) (-15 -1853 ($ $ $)) (-15 -1970 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 17)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) NIL) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 22)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 33 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1154 |#2|)) 15)) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1154 |#2|)) NIL) (($ (-1143 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 18)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 24)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-443 |#1| |#2| |#3|) (-13 (-1139 |#1|) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2262 ($ (-1143 |#1| |#2| |#3|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -443))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1139 |#1|) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2262 ($ (-1143 |#1| |#2| |#3|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) 18)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 19)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 16)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-444 |#1| |#2| |#3| |#4|) (-1089 |#1| |#2|) (-1006) (-1006) (-1089 |#1| |#2|) |#2|) (T -444))
+NIL
+(-1089 |#1| |#2|)
+((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) NIL)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) 26 (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 39)) (-2195 ((|#4| |#4| $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-1525 (((-583 |#4|) $) 16 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 17 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1447 (((-3 |#4| "failed") $) 37)) (-3846 (((-583 |#4|) $) NIL)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 35)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) 47)) (-3175 (($ $ |#4|) NIL)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 13)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 12)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-2316 (($ $ |#3|) 44)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-3275 (((-107) |#3| $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-445 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -445))
+NIL
+(-1106 |#1| |#2| |#3| |#4|)
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2102 (($) 18)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3367 (((-349) $) 22) (((-199) $) 25) (((-377 (-1073 (-517))) $) 19) (((-493) $) 53)) (-2262 (((-787) $) 51) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 36 T CONST)) (-3675 (($) 11 T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-446) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))) (-940) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1073 (-517)))) (-558 (-493)) (-10 -8 (-15 -2102 ($))))) (T -446))
+((-2102 (*1 *1) (-5 *1 (-446))))
+(-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))) (-940) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1073 (-517)))) (-558 (-493)) (-10 -8 (-15 -2102 ($))))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) 16)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 20)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 18)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) 13)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 19)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 11 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) 15 (|has| $ (-6 -4195)))))
+(((-447 |#1| |#2| |#3|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006) (-1060)) (T -447))
+NIL
+(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195)))
+((-1608 (((-517) (-517) (-517)) 7)) (-3576 (((-107) (-517) (-517) (-517) (-517)) 11)) (-2257 (((-1158 (-583 (-517))) (-703) (-703)) 23)))
+(((-448) (-10 -7 (-15 -1608 ((-517) (-517) (-517))) (-15 -3576 ((-107) (-517) (-517) (-517) (-517))) (-15 -2257 ((-1158 (-583 (-517))) (-703) (-703))))) (T -448))
+((-2257 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158 (-583 (-517)))) (-5 *1 (-448)))) (-3576 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-1608 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(-10 -7 (-15 -1608 ((-517) (-517) (-517))) (-15 -3576 ((-107) (-517) (-517) (-517) (-517))) (-15 -2257 ((-1158 (-583 (-517))) (-703) (-703))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-789 |#1|)) $) NIL)) (-1428 (((-1073 $) $ (-789 |#1|)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3069 (($ $ (-583 (-517))) NIL)) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-450 (-3573 |#1|) (-703)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) NIL) (($ (-1073 $) (-789 |#1|)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-450 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 (((-450 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-450 (-3573 |#1|) (-703)) (-450 (-3573 |#1|) (-703))) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 (((-450 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-450 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-449 |#1| |#2|) (-13 (-873 |#2| (-450 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) (-583 (-1077)) (-964)) (T -449))
+((-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1077))) (-4 *4 (-964)))))
+(-13 (-873 |#2| (-450 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517))))))
+((-2105 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1992 (((-107) $) NIL (|has| |#2| (-123)))) (-3622 (($ (-845)) NIL (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#2| (-338)))) (-3502 (((-517) $) NIL (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) NIL (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) NIL (|has| |#2| (-964)))) (-2192 (($) NIL (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) 11)) (-2671 (((-107) $) NIL (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#2| (-964)))) (-2321 (((-107) $) NIL (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#2| (-338)))) (-4130 (((-1024) $) NIL (|has| |#2| (-1006)))) (-2420 ((|#2| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3912 ((|#2| $ $) NIL (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) NIL)) (-1470 (((-125)) NIL (|has| |#2| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#2|) $) NIL) (($ (-517)) NIL (-3786 (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) NIL (|has| |#2| (-1006))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#2| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (-3663 (($) NIL (|has| |#2| (-123)) CONST)) (-3675 (($) NIL (|has| |#2| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1596 (((-107) $ $) 15 (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $ $) NIL (|has| |#2| (-964))) (($ $) NIL (|has| |#2| (-964)))) (-1666 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (* (($ $ $) NIL (|has| |#2| (-964))) (($ (-517) $) NIL (|has| |#2| (-964))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-845) $) NIL (|has| |#2| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
(((-450 |#1| |#2|) (-212 |#1| |#2|) (-703) (-725)) (T -450))
NIL
(-212 |#1| |#2|)
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) NIL)) (-1393 (($) NIL T CONST)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-4155 (($ $ $) 32)) (-2662 (($ $ $) 31)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-4084 ((|#1| $) 26)) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1803 ((|#1| $) 27)) (-3241 (($ |#1| $) 10)) (-1631 (($ (-583 |#1|)) 12)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-4113 ((|#1| $) 23)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 9)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 29)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) 21 (|has| $ (-6 -4192)))))
-(((-451 |#1|) (-13 (-888 |#1|) (-10 -8 (-15 -1631 ($ (-583 |#1|))))) (-779)) (T -451))
-((-1631 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
-(-13 (-888 |#1|) (-10 -8 (-15 -1631 ($ (-583 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1522 (($ $) 69)) (-3135 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-3917 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-4125 (((-1023) $) NIL)) (-1318 (((-3 |#4| "failed") $) 105)) (-3152 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2352 (((-2 (|:| -3186 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2271 (((-787) $) 100)) (-3610 (($) 33 T CONST)) (-1584 (((-107) $ $) 107)) (-1692 (($ $) 72) (($ $ $) NIL)) (-1678 (($ $ $) 70)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
-(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-2785 (($ $ $) 32)) (-3824 (($ $ $) 31)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-4095 ((|#1| $) 26)) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 27)) (-3439 (($ |#1| $) 10)) (-1802 (($ (-583 |#1|)) 12)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1551 ((|#1| $) 23)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 9)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 29)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) 21 (|has| $ (-6 -4195)))))
+(((-451 |#1|) (-13 (-889 |#1|) (-10 -8 (-15 -1802 ($ (-583 |#1|))))) (-779)) (T -451))
+((-1802 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(-13 (-889 |#1|) (-10 -8 (-15 -1802 ($ (-583 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ $) 69)) (-3615 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4162 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-4130 (((-1024) $) NIL)) (-1306 (((-3 |#4| "failed") $) 105)) (-2227 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-1784 (((-2 (|:| -3179 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2262 (((-787) $) 100)) (-3663 (($) 33 T CONST)) (-1572 (((-107) $ $) 107)) (-1680 (($ $) 72) (($ $ $) NIL)) (-1666 (($ $ $) 70)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
+(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
NIL
(-305 |#1| |#2| |#3| |#4|)
-((-3315 (((-517) (-583 (-517))) 30)) (-3541 ((|#1| (-583 |#1|)) 56)) (-3321 (((-583 |#1|) (-583 |#1|)) 57)) (-3418 (((-583 |#1|) (-583 |#1|)) 59)) (-2370 ((|#1| (-583 |#1|)) 58)) (-3119 (((-583 (-517)) (-583 |#1|)) 33)))
-(((-453 |#1|) (-10 -7 (-15 -2370 (|#1| (-583 |#1|))) (-15 -3541 (|#1| (-583 |#1|))) (-15 -3418 ((-583 |#1|) (-583 |#1|))) (-15 -3321 ((-583 |#1|) (-583 |#1|))) (-15 -3119 ((-583 (-517)) (-583 |#1|))) (-15 -3315 ((-517) (-583 (-517))))) (-1133 (-517))) (T -453))
-((-3315 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1133 *2)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1133 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-3321 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1133 (-517))) (-5 *1 (-453 *3)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1133 (-517))) (-5 *1 (-453 *3)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1133 (-517))))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1133 (-517))))))
-(-10 -7 (-15 -2370 (|#1| (-583 |#1|))) (-15 -3541 (|#1| (-583 |#1|))) (-15 -3418 ((-583 |#1|) (-583 |#1|))) (-15 -3321 ((-583 |#1|) (-583 |#1|))) (-15 -3119 ((-583 (-517)) (-583 |#1|))) (-15 -3315 ((-517) (-583 (-517)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-517) $) NIL (|has| (-517) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-517) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| (-517) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-954 (-517))))) (-3390 (((-517) $) NIL) (((-1076) $) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-517) (-954 (-517)))) (((-517) $) NIL (|has| (-517) (-954 (-517))))) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| (-517) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-517) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| (-517) (-1052)))) (-1952 (((-107) $) NIL (|has| (-517) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-517) (-779)))) (-3310 (($ (-1 (-517) (-517)) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-517) (-1052)) CONST)) (-4036 (($ (-377 (-517))) 8)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2961 (((-517) $) NIL (|has| (-517) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1076)) (-583 (-517))) NIL (|has| (-517) (-478 (-1076) (-517)))) (($ $ (-1076) (-517)) NIL (|has| (-517) (-478 (-1076) (-517))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-517) $) NIL)) (-3359 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-939))) (((-199) $) NIL (|has| (-517) (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1076)) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL) (((-922 16) $) 9)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-4099 (((-703)) NIL)) (-3599 (((-517) $) NIL (|has| (-517) (-502)))) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL (|has| (-517) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1704 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-454) (-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2271 ((-922 16) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -4036 ($ (-377 (-517))))))) (T -454))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-922 16)) (-5 *1 (-454)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
-(-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2271 ((-922 16) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -4036 ($ (-377 (-517))))))
-((-1903 (((-583 |#2|) $) 22)) (-3925 (((-107) |#2| $) 27)) (-3644 (((-107) (-1 (-107) |#2|) $) 20)) (-3524 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-4137 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2271 (((-787) $) 36)) (-3602 (((-107) (-1 (-107) |#2|) $) 19)) (-1584 (((-107) $ $) 30)) (-3535 (((-703) $) 16)))
-(((-455 |#1| |#2|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#2| |#2|)) (-15 -3524 (|#1| |#1| (-265 |#2|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3925 ((-107) |#2| |#1|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -1903 ((-583 |#2|) |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3535 ((-703) |#1|))) (-456 |#2|) (-1111)) (T -455))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#2| |#2|)) (-15 -3524 (|#1| |#1| (-265 |#2|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3925 ((-107) |#2| |#1|)) (-15 -4137 ((-703) |#2| |#1|)) (-15 -1903 ((-583 |#2|) |#1|)) (-15 -4137 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3535 ((-703) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-456 |#1|) (-1188) (-1111)) (T -456))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1111)))) (-2746 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4193)) (-4 *1 (-456 *3)) (-4 *3 (-1111)))) (-3602 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4192)) (-4 *1 (-456 *4)) (-4 *4 (-1111)) (-5 *2 (-107)))) (-3644 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4192)) (-4 *1 (-456 *4)) (-4 *4 (-1111)) (-5 *2 (-107)))) (-4137 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4192)) (-4 *1 (-456 *4)) (-4 *4 (-1111)) (-5 *2 (-703)))) (-1534 (*1 *2 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111)) (-5 *2 (-583 *3)))) (-1903 (*1 *2 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111)) (-5 *2 (-583 *3)))) (-4137 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-703)))) (-3925 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-107)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |t#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |t#1| (-1005)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4193)) (-15 -2746 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4192)) (PROGN (-15 -3602 ((-107) (-1 (-107) |t#1|) $)) (-15 -3644 ((-107) (-1 (-107) |t#1|) $)) (-15 -4137 ((-703) (-1 (-107) |t#1|) $)) (-15 -1534 ((-583 |t#1|) $)) (-15 -1903 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -4137 ((-703) |t#1| $)) (-15 -3925 ((-107) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-1648 (($ $) 15)) (-1624 (($ $) 24)) (-1670 (($ $) 12)) (-1682 (($ $) 10)) (-1660 (($ $) 17)) (-1635 (($ $) 22)))
-(((-457 |#1|) (-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|))) (-458)) (T -457))
-NIL
-(-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)))
-((-1648 (($ $) 11)) (-1624 (($ $) 10)) (-1670 (($ $) 9)) (-1682 (($ $) 8)) (-1660 (($ $) 7)) (-1635 (($ $) 6)))
-(((-458) (-1188)) (T -458))
-((-1648 (*1 *1 *1) (-4 *1 (-458))) (-1624 (*1 *1 *1) (-4 *1 (-458))) (-1670 (*1 *1 *1) (-4 *1 (-458))) (-1682 (*1 *1 *1) (-4 *1 (-458))) (-1660 (*1 *1 *1) (-4 *1 (-458))) (-1635 (*1 *1 *1) (-4 *1 (-458))))
-(-13 (-10 -8 (-15 -1635 ($ $)) (-15 -1660 ($ $)) (-15 -1682 ($ $)) (-15 -1670 ($ $)) (-15 -1624 ($ $)) (-15 -1648 ($ $))))
-((-3868 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
-(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1133 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1133 |#3|)) (T -459))
-((-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1133 *7)))))
-(-10 -7 (-15 -3868 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3087 (((-583 $) (-1072 $) (-1076)) NIL) (((-583 $) (-1072 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3477 (($ (-1072 $) (-1076)) NIL) (($ (-1072 $)) NIL) (($ (-875 $)) NIL)) (-3097 (((-107) $) 37)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2524 (((-107) $ $) 63)) (-3834 (((-583 (-556 $)) $) 47)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3915 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3880 (($ $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-3322 (((-583 $) (-1072 $) (-1076)) NIL) (((-583 $) (-1072 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3522 (($ (-1072 $) (-1076)) NIL) (($ (-1072 $)) NIL) (($ (-875 $)) NIL)) (-3228 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3390 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 49)) (-2379 (($ $ $) NIL)) (-2207 (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-377 (-517)))) (|:| |vec| (-1157 (-377 (-517))))) (-623 $) (-1157 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1522 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3659 (($ $) NIL) (($ (-583 $)) NIL)) (-1194 (((-583 (-109)) $) NIL)) (-1934 (((-109) (-109)) NIL)) (-1376 (((-107) $) 40)) (-2686 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3826 (((-1028 (-517) (-556 $)) $) 35)) (-2092 (($ $ (-517)) NIL)) (-2803 (((-1072 $) (-1072 $) (-556 $)) 78) (((-1072 $) (-1072 $) (-583 (-556 $))) 54) (($ $ (-556 $)) 67) (($ $ (-583 (-556 $))) 68)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3760 (((-1072 $) (-556 $)) 65 (|has| $ (-963)))) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 $ $) (-556 $)) NIL)) (-3971 (((-3 (-556 $) "failed") $) NIL)) (-2332 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-1424 (((-583 (-556 $)) $) NIL)) (-1398 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-2066 (((-107) $ (-109)) NIL) (((-107) $ (-1076)) NIL)) (-2300 (($ $) NIL)) (-1809 (((-703) $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1647 (((-107) $ $) NIL) (((-107) $ (-1076)) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1766 (((-107) $) NIL (|has| $ (-954 (-517))))) (-3524 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1076)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1076) (-1 $ (-583 $))) NIL) (($ $ (-1076) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3600 (((-703) $) NIL)) (-2609 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1457 (($ $) NIL) (($ $ $) NIL)) (-2060 (($ $ (-703)) NIL) (($ $) 34)) (-2098 (((-1028 (-517) (-556 $)) $) 18)) (-2387 (($ $) NIL (|has| $ (-963)))) (-3359 (((-349) $) 92) (((-199) $) 100) (((-153 (-349)) $) 108)) (-2271 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1028 (-517) (-556 $))) 19)) (-4099 (((-703)) NIL)) (-3440 (($ $) NIL) (($ (-583 $)) NIL)) (-3750 (((-107) (-109)) 84)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3610 (($) 9 T CONST)) (-3619 (($) 20 T CONST)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 22)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1704 (($ $ $) 42)) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 45) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 25) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
-(((-460) (-13 (-273) (-27) (-954 (-517)) (-954 (-377 (-517))) (-579 (-517)) (-939) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2271 ($ (-1028 (-517) (-556 $)))) (-15 -3826 ((-1028 (-517) (-556 $)) $)) (-15 -2098 ((-1028 (-517) (-556 $)) $)) (-15 -1522 ($ $)) (-15 -2524 ((-107) $ $)) (-15 -2803 ((-1072 $) (-1072 $) (-556 $))) (-15 -2803 ((-1072 $) (-1072 $) (-583 (-556 $)))) (-15 -2803 ($ $ (-556 $))) (-15 -2803 ($ $ (-583 (-556 $))))))) (T -460))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1028 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1522 (*1 *1 *1) (-5 *1 (-460))) (-2524 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-2803 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-2803 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
-(-13 (-273) (-27) (-954 (-517)) (-954 (-377 (-517))) (-579 (-517)) (-939) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2271 ($ (-1028 (-517) (-556 $)))) (-15 -3826 ((-1028 (-517) (-556 $)) $)) (-15 -2098 ((-1028 (-517) (-556 $)) $)) (-15 -1522 ($ $)) (-15 -2524 ((-107) $ $)) (-15 -2803 ((-1072 $) (-1072 $) (-556 $))) (-15 -2803 ((-1072 $) (-1072 $) (-583 (-556 $)))) (-15 -2803 ($ $ (-556 $))) (-15 -2803 ($ $ (-583 (-556 $))))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 21)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 14)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 12 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) 23 (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) 10 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 13)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1124 (-517))) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) 9 (|has| $ (-6 -4192)))))
-(((-461 |#1| |#2|) (-19 |#1|) (-1111) (-517)) (T -461))
+((-3679 (((-517) (-583 (-517))) 30)) (-2659 ((|#1| (-583 |#1|)) 56)) (-2624 (((-583 |#1|) (-583 |#1|)) 57)) (-2107 (((-583 |#1|) (-583 |#1|)) 59)) (-2361 ((|#1| (-583 |#1|)) 58)) (-4094 (((-583 (-517)) (-583 |#1|)) 33)))
+(((-453 |#1|) (-10 -7 (-15 -2361 (|#1| (-583 |#1|))) (-15 -2659 (|#1| (-583 |#1|))) (-15 -2107 ((-583 |#1|) (-583 |#1|))) (-15 -2624 ((-583 |#1|) (-583 |#1|))) (-15 -4094 ((-583 (-517)) (-583 |#1|))) (-15 -3679 ((-517) (-583 (-517))))) (-1134 (-517))) (T -453))
+((-3679 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1134 *2)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1134 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517))))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517))))))
+(-10 -7 (-15 -2361 (|#1| (-583 |#1|))) (-15 -2659 (|#1| (-583 |#1|))) (-15 -2107 ((-583 |#1|) (-583 |#1|))) (-15 -2624 ((-583 |#1|) (-583 |#1|))) (-15 -4094 ((-583 (-517)) (-583 |#1|))) (-15 -3679 ((-517) (-583 (-517)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-517) $) NIL (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-2931 (($ (-377 (-517))) 8)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2713 (((-517) $) NIL (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL) (((-923 16) $) 9)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-517) $) NIL (|has| (-517) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1692 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-454) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 16) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2931 ($ (-377 (-517))))))) (T -454))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-923 16)) (-5 *1 (-454)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2931 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 16) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2931 ($ (-377 (-517))))))
+((-3687 (((-583 |#2|) $) 22)) (-1949 (((-107) |#2| $) 27)) (-3843 (((-107) (-1 (-107) |#2|) $) 20)) (-3552 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-4140 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2262 (((-787) $) 36)) (-1272 (((-107) (-1 (-107) |#2|) $) 19)) (-1572 (((-107) $ $) 30)) (-3573 (((-703) $) 16)))
+(((-455 |#1| |#2|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -3687 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|))) (-456 |#2|) (-1112)) (T -455))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -3687 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-456 |#1|) (-1189) (-1112)) (T -456))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1112)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4196)) (-4 *1 (-456 *3)) (-4 *3 (-1112)))) (-1272 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-4140 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) (-4 *4 (-1112)) (-5 *2 (-703)))) (-1525 (*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))) (-3687 (*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))) (-4140 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-703)))) (-1949 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |t#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |t#1| (-1006)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4196)) (-15 -2737 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4195)) (PROGN (-15 -1272 ((-107) (-1 (-107) |t#1|) $)) (-15 -3843 ((-107) (-1 (-107) |t#1|) $)) (-15 -4140 ((-703) (-1 (-107) |t#1|) $)) (-15 -1525 ((-583 |t#1|) $)) (-15 -3687 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -4140 ((-703) |t#1| $)) (-15 -1949 ((-107) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-1636 (($ $) 15)) (-1612 (($ $) 24)) (-1659 (($ $) 12)) (-1670 (($ $) 10)) (-1647 (($ $) 17)) (-1622 (($ $) 22)))
+(((-457 |#1|) (-10 -8 (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|))) (-458)) (T -457))
+NIL
+(-10 -8 (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)))
+((-1636 (($ $) 11)) (-1612 (($ $) 10)) (-1659 (($ $) 9)) (-1670 (($ $) 8)) (-1647 (($ $) 7)) (-1622 (($ $) 6)))
+(((-458) (-1189)) (T -458))
+((-1636 (*1 *1 *1) (-4 *1 (-458))) (-1612 (*1 *1 *1) (-4 *1 (-458))) (-1659 (*1 *1 *1) (-4 *1 (-458))) (-1670 (*1 *1 *1) (-4 *1 (-458))) (-1647 (*1 *1 *1) (-4 *1 (-458))) (-1622 (*1 *1 *1) (-4 *1 (-458))))
+(-13 (-10 -8 (-15 -1622 ($ $)) (-15 -1647 ($ $)) (-15 -1670 ($ $)) (-15 -1659 ($ $)) (-15 -1612 ($ $)) (-15 -1636 ($ $))))
+((-3896 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1134 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1134 |#3|)) (T -459))
+((-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1134 *7)))))
+(-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
+((-2105 (((-107) $ $) NIL)) (-2454 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1480 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-1992 (((-107) $) 37)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-3749 (((-107) $ $) 63)) (-3864 (((-583 (-556 $)) $) 47)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2726 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1454 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 49)) (-2383 (($ $ $) NIL)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-377 (-517)))) (|:| |vec| (-1158 (-377 (-517))))) (-623 $) (-1158 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1510 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) NIL)) (-1690 (((-107) $) 40)) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3858 (((-1029 (-517) (-556 $)) $) 35)) (-2940 (($ $ (-517)) NIL)) (-3522 (((-1073 $) (-1073 $) (-556 $)) 78) (((-1073 $) (-1073 $) (-583 (-556 $))) 54) (($ $ (-556 $)) 67) (($ $ (-583 (-556 $))) 68)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3419 (((-1073 $) (-556 $)) 65 (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) NIL)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) NIL)) (-1385 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) NIL)) (-2291 (($ $) NIL)) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3388 (((-703) $) NIL)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-1816 (($ $) NIL) (($ $ $) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) 34)) (-2082 (((-1029 (-517) (-556 $)) $) 18)) (-2819 (($ $) NIL (|has| $ (-964)))) (-3367 (((-349) $) 92) (((-199) $) 100) (((-153 (-349)) $) 108)) (-2262 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1029 (-517) (-556 $))) 19)) (-1818 (((-703)) NIL)) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-4116 (((-107) (-109)) 84)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 9 T CONST)) (-3675 (($) 20 T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 22)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1692 (($ $ $) 42)) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 45) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 25) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL)))
+(((-460) (-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3749 ((-107) $ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $))))))) (T -460))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1510 (*1 *1 *1) (-5 *1 (-460))) (-3749 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
+(-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3749 ((-107) $ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $))))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 21)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 14)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 12 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) 23 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) 10 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 13)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 9 (|has| $ (-6 -4195)))))
+(((-461 |#1| |#2|) (-19 |#1|) (-1112) (-517)) (T -461))
NIL
(-19 |#1|)
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2822 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-2049 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-1393 (($) NIL T CONST)) (-3476 (((-461 |#1| |#3|) $ (-517)) NIL)) (-2759 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2566 ((|#1| $ (-517) (-517)) NIL)) (-1534 (((-583 |#1|) $) NIL)) (-1421 (((-703) $) NIL)) (-3213 (($ (-703) (-703) |#1|) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-1683 (((-517) $) NIL)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1207 (((-517) $) NIL)) (-3797 (((-517) $) NIL)) (-2746 (($ (-1 |#1| |#1|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-3259 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1111) (-517) (-517)) (T -462))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3911 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3101 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-3038 (($) NIL T CONST)) (-1397 (((-461 |#1| |#3|) $ (-517)) NIL)) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1112) (-517) (-517)) (T -462))
NIL
(-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|))
-((-3009 (((-583 (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-3807 (((-583 (-1072 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-3104 (((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 84)))
-(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -3807 ((-583 (-1072 |#1|)) |#1| (-703) (-703) (-703))) (-15 -3009 ((-583 (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -3104 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1133 |#1|) (-1133 |#2|)) (T -463))
-((-3104 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1492 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1133 *7)) (-4 *7 (-1133 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1492 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-3009 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-2 (|:| -1492 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1492 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1133 *6)))) (-3807 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1133 *3)) (-5 *2 (-583 (-1072 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1133 *5)))))
-(-10 -7 (-15 -3807 ((-583 (-1072 |#1|)) |#1| (-703) (-703) (-703))) (-15 -3009 ((-583 (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -3104 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
-((-3734 (((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-3773 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-3007 (((-703) (-703) (-703)) 30)) (-3150 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-2729 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-1907 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-1813 ((|#1| (-623 |#1|)) 18)))
-(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -1813 (|#1| (-623 |#1|))) (-15 -3773 (|#1| (-623 |#1|) |#1| (-703))) (-15 -1907 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -3007 ((-703) (-703) (-703))) (-15 -2729 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3150 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3734 ((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))) (-1133 |#1|) (-379 |#1| |#2|)) (T -464))
-((-3734 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3150 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2729 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2729 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3007 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1907 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *5 (-1133 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-3773 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-4 *5 (-1133 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1133 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
-(-10 -7 (-15 -1813 (|#1| (-623 |#1|))) (-15 -3773 (|#1| (-623 |#1|) |#1| (-703))) (-15 -1907 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -3007 ((-703) (-703) (-703))) (-15 -2729 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3150 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3734 ((-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1492 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
-((-2119 (((-107) $ $) NIL)) (-3623 (($ $) NIL)) (-2294 (($ $ $) 35)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-1420 (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4193)))) (-2163 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2445 (((-107) $ (-1124 (-517)) (-107)) NIL (|has| $ (-6 -4193))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-1423 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-1522 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-2759 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4193)))) (-2566 (((-107) $ (-517)) NIL)) (-1212 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1005))) (((-517) (-107) $) NIL (|has| (-107) (-1005))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1534 (((-583 (-107)) $) NIL (|has| $ (-6 -4192)))) (-3980 (($ $ $) 33)) (-2479 (($ $) NIL)) (-3084 (($ $ $) NIL)) (-3213 (($ (-703) (-107)) 23)) (-3171 (($ $ $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 8 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL)) (-2662 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-1903 (((-583 (-107)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL)) (-2746 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-1747 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-107) $) NIL (|has| (-517) (-779)))) (-1528 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2846 (($ $ (-107)) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005))))) (-2891 (((-583 (-107)) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 24)) (-2609 (($ $ (-1124 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3728 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-4137 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-107) (-1005)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) 25)) (-3359 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2288 (($ (-583 (-107))) NIL)) (-4110 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2271 (((-787) $) 22)) (-3602 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4192)))) (-3993 (($ $ $) 31)) (-2815 (($ $) NIL)) (-3817 (($ $ $) NIL)) (-3916 (($ $ $) 39)) (-3927 (($ $) 37)) (-3902 (($ $ $) 38)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 26)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 27)) (-3805 (($ $ $) NIL)) (-3535 (((-703) $) 10 (|has| $ (-6 -4192)))))
-(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3927 ($ $)) (-15 -3916 ($ $ $)) (-15 -3902 ($ $ $)))) (-517)) (T -465))
-((-3927 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3916 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3902 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
-(-13 (-118) (-10 -8 (-15 -3927 ($ $)) (-15 -3916 ($ $ $)) (-15 -3902 ($ $ $))))
-((-2742 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1072 |#4|)) 35)) (-3911 (((-1072 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1072 |#4|)) 22)) (-3202 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1072 |#4|))) 46)) (-2270 (((-1072 (-1072 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3911 (|#2| (-1 |#1| |#4|) (-1072 |#4|))) (-15 -3911 ((-1072 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2742 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1072 |#4|))) (-15 -3202 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1072 |#4|)))) (-15 -2270 ((-1072 (-1072 |#4|)) (-1 |#4| |#1|) |#3|))) (-963) (-1133 |#1|) (-1133 |#2|) (-963)) (T -466))
-((-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1133 *5)) (-5 *2 (-1072 (-1072 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1133 *6)))) (-3202 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1072 *8))) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1133 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1133 *6)))) (-2742 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1072 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1133 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1133 *2)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1133 *5)) (-5 *2 (-1072 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1133 *4)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1072 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1133 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1133 *2)))))
-(-10 -7 (-15 -3911 (|#2| (-1 |#1| |#4|) (-1072 |#4|))) (-15 -3911 ((-1072 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2742 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1072 |#4|))) (-15 -3202 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1072 |#4|)))) (-15 -2270 ((-1072 (-1072 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2119 (((-107) $ $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2691 (((-1162) $) 18)) (-2609 (((-1059) $ (-1076)) 22)) (-1757 (((-1162) $) 14)) (-2271 (((-787) $) 20) (($ (-1059)) 19)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 8)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 7)))
-(((-467) (-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $)) (-15 -2271 ($ (-1059)))))) (T -467))
-((-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1059)) (-5 *1 (-467)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-467)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-467)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-467)))))
-(-13 (-779) (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $)) (-15 -2691 ((-1162) $)) (-15 -2271 ($ (-1059)))))
-((-4038 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2015 ((|#1| |#4|) 10)) (-3552 ((|#3| |#4|) 17)))
-(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2015 (|#1| |#4|)) (-15 -3552 (|#3| |#4|)) (-15 -4038 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-911 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
-((-4038 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-911 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-911 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
-(-10 -7 (-15 -2015 (|#1| |#4|)) (-15 -3552 (|#3| |#4|)) (-15 -4038 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2119 (((-107) $ $) NIL)) (-2780 (((-107) $ (-583 |#3|)) 103) (((-107) $) 104)) (-3097 (((-107) $) 146)) (-2492 (($ $ |#4|) 95) (($ $ |#4| (-583 |#3|)) 99)) (-4051 (((-1066 (-583 (-875 |#1|)) (-583 (-265 (-875 |#1|)))) (-583 |#4|)) 139 (|has| |#3| (-558 (-1076))))) (-3371 (($ $ $) 89) (($ $ |#4|) 87)) (-1376 (((-107) $) 145)) (-3525 (($ $) 107)) (-1662 (((-1059) $) NIL)) (-2259 (($ $ $) 81) (($ (-583 $)) 83)) (-3460 (((-107) |#4| $) 106)) (-2038 (((-107) $ $) 70)) (-3917 (($ (-583 |#4|)) 88)) (-4125 (((-1023) $) NIL)) (-3070 (($ (-583 |#4|)) 143)) (-1512 (((-107) $) 144)) (-1375 (($ $) 72)) (-3938 (((-583 |#4|) $) 56)) (-1390 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-3206 (((-107) |#4| $) 75)) (-1537 (((-517) $ (-583 |#3|)) 108) (((-517) $) 109)) (-2271 (((-787) $) 142) (($ (-583 |#4|)) 84)) (-1525 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1584 (((-107) $ $) 71)) (-1678 (($ $ $) 91)) (** (($ $ (-703)) 94)) (* (($ $ $) 93)))
-(((-469 |#1| |#2| |#3| |#4|) (-13 (-1005) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1678 ($ $ $)) (-15 -1376 ((-107) $)) (-15 -3097 ((-107) $)) (-15 -3206 ((-107) |#4| $)) (-15 -2038 ((-107) $ $)) (-15 -3460 ((-107) |#4| $)) (-15 -2780 ((-107) $ (-583 |#3|))) (-15 -2780 ((-107) $)) (-15 -2259 ($ $ $)) (-15 -2259 ($ (-583 $))) (-15 -3371 ($ $ $)) (-15 -3371 ($ $ |#4|)) (-15 -1375 ($ $)) (-15 -1390 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1525 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1537 ((-517) $ (-583 |#3|))) (-15 -1537 ((-517) $)) (-15 -3525 ($ $)) (-15 -3917 ($ (-583 |#4|))) (-15 -3070 ($ (-583 |#4|))) (-15 -1512 ((-107) $)) (-15 -3938 ((-583 |#4|) $)) (-15 -2271 ($ (-583 |#4|))) (-15 -2492 ($ $ |#4|)) (-15 -2492 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1076))) (-15 -4051 ((-1066 (-583 (-875 |#1|)) (-583 (-265 (-875 |#1|)))) (-583 |#4|))) |%noBranch|))) (-333) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -469))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-1678 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-1376 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3097 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3206 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-2038 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3460 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-2780 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-2259 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3371 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-3371 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))) (-1375 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-1390 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-1537 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-1537 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3525 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-1512 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3938 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2492 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))) (-2492 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-872 *4 *5 *6)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *6 (-558 (-1076))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1066 (-583 (-875 *4)) (-583 (-265 (-875 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
-(-13 (-1005) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1678 ($ $ $)) (-15 -1376 ((-107) $)) (-15 -3097 ((-107) $)) (-15 -3206 ((-107) |#4| $)) (-15 -2038 ((-107) $ $)) (-15 -3460 ((-107) |#4| $)) (-15 -2780 ((-107) $ (-583 |#3|))) (-15 -2780 ((-107) $)) (-15 -2259 ($ $ $)) (-15 -2259 ($ (-583 $))) (-15 -3371 ($ $ $)) (-15 -3371 ($ $ |#4|)) (-15 -1375 ($ $)) (-15 -1390 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1525 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1537 ((-517) $ (-583 |#3|))) (-15 -1537 ((-517) $)) (-15 -3525 ($ $)) (-15 -3917 ($ (-583 |#4|))) (-15 -3070 ($ (-583 |#4|))) (-15 -1512 ((-107) $)) (-15 -3938 ((-583 |#4|) $)) (-15 -2271 ($ (-583 |#4|))) (-15 -2492 ($ $ |#4|)) (-15 -2492 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1076))) (-15 -4051 ((-1066 (-583 (-875 |#1|)) (-583 (-265 (-875 |#1|)))) (-583 |#4|))) |%noBranch|)))
-((-1933 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 146)) (-2749 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-3125 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 105)) (-1259 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-1490 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 149)) (-3831 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 161)))
-(((-470 |#1| |#2|) (-10 -7 (-15 -1933 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2749 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1259 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3125 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1490 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3831 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1076)) (-703)) (T -470))
-((-3831 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-1490 (*1 *2 *3) (-12 (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1076))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(-10 -7 (-15 -1933 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2749 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1259 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3125 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1490 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3831 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2078 (($ |#1| |#2|) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3153 ((|#2| $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-3610 (($) 12 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) 11) (($ $ $) 24)) (-1678 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 19)))
+((-3035 (((-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-2780 (((-583 (-1073 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-2424 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 84)))
+(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-583 (-1073 |#1|)) |#1| (-703) (-703) (-703))) (-15 -3035 ((-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -2424 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1134 |#1|) (-1134 |#2|)) (T -463))
+((-2424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1134 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-3035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1134 *6)))) (-2780 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1134 *3)) (-5 *2 (-583 (-1073 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1134 *5)))))
+(-10 -7 (-15 -2780 ((-583 (-1073 |#1|)) |#1| (-703) (-703) (-703))) (-15 -3035 ((-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -2424 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
+((-2434 (((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-3109 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-2790 (((-703) (-703) (-703)) 30)) (-2103 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-3822 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-4075 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-1455 ((|#1| (-623 |#1|)) 18)))
+(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -1455 (|#1| (-623 |#1|))) (-15 -3109 (|#1| (-623 |#1|) |#1| (-703))) (-15 -4075 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2790 ((-703) (-703) (-703))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -2103 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2434 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))) (-1134 |#1|) (-379 |#1| |#2|)) (T -464))
+((-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2103 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3822 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3822 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-4075 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-3109 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1134 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
+(-10 -7 (-15 -1455 (|#1| (-623 |#1|))) (-15 -3109 (|#1| (-623 |#1|) |#1| (-703))) (-15 -4075 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2790 ((-703) (-703) (-703))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -2103 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2434 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
+((-2105 (((-107) $ $) NIL)) (-3670 (($ $) NIL)) (-2284 (($ $ $) 35)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-107) $ (-1125 (-517)) (-107)) NIL (|has| $ (-6 -4196))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1423 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1510 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2750 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4196)))) (-2557 (((-107) $ (-517)) NIL)) (-1210 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1006))) (((-517) (-107) $) NIL (|has| (-107) (-1006))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1525 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-4011 (($ $ $) 33)) (-2479 (($ $) NIL)) (-3243 (($ $ $) NIL)) (-3204 (($ (-703) (-107)) 23)) (-1353 (($ $ $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 8 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL)) (-3824 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3687 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL)) (-2737 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-107) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2837 (($ $ (-107)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2862 (((-583 (-107)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 24)) (-2612 (($ $ (-1125 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-4140 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) 25)) (-3367 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2279 (($ (-583 (-107))) NIL)) (-4117 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2262 (((-787) $) 22)) (-1272 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-4024 (($ $ $) 31)) (-2806 (($ $) NIL)) (-3849 (($ $ $) NIL)) (-3940 (($ $ $) 39)) (-3950 (($ $) 37)) (-3927 (($ $ $) 38)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 26)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 27)) (-3838 (($ $ $) NIL)) (-3573 (((-703) $) 10 (|has| $ (-6 -4195)))))
+(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3950 ($ $)) (-15 -3940 ($ $ $)) (-15 -3927 ($ $ $)))) (-517)) (T -465))
+((-3950 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3940 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3927 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
+(-13 (-118) (-10 -8 (-15 -3950 ($ $)) (-15 -3940 ($ $ $)) (-15 -3927 ($ $ $))))
+((-3197 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1073 |#4|)) 35)) (-1534 (((-1073 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1073 |#4|)) 22)) (-1245 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1073 |#4|))) 46)) (-3458 (((-1073 (-1073 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1534 (|#2| (-1 |#1| |#4|) (-1073 |#4|))) (-15 -1534 ((-1073 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3197 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1073 |#4|))) (-15 -1245 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1073 |#4|)))) (-15 -3458 ((-1073 (-1073 |#4|)) (-1 |#4| |#1|) |#3|))) (-964) (-1134 |#1|) (-1134 |#2|) (-964)) (T -466))
+((-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *6 (-1134 *5)) (-5 *2 (-1073 (-1073 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1134 *6)))) (-1245 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1073 *8))) (-4 *5 (-964)) (-4 *8 (-964)) (-4 *6 (-1134 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1134 *6)))) (-3197 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1073 *7)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1134 *2)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *4 (-1134 *5)) (-5 *2 (-1073 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1134 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1073 *7)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1134 *2)))))
+(-10 -7 (-15 -1534 (|#2| (-1 |#1| |#4|) (-1073 |#4|))) (-15 -1534 ((-1073 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3197 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1073 |#4|))) (-15 -1245 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1073 |#4|)))) (-15 -3458 ((-1073 (-1073 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3012 (((-1163) $) 18)) (-2612 (((-1060) $ (-1077)) 22)) (-1744 (((-1163) $) 14)) (-2262 (((-787) $) 20) (($ (-1060)) 19)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 7)))
+(((-467) (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -2262 ($ (-1060)))))) (T -467))
+((-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1060)) (-5 *1 (-467)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-467)))))
+(-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -2262 ($ (-1060)))))
+((-1955 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1703 ((|#1| |#4|) 10)) (-3253 ((|#3| |#4|) 17)))
+(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1703 (|#1| |#4|)) (-15 -3253 (|#3| |#4|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-912 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
+((-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -1703 (|#1| |#4|)) (-15 -3253 (|#3| |#4|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2105 (((-107) $ $) NIL)) (-1229 (((-107) $ (-583 |#3|)) 103) (((-107) $) 104)) (-1992 (((-107) $) 146)) (-2966 (($ $ |#4|) 95) (($ $ |#4| (-583 |#3|)) 99)) (-1448 (((-1067 (-583 (-876 |#1|)) (-583 (-265 (-876 |#1|)))) (-583 |#4|)) 139 (|has| |#3| (-558 (-1077))))) (-2773 (($ $ $) 89) (($ $ |#4|) 87)) (-1690 (((-107) $) 145)) (-1751 (($ $) 107)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 81) (($ (-583 $)) 83)) (-2716 (((-107) |#4| $) 106)) (-3558 (((-107) $ $) 70)) (-4162 (($ (-583 |#4|)) 88)) (-4130 (((-1024) $) NIL)) (-3924 (($ (-583 |#4|)) 143)) (-2207 (((-107) $) 144)) (-1582 (($ $) 72)) (-2433 (((-583 |#4|) $) 56)) (-3750 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-1517 (((-107) |#4| $) 75)) (-1470 (((-517) $ (-583 |#3|)) 108) (((-517) $) 109)) (-2262 (((-787) $) 142) (($ (-583 |#4|)) 84)) (-1658 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1572 (((-107) $ $) 71)) (-1666 (($ $ $) 91)) (** (($ $ (-703)) 94)) (* (($ $ $) 93)))
+(((-469 |#1| |#2| |#3| |#4|) (-13 (-1006) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1666 ($ $ $)) (-15 -1690 ((-107) $)) (-15 -1992 ((-107) $)) (-15 -1517 ((-107) |#4| $)) (-15 -3558 ((-107) $ $)) (-15 -2716 ((-107) |#4| $)) (-15 -1229 ((-107) $ (-583 |#3|))) (-15 -1229 ((-107) $)) (-15 -2187 ($ $ $)) (-15 -2187 ($ (-583 $))) (-15 -2773 ($ $ $)) (-15 -2773 ($ $ |#4|)) (-15 -1582 ($ $)) (-15 -3750 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1470 ((-517) $ (-583 |#3|))) (-15 -1470 ((-517) $)) (-15 -1751 ($ $)) (-15 -4162 ($ (-583 |#4|))) (-15 -3924 ($ (-583 |#4|))) (-15 -2207 ((-107) $)) (-15 -2433 ((-583 |#4|) $)) (-15 -2262 ($ (-583 |#4|))) (-15 -2966 ($ $ |#4|)) (-15 -2966 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1077))) (-15 -1448 ((-1067 (-583 (-876 |#1|)) (-583 (-265 (-876 |#1|)))) (-583 |#4|))) |%noBranch|))) (-333) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -469))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-1690 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1517 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-3558 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2716 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-1229 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-1229 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2187 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-2187 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2773 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-2773 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) (-1582 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1470 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-1470 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1751 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2207 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2433 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2966 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) (-2966 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-873 *4 *5 *6)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *6 (-558 (-1077))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1067 (-583 (-876 *4)) (-583 (-265 (-876 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
+(-13 (-1006) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1666 ($ $ $)) (-15 -1690 ((-107) $)) (-15 -1992 ((-107) $)) (-15 -1517 ((-107) |#4| $)) (-15 -3558 ((-107) $ $)) (-15 -2716 ((-107) |#4| $)) (-15 -1229 ((-107) $ (-583 |#3|))) (-15 -1229 ((-107) $)) (-15 -2187 ($ $ $)) (-15 -2187 ($ (-583 $))) (-15 -2773 ($ $ $)) (-15 -2773 ($ $ |#4|)) (-15 -1582 ($ $)) (-15 -3750 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1470 ((-517) $ (-583 |#3|))) (-15 -1470 ((-517) $)) (-15 -1751 ($ $)) (-15 -4162 ($ (-583 |#4|))) (-15 -3924 ($ (-583 |#4|))) (-15 -2207 ((-107) $)) (-15 -2433 ((-583 |#4|) $)) (-15 -2262 ($ (-583 |#4|))) (-15 -2966 ($ $ |#4|)) (-15 -2966 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1077))) (-15 -1448 ((-1067 (-583 (-876 |#1|)) (-583 (-265 (-876 |#1|)))) (-583 |#4|))) |%noBranch|)))
+((-1242 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 146)) (-3261 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-3114 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 105)) (-2022 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-3559 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 149)) (-1532 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 161)))
+(((-470 |#1| |#2|) (-10 -7 (-15 -1242 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3261 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2022 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3114 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3559 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1532 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1077)) (-703)) (T -470))
+((-1532 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-3559 (*1 *2 *3) (-12 (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(-10 -7 (-15 -1242 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3261 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2022 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3114 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3559 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1532 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) 12 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) 11) (($ $ $) 24)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 19)))
(((-471 |#1| |#2|) (-13 (-21) (-473 |#1| |#2|)) (-21) (-779)) (T -471))
NIL
(-13 (-21) (-473 |#1| |#2|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 12)) (-1393 (($) NIL T CONST)) (-2373 (($ $) 27)) (-2078 (($ |#1| |#2|) 24)) (-3310 (($ (-1 |#1| |#1|) $) 26)) (-3153 ((|#2| $) NIL)) (-2347 ((|#1| $) 28)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-3610 (($) 10 T CONST)) (-1584 (((-107) $ $) NIL)) (-1678 (($ $ $) 18)) (* (($ (-844) $) NIL) (($ (-703) $) 23)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 12)) (-3038 (($) NIL T CONST)) (-2364 (($ $) 27)) (-2059 (($ |#1| |#2|) 24)) (-3312 (($ (-1 |#1| |#1|) $) 26)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) 28)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) 10 T CONST)) (-1572 (((-107) $ $) NIL)) (-1666 (($ $ $) 18)) (* (($ (-845) $) NIL) (($ (-703) $) 23)))
(((-472 |#1| |#2|) (-13 (-23) (-473 |#1| |#2|)) (-23) (-779)) (T -472))
NIL
(-13 (-23) (-473 |#1| |#2|))
-((-2119 (((-107) $ $) 7)) (-2373 (($ $) 13)) (-2078 (($ |#1| |#2|) 16)) (-3310 (($ (-1 |#1| |#1|) $) 17)) (-3153 ((|#2| $) 14)) (-2347 ((|#1| $) 15)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-473 |#1| |#2|) (-1188) (-1005) (-779)) (T -473))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-779)))) (-2078 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-779)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1005)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-779)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-779)))))
-(-13 (-1005) (-10 -8 (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (-15 -2078 ($ |t#1| |t#2|)) (-15 -2347 (|t#1| $)) (-15 -3153 (|t#2| $)) (-15 -2373 ($ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2078 (($ |#1| |#2|) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3153 ((|#2| $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-3610 (($) NIL T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 13)) (-1678 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL)))
+((-2105 (((-107) $ $) 7)) (-2364 (($ $) 13)) (-2059 (($ |#1| |#2|) 16)) (-3312 (($ (-1 |#1| |#1|) $) 17)) (-2282 ((|#2| $) 14)) (-2336 ((|#1| $) 15)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-473 |#1| |#2|) (-1189) (-1006) (-779)) (T -473))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-779)))) (-2059 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1006)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-779)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779)))))
+(-13 (-1006) (-10 -8 (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -2059 ($ |t#1| |t#2|)) (-15 -2336 (|t#1| $)) (-15 -2282 (|t#2| $)) (-15 -2364 ($ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 13)) (-1666 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL)))
(((-474 |#1| |#2|) (-13 (-724) (-473 |#1| |#2|)) (-724) (-779)) (T -474))
NIL
(-13 (-724) (-473 |#1| |#2|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2948 (($ $ $) 16)) (-2798 (((-3 $ "failed") $ $) 13)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2078 (($ |#1| |#2|) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3153 ((|#2| $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL)) (-3610 (($) NIL T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3505 (($ $ $) 16)) (-1783 (((-3 $ "failed") $ $) 13)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL)))
(((-475 |#1| |#2|) (-13 (-725) (-473 |#1| |#2|)) (-725) (-779)) (T -475))
NIL
(-13 (-725) (-473 |#1| |#2|))
-((-2119 (((-107) $ $) NIL)) (-2373 (($ $) 25)) (-2078 (($ |#1| |#2|) 22)) (-3310 (($ (-1 |#1| |#1|) $) 24)) (-3153 ((|#2| $) 27)) (-2347 ((|#1| $) 26)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 21)) (-1584 (((-107) $ $) 14)))
-(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1005) (-779)) (T -476))
+((-2105 (((-107) $ $) NIL)) (-2364 (($ $) 25)) (-2059 (($ |#1| |#2|) 22)) (-3312 (($ (-1 |#1| |#1|) $) 24)) (-2282 ((|#2| $) 27)) (-2336 ((|#1| $) 26)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 21)) (-1572 (((-107) $ $) 14)))
+(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1006) (-779)) (T -476))
NIL
(-473 |#1| |#2|)
-((-3524 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -3524 (|#1| |#1| |#2| |#3|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1005) (-1111)) (T -477))
+((-3552 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -3552 (|#1| |#1| |#2| |#3|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1006) (-1112)) (T -477))
NIL
-(-10 -8 (-15 -3524 (|#1| |#1| |#2| |#3|)) (-15 -3524 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
-((-3524 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-478 |#1| |#2|) (-1188) (-1005) (-1111)) (T -478))
-((-3524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1111)))) (-3524 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1111)))))
-(-13 (-10 -8 (-15 -3524 ($ $ |t#1| |t#2|)) (-15 -3524 ($ $ (-583 |t#1|) (-583 |t#2|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 16)) (-1928 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))) $) 18)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2399 (((-703) $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-1789 ((|#1| $ (-517)) 23)) (-3806 ((|#2| $ (-517)) 21)) (-3912 (($ (-1 |#1| |#1|) $) 46)) (-2577 (($ (-1 |#2| |#2|) $) 43)) (-1662 (((-1059) $) NIL)) (-3616 (($ $ $) 53 (|has| |#2| (-724)))) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 42) (($ |#1|) NIL)) (-1689 ((|#2| |#1| $) 49)) (-3610 (($) 11 T CONST)) (-1584 (((-107) $ $) 29)) (-1678 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-844) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
-(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1005) (-123) |#2|) (T -479))
+(-10 -8 (-15 -3552 (|#1| |#1| |#2| |#3|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
+((-3552 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-478 |#1| |#2|) (-1189) (-1006) (-1112)) (T -478))
+((-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1112)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1112)))))
+(-13 (-10 -8 (-15 -3552 ($ $ |t#1| |t#2|)) (-15 -3552 ($ $ (-583 |t#1|) (-583 |t#2|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 16)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $) 18)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2115 ((|#1| $ (-517)) 23)) (-2013 ((|#2| $ (-517)) 21)) (-3027 (($ (-1 |#1| |#1|) $) 46)) (-2198 (($ (-1 |#2| |#2|) $) 43)) (-3232 (((-1060) $) NIL)) (-3041 (($ $ $) 53 (|has| |#2| (-724)))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 42) (($ |#1|) NIL)) (-1939 ((|#2| |#1| $) 49)) (-3663 (($) 11 T CONST)) (-1572 (((-107) $ $) 29)) (-1666 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-845) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
+(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1006) (-123) |#2|) (T -479))
NIL
(-293 |#1| |#2|)
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-3168 (((-107) (-107)) 24)) (-2445 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) |#1|) $) 51)) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-1399 (($ $) 55 (|has| |#1| (-1005)))) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) NIL (|has| |#1| (-1005))) (($ (-1 (-107) |#1|) $) 43)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-2141 (($ $ (-517)) 13)) (-3869 (((-703) $) 11)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 22)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 20 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4155 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) 19 (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3241 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-4081 (($ (-583 |#1|)) 28)) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) 18 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 39)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 14)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1124 (-517))) NIL)) (-3275 (($ $ (-1124 (-517))) 49) (($ $ (-517)) 44)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) 40 (|has| $ (-6 -4193)))) (-2462 (($ $) 31)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-1753 (($ $ $) 41) (($ $ |#1|) 38)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) 15 (|has| $ (-6 -4192)))))
-(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -4081 ($ (-583 |#1|))) (-15 -3869 ((-703) $)) (-15 -2141 ($ $ (-517))) (-15 -3168 ((-107) (-107))))) (-1111) (-517)) (T -480))
-((-4081 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1111)) (-14 *4 (-517)))) (-2141 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1111)) (-14 *4 *2))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1111)) (-14 *4 (-517)))))
-(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -4081 ($ (-583 |#1|))) (-15 -3869 ((-703) $)) (-15 -2141 ($ $ (-517))) (-15 -3168 ((-107) (-107)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 (((-530 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-530 |#1|) "failed") $) NIL)) (-3390 (((-530 |#1|) $) NIL)) (-3898 (($ (-1157 (-530 |#1|))) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-530 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL (|has| (-530 |#1|) (-338)))) (-3459 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2855 (($ $ (-703)) NIL (-3747 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3747 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1259 (((-107) $) NIL)) (-1395 (((-844) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-844)) $) NIL (-3747 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| (-530 |#1|) (-338)))) (-2548 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2803 (((-530 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-2243 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 (-530 |#1|)) $) NIL) (((-1072 $) $ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-3072 (((-844) $) NIL (|has| (-530 |#1|) (-338)))) (-3018 (((-1072 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-1425 (((-1072 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1072 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-2421 (($ $ (-1072 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-2812 (($ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1318 (($) NIL (|has| (-530 |#1|) (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3868 (((-388 $) $) NIL)) (-2402 (((-765 (-844))) NIL) (((-844)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3747 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1537 (((-125)) NIL)) (-2060 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3647 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-2387 (((-1072 (-530 |#1|))) NIL)) (-1758 (($) NIL (|has| (-530 |#1|) (-338)))) (-1426 (($) NIL (|has| (-530 |#1|) (-338)))) (-3784 (((-1157 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1157 $)) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-3974 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3747 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL) (((-1157 $) (-844)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3342 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
-(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-844) (-844)) (T -481))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2404 (((-107) (-107)) 24)) (-2436 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) 51)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3081 (($ $) 55 (|has| |#1| (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) 43)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-3528 (($ $ (-517)) 13)) (-4157 (((-703) $) 11)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 22)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 20 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) 19 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3439 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2900 (($ (-583 |#1|)) 28)) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) 18 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 39)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 14)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1125 (-517))) NIL)) (-1921 (($ $ (-1125 (-517))) 49) (($ $ (-517)) 44)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) 40 (|has| $ (-6 -4196)))) (-2453 (($ $) 31)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-3495 (($ $ $) 41) (($ $ |#1|) 38)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 15 (|has| $ (-6 -4195)))))
+(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107))))) (-1112) (-517)) (T -480))
+((-2900 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 (-517)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 *2))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 (-517)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-530 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-530 |#1|) "failed") $) NIL)) (-3402 (((-530 |#1|) $) NIL)) (-3539 (($ (-1158 (-530 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-530 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-530 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-530 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-3522 (((-530 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-530 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-530 |#1|) (-338)))) (-3905 (((-1073 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-3211 (((-1073 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1073 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-3063 (($ $ (-1073 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| (-530 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-530 |#1|))) NIL)) (-3718 (($) NIL (|has| (-530 |#1|) (-338)))) (-3297 (($) NIL (|has| (-530 |#1|) (-338)))) (-1372 (((-1158 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
+(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-845) (-845)) (T -481))
NIL
(-299 (-530 |#1|))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) (-517) |#1|) 33)) (-2822 (($ $ (-517) |#4|) NIL)) (-2049 (($ $ (-517) |#5|) NIL)) (-1393 (($) NIL T CONST)) (-3476 ((|#4| $ (-517)) NIL)) (-2759 ((|#1| $ (-517) (-517) |#1|) 32)) (-2566 ((|#1| $ (-517) (-517)) 30)) (-1534 (((-583 |#1|) $) NIL)) (-1421 (((-703) $) 26)) (-3213 (($ (-703) (-703) |#1|) 23)) (-1435 (((-703) $) 28)) (-2497 (((-107) $ (-703)) NIL)) (-1683 (((-517) $) 24)) (-3400 (((-517) $) 25)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1207 (((-517) $) 27)) (-3797 (((-517) $) 29)) (-2746 (($ (-1 |#1| |#1|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) 36 (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 14)) (-2452 (($) 15)) (-2609 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-3259 ((|#5| $ (-517)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1111) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) 33)) (-3911 (($ $ (-517) |#4|) NIL)) (-3101 (($ $ (-517) |#5|) NIL)) (-3038 (($) NIL T CONST)) (-1397 ((|#4| $ (-517)) NIL)) (-2750 ((|#1| $ (-517) (-517) |#1|) 32)) (-2557 ((|#1| $ (-517) (-517)) 30)) (-1525 (((-583 |#1|) $) NIL)) (-1409 (((-703) $) 26)) (-3204 (($ (-703) (-703) |#1|) 23)) (-1422 (((-703) $) 28)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) 24)) (-2970 (((-517) $) 25)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) 27)) (-1718 (((-517) $) 29)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) 36 (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 15)) (-2612 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 ((|#5| $ (-517)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1112) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
NIL
(-55 |#1| |#4| |#5|)
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) NIL)) (-2586 ((|#1| $) NIL)) (-1541 (($ $) NIL)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) 58 (|has| $ (-6 -4193)))) (-2166 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-1420 (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 56 (|has| $ (-6 -4193)))) (-2163 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-1702 (($ $ $) 23 (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) 21 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4193))) (($ $ "rest" $) 24 (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) |#1|) $) NIL)) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2576 ((|#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2549 (($ $) 28 (|has| $ (-6 -4193)))) (-1908 (($ $) 29)) (-2439 (($ $) 18) (($ $ (-703)) 32)) (-1399 (($ $) 54 (|has| |#1| (-1005)))) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) NIL (|has| |#1| (-1005))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-3013 (((-107) $) NIL)) (-1212 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005))) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1534 (((-583 |#1|) $) 27 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 31 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4155 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 57)) (-2662 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 52 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2324 (($ |#1|) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) NIL)) (-1662 (((-1059) $) 51 (|has| |#1| (-1005)))) (-1446 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3241 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1747 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) 13) (($ $ (-703)) NIL)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-4033 (((-107) $) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 12)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) 17)) (-2452 (($) 16)) (-2609 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1124 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-1844 (((-517) $ $) NIL)) (-3275 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-3728 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-3028 (((-107) $) 34)) (-3498 (($ $) NIL)) (-3020 (($ $) NIL (|has| $ (-6 -4193)))) (-2453 (((-703) $) NIL)) (-2231 (($ $) 36)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) 35)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 26)) (-1753 (($ $ $) 53) (($ $ |#1|) NIL)) (-4110 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2271 (((-787) $) 46 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 48 (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) 9 (|has| $ (-6 -4192)))))
-(((-483 |#1| |#2|) (-603 |#1|) (-1111) (-517)) (T -483))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 58 (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 56 (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) 23 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 21 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4196))) (($ $ "rest" $) 24 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-3797 (($ $) 28 (|has| $ (-6 -4196)))) (-1894 (($ $) 29)) (-2429 (($ $) 18) (($ $ (-703)) 32)) (-3081 (($ $) 54 (|has| |#1| (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006))) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1525 (((-583 |#1|) $) 27 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 31 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 57)) (-3824 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 52 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2315 (($ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) 51 (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) 13) (($ $ (-703)) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 12)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) 17)) (-2679 (($) 16)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-3868 (((-517) $ $) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-1414 (((-107) $) 34)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) 36)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) 35)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 26)) (-3495 (($ $ $) 53) (($ $ |#1|) NIL)) (-4117 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2262 (((-787) $) 46 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 48 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 9 (|has| $ (-6 -4195)))))
+(((-483 |#1| |#2|) (-603 |#1|) (-1112) (-517)) (T -483))
NIL
(-603 |#1|)
-((-1382 ((|#4| |#4|) 26)) (-3737 (((-703) |#4|) 31)) (-2720 (((-703) |#4|) 32)) (-2620 (((-583 |#3|) |#4|) 38 (|has| |#3| (-6 -4193)))) (-3856 (((-3 |#4| "failed") |#4|) 48)) (-1628 ((|#4| |#4|) 41)) (-2854 ((|#1| |#4|) 40)))
-(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1382 (|#4| |#4|)) (-15 -3737 ((-703) |#4|)) (-15 -2720 ((-703) |#4|)) (IF (|has| |#3| (-6 -4193)) (-15 -2620 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -2854 (|#1| |#4|)) (-15 -1628 (|#4| |#4|)) (-15 -3856 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
-((-3856 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-2620 (*1 *2 *3) (-12 (|has| *6 (-6 -4193)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -1382 (|#4| |#4|)) (-15 -3737 ((-703) |#4|)) (-15 -2720 ((-703) |#4|)) (IF (|has| |#3| (-6 -4193)) (-15 -2620 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -2854 (|#1| |#4|)) (-15 -1628 (|#4| |#4|)) (-15 -3856 ((-3 |#4| "failed") |#4|)))
-((-1382 ((|#8| |#4|) 20)) (-2620 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4193)))) (-3856 (((-3 |#8| "failed") |#4|) 23)))
-(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1382 (|#8| |#4|)) (-15 -3856 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4193)) (-15 -2620 ((-583 |#3|) |#4|)) |%noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-911 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
-((-2620 (*1 *2 *3) (-12 (|has| *9 (-6 -4193)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-911 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-3856 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-911 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-1382 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-911 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
-(-10 -7 (-15 -1382 (|#8| |#4|)) (-15 -3856 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4193)) (-15 -2620 ((-583 |#3|) |#4|)) |%noBranch|))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3877 (($ (-703) (-703)) NIL)) (-1980 (($ $ $) NIL)) (-1293 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-3933 (((-107) $) NIL)) (-2077 (($ $ (-517) (-517)) 12)) (-3977 (($ $ (-517) (-517)) NIL)) (-2010 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-2256 (($ $) NIL)) (-1223 (((-107) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-3860 (($ $ (-517) (-517) $) NIL)) (-2445 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-2822 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-2049 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-2351 (($ (-703) |#1|) NIL)) (-1393 (($) NIL T CONST)) (-1382 (($ $) 19 (|has| |#1| (-278)))) (-3476 (((-548 |#1| |#3|) $ (-517)) NIL)) (-3737 (((-703) $) 22 (|has| |#1| (-509)))) (-2759 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2566 ((|#1| $ (-517) (-517)) NIL)) (-1534 (((-583 |#1|) $) NIL)) (-2720 (((-703) $) 24 (|has| |#1| (-509)))) (-2620 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1421 (((-703) $) NIL)) (-3213 (($ (-703) (-703) |#1|) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3809 ((|#1| $) 17 (|has| |#1| (-6 (-4194 "*"))))) (-1683 (((-517) $) 10)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1207 (((-517) $) 11)) (-3797 (((-517) $) NIL)) (-2371 (($ (-583 (-583 |#1|))) NIL)) (-2746 (($ (-1 |#1| |#1|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3704 (((-583 (-583 |#1|)) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3856 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-2234 (($ $ $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-2528 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1832 (((-107) $) NIL)) (-2854 ((|#1| $) 15 (|has| |#1| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-3259 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2271 (($ (-548 |#1| |#2|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2909 (((-107) $) NIL)) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-963) (-517) (-517)) (T -486))
+((-1197 ((|#4| |#4|) 26)) (-3778 (((-703) |#4|) 31)) (-3850 (((-703) |#4|) 32)) (-1671 (((-583 |#3|) |#4|) 38 (|has| |#3| (-6 -4196)))) (-2137 (((-3 |#4| "failed") |#4|) 48)) (-2820 ((|#4| |#4|) 41)) (-2533 ((|#1| |#4|) 40)))
+(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1197 (|#4| |#4|)) (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (IF (|has| |#3| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -2533 (|#1| |#4|)) (-15 -2820 (|#4| |#4|)) (-15 -2137 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
+((-2137 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2533 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-1671 (*1 *2 *3) (-12 (|has| *6 (-6 -4196)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1197 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -1197 (|#4| |#4|)) (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (IF (|has| |#3| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -2533 (|#1| |#4|)) (-15 -2820 (|#4| |#4|)) (-15 -2137 ((-3 |#4| "failed") |#4|)))
+((-1197 ((|#8| |#4|) 20)) (-1671 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4196)))) (-2137 (((-3 |#8| "failed") |#4|) 23)))
+(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1197 (|#8| |#4|)) (-15 -2137 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-912 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
+((-1671 (*1 *2 *3) (-12 (|has| *9 (-6 -4196)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-2137 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-1197 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
+(-10 -7 (-15 -1197 (|#8| |#4|)) (-15 -2137 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) NIL)) (-2688 (($ $ $) NIL)) (-1911 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-1912 (((-107) $) NIL)) (-1393 (($ $ (-517) (-517)) 12)) (-3632 (($ $ (-517) (-517)) NIL)) (-3031 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1281 (($ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3382 (($ $ (-517) (-517) $) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3911 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3101 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-1634 (($ (-703) |#1|) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 19 (|has| |#1| (-278)))) (-1397 (((-548 |#1| |#3|) $ (-517)) NIL)) (-3778 (((-703) $) 22 (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-3850 (((-703) $) 24 (|has| |#1| (-509)))) (-1671 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#1| $) 17 (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) 10)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) 11)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#1|))) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3468 (((-583 (-583 |#1|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-3095 (($ $ $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-4025 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1974 (((-107) $) NIL)) (-2533 ((|#1| $) 15 (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2262 (($ (-548 |#1| |#2|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-964) (-517) (-517)) (T -486))
NIL
(-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|))
-((-3339 (((-1072 |#1|) (-703)) 75)) (-2009 (((-1157 |#1|) (-1157 |#1|) (-844)) 68)) (-4031 (((-1162) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) |#1|) 83)) (-4019 (((-1157 |#1|) (-1157 |#1|) (-703)) 36)) (-2202 (((-1157 |#1|) (-844)) 70)) (-2024 (((-1157 |#1|) (-1157 |#1|) (-517)) 24)) (-1694 (((-1072 |#1|) (-1157 |#1|)) 76)) (-3669 (((-1157 |#1|) (-844)) 94)) (-2548 (((-107) (-1157 |#1|)) 79)) (-2803 (((-1157 |#1|) (-1157 |#1|) (-844)) 61)) (-2766 (((-1072 |#1|) (-1157 |#1|)) 88)) (-3072 (((-844) (-1157 |#1|)) 58)) (-2300 (((-1157 |#1|) (-1157 |#1|)) 30)) (-2812 (((-1157 |#1|) (-844) (-844)) 96)) (-4128 (((-1157 |#1|) (-1157 |#1|) (-1023) (-1023)) 23)) (-1887 (((-1157 |#1|) (-1157 |#1|) (-703) (-1023)) 37)) (-1492 (((-1157 (-1157 |#1|)) (-844)) 93)) (-1704 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 80)) (** (((-1157 |#1|) (-1157 |#1|) (-517)) 45)) (* (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 25)))
-(((-487 |#1|) (-10 -7 (-15 -4031 ((-1162) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) |#1|)) (-15 -2202 ((-1157 |#1|) (-844))) (-15 -2812 ((-1157 |#1|) (-844) (-844))) (-15 -1694 ((-1072 |#1|) (-1157 |#1|))) (-15 -3339 ((-1072 |#1|) (-703))) (-15 -1887 ((-1157 |#1|) (-1157 |#1|) (-703) (-1023))) (-15 -4019 ((-1157 |#1|) (-1157 |#1|) (-703))) (-15 -4128 ((-1157 |#1|) (-1157 |#1|) (-1023) (-1023))) (-15 -2024 ((-1157 |#1|) (-1157 |#1|) (-517))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-517))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1704 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2803 ((-1157 |#1|) (-1157 |#1|) (-844))) (-15 -2009 ((-1157 |#1|) (-1157 |#1|) (-844))) (-15 -2300 ((-1157 |#1|) (-1157 |#1|))) (-15 -3072 ((-844) (-1157 |#1|))) (-15 -2548 ((-107) (-1157 |#1|))) (-15 -1492 ((-1157 (-1157 |#1|)) (-844))) (-15 -3669 ((-1157 |#1|) (-844))) (-15 -2766 ((-1072 |#1|) (-1157 |#1|)))) (-319)) (T -487))
-((-2766 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-1072 *4)) (-5 *1 (-487 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1157 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1157 (-1157 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-844)) (-5 *1 (-487 *4)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-844)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2803 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-844)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1704 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2024 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-4128 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1023)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-4019 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1887 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1157 *5)) (-5 *3 (-703)) (-5 *4 (-1023)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1072 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-1072 *4)) (-5 *1 (-487 *4)))) (-2812 (*1 *2 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1157 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1157 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023)))))) (-4 *4 (-319)) (-5 *2 (-1162)) (-5 *1 (-487 *4)))))
-(-10 -7 (-15 -4031 ((-1162) (-1157 (-583 (-2 (|:| -3121 |#1|) (|:| -2812 (-1023))))) |#1|)) (-15 -2202 ((-1157 |#1|) (-844))) (-15 -2812 ((-1157 |#1|) (-844) (-844))) (-15 -1694 ((-1072 |#1|) (-1157 |#1|))) (-15 -3339 ((-1072 |#1|) (-703))) (-15 -1887 ((-1157 |#1|) (-1157 |#1|) (-703) (-1023))) (-15 -4019 ((-1157 |#1|) (-1157 |#1|) (-703))) (-15 -4128 ((-1157 |#1|) (-1157 |#1|) (-1023) (-1023))) (-15 -2024 ((-1157 |#1|) (-1157 |#1|) (-517))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-517))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1704 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2803 ((-1157 |#1|) (-1157 |#1|) (-844))) (-15 -2009 ((-1157 |#1|) (-1157 |#1|) (-844))) (-15 -2300 ((-1157 |#1|) (-1157 |#1|))) (-15 -3072 ((-844) (-1157 |#1|))) (-15 -2548 ((-107) (-1157 |#1|))) (-15 -1492 ((-1157 (-1157 |#1|)) (-844))) (-15 -3669 ((-1157 |#1|) (-844))) (-15 -2766 ((-1072 |#1|) (-1157 |#1|))))
-((-2283 (((-1 |#1| |#1|) |#1|) 11)) (-2051 (((-1 |#1| |#1|)) 10)))
-(((-488 |#1|) (-10 -7 (-15 -2051 ((-1 |#1| |#1|))) (-15 -2283 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
-((-2283 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-2051 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(-10 -7 (-15 -2051 ((-1 |#1| |#1|))) (-15 -2283 ((-1 |#1| |#1|) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2948 (($ $ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2078 (($ (-703) |#1|) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 (-703) (-703)) $) NIL)) (-3153 ((|#1| $) NIL)) (-2347 (((-703) $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 20)) (-3610 (($) NIL T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL)))
+((-2849 (((-1073 |#1|) (-703)) 75)) (-1991 (((-1158 |#1|) (-1158 |#1|) (-845)) 68)) (-1565 (((-1163) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) |#1|) 83)) (-3415 (((-1158 |#1|) (-1158 |#1|) (-703)) 36)) (-2192 (((-1158 |#1|) (-845)) 70)) (-1311 (((-1158 |#1|) (-1158 |#1|) (-517)) 24)) (-2242 (((-1073 |#1|) (-1158 |#1|)) 76)) (-1222 (((-1158 |#1|) (-845)) 94)) (-3715 (((-107) (-1158 |#1|)) 79)) (-3522 (((-1158 |#1|) (-1158 |#1|) (-845)) 61)) (-1914 (((-1073 |#1|) (-1158 |#1|)) 88)) (-4161 (((-845) (-1158 |#1|)) 58)) (-2291 (((-1158 |#1|) (-1158 |#1|)) 30)) (-2803 (((-1158 |#1|) (-845) (-845)) 96)) (-1715 (((-1158 |#1|) (-1158 |#1|) (-1024) (-1024)) 23)) (-4034 (((-1158 |#1|) (-1158 |#1|) (-703) (-1024)) 37)) (-3700 (((-1158 (-1158 |#1|)) (-845)) 93)) (-1692 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 80)) (** (((-1158 |#1|) (-1158 |#1|) (-517)) 45)) (* (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 25)))
+(((-487 |#1|) (-10 -7 (-15 -1565 ((-1163) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) |#1|)) (-15 -2192 ((-1158 |#1|) (-845))) (-15 -2803 ((-1158 |#1|) (-845) (-845))) (-15 -2242 ((-1073 |#1|) (-1158 |#1|))) (-15 -2849 ((-1073 |#1|) (-703))) (-15 -4034 ((-1158 |#1|) (-1158 |#1|) (-703) (-1024))) (-15 -3415 ((-1158 |#1|) (-1158 |#1|) (-703))) (-15 -1715 ((-1158 |#1|) (-1158 |#1|) (-1024) (-1024))) (-15 -1311 ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1692 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3522 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -1991 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -2291 ((-1158 |#1|) (-1158 |#1|))) (-15 -4161 ((-845) (-1158 |#1|))) (-15 -3715 ((-107) (-1158 |#1|))) (-15 -3700 ((-1158 (-1158 |#1|)) (-845))) (-15 -1222 ((-1158 |#1|) (-845))) (-15 -1914 ((-1073 |#1|) (-1158 |#1|)))) (-319)) (T -487))
+((-1914 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-845)) (-5 *1 (-487 *4)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1991 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1715 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1024)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3415 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-4034 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1158 *5)) (-5 *3 (-703)) (-5 *4 (-1024)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)))) (-2803 (*1 *2 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-4 *4 (-319)) (-5 *2 (-1163)) (-5 *1 (-487 *4)))))
+(-10 -7 (-15 -1565 ((-1163) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) |#1|)) (-15 -2192 ((-1158 |#1|) (-845))) (-15 -2803 ((-1158 |#1|) (-845) (-845))) (-15 -2242 ((-1073 |#1|) (-1158 |#1|))) (-15 -2849 ((-1073 |#1|) (-703))) (-15 -4034 ((-1158 |#1|) (-1158 |#1|) (-703) (-1024))) (-15 -3415 ((-1158 |#1|) (-1158 |#1|) (-703))) (-15 -1715 ((-1158 |#1|) (-1158 |#1|) (-1024) (-1024))) (-15 -1311 ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1692 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3522 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -1991 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -2291 ((-1158 |#1|) (-1158 |#1|))) (-15 -4161 ((-845) (-1158 |#1|))) (-15 -3715 ((-107) (-1158 |#1|))) (-15 -3700 ((-1158 (-1158 |#1|)) (-845))) (-15 -1222 ((-1158 |#1|) (-845))) (-15 -1914 ((-1073 |#1|) (-1158 |#1|))))
+((-2273 (((-1 |#1| |#1|) |#1|) 11)) (-3951 (((-1 |#1| |#1|)) 10)))
+(((-488 |#1|) (-10 -7 (-15 -3951 ((-1 |#1| |#1|))) (-15 -2273 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
+((-2273 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-3951 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(-10 -7 (-15 -3951 ((-1 |#1| |#1|))) (-15 -2273 ((-1 |#1| |#1|) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3505 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ (-703) |#1|) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 (-703) (-703)) $) NIL)) (-2282 ((|#1| $) NIL)) (-2336 (((-703) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 20)) (-3663 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL)))
(((-489 |#1|) (-13 (-725) (-473 (-703) |#1|)) (-779)) (T -489))
NIL
(-13 (-725) (-473 (-703) |#1|))
-((-3081 (((-583 |#2|) (-1072 |#1|) |#3|) 83)) (-2273 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1072 |#1|)) (-1072 |#1|))) 99)) (-1563 (((-1072 |#1|) (-623 |#1|)) 95)))
-(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -1563 ((-1072 |#1|) (-623 |#1|))) (-15 -3081 ((-583 |#2|) (-1072 |#1|) |#3|)) (-15 -2273 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1072 |#1|)) (-1072 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
-((-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1072 *6)) (-1072 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1072 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
-(-10 -7 (-15 -1563 ((-1072 |#1|) (-623 |#1|))) (-15 -3081 ((-583 |#2|) (-1072 |#1|) |#3|)) (-15 -2273 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1072 |#1|)) (-1072 |#1|)))))
-((-3143 (((-772 (-517))) 11)) (-3155 (((-772 (-517))) 13)) (-2125 (((-765 (-517))) 8)))
-(((-491) (-10 -7 (-15 -2125 ((-765 (-517)))) (-15 -3143 ((-772 (-517)))) (-15 -3155 ((-772 (-517)))))) (T -491))
-((-3155 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-3143 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2125 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
-(-10 -7 (-15 -2125 ((-765 (-517)))) (-15 -3143 ((-772 (-517)))) (-15 -3155 ((-772 (-517)))))
-((-2819 (((-493) (-1076)) 15)) (-2348 ((|#1| (-493)) 20)))
-(((-492 |#1|) (-10 -7 (-15 -2819 ((-493) (-1076))) (-15 -2348 (|#1| (-493)))) (-1111)) (T -492))
-((-2348 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1111)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1111)))))
-(-10 -7 (-15 -2819 ((-493) (-1076))) (-15 -2348 (|#1| (-493))))
-((-2119 (((-107) $ $) NIL)) (-4086 (((-1059) $) 46)) (-3592 (((-107) $) 43)) (-2251 (((-1076) $) 44)) (-3607 (((-107) $) 41)) (-1515 (((-1059) $) 42)) (-2136 (((-107) $) NIL)) (-2999 (((-107) $) NIL)) (-3637 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-1951 (($ $ (-583 (-1076))) 20)) (-2348 (((-51) $) 22)) (-2982 (((-107) $) NIL)) (-2268 (((-517) $) NIL)) (-4125 (((-1023) $) NIL)) (-2227 (($ $ (-583 (-1076)) (-1076)) 58)) (-3887 (((-107) $) NIL)) (-3211 (((-199) $) NIL)) (-2614 (($ $) 38)) (-3713 (((-787) $) NIL)) (-3781 (((-107) $ $) NIL)) (-2609 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3942 (((-583 $) $) 28)) (-1912 (((-1076) (-583 $)) 47)) (-3359 (($ (-583 $)) 51) (($ (-1059)) NIL) (($ (-1076)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1009) $) 11) (($ (-1009)) 12)) (-2519 (((-1076) (-1076) (-583 $)) 50)) (-2271 (((-787) $) NIL)) (-3309 (($ $) 49)) (-3297 (($ $) 48)) (-1496 (($ $ (-583 $)) 55)) (-4145 (((-107) $) 27)) (-3610 (($) 9 T CONST)) (-3619 (($) 10 T CONST)) (-1584 (((-107) $ $) 59)) (-1704 (($ $ $) 64)) (-1678 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-3535 (((-517) $) NIL)))
-(((-493) (-13 (-1008 (-1059) (-1076) (-517) (-199) (-787)) (-558 (-1009)) (-10 -8 (-15 -2348 ((-51) $)) (-15 -3359 ($ (-1009))) (-15 -1496 ($ $ (-583 $))) (-15 -2227 ($ $ (-583 (-1076)) (-1076))) (-15 -1951 ($ $ (-583 (-1076)))) (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 -1704 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1385) (-15 1 ($) -1385) (-15 -2614 ($ $)) (-15 -4086 ((-1059) $)) (-15 -1912 ((-1076) (-583 $))) (-15 -2519 ((-1076) (-1076) (-583 $)))))) (T -493))
-((-2348 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-493)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-2227 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-1076)) (-5 *1 (-493)))) (-1951 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-493)))) (-1678 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1704 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-3610 (*1 *1) (-5 *1 (-493))) (-3619 (*1 *1) (-5 *1 (-493))) (-2614 (*1 *1 *1) (-5 *1 (-493))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-493)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1076)) (-5 *1 (-493)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
-(-13 (-1008 (-1059) (-1076) (-517) (-199) (-787)) (-558 (-1009)) (-10 -8 (-15 -2348 ((-51) $)) (-15 -3359 ($ (-1009))) (-15 -1496 ($ $ (-583 $))) (-15 -2227 ($ $ (-583 (-1076)) (-1076))) (-15 -1951 ($ $ (-583 (-1076)))) (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 -1704 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-3610) ($) -1385) (-15 (-3619) ($) -1385) (-15 -2614 ($ $)) (-15 -4086 ((-1059) $)) (-15 -1912 ((-1076) (-583 $))) (-15 -2519 ((-1076) (-1076) (-583 $)))))
-((-2106 ((|#2| |#2|) 17)) (-3079 ((|#2| |#2|) 13)) (-2304 ((|#2| |#2| (-517) (-517)) 20)) (-3234 ((|#2| |#2|) 15)))
-(((-494 |#1| |#2|) (-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2304 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1148 |#1|)) (T -494))
-((-2304 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1148 *4)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1148 *3)))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1148 *3)))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1148 *3)))))
-(-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2304 (|#2| |#2| (-517) (-517))))
-((-2167 (((-583 (-265 (-875 |#2|))) (-583 |#2|) (-583 (-1076))) 32)) (-3662 (((-583 |#2|) (-875 |#1|) |#3|) 53) (((-583 |#2|) (-1072 |#1|) |#3|) 52)) (-3120 (((-583 (-583 |#2|)) (-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076)) |#3|) 87)))
-(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -3662 ((-583 |#2|) (-1072 |#1|) |#3|)) (-15 -3662 ((-583 |#2|) (-875 |#1|) |#3|)) (-15 -3120 ((-583 (-583 |#2|)) (-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076)) |#3|)) (-15 -2167 ((-583 (-265 (-875 |#2|))) (-583 |#2|) (-583 (-1076))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
-((-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1076))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-875 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-3120 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1076))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-3662 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3662 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -3662 ((-583 |#2|) (-1072 |#1|) |#3|)) (-15 -3662 ((-583 |#2|) (-875 |#1|) |#3|)) (-15 -3120 ((-583 (-583 |#2|)) (-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076)) |#3|)) (-15 -2167 ((-583 (-265 (-875 |#2|))) (-583 |#2|) (-583 (-1076)))))
-((-1769 ((|#2| |#2| |#1|) 17)) (-1323 ((|#2| (-583 |#2|)) 27)) (-1601 ((|#2| (-583 |#2|)) 46)))
-(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1323 (|#2| (-583 |#2|))) (-15 -1601 (|#2| (-583 |#2|))) (-15 -1769 (|#2| |#2| |#1|))) (-278) (-1133 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
-((-1769 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1133 *3)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(-10 -7 (-15 -1323 (|#2| (-583 |#2|))) (-15 -1601 (|#2| (-583 |#2|))) (-15 -1769 (|#2| |#2| |#1|)))
-((-3868 (((-388 (-1072 |#4|)) (-1072 |#4|) (-1 (-388 (-1072 |#3|)) (-1072 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1072 |#3|)) (-1072 |#3|))) 166)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 |#4|) |#4| (-1 (-388 (-1072 |#3|)) (-1072 |#3|)))) (-15 -3868 ((-388 (-1072 |#4|)) (-1072 |#4|) (-1 (-388 (-1072 |#3|)) (-1072 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-872 |#3| |#2| |#1|)) (T -497))
-((-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1072 *7)) (-1072 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-872 *7 *6 *5)) (-5 *2 (-388 (-1072 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1072 *8)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1072 *7)) (-1072 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-872 *7 *6 *5)))))
-(-10 -7 (-15 -3868 ((-388 |#4|) |#4| (-1 (-388 (-1072 |#3|)) (-1072 |#3|)))) (-15 -3868 ((-388 (-1072 |#4|)) (-1072 |#4|) (-1 (-388 (-1072 |#3|)) (-1072 |#3|)))))
-((-2106 ((|#4| |#4|) 74)) (-3079 ((|#4| |#4|) 70)) (-2304 ((|#4| |#4| (-517) (-517)) 76)) (-3234 ((|#4| |#4|) 72)))
-(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3079 (|#4| |#4|)) (-15 -3234 (|#4| |#4|)) (-15 -2106 (|#4| |#4|)) (-15 -2304 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1133 |#1|) (-657 |#1| |#2|) (-1148 |#3|)) (T -498))
-((-2304 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1133 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1148 *6)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1133 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1148 *5)))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1133 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1148 *5)))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1133 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1148 *5)))))
-(-10 -7 (-15 -3079 (|#4| |#4|)) (-15 -3234 (|#4| |#4|)) (-15 -2106 (|#4| |#4|)) (-15 -2304 (|#4| |#4| (-517) (-517))))
-((-2106 ((|#2| |#2|) 27)) (-3079 ((|#2| |#2|) 23)) (-2304 ((|#2| |#2| (-517) (-517)) 29)) (-3234 ((|#2| |#2|) 25)))
-(((-499 |#1| |#2|) (-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2304 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1148 |#1|)) (T -499))
-((-2304 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1148 *4)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1148 *3)))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1148 *3)))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1148 *3)))))
-(-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2304 (|#2| |#2| (-517) (-517))))
-((-3633 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
-(((-500 |#1| |#2|) (-10 -7 (-15 -3633 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -3633 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -3633 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-963) (-1133 |#1|)) (T -500))
-((-3633 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1133 *4)))) (-3633 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1133 *4)))) (-3633 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-963)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1133 *5)))))
-(-10 -7 (-15 -3633 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -3633 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -3633 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
-((-1876 (($ $ $) 79)) (-4018 (((-388 $) $) 47)) (-3228 (((-3 (-517) "failed") $) 59)) (-3390 (((-517) $) 37)) (-2518 (((-3 (-377 (-517)) "failed") $) 74)) (-3000 (((-107) $) 24)) (-1843 (((-377 (-517)) $) 72)) (-1259 (((-107) $) 50)) (-3631 (($ $ $ $) 86)) (-2988 (((-107) $) 16)) (-2144 (($ $ $) 57)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 69)) (-2243 (((-3 $ "failed") $) 64)) (-2638 (($ $) 23)) (-2949 (($ $ $) 84)) (-2587 (($) 60)) (-1691 (($ $) 53)) (-3868 (((-388 $) $) 45)) (-1766 (((-107) $) 14)) (-3600 (((-703) $) 28)) (-2060 (($ $ (-703)) NIL) (($ $) 10)) (-2462 (($ $) 17)) (-3359 (((-517) $) NIL) (((-493) $) 36) (((-815 (-517)) $) 40) (((-349) $) 31) (((-199) $) 33)) (-4099 (((-703)) 8)) (-3969 (((-107) $ $) 20)) (-1917 (($ $ $) 55)))
-(((-501 |#1|) (-10 -8 (-15 -2949 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -3969 ((-107) |#1| |#1|)) (-15 -1766 ((-107) |#1|)) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -3359 ((-199) |#1|)) (-15 -3359 ((-349) |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1917 (|#1| |#1| |#1|)) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3359 ((-517) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2988 ((-107) |#1|)) (-15 -3600 ((-703) |#1|)) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -1259 ((-107) |#1|)) (-15 -4099 ((-703)))) (-502)) (T -501))
-((-4099 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
-(-10 -8 (-15 -2949 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -3969 ((-107) |#1| |#1|)) (-15 -1766 ((-107) |#1|)) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -3359 ((-199) |#1|)) (-15 -3359 ((-349) |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1917 (|#1| |#1| |#1|)) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3359 ((-517) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2988 ((-107) |#1|)) (-15 -3600 ((-703) |#1|)) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -1259 ((-107) |#1|)) (-15 -4099 ((-703))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-1876 (($ $ $) 85)) (-2798 (((-3 $ "failed") $ $) 19)) (-2924 (($ $ $ $) 73)) (-1224 (($ $) 51)) (-4018 (((-388 $) $) 52)) (-3820 (((-107) $ $) 125)) (-2360 (((-517) $) 114)) (-2142 (($ $ $) 88)) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 106)) (-3390 (((-517) $) 105)) (-2379 (($ $ $) 129)) (-2207 (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-2560 (((-3 $ "failed") $) 34)) (-2518 (((-3 (-377 (-517)) "failed") $) 82)) (-3000 (((-107) $) 84)) (-1843 (((-377 (-517)) $) 83)) (-2202 (($) 81) (($ $) 80)) (-2354 (($ $ $) 128)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 123)) (-1259 (((-107) $) 53)) (-3631 (($ $ $ $) 71)) (-3248 (($ $ $) 86)) (-2988 (((-107) $) 116)) (-2144 (($ $ $) 97)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 100)) (-1376 (((-107) $) 31)) (-2686 (((-107) $) 92)) (-2243 (((-3 $ "failed") $) 94)) (-1952 (((-107) $) 115)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-2767 (($ $ $ $) 72)) (-3458 (($ $ $) 117)) (-4084 (($ $ $) 118)) (-2638 (($ $) 75)) (-3682 (($ $) 89)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2949 (($ $ $) 70)) (-2587 (($) 93 T CONST)) (-4006 (($ $) 77)) (-4125 (((-1023) $) 10) (($ $) 79)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-1691 (($ $) 98)) (-3868 (((-388 $) $) 50)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 130)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-1766 (((-107) $) 91)) (-3600 (((-703) $) 126)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 127)) (-2060 (($ $ (-703)) 111) (($ $) 109)) (-2917 (($ $) 76)) (-2462 (($ $) 78)) (-3359 (((-517) $) 108) (((-493) $) 102) (((-815 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-4099 (((-703)) 29)) (-3969 (((-107) $ $) 87)) (-1917 (($ $ $) 99)) (-3985 (($) 90)) (-2074 (((-107) $ $) 39)) (-3696 (($ $ $ $) 74)) (-2376 (($ $) 113)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-703)) 112) (($ $) 110)) (-1642 (((-107) $ $) 120)) (-1618 (((-107) $ $) 121)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 119)) (-1608 (((-107) $ $) 122)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-502) (-1188)) (T -502))
-((-2686 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3985 (*1 *1) (-4 *1 (-502))) (-3682 (*1 *1 *1) (-4 *1 (-502))) (-2142 (*1 *1 *1 *1) (-4 *1 (-502))) (-3969 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3248 (*1 *1 *1 *1) (-4 *1 (-502))) (-1876 (*1 *1 *1 *1) (-4 *1 (-502))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-2518 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-2202 (*1 *1) (-4 *1 (-502))) (-2202 (*1 *1 *1) (-4 *1 (-502))) (-4125 (*1 *1 *1) (-4 *1 (-502))) (-2462 (*1 *1 *1) (-4 *1 (-502))) (-4006 (*1 *1 *1) (-4 *1 (-502))) (-2917 (*1 *1 *1) (-4 *1 (-502))) (-2638 (*1 *1 *1) (-4 *1 (-502))) (-3696 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2924 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2767 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3631 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2949 (*1 *1 *1 *1) (-4 *1 (-502))))
-(-13 (-1115) (-278) (-752) (-207) (-558 (-517)) (-954 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-815 (-517))) (-809 (-517)) (-130) (-939) (-134) (-1052) (-10 -8 (-15 -2686 ((-107) $)) (-15 -1766 ((-107) $)) (-6 -4191) (-15 -3985 ($)) (-15 -3682 ($ $)) (-15 -2142 ($ $ $)) (-15 -3969 ((-107) $ $)) (-15 -3248 ($ $ $)) (-15 -1876 ($ $ $)) (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $)) (-15 -2202 ($)) (-15 -2202 ($ $)) (-15 -4125 ($ $)) (-15 -2462 ($ $)) (-15 -4006 ($ $)) (-15 -2917 ($ $)) (-15 -2638 ($ $)) (-15 -3696 ($ $ $ $)) (-15 -2924 ($ $ $ $)) (-15 -2767 ($ $ $ $)) (-15 -3631 ($ $ $ $)) (-15 -2949 ($ $ $)) (-6 -4190)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-815 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-809 (-517)) . T) ((-843) . T) ((-939) . T) ((-954 (-517)) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) . T) ((-1115) . T))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#2| $ |#1| |#2|) NIL)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1882 (((-583 |#1|) $) NIL)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2817 (((-583 |#1|) $) NIL)) (-3130 (((-107) |#1| $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-503 |#1| |#2| |#3|) (-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192))) (-1005) (-1005) (-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192)))) (T -503))
-NIL
-(-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192)))
-((-1721 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1072 |#2|) (-1072 |#2|))) 49)))
-(((-504 |#1| |#2|) (-10 -7 (-15 -1721 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1072 |#2|) (-1072 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
-((-1721 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1072 *3) (-1072 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
-(-10 -7 (-15 -1721 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1072 |#2|) (-1072 |#2|)))))
-((-1413 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3111 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1979 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
-(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1979 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1413 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3111 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-954 (-517))) (-13 (-27) (-400 |#1|)) (-1133 |#2|) (-1133 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
-((-3111 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-4 *7 (-1133 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-1413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1133 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-954 (-517)))) (-4 *8 (-1133 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1133 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-954 (-517)))) (-4 *8 (-1133 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
-(-10 -7 (-15 -1979 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1413 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3111 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3640 (((-107) (-517) (-517)) 10)) (-3978 (((-517) (-517)) 7)) (-3065 (((-517) (-517) (-517)) 8)))
-(((-506) (-10 -7 (-15 -3978 ((-517) (-517))) (-15 -3065 ((-517) (-517) (-517))) (-15 -3640 ((-107) (-517) (-517))))) (T -506))
-((-3640 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(-10 -7 (-15 -3978 ((-517) (-517))) (-15 -3065 ((-517) (-517) (-517))) (-15 -3640 ((-107) (-517) (-517))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3419 ((|#1| $) 61)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-1648 (($ $) 91)) (-1494 (($ $) 74)) (-2948 ((|#1| $) 62)) (-2798 (((-3 $ "failed") $ $) 19)) (-3880 (($ $) 73)) (-1624 (($ $) 90)) (-1471 (($ $) 75)) (-1670 (($ $) 89)) (-1520 (($ $) 76)) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 69)) (-3390 (((-517) $) 68)) (-2560 (((-3 $ "failed") $) 34)) (-1751 (($ |#1| |#1|) 66)) (-2988 (((-107) $) 60)) (-2116 (($) 101)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 72)) (-1952 (((-107) $) 59)) (-3458 (($ $ $) 107)) (-4084 (($ $ $) 106)) (-1226 (($ $) 98)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-3821 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-2890 ((|#1| $) 63)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2329 (((-3 $ "failed") $ $) 42)) (-3870 (($ $) 99)) (-1682 (($ $) 88)) (-1533 (($ $) 77)) (-1660 (($ $) 87)) (-1507 (($ $) 78)) (-1635 (($ $) 86)) (-1483 (($ $) 79)) (-3944 (((-107) $ |#1|) 58)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-4099 (((-703)) 29)) (-1722 (($ $) 97)) (-1576 (($ $) 85)) (-2074 (((-107) $ $) 39)) (-1697 (($ $) 96)) (-1548 (($ $) 84)) (-3489 (($ $) 95)) (-1600 (($ $) 83)) (-2824 (($ $) 94)) (-1613 (($ $) 82)) (-1735 (($ $) 93)) (-1589 (($ $) 81)) (-1709 (($ $) 92)) (-1562 (($ $) 80)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 104)) (-1618 (((-107) $ $) 103)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 105)) (-1608 (((-107) $ $) 102)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-507 |#1|) (-1188) (-13 (-374) (-1097))) (T -507))
-((-3821 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))) (-1751 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))) (-3821 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))) (-5 *2 (-107)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))) (-5 *2 (-107)))) (-3944 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))) (-5 *2 (-107)))))
-(-13 (-421) (-779) (-1097) (-920) (-954 (-517)) (-10 -8 (-6 -2204) (-15 -3821 ($ |t#1| |t#1|)) (-15 -1751 ($ |t#1| |t#1|)) (-15 -3821 ($ |t#1|)) (-15 -3821 ($ (-377 (-517)))) (-15 -2890 (|t#1| $)) (-15 -2948 (|t#1| $)) (-15 -3419 (|t#1| $)) (-15 -2988 ((-107) $)) (-15 -1952 ((-107) $)) (-15 -3944 ((-107) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-920) . T) ((-954 (-517)) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1097) . T) ((-1100) . T))
-((-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 9)) (-3062 (($ $) 11)) (-2190 (((-107) $) 18)) (-2560 (((-3 $ "failed") $) 16)) (-2074 (((-107) $ $) 20)))
-(((-508 |#1|) (-10 -8 (-15 -2190 ((-107) |#1|)) (-15 -2074 ((-107) |#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -2559 ((-2 (|:| -1485 |#1|) (|:| -4179 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
-NIL
-(-10 -8 (-15 -2190 ((-107) |#1|)) (-15 -2074 ((-107) |#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -2559 ((-2 (|:| -1485 |#1|) (|:| -4179 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ $) 42)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-509) (-1188)) (T -509))
-((-2329 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1485 *1) (|:| -4179 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-3062 (*1 *1 *1) (-4 *1 (-509))) (-2074 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2329 ((-3 $ "failed") $ $)) (-15 -2559 ((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $)) (-15 -3062 ($ $)) (-15 -2074 ((-107) $ $)) (-15 -2190 ((-107) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-4071 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1076) (-583 |#2|)) 35)) (-3748 (((-534 |#2|) |#2| (-1076)) 58)) (-2546 (((-3 |#2| "failed") |#2| (-1076)) 149)) (-4127 (((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1076) (-556 |#2|) (-583 (-556 |#2|))) 152)) (-2761 (((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1076) |#2|) 38)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2761 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1076) |#2|)) (-15 -4071 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1076) (-583 |#2|))) (-15 -2546 ((-3 |#2| "failed") |#2| (-1076))) (-15 -3748 ((-534 |#2|) |#2| (-1076))) (-15 -4127 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1076) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -510))
-((-4127 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1076)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3748 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2546 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))) (-4071 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-2761 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1076)) (-4 *5 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(-10 -7 (-15 -2761 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1076) |#2|)) (-15 -4071 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1076) (-583 |#2|))) (-15 -2546 ((-3 |#2| "failed") |#2| (-1076))) (-15 -3748 ((-534 |#2|) |#2| (-1076))) (-15 -4127 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1076) (-556 |#2|) (-583 (-556 |#2|)))))
-((-4018 (((-388 |#1|) |#1|) 18)) (-3868 (((-388 |#1|) |#1|) 33)) (-3663 (((-3 |#1| "failed") |#1|) 44)) (-2080 (((-388 |#1|) |#1|) 51)))
-(((-511 |#1|) (-10 -7 (-15 -3868 ((-388 |#1|) |#1|)) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -2080 ((-388 |#1|) |#1|)) (-15 -3663 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
-((-3663 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3868 ((-388 |#1|) |#1|)) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -2080 ((-388 |#1|) |#1|)) (-15 -3663 ((-3 |#1| "failed") |#1|)))
-((-2226 (($) 9)) (-1285 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1882 (((-583 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-3241 (($ (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2173 (($ (-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1859 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-2891 (((-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2899 (((-1162)) 12)))
-(((-512) (-10 -8 (-15 -2226 ($)) (-15 -2899 ((-1162))) (-15 -1882 ((-583 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2173 ($ (-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3241 ($ (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1285 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2891 ((-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1859 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
-((-1859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1285 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-2173 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-2899 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-512)))) (-2226 (*1 *1) (-5 *1 (-512))))
-(-10 -8 (-15 -2226 ($)) (-15 -2899 ((-1162))) (-15 -1882 ((-583 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2173 ($ (-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3241 ($ (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1285 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2891 ((-583 (-2 (|:| -2585 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1859 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1057 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2758 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-1440 (((-1072 (-377 (-1072 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1072 |#2|)) 28)) (-3092 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1072 |#2|)) 106)) (-1894 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1072 |#2|)) 50)) (-2414 (((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1072 |#2|))) 85) (((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1072 |#2|)) 105)) (-3177 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)) (-556 |#2|) |#2| (-377 (-1072 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)) |#2| (-1072 |#2|)) 107)) (-2929 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1072 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-2086 ((|#2| (-1072 (-377 (-1072 |#2|))) (-556 |#2|) |#2|) 48)) (-1509 (((-1072 (-377 (-1072 |#2|))) (-1072 |#2|) (-556 |#2|)) 27)))
-(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -1894 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1072 |#2|))) (-15 -1894 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -2414 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1072 |#2|))) (-15 -2414 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -3092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1072 |#2|))) (-15 -3092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -3177 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)) |#2| (-1072 |#2|))) (-15 -3177 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)) (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -1440 ((-1072 (-377 (-1072 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1072 |#2|))) (-15 -2086 (|#2| (-1072 (-377 (-1072 |#2|))) (-556 |#2|) |#2|)) (-15 -1509 ((-1072 (-377 (-1072 |#2|))) (-1072 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2929 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1072 |#2|))) (-15 -2929 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|))))) |%noBranch|)) (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1097)) (-1005)) (T -513))
-((-2929 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1072 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1097))) (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1005)))) (-2929 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1072 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1097))) (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1005)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1097))) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1072 (-377 (-1072 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1072 *6)) (-4 *7 (-1005)))) (-2086 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1072 (-377 (-1072 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1097))) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1005)))) (-1440 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1072 (-377 (-1072 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1072 *3)) (-4 *7 (-1005)))) (-3177 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1076))) (-5 *5 (-377 (-1072 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1005)))) (-3177 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1076))) (-5 *5 (-1072 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1005)))) (-3092 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1072 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1097))) (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1005)))) (-3092 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1072 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1097))) (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1005)))) (-2414 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1072 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005)))) (-2414 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1072 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005)))) (-1894 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1072 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005)))) (-1894 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1072 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005)))))
-(-10 -7 (-15 -1894 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1072 |#2|))) (-15 -1894 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -2414 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1072 |#2|))) (-15 -2414 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -3092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1072 |#2|))) (-15 -3092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -3177 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)) |#2| (-1072 |#2|))) (-15 -3177 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)) (-556 |#2|) |#2| (-377 (-1072 |#2|)))) (-15 -1440 ((-1072 (-377 (-1072 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1072 |#2|))) (-15 -2086 (|#2| (-1072 (-377 (-1072 |#2|))) (-556 |#2|) |#2|)) (-15 -1509 ((-1072 (-377 (-1072 |#2|))) (-1072 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2929 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1072 |#2|))) (-15 -2929 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1072 |#2|))))) |%noBranch|))
-((-2107 (((-517) (-517) (-703)) 66)) (-3536 (((-517) (-517)) 65)) (-2942 (((-517) (-517)) 64)) (-2101 (((-517) (-517)) 69)) (-2660 (((-517) (-517) (-517)) 49)) (-2099 (((-517) (-517) (-517)) 46)) (-1681 (((-377 (-517)) (-517)) 20)) (-3554 (((-517) (-517)) 21)) (-3505 (((-517) (-517)) 58)) (-3480 (((-517) (-517)) 32)) (-2564 (((-583 (-517)) (-517)) 63)) (-3104 (((-517) (-517) (-517) (-517) (-517)) 44)) (-3950 (((-377 (-517)) (-517)) 41)))
-(((-514) (-10 -7 (-15 -3950 ((-377 (-517)) (-517))) (-15 -3104 ((-517) (-517) (-517) (-517) (-517))) (-15 -2564 ((-583 (-517)) (-517))) (-15 -3480 ((-517) (-517))) (-15 -3505 ((-517) (-517))) (-15 -3554 ((-517) (-517))) (-15 -1681 ((-377 (-517)) (-517))) (-15 -2099 ((-517) (-517) (-517))) (-15 -2660 ((-517) (-517) (-517))) (-15 -2101 ((-517) (-517))) (-15 -2942 ((-517) (-517))) (-15 -3536 ((-517) (-517))) (-15 -2107 ((-517) (-517) (-703))))) (T -514))
-((-2107 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2660 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2099 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1681 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3505 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2564 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3104 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(-10 -7 (-15 -3950 ((-377 (-517)) (-517))) (-15 -3104 ((-517) (-517) (-517) (-517) (-517))) (-15 -2564 ((-583 (-517)) (-517))) (-15 -3480 ((-517) (-517))) (-15 -3505 ((-517) (-517))) (-15 -3554 ((-517) (-517))) (-15 -1681 ((-377 (-517)) (-517))) (-15 -2099 ((-517) (-517) (-517))) (-15 -2660 ((-517) (-517) (-517))) (-15 -2101 ((-517) (-517))) (-15 -2942 ((-517) (-517))) (-15 -3536 ((-517) (-517))) (-15 -2107 ((-517) (-517) (-703))))
-((-2844 (((-2 (|:| |answer| |#4|) (|:| -2997 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2844 ((-2 (|:| |answer| |#4|) (|:| -2997 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
-((-2844 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333)) (-4 *7 (-1133 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2997 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
-(-10 -7 (-15 -2844 ((-2 (|:| |answer| |#4|) (|:| -2997 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2844 (((-2 (|:| |answer| (-377 |#2|)) (|:| -2997 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
-(((-516 |#1| |#2|) (-10 -7 (-15 -2844 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2997 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1133 |#1|)) (T -516))
-((-2844 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -2997 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -2844 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2997 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 25)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 86)) (-3062 (($ $) 87)) (-2190 (((-107) $) NIL)) (-1876 (($ $ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $ $ $) 42)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL)) (-2142 (($ $ $) 80)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL)) (-3390 (((-517) $) NIL)) (-2379 (($ $ $) 79)) (-2207 (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-2560 (((-3 $ "failed") $) 83)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL)) (-3000 (((-107) $) NIL)) (-1843 (((-377 (-517)) $) NIL)) (-2202 (($) 62) (($ $) 63)) (-2354 (($ $ $) 78)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3631 (($ $ $ $) NIL)) (-3248 (($ $ $) 54)) (-2988 (((-107) $) NIL)) (-2144 (($ $ $) NIL)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1376 (((-107) $) 26)) (-2686 (((-107) $) 73)) (-2243 (((-3 $ "failed") $) NIL)) (-1952 (((-107) $) 34)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2767 (($ $ $ $) 43)) (-3458 (($ $ $) 75)) (-4084 (($ $ $) 74)) (-2638 (($ $) NIL)) (-3682 (($ $) 40)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) 53)) (-2949 (($ $ $) NIL)) (-2587 (($) NIL T CONST)) (-4006 (($ $) 31)) (-4125 (((-1023) $) NIL) (($ $) 33)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 117)) (-2370 (($ $ $) 84) (($ (-583 $)) NIL)) (-1691 (($ $) NIL)) (-3868 (((-388 $) $) 103)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2329 (((-3 $ "failed") $ $) 82)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1766 (((-107) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 77)) (-2060 (($ $ (-703)) NIL) (($ $) NIL)) (-2917 (($ $) 32)) (-2462 (($ $) 30)) (-3359 (((-517) $) 39) (((-493) $) 51) (((-815 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1059) $) 52)) (-2271 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-4099 (((-703)) NIL)) (-3969 (((-107) $ $) NIL)) (-1917 (($ $ $) NIL)) (-3985 (($) 29)) (-2074 (((-107) $ $) NIL)) (-3696 (($ $ $ $) 41)) (-2376 (($ $) 61)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 27 T CONST)) (-3619 (($) 28 T CONST)) (-4032 (((-1059) $) 20) (((-1059) $ (-107)) 22) (((-1162) (-754) $) 23) (((-1162) (-754) $ (-107)) 24)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 64)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 65)) (-1692 (($ $) 66) (($ $ $) 68)) (-1678 (($ $ $) 67)) (** (($ $ (-844)) NIL) (($ $ (-703)) 72)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
-(((-517) (-13 (-502) (-558 (-1059)) (-760) (-10 -8 (-15 -2202 ($ $)) (-6 -4179) (-6 -4184) (-6 -4180) (-6 -4174)))) (T -517))
-((-2202 (*1 *1 *1) (-5 *1 (-517))))
-(-13 (-502) (-558 (-1059)) (-760) (-10 -8 (-15 -2202 ($ $)) (-6 -4179) (-6 -4184) (-6 -4180) (-6 -4174)))
-((-3617 (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))) (-701) (-975)) 103) (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))) (-701)) 105)) (-2356 (((-3 (-952) "failed") (-286 (-349)) (-998 (-772 (-349))) (-1076)) 168) (((-3 (-952) "failed") (-286 (-349)) (-998 (-772 (-349))) (-1059)) 167) (((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349) (-349) (-975)) 173) (((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349) (-349)) 174) (((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349)) 175) (((-952) (-286 (-349)) (-583 (-1000 (-772 (-349))))) 176) (((-952) (-286 (-349)) (-1000 (-772 (-349)))) 163) (((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349)) 162) (((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349) (-349)) 158) (((-952) (-701)) 150) (((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349) (-349) (-975)) 157)))
-(((-518) (-10 -7 (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349) (-349) (-975))) (-15 -2356 ((-952) (-701))) (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349) (-349) (-975))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))) (-701))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))) (-701) (-975))) (-15 -2356 ((-3 (-952) "failed") (-286 (-349)) (-998 (-772 (-349))) (-1059))) (-15 -2356 ((-3 (-952) "failed") (-286 (-349)) (-998 (-772 (-349))) (-1076))))) (T -518))
-((-2356 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-1076)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-1059)) (-5 *2 (-952)) (-5 *1 (-518)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-975)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952)))) (-5 *1 (-518)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952)))) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-975)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349))))) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349)))) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-952)) (-5 *1 (-518)))) (-2356 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-975)) (-5 *2 (-952)) (-5 *1 (-518)))))
-(-10 -7 (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349) (-349) (-975))) (-15 -2356 ((-952) (-701))) (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-1000 (-772 (-349))))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349) (-349))) (-15 -2356 ((-952) (-286 (-349)) (-583 (-1000 (-772 (-349)))) (-349) (-349) (-975))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))) (-701))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))) (-701) (-975))) (-15 -2356 ((-3 (-952) "failed") (-286 (-349)) (-998 (-772 (-349))) (-1059))) (-15 -2356 ((-3 (-952) "failed") (-286 (-349)) (-998 (-772 (-349))) (-1076))))
-((-4052 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 181)) (-1536 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 99)) (-2816 (((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 177)) (-2499 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076))) 186)) (-1946 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1076)) 194 (|has| |#3| (-593 |#2|)))))
-(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -1536 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2816 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -4052 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2499 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1946 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1076))) |%noBranch|)) (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1097)) (-1005)) (T -519))
-((-1946 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1076)) (-4 *4 (-13 (-400 *7) (-27) (-1097))) (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1005)))) (-2499 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1076))) (-4 *2 (-13 (-400 *5) (-27) (-1097))) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1005)))) (-4052 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1097))) (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1005)))) (-2816 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1097))) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1005)))) (-1536 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1097))) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1005)))))
-(-10 -7 (-15 -1536 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2816 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -4052 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2499 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1076)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1946 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1492 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1076))) |%noBranch|))
-((-3763 (((-2 (|:| -1295 |#2|) (|:| |nconst| |#2|)) |#2| (-1076)) 62)) (-3789 (((-3 |#2| "failed") |#2| (-1076) (-772 |#2|) (-772 |#2|)) 159 (-12 (|has| |#2| (-1040)) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-809 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076)) 133 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-809 (-517)))))) (-2017 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-809 (-517)))))))
-(((-520 |#1| |#2|) (-10 -7 (-15 -3763 ((-2 (|:| -1295 |#2|) (|:| |nconst| |#2|)) |#2| (-1076))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2017 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076))) (-15 -3789 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076)))) |%noBranch|) (IF (|has| |#2| (-1040)) (-15 -3789 ((-3 |#2| "failed") |#2| (-1076) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-779) (-954 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -520))
-((-3789 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1076)) (-5 *4 (-772 *2)) (-4 *2 (-1040)) (-4 *2 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517))) (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-3789 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1076)) (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517))) (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2017 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1076)) (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517))) (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -1295 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(-10 -7 (-15 -3763 ((-2 (|:| -1295 |#2|) (|:| |nconst| |#2|)) |#2| (-1076))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2017 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076))) (-15 -3789 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076)))) |%noBranch|) (IF (|has| |#2| (-1040)) (-15 -3789 ((-3 |#2| "failed") |#2| (-1076) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2440 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-2356 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-1914 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-2976 (((-3 (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
-(((-521 |#1| |#2|) (-10 -7 (-15 -2356 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -1914 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -2976 ((-3 (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -2440 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-954 (-517))) (-1133 |#1|)) (T -521))
-((-2440 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-2976 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-954 (-517)))) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| -2212 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-1914 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-13 (-333) (-134) (-954 (-517)))) (-5 *1 (-521 *3 *4)))) (-2356 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-954 (-517)))) (-4 *5 (-1133 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
-(-10 -7 (-15 -2356 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -1914 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -2976 ((-3 (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -2440 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
-((-1926 (((-3 (-517) "failed") |#1|) 14)) (-2982 (((-107) |#1|) 13)) (-2268 (((-517) |#1|) 9)))
-(((-522 |#1|) (-10 -7 (-15 -2268 ((-517) |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -1926 ((-3 (-517) "failed") |#1|))) (-954 (-517))) (T -522))
-((-1926 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-954 *2)))) (-2982 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-954 (-517))))) (-2268 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-954 *2)))))
-(-10 -7 (-15 -2268 ((-517) |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -1926 ((-3 (-517) "failed") |#1|)))
-((-3370 (((-3 (-2 (|:| |mainpart| (-377 (-875 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-875 |#1|))) (|:| |logand| (-377 (-875 |#1|))))))) "failed") (-377 (-875 |#1|)) (-1076) (-583 (-377 (-875 |#1|)))) 43)) (-1956 (((-534 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-1076)) 25)) (-1195 (((-3 (-377 (-875 |#1|)) "failed") (-377 (-875 |#1|)) (-1076)) 20)) (-3587 (((-3 (-2 (|:| -2212 (-377 (-875 |#1|))) (|:| |coeff| (-377 (-875 |#1|)))) "failed") (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|))) 32)))
-(((-523 |#1|) (-10 -7 (-15 -1956 ((-534 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-1076))) (-15 -1195 ((-3 (-377 (-875 |#1|)) "failed") (-377 (-875 |#1|)) (-1076))) (-15 -3370 ((-3 (-2 (|:| |mainpart| (-377 (-875 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-875 |#1|))) (|:| |logand| (-377 (-875 |#1|))))))) "failed") (-377 (-875 |#1|)) (-1076) (-583 (-377 (-875 |#1|))))) (-15 -3587 ((-3 (-2 (|:| -2212 (-377 (-875 |#1|))) (|:| |coeff| (-377 (-875 |#1|)))) "failed") (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|))))) (-13 (-509) (-954 (-517)) (-134))) (T -523))
-((-3587 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-954 (-517)) (-134))) (-5 *2 (-2 (|:| -2212 (-377 (-875 *5))) (|:| |coeff| (-377 (-875 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-875 *5))))) (-3370 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-583 (-377 (-875 *6)))) (-5 *3 (-377 (-875 *6))) (-4 *6 (-13 (-509) (-954 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-1195 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-954 (-517)) (-134))) (-5 *1 (-523 *4)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-954 (-517)) (-134))) (-5 *2 (-534 (-377 (-875 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-875 *5))))))
-(-10 -7 (-15 -1956 ((-534 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-1076))) (-15 -1195 ((-3 (-377 (-875 |#1|)) "failed") (-377 (-875 |#1|)) (-1076))) (-15 -3370 ((-3 (-2 (|:| |mainpart| (-377 (-875 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-875 |#1|))) (|:| |logand| (-377 (-875 |#1|))))))) "failed") (-377 (-875 |#1|)) (-1076) (-583 (-377 (-875 |#1|))))) (-15 -3587 ((-3 (-2 (|:| -2212 (-377 (-875 |#1|))) (|:| |coeff| (-377 (-875 |#1|)))) "failed") (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|)))))
-((-2119 (((-107) $ $) 59)) (-3097 (((-107) $) 36)) (-3419 ((|#1| $) 30)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) 63)) (-1648 (($ $) 123)) (-1494 (($ $) 103)) (-2948 ((|#1| $) 28)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $) NIL)) (-1624 (($ $) 125)) (-1471 (($ $) 99)) (-1670 (($ $) 127)) (-1520 (($ $) 107)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) 78)) (-3390 (((-517) $) 80)) (-2560 (((-3 $ "failed") $) 62)) (-1751 (($ |#1| |#1|) 26)) (-2988 (((-107) $) 33)) (-2116 (($) 89)) (-1376 (((-107) $) 43)) (-2092 (($ $ (-517)) NIL)) (-1952 (((-107) $) 34)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1226 (($ $) 91)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-3821 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-2890 ((|#1| $) 27)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) 65) (($ (-583 $)) NIL)) (-2329 (((-3 $ "failed") $ $) 64)) (-3870 (($ $) 93)) (-1682 (($ $) 131)) (-1533 (($ $) 105)) (-1660 (($ $) 133)) (-1507 (($ $) 109)) (-1635 (($ $) 129)) (-1483 (($ $) 101)) (-3944 (((-107) $ |#1|) 31)) (-2271 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-4099 (((-703)) 87)) (-1722 (($ $) 145)) (-1576 (($ $) 115)) (-2074 (((-107) $ $) NIL)) (-1697 (($ $) 143)) (-1548 (($ $) 111)) (-3489 (($ $) 141)) (-1600 (($ $) 121)) (-2824 (($ $) 139)) (-1613 (($ $) 119)) (-1735 (($ $) 137)) (-1589 (($ $) 117)) (-1709 (($ $) 135)) (-1562 (($ $) 113)) (-2815 (($ $ (-844)) 55) (($ $ (-703)) NIL)) (-3610 (($) 21 T CONST)) (-3619 (($) 10 T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 37)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 35)) (-1692 (($ $) 41) (($ $ $) 42)) (-1678 (($ $ $) 40)) (** (($ $ (-844)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-844) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
-(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1097))) (T -524))
+((-2891 (((-583 |#2|) (-1073 |#1|) |#3|) 83)) (-3591 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1073 |#1|)) (-1073 |#1|))) 99)) (-3129 (((-1073 |#1|) (-623 |#1|)) 95)))
+(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-1073 |#1|) (-623 |#1|))) (-15 -2891 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3591 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1073 |#1|)) (-1073 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
+((-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1073 *6)) (-1073 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1073 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3129 ((-1073 |#1|) (-623 |#1|))) (-15 -2891 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3591 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1073 |#1|)) (-1073 |#1|)))))
+((-3135 (((-772 (-517))) 11)) (-3147 (((-772 (-517))) 13)) (-2111 (((-765 (-517))) 8)))
+(((-491) (-10 -7 (-15 -2111 ((-765 (-517)))) (-15 -3135 ((-772 (-517)))) (-15 -3147 ((-772 (-517)))))) (T -491))
+((-3147 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-3135 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2111 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
+(-10 -7 (-15 -2111 ((-765 (-517)))) (-15 -3135 ((-772 (-517)))) (-15 -3147 ((-772 (-517)))))
+((-1876 (((-493) (-1077)) 15)) (-2338 ((|#1| (-493)) 20)))
+(((-492 |#1|) (-10 -7 (-15 -1876 ((-493) (-1077))) (-15 -2338 (|#1| (-493)))) (-1112)) (T -492))
+((-2338 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1112)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1112)))))
+(-10 -7 (-15 -1876 ((-493) (-1077))) (-15 -2338 (|#1| (-493))))
+((-2105 (((-107) $ $) NIL)) (-3205 (((-1060) $) 46)) (-2798 (((-107) $) 43)) (-2243 (((-1077) $) 44)) (-3844 (((-107) $) 41)) (-1507 (((-1060) $) 42)) (-3347 (((-107) $) NIL)) (-2469 (((-107) $) NIL)) (-1294 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-1938 (($ $ (-583 (-1077))) 20)) (-2338 (((-51) $) 22)) (-3744 (((-107) $) NIL)) (-2258 (((-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2218 (($ $ (-583 (-1077)) (-1077)) 58)) (-2965 (((-107) $) NIL)) (-3202 (((-199) $) NIL)) (-2604 (($ $) 38)) (-3756 (((-787) $) NIL)) (-3817 (((-107) $ $) NIL)) (-2612 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3964 (((-583 $) $) 28)) (-1899 (((-1077) (-583 $)) 47)) (-3367 (($ (-583 $)) 51) (($ (-1060)) NIL) (($ (-1077)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1010) $) 11) (($ (-1010)) 12)) (-2511 (((-1077) (-1077) (-583 $)) 50)) (-2262 (((-787) $) NIL)) (-3311 (($ $) 49)) (-3301 (($ $) 48)) (-2799 (($ $ (-583 $)) 55)) (-4112 (((-107) $) 27)) (-3663 (($) 9 T CONST)) (-3675 (($) 10 T CONST)) (-1572 (((-107) $ $) 59)) (-1692 (($ $ $) 64)) (-1666 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-3573 (((-517) $) NIL)))
+(((-493) (-13 (-1009 (-1060) (-1077) (-517) (-199) (-787)) (-558 (-1010)) (-10 -8 (-15 -2338 ((-51) $)) (-15 -3367 ($ (-1010))) (-15 -2799 ($ $ (-583 $))) (-15 -2218 ($ $ (-583 (-1077)) (-1077))) (-15 -1938 ($ $ (-583 (-1077)))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1373) (-15 1 ($) -1373) (-15 -2604 ($ $)) (-15 -3205 ((-1060) $)) (-15 -1899 ((-1077) (-583 $))) (-15 -2511 ((-1077) (-1077) (-583 $)))))) (T -493))
+((-2338 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-493)))) (-2799 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-2218 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1077)) (-5 *1 (-493)))) (-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-493)))) (-1666 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1692 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-3663 (*1 *1) (-5 *1 (-493))) (-3675 (*1 *1) (-5 *1 (-493))) (-2604 (*1 *1 *1) (-5 *1 (-493))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-493)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1077)) (-5 *1 (-493)))) (-2511 (*1 *2 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(-13 (-1009 (-1060) (-1077) (-517) (-199) (-787)) (-558 (-1010)) (-10 -8 (-15 -2338 ((-51) $)) (-15 -3367 ($ (-1010))) (-15 -2799 ($ $ (-583 $))) (-15 -2218 ($ $ (-583 (-1077)) (-1077))) (-15 -1938 ($ $ (-583 (-1077)))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-3663) ($) -1373) (-15 (-3675) ($) -1373) (-15 -2604 ($ $)) (-15 -3205 ((-1060) $)) (-15 -1899 ((-1077) (-583 $))) (-15 -2511 ((-1077) (-1077) (-583 $)))))
+((-3693 ((|#2| |#2|) 17)) (-2658 ((|#2| |#2|) 13)) (-2787 ((|#2| |#2| (-517) (-517)) 20)) (-1520 ((|#2| |#2|) 15)))
+(((-494 |#1| |#2|) (-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1149 |#1|)) (T -494))
+((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1149 *4)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1149 *3)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1149 *3)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1149 *3)))))
+(-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517))))
+((-1360 (((-583 (-265 (-876 |#2|))) (-583 |#2|) (-583 (-1077))) 32)) (-3571 (((-583 |#2|) (-876 |#1|) |#3|) 53) (((-583 |#2|) (-1073 |#1|) |#3|) 52)) (-4148 (((-583 (-583 |#2|)) (-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)) |#3|) 87)))
+(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3571 ((-583 |#2|) (-876 |#1|) |#3|)) (-15 -4148 ((-583 (-583 |#2|)) (-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)) |#3|)) (-15 -1360 ((-583 (-265 (-876 |#2|))) (-583 |#2|) (-583 (-1077))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
+((-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1077))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-876 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-4148 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3571 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3571 ((-583 |#2|) (-876 |#1|) |#3|)) (-15 -4148 ((-583 (-583 |#2|)) (-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)) |#3|)) (-15 -1360 ((-583 (-265 (-876 |#2|))) (-583 |#2|) (-583 (-1077)))))
+((-2563 ((|#2| |#2| |#1|) 17)) (-2403 ((|#2| (-583 |#2|)) 27)) (-1198 ((|#2| (-583 |#2|)) 46)))
+(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2403 (|#2| (-583 |#2|))) (-15 -1198 (|#2| (-583 |#2|))) (-15 -2563 (|#2| |#2| |#1|))) (-278) (-1134 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
+((-2563 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1134 *3)))) (-1198 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(-10 -7 (-15 -2403 (|#2| (-583 |#2|))) (-15 -1198 (|#2| (-583 |#2|))) (-15 -2563 (|#2| |#2| |#1|)))
+((-3896 (((-388 (-1073 |#4|)) (-1073 |#4|) (-1 (-388 (-1073 |#3|)) (-1073 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1073 |#3|)) (-1073 |#3|))) 166)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 (-1073 |#3|)) (-1073 |#3|)))) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|) (-1 (-388 (-1073 |#3|)) (-1073 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-873 |#3| |#2| |#1|)) (T -497))
+((-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-873 *7 *6 *5)) (-5 *2 (-388 (-1073 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1073 *8)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-873 *7 *6 *5)))))
+(-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 (-1073 |#3|)) (-1073 |#3|)))) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|) (-1 (-388 (-1073 |#3|)) (-1073 |#3|)))))
+((-3693 ((|#4| |#4|) 74)) (-2658 ((|#4| |#4|) 70)) (-2787 ((|#4| |#4| (-517) (-517)) 76)) (-1520 ((|#4| |#4|) 72)))
+(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2658 (|#4| |#4|)) (-15 -1520 (|#4| |#4|)) (-15 -3693 (|#4| |#4|)) (-15 -2787 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1134 |#1|) (-657 |#1| |#2|) (-1149 |#3|)) (T -498))
+((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1134 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1149 *6)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))))
+(-10 -7 (-15 -2658 (|#4| |#4|)) (-15 -1520 (|#4| |#4|)) (-15 -3693 (|#4| |#4|)) (-15 -2787 (|#4| |#4| (-517) (-517))))
+((-3693 ((|#2| |#2|) 27)) (-2658 ((|#2| |#2|) 23)) (-2787 ((|#2| |#2| (-517) (-517)) 29)) (-1520 ((|#2| |#2|) 25)))
+(((-499 |#1| |#2|) (-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1149 |#1|)) (T -499))
+((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1149 *4)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1149 *3)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1149 *3)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1149 *3)))))
+(-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517))))
+((-2689 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
+(((-500 |#1| |#2|) (-10 -7 (-15 -2689 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-964) (-1134 |#1|)) (T -500))
+((-2689 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4)))) (-2689 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4)))) (-2689 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-964)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1134 *5)))))
+(-10 -7 (-15 -2689 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
+((-2199 (($ $ $) 79)) (-3306 (((-388 $) $) 47)) (-3220 (((-3 (-517) "failed") $) 59)) (-3402 (((-517) $) 37)) (-3389 (((-3 (-377 (-517)) "failed") $) 74)) (-3748 (((-107) $) 24)) (-3727 (((-377 (-517)) $) 72)) (-2022 (((-107) $) 50)) (-1214 (($ $ $ $) 86)) (-2671 (((-107) $) 16)) (-3624 (($ $ $) 57)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 69)) (-1639 (((-3 $ "failed") $) 64)) (-2628 (($ $) 23)) (-3598 (($ $ $) 84)) (-2578 (($) 60)) (-2038 (($ $) 53)) (-3896 (((-388 $) $) 45)) (-2278 (((-107) $) 14)) (-3388 (((-703) $) 28)) (-2042 (($ $ (-703)) NIL) (($ $) 10)) (-2453 (($ $) 17)) (-3367 (((-517) $) NIL) (((-493) $) 36) (((-816 (-517)) $) 40) (((-349) $) 31) (((-199) $) 33)) (-1818 (((-703)) 8)) (-1638 (((-107) $ $) 20)) (-1462 (($ $ $) 55)))
+(((-501 |#1|) (-10 -8 (-15 -3598 (|#1| |#1| |#1|)) (-15 -1214 (|#1| |#1| |#1| |#1|)) (-15 -2628 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1638 ((-107) |#1| |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1462 (|#1| |#1| |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3367 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2671 ((-107) |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -1818 ((-703)))) (-502)) (T -501))
+((-1818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
+(-10 -8 (-15 -3598 (|#1| |#1| |#1|)) (-15 -1214 (|#1| |#1| |#1| |#1|)) (-15 -2628 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1638 ((-107) |#1| |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1462 (|#1| |#1| |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3367 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2671 ((-107) |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -1818 ((-703))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2199 (($ $ $) 85)) (-1783 (((-3 $ "failed") $ $) 19)) (-2800 (($ $ $ $) 73)) (-1322 (($ $) 51)) (-3306 (((-388 $) $) 52)) (-1765 (((-107) $ $) 125)) (-3502 (((-517) $) 114)) (-2127 (($ $ $) 88)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 106)) (-3402 (((-517) $) 105)) (-2383 (($ $ $) 129)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3550 (((-3 $ "failed") $) 34)) (-3389 (((-3 (-377 (-517)) "failed") $) 82)) (-3748 (((-107) $) 84)) (-3727 (((-377 (-517)) $) 83)) (-2192 (($) 81) (($ $) 80)) (-2356 (($ $ $) 128)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 123)) (-2022 (((-107) $) 53)) (-1214 (($ $ $ $) 71)) (-4146 (($ $ $) 86)) (-2671 (((-107) $) 116)) (-3624 (($ $ $) 97)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 100)) (-1690 (((-107) $) 31)) (-3448 (((-107) $) 92)) (-1639 (((-3 $ "failed") $) 94)) (-2321 (((-107) $) 115)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-3721 (($ $ $ $) 72)) (-3480 (($ $ $) 117)) (-4095 (($ $ $) 118)) (-2628 (($ $) 75)) (-3728 (($ $) 89)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-3598 (($ $ $) 70)) (-2578 (($) 93 T CONST)) (-4022 (($ $) 77)) (-4130 (((-1024) $) 10) (($ $) 79)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2038 (($ $) 98)) (-3896 (((-388 $) $) 50)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 130)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-2278 (((-107) $) 91)) (-3388 (((-703) $) 126)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 127)) (-2042 (($ $ (-703)) 111) (($ $) 109)) (-2909 (($ $) 76)) (-2453 (($ $) 78)) (-3367 (((-517) $) 108) (((-493) $) 102) (((-816 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-1818 (((-703)) 29)) (-1638 (((-107) $ $) 87)) (-1462 (($ $ $) 99)) (-4003 (($) 90)) (-2944 (((-107) $ $) 39)) (-2006 (($ $ $ $) 74)) (-2829 (($ $) 113)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-703)) 112) (($ $) 110)) (-1630 (((-107) $ $) 120)) (-1606 (((-107) $ $) 121)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 119)) (-1596 (((-107) $ $) 122)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-502) (-1189)) (T -502))
+((-3448 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-4003 (*1 *1) (-4 *1 (-502))) (-3728 (*1 *1 *1) (-4 *1 (-502))) (-2127 (*1 *1 *1 *1) (-4 *1 (-502))) (-1638 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-4146 (*1 *1 *1 *1) (-4 *1 (-502))) (-2199 (*1 *1 *1 *1) (-4 *1 (-502))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-2192 (*1 *1) (-4 *1 (-502))) (-2192 (*1 *1 *1) (-4 *1 (-502))) (-4130 (*1 *1 *1) (-4 *1 (-502))) (-2453 (*1 *1 *1) (-4 *1 (-502))) (-4022 (*1 *1 *1) (-4 *1 (-502))) (-2909 (*1 *1 *1) (-4 *1 (-502))) (-2628 (*1 *1 *1) (-4 *1 (-502))) (-2006 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2800 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3721 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1214 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3598 (*1 *1 *1 *1) (-4 *1 (-502))))
+(-13 (-1116) (-278) (-752) (-207) (-558 (-517)) (-955 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-816 (-517))) (-810 (-517)) (-130) (-940) (-134) (-1053) (-10 -8 (-15 -3448 ((-107) $)) (-15 -2278 ((-107) $)) (-6 -4194) (-15 -4003 ($)) (-15 -3728 ($ $)) (-15 -2127 ($ $ $)) (-15 -1638 ((-107) $ $)) (-15 -4146 ($ $ $)) (-15 -2199 ($ $ $)) (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $)) (-15 -2192 ($)) (-15 -2192 ($ $)) (-15 -4130 ($ $)) (-15 -2453 ($ $)) (-15 -4022 ($ $)) (-15 -2909 ($ $)) (-15 -2628 ($ $)) (-15 -2006 ($ $ $ $)) (-15 -2800 ($ $ $ $)) (-15 -3721 ($ $ $ $)) (-15 -1214 ($ $ $ $)) (-15 -3598 ($ $ $)) (-6 -4193)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-816 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-810 (-517)) . T) ((-844) . T) ((-940) . T) ((-955 (-517)) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) . T) ((-1116) . T))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-503 |#1| |#2| |#3|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195)))) (T -503))
+NIL
+(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195)))
+((-4141 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1073 |#2|) (-1073 |#2|))) 49)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -4141 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1073 |#2|) (-1073 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
+((-4141 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1073 *3) (-1073 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
+(-10 -7 (-15 -4141 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1073 |#2|) (-1073 |#2|)))))
+((-2381 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-1811 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2592 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
+(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2592 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2381 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1811 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-955 (-517))) (-13 (-27) (-400 |#1|)) (-1134 |#2|) (-1134 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
+((-1811 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-4 *7 (-1134 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(-10 -7 (-15 -2592 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2381 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1811 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1667 (((-107) (-517) (-517)) 10)) (-2625 (((-517) (-517)) 7)) (-1566 (((-517) (-517) (-517)) 8)))
+(((-506) (-10 -7 (-15 -2625 ((-517) (-517))) (-15 -1566 ((-517) (-517) (-517))) (-15 -1667 ((-107) (-517) (-517))))) (T -506))
+((-1667 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-1566 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(-10 -7 (-15 -2625 ((-517) (-517))) (-15 -1566 ((-517) (-517) (-517))) (-15 -1667 ((-107) (-517) (-517))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3436 ((|#1| $) 61)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1636 (($ $) 91)) (-1482 (($ $) 74)) (-3505 ((|#1| $) 62)) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $) 73)) (-1612 (($ $) 90)) (-1459 (($ $) 75)) (-1659 (($ $) 89)) (-1508 (($ $) 76)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 69)) (-3402 (((-517) $) 68)) (-3550 (((-3 $ "failed") $) 34)) (-3363 (($ |#1| |#1|) 66)) (-2671 (((-107) $) 60)) (-2102 (($) 101)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 72)) (-2321 (((-107) $) 59)) (-3480 (($ $ $) 107)) (-4095 (($ $ $) 106)) (-1232 (($ $) 98)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-1887 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-2720 ((|#1| $) 63)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2333 (((-3 $ "failed") $ $) 42)) (-3898 (($ $) 99)) (-1670 (($ $) 88)) (-1521 (($ $) 77)) (-1647 (($ $) 87)) (-1495 (($ $) 78)) (-1622 (($ $) 86)) (-1471 (($ $) 79)) (-4168 (((-107) $ |#1|) 58)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-1818 (((-703)) 29)) (-1706 (($ $) 97)) (-1564 (($ $) 85)) (-2944 (((-107) $ $) 39)) (-1685 (($ $) 96)) (-1536 (($ $) 84)) (-3517 (($ $) 95)) (-1588 (($ $) 83)) (-2815 (($ $) 94)) (-1601 (($ $) 82)) (-1722 (($ $) 93)) (-1577 (($ $) 81)) (-1698 (($ $) 92)) (-1550 (($ $) 80)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 104)) (-1606 (((-107) $ $) 103)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 105)) (-1596 (((-107) $ $) 102)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-507 |#1|) (-1189) (-13 (-374) (-1098))) (T -507))
+((-1887 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-3363 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-1887 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))) (-4168 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))))
+(-13 (-421) (-779) (-1098) (-921) (-955 (-517)) (-10 -8 (-6 -2194) (-15 -1887 ($ |t#1| |t#1|)) (-15 -3363 ($ |t#1| |t#1|)) (-15 -1887 ($ |t#1|)) (-15 -1887 ($ (-377 (-517)))) (-15 -2720 (|t#1| $)) (-15 -3505 (|t#1| $)) (-15 -3436 (|t#1| $)) (-15 -2671 ((-107) $)) (-15 -2321 ((-107) $)) (-15 -4168 ((-107) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-921) . T) ((-955 (-517)) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) . T) ((-1101) . T))
+((-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 9)) (-2491 (($ $) 11)) (-2025 (((-107) $) 18)) (-3550 (((-3 $ "failed") $) 16)) (-2944 (((-107) $ $) 20)))
+(((-508 |#1|) (-10 -8 (-15 -2025 ((-107) |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
+NIL
+(-10 -8 (-15 -2025 ((-107) |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-509) (-1189)) (T -509))
+((-2333 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1966 *1) (|:| -4182 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-2491 (*1 *1 *1) (-4 *1 (-509))) (-2944 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2333 ((-3 $ "failed") $ $)) (-15 -3479 ((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $)) (-15 -2491 ($ $)) (-15 -2944 ((-107) $ $)) (-15 -2025 ((-107) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3441 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1077) (-583 |#2|)) 35)) (-3967 (((-534 |#2|) |#2| (-1077)) 58)) (-2349 (((-3 |#2| "failed") |#2| (-1077)) 149)) (-1581 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) (-556 |#2|) (-583 (-556 |#2|))) 152)) (-1349 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) |#2|) 38)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -1349 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) |#2|)) (-15 -3441 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1077) (-583 |#2|))) (-15 -2349 ((-3 |#2| "failed") |#2| (-1077))) (-15 -3967 ((-534 |#2|) |#2| (-1077))) (-15 -1581 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -510))
+((-1581 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1077)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2349 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3441 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-1349 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
+(-10 -7 (-15 -1349 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) |#2|)) (-15 -3441 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1077) (-583 |#2|))) (-15 -2349 ((-3 |#2| "failed") |#2| (-1077))) (-15 -3967 ((-534 |#2|) |#2| (-1077))) (-15 -1581 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) (-556 |#2|) (-583 (-556 |#2|)))))
+((-3306 (((-388 |#1|) |#1|) 18)) (-3896 (((-388 |#1|) |#1|) 33)) (-3682 (((-3 |#1| "failed") |#1|) 44)) (-1679 (((-388 |#1|) |#1|) 51)))
+(((-511 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1679 ((-388 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
+((-3682 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-1679 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3306 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1679 ((-388 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1|)))
+((-1419 (($) 9)) (-1287 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1869 (((-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-3439 (($ (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-1866 (($ (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1846 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-2862 (((-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-1888 (((-1163)) 12)))
+(((-512) (-10 -8 (-15 -1419 ($)) (-15 -1888 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1866 ($ (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1287 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2862 ((-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1846 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
+((-1846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1287 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-1888 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-512)))) (-1419 (*1 *1) (-5 *1 (-512))))
+(-10 -8 (-15 -1419 ($)) (-15 -1888 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1866 ($ (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1287 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2862 ((-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1846 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-1428 (((-1073 (-377 (-1073 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1073 |#2|)) 28)) (-2977 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1073 |#2|)) 106)) (-3097 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|)) 50)) (-2741 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1073 |#2|))) 85) (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1073 |#2|)) 105)) (-3219 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) |#2| (-1073 |#2|)) 107)) (-2175 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-2069 ((|#2| (-1073 (-377 (-1073 |#2|))) (-556 |#2|) |#2|) 48)) (-1497 (((-1073 (-377 (-1073 |#2|))) (-1073 |#2|) (-556 |#2|)) 27)))
+(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1073 |#2|))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1073 |#2|))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) |#2| (-1073 |#2|))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -1428 ((-1073 (-377 (-1073 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1073 |#2|))) (-15 -2069 (|#2| (-1073 (-377 (-1073 |#2|))) (-556 |#2|) |#2|)) (-15 -1497 ((-1073 (-377 (-1073 |#2|))) (-1073 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))))) |%noBranch|)) (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1098)) (-1006)) (T -513))
+((-2175 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1073 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) (-2175 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1073 (-377 (-1073 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1073 *6)) (-4 *7 (-1006)))) (-2069 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1073 (-377 (-1073 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1006)))) (-1428 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1073 (-377 (-1073 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1073 *3)) (-4 *7 (-1006)))) (-3219 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-5 *5 (-377 (-1073 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006)))) (-3219 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-5 *5 (-1073 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006)))) (-2977 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006)))) (-2977 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1073 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006)))) (-2741 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) (-2741 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) (-3097 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) (-3097 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))))
+(-10 -7 (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1073 |#2|))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1073 |#2|))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) |#2| (-1073 |#2|))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -1428 ((-1073 (-377 (-1073 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1073 |#2|))) (-15 -2069 (|#2| (-1073 (-377 (-1073 |#2|))) (-556 |#2|) |#2|)) (-15 -1497 ((-1073 (-377 (-1073 |#2|))) (-1073 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))))) |%noBranch|))
+((-2657 (((-517) (-517) (-703)) 66)) (-3484 (((-517) (-517)) 65)) (-4138 (((-517) (-517)) 64)) (-1940 (((-517) (-517)) 69)) (-1895 (((-517) (-517) (-517)) 49)) (-1674 (((-517) (-517) (-517)) 46)) (-4164 (((-377 (-517)) (-517)) 20)) (-3397 (((-517) (-517)) 21)) (-2863 (((-517) (-517)) 58)) (-1796 (((-517) (-517)) 32)) (-2610 (((-583 (-517)) (-517)) 63)) (-2424 (((-517) (-517) (-517) (-517) (-517)) 44)) (-3132 (((-377 (-517)) (-517)) 41)))
+(((-514) (-10 -7 (-15 -3132 ((-377 (-517)) (-517))) (-15 -2424 ((-517) (-517) (-517) (-517) (-517))) (-15 -2610 ((-583 (-517)) (-517))) (-15 -1796 ((-517) (-517))) (-15 -2863 ((-517) (-517))) (-15 -3397 ((-517) (-517))) (-15 -4164 ((-377 (-517)) (-517))) (-15 -1674 ((-517) (-517) (-517))) (-15 -1895 ((-517) (-517) (-517))) (-15 -1940 ((-517) (-517))) (-15 -4138 ((-517) (-517))) (-15 -3484 ((-517) (-517))) (-15 -2657 ((-517) (-517) (-703))))) (T -514))
+((-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1895 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1674 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2610 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-2424 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3132 ((-377 (-517)) (-517))) (-15 -2424 ((-517) (-517) (-517) (-517) (-517))) (-15 -2610 ((-583 (-517)) (-517))) (-15 -1796 ((-517) (-517))) (-15 -2863 ((-517) (-517))) (-15 -3397 ((-517) (-517))) (-15 -4164 ((-377 (-517)) (-517))) (-15 -1674 ((-517) (-517) (-517))) (-15 -1895 ((-517) (-517) (-517))) (-15 -1940 ((-517) (-517))) (-15 -4138 ((-517) (-517))) (-15 -3484 ((-517) (-517))) (-15 -2657 ((-517) (-517) (-703))))
+((-2639 (((-2 (|:| |answer| |#4|) (|:| -2249 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2639 ((-2 (|:| |answer| |#4|) (|:| -2249 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
+((-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-4 *7 (-1134 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2249 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
+(-10 -7 (-15 -2639 ((-2 (|:| |answer| |#4|) (|:| -2249 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2639 (((-2 (|:| |answer| (-377 |#2|)) (|:| -2249 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
+(((-516 |#1| |#2|) (-10 -7 (-15 -2639 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2249 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1134 |#1|)) (T -516))
+((-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -2249 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2639 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2249 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 25)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 86)) (-2491 (($ $) 87)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) 42)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) 80)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL)) (-3402 (((-517) $) NIL)) (-2383 (($ $ $) 79)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3550 (((-3 $ "failed") $) 83)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($) 62) (($ $) 63)) (-2356 (($ $ $) 78)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) 54)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) 26)) (-3448 (((-107) $) 73)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) 34)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) 43)) (-3480 (($ $ $) 75)) (-4095 (($ $ $) 74)) (-2628 (($ $) NIL)) (-3728 (($ $) 40)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) 53)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) 31)) (-4130 (((-1024) $) NIL) (($ $) 33)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 117)) (-2361 (($ $ $) 84) (($ (-583 $)) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) 103)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) 82)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 77)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2909 (($ $) 32)) (-2453 (($ $) 30)) (-3367 (((-517) $) 39) (((-493) $) 51) (((-816 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1060) $) 52)) (-2262 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) 29)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) 41)) (-2829 (($ $) 61)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 27 T CONST)) (-3675 (($) 28 T CONST)) (-2514 (((-1060) $) 20) (((-1060) $ (-107)) 22) (((-1163) (-754) $) 23) (((-1163) (-754) $ (-107)) 24)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 64)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 65)) (-1680 (($ $) 66) (($ $ $) 68)) (-1666 (($ $ $) 67)) (** (($ $ (-845)) NIL) (($ $ (-703)) 72)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
+(((-517) (-13 (-502) (-558 (-1060)) (-760) (-10 -8 (-15 -2192 ($ $)) (-6 -4182) (-6 -4187) (-6 -4183) (-6 -4177)))) (T -517))
+((-2192 (*1 *1 *1) (-5 *1 (-517))))
+(-13 (-502) (-558 (-1060)) (-760) (-10 -8 (-15 -2192 ($ $)) (-6 -4182) (-6 -4187) (-6 -4183) (-6 -4177)))
+((-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701) (-976)) 103) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701)) 105)) (-3296 (((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1077)) 168) (((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1060)) 167) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349) (-976)) 173) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349)) 174) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349)) 175) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349))))) 176) (((-953) (-286 (-349)) (-1001 (-772 (-349)))) 163) (((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349)) 162) (((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349)) 158) (((-953) (-701)) 150) (((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349) (-976)) 157)))
+(((-518) (-10 -7 (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349) (-976))) (-15 -3296 ((-953) (-701))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349) (-976))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701) (-976))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1060))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1077))))) (T -518))
+((-3296 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-1077)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-1060)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) (-5 *1 (-518)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518)))))
+(-10 -7 (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349) (-976))) (-15 -3296 ((-953) (-701))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349) (-976))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701) (-976))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1060))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1077))))
+((-1552 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 181)) (-1382 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 99)) (-1254 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 177)) (-2343 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077))) 186)) (-3025 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1077)) 194 (|has| |#3| (-593 |#2|)))))
+(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -1382 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -1254 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1552 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2343 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3025 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1077))) |%noBranch|)) (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1098)) (-1006)) (T -519))
+((-3025 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1077)) (-4 *4 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) (-2343 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-4 *2 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1006)))) (-1552 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1006)))) (-1254 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006)))) (-1382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006)))))
+(-10 -7 (-15 -1382 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -1254 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1552 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2343 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3025 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1077))) |%noBranch|))
+((-3537 (((-2 (|:| -3319 |#2|) (|:| |nconst| |#2|)) |#2| (-1077)) 62)) (-1881 (((-3 |#2| "failed") |#2| (-1077) (-772 |#2|) (-772 |#2|)) 159 (-12 (|has| |#2| (-1041)) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-810 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)) 133 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-810 (-517)))))) (-1930 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-810 (-517)))))))
+(((-520 |#1| |#2|) (-10 -7 (-15 -3537 ((-2 (|:| -3319 |#2|) (|:| |nconst| |#2|)) |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -1930 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077))) (-15 -1881 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) (IF (|has| |#2| (-1041)) (-15 -1881 ((-3 |#2| "failed") |#2| (-1077) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-779) (-955 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -520))
+((-1881 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1077)) (-5 *4 (-772 *2)) (-4 *2 (-1041)) (-4 *2 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-1881 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-1930 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3319 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
+(-10 -7 (-15 -3537 ((-2 (|:| -3319 |#2|) (|:| |nconst| |#2|)) |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -1930 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077))) (-15 -1881 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) (IF (|has| |#2| (-1041)) (-15 -1881 ((-3 |#2| "failed") |#2| (-1077) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1540 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-3296 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-2961 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-1996 (((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -3296 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2961 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -1996 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-955 (-517))) (-1134 |#1|)) (T -521))
+((-1540 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-1996 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -2791 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-2961 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134) (-955 (-517)))) (-5 *1 (-521 *3 *4)))) (-3296 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -3296 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2961 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -1996 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
+((-3616 (((-3 (-517) "failed") |#1|) 14)) (-3744 (((-107) |#1|) 13)) (-2258 (((-517) |#1|) 9)))
+(((-522 |#1|) (-10 -7 (-15 -2258 ((-517) |#1|)) (-15 -3744 ((-107) |#1|)) (-15 -3616 ((-3 (-517) "failed") |#1|))) (-955 (-517))) (T -522))
+((-3616 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2)))) (-3744 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-955 (-517))))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2)))))
+(-10 -7 (-15 -2258 ((-517) |#1|)) (-15 -3744 ((-107) |#1|)) (-15 -3616 ((-3 (-517) "failed") |#1|)))
+((-2653 (((-3 (-2 (|:| |mainpart| (-377 (-876 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-876 |#1|))) (|:| |logand| (-377 (-876 |#1|))))))) "failed") (-377 (-876 |#1|)) (-1077) (-583 (-377 (-876 |#1|)))) 43)) (-1513 (((-534 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-1077)) 25)) (-3980 (((-3 (-377 (-876 |#1|)) "failed") (-377 (-876 |#1|)) (-1077)) 20)) (-3492 (((-3 (-2 (|:| -2791 (-377 (-876 |#1|))) (|:| |coeff| (-377 (-876 |#1|)))) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))) 32)))
+(((-523 |#1|) (-10 -7 (-15 -1513 ((-534 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3980 ((-3 (-377 (-876 |#1|)) "failed") (-377 (-876 |#1|)) (-1077))) (-15 -2653 ((-3 (-2 (|:| |mainpart| (-377 (-876 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-876 |#1|))) (|:| |logand| (-377 (-876 |#1|))))))) "failed") (-377 (-876 |#1|)) (-1077) (-583 (-377 (-876 |#1|))))) (-15 -3492 ((-3 (-2 (|:| -2791 (-377 (-876 |#1|))) (|:| |coeff| (-377 (-876 |#1|)))) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))))) (-13 (-509) (-955 (-517)) (-134))) (T -523))
+((-3492 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-955 (-517)) (-134))) (-5 *2 (-2 (|:| -2791 (-377 (-876 *5))) (|:| |coeff| (-377 (-876 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-876 *5))))) (-2653 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 (-377 (-876 *6)))) (-5 *3 (-377 (-876 *6))) (-4 *6 (-13 (-509) (-955 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-3980 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-955 (-517)) (-134))) (-5 *1 (-523 *4)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-955 (-517)) (-134))) (-5 *2 (-534 (-377 (-876 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-876 *5))))))
+(-10 -7 (-15 -1513 ((-534 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3980 ((-3 (-377 (-876 |#1|)) "failed") (-377 (-876 |#1|)) (-1077))) (-15 -2653 ((-3 (-2 (|:| |mainpart| (-377 (-876 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-876 |#1|))) (|:| |logand| (-377 (-876 |#1|))))))) "failed") (-377 (-876 |#1|)) (-1077) (-583 (-377 (-876 |#1|))))) (-15 -3492 ((-3 (-2 (|:| -2791 (-377 (-876 |#1|))) (|:| |coeff| (-377 (-876 |#1|)))) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)))))
+((-2105 (((-107) $ $) 59)) (-1992 (((-107) $) 36)) (-3436 ((|#1| $) 30)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) 63)) (-1636 (($ $) 123)) (-1482 (($ $) 103)) (-3505 ((|#1| $) 28)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL)) (-1612 (($ $) 125)) (-1459 (($ $) 99)) (-1659 (($ $) 127)) (-1508 (($ $) 107)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) 78)) (-3402 (((-517) $) 80)) (-3550 (((-3 $ "failed") $) 62)) (-3363 (($ |#1| |#1|) 26)) (-2671 (((-107) $) 33)) (-2102 (($) 89)) (-1690 (((-107) $) 43)) (-2940 (($ $ (-517)) NIL)) (-2321 (((-107) $) 34)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-1232 (($ $) 91)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-1887 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-2720 ((|#1| $) 27)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) 65) (($ (-583 $)) NIL)) (-2333 (((-3 $ "failed") $ $) 64)) (-3898 (($ $) 93)) (-1670 (($ $) 131)) (-1521 (($ $) 105)) (-1647 (($ $) 133)) (-1495 (($ $) 109)) (-1622 (($ $) 129)) (-1471 (($ $) 101)) (-4168 (((-107) $ |#1|) 31)) (-2262 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-1818 (((-703)) 87)) (-1706 (($ $) 145)) (-1564 (($ $) 115)) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) 143)) (-1536 (($ $) 111)) (-3517 (($ $) 141)) (-1588 (($ $) 121)) (-2815 (($ $) 139)) (-1601 (($ $) 119)) (-1722 (($ $) 137)) (-1577 (($ $) 117)) (-1698 (($ $) 135)) (-1550 (($ $) 113)) (-2806 (($ $ (-845)) 55) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 10 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 37)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 35)) (-1680 (($ $) 41) (($ $ $) 42)) (-1666 (($ $ $) 40)) (** (($ $ (-845)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-845) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
+(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1098))) (T -524))
NIL
(-507 |#1|)
-((-2019 (((-3 (-583 (-1072 (-517))) "failed") (-583 (-1072 (-517))) (-1072 (-517))) 24)))
-(((-525) (-10 -7 (-15 -2019 ((-3 (-583 (-1072 (-517))) "failed") (-583 (-1072 (-517))) (-1072 (-517)))))) (T -525))
-((-2019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1072 (-517)))) (-5 *3 (-1072 (-517))) (-5 *1 (-525)))))
-(-10 -7 (-15 -2019 ((-3 (-583 (-1072 (-517))) "failed") (-583 (-1072 (-517))) (-1072 (-517)))))
-((-2717 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1076)) 18)) (-1448 (((-583 (-556 |#2|)) (-583 |#2|) (-1076)) 23)) (-2384 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-1240 ((|#2| |#2| (-1076)) 52 (|has| |#1| (-509)))) (-1982 ((|#2| |#2| (-1076)) 77 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-4149 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1076)) 25)) (-4107 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3078 (((-534 |#2|) |#2| (-1076) (-1 (-534 |#2|) |#2| (-1076)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076))) 101 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-954 (-1076))) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-809 (-517)))))))
-(((-526 |#1| |#2|) (-10 -7 (-15 -2717 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1076))) (-15 -4107 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -4149 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1076))) (-15 -2384 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1448 ((-583 (-556 |#2|)) (-583 |#2|) (-1076))) (IF (|has| |#1| (-509)) (-15 -1240 (|#2| |#2| (-1076))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -1982 (|#2| |#2| (-1076))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-954 (-1076))) (-15 -3078 ((-534 |#2|) |#2| (-1076) (-1 (-534 |#2|) |#2| (-1076)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-779) (-400 |#1|)) (T -526))
-((-3078 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1076))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1076))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-954 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1076)) (-4 *7 (-558 (-815 (-517)))) (-4 *7 (-421)) (-4 *7 (-809 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-1982 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-1240 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-1448 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1076)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-2384 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-4149 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1076)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-2717 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1076)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
-(-10 -7 (-15 -2717 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1076))) (-15 -4107 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -4149 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1076))) (-15 -2384 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1448 ((-583 (-556 |#2|)) (-583 |#2|) (-1076))) (IF (|has| |#1| (-509)) (-15 -1240 (|#2| |#2| (-1076))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -1982 (|#2| |#2| (-1076))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-954 (-1076))) (-15 -3078 ((-534 |#2|) |#2| (-1076) (-1 (-534 |#2|) |#2| (-1076)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1076)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2260 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 168)) (-2835 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 144)) (-1514 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 141)) (-4020 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-2603 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-2754 (((-3 (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 171)) (-3580 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 174)) (-1947 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 82)) (-1680 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-3790 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 148)) (-1239 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 134)) (-2032 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 158)) (-3316 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 179)))
-(((-527 |#1| |#2|) (-10 -7 (-15 -2603 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2032 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2260 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3580 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3316 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -2835 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3790 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2754 ((-3 (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -1514 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -4020 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1239 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -1947 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1680 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1133 |#1|)) (T -527))
-((-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-1239 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3300 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1133 *4)) (-5 *1 (-527 *4 *5)))) (-4020 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2212 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1133 *4)))) (-1514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1133 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-2754 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2212 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3790 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3300 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1133 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-2835 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2212 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1133 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3300 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1133 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2212 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3580 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2212 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1133 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2212 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2260 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1133 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2032 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3300 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1133 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2603 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2212 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1133 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(-10 -7 (-15 -2603 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2032 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2260 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3580 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3316 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -2835 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3790 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2754 ((-3 (-2 (|:| -2212 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -1514 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -4020 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1239 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3300 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -1947 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1680 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3533 (((-3 |#2| "failed") |#2| (-1076) (-1076)) 10)))
-(((-528 |#1| |#2|) (-10 -7 (-15 -3533 ((-3 |#2| "failed") |#2| (-1076) (-1076)))) (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-881) (-1040) (-29 |#1|))) (T -528))
-((-3533 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1076)) (-4 *4 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1097) (-881) (-1040) (-29 *4))))))
-(-10 -7 (-15 -3533 ((-3 |#2| "failed") |#2| (-1076) (-1076))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ (-517)) 65)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-1392 (($ (-1072 (-517)) (-517)) 71)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) 57)) (-1546 (($ $) 33)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1395 (((-703) $) 15)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1673 (((-517)) 27)) (-1272 (((-517) $) 31)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2671 (($ $ (-517)) 21)) (-2329 (((-3 $ "failed") $ $) 58)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) 16)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 60)) (-1192 (((-1057 (-517)) $) 18)) (-3624 (($ $) 23)) (-2271 (((-787) $) 86) (($ (-517)) 51) (($ $) NIL)) (-4099 (((-703)) 14)) (-2074 (((-107) $ $) NIL)) (-2204 (((-517) $ (-517)) 35)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 34 T CONST)) (-3619 (($) 19 T CONST)) (-1584 (((-107) $ $) 38)) (-1692 (($ $) 50) (($ $ $) 36)) (-1678 (($ $ $) 49)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
+((-3862 (((-3 (-583 (-1073 (-517))) "failed") (-583 (-1073 (-517))) (-1073 (-517))) 24)))
+(((-525) (-10 -7 (-15 -3862 ((-3 (-583 (-1073 (-517))) "failed") (-583 (-1073 (-517))) (-1073 (-517)))))) (T -525))
+((-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 (-517)))) (-5 *3 (-1073 (-517))) (-5 *1 (-525)))))
+(-10 -7 (-15 -3862 ((-3 (-583 (-1073 (-517))) "failed") (-583 (-1073 (-517))) (-1073 (-517)))))
+((-1859 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1077)) 18)) (-3882 (((-583 (-556 |#2|)) (-583 |#2|) (-1077)) 23)) (-2374 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-4038 ((|#2| |#2| (-1077)) 52 (|has| |#1| (-509)))) (-2910 ((|#2| |#2| (-1077)) 77 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-3437 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1077)) 25)) (-1771 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3626 (((-534 |#2|) |#2| (-1077) (-1 (-534 |#2|) |#2| (-1077)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077))) 101 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-955 (-1077))) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-810 (-517)))))))
+(((-526 |#1| |#2|) (-10 -7 (-15 -1859 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1077))) (-15 -1771 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -3437 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1077))) (-15 -2374 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -3882 ((-583 (-556 |#2|)) (-583 |#2|) (-1077))) (IF (|has| |#1| (-509)) (-15 -4038 (|#2| |#2| (-1077))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2910 (|#2| |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-955 (-1077))) (-15 -3626 ((-534 |#2|) |#2| (-1077) (-1 (-534 |#2|) |#2| (-1077)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-779) (-400 |#1|)) (T -526))
+((-3626 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1077))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1077))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-955 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1077)) (-4 *7 (-558 (-816 (-517)))) (-4 *7 (-421)) (-4 *7 (-810 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-2910 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1077)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-2374 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-3437 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1077)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-1859 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1077)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(-10 -7 (-15 -1859 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1077))) (-15 -1771 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -3437 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1077))) (-15 -2374 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -3882 ((-583 (-556 |#2|)) (-583 |#2|) (-1077))) (IF (|has| |#1| (-509)) (-15 -4038 (|#2| |#2| (-1077))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2910 (|#2| |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-955 (-1077))) (-15 -3626 ((-534 |#2|) |#2| (-1077) (-1 (-534 |#2|) |#2| (-1077)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2306 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 168)) (-4175 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 144)) (-2294 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 141)) (-3498 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-2585 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3702 (((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 171)) (-3285 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 174)) (-3141 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 82)) (-4052 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1977 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 148)) (-3915 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 134)) (-1219 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 158)) (-3782 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 179)))
+(((-527 |#1| |#2|) (-10 -7 (-15 -2585 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1219 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2306 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3285 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3782 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -4175 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -1977 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -3702 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2294 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3498 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3915 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3141 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -4052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1134 |#1|)) (T -527))
+((-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3915 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *1 (-527 *4 *5)))) (-3498 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1134 *4)))) (-2294 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1134 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-3702 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2791 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-1977 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3302 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-4175 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2791 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-3782 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3285 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2585 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(-10 -7 (-15 -2585 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1219 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2306 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3285 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3782 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -4175 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -1977 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -3702 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2294 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3498 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3915 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3141 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -4052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3340 (((-3 |#2| "failed") |#2| (-1077) (-1077)) 10)))
+(((-528 |#1| |#2|) (-10 -7 (-15 -3340 ((-3 |#2| "failed") |#2| (-1077) (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-1041) (-29 |#1|))) (T -528))
+((-3340 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1098) (-882) (-1041) (-29 *4))))))
+(-10 -7 (-15 -3340 ((-3 |#2| "failed") |#2| (-1077) (-1077))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $ (-517)) 65)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2902 (($ (-1073 (-517)) (-517)) 71)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 57)) (-4021 (($ $) 33)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-3250 (((-703) $) 15)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 (((-517)) 27)) (-3907 (((-517) $) 31)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3175 (($ $ (-517)) 21)) (-2333 (((-3 $ "failed") $ $) 58)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) 16)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 60)) (-3685 (((-1058 (-517)) $) 18)) (-2384 (($ $) 23)) (-2262 (((-787) $) 86) (($ (-517)) 51) (($ $) NIL)) (-1818 (((-703)) 14)) (-2944 (((-107) $ $) NIL)) (-2194 (((-517) $ (-517)) 35)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 34 T CONST)) (-3675 (($) 19 T CONST)) (-1572 (((-107) $ $) 38)) (-1680 (($ $) 50) (($ $ $) 36)) (-1666 (($ $ $) 49)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
(((-529 |#1| |#2|) (-793 |#1|) (-517) (-107)) (T -529))
NIL
(-793 |#1|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 18)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-1768 (((-1085 (-844) (-703)) (-517)) 47)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 $ "failed") $) 75)) (-3390 (($ $) 74)) (-3898 (($ (-1157 $)) 73)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) 30)) (-2202 (($) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) 49)) (-3459 (((-107) $) NIL)) (-2855 (($ $) NIL) (($ $ (-703)) NIL)) (-1259 (((-107) $) NIL)) (-1395 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-1376 (((-107) $) NIL)) (-3669 (($) 35 (|has| $ (-338)))) (-2548 (((-107) $) NIL (|has| $ (-338)))) (-2803 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-2243 (((-3 $ "failed") $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 $) $ (-844)) NIL (|has| $ (-338))) (((-1072 $) $) 83)) (-3072 (((-844) $) 55)) (-3018 (((-1072 $) $) NIL (|has| $ (-338)))) (-1425 (((-3 (-1072 $) "failed") $ $) NIL (|has| $ (-338))) (((-1072 $) $) NIL (|has| $ (-338)))) (-2421 (($ $ (-1072 $)) NIL (|has| $ (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL T CONST)) (-2812 (($ (-844)) 48)) (-1603 (((-107) $) 67)) (-4125 (((-1023) $) NIL)) (-1318 (($) 16 (|has| $ (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 40)) (-3868 (((-388 $) $) NIL)) (-2402 (((-844)) 66) (((-765 (-844))) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1537 (((-125)) NIL)) (-2060 (($ $ (-703)) NIL) (($ $) NIL)) (-3647 (((-844) $) 65) (((-765 (-844)) $) NIL)) (-2387 (((-1072 $)) 82)) (-1758 (($) 54)) (-1426 (($) 36 (|has| $ (-338)))) (-3784 (((-623 $) (-1157 $)) NIL) (((-1157 $) $) 71)) (-3359 (((-517) $) 26)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-3974 (((-3 $ "failed") $) NIL) (($ $) 84)) (-4099 (((-703)) 37)) (-1492 (((-1157 $) (-844)) 77) (((-1157 $)) 76)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 19 T CONST)) (-3619 (($) 15 T CONST)) (-3629 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-844)) (T -530))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 18)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) 47)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 $ "failed") $) 75)) (-3402 (($ $) 74)) (-3539 (($ (-1158 $)) 73)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 30)) (-2192 (($) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 49)) (-2634 (((-107) $) NIL)) (-2627 (($ $) NIL) (($ $ (-703)) NIL)) (-2022 (((-107) $) NIL)) (-3250 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-1690 (((-107) $) NIL)) (-1222 (($) 35 (|has| $ (-338)))) (-3715 (((-107) $) NIL (|has| $ (-338)))) (-3522 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 $) $ (-845)) NIL (|has| $ (-338))) (((-1073 $) $) 83)) (-4161 (((-845) $) 55)) (-3905 (((-1073 $) $) NIL (|has| $ (-338)))) (-3211 (((-3 (-1073 $) "failed") $ $) NIL (|has| $ (-338))) (((-1073 $) $) NIL (|has| $ (-338)))) (-3063 (($ $ (-1073 $)) NIL (|has| $ (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL T CONST)) (-2803 (($ (-845)) 48)) (-1333 (((-107) $) 67)) (-4130 (((-1024) $) NIL)) (-1306 (($) 16 (|has| $ (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 40)) (-3896 (((-388 $) $) NIL)) (-2177 (((-845)) 66) (((-765 (-845))) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1470 (((-125)) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-1191 (((-845) $) 65) (((-765 (-845)) $) NIL)) (-2819 (((-1073 $)) 82)) (-3718 (($) 54)) (-3297 (($) 36 (|has| $ (-338)))) (-1372 (((-623 $) (-1158 $)) NIL) (((-1158 $) $) 71)) (-3367 (((-517) $) 26)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1818 (((-703)) 37)) (-3700 (((-1158 $) (-845)) 77) (((-1158 $)) 76)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 19 T CONST)) (-3675 (($) 15 T CONST)) (-4115 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-845)) (T -530))
NIL
(-13 (-319) (-299 $) (-558 (-517)))
-((-2700 (((-1162) (-1059)) 10)))
-(((-531) (-10 -7 (-15 -2700 ((-1162) (-1059))))) (T -531))
-((-2700 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-531)))))
-(-10 -7 (-15 -2700 ((-1162) (-1059))))
-((-1378 (((-534 |#2|) (-534 |#2|)) 38)) (-2296 (((-583 |#2|) (-534 |#2|)) 40)) (-2663 ((|#2| (-534 |#2|)) 47)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -1378 ((-534 |#2|) (-534 |#2|))) (-15 -2296 ((-583 |#2|) (-534 |#2|))) (-15 -2663 (|#2| (-534 |#2|)))) (-13 (-421) (-954 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1097))) (T -532))
-((-2663 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1097))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1097))) (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1097))) (-4 *3 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
-(-10 -7 (-15 -1378 ((-534 |#2|) (-534 |#2|))) (-15 -2296 ((-583 |#2|) (-534 |#2|))) (-15 -2663 (|#2| (-534 |#2|))))
-((-3310 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
-(((-533 |#1| |#2|) (-10 -7 (-15 -3310 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3310 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3310 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3310 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
-((-3310 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-3310 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-3310 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2212 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2212 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
-(-10 -7 (-15 -3310 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3310 ((-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2212 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3310 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3310 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 69)) (-3390 ((|#1| $) NIL)) (-2212 ((|#1| $) 24)) (-2832 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3960 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 |#1|)) (|:| |logand| (-1072 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2997 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 |#1|)) (|:| |logand| (-1072 |#1|)))) $) 25)) (-1662 (((-1059) $) NIL)) (-2483 (($ |#1| |#1|) 32) (($ |#1| (-1076)) 43 (|has| |#1| (-954 (-1076))))) (-4125 (((-1023) $) NIL)) (-3697 (((-107) $) 28)) (-2060 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1076)) 82 (|has| |#1| (-823 (-1076))))) (-2271 (((-787) $) 96) (($ |#1|) 23)) (-3610 (($) 16 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) 15) (($ $ $) NIL)) (-1678 (($ $ $) 78)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
-(((-534 |#1|) (-13 (-650 (-377 (-517))) (-954 |#1|) (-10 -8 (-15 -3960 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 |#1|)) (|:| |logand| (-1072 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2212 (|#1| $)) (-15 -2997 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 |#1|)) (|:| |logand| (-1072 |#1|)))) $)) (-15 -2832 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3697 ((-107) $)) (-15 -2483 ($ |#1| |#1|)) (-15 -2060 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-823 (-1076))) (-15 -2060 (|#1| $ (-1076))) |%noBranch|) (IF (|has| |#1| (-954 (-1076))) (-15 -2483 ($ |#1| (-1076))) |%noBranch|))) (-333)) (T -534))
-((-3960 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 *2)) (|:| |logand| (-1072 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2212 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 *3)) (|:| |logand| (-1072 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2483 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2060 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-823 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1076)))) (-2483 (*1 *1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *1 (-534 *2)) (-4 *2 (-954 *3)) (-4 *2 (-333)))))
-(-13 (-650 (-377 (-517))) (-954 |#1|) (-10 -8 (-15 -3960 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 |#1|)) (|:| |logand| (-1072 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2212 (|#1| $)) (-15 -2997 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 |#1|)) (|:| |logand| (-1072 |#1|)))) $)) (-15 -2832 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3697 ((-107) $)) (-15 -2483 ($ |#1| |#1|)) (-15 -2060 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-823 (-1076))) (-15 -2060 (|#1| $ (-1076))) |%noBranch|) (IF (|has| |#1| (-954 (-1076))) (-15 -2483 ($ |#1| (-1076))) |%noBranch|)))
-((-1200 (((-107) |#1|) 16)) (-3923 (((-3 |#1| "failed") |#1|) 14)) (-3346 (((-2 (|:| -3985 |#1|) (|:| -2121 (-703))) |#1|) 31) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3531 (((-107) |#1| (-703)) 19)) (-3112 ((|#1| |#1|) 32)) (-1260 ((|#1| |#1| (-703)) 34)))
-(((-535 |#1|) (-10 -7 (-15 -3531 ((-107) |#1| (-703))) (-15 -3346 ((-3 |#1| "failed") |#1| (-703))) (-15 -3346 ((-2 (|:| -3985 |#1|) (|:| -2121 (-703))) |#1|)) (-15 -1260 (|#1| |#1| (-703))) (-15 -1200 ((-107) |#1|)) (-15 -3923 ((-3 |#1| "failed") |#1|)) (-15 -3112 (|#1| |#1|))) (-502)) (T -535))
-((-3112 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3923 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1200 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-1260 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3346 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3985 *3) (|:| -2121 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-3346 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3531 ((-107) |#1| (-703))) (-15 -3346 ((-3 |#1| "failed") |#1| (-703))) (-15 -3346 ((-2 (|:| -3985 |#1|) (|:| -2121 (-703))) |#1|)) (-15 -1260 (|#1| |#1| (-703))) (-15 -1200 ((-107) |#1|)) (-15 -3923 ((-3 |#1| "failed") |#1|)) (-15 -3112 (|#1| |#1|)))
-((-1264 (((-1072 |#1|) (-844)) 27)))
-(((-536 |#1|) (-10 -7 (-15 -1264 ((-1072 |#1|) (-844)))) (-319)) (T -536))
-((-1264 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
-(-10 -7 (-15 -1264 ((-1072 |#1|) (-844))))
-((-1378 (((-534 (-377 (-875 |#1|))) (-534 (-377 (-875 |#1|)))) 26)) (-2356 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-875 |#1|)) (-1076)) 32 (|has| |#1| (-134)))) (-2296 (((-583 (-286 |#1|)) (-534 (-377 (-875 |#1|)))) 18)) (-2848 (((-286 |#1|) (-377 (-875 |#1|)) (-1076)) 30 (|has| |#1| (-134)))) (-2663 (((-286 |#1|) (-534 (-377 (-875 |#1|)))) 20)))
-(((-537 |#1|) (-10 -7 (-15 -1378 ((-534 (-377 (-875 |#1|))) (-534 (-377 (-875 |#1|))))) (-15 -2296 ((-583 (-286 |#1|)) (-534 (-377 (-875 |#1|))))) (-15 -2663 ((-286 |#1|) (-534 (-377 (-875 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -2356 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-875 |#1|)) (-1076))) (-15 -2848 ((-286 |#1|) (-377 (-875 |#1|)) (-1076)))) |%noBranch|)) (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (T -537))
-((-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-875 *4)))) (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-875 *4)))) (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-875 *3)))) (-4 *3 (-13 (-421) (-954 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
-(-10 -7 (-15 -1378 ((-534 (-377 (-875 |#1|))) (-534 (-377 (-875 |#1|))))) (-15 -2296 ((-583 (-286 |#1|)) (-534 (-377 (-875 |#1|))))) (-15 -2663 ((-286 |#1|) (-534 (-377 (-875 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -2356 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-875 |#1|)) (-1076))) (-15 -2848 ((-286 |#1|) (-377 (-875 |#1|)) (-1076)))) |%noBranch|))
-((-2262 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-828 (-517)))) 46) (((-583 (-623 (-517))) (-583 (-517))) 47) (((-623 (-517)) (-583 (-517)) (-828 (-517))) 42)) (-1314 (((-703) (-583 (-517))) 40)))
-(((-538) (-10 -7 (-15 -1314 ((-703) (-583 (-517)))) (-15 -2262 ((-623 (-517)) (-583 (-517)) (-828 (-517)))) (-15 -2262 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -2262 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-828 (-517))))))) (T -538))
-((-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-828 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-828 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
-(-10 -7 (-15 -1314 ((-703) (-583 (-517)))) (-15 -2262 ((-623 (-517)) (-583 (-517)) (-828 (-517)))) (-15 -2262 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -2262 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-828 (-517))))))
-((-2801 (((-583 |#5|) |#5| (-107)) 73)) (-3378 (((-107) |#5| (-583 |#5|)) 30)))
-(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2801 ((-583 |#5|) |#5| (-107))) (-15 -3378 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-977 |#1| |#2| |#3|) (-1014 |#1| |#2| |#3| |#4|)) (T -539))
-((-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1014 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1014 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2801 ((-583 |#5|) |#5| (-107))) (-15 -3378 ((-107) |#5| (-583 |#5|))))
-((-2119 (((-107) $ $) NIL (|has| (-131) (-1005)))) (-3508 (($ $) 34)) (-2594 (($ $) NIL)) (-1464 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2551 (((-107) $ $) 51)) (-3141 (((-107) $ $ (-517)) 46)) (-1378 (((-583 $) $ (-131)) 60) (((-583 $) $ (-128)) 61)) (-2166 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-1420 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| (-131) (-779))))) (-2163 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4193))) (((-131) $ (-1124 (-517)) (-131)) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2907 (($ $ (-131)) 64) (($ $ (-128)) 65)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-3232 (($ $ (-1124 (-517)) $) 44)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1423 (($ (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4192))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4192)))) (-2759 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4193)))) (-2566 (((-131) $ (-517)) NIL)) (-2571 (((-107) $ $) 71)) (-1212 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1005))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1005))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1534 (((-583 (-131)) $) NIL (|has| $ (-6 -4192)))) (-3213 (($ (-703) (-131)) 9)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 28 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| (-131) (-779)))) (-2662 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-1903 (((-583 (-131)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1989 (((-517) $) 42 (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-131) (-779)))) (-1450 (((-107) $ $ (-131)) 72)) (-1937 (((-703) $ $ (-131)) 70)) (-2746 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-2838 (($ $) 37)) (-3675 (($ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-2920 (($ $ (-131)) 62) (($ $ (-128)) 63)) (-1662 (((-1059) $) 38 (|has| (-131) (-1005)))) (-1747 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-517) $) 69) (((-1023) $) NIL (|has| (-131) (-1005)))) (-2429 (((-131) $) NIL (|has| (-517) (-779)))) (-1528 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2846 (($ $ (-131)) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-2891 (((-583 (-131)) $) NIL)) (-2394 (((-107) $) 12)) (-2452 (($) 10)) (-2609 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1124 (-517))) 21) (($ $ $) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1901 (($ $ $ (-517)) 66 (|has| $ (-6 -4193)))) (-2462 (($ $) 17)) (-3359 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2288 (($ (-583 (-131))) NIL)) (-4110 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 67)) (-2271 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-3602 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1584 (((-107) $ $) 14 (|has| (-131) (-1005)))) (-1630 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1608 (((-107) $ $) 15 (|has| (-131) (-779)))) (-3535 (((-703) $) 13 (|has| $ (-6 -4192)))))
-(((-540 |#1|) (-13 (-1045) (-10 -8 (-15 -4125 ((-517) $)))) (-517)) (T -540))
-((-4125 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
-(-13 (-1045) (-10 -8 (-15 -4125 ((-517) $))))
-((-3454 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1000 |#4|)) 32)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3454 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1000 |#4|))) (-15 -3454 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-872 |#3| |#1| |#2|)) (T -541))
-((-3454 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4)))) (-3454 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1000 *3)) (-4 *3 (-872 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3454 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1000 |#4|))) (-15 -3454 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 63)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-1928 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-2170 (($ $) 100)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3167 (((-787) (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-943 (-772 (-517))) (-1076) |#1| (-377 (-517))) 215)) (-3433 (($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1880 (((-107) $) NIL)) (-1395 (((-517) $) 58) (((-517) $ (-517)) 59)) (-1376 (((-107) $) NIL)) (-2401 (($ $ (-844)) 76)) (-3138 (($ (-1 |#1| (-517)) $) 73)) (-3982 (((-107) $) 25)) (-2078 (($ |#1| (-517)) 22) (($ $ (-991) (-517)) NIL) (($ $ (-583 (-991)) (-583 (-517))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) 67)) (-2232 (($ (-943 (-772 (-517))) (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-2356 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-1225 (((-3 $ "failed") $ $ (-107)) 99)) (-3270 (($ $ $) 108)) (-4125 (((-1023) $) NIL)) (-2102 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3450 (((-943 (-772 (-517))) $) 12)) (-2671 (($ $ (-517)) 45)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-2609 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1017)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3647 (((-517) $) NIL)) (-3624 (($ $) 46)) (-2271 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-1689 ((|#1| $ (-517)) 56)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) 37)) (-3569 ((|#1| $) NIL)) (-3740 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-1222 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-3655 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1786 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-2132 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1346 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1501 (($ $ (-377 (-517))) 146 (|has| |#1| (-37 (-377 (-517)))))) (-2523 (($ $ |#1|) 121 (|has| |#1| (-37 (-377 (-517)))))) (-3981 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-3575 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1283 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-3716 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3611 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-2057 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-2128 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3257 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-4039 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-2215 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1696 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2358 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-4058 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3741 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-2007 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1529 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-2738 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-3732 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1432 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2204 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 29 T CONST)) (-3619 (($) 38 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1584 (((-107) $ $) 65)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) 84) (($ $ $) 64)) (-1678 (($ $ $) 81)) (** (($ $ (-844)) NIL) (($ $ (-703)) 103)) (* (($ (-844) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-542 |#1|) (-13 (-1135 |#1| (-517)) (-10 -8 (-15 -2232 ($ (-943 (-772 (-517))) (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3450 ((-943 (-772 (-517))) $)) (-15 -2102 ((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3433 ($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3982 ((-107) $)) (-15 -3138 ($ (-1 |#1| (-517)) $)) (-15 -1225 ((-3 $ "failed") $ $ (-107))) (-15 -2170 ($ $)) (-15 -3270 ($ $ $)) (-15 -3167 ((-787) (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-943 (-772 (-517))) (-1076) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $)) (-15 -2523 ($ $ |#1|)) (-15 -1501 ($ $ (-377 (-517)))) (-15 -3575 ($ $)) (-15 -3981 ($ $)) (-15 -1786 ($ $)) (-15 -3257 ($ $)) (-15 -1222 ($ $)) (-15 -2057 ($ $)) (-15 -1346 ($ $)) (-15 -3716 ($ $)) (-15 -2358 ($ $)) (-15 -1432 ($ $)) (-15 -2215 ($ $)) (-15 -2738 ($ $)) (-15 -1486 ($ $)) (-15 -2007 ($ $)) (-15 -3655 ($ $)) (-15 -2128 ($ $)) (-15 -3740 ($ $)) (-15 -3611 ($ $)) (-15 -2132 ($ $)) (-15 -1283 ($ $)) (-15 -1696 ($ $)) (-15 -3732 ($ $)) (-15 -4039 ($ $)) (-15 -1529 ($ $)) (-15 -4058 ($ $)) (-15 -3741 ($ $))) |%noBranch|))) (-963)) (T -542))
-((-3982 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-963)))) (-2232 (*1 *1 *2 *3) (-12 (-5 *2 (-943 (-772 (-517)))) (-5 *3 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-963)) (-5 *1 (-542 *4)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-943 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-963)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-963)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-963)) (-5 *1 (-542 *3)))) (-3138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-963)) (-5 *1 (-542 *3)))) (-1225 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-963)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-963)))) (-3270 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-963)))) (-3167 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-943 (-772 (-517)))) (-5 *5 (-1076)) (-5 *7 (-377 (-517))) (-4 *6 (-963)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1501 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-963)))) (-3575 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3981 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3257 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1222 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2057 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1346 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1432 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2215 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2738 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2007 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2128 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3740 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3611 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-2132 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1283 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1696 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-4039 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-1529 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-4058 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))) (-3741 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(-13 (-1135 |#1| (-517)) (-10 -8 (-15 -2232 ($ (-943 (-772 (-517))) (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3450 ((-943 (-772 (-517))) $)) (-15 -2102 ((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3433 ($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3982 ((-107) $)) (-15 -3138 ($ (-1 |#1| (-517)) $)) (-15 -1225 ((-3 $ "failed") $ $ (-107))) (-15 -2170 ($ $)) (-15 -3270 ($ $ $)) (-15 -3167 ((-787) (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-943 (-772 (-517))) (-1076) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $)) (-15 -2523 ($ $ |#1|)) (-15 -1501 ($ $ (-377 (-517)))) (-15 -3575 ($ $)) (-15 -3981 ($ $)) (-15 -1786 ($ $)) (-15 -3257 ($ $)) (-15 -1222 ($ $)) (-15 -2057 ($ $)) (-15 -1346 ($ $)) (-15 -3716 ($ $)) (-15 -2358 ($ $)) (-15 -1432 ($ $)) (-15 -2215 ($ $)) (-15 -2738 ($ $)) (-15 -1486 ($ $)) (-15 -2007 ($ $)) (-15 -3655 ($ $)) (-15 -2128 ($ $)) (-15 -3740 ($ $)) (-15 -3611 ($ $)) (-15 -2132 ($ $)) (-15 -1283 ($ $)) (-15 -1696 ($ $)) (-15 -3732 ($ $)) (-15 -4039 ($ $)) (-15 -1529 ($ $)) (-15 -4058 ($ $)) (-15 -3741 ($ $))) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3433 (($ (-1057 |#1|)) 9)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) 42)) (-1880 (((-107) $) 52)) (-1395 (((-703) $) 55) (((-703) $ (-703)) 54)) (-1376 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-1057 |#1|) $) 23)) (-4099 (((-703)) 51)) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 10 T CONST)) (-3619 (($) 14 T CONST)) (-1584 (((-107) $ $) 22)) (-1692 (($ $) 30) (($ $ $) 16)) (-1678 (($ $ $) 25)) (** (($ $ (-844)) NIL) (($ $ (-703)) 49)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
-(((-543 |#1|) (-13 (-963) (-10 -8 (-15 -1998 ((-1057 |#1|) $)) (-15 -3433 ($ (-1057 |#1|))) (-15 -1880 ((-107) $)) (-15 -1395 ((-703) $)) (-15 -1395 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|))) (-963)) (T -543))
-((-1998 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-543 *3)) (-4 *3 (-963)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-543 *3)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-963)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-963)))) (-1395 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-963)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-963)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-963)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-963)))))
-(-13 (-963) (-10 -8 (-15 -1998 ((-1057 |#1|) $)) (-15 -3433 ($ (-1057 |#1|))) (-15 -1880 ((-107) $)) (-15 -1395 ((-703) $)) (-15 -1395 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|)))
-((-3310 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
-(((-544 |#1| |#2|) (-10 -7 (-15 -3310 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1111) (-1111)) (T -544))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
-(-10 -7 (-15 -3310 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
-((-3310 (((-1057 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1057 |#2|)) 20) (((-1057 |#3|) (-1 |#3| |#1| |#2|) (-1057 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
-(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -3310 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3310 ((-1057 |#3|) (-1 |#3| |#1| |#2|) (-1057 |#1|) (-547 |#2|))) (-15 -3310 ((-1057 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1057 |#2|)))) (-1111) (-1111) (-1111)) (T -545))
-((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1057 *7)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-1057 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1057 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-1057 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
-(-10 -7 (-15 -3310 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3310 ((-1057 |#3|) (-1 |#3| |#1| |#2|) (-1057 |#1|) (-547 |#2|))) (-15 -3310 ((-1057 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1057 |#2|))))
-((-1478 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1076))) 55)) (-3172 (((-153 |#2|) |#3|) 116)) (-4089 ((|#3| (-153 |#2|)) 43)) (-2750 ((|#2| |#3|) 19)) (-2196 ((|#3| |#2|) 32)))
-(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -4089 (|#3| (-153 |#2|))) (-15 -2750 (|#2| |#3|)) (-15 -2196 (|#3| |#2|)) (-15 -3172 ((-153 |#2|) |#3|)) (-15 -1478 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1076))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-920) (-1097)) (-13 (-400 (-153 |#1|)) (-920) (-1097))) (T -546))
-((-1478 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1076))) (-4 *2 (-13 (-400 (-153 *5)) (-920) (-1097))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-920) (-1097))))) (-3172 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-920) (-1097))) (-4 *3 (-13 (-400 (-153 *4)) (-920) (-1097))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-920) (-1097))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-920) (-1097))))) (-2750 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-920) (-1097))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-920) (-1097))))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-920) (-1097))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-920) (-1097))) (-5 *1 (-546 *4 *5 *2)))))
-(-10 -7 (-15 -4089 (|#3| (-153 |#2|))) (-15 -2750 (|#2| |#3|)) (-15 -2196 (|#3| |#2|)) (-15 -3172 ((-153 |#2|) |#3|)) (-15 -1478 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1076)))))
-((-2325 (($ (-1 (-107) |#1|) $) 16)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2266 (($ (-1 |#1| |#1|) |#1|) 9)) (-2306 (($ (-1 (-107) |#1|) $) 12)) (-2316 (($ (-1 (-107) |#1|) $) 14)) (-2288 (((-1057 |#1|) $) 17)) (-2271 (((-787) $) NIL)))
-(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -3310 ($ (-1 |#1| |#1|) $)) (-15 -2306 ($ (-1 (-107) |#1|) $)) (-15 -2316 ($ (-1 (-107) |#1|) $)) (-15 -2325 ($ (-1 (-107) |#1|) $)) (-15 -2266 ($ (-1 |#1| |#1|) |#1|)) (-15 -2288 ((-1057 |#1|) $)))) (-1111)) (T -547))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3)))) (-2306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3)))) (-2316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3)))) (-2325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3)))) (-2266 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1111)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -3310 ($ (-1 |#1| |#1|) $)) (-15 -2306 ($ (-1 (-107) |#1|) $)) (-15 -2316 ($ (-1 (-107) |#1|) $)) (-15 -2325 ($ (-1 (-107) |#1|) $)) (-15 -2266 ($ (-1 |#1| |#1|) |#1|)) (-15 -2288 ((-1057 |#1|) $))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3877 (($ (-703)) NIL (|has| |#1| (-23)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2690 (((-623 |#1|) $ $) NIL (|has| |#1| (-963)))) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1241 ((|#1| $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-963))))) (-1320 (((-107) $ (-703)) NIL)) (-3682 ((|#1| $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-963))))) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-3746 ((|#1| $ $) NIL (|has| |#1| (-963)))) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-2326 (($ $ $) NIL (|has| |#1| (-963)))) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1678 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-548 |#1| |#2|) (-1155 |#1|) (-1111) (-517)) (T -548))
-NIL
-(-1155 |#1|)
-((-2034 (((-1162) $ |#2| |#2|) 36)) (-3271 ((|#2| $) 23)) (-1989 ((|#2| $) 21)) (-2746 (($ (-1 |#3| |#3|) $) 32)) (-3310 (($ (-1 |#3| |#3|) $) 30)) (-2429 ((|#3| $) 26)) (-2846 (($ $ |#3|) 33)) (-3712 (((-107) |#3| $) 17)) (-2891 (((-583 |#3|) $) 15)) (-2609 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -2034 ((-1162) |#1| |#2| |#2|)) (-15 -2846 (|#1| |#1| |#3|)) (-15 -2429 (|#3| |#1|)) (-15 -3271 (|#2| |#1|)) (-15 -1989 (|#2| |#1|)) (-15 -3712 ((-107) |#3| |#1|)) (-15 -2891 ((-583 |#3|) |#1|)) (-15 -2609 (|#3| |#1| |#2|)) (-15 -2609 (|#3| |#1| |#2| |#3|)) (-15 -2746 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3310 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1005) (-1111)) (T -549))
-NIL
-(-10 -8 (-15 -2034 ((-1162) |#1| |#2| |#2|)) (-15 -2846 (|#1| |#1| |#3|)) (-15 -2429 (|#3| |#1|)) (-15 -3271 (|#2| |#1|)) (-15 -1989 (|#2| |#1|)) (-15 -3712 ((-107) |#3| |#1|)) (-15 -2891 ((-583 |#3|) |#1|)) (-15 -2609 (|#3| |#1| |#2|)) (-15 -2609 (|#3| |#1| |#2| |#3|)) (-15 -2746 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3310 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#2| (-1005)))) (-2034 (((-1162) $ |#1| |#1|) 40 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4193)))) (-1393 (($) 7 T CONST)) (-2759 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) 51)) (-1534 (((-583 |#2|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-3271 ((|#1| $) 43 (|has| |#1| (-779)))) (-1903 (((-583 |#2|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-1989 ((|#1| $) 44 (|has| |#1| (-779)))) (-2746 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#2| (-1005)))) (-2817 (((-583 |#1|) $) 46)) (-3130 (((-107) |#1| $) 47)) (-4125 (((-1023) $) 21 (|has| |#2| (-1005)))) (-2429 ((|#2| $) 42 (|has| |#1| (-779)))) (-2846 (($ $ |#2|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4137 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4192))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#2| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-550 |#1| |#2|) (-1188) (-1005) (-1111)) (T -550))
-((-2891 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111)) (-5 *2 (-583 *4)))) (-3130 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111)) (-5 *2 (-107)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111)) (-5 *2 (-583 *3)))) (-3712 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1005)) (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-107)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1005)) (-4 *2 (-779)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1005)) (-4 *2 (-779)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1005)) (-4 *3 (-779)) (-4 *2 (-1111)))) (-2846 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111)))) (-2034 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111)) (-5 *2 (-1162)))))
-(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -2891 ((-583 |t#2|) $)) (-15 -3130 ((-107) |t#1| $)) (-15 -2817 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1005)) (IF (|has| $ (-6 -4192)) (-15 -3712 ((-107) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -1989 (|t#1| $)) (-15 -3271 (|t#1| $)) (-15 -2429 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4193)) (PROGN (-15 -2846 ($ $ |t#2|)) (-15 -2034 ((-1162) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1005)) ((-557 (-787)) -3747 (|has| |#2| (-1005)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-1005) |has| |#2| (-1005)) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1485 (((-3 $ "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-2520 (((-1157 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1157 (-623 |#1|)) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2823 (((-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1393 (($) NIL T CONST)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2244 (((-3 $ "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1397 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-4049 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1292 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2093 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1679 (((-1072 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3614 (($ $ (-844)) NIL)) (-2554 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2208 (((-1072 |#1|) $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3245 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1284 (((-1072 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3462 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3898 (($ (-1157 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1157 |#1|) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2560 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3737 (((-844)) NIL (|has| |#2| (-337 |#1|)))) (-1864 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2193 (($ $ (-844)) NIL)) (-3453 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2185 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1573 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1737 (((-3 $ "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1344 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1412 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3358 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1590 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1467 (((-1072 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3200 (($ $ (-844)) NIL)) (-2666 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2292 (((-1072 |#1|) $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3829 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-3764 (((-1072 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2541 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1662 (((-1059) $) NIL)) (-3886 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2031 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1321 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4125 (((-1023) $) NIL)) (-3129 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2609 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-3784 (((-623 |#1|) (-1157 $)) NIL (|has| |#2| (-387 |#1|))) (((-1157 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1157 $) (-1157 $)) NIL (|has| |#2| (-337 |#1|))) (((-1157 |#1|) $ (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-3359 (($ (-1157 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1157 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3435 (((-583 (-875 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-875 |#1|)) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2059 (($ $ $) NIL)) (-1266 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2271 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1492 (((-1157 $)) NIL (|has| |#2| (-387 |#1|)))) (-2689 (((-583 (-1157 |#1|))) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3100 (($ $ $ $) NIL)) (-3365 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2375 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2951 (($ $ $) NIL)) (-2436 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4056 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2014 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3610 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) 24)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2271 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -551))
-((-2271 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
-(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2271 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-2225 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) 32)) (-3203 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL) (($) NIL)) (-2034 (((-1162) $ (-1059) (-1059)) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-1059) |#1|) 42)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#1| "failed") (-1059) $) 45)) (-1393 (($) NIL T CONST)) (-3506 (($ $ (-1059)) 24)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005))))) (-2457 (((-3 |#1| "failed") (-1059) $) 46) (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (($ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (|has| $ (-6 -4192)))) (-1423 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (($ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005))))) (-1522 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005))))) (-2045 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) 31)) (-2759 ((|#1| $ (-1059) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-1059)) NIL)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192))) (((-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-1247 (($ $) 47)) (-3676 (($ (-358)) 22) (($ (-358) (-1059)) 21)) (-2989 (((-358) $) 33)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-1059) $) NIL (|has| (-1059) (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192))) (((-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (((-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005))))) (-1989 (((-1059) $) NIL (|has| (-1059) (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-1882 (((-583 (-1059)) $) 38)) (-3577 (((-107) (-1059) $) NIL)) (-2964 (((-1059) $) 34)) (-1803 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL)) (-2817 (((-583 (-1059)) $) NIL)) (-3130 (((-107) (-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 ((|#1| $) NIL (|has| (-1059) (-779)))) (-1528 (((-3 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) "failed") (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-583 (-265 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 36)) (-2609 ((|#1| $ (-1059) |#1|) NIL) ((|#1| $ (-1059)) 41)) (-2176 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL) (($) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (((-703) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (((-703) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL)) (-2271 (((-787) $) 20)) (-2307 (($ $) 25)) (-3181 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 19)) (-3535 (((-703) $) 40 (|has| $ (-6 -4192)))))
-(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) (-1088 (-1059) |#1|) (-10 -8 (-6 -4192) (-15 -1247 ($ $)))) (-1005)) (T -552))
-((-1247 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1005)))))
-(-13 (-334 (-358) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) (-1088 (-1059) |#1|) (-10 -8 (-6 -4192) (-15 -1247 ($ $))))
-((-3925 (((-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) $) 15)) (-1882 (((-583 |#2|) $) 19)) (-3577 (((-107) |#2| $) 12)))
-(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -1882 ((-583 |#2|) |#1|)) (-15 -3577 ((-107) |#2| |#1|)) (-15 -3925 ((-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|))) (-554 |#2| |#3|) (-1005) (-1005)) (T -553))
-NIL
-(-10 -8 (-15 -1882 ((-583 |#2|) |#1|)) (-15 -3577 ((-107) |#2| |#1|)) (-15 -3925 ((-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 55 (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) 61)) (-1393 (($) 7 T CONST)) (-2455 (($ $) 58 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 46 (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 54 (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 56 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 53 (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 52 (|has| $ (-6 -4192)))) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1882 (((-583 |#1|) $) 63)) (-3577 (((-107) |#1| $) 64)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 39)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 40)) (-4125 (((-1023) $) 21 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 51)) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 41)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) 26 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 25 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 24 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 23 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2176 (($) 49) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 48)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 31 (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 50)) (-2271 (((-787) $) 18 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 42)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-554 |#1| |#2|) (-1188) (-1005) (-1005)) (T -554))
-((-3577 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-107)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-583 *3)))) (-2457 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-3564 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))))
-(-13 (-203 (-2 (|:| -2585 |t#1|) (|:| -1859 |t#2|))) (-10 -8 (-15 -3577 ((-107) |t#1| $)) (-15 -1882 ((-583 |t#1|) $)) (-15 -2457 ((-3 |t#2| "failed") |t#1| $)) (-15 -3564 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((-97) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) ((-557 (-787)) -3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-456 #0#) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-1005) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) ((-1111) . T))
-((-1402 (((-556 |#2|) |#1|) 15)) (-4161 (((-3 |#1| "failed") (-556 |#2|)) 19)))
-(((-555 |#1| |#2|) (-10 -7 (-15 -1402 ((-556 |#2|) |#1|)) (-15 -4161 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
-((-4161 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
-(-10 -7 (-15 -1402 ((-556 |#2|) |#1|)) (-15 -4161 ((-3 |#1| "failed") (-556 |#2|))))
-((-2119 (((-107) $ $) NIL)) (-1526 (((-3 (-1076) "failed") $) 36)) (-3512 (((-1162) $ (-703)) 26)) (-1212 (((-703) $) 25)) (-1934 (((-109) $) 12)) (-2989 (((-1076) $) 20)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-1398 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1076)) 31)) (-2066 (((-107) $ (-109)) 18) (((-107) $ (-1076)) 16)) (-1809 (((-703) $) 22)) (-4125 (((-1023) $) NIL)) (-3359 (((-815 (-517)) $) 69 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 75 (|has| |#1| (-558 (-815 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2271 (((-787) $) 51)) (-3229 (((-583 |#1|) $) 24)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 39)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 40)))
-(((-556 |#1|) (-13 (-124) (-807 |#1|) (-10 -8 (-15 -2989 ((-1076) $)) (-15 -1934 ((-109) $)) (-15 -3229 ((-583 |#1|) $)) (-15 -1809 ((-703) $)) (-15 -1398 ($ (-109) (-583 |#1|) (-703))) (-15 -1398 ($ (-1076))) (-15 -1526 ((-3 (-1076) "failed") $)) (-15 -2066 ((-107) $ (-109))) (-15 -2066 ((-107) $ (-1076))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-779)) (T -556))
-((-2989 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1398 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1526 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
-(-13 (-124) (-807 |#1|) (-10 -8 (-15 -2989 ((-1076) $)) (-15 -1934 ((-109) $)) (-15 -3229 ((-583 |#1|) $)) (-15 -1809 ((-703) $)) (-15 -1398 ($ (-109) (-583 |#1|) (-703))) (-15 -1398 ($ (-1076))) (-15 -1526 ((-3 (-1076) "failed") $)) (-15 -2066 ((-107) $ (-109))) (-15 -2066 ((-107) $ (-1076))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
-((-2271 ((|#1| $) 6)))
-(((-557 |#1|) (-1188) (-1111)) (T -557))
-((-2271 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1111)))))
-(-13 (-10 -8 (-15 -2271 (|t#1| $))))
-((-3359 ((|#1| $) 6)))
-(((-558 |#1|) (-1188) (-1111)) (T -558))
-((-3359 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1111)))))
-(-13 (-10 -8 (-15 -3359 (|t#1| $))))
-((-3921 (((-3 (-1072 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1072 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -3921 ((-3 (-1072 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -3921 ((-3 (-1072 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-954 (-517)) (-954 (-377 (-517)))) (-1133 |#1|)) (T -559))
-((-3921 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-134) (-27) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-1072 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-3921 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-954 (-517)) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *2 (-1072 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
-(-10 -7 (-15 -3921 ((-3 (-1072 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -3921 ((-3 (-1072 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
-((-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
-(((-560 |#1| |#2|) (-10 -8 (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-561 |#2|) (-963)) (T -560))
-NIL
-(-10 -8 (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-561 |#1|) (-1188) (-963)) (T -561))
-((-2271 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-963)))))
-(-13 (-963) (-585 |t#1|) (-10 -8 (-15 -2271 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2360 (((-517) $) NIL (|has| |#1| (-777)))) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-2988 (((-107) $) NIL (|has| |#1| (-777)))) (-1376 (((-107) $) NIL)) (-3826 ((|#1| $) 13)) (-1952 (((-107) $) NIL (|has| |#1| (-777)))) (-3458 (($ $ $) NIL (|has| |#1| (-777)))) (-4084 (($ $ $) NIL (|has| |#1| (-777)))) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2098 ((|#3| $) 15)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-4099 (((-703)) 20)) (-2376 (($ $) NIL (|has| |#1| (-777)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) 12 T CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1704 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1704 ($ $ |#3|)) (-15 -1704 ($ |#1| |#3|)) (-15 -3826 (|#1| $)) (-15 -2098 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
-((-1704 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1704 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3826 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2098 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1704 ($ $ |#3|)) (-15 -1704 ($ |#1| |#3|)) (-15 -3826 (|#1| $)) (-15 -2098 (|#3| $))))
-((-2583 ((|#2| |#2| (-1076) (-1076)) 18)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -2583 (|#2| |#2| (-1076) (-1076)))) (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-881) (-29 |#1|))) (T -563))
-((-2583 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1097) (-881) (-29 *4))))))
-(-10 -7 (-15 -2583 (|#2| |#2| (-1076) (-1076))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 52)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2178 ((|#1| $) 49)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1340 (((-2 (|:| -3190 $) (|:| -2198 (-377 |#2|))) (-377 |#2|)) 97 (|has| |#1| (-333)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) 24)) (-2560 (((-3 $ "failed") $) 76)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1395 (((-517) $) 19)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) 36)) (-2078 (($ |#1| (-517)) 21)) (-2347 ((|#1| $) 51)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 87 (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ $) 80)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3600 (((-703) $) 99 (|has| |#1| (-333)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 98 (|has| |#1| (-333)))) (-2060 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3647 (((-517) $) 34)) (-3359 (((-377 |#2|) $) 42)) (-2271 (((-787) $) 63) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-1689 ((|#1| $ (-517)) 64)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 9 T CONST)) (-3619 (($) 12 T CONST)) (-3342 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1584 (((-107) $ $) 17)) (-1692 (($ $) 46) (($ $ $) NIL)) (-1678 (($ $ $) 77)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
-(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-954 |#2|) (-10 -8 (-15 -3982 ((-107) $)) (-15 -3647 ((-517) $)) (-15 -1395 ((-517) $)) (-15 -2373 ($ $)) (-15 -2347 (|#1| $)) (-15 -2178 (|#1| $)) (-15 -1689 (|#1| $ (-517))) (-15 -2078 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1340 ((-2 (|:| -3190 $) (|:| -2198 (-377 |#2|))) (-377 |#2|)))) |%noBranch|))) (-509) (-1133 |#1|)) (T -564))
-((-3982 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1133 *3)))) (-3647 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1133 *3)))) (-1395 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1133 *3)))) (-2373 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1133 *2)))) (-2347 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1133 *2)))) (-2178 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1133 *2)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1133 *2)))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1133 *2)))) (-1340 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| -3190 (-564 *4 *5)) (|:| -2198 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
-(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-954 |#2|) (-10 -8 (-15 -3982 ((-107) $)) (-15 -3647 ((-517) $)) (-15 -1395 ((-517) $)) (-15 -2373 ($ $)) (-15 -2347 (|#1| $)) (-15 -2178 (|#1| $)) (-15 -1689 (|#1| $ (-517))) (-15 -2078 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1340 ((-2 (|:| -3190 $) (|:| -2198 (-377 |#2|))) (-377 |#2|)))) |%noBranch|)))
-((-2265 (((-583 |#6|) (-583 |#4|) (-107)) 47)) (-2950 ((|#6| |#6|) 40)))
-(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2950 (|#6| |#6|)) (-15 -2265 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|) (-1014 |#1| |#2| |#3| |#4|)) (T -565))
-((-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *10 (-1014 *5 *6 *7 *8)))) (-2950 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *2 (-1014 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2950 (|#6| |#6|)) (-15 -2265 ((-583 |#6|) (-583 |#4|) (-107))))
-((-1852 (((-107) |#3| (-703) (-583 |#3|)) 23)) (-3534 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1072 |#3|)))) "failed") |#3| (-583 (-1072 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1510 (-583 (-2 (|:| |irr| |#4|) (|:| -1992 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 52)))
-(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1852 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3534 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1072 |#3|)))) "failed") |#3| (-583 (-1072 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1510 (-583 (-2 (|:| |irr| |#4|) (|:| -1992 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-872 |#3| |#2| |#1|)) (T -566))
-((-3534 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1510 (-583 (-2 (|:| |irr| *10) (|:| -1992 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-872 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1072 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1072 *3))))) (-1852 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-872 *3 *7 *6)))))
-(-10 -7 (-15 -1852 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3534 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1072 |#3|)))) "failed") |#3| (-583 (-1072 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1510 (-583 (-2 (|:| |irr| |#4|) (|:| -1992 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
-((-2119 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-1591 (($ $) 67)) (-1226 (((-601 |#1| |#2|) $) 52)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 70)) (-1877 (((-583 (-265 |#2|)) $ $) 33)) (-4125 (((-1023) $) NIL)) (-3870 (($ (-601 |#1| |#2|)) 48)) (-1842 (($ $ $) NIL)) (-2059 (($ $ $) NIL)) (-2271 (((-787) $) 58) (((-1170 |#1| |#2|) $) NIL) (((-1175 |#1| |#2|) $) 66)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3619 (($) 53 T CONST)) (-1659 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-3146 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-1452 (((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) 36)) (-1584 (((-107) $ $) 54)) (-1704 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
-(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -3870 ($ (-601 |#1| |#2|))) (-15 -1226 ((-601 |#1| |#2|) $)) (-15 -1452 ((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $)) (-15 -2271 ((-1170 |#1| |#2|) $)) (-15 -2271 ((-1175 |#1| |#2|) $)) (-15 -1591 ($ $)) (-15 -3367 ((-583 |#1|) $)) (-15 -3146 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -1659 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1877 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-844)) (T -567))
-((-3870 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-844)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-816 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-844)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-844)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-1877 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))))
-(-13 (-442) (-10 -8 (-15 -3870 ($ (-601 |#1| |#2|))) (-15 -1226 ((-601 |#1| |#2|) $)) (-15 -1452 ((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $)) (-15 -2271 ((-1170 |#1| |#2|) $)) (-15 -2271 ((-1175 |#1| |#2|) $)) (-15 -1591 ($ $)) (-15 -3367 ((-583 |#1|) $)) (-15 -3146 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -1659 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1877 ((-583 (-265 |#2|)) $ $))))
-((-2265 (((-583 (-1047 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 71) (((-583 (-960 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 57)) (-2464 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-2476 (((-583 (-1047 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70)) (-1967 (((-583 (-960 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-1375 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-1236 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2464 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1236 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1375 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1967 ((-583 (-960 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2476 ((-583 (-1047 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2265 ((-583 (-960 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2265 ((-583 (-1047 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1076))) (T -568))
-((-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-1047 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-1047 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-1967 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1076))) (-5 *1 (-568 *3 *4)))) (-1236 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1076))) (-5 *1 (-568 *3 *4)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1076))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
-(-10 -7 (-15 -2464 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1236 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1375 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1967 ((-583 (-960 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2476 ((-583 (-1047 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2265 ((-583 (-960 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2265 ((-583 (-1047 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
-((-1648 (($ $) 38)) (-1494 (($ $) 21)) (-1624 (($ $) 37)) (-1471 (($ $) 22)) (-1670 (($ $) 36)) (-1520 (($ $) 23)) (-2116 (($) 48)) (-1226 (($ $) 45)) (-2180 (($ $) 17)) (-2483 (($ $ (-998 $)) 7) (($ $ (-1076)) 6)) (-3870 (($ $) 46)) (-1422 (($ $) 15)) (-1460 (($ $) 16)) (-1682 (($ $) 35)) (-1533 (($ $) 24)) (-1660 (($ $) 34)) (-1507 (($ $) 25)) (-1635 (($ $) 33)) (-1483 (($ $) 26)) (-1722 (($ $) 44)) (-1576 (($ $) 32)) (-1697 (($ $) 43)) (-1548 (($ $) 31)) (-3489 (($ $) 42)) (-1600 (($ $) 30)) (-2824 (($ $) 41)) (-1613 (($ $) 29)) (-1735 (($ $) 40)) (-1589 (($ $) 28)) (-1709 (($ $) 39)) (-1562 (($ $) 27)) (-1558 (($ $) 19)) (-3604 (($ $) 20)) (-3329 (($ $) 18)) (** (($ $ $) 47)))
-(((-569) (-1188)) (T -569))
-((-3604 (*1 *1 *1) (-4 *1 (-569))) (-1558 (*1 *1 *1) (-4 *1 (-569))) (-3329 (*1 *1 *1) (-4 *1 (-569))) (-2180 (*1 *1 *1) (-4 *1 (-569))) (-1460 (*1 *1 *1) (-4 *1 (-569))) (-1422 (*1 *1 *1) (-4 *1 (-569))))
-(-13 (-881) (-1097) (-10 -8 (-15 -3604 ($ $)) (-15 -1558 ($ $)) (-15 -3329 ($ $)) (-15 -2180 ($ $)) (-15 -1460 ($ $)) (-15 -1422 ($ $))))
-(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-881) . T) ((-1097) . T) ((-1100) . T))
-((-1934 (((-109) (-109)) 83)) (-2180 ((|#2| |#2|) 30)) (-2483 ((|#2| |#2| (-998 |#2|)) 79) ((|#2| |#2| (-1076)) 52)) (-1422 ((|#2| |#2|) 29)) (-1460 ((|#2| |#2|) 31)) (-3750 (((-107) (-109)) 34)) (-1558 ((|#2| |#2|) 26)) (-3604 ((|#2| |#2|) 28)) (-3329 ((|#2| |#2|) 27)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -3604 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -2483 (|#2| |#2| (-1076))) (-15 -2483 (|#2| |#2| (-998 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-920) (-1097))) (T -570))
-((-2483 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-400 *4) (-920) (-1097))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-920) (-1097))))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-920) (-1097))))) (-1422 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-920) (-1097))))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-920) (-1097))))) (-3329 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-920) (-1097))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-920) (-1097))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-920) (-1097))))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-920) (-1097))))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-920) (-1097))))))
-(-10 -7 (-15 -3750 ((-107) (-109))) (-15 -1934 ((-109) (-109))) (-15 -3604 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -2483 (|#2| |#2| (-1076))) (-15 -2483 (|#2| |#2| (-998 |#2|))))
-((-3810 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 53)) (-4164 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 68)) (-3427 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 70) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69)) (-1228 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 106)) (-1993 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 83)) (-3268 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 117)) (-2612 (((-1157 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 58)) (-2054 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-1745 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-2696 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 90)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -1228 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -3268 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -4164 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3427 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3427 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2054 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2612 ((-1157 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2696 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1993 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1745 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3810 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1076)) (-421)) (T -571))
-((-3810 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-1745 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-1993 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2696 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1076))) (-5 *1 (-571 *5 *6)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1076))) (-4 *6 (-421)) (-5 *2 (-1157 *6)) (-5 *1 (-571 *5 *6)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1076))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1076))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-3427 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1076))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-3268 (*1 *2 *3) (-12 (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
-(-10 -7 (-15 -1228 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -3268 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -4164 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3427 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3427 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2054 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2612 ((-1157 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2696 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1993 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1745 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3810 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) NIL)) (-2034 (((-1162) $ (-1059) (-1059)) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 (((-51) $ (-1059) (-51)) 16) (((-51) $ (-1076) (-51)) 17)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 (-51) "failed") (-1059) $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005))))) (-2457 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-3 (-51) "failed") (-1059) $) NIL)) (-1423 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $ (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (((-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $ (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-2759 (((-51) $ (-1059) (-51)) NIL (|has| $ (-6 -4193)))) (-2566 (((-51) $ (-1059)) NIL)) (-1534 (((-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-583 (-51)) $) NIL (|has| $ (-6 -4192)))) (-1247 (($ $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-1059) $) NIL (|has| (-1059) (-779)))) (-1903 (((-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-583 (-51)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005))))) (-1989 (((-1059) $) NIL (|has| (-1059) (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4193))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1822 (($ (-358)) 9)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005))))) (-1882 (((-583 (-1059)) $) NIL)) (-3577 (((-107) (-1059) $) NIL)) (-1803 (((-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL)) (-3241 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL)) (-2817 (((-583 (-1059)) $) NIL)) (-3130 (((-107) (-1059) $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005))))) (-2429 (((-51) $) NIL (|has| (-1059) (-779)))) (-1528 (((-3 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) "failed") (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL)) (-2846 (($ $ (-51)) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (($ $ (-265 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (($ $ (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (($ $ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005))))) (-2891 (((-583 (-51)) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 (((-51) $ (-1059)) 14) (((-51) $ (-1059) (-51)) NIL) (((-51) $ (-1076)) 15)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 (-51))) (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-572) (-13 (-1088 (-1059) (-51)) (-10 -8 (-15 -1822 ($ (-358))) (-15 -1247 ($ $)) (-15 -2609 ((-51) $ (-1076))) (-15 -2445 ((-51) $ (-1076) (-51)))))) (T -572))
-((-1822 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-1247 (*1 *1 *1) (-5 *1 (-572))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2445 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1076)) (-5 *1 (-572)))))
-(-13 (-1088 (-1059) (-51)) (-10 -8 (-15 -1822 ($ (-358))) (-15 -1247 ($ $)) (-15 -2609 ((-51) $ (-1076))) (-15 -2445 ((-51) $ (-1076) (-51)))))
-((-1704 (($ $ |#2|) 10)))
-(((-573 |#1| |#2|) (-10 -8 (-15 -1704 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
-NIL
-(-10 -8 (-15 -1704 (|#1| |#1| |#2|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2288 (($ $ $) 29)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-574 |#1|) (-1188) (-156)) (T -574))
-((-2288 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1704 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2288 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1704 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1485 (((-3 $ "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-2520 (((-1157 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1157 (-623 |#1|)) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2823 (((-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1393 (($) NIL T CONST)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2244 (((-3 $ "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1397 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-4049 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1292 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2093 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1679 (((-1072 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3614 (($ $ (-844)) NIL)) (-2554 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2208 (((-1072 |#1|) $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3245 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1284 (((-1072 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3462 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3898 (($ (-1157 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1157 |#1|) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2560 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3737 (((-844)) NIL (|has| |#2| (-337 |#1|)))) (-1864 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2193 (($ $ (-844)) NIL)) (-3453 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2185 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1573 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1737 (((-3 $ "failed")) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1344 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1412 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3358 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-1590 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1467 (((-1072 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3200 (($ $ (-844)) NIL)) (-2666 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2292 (((-1072 |#1|) $) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3829 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-3764 (((-1072 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2541 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1662 (((-1059) $) NIL)) (-3886 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2031 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1321 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4125 (((-1023) $) NIL)) (-3129 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2609 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-3784 (((-623 |#1|) (-1157 $)) NIL (|has| |#2| (-387 |#1|))) (((-1157 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1157 $) (-1157 $)) NIL (|has| |#2| (-337 |#1|))) (((-1157 |#1|) $ (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-3359 (($ (-1157 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1157 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3435 (((-583 (-875 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-875 |#1|)) (-1157 $)) NIL (|has| |#2| (-337 |#1|)))) (-2059 (($ $ $) NIL)) (-1266 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2271 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1492 (((-1157 $)) NIL (|has| |#2| (-387 |#1|)))) (-2689 (((-583 (-1157 |#1|))) NIL (-3747 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3100 (($ $ $ $) NIL)) (-3365 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2375 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2951 (($ $ $) NIL)) (-2436 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4056 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2014 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3610 (($) 15 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) 17)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2271 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -575))
-((-2271 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
-(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2271 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
-((-2238 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1059)) 78) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 100)) (-3822 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 105)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -2238 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -3822 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2238 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1059)))) (-13 (-421) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -576))
-((-2238 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1059)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-3822 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))) (-2238 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1097) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
-(-10 -7 (-15 -2238 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -3822 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2238 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1059))))
-((-2238 (((-3 (-772 (-377 (-875 |#1|))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))) (-1059)) 79) (((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|)))) 18) (((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-772 (-875 |#1|)))) 34)) (-3822 (((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|)))) 21) (((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-765 (-875 |#1|)))) 42)))
-(((-577 |#1|) (-10 -7 (-15 -2238 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-772 (-875 |#1|))))) (-15 -2238 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3822 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-765 (-875 |#1|))))) (-15 -3822 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -2238 ((-3 (-772 (-377 (-875 |#1|))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))) (-1059)))) (-421)) (T -577))
-((-2238 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-875 *6)))) (-5 *5 (-1059)) (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-875 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-875 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-875 *5))))) (-2238 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-875 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-875 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-875 *5))))))
-(-10 -7 (-15 -2238 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-772 (-875 |#1|))))) (-15 -2238 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3822 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-765 (-875 |#1|))))) (-15 -3822 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -2238 ((-3 (-772 (-377 (-875 |#1|))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))) (-1059))))
-((-2588 (((-3 (-1157 (-377 |#1|)) "failed") (-1157 |#2|) |#2|) 57 (-2479 (|has| |#1| (-333)))) (((-3 (-1157 |#1|) "failed") (-1157 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-1408 (((-107) (-1157 |#2|)) 30)) (-3798 (((-3 (-1157 |#1|) "failed") (-1157 |#2|)) 33)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -1408 ((-107) (-1157 |#2|))) (-15 -3798 ((-3 (-1157 |#1|) "failed") (-1157 |#2|))) (IF (|has| |#1| (-333)) (-15 -2588 ((-3 (-1157 |#1|) "failed") (-1157 |#2|) |#2|)) (-15 -2588 ((-3 (-1157 (-377 |#1|)) "failed") (-1157 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
-((-2588 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 *5)) (-2479 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1157 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-2588 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1157 *5)) (-5 *1 (-578 *5 *4)))) (-3798 (*1 *2 *3) (|partial| -12 (-5 *3 (-1157 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1157 *4)) (-5 *1 (-578 *4 *5)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
-(-10 -7 (-15 -1408 ((-107) (-1157 |#2|))) (-15 -3798 ((-3 (-1157 |#1|) "failed") (-1157 |#2|))) (IF (|has| |#1| (-333)) (-15 -2588 ((-3 (-1157 |#1|) "failed") (-1157 |#2|) |#2|)) (-15 -2588 ((-3 (-1157 (-377 |#1|)) "failed") (-1157 |#2|) |#2|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2207 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 35)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-579 |#1|) (-1188) (-963)) (T -579))
-((-2207 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-963)) (-5 *2 (-623 *4)))) (-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1157 *1)) (-4 *1 (-579 *5)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -3016 (-623 *5)) (|:| |vec| (-1157 *5)))))))
-(-13 (-963) (-10 -8 (-15 -2207 ((-623 |t#1|) (-623 $))) (-15 -2207 ((-2 (|:| -3016 (-623 |t#1|)) (|:| |vec| (-1157 |t#1|))) (-623 $) (-1157 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1937 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -1937 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1937 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1937 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1937 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1937 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1937 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1005) (-1111)) (T -580))
-((-1937 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1005)) (-4 *2 (-1111)) (-5 *1 (-580 *5 *2)))) (-1937 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1005)) (-4 *6 (-1111)) (-5 *1 (-580 *5 *6)))) (-1937 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1005)) (-4 *2 (-1111)) (-5 *1 (-580 *5 *2)))) (-1937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1005)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-1937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1005)) (-4 *2 (-1111)) (-5 *1 (-580 *5 *2)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1005)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
-(-10 -7 (-15 -1937 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1937 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1937 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1937 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1937 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1937 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
-((-1532 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-1522 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-3310 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -1532 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3310 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1111) (-1111)) (T -581))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-581 *5 *2)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
-(-10 -7 (-15 -1532 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3310 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
-((-3310 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
-(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -3310 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1111) (-1111) (-1111)) (T -582))
-((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
-(-10 -7 (-15 -3310 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) NIL)) (-2586 ((|#1| $) NIL)) (-1541 (($ $) NIL)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-1420 (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-2163 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-1702 (($ $ $) NIL (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "rest" $) NIL (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-2362 (($ $ $) 32 (|has| |#1| (-1005)))) (-2349 (($ $ $) 34 (|has| |#1| (-1005)))) (-2336 (($ $ $) 37 (|has| |#1| (-1005)))) (-3690 (($ (-1 (-107) |#1|) $) NIL)) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2576 ((|#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2439 (($ $) NIL) (($ $ (-703)) NIL)) (-1399 (($ $) NIL (|has| |#1| (-1005)))) (-2455 (($ $) 31 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) NIL (|has| |#1| (-1005))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-3013 (((-107) $) NIL)) (-1212 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005))) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3890 (((-107) $) 9)) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2181 (($) 7)) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4155 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2662 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 33 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2324 (($ |#1|) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1446 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3241 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1747 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-4033 (((-107) $) NIL)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1124 (-517))) NIL) ((|#1| $ (-517)) 36) ((|#1| $ (-517) |#1|) NIL)) (-1844 (((-517) $ $) NIL)) (-3275 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-3728 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-3028 (((-107) $) NIL)) (-3498 (($ $) NIL)) (-3020 (($ $) NIL (|has| $ (-6 -4193)))) (-2453 (((-703) $) NIL)) (-2231 (($ $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) 45 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-2995 (($ |#1| $) 10)) (-1753 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4110 (($ $ $) 30) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3720 (($ $ $) 11)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-4032 (((-1059) $) 26 (|has| |#1| (-760))) (((-1059) $ (-107)) 27 (|has| |#1| (-760))) (((-1162) (-754) $) 28 (|has| |#1| (-760))) (((-1162) (-754) $ (-107)) 29 (|has| |#1| (-760)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2181 ($)) (-15 -3890 ((-107) $)) (-15 -2995 ($ |#1| $)) (-15 -3720 ($ $ $)) (IF (|has| |#1| (-1005)) (PROGN (-15 -2362 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2336 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-1111)) (T -583))
-((-2181 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1111)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1111)))) (-2995 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1111)))) (-3720 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1111)))) (-2362 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)))) (-2349 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)))) (-2336 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)))))
-(-13 (-603 |#1|) (-10 -8 (-15 -2181 ($)) (-15 -3890 ((-107) $)) (-15 -2995 ($ |#1| $)) (-15 -3720 ($ $ $)) (IF (|has| |#1| (-1005)) (PROGN (-15 -2362 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2336 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|)))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2448 (($ |#1| |#1| $) 43)) (-1851 (((-107) $ (-703)) NIL)) (-3690 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-1399 (($ $) 45)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) 52 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 9 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 37)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1803 ((|#1| $) 46)) (-3241 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4113 ((|#1| $) 48)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 21)) (-2452 (($) 25)) (-3679 (((-107) $) 50)) (-1527 (((-583 (-2 (|:| -1859 |#1|) (|:| -4137 (-703)))) $) 59)) (-2176 (($) 23) (($ (-583 |#1|)) 18)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) 56 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 19)) (-3359 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-2271 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 22)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 61 (|has| |#1| (-1005)))) (-3535 (((-703) $) 16 (|has| $ (-6 -4192)))))
-(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4192) (-15 -3679 ((-107) $)) (-15 -2448 ($ |#1| |#1| $)))) (-1005)) (T -584))
-((-3679 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1005)))) (-2448 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1005)))))
-(-13 (-628 |#1|) (-10 -8 (-6 -4192) (-15 -3679 ((-107) $)) (-15 -2448 ($ |#1| |#1| $))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
-(((-585 |#1|) (-1188) (-970)) (T -585))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-970)))))
+((-3094 (((-1163) (-1060)) 10)))
+(((-531) (-10 -7 (-15 -3094 ((-1163) (-1060))))) (T -531))
+((-3094 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-531)))))
+(-10 -7 (-15 -3094 ((-1163) (-1060))))
+((-1975 (((-534 |#2|) (-534 |#2|)) 38)) (-2287 (((-583 |#2|) (-534 |#2|)) 40)) (-3916 ((|#2| (-534 |#2|)) 47)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -1975 ((-534 |#2|) (-534 |#2|))) (-15 -2287 ((-583 |#2|) (-534 |#2|))) (-15 -3916 (|#2| (-534 |#2|)))) (-13 (-421) (-955 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1098))) (T -532))
+((-3916 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1098))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1098))) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1098))) (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
+(-10 -7 (-15 -1975 ((-534 |#2|) (-534 |#2|))) (-15 -2287 ((-583 |#2|) (-534 |#2|))) (-15 -3916 (|#2| (-534 |#2|))))
+((-3312 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
+(((-533 |#1| |#2|) (-10 -7 (-15 -3312 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3312 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3312 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3312 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
+((-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2791 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2791 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
+(-10 -7 (-15 -3312 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3312 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3312 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3312 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 69)) (-3402 ((|#1| $) NIL)) (-2791 ((|#1| $) 24)) (-3686 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-4090 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2249 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) $) 25)) (-3232 (((-1060) $) NIL)) (-1329 (($ |#1| |#1|) 32) (($ |#1| (-1077)) 43 (|has| |#1| (-955 (-1077))))) (-4130 (((-1024) $) NIL)) (-3841 (((-107) $) 28)) (-2042 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1077)) 82 (|has| |#1| (-824 (-1077))))) (-2262 (((-787) $) 96) (($ |#1|) 23)) (-3663 (($) 16 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) 15) (($ $ $) NIL)) (-1666 (($ $ $) 78)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
+(((-534 |#1|) (-13 (-650 (-377 (-517))) (-955 |#1|) (-10 -8 (-15 -4090 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2791 (|#1| $)) (-15 -2249 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) $)) (-15 -3686 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3841 ((-107) $)) (-15 -1329 ($ |#1| |#1|)) (-15 -2042 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-824 (-1077))) (-15 -2042 (|#1| $ (-1077))) |%noBranch|) (IF (|has| |#1| (-955 (-1077))) (-15 -1329 ($ |#1| (-1077))) |%noBranch|))) (-333)) (T -534))
+((-4090 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *2)) (|:| |logand| (-1073 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2791 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *3)) (|:| |logand| (-1073 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1329 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2042 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-824 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1077)))) (-1329 (*1 *1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *1 (-534 *2)) (-4 *2 (-955 *3)) (-4 *2 (-333)))))
+(-13 (-650 (-377 (-517))) (-955 |#1|) (-10 -8 (-15 -4090 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2791 (|#1| $)) (-15 -2249 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) $)) (-15 -3686 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3841 ((-107) $)) (-15 -1329 ($ |#1| |#1|)) (-15 -2042 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-824 (-1077))) (-15 -2042 (|#1| $ (-1077))) |%noBranch|) (IF (|has| |#1| (-955 (-1077))) (-15 -1329 ($ |#1| (-1077))) |%noBranch|)))
+((-2860 (((-107) |#1|) 16)) (-2354 (((-3 |#1| "failed") |#1|) 14)) (-1733 (((-2 (|:| -4003 |#1|) (|:| -1725 (-703))) |#1|) 31) (((-3 |#1| "failed") |#1| (-703)) 18)) (-1230 (((-107) |#1| (-703)) 19)) (-1929 ((|#1| |#1|) 32)) (-3830 ((|#1| |#1| (-703)) 34)))
+(((-535 |#1|) (-10 -7 (-15 -1230 ((-107) |#1| (-703))) (-15 -1733 ((-3 |#1| "failed") |#1| (-703))) (-15 -1733 ((-2 (|:| -4003 |#1|) (|:| -1725 (-703))) |#1|)) (-15 -3830 (|#1| |#1| (-703))) (-15 -2860 ((-107) |#1|)) (-15 -2354 ((-3 |#1| "failed") |#1|)) (-15 -1929 (|#1| |#1|))) (-502)) (T -535))
+((-1929 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2354 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2860 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-3830 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1733 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4003 *3) (|:| -1725 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-1733 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1230 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -1230 ((-107) |#1| (-703))) (-15 -1733 ((-3 |#1| "failed") |#1| (-703))) (-15 -1733 ((-2 (|:| -4003 |#1|) (|:| -1725 (-703))) |#1|)) (-15 -3830 (|#1| |#1| (-703))) (-15 -2860 ((-107) |#1|)) (-15 -2354 ((-3 |#1| "failed") |#1|)) (-15 -1929 (|#1| |#1|)))
+((-1279 (((-1073 |#1|) (-845)) 27)))
+(((-536 |#1|) (-10 -7 (-15 -1279 ((-1073 |#1|) (-845)))) (-319)) (T -536))
+((-1279 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
+(-10 -7 (-15 -1279 ((-1073 |#1|) (-845))))
+((-1975 (((-534 (-377 (-876 |#1|))) (-534 (-377 (-876 |#1|)))) 26)) (-3296 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-876 |#1|)) (-1077)) 32 (|has| |#1| (-134)))) (-2287 (((-583 (-286 |#1|)) (-534 (-377 (-876 |#1|)))) 18)) (-2984 (((-286 |#1|) (-377 (-876 |#1|)) (-1077)) 30 (|has| |#1| (-134)))) (-3916 (((-286 |#1|) (-534 (-377 (-876 |#1|)))) 20)))
+(((-537 |#1|) (-10 -7 (-15 -1975 ((-534 (-377 (-876 |#1|))) (-534 (-377 (-876 |#1|))))) (-15 -2287 ((-583 (-286 |#1|)) (-534 (-377 (-876 |#1|))))) (-15 -3916 ((-286 |#1|) (-534 (-377 (-876 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3296 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -2984 ((-286 |#1|) (-377 (-876 |#1|)) (-1077)))) |%noBranch|)) (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (T -537))
+((-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-876 *4)))) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-876 *4)))) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-876 *3)))) (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
+(-10 -7 (-15 -1975 ((-534 (-377 (-876 |#1|))) (-534 (-377 (-876 |#1|))))) (-15 -2287 ((-583 (-286 |#1|)) (-534 (-377 (-876 |#1|))))) (-15 -3916 ((-286 |#1|) (-534 (-377 (-876 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3296 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -2984 ((-286 |#1|) (-377 (-876 |#1|)) (-1077)))) |%noBranch|))
+((-1805 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-829 (-517)))) 46) (((-583 (-623 (-517))) (-583 (-517))) 47) (((-623 (-517)) (-583 (-517)) (-829 (-517))) 42)) (-2254 (((-703) (-583 (-517))) 40)))
+(((-538) (-10 -7 (-15 -2254 ((-703) (-583 (-517)))) (-15 -1805 ((-623 (-517)) (-583 (-517)) (-829 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-829 (-517))))))) (T -538))
+((-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-829 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-829 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(-10 -7 (-15 -2254 ((-703) (-583 (-517)))) (-15 -1805 ((-623 (-517)) (-583 (-517)) (-829 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-829 (-517))))))
+((-3327 (((-583 |#5|) |#5| (-107)) 73)) (-2225 (((-107) |#5| (-583 |#5|)) 30)))
+(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3327 ((-583 |#5|) |#5| (-107))) (-15 -2225 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-978 |#1| |#2| |#3|) (-1015 |#1| |#2| |#3| |#4|)) (T -539))
+((-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1015 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1015 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3327 ((-583 |#5|) |#5| (-107))) (-15 -2225 ((-107) |#5| (-583 |#5|))))
+((-2105 (((-107) $ $) NIL (|has| (-131) (-1006)))) (-3169 (($ $) 34)) (-2811 (($ $) NIL)) (-3199 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) 51)) (-3133 (((-107) $ $ (-517)) 46)) (-1975 (((-583 $) $ (-131)) 60) (((-583 $) $ (-128)) 61)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-131) (-779))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2899 (($ $ (-131)) 64) (($ $ (-128)) 65)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3225 (($ $ (-1125 (-517)) $) 44)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1423 (($ (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) NIL)) (-2562 (((-107) $ $) 71)) (-1210 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1006))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1525 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) 9)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 28 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1969 (((-517) $) 42 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) 72)) (-1924 (((-703) $ $ (-131)) 70)) (-2737 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3410 (($ $) 37)) (-3577 (($ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-2912 (($ $ (-131)) 62) (($ $ (-128)) 63)) (-3232 (((-1060) $) 38 (|has| (-131) (-1006)))) (-1734 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-517) $) 69) (((-1024) $) NIL (|has| (-131) (-1006)))) (-2420 (((-131) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2837 (($ $ (-131)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) NIL)) (-1754 (((-107) $) 12)) (-2679 (($) 10)) (-2612 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1125 (-517))) 21) (($ $ $) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1704 (($ $ $ (-517)) 66 (|has| $ (-6 -4196)))) (-2453 (($ $) 17)) (-3367 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) NIL)) (-4117 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 67)) (-2262 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-1272 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) 14 (|has| (-131) (-1006)))) (-1618 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1596 (((-107) $ $) 15 (|has| (-131) (-779)))) (-3573 (((-703) $) 13 (|has| $ (-6 -4195)))))
+(((-540 |#1|) (-13 (-1046) (-10 -8 (-15 -4130 ((-517) $)))) (-517)) (T -540))
+((-4130 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
+(-13 (-1046) (-10 -8 (-15 -4130 ((-517) $))))
+((-3476 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1001 |#4|)) 32)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1001 |#4|))) (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-873 |#3| |#1| |#2|)) (T -541))
+((-3476 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-873 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1001 |#4|))) (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 63)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-1519 (($ $) 100)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2027 (((-787) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-944 (-772 (-517))) (-1077) |#1| (-377 (-517))) 215)) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3690 (((-107) $) NIL)) (-3250 (((-517) $) 58) (((-517) $ (-517)) 59)) (-1690 (((-107) $) NIL)) (-2113 (($ $ (-845)) 76)) (-2603 (($ (-1 |#1| (-517)) $) 73)) (-3022 (((-107) $) 25)) (-2059 (($ |#1| (-517)) 22) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 67)) (-2839 (($ (-944 (-772 (-517))) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-1392 (((-3 $ "failed") $ $ (-107)) 99)) (-3629 (($ $ $) 108)) (-4130 (((-1024) $) NIL)) (-3289 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3433 (((-944 (-772 (-517))) $) 12)) (-3175 (($ $ (-517)) 45)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-2612 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1191 (((-517) $) NIL)) (-2384 (($ $) 46)) (-2262 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-1939 ((|#1| $ (-517)) 56)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 37)) (-3605 ((|#1| $) NIL)) (-1591 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-4173 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-1553 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-2915 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1224 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-3781 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3866 (($ $ (-377 (-517))) 146 (|has| |#1| (-37 (-377 (-517)))))) (-2540 (($ $ |#1|) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2879 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-2221 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-2636 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-2483 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2487 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-2916 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-3976 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2132 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2055 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-3050 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-2459 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3802 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-3271 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1713 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-3016 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2825 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1847 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-2277 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1877 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2194 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 29 T CONST)) (-3675 (($) 38 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1572 (((-107) $ $) 65)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) 84) (($ $ $) 64)) (-1666 (($ $ $) 81)) (** (($ $ (-845)) NIL) (($ $ (-703)) 103)) (* (($ (-845) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-542 |#1|) (-13 (-1136 |#1| (-517)) (-10 -8 (-15 -2839 ($ (-944 (-772 (-517))) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3433 ((-944 (-772 (-517))) $)) (-15 -3289 ((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3452 ($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3022 ((-107) $)) (-15 -2603 ($ (-1 |#1| (-517)) $)) (-15 -1392 ((-3 $ "failed") $ $ (-107))) (-15 -1519 ($ $)) (-15 -3629 ($ $ $)) (-15 -2027 ((-787) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-944 (-772 (-517))) (-1077) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (-15 -2540 ($ $ |#1|)) (-15 -3866 ($ $ (-377 (-517)))) (-15 -2221 ($ $)) (-15 -2879 ($ $)) (-15 -2915 ($ $)) (-15 -2132 ($ $)) (-15 -4173 ($ $)) (-15 -2916 ($ $)) (-15 -3781 ($ $)) (-15 -2483 ($ $)) (-15 -3430 ($ $)) (-15 -1877 ($ $)) (-15 -3050 ($ $)) (-15 -1847 ($ $)) (-15 -3271 ($ $)) (-15 -3016 ($ $)) (-15 -1553 ($ $)) (-15 -3976 ($ $)) (-15 -1591 ($ $)) (-15 -2487 ($ $)) (-15 -1224 ($ $)) (-15 -2636 ($ $)) (-15 -2459 ($ $)) (-15 -2277 ($ $)) (-15 -2055 ($ $)) (-15 -2825 ($ $)) (-15 -3802 ($ $)) (-15 -1713 ($ $))) |%noBranch|))) (-964)) (T -542))
+((-3022 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-2839 (*1 *1 *2 *3) (-12 (-5 *2 (-944 (-772 (-517)))) (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-964)) (-5 *1 (-542 *4)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-944 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-964)) (-5 *1 (-542 *3)))) (-2603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-542 *3)))) (-1392 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-1519 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964)))) (-3629 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964)))) (-2027 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-944 (-772 (-517)))) (-5 *5 (-1077)) (-5 *7 (-377 (-517))) (-4 *6 (-964)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-3296 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2540 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-964)))) (-2221 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2879 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2132 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-4173 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2916 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3430 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1877 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1847 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3271 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1553 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3976 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2487 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1224 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2636 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2459 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2055 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2825 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1713 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(-13 (-1136 |#1| (-517)) (-10 -8 (-15 -2839 ($ (-944 (-772 (-517))) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3433 ((-944 (-772 (-517))) $)) (-15 -3289 ((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3452 ($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3022 ((-107) $)) (-15 -2603 ($ (-1 |#1| (-517)) $)) (-15 -1392 ((-3 $ "failed") $ $ (-107))) (-15 -1519 ($ $)) (-15 -3629 ($ $ $)) (-15 -2027 ((-787) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-944 (-772 (-517))) (-1077) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (-15 -2540 ($ $ |#1|)) (-15 -3866 ($ $ (-377 (-517)))) (-15 -2221 ($ $)) (-15 -2879 ($ $)) (-15 -2915 ($ $)) (-15 -2132 ($ $)) (-15 -4173 ($ $)) (-15 -2916 ($ $)) (-15 -3781 ($ $)) (-15 -2483 ($ $)) (-15 -3430 ($ $)) (-15 -1877 ($ $)) (-15 -3050 ($ $)) (-15 -1847 ($ $)) (-15 -3271 ($ $)) (-15 -3016 ($ $)) (-15 -1553 ($ $)) (-15 -3976 ($ $)) (-15 -1591 ($ $)) (-15 -2487 ($ $)) (-15 -1224 ($ $)) (-15 -2636 ($ $)) (-15 -2459 ($ $)) (-15 -2277 ($ $)) (-15 -2055 ($ $)) (-15 -2825 ($ $)) (-15 -3802 ($ $)) (-15 -1713 ($ $))) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3452 (($ (-1058 |#1|)) 9)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) 42)) (-3690 (((-107) $) 52)) (-3250 (((-703) $) 55) (((-703) $ (-703)) 54)) (-1690 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-1058 |#1|) $) 23)) (-1818 (((-703)) 51)) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 10 T CONST)) (-3675 (($) 14 T CONST)) (-1572 (((-107) $ $) 22)) (-1680 (($ $) 30) (($ $ $) 16)) (-1666 (($ $ $) 25)) (** (($ $ (-845)) NIL) (($ $ (-703)) 49)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
+(((-543 |#1|) (-13 (-964) (-10 -8 (-15 -3186 ((-1058 |#1|) $)) (-15 -3452 ($ (-1058 |#1|))) (-15 -3690 ((-107) $)) (-15 -3250 ((-703) $)) (-15 -3250 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|))) (-964)) (T -543))
+((-3186 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-543 *3)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (-3250 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-964)))))
+(-13 (-964) (-10 -8 (-15 -3186 ((-1058 |#1|) $)) (-15 -3452 ($ (-1058 |#1|))) (-15 -3690 ((-107) $)) (-15 -3250 ((-703) $)) (-15 -3250 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|)))
+((-3312 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
+(((-544 |#1| |#2|) (-10 -7 (-15 -3312 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1112) (-1112)) (T -544))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
+(-10 -7 (-15 -3312 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
+((-3312 (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1058 |#2|)) 20) (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
+(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1058 |#2|)))) (-1112) (-1112) (-1112)) (T -545))
+((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1058 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
+(-10 -7 (-15 -3312 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1058 |#2|))))
+((-3131 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1077))) 55)) (-2731 (((-153 |#2|) |#3|) 116)) (-2212 ((|#3| (-153 |#2|)) 43)) (-2085 ((|#2| |#3|) 19)) (-2827 ((|#3| |#2|) 32)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2212 (|#3| (-153 |#2|))) (-15 -2085 (|#2| |#3|)) (-15 -2827 (|#3| |#2|)) (-15 -2731 ((-153 |#2|) |#3|)) (-15 -3131 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1077))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-921) (-1098)) (-13 (-400 (-153 |#1|)) (-921) (-1098))) (T -546))
+((-3131 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1077))) (-4 *2 (-13 (-400 (-153 *5)) (-921) (-1098))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-921) (-1098))))) (-2731 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-921) (-1098))) (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098))))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-921) (-1098))))) (-2085 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-921) (-1098))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098))))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098))) (-5 *1 (-546 *4 *5 *2)))))
+(-10 -7 (-15 -2212 (|#3| (-153 |#2|))) (-15 -2085 (|#2| |#3|)) (-15 -2827 (|#3| |#2|)) (-15 -2731 ((-153 |#2|) |#3|)) (-15 -3131 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1077)))))
+((-2317 (($ (-1 (-107) |#1|) $) 16)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2257 (($ (-1 |#1| |#1|) |#1|) 9)) (-2297 (($ (-1 (-107) |#1|) $) 12)) (-2307 (($ (-1 (-107) |#1|) $) 14)) (-2279 (((-1058 |#1|) $) 17)) (-2262 (((-787) $) NIL)))
+(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)) (-15 -2317 ($ (-1 (-107) |#1|) $)) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2279 ((-1058 |#1|) $)))) (-1112)) (T -547))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2297 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1112)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)) (-15 -2317 ($ (-1 (-107) |#1|) $)) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2279 ((-1058 |#1|) $))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703)) NIL (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) NIL (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1492 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-2328 (((-107) $ (-703)) NIL)) (-3728 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3912 ((|#1| $ $) NIL (|has| |#1| (-964)))) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1305 (($ $ $) NIL (|has| |#1| (-964)))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1666 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-548 |#1| |#2|) (-1156 |#1|) (-1112) (-517)) (T -548))
+NIL
+(-1156 |#1|)
+((-3351 (((-1163) $ |#2| |#2|) 36)) (-3531 ((|#2| $) 23)) (-1969 ((|#2| $) 21)) (-2737 (($ (-1 |#3| |#3|) $) 32)) (-3312 (($ (-1 |#3| |#3|) $) 30)) (-2420 ((|#3| $) 26)) (-2837 (($ $ |#3|) 33)) (-2124 (((-107) |#3| $) 17)) (-2862 (((-583 |#3|) $) 15)) (-2612 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -3351 ((-1163) |#1| |#2| |#2|)) (-15 -2837 (|#1| |#1| |#3|)) (-15 -2420 (|#3| |#1|)) (-15 -3531 (|#2| |#1|)) (-15 -1969 (|#2| |#1|)) (-15 -2124 ((-107) |#3| |#1|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1006) (-1112)) (T -549))
+NIL
+(-10 -8 (-15 -3351 ((-1163) |#1| |#2| |#2|)) (-15 -2837 (|#1| |#1| |#3|)) (-15 -2420 (|#3| |#1|)) (-15 -3531 (|#2| |#1|)) (-15 -1969 (|#2| |#1|)) (-15 -2124 ((-107) |#3| |#1|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#2| (-1006)))) (-3351 (((-1163) $ |#1| |#1|) 40 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-2750 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 51)) (-1525 (((-583 |#2|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3531 ((|#1| $) 43 (|has| |#1| (-779)))) (-3687 (((-583 |#2|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-1969 ((|#1| $) 44 (|has| |#1| (-779)))) (-2737 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#2| (-1006)))) (-1449 (((-583 |#1|) $) 46)) (-3413 (((-107) |#1| $) 47)) (-4130 (((-1024) $) 21 (|has| |#2| (-1006)))) (-2420 ((|#2| $) 42 (|has| |#1| (-779)))) (-2837 (($ $ |#2|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4140 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4195))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#2| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-550 |#1| |#2|) (-1189) (-1006) (-1112)) (T -550))
+((-2862 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-583 *4)))) (-3413 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-583 *3)))) (-2124 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1006)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006)) (-4 *2 (-779)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006)) (-4 *2 (-779)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) (-4 *3 (-779)) (-4 *2 (-1112)))) (-2837 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-3351 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-1163)))))
+(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -2862 ((-583 |t#2|) $)) (-15 -3413 ((-107) |t#1| $)) (-15 -1449 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1006)) (IF (|has| $ (-6 -4195)) (-15 -2124 ((-107) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -1969 (|t#1| $)) (-15 -3531 (|t#1| $)) (-15 -2420 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2837 ($ $ |t#2|)) (-15 -3351 ((-1163) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1006)) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-1006) |has| |#2| (-1006)) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1158 (-623 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-4026 (((-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1745 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2998 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2496 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1793 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3071 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3928 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1363 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3708 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2740 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2889 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3539 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1158 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3778 (((-845)) NIL (|has| |#2| (-337 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4016 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1627 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3277 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1830 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2002 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4044 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2680 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3221 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3556 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1274 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3570 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1878 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4102 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2032 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2612 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-1372 (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $) (-1158 $)) NIL (|has| |#2| (-337 |#1|))) (((-1158 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3367 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3861 (((-583 (-876 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-876 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2262 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3700 (((-1158 $)) NIL (|has| |#2| (-387 |#1|)))) (-3741 (((-583 (-1158 |#1|))) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2365 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1901 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1555 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) 24)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -551))
+((-2262 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-3188 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) 32)) (-3195 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL) (($) NIL)) (-3351 (((-1163) $ (-1060) (-1060)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-1060) |#1|) 42)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#1| "failed") (-1060) $) 45)) (-3038 (($) NIL T CONST)) (-3010 (($ $ (-1060)) 24)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1749 (((-3 |#1| "failed") (-1060) $) 46) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (|has| $ (-6 -4195)))) (-1423 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1510 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-2872 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) 31)) (-2750 ((|#1| $ (-1060) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-1060)) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3684 (($ $) 47)) (-3723 (($ (-358)) 22) (($ (-358) (-1060)) 21)) (-2981 (((-358) $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1060) $) NIL (|has| (-1060) (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (((-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1969 (((-1060) $) NIL (|has| (-1060) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1869 (((-583 (-1060)) $) 38)) (-2409 (((-107) (-1060) $) NIL)) (-3048 (((-1060) $) 34)) (-2015 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-1449 (((-583 (-1060)) $) NIL)) (-3413 (((-107) (-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 ((|#1| $) NIL (|has| (-1060) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) "failed") (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-583 (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 36)) (-2612 ((|#1| $ (-1060) |#1|) NIL) ((|#1| $ (-1060)) 41)) (-3808 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL) (($) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (((-703) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-703) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-2262 (((-787) $) 20)) (-3604 (($ $) 25)) (-2729 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 19)) (-3573 (((-703) $) 40 (|has| $ (-6 -4195)))))
+(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-1089 (-1060) |#1|) (-10 -8 (-6 -4195) (-15 -3684 ($ $)))) (-1006)) (T -552))
+((-3684 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1006)))))
+(-13 (-334 (-358) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-1089 (-1060) |#1|) (-10 -8 (-6 -4195) (-15 -3684 ($ $))))
+((-1949 (((-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 15)) (-1869 (((-583 |#2|) $) 19)) (-2409 (((-107) |#2| $) 12)))
+(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -1869 ((-583 |#2|) |#1|)) (-15 -2409 ((-107) |#2| |#1|)) (-15 -1949 ((-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|))) (-554 |#2| |#3|) (-1006) (-1006)) (T -553))
+NIL
+(-10 -8 (-15 -1869 ((-583 |#2|) |#1|)) (-15 -2409 ((-107) |#2| |#1|)) (-15 -1949 ((-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 55 (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 61)) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 46 (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 54 (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 56 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 53 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1869 (((-583 |#1|) $) 63)) (-2409 (((-107) |#1| $) 64)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 39)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 40)) (-4130 (((-1024) $) 21 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 51)) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 41)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 26 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 25 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 24 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 23 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3808 (($) 49) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 48)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 31 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 50)) (-2262 (((-787) $) 18 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 42)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-554 |#1| |#2|) (-1189) (-1006) (-1006)) (T -554))
+((-2409 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-107)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-583 *3)))) (-1749 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3599 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))))
+(-13 (-203 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|))) (-10 -8 (-15 -2409 ((-107) |t#1| $)) (-15 -1869 ((-583 |t#1|) $)) (-15 -1749 ((-3 |t#2| "failed") |t#1| $)) (-15 -3599 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-97) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) ((-557 (-787)) -3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-456 #0#) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-1006) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) ((-1112) . T))
+((-1227 (((-556 |#2|) |#1|) 15)) (-2053 (((-3 |#1| "failed") (-556 |#2|)) 19)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -1227 ((-556 |#2|) |#1|)) (-15 -2053 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
+((-2053 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-1227 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
+(-10 -7 (-15 -1227 ((-556 |#2|) |#1|)) (-15 -2053 ((-3 |#1| "failed") (-556 |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1794 (((-3 (-1077) "failed") $) 36)) (-1798 (((-1163) $ (-703)) 26)) (-1210 (((-703) $) 25)) (-1325 (((-109) $) 12)) (-2981 (((-1077) $) 20)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-1385 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1077)) 31)) (-3731 (((-107) $ (-109)) 18) (((-107) $ (-1077)) 16)) (-1795 (((-703) $) 22)) (-4130 (((-1024) $) NIL)) (-3367 (((-816 (-517)) $) 69 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 75 (|has| |#1| (-558 (-816 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2262 (((-787) $) 51)) (-2842 (((-583 |#1|) $) 24)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 39)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 40)))
+(((-556 |#1|) (-13 (-124) (-808 |#1|) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -1325 ((-109) $)) (-15 -2842 ((-583 |#1|) $)) (-15 -1795 ((-703) $)) (-15 -1385 ($ (-109) (-583 |#1|) (-703))) (-15 -1385 ($ (-1077))) (-15 -1794 ((-3 (-1077) "failed") $)) (-15 -3731 ((-107) $ (-109))) (-15 -3731 ((-107) $ (-1077))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-779)) (T -556))
+((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1385 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1794 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
+(-13 (-124) (-808 |#1|) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -1325 ((-109) $)) (-15 -2842 ((-583 |#1|) $)) (-15 -1795 ((-703) $)) (-15 -1385 ($ (-109) (-583 |#1|) (-703))) (-15 -1385 ($ (-1077))) (-15 -1794 ((-3 (-1077) "failed") $)) (-15 -3731 ((-107) $ (-109))) (-15 -3731 ((-107) $ (-1077))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
+((-2262 ((|#1| $) 6)))
+(((-557 |#1|) (-1189) (-1112)) (T -557))
+((-2262 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1112)))))
+(-13 (-10 -8 (-15 -2262 (|t#1| $))))
+((-3367 ((|#1| $) 6)))
+(((-558 |#1|) (-1189) (-1112)) (T -558))
+((-3367 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1112)))))
+(-13 (-10 -8 (-15 -3367 (|t#1| $))))
+((-2152 (((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -559))
+((-2152 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-1073 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2152 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-1073 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
+((-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-560 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-561 |#2|) (-964)) (T -560))
+NIL
+(-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-561 |#1|) (-1189) (-964)) (T -561))
+((-2262 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-964)))))
+(-13 (-964) (-585 |t#1|) (-10 -8 (-15 -2262 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3502 (((-517) $) NIL (|has| |#1| (-777)))) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-2671 (((-107) $) NIL (|has| |#1| (-777)))) (-1690 (((-107) $) NIL)) (-3858 ((|#1| $) 13)) (-2321 (((-107) $) NIL (|has| |#1| (-777)))) (-3480 (($ $ $) NIL (|has| |#1| (-777)))) (-4095 (($ $ $) NIL (|has| |#1| (-777)))) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2082 ((|#3| $) 15)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-1818 (((-703)) 20)) (-2829 (($ $) NIL (|has| |#1| (-777)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) 12 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1692 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
+((-1692 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1692 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2082 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $))))
+((-1635 ((|#2| |#2| (-1077) (-1077)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -1635 (|#2| |#2| (-1077) (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-29 |#1|))) (T -563))
+((-1635 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1098) (-882) (-29 *4))))))
+(-10 -7 (-15 -1635 (|#2| |#2| (-1077) (-1077))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 52)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1291 ((|#1| $) 49)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1421 (((-2 (|:| -3191 $) (|:| -3119 (-377 |#2|))) (-377 |#2|)) 97 (|has| |#1| (-333)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 24)) (-3550 (((-3 $ "failed") $) 76)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3250 (((-517) $) 19)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) 36)) (-2059 (($ |#1| (-517)) 21)) (-2336 ((|#1| $) 51)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 87 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ $) 80)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3388 (((-703) $) 99 (|has| |#1| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 98 (|has| |#1| (-333)))) (-2042 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1191 (((-517) $) 34)) (-3367 (((-377 |#2|) $) 42)) (-2262 (((-787) $) 63) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-1939 ((|#1| $ (-517)) 64)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 9 T CONST)) (-3675 (($) 12 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1572 (((-107) $ $) 17)) (-1680 (($ $) 46) (($ $ $) NIL)) (-1666 (($ $ $) 77)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
+(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-955 |#2|) (-10 -8 (-15 -3022 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3250 ((-517) $)) (-15 -2364 ($ $)) (-15 -2336 (|#1| $)) (-15 -1291 (|#1| $)) (-15 -1939 (|#1| $ (-517))) (-15 -2059 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1421 ((-2 (|:| -3191 $) (|:| -3119 (-377 |#2|))) (-377 |#2|)))) |%noBranch|))) (-509) (-1134 |#1|)) (T -564))
+((-3022 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1134 *3)))) (-1191 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1134 *3)))) (-3250 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1134 *3)))) (-2364 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) (-2336 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) (-1291 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1134 *2)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1134 *2)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -3191 (-564 *4 *5)) (|:| -3119 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
+(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-955 |#2|) (-10 -8 (-15 -3022 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3250 ((-517) $)) (-15 -2364 ($ $)) (-15 -2336 (|#1| $)) (-15 -1291 (|#1| $)) (-15 -1939 (|#1| $ (-517))) (-15 -2059 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1421 ((-2 (|:| -3191 $) (|:| -3119 (-377 |#2|))) (-377 |#2|)))) |%noBranch|)))
+((-3246 (((-583 |#6|) (-583 |#4|) (-107)) 47)) (-3724 ((|#6| |#6|) 40)))
+(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3724 (|#6| |#6|)) (-15 -3246 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1015 |#1| |#2| |#3| |#4|)) (T -565))
+((-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1015 *5 *6 *7 *8)))) (-3724 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1015 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3724 (|#6| |#6|)) (-15 -3246 ((-583 |#6|) (-583 |#4|) (-107))))
+((-3524 (((-107) |#3| (-703) (-583 |#3|)) 23)) (-3429 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1073 |#3|)))) "failed") |#3| (-583 (-1073 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2283 (-583 (-2 (|:| |irr| |#4|) (|:| -1332 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 52)))
+(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3524 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3429 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1073 |#3|)))) "failed") |#3| (-583 (-1073 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2283 (-583 (-2 (|:| |irr| |#4|) (|:| -1332 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-873 |#3| |#2| |#1|)) (T -566))
+((-3429 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2283 (-583 (-2 (|:| |irr| *10) (|:| -1332 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-873 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1073 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1073 *3))))) (-3524 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-873 *3 *7 *6)))))
+(-10 -7 (-15 -3524 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3429 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1073 |#3|)))) "failed") |#3| (-583 (-1073 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2283 (-583 (-2 (|:| |irr| |#4|) (|:| -1332 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
+((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-2833 (($ $) 67)) (-1232 (((-601 |#1| |#2|) $) 52)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 70)) (-2298 (((-583 (-265 |#2|)) $ $) 33)) (-4130 (((-1024) $) NIL)) (-3898 (($ (-601 |#1| |#2|)) 48)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 58) (((-1171 |#1| |#2|) $) NIL) (((-1176 |#1| |#2|) $) 66)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 53 T CONST)) (-4079 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-3006 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-1226 (((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $) 36)) (-1572 (((-107) $ $) 54)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
+(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -3898 ($ (-601 |#1| |#2|))) (-15 -1232 ((-601 |#1| |#2|) $)) (-15 -1226 ((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $)) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1176 |#1| |#2|) $)) (-15 -2833 ($ $)) (-15 -3375 ((-583 |#1|) $)) (-15 -3006 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -4079 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-845)) (T -567))
+((-3898 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-845)))) (-1232 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-817 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-845)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-845)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2298 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))))
+(-13 (-442) (-10 -8 (-15 -3898 ($ (-601 |#1| |#2|))) (-15 -1232 ((-601 |#1| |#2|) $)) (-15 -1226 ((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $)) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1176 |#1| |#2|) $)) (-15 -2833 ($ $)) (-15 -3375 ((-583 |#1|) $)) (-15 -3006 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -4079 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-583 (-265 |#2|)) $ $))))
+((-3246 (((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 71) (((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 57)) (-3210 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-2756 (((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70)) (-3483 (((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-1582 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-4002 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -3210 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -4002 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1582 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -3483 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2756 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1077))) (T -568))
+((-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4)))) (-4002 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1077))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(-10 -7 (-15 -3210 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -4002 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1582 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -3483 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2756 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
+((-1636 (($ $) 38)) (-1482 (($ $) 21)) (-1612 (($ $) 37)) (-1459 (($ $) 22)) (-1659 (($ $) 36)) (-1508 (($ $) 23)) (-2102 (($) 48)) (-1232 (($ $) 45)) (-2168 (($ $) 17)) (-1329 (($ $ (-999 $)) 7) (($ $ (-1077)) 6)) (-3898 (($ $) 46)) (-1410 (($ $) 15)) (-1446 (($ $) 16)) (-1670 (($ $) 35)) (-1521 (($ $) 24)) (-1647 (($ $) 34)) (-1495 (($ $) 25)) (-1622 (($ $) 33)) (-1471 (($ $) 26)) (-1706 (($ $) 44)) (-1564 (($ $) 32)) (-1685 (($ $) 43)) (-1536 (($ $) 31)) (-3517 (($ $) 42)) (-1588 (($ $) 30)) (-2815 (($ $) 41)) (-1601 (($ $) 29)) (-1722 (($ $) 40)) (-1577 (($ $) 28)) (-1698 (($ $) 39)) (-1550 (($ $) 27)) (-2641 (($ $) 19)) (-1418 (($ $) 20)) (-1717 (($ $) 18)) (** (($ $ $) 47)))
+(((-569) (-1189)) (T -569))
+((-1418 (*1 *1 *1) (-4 *1 (-569))) (-2641 (*1 *1 *1) (-4 *1 (-569))) (-1717 (*1 *1 *1) (-4 *1 (-569))) (-2168 (*1 *1 *1) (-4 *1 (-569))) (-1446 (*1 *1 *1) (-4 *1 (-569))) (-1410 (*1 *1 *1) (-4 *1 (-569))))
+(-13 (-882) (-1098) (-10 -8 (-15 -1418 ($ $)) (-15 -2641 ($ $)) (-15 -1717 ($ $)) (-15 -2168 ($ $)) (-15 -1446 ($ $)) (-15 -1410 ($ $))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-882) . T) ((-1098) . T) ((-1101) . T))
+((-1325 (((-109) (-109)) 83)) (-2168 ((|#2| |#2|) 30)) (-1329 ((|#2| |#2| (-999 |#2|)) 79) ((|#2| |#2| (-1077)) 52)) (-1410 ((|#2| |#2|) 29)) (-1446 ((|#2| |#2|) 31)) (-4116 (((-107) (-109)) 34)) (-2641 ((|#2| |#2|) 26)) (-1418 ((|#2| |#2|) 28)) (-1717 ((|#2| |#2|) 27)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1418 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -1329 (|#2| |#2| (-1077))) (-15 -1329 (|#2| |#2| (-999 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-921) (-1098))) (T -570))
+((-1329 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-921) (-1098))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-1329 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-921) (-1098))))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-2641 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-921) (-1098))))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098))))))
+(-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1418 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -1329 (|#2| |#2| (-1077))) (-15 -1329 (|#2| |#2| (-999 |#2|))))
+((-1915 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 53)) (-2209 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 68)) (-1435 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 70) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69)) (-2274 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 106)) (-2707 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 83)) (-1681 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 117)) (-2077 (((-1158 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 58)) (-2579 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-3996 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-2745 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 90)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2274 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -1681 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2209 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2579 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2077 ((-1158 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2745 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2707 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3996 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1915 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1077)) (-421)) (T -571))
+((-1915 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-3996 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2707 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2745 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1077))) (-5 *1 (-571 *5 *6)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-1158 *6)) (-5 *1 (-571 *5 *6)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1077))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-1435 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-1681 (*1 *2 *3) (-12 (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
+(-10 -7 (-15 -2274 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -1681 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2209 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2579 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2077 ((-1158 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2745 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2707 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3996 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1915 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-3351 (((-1163) $ (-1060) (-1060)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-51) $ (-1060) (-51)) 16) (((-51) $ (-1077) (-51)) 17)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 (-51) "failed") (-1060) $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-3 (-51) "failed") (-1060) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-51) $ (-1060) (-51)) NIL (|has| $ (-6 -4196)))) (-2557 (((-51) $ (-1060)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-3684 (($ $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1060) $) NIL (|has| (-1060) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-1969 (((-1060) $) NIL (|has| (-1060) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1809 (($ (-358)) 9)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-1869 (((-583 (-1060)) $) NIL)) (-2409 (((-107) (-1060) $) NIL)) (-2015 (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL)) (-1449 (((-583 (-1060)) $) NIL)) (-3413 (((-107) (-1060) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-2420 (((-51) $) NIL (|has| (-1060) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) "failed") (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL)) (-2837 (($ $ (-51)) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-2862 (((-583 (-51)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-51) $ (-1060)) 14) (((-51) $ (-1060) (-51)) NIL) (((-51) $ (-1077)) 15)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-572) (-13 (-1089 (-1060) (-51)) (-10 -8 (-15 -1809 ($ (-358))) (-15 -3684 ($ $)) (-15 -2612 ((-51) $ (-1077))) (-15 -2436 ((-51) $ (-1077) (-51)))))) (T -572))
+((-1809 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-3684 (*1 *1 *1) (-5 *1 (-572))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1077)) (-5 *1 (-572)))))
+(-13 (-1089 (-1060) (-51)) (-10 -8 (-15 -1809 ($ (-358))) (-15 -3684 ($ $)) (-15 -2612 ((-51) $ (-1077))) (-15 -2436 ((-51) $ (-1077) (-51)))))
+((-1692 (($ $ |#2|) 10)))
+(((-573 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
+NIL
+(-10 -8 (-15 -1692 (|#1| |#1| |#2|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2279 (($ $ $) 29)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-574 |#1|) (-1189) (-156)) (T -574))
+((-2279 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2279 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1692 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1158 (-623 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-4026 (((-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1745 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2998 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2496 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1793 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3071 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3928 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1363 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3708 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2740 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2889 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3539 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1158 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3778 (((-845)) NIL (|has| |#2| (-337 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4016 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1627 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3277 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1830 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2002 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4044 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2680 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3221 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3556 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1274 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3570 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1878 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4102 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2032 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2612 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-1372 (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $) (-1158 $)) NIL (|has| |#2| (-337 |#1|))) (((-1158 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3367 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3861 (((-583 (-876 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-876 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2262 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3700 (((-1158 $)) NIL (|has| |#2| (-387 |#1|)))) (-3741 (((-583 (-1158 |#1|))) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2365 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1901 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1555 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3663 (($) 15 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) 17)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -575))
+((-2262 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
+((-2406 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1060)) 78) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 100)) (-2007 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 105)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -2406 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -2007 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2406 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1060)))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -576))
+((-2406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1060)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
+(-10 -7 (-15 -2406 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -2007 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2406 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1060))))
+((-2406 (((-3 (-772 (-377 (-876 |#1|))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))) (-1060)) 79) (((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|)))) 18) (((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-772 (-876 |#1|)))) 34)) (-2007 (((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|)))) 21) (((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-765 (-876 |#1|)))) 42)))
+(((-577 |#1|) (-10 -7 (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-772 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-765 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))) (-1060)))) (-421)) (T -577))
+((-2406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-876 *6)))) (-5 *5 (-1060)) (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-876 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-876 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-876 *5))))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-876 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-876 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-876 *5))))))
+(-10 -7 (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-772 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-765 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))) (-1060))))
+((-3600 (((-3 (-1158 (-377 |#1|)) "failed") (-1158 |#2|) |#2|) 57 (-2479 (|has| |#1| (-333)))) (((-3 (-1158 |#1|) "failed") (-1158 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-2196 (((-107) (-1158 |#2|)) 30)) (-1828 (((-3 (-1158 |#1|) "failed") (-1158 |#2|)) 33)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -2196 ((-107) (-1158 |#2|))) (-15 -1828 ((-3 (-1158 |#1|) "failed") (-1158 |#2|))) (IF (|has| |#1| (-333)) (-15 -3600 ((-3 (-1158 |#1|) "failed") (-1158 |#2|) |#2|)) (-15 -3600 ((-3 (-1158 (-377 |#1|)) "failed") (-1158 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
+((-3600 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) (-2479 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1158 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-3600 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1158 *5)) (-5 *1 (-578 *5 *4)))) (-1828 (*1 *2 *3) (|partial| -12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1158 *4)) (-5 *1 (-578 *4 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(-10 -7 (-15 -2196 ((-107) (-1158 |#2|))) (-15 -1828 ((-3 (-1158 |#1|) "failed") (-1158 |#2|))) (IF (|has| |#1| (-333)) (-15 -3600 ((-3 (-1158 |#1|) "failed") (-1158 |#2|) |#2|)) (-15 -3600 ((-3 (-1158 (-377 |#1|)) "failed") (-1158 |#2|) |#2|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2947 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 35)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-579 |#1|) (-1189) (-964)) (T -579))
+((-2947 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-964)) (-5 *2 (-623 *4)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1158 *1)) (-4 *1 (-579 *5)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 *5)))))))
+(-13 (-964) (-10 -8 (-15 -2947 ((-623 |t#1|) (-623 $))) (-15 -2947 ((-2 (|:| -3725 (-623 |t#1|)) (|:| |vec| (-1158 |t#1|))) (-623 $) (-1158 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-1924 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1006) (-1112)) (T -580))
+((-1924 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) (-1924 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *1 (-580 *5 *6)))) (-1924 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) (-1924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1006)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-1924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
+(-10 -7 (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
+((-1250 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-3312 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -1250 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1112) (-1112)) (T -581))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-581 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
+(-10 -7 (-15 -1250 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
+((-3312 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
+(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1112) (-1112) (-1112)) (T -582))
+((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
+(-10 -7 (-15 -3312 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) NIL (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "rest" $) NIL (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2352 (($ $ $) 32 (|has| |#1| (-1006)))) (-2339 (($ $ $) 34 (|has| |#1| (-1006)))) (-2326 (($ $ $) 37 (|has| |#1| (-1006)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2429 (($ $) NIL) (($ $ (-703)) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1006)))) (-2446 (($ $) 31 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006))) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3917 (((-107) $) 9)) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2169 (($) 7)) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3824 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 33 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2315 (($ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) 36) ((|#1| $ (-517) |#1|) NIL)) (-3868 (((-517) $ $) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-1414 (((-107) $) NIL)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 45 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-2987 (($ |#1| $) 10)) (-3495 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4117 (($ $ $) 30) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3768 (($ $ $) 11)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2514 (((-1060) $) 26 (|has| |#1| (-760))) (((-1060) $ (-107)) 27 (|has| |#1| (-760))) (((-1163) (-754) $) 28 (|has| |#1| (-760))) (((-1163) (-754) $ (-107)) 29 (|has| |#1| (-760)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2169 ($)) (-15 -3917 ((-107) $)) (-15 -2987 ($ |#1| $)) (-15 -3768 ($ $ $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2352 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-1112)) (T -583))
+((-2169 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1112)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) (-3768 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) (-2352 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))) (-2326 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -2169 ($)) (-15 -3917 ((-107) $)) (-15 -2987 ($ |#1| $)) (-15 -3768 ($ $ $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2352 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|)))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2439 (($ |#1| |#1| $) 43)) (-3443 (((-107) $ (-703)) NIL)) (-2582 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3081 (($ $) 45)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) 52 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 9 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 37)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 46)) (-3439 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1551 ((|#1| $) 48)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 21)) (-2679 (($) 25)) (-2749 (((-107) $) 50)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 59)) (-3808 (($) 23) (($ (-583 |#1|)) 18)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) 56 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 19)) (-3367 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-2262 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 22)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 61 (|has| |#1| (-1006)))) (-3573 (((-703) $) 16 (|has| $ (-6 -4195)))))
+(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4195) (-15 -2749 ((-107) $)) (-15 -2439 ($ |#1| |#1| $)))) (-1006)) (T -584))
+((-2749 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1006)))) (-2439 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1006)))))
+(-13 (-628 |#1|) (-10 -8 (-6 -4195) (-15 -2749 ((-107) $)) (-15 -2439 ($ |#1| |#1| $))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
+(((-585 |#1|) (-1189) (-971)) (T -585))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-971)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-2399 (((-703) $) 15)) (-3698 (($ $ |#1|) 55)) (-2549 (($ $) 32)) (-1908 (($ $) 31)) (-3228 (((-3 |#1| "failed") $) 47)) (-3390 ((|#1| $) NIL)) (-2333 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-1988 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-1789 ((|#1| $ (-517)) 30)) (-1879 ((|#2| $ (-517)) 29)) (-3912 (($ (-1 |#1| |#1|) $) 34)) (-3208 (($ (-1 |#2| |#2|) $) 38)) (-3842 (($) 10)) (-4060 (($ |#1| |#2|) 22)) (-1814 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|)))) 23)) (-1214 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))) $) 13)) (-2027 (($ |#1| $) 56)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3463 (((-107) $ $) 58)) (-2271 (((-787) $) 19) (($ |#1|) 16)) (-1584 (((-107) $ $) 25)))
-(((-586 |#1| |#2| |#3|) (-13 (-1005) (-954 |#1|) (-10 -8 (-15 -1988 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -1214 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))) $)) (-15 -4060 ($ |#1| |#2|)) (-15 -1814 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))))) (-15 -1879 (|#2| $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -1908 ($ $)) (-15 -2549 ($ $)) (-15 -2399 ((-703) $)) (-15 -3842 ($)) (-15 -3698 ($ $ |#1|)) (-15 -2027 ($ |#1| $)) (-15 -2333 ($ |#1| |#2| $)) (-15 -2333 ($ $ $)) (-15 -3463 ((-107) $ $)) (-15 -3208 ($ (-1 |#2| |#2|) $)) (-15 -3912 ($ (-1 |#1| |#1|) $)))) (-1005) (-23) |#2|) (T -586))
-((-1988 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1005)) (-4 *6 (-23)) (-14 *7 *6))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) (-4060 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 *4)))) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1005)) (-14 *5 *2))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1005)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1908 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2549 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) (-3842 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2027 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2333 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2333 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-3463 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) (-3208 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1005) (-954 |#1|) (-10 -8 (-15 -1988 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -1214 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))) $)) (-15 -4060 ($ |#1| |#2|)) (-15 -1814 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3870 |#2|))))) (-15 -1879 (|#2| $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -1908 ($ $)) (-15 -2549 ($ $)) (-15 -2399 ((-703) $)) (-15 -3842 ($)) (-15 -3698 ($ $ |#1|)) (-15 -2027 ($ |#1| $)) (-15 -2333 ($ |#1| |#2| $)) (-15 -2333 ($ $ $)) (-15 -3463 ((-107) $ $)) (-15 -3208 ($ (-1 |#2| |#2|) $)) (-15 -3912 ($ (-1 |#1| |#1|) $))))
-((-1989 (((-517) $) 24)) (-1747 (($ |#2| $ (-517)) 22) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) 12)) (-3130 (((-107) (-517) $) 15)) (-4110 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-583 $)) NIL)))
-(((-587 |#1| |#2|) (-10 -8 (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -4110 (|#1| (-583 |#1|))) (-15 -4110 (|#1| |#1| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -1989 ((-517) |#1|)) (-15 -2817 ((-583 (-517)) |#1|)) (-15 -3130 ((-107) (-517) |#1|))) (-588 |#2|) (-1111)) (T -587))
-NIL
-(-10 -8 (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -4110 (|#1| (-583 |#1|))) (-15 -4110 (|#1| |#1| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -1989 ((-517) |#1|)) (-15 -2817 ((-583 (-517)) |#1|)) (-15 -3130 ((-107) (-517) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2455 (($ $) 78 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 51)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 42 (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2846 (($ $ |#1|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1124 (-517))) 63)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 70)) (-4110 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-588 |#1|) (-1188) (-1111)) (T -588))
-((-3213 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-4110 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1111)))) (-4110 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1111)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1111)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-3310 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-1747 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1111)))) (-1747 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1111)))) (-2445 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1124 (-517))) (|has| *1 (-6 -4193)) (-4 *1 (-588 *2)) (-4 *2 (-1111)))))
-(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3213 ($ (-703) |t#1|)) (-15 -4110 ($ $ |t#1|)) (-15 -4110 ($ |t#1| $)) (-15 -4110 ($ $ $)) (-15 -4110 ($ (-583 $))) (-15 -3310 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2609 ($ $ (-1124 (-517)))) (-15 -3728 ($ $ (-517))) (-15 -3728 ($ $ (-1124 (-517)))) (-15 -1747 ($ |t#1| $ (-517))) (-15 -1747 ($ $ $ (-517))) (IF (|has| $ (-6 -4193)) (-15 -2445 (|t#1| $ (-1124 (-517)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-1516 (((-3 |#2| "failed") |#3| |#2| (-1076) |#2| (-583 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) "failed") |#3| |#2| (-1076)) 43)))
-(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1516 ((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) "failed") |#3| |#2| (-1076))) (-15 -1516 ((-3 |#2| "failed") |#3| |#2| (-1076) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1097) (-881)) (-593 |#2|)) (T -589))
-((-1516 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1097) (-881))) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1076)) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1097) (-881))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1492 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -1516 ((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) "failed") |#3| |#2| (-1076))) (-15 -1516 ((-3 |#2| "failed") |#3| |#2| (-1076) |#2| (-583 |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-333)))) (-2183 (($ $ $) NIL (|has| |#1| (-333)))) (-2811 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1872 (($ $ $) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-333)))) (-2617 (($ $ $) NIL (|has| |#1| (-333)))) (-2096 (($ $ $) NIL (|has| |#1| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421)))) (-1376 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) NIL)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-3492 (((-703) $) NIL)) (-1479 (($ $ $) NIL (|has| |#1| (-333)))) (-2393 (($ $ $) NIL (|has| |#1| (-333)))) (-3931 (($ $ $) NIL (|has| |#1| (-333)))) (-2395 (($ $ $) NIL (|has| |#1| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1256 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2609 ((|#1| $ |#1|) NIL)) (-2977 (($ $ $) NIL (|has| |#1| (-333)))) (-3647 (((-703) $) NIL)) (-3119 ((|#1| $) NIL (|has| |#1| (-421)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) NIL)) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) NIL)) (-4099 (((-703)) NIL)) (-2375 ((|#1| $ |#1| |#1|) NIL)) (-1405 (($ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($) NIL)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-2390 (((-703) $) 15)) (-3968 (($ $ |#1|) 55)) (-3797 (($ $) 32)) (-1894 (($ $) 31)) (-3220 (((-3 |#1| "failed") $) 47)) (-3402 ((|#1| $) NIL)) (-2324 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-2449 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-2115 ((|#1| $ (-517)) 30)) (-2395 ((|#2| $ (-517)) 29)) (-3027 (($ (-1 |#1| |#1|) $) 34)) (-1838 (($ (-1 |#2| |#2|) $) 38)) (-3470 (($) 10)) (-3936 (($ |#1| |#2|) 22)) (-3228 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|)))) 23)) (-2536 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $) 13)) (-1761 (($ |#1| $) 56)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2968 (((-107) $ $) 58)) (-2262 (((-787) $) 19) (($ |#1|) 16)) (-1572 (((-107) $ $) 25)))
+(((-586 |#1| |#2| |#3|) (-13 (-1006) (-955 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -2536 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $)) (-15 -3936 ($ |#1| |#2|)) (-15 -3228 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))))) (-15 -2395 (|#2| $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1894 ($ $)) (-15 -3797 ($ $)) (-15 -2390 ((-703) $)) (-15 -3470 ($)) (-15 -3968 ($ $ |#1|)) (-15 -1761 ($ |#1| $)) (-15 -2324 ($ |#1| |#2| $)) (-15 -2324 ($ $ $)) (-15 -2968 ((-107) $ $)) (-15 -1838 ($ (-1 |#2| |#2|) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)))) (-1006) (-23) |#2|) (T -586))
+((-2449 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1006)) (-4 *6 (-23)) (-14 *7 *6))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-3936 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1006)) (-14 *5 *2))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1006)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1894 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3797 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-3470 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3968 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-1761 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2324 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2968 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1006) (-955 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -2536 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $)) (-15 -3936 ($ |#1| |#2|)) (-15 -3228 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))))) (-15 -2395 (|#2| $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1894 ($ $)) (-15 -3797 ($ $)) (-15 -2390 ((-703) $)) (-15 -3470 ($)) (-15 -3968 ($ $ |#1|)) (-15 -1761 ($ |#1| $)) (-15 -2324 ($ |#1| |#2| $)) (-15 -2324 ($ $ $)) (-15 -2968 ((-107) $ $)) (-15 -1838 ($ (-1 |#2| |#2|) $)) (-15 -3027 ($ (-1 |#1| |#1|) $))))
+((-1969 (((-517) $) 24)) (-1734 (($ |#2| $ (-517)) 22) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) 12)) (-3413 (((-107) (-517) $) 15)) (-4117 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-583 $)) NIL)))
+(((-587 |#1| |#2|) (-10 -8 (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1969 ((-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -3413 ((-107) (-517) |#1|))) (-588 |#2|) (-1112)) (T -587))
+NIL
+(-10 -8 (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1969 ((-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -3413 ((-107) (-517) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-588 |#1|) (-1189) (-1112)) (T -588))
+((-3204 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-1734 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-1734 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1125 (-517))) (|has| *1 (-6 -4196)) (-4 *1 (-588 *2)) (-4 *2 (-1112)))))
+(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3204 ($ (-703) |t#1|)) (-15 -4117 ($ $ |t#1|)) (-15 -4117 ($ |t#1| $)) (-15 -4117 ($ $ $)) (-15 -4117 ($ (-583 $))) (-15 -3312 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2612 ($ $ (-1125 (-517)))) (-15 -3779 ($ $ (-517))) (-15 -3779 ($ $ (-1125 (-517)))) (-15 -1734 ($ |t#1| $ (-517))) (-15 -1734 ($ $ $ (-517))) (IF (|has| $ (-6 -4196)) (-15 -2436 (|t#1| $ (-1125 (-517)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-1993 (((-3 |#2| "failed") |#3| |#2| (-1077) |#2| (-583 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) "failed") |#3| |#2| (-1077)) 43)))
+(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) "failed") |#3| |#2| (-1077))) (-15 -1993 ((-3 |#2| "failed") |#3| |#2| (-1077) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882)) (-593 |#2|)) (T -589))
+((-1993 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1077)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1098) (-882))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) "failed") |#3| |#2| (-1077))) (-15 -1993 ((-3 |#2| "failed") |#3| |#2| (-1077) |#2| (-583 |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-333)))) (-1705 (($ $ $) NIL (|has| |#1| (-333)))) (-3745 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) NIL)) (-2100 (($ $ $) NIL (|has| |#1| (-333)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) NIL)) (-1368 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($) NIL)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-590 |#1|) (-593 |#1|) (-207)) (T -590))
NIL
(-593 |#1|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-333)))) (-2183 (($ $ $) NIL (|has| |#1| (-333)))) (-2811 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1872 (($ $ $) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-333)))) (-2617 (($ $ $) NIL (|has| |#1| (-333)))) (-2096 (($ $ $) NIL (|has| |#1| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421)))) (-1376 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) NIL)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-3492 (((-703) $) NIL)) (-1479 (($ $ $) NIL (|has| |#1| (-333)))) (-2393 (($ $ $) NIL (|has| |#1| (-333)))) (-3931 (($ $ $) NIL (|has| |#1| (-333)))) (-2395 (($ $ $) NIL (|has| |#1| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1256 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2609 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2977 (($ $ $) NIL (|has| |#1| (-333)))) (-3647 (((-703) $) NIL)) (-3119 ((|#1| $) NIL (|has| |#1| (-421)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) NIL)) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) NIL)) (-4099 (((-703)) NIL)) (-2375 ((|#1| $ |#1| |#1|) NIL)) (-1405 (($ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($) NIL)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -2060 ($ $))))) (T -591))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-333)))) (-1705 (($ $ $) NIL (|has| |#1| (-333)))) (-3745 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2100 (($ $ $) NIL (|has| |#1| (-333)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) NIL)) (-1368 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($) NIL)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -2042 ($ $))))) (T -591))
NIL
(-13 (-593 |#1|) (-258 |#2| |#2|))
-((-3118 (($ $) 27)) (-1405 (($ $) 25)) (-3342 (($) 12)))
-(((-592 |#1| |#2|) (-10 -8 (-15 -3118 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -3342 (|#1|))) (-593 |#2|) (-963)) (T -592))
-NIL
-(-10 -8 (-15 -3118 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -3342 (|#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3118 (($ $) 82 (|has| |#1| (-333)))) (-2183 (($ $ $) 84 (|has| |#1| (-333)))) (-2811 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1872 (($ $ $) 45 (|has| |#1| (-333)))) (-3563 (($ $ $) 46 (|has| |#1| (-333)))) (-2617 (($ $ $) 48 (|has| |#1| (-333)))) (-2096 (($ $ $) 43 (|has| |#1| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 42 (|has| |#1| (-333)))) (-1763 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 47 (|has| |#1| (-333)))) (-3228 (((-3 (-517) "failed") $) 74 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3390 (((-517) $) 75 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 68)) (-2373 (($ $) 64)) (-2560 (((-3 $ "failed") $) 34)) (-2683 (($ $) 55 (|has| |#1| (-421)))) (-1376 (((-107) $) 31)) (-2078 (($ |#1| (-703)) 62)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57 (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 58 (|has| |#1| (-509)))) (-3492 (((-703) $) 66)) (-1479 (($ $ $) 52 (|has| |#1| (-333)))) (-2393 (($ $ $) 53 (|has| |#1| (-333)))) (-3931 (($ $ $) 41 (|has| |#1| (-333)))) (-2395 (($ $ $) 50 (|has| |#1| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 49 (|has| |#1| (-333)))) (-1256 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 54 (|has| |#1| (-333)))) (-2347 ((|#1| $) 65)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-2609 ((|#1| $ |#1|) 87)) (-2977 (($ $ $) 81 (|has| |#1| (-333)))) (-3647 (((-703) $) 67)) (-3119 ((|#1| $) 56 (|has| |#1| (-421)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) 70)) (-1998 (((-583 |#1|) $) 61)) (-1689 ((|#1| $ (-703)) 63)) (-4099 (((-703)) 29)) (-2375 ((|#1| $ |#1| |#1|) 60)) (-1405 (($ $) 85)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($) 86)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-593 |#1|) (-1188) (-963)) (T -593))
-((-3342 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)))) (-2183 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-963)) (-4 *3 (-333)))) (-3118 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2977 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -3342 ($)) (-15 -1405 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -2183 ($ $ $)) (-15 -2811 ($ $ (-703))) (-15 -3118 ($ $)) (-15 -2977 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-781 |#1|) . T))
-((-3073 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 73 (|has| |#1| (-27)))) (-3868 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -3868 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3868 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -3073 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|)) (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))) (-1133 |#1|)) (T -594))
-((-3073 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
-(-10 -7 (-15 -3868 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3868 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -3073 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-333)))) (-2183 (($ $ $) 28 (|has| |#1| (-333)))) (-2811 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1872 (($ $ $) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-333)))) (-2617 (($ $ $) NIL (|has| |#1| (-333)))) (-2096 (($ $ $) NIL (|has| |#1| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421)))) (-1376 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) NIL)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-3492 (((-703) $) NIL)) (-1479 (($ $ $) NIL (|has| |#1| (-333)))) (-2393 (($ $ $) NIL (|has| |#1| (-333)))) (-3931 (($ $ $) NIL (|has| |#1| (-333)))) (-2395 (($ $ $) NIL (|has| |#1| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1256 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2609 ((|#1| $ |#1|) 24)) (-2977 (($ $ $) 33 (|has| |#1| (-333)))) (-3647 (((-703) $) NIL)) (-3119 ((|#1| $) NIL (|has| |#1| (-421)))) (-2271 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) NIL)) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) NIL)) (-4099 (((-703)) NIL)) (-2375 ((|#1| $ |#1| |#1|) 23)) (-1405 (($ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 21 T CONST)) (-3619 (($) 8 T CONST)) (-3342 (($) NIL)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-595 |#1| |#2|) (-593 |#1|) (-963) (-1 |#1| |#1|)) (T -595))
+((-4012 (($ $) 27)) (-1368 (($ $) 25)) (-3348 (($) 12)))
+(((-592 |#1| |#2|) (-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3348 (|#1|))) (-593 |#2|) (-964)) (T -592))
+NIL
+(-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3348 (|#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-4012 (($ $) 82 (|has| |#1| (-333)))) (-1705 (($ $ $) 84 (|has| |#1| (-333)))) (-3745 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2948 (($ $ $) 45 (|has| |#1| (-333)))) (-2762 (($ $ $) 46 (|has| |#1| (-333)))) (-3612 (($ $ $) 48 (|has| |#1| (-333)))) (-1580 (($ $ $) 43 (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 42 (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 47 (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) 74 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3402 (((-517) $) 75 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 68)) (-2364 (($ $) 64)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 55 (|has| |#1| (-421)))) (-1690 (((-107) $) 31)) (-2059 (($ |#1| (-703)) 62)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 58 (|has| |#1| (-509)))) (-3942 (((-703) $) 66)) (-1346 (($ $ $) 52 (|has| |#1| (-333)))) (-1609 (($ $ $) 53 (|has| |#1| (-333)))) (-2882 (($ $ $) 41 (|has| |#1| (-333)))) (-1843 (($ $ $) 50 (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 49 (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 54 (|has| |#1| (-333)))) (-2336 ((|#1| $) 65)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) 87)) (-2100 (($ $ $) 81 (|has| |#1| (-333)))) (-1191 (((-703) $) 67)) (-4094 ((|#1| $) 56 (|has| |#1| (-421)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 70)) (-3186 (((-583 |#1|) $) 61)) (-1939 ((|#1| $ (-703)) 63)) (-1818 (((-703)) 29)) (-2365 ((|#1| $ |#1| |#1|) 60)) (-1368 (($ $) 85)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($) 86)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-593 |#1|) (-1189) (-964)) (T -593))
+((-3348 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)))) (-1368 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)))) (-1705 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-964)) (-4 *3 (-333)))) (-4012 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2100 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -3348 ($)) (-15 -1368 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -1705 ($ $ $)) (-15 -3745 ($ $ (-703))) (-15 -4012 ($ $)) (-15 -2100 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-781 |#1|) . T))
+((-1297 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 73 (|has| |#1| (-27)))) (-3896 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
+(((-594 |#1| |#2|) (-10 -7 (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1297 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|)) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -594))
+((-1297 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
+(-10 -7 (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1297 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-333)))) (-1705 (($ $ $) 28 (|has| |#1| (-333)))) (-3745 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) 24)) (-2100 (($ $ $) 33 (|has| |#1| (-333)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) 23)) (-1368 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 8 T CONST)) (-3348 (($) NIL)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-595 |#1| |#2|) (-593 |#1|) (-964) (-1 |#1| |#1|)) (T -595))
NIL
(-593 |#1|)
-((-2183 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-2811 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 41)) (-2977 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
-(((-596 |#1| |#2|) (-10 -7 (-15 -2183 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2811 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2977 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
-((-2977 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-2811 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-2183 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(-10 -7 (-15 -2183 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2811 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2977 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3817 (($ $ $) 9)))
-(((-597 |#1|) (-10 -8 (-15 -3817 (|#1| |#1| |#1|))) (-598)) (T -597))
-NIL
-(-10 -8 (-15 -3817 (|#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3623 (($ $) 10)) (-3817 (($ $ $) 8)) (-1584 (((-107) $ $) 6)) (-3805 (($ $ $) 9)))
-(((-598) (-1188)) (T -598))
-((-3623 (*1 *1 *1) (-4 *1 (-598))) (-3805 (*1 *1 *1 *1) (-4 *1 (-598))) (-3817 (*1 *1 *1 *1) (-4 *1 (-598))))
-(-13 (-97) (-10 -8 (-15 -3623 ($ $)) (-15 -3805 ($ $ $)) (-15 -3817 ($ $ $))))
+((-1705 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-3745 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 41)) (-2100 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -1705 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3745 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2100 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
+((-2100 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3745 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-1705 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(-10 -7 (-15 -1705 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3745 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2100 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3849 (($ $ $) 9)))
+(((-597 |#1|) (-10 -8 (-15 -3849 (|#1| |#1| |#1|))) (-598)) (T -597))
+NIL
+(-10 -8 (-15 -3849 (|#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-3670 (($ $) 10)) (-3849 (($ $ $) 8)) (-1572 (((-107) $ $) 6)) (-3838 (($ $ $) 9)))
+(((-598) (-1189)) (T -598))
+((-3670 (*1 *1 *1) (-4 *1 (-598))) (-3838 (*1 *1 *1 *1) (-4 *1 (-598))) (-3849 (*1 *1 *1 *1) (-4 *1 (-598))))
+(-13 (-97) (-10 -8 (-15 -3670 ($ $)) (-15 -3838 ($ $ $)) (-15 -3849 ($ $ $))))
(((-97) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 15)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3826 ((|#1| $) 21)) (-3458 (($ $ $) NIL (|has| |#1| (-723)))) (-4084 (($ $ $) NIL (|has| |#1| (-723)))) (-1662 (((-1059) $) 46)) (-4125 (((-1023) $) NIL)) (-2098 ((|#3| $) 22)) (-2271 (((-787) $) 42)) (-3610 (($) 10 T CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1584 (((-107) $ $) 20)) (-1630 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1608 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1704 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1692 (($ $) 17) (($ $ $) NIL)) (-1678 (($ $ $) 27)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1704 ($ $ |#3|)) (-15 -1704 ($ |#1| |#3|)) (-15 -3826 (|#1| $)) (-15 -2098 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
-((-1704 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1704 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3826 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2098 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
-(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1704 ($ $ |#3|)) (-15 -1704 ($ |#1| |#3|)) (-15 -3826 (|#1| $)) (-15 -2098 (|#3| $))))
-((-4115 (((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|)) 33)))
-(((-600 |#1|) (-10 -7 (-15 -4115 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|)))) (-832)) (T -600))
-((-4115 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1072 *4))) (-5 *3 (-1072 *4)) (-4 *4 (-832)) (-5 *1 (-600 *4)))))
-(-10 -7 (-15 -4115 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 83)) (-3038 (($ $ (-703)) 91)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-4097 (((-1179 |#1| |#2|) (-1179 |#1| |#2|) $) 48)) (-3228 (((-3 (-608 |#1|) "failed") $) NIL)) (-3390 (((-608 |#1|) $) NIL)) (-2373 (($ $) 90)) (-3783 (((-703) $) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2425 (($ (-608 |#1|) |#2|) 69)) (-1591 (($ $) 87)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-1674 (((-1179 |#1| |#2|) (-1179 |#1| |#2|) $) 47)) (-2124 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2335 (((-608 |#1|) $) NIL)) (-2347 ((|#2| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3524 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-3647 (((-703) $) 89)) (-2288 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 78) (($ (-608 |#1|) $) 76) (($ $ (-608 |#1|)) 77)) (-2271 (((-787) $) NIL) (($ |#1|) 75) (((-1170 |#1| |#2|) $) 59) (((-1179 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-608 |#1|)) NIL)) (-1582 ((|#2| (-1179 |#1| |#2|) $) 43)) (-3610 (($) 23 T CONST)) (-1452 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1254 (((-3 $ "failed") (-1170 |#1| |#2|)) 61)) (-2789 (($ (-608 |#1|)) 14)) (-1584 (((-107) $ $) 44)) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) 67) (($ $ $) NIL)) (-1678 (($ $ $) 29)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
-(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1254 ((-3 $ "failed") (-1170 |#1| |#2|))) (-15 -2288 ($ (-608 |#1|) (-608 |#1|))) (-15 -2288 ($ (-608 |#1|) $)) (-15 -2288 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
-((-1254 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2288 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
-(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1254 ((-3 $ "failed") (-1170 |#1| |#2|))) (-15 -2288 ($ (-608 |#1|) (-608 |#1|))) (-15 -2288 ($ (-608 |#1|) $)) (-15 -2288 ($ $ (-608 |#1|)))))
-((-2166 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 50)) (-1420 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-3690 (($ (-1 (-107) |#2|) $) 28)) (-2549 (($ $) 56)) (-1399 (($ $) 63)) (-2457 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 37)) (-1522 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1212 (((-517) |#2| $ (-517)) 61) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 47)) (-3213 (($ (-703) |#2|) 54)) (-4155 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 30)) (-2662 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-3310 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2324 (($ |#2|) 14)) (-3241 (($ $ $ (-517)) 36) (($ |#2| $ (-517)) 34)) (-1528 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 46)) (-3275 (($ $ (-1124 (-517))) 44) (($ $ (-517)) 38)) (-1901 (($ $ $ (-517)) 60)) (-2462 (($ $) 58)) (-1608 (((-107) $ $) 65)))
-(((-602 |#1| |#2|) (-10 -8 (-15 -2324 (|#1| |#2|)) (-15 -3275 (|#1| |#1| (-517))) (-15 -3275 (|#1| |#1| (-1124 (-517)))) (-15 -2457 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3241 (|#1| |#2| |#1| (-517))) (-15 -3241 (|#1| |#1| |#1| (-517))) (-15 -4155 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3690 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -1399 (|#1| |#1|)) (-15 -4155 (|#1| |#1| |#1|)) (-15 -2662 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2166 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1212 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1212 ((-517) |#2| |#1|)) (-15 -1212 ((-517) |#2| |#1| (-517))) (-15 -2662 (|#1| |#1| |#1|)) (-15 -2166 ((-107) |#1|)) (-15 -1901 (|#1| |#1| |#1| (-517))) (-15 -2549 (|#1| |#1|)) (-15 -1420 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1528 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3213 (|#1| (-703) |#2|)) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2462 (|#1| |#1|))) (-603 |#2|) (-1111)) (T -602))
-NIL
-(-10 -8 (-15 -2324 (|#1| |#2|)) (-15 -3275 (|#1| |#1| (-517))) (-15 -3275 (|#1| |#1| (-1124 (-517)))) (-15 -2457 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3241 (|#1| |#2| |#1| (-517))) (-15 -3241 (|#1| |#1| |#1| (-517))) (-15 -4155 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3690 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -1399 (|#1| |#1|)) (-15 -4155 (|#1| |#1| |#1|)) (-15 -2662 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2166 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1212 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1212 ((-517) |#2| |#1|)) (-15 -1212 ((-517) |#2| |#1| (-517))) (-15 -2662 (|#1| |#1| |#1|)) (-15 -2166 ((-107) |#1|)) (-15 -1901 (|#1| |#1| |#1| (-517))) (-15 -2549 (|#1| |#1|)) (-15 -1420 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1522 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1528 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3213 (|#1| (-703) |#2|)) (-15 -3310 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2462 (|#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-2586 ((|#1| $) 65)) (-1541 (($ $) 67)) (-2034 (((-1162) $ (-517) (-517)) 97 (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) 52 (|has| $ (-6 -4193)))) (-2166 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-1420 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4193)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4193)))) (-2163 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-1702 (($ $ $) 56 (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) 54 (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) 58 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4193))) (($ $ "rest" $) 55 (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 117 (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-3690 (($ (-1 (-107) |#1|) $) 129)) (-2325 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4192)))) (-2576 ((|#1| $) 66)) (-1393 (($) 7 T CONST)) (-2549 (($ $) 144 (|has| $ (-6 -4193)))) (-1908 (($ $) 134)) (-2439 (($ $) 73) (($ $ (-703)) 71)) (-1399 (($ $) 131 (|has| |#1| (-1005)))) (-2455 (($ $) 99 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 130 (|has| |#1| (-1005))) (($ (-1 (-107) |#1|) $) 125)) (-1423 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4192))) (($ |#1| $) 100 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2759 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 87)) (-3013 (((-107) $) 83)) (-1212 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1005))) (((-517) |#1| $) 138 (|has| |#1| (-1005))) (((-517) (-1 (-107) |#1|) $) 137)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-3213 (($ (-703) |#1|) 108)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 95 (|has| (-517) (-779)))) (-3458 (($ $ $) 147 (|has| |#1| (-779)))) (-4155 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-2662 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 94 (|has| (-517) (-779)))) (-4084 (($ $ $) 148 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2324 (($ |#1|) 122)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1446 ((|#1| $) 70) (($ $ (-703)) 68)) (-3241 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-1747 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-2817 (((-583 (-517)) $) 92)) (-3130 (((-107) (-517) $) 91)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 76) (($ $ (-703)) 74)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2846 (($ $ |#1|) 96 (|has| $ (-6 -4193)))) (-4033 (((-107) $) 84)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 90)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1124 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-1844 (((-517) $ $) 44)) (-3275 (($ $ (-1124 (-517))) 124) (($ $ (-517)) 123)) (-3728 (($ $ (-1124 (-517))) 114) (($ $ (-517)) 113)) (-3028 (((-107) $) 46)) (-3498 (($ $) 62)) (-3020 (($ $) 59 (|has| $ (-6 -4193)))) (-2453 (((-703) $) 63)) (-2231 (($ $) 64)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 143 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 107)) (-1753 (($ $ $) 61) (($ $ |#1|) 60)) (-4110 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-1630 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 152 (|has| |#1| (-779)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-603 |#1|) (-1188) (-1111)) (T -603))
-((-2324 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1111)))))
-(-13 (-1050 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -2324 ($ |t#1|))))
-(((-33) . T) ((-97) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-928 |#1|) . T) ((-1005) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-1050 |#1|) . T) ((-1111) . T) ((-1145 |#1|) . T))
-((-1516 (((-583 (-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|))))) (-583 (-583 |#1|)) (-583 (-1157 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|))))) (-623 |#1|) (-583 (-1157 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-583 (-583 |#1|)) (-1157 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-623 |#1|) (-1157 |#1|)) 13)) (-3737 (((-703) (-623 |#1|) (-1157 |#1|)) 29)) (-1923 (((-3 (-1157 |#1|) "failed") (-623 |#1|) (-1157 |#1|)) 23)) (-3161 (((-107) (-623 |#1|) (-1157 |#1|)) 26)))
-(((-604 |#1|) (-10 -7 (-15 -1516 ((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-623 |#1|) (-1157 |#1|))) (-15 -1516 ((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-583 (-583 |#1|)) (-1157 |#1|))) (-15 -1516 ((-583 (-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|))))) (-623 |#1|) (-583 (-1157 |#1|)))) (-15 -1516 ((-583 (-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|))))) (-583 (-583 |#1|)) (-583 (-1157 |#1|)))) (-15 -1923 ((-3 (-1157 |#1|) "failed") (-623 |#1|) (-1157 |#1|))) (-15 -3161 ((-107) (-623 |#1|) (-1157 |#1|))) (-15 -3737 ((-703) (-623 |#1|) (-1157 |#1|)))) (-333)) (T -604))
-((-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-1923 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1157 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1157 *5) "failed")) (|:| -1492 (-583 (-1157 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1157 *5))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1157 *5) "failed")) (|:| -1492 (-583 (-1157 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1157 *5))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1157 *5) "failed")) (|:| -1492 (-583 (-1157 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1157 *5)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1157 *5) "failed")) (|:| -1492 (-583 (-1157 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1157 *5)))))
-(-10 -7 (-15 -1516 ((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-623 |#1|) (-1157 |#1|))) (-15 -1516 ((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-583 (-583 |#1|)) (-1157 |#1|))) (-15 -1516 ((-583 (-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|))))) (-623 |#1|) (-583 (-1157 |#1|)))) (-15 -1516 ((-583 (-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|))))) (-583 (-583 |#1|)) (-583 (-1157 |#1|)))) (-15 -1923 ((-3 (-1157 |#1|) "failed") (-623 |#1|) (-1157 |#1|))) (-15 -3161 ((-107) (-623 |#1|) (-1157 |#1|))) (-15 -3737 ((-703) (-623 |#1|) (-1157 |#1|))))
-((-1516 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|))) |#4| |#3|) 45)) (-3737 (((-703) |#4| |#3|) 17)) (-1923 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3161 (((-107) |#4| |#3|) 13)))
-(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1516 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|))) |#4| |#3|)) (-15 -1516 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -1923 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3161 ((-107) |#4| |#3|)) (-15 -3737 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4193))) (-13 (-343 |#1|) (-10 -7 (-6 -4193))) (-621 |#1| |#2| |#3|)) (T -605))
-((-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3161 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-1923 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4193)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1516 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1492 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1516 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(-10 -7 (-15 -1516 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|))) |#4| |#3|)) (-15 -1516 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -1923 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3161 ((-107) |#4| |#3|)) (-15 -3737 ((-703) |#4| |#3|)))
-((-3670 (((-2 (|:| |particular| (-3 (-1157 (-377 |#4|)) "failed")) (|:| -1492 (-583 (-1157 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 45)))
-(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3670 ((-2 (|:| |particular| (-3 (-1157 (-377 |#4|)) "failed")) (|:| -1492 (-583 (-1157 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -606))
-((-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1157 (-377 *8)) "failed")) (|:| -1492 (-583 (-1157 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3670 ((-2 (|:| |particular| (-3 (-1157 (-377 |#4|)) "failed")) (|:| -1492 (-583 (-1157 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1485 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2009 ((|#2| $) NIL)) (-3933 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2520 (((-1157 (-623 |#2|))) NIL) (((-1157 (-623 |#2|)) (-1157 $)) NIL)) (-1223 (((-107) $) NIL)) (-2823 (((-1157 $)) 37)) (-1851 (((-107) $ (-703)) NIL)) (-2351 (($ |#2|) NIL)) (-1393 (($) NIL T CONST)) (-1382 (($ $) NIL (|has| |#2| (-278)))) (-3476 (((-214 |#1| |#2|) $ (-517)) NIL)) (-1444 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-2244 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1397 (((-623 |#2|)) NIL) (((-623 |#2|) (-1157 $)) NIL)) (-4049 ((|#2| $) NIL)) (-1292 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1157 $)) NIL)) (-2093 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-1679 (((-1072 (-875 |#2|))) NIL (|has| |#2| (-333)))) (-3614 (($ $ (-844)) NIL)) (-2554 ((|#2| $) NIL)) (-2208 (((-1072 |#2|) $) NIL (|has| |#2| (-509)))) (-3245 ((|#2|) NIL) ((|#2| (-1157 $)) NIL)) (-1284 (((-1072 |#2|) $) NIL)) (-3462 (((-107)) NIL)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) ((|#2| $) NIL)) (-3898 (($ (-1157 |#2|)) NIL) (($ (-1157 |#2|) (-1157 $)) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-3737 (((-703) $) NIL (|has| |#2| (-509))) (((-844)) 38)) (-2566 ((|#2| $ (-517) (-517)) NIL)) (-1864 (((-107)) NIL)) (-2193 (($ $ (-844)) NIL)) (-1534 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL)) (-2720 (((-703) $) NIL (|has| |#2| (-509)))) (-2620 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1421 (((-703) $) NIL)) (-3453 (((-107)) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3809 ((|#2| $) NIL (|has| |#2| (-6 (-4194 "*"))))) (-1683 (((-517) $) NIL)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1207 (((-517) $) NIL)) (-3797 (((-517) $) NIL)) (-2371 (($ (-583 (-583 |#2|))) NIL)) (-2746 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3704 (((-583 (-583 |#2|)) $) NIL)) (-2185 (((-107)) NIL)) (-1573 (((-107)) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1431 (((-3 (-2 (|:| |particular| $) (|:| -1492 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1737 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1344 (((-623 |#2|)) NIL) (((-623 |#2|) (-1157 $)) NIL)) (-1412 ((|#2| $) NIL)) (-3358 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1157 $)) NIL)) (-1590 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-1467 (((-1072 (-875 |#2|))) NIL (|has| |#2| (-333)))) (-3200 (($ $ (-844)) NIL)) (-2666 ((|#2| $) NIL)) (-2292 (((-1072 |#2|) $) NIL (|has| |#2| (-509)))) (-3829 ((|#2|) NIL) ((|#2| (-1157 $)) NIL)) (-3764 (((-1072 |#2|) $) NIL)) (-2541 (((-107)) NIL)) (-1662 (((-1059) $) NIL)) (-3886 (((-107)) NIL)) (-2031 (((-107)) NIL)) (-1321 (((-107)) NIL)) (-3856 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-4125 (((-1023) $) NIL)) (-3129 (((-107)) NIL)) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3644 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-2060 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1813 ((|#2| $) NIL)) (-2528 (($ (-583 |#2|)) NIL)) (-1832 (((-107) $) NIL)) (-3520 (((-214 |#1| |#2|) $) NIL)) (-2854 ((|#2| $) NIL (|has| |#2| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2462 (($ $) NIL)) (-3784 (((-623 |#2|) (-1157 $)) NIL) (((-1157 |#2|) $) NIL) (((-623 |#2|) (-1157 $) (-1157 $)) NIL) (((-1157 |#2|) $ (-1157 $)) 25)) (-3359 (($ (-1157 |#2|)) NIL) (((-1157 |#2|) $) NIL)) (-3435 (((-583 (-875 |#2|))) NIL) (((-583 (-875 |#2|)) (-1157 $)) NIL)) (-2059 (($ $ $) NIL)) (-1266 (((-107)) NIL)) (-3259 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-954 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) 36)) (-2689 (((-583 (-1157 |#2|))) NIL (|has| |#2| (-509)))) (-3100 (($ $ $ $) NIL)) (-3365 (((-107)) NIL)) (-2375 (($ (-623 |#2|) $) NIL)) (-3602 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2909 (((-107) $) NIL)) (-2951 (($ $ $) NIL)) (-2436 (((-107)) NIL)) (-4056 (((-107)) NIL)) (-2014 (((-107)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-607 |#1| |#2|) (-13 (-1026 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-844) (-156)) (T -607))
-NIL
-(-13 (-1026 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|))
-((-2119 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) NIL)) (-3300 (($ $) 51)) (-3258 (((-107) $) NIL)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1357 (((-3 $ "failed") (-751 |#1|)) 23)) (-1581 (((-107) (-751 |#1|)) 15)) (-1488 (($ (-751 |#1|)) 24)) (-1701 (((-107) $ $) 29)) (-3682 (((-844) $) 36)) (-3288 (($ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3868 (((-583 $) (-751 |#1|)) 17)) (-2271 (((-787) $) 42) (($ |#1|) 33) (((-751 |#1|) $) 38) (((-612 |#1|) $) 43)) (-3567 (((-57 (-583 $)) (-583 |#1|) (-844)) 56)) (-1675 (((-583 $) (-583 |#1|) (-844)) 58)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 52)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 37)))
-(((-608 |#1|) (-13 (-779) (-954 |#1|) (-10 -8 (-15 -3258 ((-107) $)) (-15 -3288 ($ $)) (-15 -3300 ($ $)) (-15 -3682 ((-844) $)) (-15 -1701 ((-107) $ $)) (-15 -2271 ((-751 |#1|) $)) (-15 -2271 ((-612 |#1|) $)) (-15 -3868 ((-583 $) (-751 |#1|))) (-15 -1581 ((-107) (-751 |#1|))) (-15 -1488 ($ (-751 |#1|))) (-15 -1357 ((-3 $ "failed") (-751 |#1|))) (-15 -3367 ((-583 |#1|) $)) (-15 -3567 ((-57 (-583 $)) (-583 |#1|) (-844))) (-15 -1675 ((-583 $) (-583 |#1|) (-844))))) (-779)) (T -608))
-((-3258 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3288 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3300 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-1701 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-1488 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-1357 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
-(-13 (-779) (-954 |#1|) (-10 -8 (-15 -3258 ((-107) $)) (-15 -3288 ($ $)) (-15 -3300 ($ $)) (-15 -3682 ((-844) $)) (-15 -1701 ((-107) $ $)) (-15 -2271 ((-751 |#1|) $)) (-15 -2271 ((-612 |#1|) $)) (-15 -3868 ((-583 $) (-751 |#1|))) (-15 -1581 ((-107) (-751 |#1|))) (-15 -1488 ($ (-751 |#1|))) (-15 -1357 ((-3 $ "failed") (-751 |#1|))) (-15 -3367 ((-583 |#1|) $)) (-15 -3567 ((-57 (-583 $)) (-583 |#1|) (-844))) (-15 -1675 ((-583 $) (-583 |#1|) (-844)))))
-((-3121 ((|#2| $) 76)) (-1541 (($ $) 96)) (-1851 (((-107) $ (-703)) 26)) (-2439 (($ $) 85) (($ $ (-703)) 88)) (-3013 (((-107) $) 97)) (-3657 (((-583 $) $) 72)) (-2441 (((-107) $ $) 71)) (-2497 (((-107) $ (-703)) 24)) (-3271 (((-517) $) 46)) (-1989 (((-517) $) 45)) (-1320 (((-107) $ (-703)) 22)) (-3017 (((-107) $) 74)) (-1446 ((|#2| $) 89) (($ $ (-703)) 92)) (-1747 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-2817 (((-583 (-517)) $) 44)) (-3130 (((-107) (-517) $) 42)) (-2429 ((|#2| $) NIL) (($ $ (-703)) 84)) (-2671 (($ $ (-517)) 100)) (-4033 (((-107) $) 99)) (-3644 (((-107) (-1 (-107) |#2|) $) 32)) (-2891 (((-583 |#2|) $) 33)) (-2609 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1124 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-1844 (((-517) $ $) 70)) (-3728 (($ $ (-1124 (-517))) 57) (($ $ (-517)) 51)) (-3028 (((-107) $) 66)) (-3498 (($ $) 81)) (-2453 (((-703) $) 80)) (-2231 (($ $) 79)) (-2288 (($ (-583 |#2|)) 37)) (-3624 (($ $) 101)) (-2199 (((-583 $) $) 69)) (-2836 (((-107) $ $) 68)) (-3602 (((-107) (-1 (-107) |#2|) $) 31)) (-1584 (((-107) $ $) 18)) (-3535 (((-703) $) 29)))
-(((-609 |#1| |#2|) (-10 -8 (-15 -3624 (|#1| |#1|)) (-15 -2671 (|#1| |#1| (-517))) (-15 -3013 ((-107) |#1|)) (-15 -4033 ((-107) |#1|)) (-15 -2609 (|#2| |#1| (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517))) (-15 -2891 ((-583 |#2|) |#1|)) (-15 -3130 ((-107) (-517) |#1|)) (-15 -2817 ((-583 (-517)) |#1|)) (-15 -1989 ((-517) |#1|)) (-15 -3271 ((-517) |#1|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -3728 (|#1| |#1| (-517))) (-15 -3728 (|#1| |#1| (-1124 (-517)))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -3498 (|#1| |#1|)) (-15 -2453 ((-703) |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1446 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "last")) (-15 -1446 (|#2| |#1|)) (-15 -2439 (|#1| |#1| (-703))) (-15 -2609 (|#1| |#1| "rest")) (-15 -2439 (|#1| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "first")) (-15 -2429 (|#2| |#1|)) (-15 -2441 ((-107) |#1| |#1|)) (-15 -2836 ((-107) |#1| |#1|)) (-15 -1844 ((-517) |#1| |#1|)) (-15 -3028 ((-107) |#1|)) (-15 -2609 (|#2| |#1| "value")) (-15 -3121 (|#2| |#1|)) (-15 -3017 ((-107) |#1|)) (-15 -3657 ((-583 |#1|) |#1|)) (-15 -2199 ((-583 |#1|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703)))) (-610 |#2|) (-1111)) (T -609))
-NIL
-(-10 -8 (-15 -3624 (|#1| |#1|)) (-15 -2671 (|#1| |#1| (-517))) (-15 -3013 ((-107) |#1|)) (-15 -4033 ((-107) |#1|)) (-15 -2609 (|#2| |#1| (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517))) (-15 -2891 ((-583 |#2|) |#1|)) (-15 -3130 ((-107) (-517) |#1|)) (-15 -2817 ((-583 (-517)) |#1|)) (-15 -1989 ((-517) |#1|)) (-15 -3271 ((-517) |#1|)) (-15 -2288 (|#1| (-583 |#2|))) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -3728 (|#1| |#1| (-517))) (-15 -3728 (|#1| |#1| (-1124 (-517)))) (-15 -1747 (|#1| |#2| |#1| (-517))) (-15 -1747 (|#1| |#1| |#1| (-517))) (-15 -3498 (|#1| |#1|)) (-15 -2453 ((-703) |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1446 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "last")) (-15 -1446 (|#2| |#1|)) (-15 -2439 (|#1| |#1| (-703))) (-15 -2609 (|#1| |#1| "rest")) (-15 -2439 (|#1| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "first")) (-15 -2429 (|#2| |#1|)) (-15 -2441 ((-107) |#1| |#1|)) (-15 -2836 ((-107) |#1| |#1|)) (-15 -1844 ((-517) |#1| |#1|)) (-15 -3028 ((-107) |#1|)) (-15 -2609 (|#2| |#1| "value")) (-15 -3121 (|#2| |#1|)) (-15 -3017 ((-107) |#1|)) (-15 -3657 ((-583 |#1|) |#1|)) (-15 -2199 ((-583 |#1|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3644 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-2586 ((|#1| $) 65)) (-1541 (($ $) 67)) (-2034 (((-1162) $ (-517) (-517)) 97 (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) 52 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-1702 (($ $ $) 56 (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) 54 (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) 58 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4193))) (($ $ "rest" $) 55 (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 117 (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 102)) (-2576 ((|#1| $) 66)) (-1393 (($) 7 T CONST)) (-3472 (($ $) 124)) (-2439 (($ $) 73) (($ $ (-703)) 71)) (-2455 (($ $) 99 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 100 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 103)) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2759 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 87)) (-3013 (((-107) $) 83)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3502 (((-703) $) 123)) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-3213 (($ (-703) |#1|) 108)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 95 (|has| (-517) (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 94 (|has| (-517) (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-3844 (($ $) 126)) (-3686 (((-107) $) 127)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1446 ((|#1| $) 70) (($ $ (-703)) 68)) (-1747 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-2817 (((-583 (-517)) $) 92)) (-3130 (((-107) (-517) $) 91)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-1741 ((|#1| $) 125)) (-2429 ((|#1| $) 76) (($ $ (-703)) 74)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2846 (($ $ |#1|) 96 (|has| $ (-6 -4193)))) (-2671 (($ $ (-517)) 122)) (-4033 (((-107) $) 84)) (-4150 (((-107) $) 128)) (-1929 (((-107) $) 129)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 90)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1124 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-1844 (((-517) $ $) 44)) (-3728 (($ $ (-1124 (-517))) 114) (($ $ (-517)) 113)) (-3028 (((-107) $) 46)) (-3498 (($ $) 62)) (-3020 (($ $) 59 (|has| $ (-6 -4193)))) (-2453 (((-703) $) 63)) (-2231 (($ $) 64)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 107)) (-1753 (($ $ $) 61 (|has| $ (-6 -4193))) (($ $ |#1|) 60 (|has| $ (-6 -4193)))) (-4110 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-3624 (($ $) 121)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-610 |#1|) (-1188) (-1111)) (T -610))
-((-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1111)))) (-2325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1111)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))) (-3844 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1111)))) (-3624 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))))
-(-13 (-1050 |t#1|) (-10 -8 (-15 -1423 ($ (-1 (-107) |t#1|) $)) (-15 -2325 ($ (-1 (-107) |t#1|) $)) (-15 -1929 ((-107) $)) (-15 -4150 ((-107) $)) (-15 -3686 ((-107) $)) (-15 -3844 ($ $)) (-15 -1741 (|t#1| $)) (-15 -3472 ($ $)) (-15 -3502 ((-703) $)) (-15 -2671 ($ $ (-517))) (-15 -3624 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-928 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1050 |#1|) . T) ((-1111) . T) ((-1145 |#1|) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2022 (($ (-703) (-703) (-703)) 34 (|has| |#1| (-963)))) (-1851 (((-107) $ (-703)) NIL)) (-2716 ((|#1| $ (-703) (-703) (-703) |#1|) 29)) (-1393 (($) NIL T CONST)) (-2333 (($ $ $) 38 (|has| |#1| (-963)))) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-3799 (((-1157 (-703)) $) 10)) (-2900 (($ (-1076) $ $) 24)) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-2443 (($ (-703)) 36 (|has| |#1| (-963)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-703) (-703) (-703)) 27)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2288 (($ (-583 (-583 (-583 |#1|)))) 45)) (-2271 (($ (-880 (-880 (-880 |#1|)))) 17) (((-880 (-880 (-880 |#1|))) $) 14) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-963)) (PROGN (-15 -2022 ($ (-703) (-703) (-703))) (-15 -2443 ($ (-703))) (-15 -2333 ($ $ $))) |%noBranch|) (-15 -2288 ($ (-583 (-583 (-583 |#1|))))) (-15 -2609 (|#1| $ (-703) (-703) (-703))) (-15 -2716 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2271 ($ (-880 (-880 (-880 |#1|))))) (-15 -2271 ((-880 (-880 (-880 |#1|))) $)) (-15 -2900 ($ (-1076) $ $)) (-15 -3799 ((-1157 (-703)) $)))) (-1005)) (T -611))
-((-2022 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-963)) (-4 *3 (-1005)))) (-2443 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-963)) (-4 *3 (-1005)))) (-2333 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-963)) (-4 *2 (-1005)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1005)) (-5 *1 (-611 *3)))) (-2609 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1005)))) (-2716 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1005)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-4 *3 (-1005)) (-5 *1 (-611 *3)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1005)))) (-2900 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-611 *3)) (-4 *3 (-1005)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1157 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1005)))))
-(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-963)) (PROGN (-15 -2022 ($ (-703) (-703) (-703))) (-15 -2443 ($ (-703))) (-15 -2333 ($ $ $))) |%noBranch|) (-15 -2288 ($ (-583 (-583 (-583 |#1|))))) (-15 -2609 (|#1| $ (-703) (-703) (-703))) (-15 -2716 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2271 ($ (-880 (-880 (-880 |#1|))))) (-15 -2271 ((-880 (-880 (-880 |#1|))) $)) (-15 -2900 ($ (-1076) $ $)) (-15 -3799 ((-1157 (-703)) $))))
-((-2119 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) 14)) (-3300 (($ $) 18)) (-3258 (((-107) $) 19)) (-3228 (((-3 |#1| "failed") $) 22)) (-3390 ((|#1| $) 20)) (-2439 (($ $) 36)) (-1591 (($ $) 24)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1701 (((-107) $ $) 42)) (-3682 (((-844) $) 38)) (-3288 (($ $) 17)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 ((|#1| $) 35)) (-2271 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 12)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 40)) (* (($ $ $) 34)))
-(((-612 |#1|) (-13 (-779) (-954 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2271 ((-751 |#1|) $)) (-15 -2429 (|#1| $)) (-15 -3288 ($ $)) (-15 -3682 ((-844) $)) (-15 -1701 ((-107) $ $)) (-15 -1591 ($ $)) (-15 -2439 ($ $)) (-15 -3258 ((-107) $)) (-15 -3300 ($ $)) (-15 -3367 ((-583 |#1|) $)))) (-779)) (T -612))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2429 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3288 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1701 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2439 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3300 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-954 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2271 ((-751 |#1|) $)) (-15 -2429 (|#1| $)) (-15 -3288 ($ $)) (-15 -3682 ((-844) $)) (-15 -1701 ((-107) $ $)) (-15 -1591 ($ $)) (-15 -2439 ($ $)) (-15 -3258 ((-107) $)) (-15 -3300 ($ $)) (-15 -3367 ((-583 |#1|) $))))
-((-3053 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-3792 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
-(((-613 |#1|) (-10 -7 (-15 -3792 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -3053 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1005)) (T -613))
-((-3053 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1005)) (-5 *1 (-613 *2)))) (-3792 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1005)) (-5 *1 (-613 *2)))))
-(-10 -7 (-15 -3792 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -3053 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
-((-1895 ((|#2| |#1| |#2|) 9)) (-1878 ((|#1| |#1| |#2|) 8)))
-(((-614 |#1| |#2|) (-10 -7 (-15 -1878 (|#1| |#1| |#2|)) (-15 -1895 (|#2| |#1| |#2|))) (-1005) (-1005)) (T -614))
-((-1895 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-1878 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
-(-10 -7 (-15 -1878 (|#1| |#1| |#2|)) (-15 -1895 (|#2| |#1| |#2|)))
-((-3500 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -3500 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1005) (-1005) (-1005)) (T -615))
-((-3500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)) (-5 *1 (-615 *5 *6 *2)))))
-(-10 -7 (-15 -3500 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3053 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-2143 (((-1 |#1|) |#1|) 8)) (-3186 ((|#1| |#1|) 16)) (-1759 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2271 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
-(((-616 |#1|) (-10 -7 (-15 -2143 ((-1 |#1|) |#1|)) (-15 -2271 ((-1 |#1|) |#1|)) (-15 -1759 (|#1| (-1 |#1| |#1|))) (-15 -1759 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3186 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -3053 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1005)) (T -616))
-((-3053 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1005)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1005)) (-5 *1 (-616 *4)))) (-3186 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1005)))) (-1759 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1005)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1005)))) (-2271 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1005)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1005)))))
-(-10 -7 (-15 -2143 ((-1 |#1|) |#1|)) (-15 -2271 ((-1 |#1|) |#1|)) (-15 -1759 (|#1| (-1 |#1| |#1|))) (-15 -1759 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3186 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -3053 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
-((-2730 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4169 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1385 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1295 (((-1 |#2| |#1|) |#2|) 11)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -1295 ((-1 |#2| |#1|) |#2|)) (-15 -4169 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1385 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2730 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1005) (-1005)) (T -617))
-((-2730 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1005)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1005)) (-4 *3 (-1005)))))
-(-10 -7 (-15 -1295 ((-1 |#2| |#1|) |#2|)) (-15 -4169 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1385 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2730 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2939 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2418 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3958 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1268 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3601 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2418 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3958 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1268 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3601 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2939 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1005) (-1005) (-1005)) (T -618))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1005)))) (-1268 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1005)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1005)) (-4 *4 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
-(-10 -7 (-15 -2418 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3958 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1268 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3601 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2939 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-1522 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3310 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3310 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3310 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1522 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-963) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-963) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
-((-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-3310 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
-(-10 -7 (-15 -3310 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3310 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1522 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3877 (($ (-703) (-703)) 32)) (-1980 (($ $ $) 55)) (-1293 (($ |#3|) 51) (($ $) 52)) (-3933 (((-107) $) 27)) (-2077 (($ $ (-517) (-517)) 57)) (-3977 (($ $ (-517) (-517)) 58)) (-2010 (($ $ (-517) (-517) (-517) (-517)) 62)) (-2256 (($ $) 53)) (-1223 (((-107) $) 14)) (-3860 (($ $ (-517) (-517) $) 63)) (-2445 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 61)) (-2351 (($ (-703) |#2|) 37)) (-2371 (($ (-583 (-583 |#2|))) 35)) (-3704 (((-583 (-583 |#2|)) $) 56)) (-2234 (($ $ $) 54)) (-2329 (((-3 $ "failed") $ |#2|) 90)) (-2609 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 60)) (-2528 (($ (-583 |#2|)) 39) (($ (-583 $)) 41)) (-1832 (((-107) $) 24)) (-2271 (($ |#4|) 46) (((-787) $) NIL)) (-2909 (((-107) $) 29)) (-1704 (($ $ |#2|) 92)) (-1692 (($ $ $) 67) (($ $) 70)) (-1678 (($ $ $) 65)) (** (($ $ (-703)) 79) (($ $ (-517)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-517) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1704 (|#1| |#1| |#2|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -3860 (|#1| |#1| (-517) (-517) |#1|)) (-15 -2010 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3977 (|#1| |#1| (-517) (-517))) (-15 -2077 (|#1| |#1| (-517) (-517))) (-15 -2445 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2609 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3704 ((-583 (-583 |#2|)) |#1|)) (-15 -1980 (|#1| |#1| |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -1293 (|#1| |#1|)) (-15 -1293 (|#1| |#3|)) (-15 -2271 (|#1| |#4|)) (-15 -2528 (|#1| (-583 |#1|))) (-15 -2528 (|#1| (-583 |#2|))) (-15 -2351 (|#1| (-703) |#2|)) (-15 -2371 (|#1| (-583 (-583 |#2|)))) (-15 -3877 (|#1| (-703) (-703))) (-15 -2909 ((-107) |#1|)) (-15 -3933 ((-107) |#1|)) (-15 -1832 ((-107) |#1|)) (-15 -1223 ((-107) |#1|)) (-15 -2445 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) (-517)))) (-621 |#2| |#3| |#4|) (-963) (-343 |#2|) (-343 |#2|)) (T -620))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1704 (|#1| |#1| |#2|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -3860 (|#1| |#1| (-517) (-517) |#1|)) (-15 -2010 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3977 (|#1| |#1| (-517) (-517))) (-15 -2077 (|#1| |#1| (-517) (-517))) (-15 -2445 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2609 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3704 ((-583 (-583 |#2|)) |#1|)) (-15 -1980 (|#1| |#1| |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -1293 (|#1| |#1|)) (-15 -1293 (|#1| |#3|)) (-15 -2271 (|#1| |#4|)) (-15 -2528 (|#1| (-583 |#1|))) (-15 -2528 (|#1| (-583 |#2|))) (-15 -2351 (|#1| (-703) |#2|)) (-15 -2371 (|#1| (-583 (-583 |#2|)))) (-15 -3877 (|#1| (-703) (-703))) (-15 -2909 ((-107) |#1|)) (-15 -3933 ((-107) |#1|)) (-15 -1832 ((-107) |#1|)) (-15 -1223 ((-107) |#1|)) (-15 -2445 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) (-517))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3877 (($ (-703) (-703)) 97)) (-1980 (($ $ $) 87)) (-1293 (($ |#2|) 91) (($ $) 90)) (-3933 (((-107) $) 99)) (-2077 (($ $ (-517) (-517)) 83)) (-3977 (($ $ (-517) (-517)) 82)) (-2010 (($ $ (-517) (-517) (-517) (-517)) 81)) (-2256 (($ $) 89)) (-1223 (((-107) $) 101)) (-1851 (((-107) $ (-703)) 8)) (-3860 (($ $ (-517) (-517) $) 80)) (-2445 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-2822 (($ $ (-517) |#2|) 42)) (-2049 (($ $ (-517) |#3|) 41)) (-2351 (($ (-703) |#1|) 95)) (-1393 (($) 7 T CONST)) (-1382 (($ $) 67 (|has| |#1| (-278)))) (-3476 ((|#2| $ (-517)) 46)) (-3737 (((-703) $) 66 (|has| |#1| (-509)))) (-2759 ((|#1| $ (-517) (-517) |#1|) 43)) (-2566 ((|#1| $ (-517) (-517)) 48)) (-1534 (((-583 |#1|) $) 30)) (-2720 (((-703) $) 65 (|has| |#1| (-509)))) (-2620 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1421 (((-703) $) 51)) (-3213 (($ (-703) (-703) |#1|) 57)) (-1435 (((-703) $) 50)) (-2497 (((-107) $ (-703)) 9)) (-3809 ((|#1| $) 62 (|has| |#1| (-6 (-4194 "*"))))) (-1683 (((-517) $) 55)) (-3400 (((-517) $) 53)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1207 (((-517) $) 54)) (-3797 (((-517) $) 52)) (-2371 (($ (-583 (-583 |#1|))) 96)) (-2746 (($ (-1 |#1| |#1|) $) 34)) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3704 (((-583 (-583 |#1|)) $) 86)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-3856 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-2234 (($ $ $) 88)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) 56)) (-2329 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-2528 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1832 (((-107) $) 100)) (-2854 ((|#1| $) 63 (|has| |#1| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3259 ((|#3| $ (-517)) 45)) (-2271 (($ |#3|) 92) (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-2909 (((-107) $) 98)) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-1704 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1692 (($ $ $) 78) (($ $) 77)) (-1678 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-621 |#1| |#2| |#3|) (-1188) (-963) (-343 |t#1|) (-343 |t#1|)) (T -621))
-((-1223 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3877 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2351 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-1293 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-1293 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2256 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2234 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1980 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-2609 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2445 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2077 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3977 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2010 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3860 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1678 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1692 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1692 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2329 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1704 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-1382 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963)))) (-3856 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4193) (-6 -4192) (-15 -1223 ((-107) $)) (-15 -1832 ((-107) $)) (-15 -3933 ((-107) $)) (-15 -2909 ((-107) $)) (-15 -3877 ($ (-703) (-703))) (-15 -2371 ($ (-583 (-583 |t#1|)))) (-15 -2351 ($ (-703) |t#1|)) (-15 -2528 ($ (-583 |t#1|))) (-15 -2528 ($ (-583 $))) (-15 -2271 ($ |t#3|)) (-15 -1293 ($ |t#2|)) (-15 -1293 ($ $)) (-15 -2256 ($ $)) (-15 -2234 ($ $ $)) (-15 -1980 ($ $ $)) (-15 -3704 ((-583 (-583 |t#1|)) $)) (-15 -2609 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2445 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -2077 ($ $ (-517) (-517))) (-15 -3977 ($ $ (-517) (-517))) (-15 -2010 ($ $ (-517) (-517) (-517) (-517))) (-15 -3860 ($ $ (-517) (-517) $)) (-15 -1678 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1692 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2329 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -1704 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-278)) (-15 -1382 ($ $)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3737 ((-703) $)) (-15 -2720 ((-703) $)) (-15 -2620 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4194 "*"))) (PROGN (-15 -2854 (|t#1| $)) (-15 -3809 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -3856 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-55 |#1| |#2| |#3|) . T) ((-1111) . T))
-((-1382 ((|#4| |#4|) 68 (|has| |#1| (-278)))) (-3737 (((-703) |#4|) 70 (|has| |#1| (-509)))) (-2720 (((-703) |#4|) 72 (|has| |#1| (-509)))) (-2620 (((-583 |#3|) |#4|) 79 (|has| |#1| (-509)))) (-2770 (((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|) 96 (|has| |#1| (-278)))) (-3809 ((|#1| |#4|) 34)) (-2100 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-509)))) (-3856 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-333)))) (-2503 ((|#4| |#4|) 55 (|has| |#1| (-509)))) (-3742 ((|#4| |#4| |#1| (-517) (-517)) 42)) (-1513 ((|#4| |#4| (-517) (-517)) 37)) (-2389 ((|#4| |#4| |#1| (-517) (-517)) 47)) (-2854 ((|#1| |#4|) 74)) (-1405 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-509)))))
-(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2854 (|#1| |#4|)) (-15 -3809 (|#1| |#4|)) (-15 -1513 (|#4| |#4| (-517) (-517))) (-15 -3742 (|#4| |#4| |#1| (-517) (-517))) (-15 -2389 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3737 ((-703) |#4|)) (-15 -2720 ((-703) |#4|)) (-15 -2620 ((-583 |#3|) |#4|)) (-15 -2503 (|#4| |#4|)) (-15 -2100 ((-3 |#4| "failed") |#4|)) (-15 -1405 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1382 (|#4| |#4|)) (-15 -2770 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -3856 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
-((-3856 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2770 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1405 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2100 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2503 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2389 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3742 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-1513 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-3809 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
-(-10 -7 (-15 -2854 (|#1| |#4|)) (-15 -3809 (|#1| |#4|)) (-15 -1513 (|#4| |#4| (-517) (-517))) (-15 -3742 (|#4| |#4| |#1| (-517) (-517))) (-15 -2389 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3737 ((-703) |#4|)) (-15 -2720 ((-703) |#4|)) (-15 -2620 ((-583 |#3|) |#4|)) (-15 -2503 (|#4| |#4|)) (-15 -2100 ((-3 |#4| "failed") |#4|)) (-15 -1405 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1382 (|#4| |#4|)) (-15 -2770 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -3856 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3877 (($ (-703) (-703)) 45)) (-1980 (($ $ $) NIL)) (-1293 (($ (-1157 |#1|)) NIL) (($ $) NIL)) (-3933 (((-107) $) NIL)) (-2077 (($ $ (-517) (-517)) 12)) (-3977 (($ $ (-517) (-517)) NIL)) (-2010 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-2256 (($ $) NIL)) (-1223 (((-107) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-3860 (($ $ (-517) (-517) $) NIL)) (-2445 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-2822 (($ $ (-517) (-1157 |#1|)) NIL)) (-2049 (($ $ (-517) (-1157 |#1|)) NIL)) (-2351 (($ (-703) |#1|) 22)) (-1393 (($) NIL T CONST)) (-1382 (($ $) 30 (|has| |#1| (-278)))) (-3476 (((-1157 |#1|) $ (-517)) NIL)) (-3737 (((-703) $) 32 (|has| |#1| (-509)))) (-2759 ((|#1| $ (-517) (-517) |#1|) 50)) (-2566 ((|#1| $ (-517) (-517)) NIL)) (-1534 (((-583 |#1|) $) NIL)) (-2720 (((-703) $) 34 (|has| |#1| (-509)))) (-2620 (((-583 (-1157 |#1|)) $) 37 (|has| |#1| (-509)))) (-1421 (((-703) $) 20)) (-3213 (($ (-703) (-703) |#1|) NIL)) (-1435 (((-703) $) 21)) (-2497 (((-107) $ (-703)) NIL)) (-3809 ((|#1| $) 28 (|has| |#1| (-6 (-4194 "*"))))) (-1683 (((-517) $) 9)) (-3400 (((-517) $) 10)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1207 (((-517) $) 11)) (-3797 (((-517) $) 46)) (-2371 (($ (-583 (-583 |#1|))) NIL)) (-2746 (($ (-1 |#1| |#1|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3704 (((-583 (-583 |#1|)) $) 58)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-3856 (((-3 $ "failed") $) 41 (|has| |#1| (-333)))) (-2234 (($ $ $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2846 (($ $ |#1|) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-2528 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1157 |#1|)) 51)) (-1832 (((-107) $) NIL)) (-2854 ((|#1| $) 26 (|has| |#1| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-3359 (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-3259 (((-1157 |#1|) $ (-517)) NIL)) (-2271 (($ (-1157 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2909 (((-107) $) NIL)) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $ $) NIL) (($ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 44 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1157 |#1|) $ (-1157 |#1|)) NIL) (((-1157 |#1|) (-1157 |#1|) $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-623 |#1|) (-13 (-621 |#1| (-1157 |#1|) (-1157 |#1|)) (-10 -8 (-15 -2528 ($ (-1157 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -3856 ((-3 $ "failed") $)) |%noBranch|))) (-963)) (T -623))
-((-3856 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-963)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-963)) (-5 *1 (-623 *3)))))
-(-13 (-621 |#1| (-1157 |#1|) (-1157 |#1|)) (-10 -8 (-15 -2528 ($ (-1157 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -3856 ((-3 $ "failed") $)) |%noBranch|)))
-((-1938 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-4133 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-1565 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-3606 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-3845 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-3900 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-2029 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
-(((-624 |#1|) (-10 -7 (-15 -2029 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3606 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3845 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3845 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3900 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -4133 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1938 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1565 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-963)) (T -624))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-963)) (-5 *1 (-624 *4)))) (-1565 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-963)) (-5 *1 (-624 *4)))) (-1938 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))) (-4133 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))) (-3900 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))) (-3845 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))) (-3845 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))) (-3606 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))) (-2029 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
-(-10 -7 (-15 -2029 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3606 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3845 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3845 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3900 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -4133 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1938 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1565 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
-((-1449 ((|#2| |#2| |#4|) 25)) (-3685 (((-623 |#2|) |#3| |#4|) 31)) (-1598 (((-623 |#2|) |#2| |#4|) 30)) (-3326 (((-1157 |#2|) |#2| |#4|) 16)) (-1669 ((|#2| |#3| |#4|) 24)) (-2197 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-4098 (((-623 |#2|) |#2| |#4| (-703)) 37)))
-(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3326 ((-1157 |#2|) |#2| |#4|)) (-15 -1669 (|#2| |#3| |#4|)) (-15 -1449 (|#2| |#2| |#4|)) (-15 -1598 ((-623 |#2|) |#2| |#4|)) (-15 -4098 ((-623 |#2|) |#2| |#4| (-703))) (-15 -3685 ((-623 |#2|) |#3| |#4|)) (-15 -2197 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1005) (-823 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4192)))) (T -625))
-((-2197 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1005)) (-4 *7 (-823 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4192)))))) (-3685 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-4 *6 (-823 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))) (-4098 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1005)) (-4 *3 (-823 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4192)))))) (-1598 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-4 *3 (-823 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))) (-1449 (*1 *2 *2 *3) (-12 (-4 *4 (-1005)) (-4 *2 (-823 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4192)))))) (-1669 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-4 *2 (-823 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))) (-3326 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-4 *3 (-823 *5)) (-5 *2 (-1157 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))))
-(-10 -7 (-15 -3326 ((-1157 |#2|) |#2| |#4|)) (-15 -1669 (|#2| |#3| |#4|)) (-15 -1449 (|#2| |#2| |#4|)) (-15 -1598 ((-623 |#2|) |#2| |#4|)) (-15 -4098 ((-623 |#2|) |#2| |#4| (-703))) (-15 -3685 ((-623 |#2|) |#3| |#4|)) (-15 -2197 ((-623 |#2|) |#3| |#4| (-703) (-703))))
-((-4038 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-2015 ((|#1| (-623 |#2|)) 9)) (-3552 (((-623 |#1|) (-623 |#2|)) 16)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -2015 (|#1| (-623 |#2|))) (-15 -3552 ((-623 |#1|) (-623 |#2|))) (-15 -4038 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-911 |#1|)) (T -626))
-((-4038 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-911 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-911 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
-(-10 -7 (-15 -2015 (|#1| (-623 |#2|))) (-15 -3552 ((-623 |#1|) (-623 |#2|))) (-15 -4038 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2133 (((-623 (-632))) NIL) (((-623 (-632)) (-1157 $)) NIL)) (-2009 (((-632) $) NIL)) (-1648 (($ $) NIL (|has| (-632) (-1097)))) (-1494 (($ $) NIL (|has| (-632) (-1097)))) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-1224 (($ $) NIL (-3747 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-4018 (((-388 $) $) NIL (-3747 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-3880 (($ $) NIL (-12 (|has| (-632) (-920)) (|has| (-632) (-1097))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-3820 (((-107) $ $) NIL (|has| (-632) (-278)))) (-2399 (((-703)) NIL (|has| (-632) (-338)))) (-1624 (($ $) NIL (|has| (-632) (-1097)))) (-1471 (($ $) NIL (|has| (-632) (-1097)))) (-1670 (($ $) NIL (|has| (-632) (-1097)))) (-1520 (($ $) NIL (|has| (-632) (-1097)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-954 (-377 (-517)))))) (-3390 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-954 (-377 (-517)))))) (-3898 (($ (-1157 (-632))) NIL) (($ (-1157 (-632)) (-1157 $)) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2379 (($ $ $) NIL (|has| (-632) (-278)))) (-2637 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1157 $)) NIL)) (-2207 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-632))) (|:| |vec| (-1157 (-632)))) (-623 $) (-1157 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-1522 (((-3 $ "failed") (-377 (-1072 (-632)))) NIL (|has| (-632) (-333))) (($ (-1072 (-632))) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-3894 (((-632) $) 29)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-3000 (((-107) $) NIL (|has| (-632) (-502)))) (-1843 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-3737 (((-844)) NIL)) (-2202 (($) NIL (|has| (-632) (-338)))) (-2354 (($ $ $) NIL (|has| (-632) (-278)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-1304 (($) NIL (|has| (-632) (-319)))) (-3459 (((-107) $) NIL (|has| (-632) (-319)))) (-2855 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-1259 (((-107) $) NIL (-3747 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-2874 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-972)) (|has| (-632) (-1097))))) (-2116 (($) NIL (|has| (-632) (-1097)))) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-632) (-809 (-349)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-632) (-809 (-517))))) (-1395 (((-765 (-844)) $) NIL (|has| (-632) (-319))) (((-844) $) NIL (|has| (-632) (-319)))) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (-12 (|has| (-632) (-920)) (|has| (-632) (-1097))))) (-2803 (((-632) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2766 (((-1072 (-632)) $) NIL (|has| (-632) (-333)))) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3310 (($ (-1 (-632) (-632)) $) NIL)) (-3072 (((-844) $) NIL (|has| (-632) (-338)))) (-1226 (($ $) NIL (|has| (-632) (-1097)))) (-1509 (((-1072 (-632)) $) NIL)) (-2332 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| (-632) (-333)))) (-2587 (($) NIL (|has| (-632) (-319)) CONST)) (-2812 (($ (-844)) NIL (|has| (-632) (-338)))) (-1899 (($) NIL)) (-3906 (((-632) $) 31)) (-4125 (((-1023) $) NIL)) (-1318 (($) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| (-632) (-278)))) (-2370 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-632) (-319)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-3868 (((-388 $) $) NIL (-3747 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| (-632) (-278)))) (-2329 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3870 (($ $) NIL (|has| (-632) (-1097)))) (-3524 (($ $ (-1076) (-632)) NIL (|has| (-632) (-478 (-1076) (-632)))) (($ $ (-583 (-1076)) (-583 (-632))) NIL (|has| (-632) (-478 (-1076) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3600 (((-703) $) NIL (|has| (-632) (-278)))) (-2609 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| (-632) (-278)))) (-1220 (((-632)) NIL) (((-632) (-1157 $)) NIL)) (-2192 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-2060 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-1076)) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-3973 (((-623 (-632)) (-1157 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2387 (((-1072 (-632))) NIL)) (-1682 (($ $) NIL (|has| (-632) (-1097)))) (-1533 (($ $) NIL (|has| (-632) (-1097)))) (-1758 (($) NIL (|has| (-632) (-319)))) (-1660 (($ $) NIL (|has| (-632) (-1097)))) (-1507 (($ $) NIL (|has| (-632) (-1097)))) (-1635 (($ $) NIL (|has| (-632) (-1097)))) (-1483 (($ $) NIL (|has| (-632) (-1097)))) (-3784 (((-623 (-632)) (-1157 $)) NIL) (((-1157 (-632)) $) NIL) (((-623 (-632)) (-1157 $) (-1157 $)) NIL) (((-1157 (-632)) $ (-1157 $)) NIL)) (-3359 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-939))) (((-153 (-349)) $) NIL (|has| (-632) (-939))) (((-815 (-349)) $) NIL (|has| (-632) (-558 (-815 (-349))))) (((-815 (-517)) $) NIL (|has| (-632) (-558 (-815 (-517))))) (($ (-1072 (-632))) NIL) (((-1072 (-632)) $) NIL) (($ (-1157 (-632))) NIL) (((-1157 (-632)) $) NIL)) (-1842 (($ $) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-3747 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-832))) (|has| (-632) (-319))))) (-3883 (($ (-632) (-632)) 12)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3747 (|has| (-632) (-954 (-377 (-517)))) (|has| (-632) (-333))))) (-3974 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3747 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-832))) (|has| (-632) (-132))))) (-1699 (((-1072 (-632)) $) NIL)) (-4099 (((-703)) NIL)) (-1492 (((-1157 $)) NIL)) (-1722 (($ $) NIL (|has| (-632) (-1097)))) (-1576 (($ $) NIL (|has| (-632) (-1097)))) (-2074 (((-107) $ $) NIL)) (-1697 (($ $) NIL (|has| (-632) (-1097)))) (-1548 (($ $) NIL (|has| (-632) (-1097)))) (-3489 (($ $) NIL (|has| (-632) (-1097)))) (-1600 (($ $) NIL (|has| (-632) (-1097)))) (-3229 (((-632) $) NIL (|has| (-632) (-1097)))) (-2824 (($ $) NIL (|has| (-632) (-1097)))) (-1613 (($ $) NIL (|has| (-632) (-1097)))) (-1735 (($ $) NIL (|has| (-632) (-1097)))) (-1589 (($ $) NIL (|has| (-632) (-1097)))) (-1709 (($ $) NIL (|has| (-632) (-1097)))) (-1562 (($ $) NIL (|has| (-632) (-1097)))) (-2376 (($ $) NIL (|has| (-632) (-972)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-1076)) NIL (|has| (-632) (-823 (-1076)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL (|has| (-632) (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1097))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-920)) (|has| (-632) (-1097)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
-(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2271 ($ (-153 (-349)))) (-15 -2271 ($ (-153 (-517)))) (-15 -2271 ($ (-153 (-632)))) (-15 -2271 ($ (-153 (-634)))) (-15 -2271 ((-153 (-349)) $))))) (T -627))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
-(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2271 ($ (-153 (-349)))) (-15 -2271 ($ (-153 (-517)))) (-15 -2271 ($ (-153 (-632)))) (-15 -2271 ($ (-153 (-634)))) (-15 -2271 ((-153 (-349)) $))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-3690 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-1399 (($ $) 62)) (-2455 (($ $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-1527 (((-583 (-2 (|:| -1859 |#1|) (|:| -4137 (-703)))) $) 61)) (-2176 (($) 49) (($ (-583 |#1|)) 48)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 50)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-628 |#1|) (-1188) (-1005)) (T -628))
-((-3241 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1005)))) (-1399 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1005)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1005)) (-5 *2 (-583 (-2 (|:| -1859 *3) (|:| -4137 (-703))))))))
-(-13 (-209 |t#1|) (-10 -8 (-15 -3241 ($ |t#1| $ (-703))) (-15 -1399 ($ $)) (-15 -1527 ((-583 (-2 (|:| -1859 |t#1|) (|:| -4137 (-703)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-1475 (((-583 |#1|) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))) (-517)) 46)) (-2365 ((|#1| |#1| (-517)) 45)) (-2370 ((|#1| |#1| |#1| (-517)) 35)) (-3868 (((-583 |#1|) |#1| (-517)) 38)) (-1502 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-3762 (((-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))) |#1| (-517)) 44)))
-(((-629 |#1|) (-10 -7 (-15 -2370 (|#1| |#1| |#1| (-517))) (-15 -2365 (|#1| |#1| (-517))) (-15 -3868 ((-583 |#1|) |#1| (-517))) (-15 -3762 ((-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))) |#1| (-517))) (-15 -1475 ((-583 |#1|) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))) (-517))) (-15 -1502 (|#1| |#1| (-517) |#1| (-517)))) (-1133 (-517))) (T -629))
-((-1502 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1133 *3)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3868 *5) (|:| -3647 (-517))))) (-5 *4 (-517)) (-4 *5 (-1133 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3868 *3) (|:| -3647 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1133 *4)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1133 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1133 *3)))) (-2370 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1133 *3)))))
-(-10 -7 (-15 -2370 (|#1| |#1| |#1| (-517))) (-15 -2365 (|#1| |#1| (-517))) (-15 -3868 ((-583 |#1|) |#1| (-517))) (-15 -3762 ((-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))) |#1| (-517))) (-15 -1475 ((-583 |#1|) (-583 (-2 (|:| -3868 |#1|) (|:| -3647 (-517)))) (-517))) (-15 -1502 (|#1| |#1| (-517) |#1| (-517))))
-((-1469 (((-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2494 (((-1036 (-199)) (-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-583 (-236))) 38) (((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-583 (-236))) 40) (((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1000 (-199)) (-1000 (-199)) (-583 (-236))) 42)) (-3071 (((-1036 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-583 (-236))) NIL)) (-3970 (((-1036 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1000 (-199)) (-1000 (-199)) (-583 (-236))) 43)))
-(((-630) (-10 -7 (-15 -2494 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -2494 ((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -2494 ((-1036 (-199)) (-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -3970 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -3071 ((-1036 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -1469 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
-((-1469 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-866 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-3071 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1000 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-630)))) (-3970 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-1000 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-630)))) (-2494 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1036 (-199))) (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-630)))) (-2494 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-1000 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-630)))))
-(-10 -7 (-15 -2494 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -2494 ((-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -2494 ((-1036 (-199)) (-1036 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -3970 ((-1036 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1000 (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -3071 ((-1036 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1000 (-199)) (-583 (-236)))) (-15 -1469 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-3868 (((-388 (-1072 |#4|)) (-1072 |#4|)) 73) (((-388 |#4|) |#4|) 217)))
-(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 |#4|) |#4|)) (-15 -3868 ((-388 (-1072 |#4|)) (-1072 |#4|)))) (-779) (-725) (-319) (-872 |#3| |#2| |#1|)) (T -631))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1072 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1072 *7)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
-(-10 -7 (-15 -3868 ((-388 |#4|) |#4|)) (-15 -3868 ((-388 (-1072 |#4|)) (-1072 |#4|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 84)) (-1363 (((-517) $) 30)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2853 (($ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3880 (($ $) NIL)) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL)) (-1393 (($) NIL T CONST)) (-3983 (($ $) NIL)) (-3228 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3390 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2379 (($ $ $) 96)) (-2560 (((-3 $ "failed") $) 87)) (-2354 (($ $ $) 95)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3436 (((-844)) 77) (((-844) (-844)) 76)) (-2988 (((-107) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL)) (-1395 (((-517) $) NIL)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL)) (-2803 (($ $) NIL)) (-1952 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3688 (((-517) (-517)) 81) (((-517)) 82)) (-3458 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4175))) (-2479 (|has| $ (-6 -4183)))))) (-1639 (((-517) (-517)) 79) (((-517)) 80)) (-4084 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4175))) (-2479 (|has| $ (-6 -4183)))))) (-3699 (((-517) $) 16)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 91)) (-1871 (((-844) (-517)) NIL (|has| $ (-6 -4183)))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL)) (-2961 (($ $) NIL)) (-3211 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-844)) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) 92)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2121 (((-517) $) 22)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 94)) (-1192 (((-844)) NIL) (((-844) (-844)) NIL (|has| $ (-6 -4183)))) (-3788 (((-844) (-517)) NIL (|has| $ (-6 -4183)))) (-3359 (((-349) $) NIL) (((-199) $) NIL) (((-815 (-349)) $) NIL)) (-2271 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-4099 (((-703)) 103)) (-1948 (($ (-517) (-517) (-844)) 44)) (-3599 (($ $) NIL)) (-2852 (((-844)) NIL) (((-844) (-844)) NIL (|has| $ (-6 -4183)))) (-3985 (((-844)) 35) (((-844) (-844)) 78)) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 32 T CONST)) (-3619 (($) 17 T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 83)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 101)) (-1704 (($ $ $) 65)) (-1692 (($ $) 99) (($ $ $) 100)) (-1678 (($ $ $) 98)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-632) (-13 (-374) (-357) (-333) (-954 (-349)) (-954 (-377 (-517))) (-134) (-10 -8 (-15 -3436 ((-844) (-844))) (-15 -3436 ((-844))) (-15 -3985 ((-844) (-844))) (-15 -3985 ((-844))) (-15 -1639 ((-517) (-517))) (-15 -1639 ((-517))) (-15 -3688 ((-517) (-517))) (-15 -3688 ((-517))) (-15 -2271 ((-349) $)) (-15 -2271 ($ (-634))) (-15 -3699 ((-517) $)) (-15 -2121 ((-517) $)) (-15 -1948 ($ (-517) (-517) (-844)))))) (T -632))
-((-3985 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3436 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-1639 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3688 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-1948 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-5 *1 (-632)))))
-(-13 (-374) (-357) (-333) (-954 (-349)) (-954 (-377 (-517))) (-134) (-10 -8 (-15 -3436 ((-844) (-844))) (-15 -3436 ((-844))) (-15 -3985 ((-844) (-844))) (-15 -3985 ((-844))) (-15 -1639 ((-517) (-517))) (-15 -1639 ((-517))) (-15 -3688 ((-517) (-517))) (-15 -3688 ((-517))) (-15 -2271 ((-349) $)) (-15 -2271 ($ (-634))) (-15 -3699 ((-517) $)) (-15 -2121 ((-517) $)) (-15 -1948 ($ (-517) (-517) (-844)))))
-((-3586 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 65)) (-1382 (((-623 |#1|) (-623 |#1|) |#1|) 48)) (-2114 (((-623 |#1|) (-623 |#1|) |#1|) 66)) (-3469 (((-623 |#1|) (-623 |#1|)) 49)) (-2770 (((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|) 64)))
-(((-633 |#1|) (-10 -7 (-15 -3469 ((-623 |#1|) (-623 |#1|))) (-15 -1382 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2114 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3586 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2770 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|))) (-278)) (T -633))
-((-2770 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-3586 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2114 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-1382 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(-10 -7 (-15 -3469 ((-623 |#1|) (-623 |#1|))) (-15 -1382 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2114 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3586 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2770 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-1876 (($ $ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $ $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL)) (-2142 (($ $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) 27)) (-3390 (((-517) $) 25)) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL)) (-3000 (((-107) $) NIL)) (-1843 (((-377 (-517)) $) NIL)) (-2202 (($ $) NIL) (($) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3631 (($ $ $ $) NIL)) (-3248 (($ $ $) NIL)) (-2988 (((-107) $) NIL)) (-2144 (($ $ $) NIL)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1376 (((-107) $) NIL)) (-2686 (((-107) $) NIL)) (-2243 (((-3 $ "failed") $) NIL)) (-1952 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2767 (($ $ $ $) NIL)) (-3458 (($ $ $) NIL)) (-1729 (((-844) (-844)) 10) (((-844)) 9)) (-4084 (($ $ $) NIL)) (-2638 (($ $) NIL)) (-3682 (($ $) NIL)) (-2332 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-2949 (($ $ $) NIL)) (-2587 (($) NIL T CONST)) (-4006 (($ $) NIL)) (-4125 (((-1023) $) NIL) (($ $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1691 (($ $) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1766 (((-107) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL) (($ $ (-703)) NIL)) (-2917 (($ $) NIL)) (-2462 (($ $) NIL)) (-3359 (((-199) $) NIL) (((-349) $) NIL) (((-815 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-4099 (((-703)) NIL)) (-3969 (((-107) $ $) NIL)) (-1917 (($ $ $) NIL)) (-3985 (($) NIL)) (-2074 (((-107) $ $) NIL)) (-3696 (($ $ $ $) NIL)) (-2376 (($ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL) (($ $ (-703)) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
-(((-634) (-13 (-357) (-502) (-10 -8 (-15 -1729 ((-844) (-844))) (-15 -1729 ((-844))) (-15 -2271 ((-286 $) (-286 (-517))))))) (T -634))
-((-1729 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634)))) (-1729 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
-(-13 (-357) (-502) (-10 -8 (-15 -1729 ((-844) (-844))) (-15 -1729 ((-844))) (-15 -2271 ((-286 $) (-286 (-517))))))
-((-1535 (((-1 |#4| |#2| |#3|) |#1| (-1076) (-1076)) 19)) (-2322 (((-1 |#4| |#2| |#3|) (-1076)) 12)))
-(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2322 ((-1 |#4| |#2| |#3|) (-1076))) (-15 -1535 ((-1 |#4| |#2| |#3|) |#1| (-1076) (-1076)))) (-558 (-493)) (-1111) (-1111) (-1111)) (T -635))
-((-1535 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1076)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)))))
-(-10 -7 (-15 -2322 ((-1 |#4| |#2| |#3|) (-1076))) (-15 -1535 ((-1 |#4| |#2| |#3|) |#1| (-1076) (-1076))))
-((-2119 (((-107) $ $) NIL)) (-3512 (((-1162) $ (-703)) 14)) (-1212 (((-703) $) 12)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 25)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 24)))
-(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2271 ($ |#1|)))) (-1005)) (T -636))
-((-2271 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1005)))))
-(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2271 ($ |#1|))))
-((-2182 (((-1 (-199) (-199) (-199)) |#1| (-1076) (-1076)) 33) (((-1 (-199) (-199)) |#1| (-1076)) 38)))
-(((-637 |#1|) (-10 -7 (-15 -2182 ((-1 (-199) (-199)) |#1| (-1076))) (-15 -2182 ((-1 (-199) (-199) (-199)) |#1| (-1076) (-1076)))) (-558 (-493))) (T -637))
-((-2182 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1076)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-2182 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -2182 ((-1 (-199) (-199)) |#1| (-1076))) (-15 -2182 ((-1 (-199) (-199) (-199)) |#1| (-1076) (-1076))))
-((-2227 (((-1076) |#1| (-1076) (-583 (-1076))) 9) (((-1076) |#1| (-1076) (-1076) (-1076)) 12) (((-1076) |#1| (-1076) (-1076)) 11) (((-1076) |#1| (-1076)) 10)))
-(((-638 |#1|) (-10 -7 (-15 -2227 ((-1076) |#1| (-1076))) (-15 -2227 ((-1076) |#1| (-1076) (-1076))) (-15 -2227 ((-1076) |#1| (-1076) (-1076) (-1076))) (-15 -2227 ((-1076) |#1| (-1076) (-583 (-1076))))) (-558 (-493))) (T -638))
-((-2227 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1076))) (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2227 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2227 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2227 (*1 *2 *3 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -2227 ((-1076) |#1| (-1076))) (-15 -2227 ((-1076) |#1| (-1076) (-1076))) (-15 -2227 ((-1076) |#1| (-1076) (-1076) (-1076))) (-15 -2227 ((-1076) |#1| (-1076) (-583 (-1076)))))
-((-2400 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -2400 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1111) (-1111)) (T -639))
-((-2400 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
-(-10 -7 (-15 -2400 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2085 (((-1 |#3| |#2|) (-1076)) 11)) (-1535 (((-1 |#3| |#2|) |#1| (-1076)) 21)))
-(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2085 ((-1 |#3| |#2|) (-1076))) (-15 -1535 ((-1 |#3| |#2|) |#1| (-1076)))) (-558 (-493)) (-1111) (-1111)) (T -640))
-((-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111)))))
-(-10 -7 (-15 -2085 ((-1 |#3| |#2|) (-1076))) (-15 -1535 ((-1 |#3| |#2|) |#1| (-1076))))
-((-2465 (((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 (-1072 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1157 (-583 (-1072 |#3|))) |#3|) 59)) (-3470 (((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 (-1072 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 72)) (-1949 (((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1072 |#4|)) (-1157 (-583 (-1072 |#3|))) |#3|) 32)))
-(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1949 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1072 |#4|)) (-1157 (-583 (-1072 |#3|))) |#3|)) (-15 -3470 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 (-1072 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -2465 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 (-1072 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1157 (-583 (-1072 |#3|))) |#3|))) (-725) (-779) (-278) (-872 |#3| |#1| |#2|)) (T -641))
-((-2465 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1072 *13))) (-5 *3 (-1072 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1157 (-583 (-1072 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-872 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3470 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1072 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-872 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1072 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1072 *12)))) (-1949 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1072 *11))) (-5 *3 (-1072 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1157 (-583 (-1072 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-872 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1949 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1072 |#4|)) (-1157 (-583 (-1072 |#3|))) |#3|)) (-15 -3470 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 (-1072 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -2465 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-583 |#2|) (-583 (-1072 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1157 (-583 (-1072 |#3|))) |#3|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2373 (($ $) 41)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-2078 (($ |#1| (-703)) 39)) (-3492 (((-703) $) 43)) (-2347 ((|#1| $) 42)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-3647 (((-703) $) 44)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-1689 ((|#1| $ (-703)) 40)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-642 |#1|) (-1188) (-963)) (T -642))
-((-3647 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-963)) (-5 *2 (-703)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-963)) (-5 *2 (-703)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-963)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-963)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-963)))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-963)))))
-(-13 (-963) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -3647 ((-703) $)) (-15 -3492 ((-703) $)) (-15 -2347 (|t#1| $)) (-15 -2373 ($ $)) (-15 -1689 (|t#1| $ (-703))) (-15 -2078 ($ |t#1| (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3310 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3310 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1133 |#1|) (-1133 (-377 |#2|)) (-509) (-1133 |#4|) (-1133 (-377 |#5|))) (T -643))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1133 *5)) (-4 *2 (-1133 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1133 (-377 *6))) (-4 *8 (-1133 *7)))))
-(-10 -7 (-15 -3310 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL)) (-1522 (($ |#1| |#2|) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1673 ((|#2| $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -1673 (|#2| $)) (-15 -2271 (|#1| $)) (-15 -1522 ($ |#1| |#2|)) (-15 -2599 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
-((-1673 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2271 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1522 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2599 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-333) (-10 -8 (-15 -1673 (|#2| $)) (-15 -2271 (|#1| $)) (-15 -1522 ($ |#1| |#2|)) (-15 -2599 ((-3 $ "failed") $ $))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 30)) (-1896 (((-1157 |#1|) $ (-703)) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3751 (($ (-1072 |#1|)) NIL)) (-1440 (((-1072 $) $ (-991)) NIL) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-991))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-4104 (($ $ $) NIL (|has| |#1| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2399 (((-703)) 47 (|has| |#1| (-338)))) (-3404 (($ $ (-703)) NIL)) (-3195 (($ $ (-703)) NIL)) (-1793 ((|#2| |#2|) 44)) (-1340 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-991) "failed") $) NIL)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-991) $) NIL)) (-2157 (($ $ $ (-991)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) 34)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1522 (($ |#2|) 42)) (-2560 (((-3 $ "failed") $) 85)) (-2202 (($) 51 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-3719 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#1| (-509)))) (-3590 (((-2 (|:| -1582 |#1|) (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ (-991)) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-1992 (((-880 $)) 79)) (-3014 (($ $ |#1| (-703) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-991) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-991) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1395 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-1072 |#1|) (-991)) NIL) (($ (-1072 $) (-991)) NIL)) (-2401 (($ $ (-703)) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) 77) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-991)) NIL) (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1673 ((|#2|) 45)) (-3492 (((-703) $) NIL) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-703) (-703)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2688 (((-1072 |#1|) $) NIL)) (-2297 (((-3 (-991) "failed") $) NIL)) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-1509 ((|#2| $) 41)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) 28)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-2542 (((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703)) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-991)) (|:| -2121 (-703))) "failed") $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2587 (($) NIL (|has| |#1| (-1052)) CONST)) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1941 (($ $) 78 (|has| |#1| (-319)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-991) |#1|) NIL) (($ $ (-583 (-991)) (-583 |#1|)) NIL) (($ $ (-991) $) NIL) (($ $ (-583 (-991)) (-583 $)) NIL)) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1193 (((-3 $ "failed") $ (-703)) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 86 (|has| |#1| (-333)))) (-1220 (($ $ (-991)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2060 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3647 (((-703) $) 32) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-991) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-991) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-991) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-991)) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-1965 (((-880 $)) 36)) (-3827 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2271 (((-787) $) 61) (($ (-517)) NIL) (($ |#1|) 58) (($ (-991)) NIL) (($ |#2|) 68) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) 63) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 20 T CONST)) (-3254 (((-1157 |#1|) $) 75)) (-2186 (($ (-1157 |#1|)) 50)) (-3619 (($) 8 T CONST)) (-3342 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2604 (((-1157 |#1|) $) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 69)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) 72) (($ $ $) NIL)) (-1678 (($ $ $) 33)) (** (($ $ (-844)) NIL) (($ $ (-703)) 80)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 57) (($ $ $) 74) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-645 |#1| |#2|) (-13 (-1133 |#1|) (-10 -8 (-15 -1793 (|#2| |#2|)) (-15 -1673 (|#2|)) (-15 -1522 ($ |#2|)) (-15 -1509 (|#2| $)) (-15 -2271 ($ |#2|)) (-15 -3254 ((-1157 |#1|) $)) (-15 -2186 ($ (-1157 |#1|))) (-15 -2604 ((-1157 |#1|) $)) (-15 -1992 ((-880 $))) (-15 -1965 ((-880 $))) (IF (|has| |#1| (-319)) (-15 -1941 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|))) (-963) (-1133 |#1|)) (T -645))
-((-1793 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1133 *3)))) (-1673 (*1 *2) (-12 (-4 *2 (-1133 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-963)))) (-1522 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1133 *3)))) (-1509 (*1 *2 *1) (-12 (-4 *2 (-1133 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-963)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1133 *3)))) (-3254 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1157 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1133 *3)))) (-2186 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-963)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1133 *3)))) (-2604 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1157 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1133 *3)))) (-1992 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1133 *3)))) (-1965 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1133 *3)))) (-1941 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-963)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1133 *2)))))
-(-13 (-1133 |#1|) (-10 -8 (-15 -1793 (|#2| |#2|)) (-15 -1673 (|#2|)) (-15 -1522 ($ |#2|)) (-15 -1509 (|#2| $)) (-15 -2271 ($ |#2|)) (-15 -3254 ((-1157 |#1|) $)) (-15 -2186 ($ (-1157 |#1|))) (-15 -2604 ((-1157 |#1|) $)) (-15 -1992 ((-880 $))) (-15 -1965 ((-880 $))) (IF (|has| |#1| (-319)) (-15 -1941 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-2812 ((|#1| $) 13)) (-4125 (((-1023) $) NIL)) (-2121 ((|#2| $) 12)) (-2288 (($ |#1| |#2|) 16)) (-2271 (((-787) $) NIL) (($ (-2 (|:| -2812 |#1|) (|:| -2121 |#2|))) 15) (((-2 (|:| -2812 |#1|) (|:| -2121 |#2|)) $) 14)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 11)))
-(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -2121 (|#2| $)) (-15 -2812 (|#1| $)) (-15 -2271 ($ (-2 (|:| -2812 |#1|) (|:| -2121 |#2|)))) (-15 -2271 ((-2 (|:| -2812 |#1|) (|:| -2121 |#2|)) $)) (-15 -2288 ($ |#1| |#2|)))) (-779) (-1005) (-1 (-107) (-2 (|:| -2812 |#1|) (|:| -2121 |#2|)) (-2 (|:| -2812 |#1|) (|:| -2121 |#2|)))) (T -646))
-((-2121 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -2812 *3) (|:| -2121 *2)) (-2 (|:| -2812 *3) (|:| -2121 *2)))))) (-2812 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1005)) (-14 *4 (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *3)) (-2 (|:| -2812 *2) (|:| -2121 *3)))))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2812 *3) (|:| -2121 *4))) (-4 *3 (-779)) (-4 *4 (-1005)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2812 *3) (|:| -2121 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1005)) (-14 *5 (-1 (-107) *2 *2)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1005)) (-14 *4 (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *3)) (-2 (|:| -2812 *2) (|:| -2121 *3)))))))
-(-13 (-779) (-10 -8 (-15 -2121 (|#2| $)) (-15 -2812 (|#1| $)) (-15 -2271 ($ (-2 (|:| -2812 |#1|) (|:| -2121 |#2|)))) (-15 -2271 ((-2 (|:| -2812 |#1|) (|:| -2121 |#2|)) $)) (-15 -2288 ($ |#1| |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 59)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3390 ((|#1| $) NIL) (((-109) $) 39)) (-2560 (((-3 $ "failed") $) 90)) (-1868 ((|#2| (-109) |#2|) 82)) (-1376 (((-107) $) NIL)) (-2792 (($ |#1| (-331 (-109))) 13)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3240 (($ $ (-1 |#2| |#2|)) 58)) (-2449 (($ $ (-1 |#2| |#2|)) 44)) (-2609 ((|#2| $ |#2|) 32)) (-1676 ((|#1| |#1|) 100 (|has| |#1| (-156)))) (-2271 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) 36)) (-1405 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 20 T CONST)) (-3619 (($) 9 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) 48) (($ $ $) NIL)) (-1678 (($ $ $) 73)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
-(((-647 |#1| |#2|) (-13 (-963) (-954 |#1|) (-954 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1405 ($ $)) (-15 -1405 ($ $ $)) (-15 -1676 (|#1| |#1|))) |%noBranch|) (-15 -2449 ($ $ (-1 |#2| |#2|))) (-15 -3240 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1868 (|#2| (-109) |#2|)) (-15 -2792 ($ |#1| (-331 (-109)))))) (-963) (-585 |#1|)) (T -647))
-((-1405 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-963)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1405 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-963)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1676 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-963)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-2449 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-963)) (-5 *1 (-647 *3 *4)))) (-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-963)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-963)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-963)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-963)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-963)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
-(-13 (-963) (-954 |#1|) (-954 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1405 ($ $)) (-15 -1405 ($ $ $)) (-15 -1676 (|#1| |#1|))) |%noBranch|) (-15 -2449 ($ $ (-1 |#2| |#2|))) (-15 -3240 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1868 (|#2| (-109) |#2|)) (-15 -2792 ($ |#1| (-331 (-109))))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 33)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1522 (($ |#1| |#2|) 25)) (-2560 (((-3 $ "failed") $) 47)) (-1376 (((-107) $) 35)) (-1673 ((|#2| $) 12)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 48)) (-4125 (((-1023) $) NIL)) (-2599 (((-3 $ "failed") $ $) 46)) (-2271 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-4099 (((-703)) 28)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 16 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 38)) (-1692 (($ $) 43) (($ $ $) 37)) (-1678 (($ $ $) 40)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
-(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-963) (-10 -8 (-15 -1673 (|#2| $)) (-15 -2271 (|#1| $)) (-15 -1522 ($ |#1| |#2|)) (-15 -2599 ((-3 $ "failed") $ $)) (-15 -2560 ((-3 $ "failed") $)) (-15 -2300 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
-((-2560 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1673 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2271 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1522 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2599 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-963) (-10 -8 (-15 -1673 (|#2| $)) (-15 -2271 (|#1| $)) (-15 -1522 ($ |#1| |#2|)) (-15 -2599 ((-3 $ "failed") $ $)) (-15 -2560 ((-3 $ "failed") $)) (-15 -2300 ($ $))))
-((* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-650 |#2|) (-156)) (T -649))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-650 |#1|) (-1188) (-156)) (T -650))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 15)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3858 ((|#1| $) 21)) (-3480 (($ $ $) NIL (|has| |#1| (-723)))) (-4095 (($ $ $) NIL (|has| |#1| (-723)))) (-3232 (((-1060) $) 46)) (-4130 (((-1024) $) NIL)) (-2082 ((|#3| $) 22)) (-2262 (((-787) $) 42)) (-3663 (($) 10 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1596 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1692 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1680 (($ $) 17) (($ $ $) NIL)) (-1666 (($ $ $) 27)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
+((-1692 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1692 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2082 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
+(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $))))
+((-2095 (((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|)) 33)))
+(((-600 |#1|) (-10 -7 (-15 -2095 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|)))) (-833)) (T -600))
+((-2095 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *4))) (-5 *3 (-1073 *4)) (-4 *4 (-833)) (-5 *1 (-600 *4)))))
+(-10 -7 (-15 -2095 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 83)) (-1855 (($ $ (-703)) 91)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1586 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 48)) (-3220 (((-3 (-608 |#1|) "failed") $) NIL)) (-3402 (((-608 |#1|) $) NIL)) (-2364 (($ $) 90)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-608 |#1|) |#2|) 69)) (-2833 (($ $) 87)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2388 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 47)) (-3758 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2325 (((-608 |#1|) $) NIL)) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3552 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-1191 (((-703) $) 89)) (-2279 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 78) (($ (-608 |#1|) $) 76) (($ $ (-608 |#1|)) 77)) (-2262 (((-787) $) NIL) (($ |#1|) 75) (((-1171 |#1| |#2|) $) 59) (((-1180 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-608 |#1|)) NIL)) (-1570 ((|#2| (-1180 |#1| |#2|) $) 43)) (-3663 (($) 23 T CONST)) (-1226 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1391 (((-3 $ "failed") (-1171 |#1| |#2|)) 61)) (-1590 (($ (-608 |#1|)) 14)) (-1572 (((-107) $ $) 44)) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) 67) (($ $ $) NIL)) (-1666 (($ $ $) 29)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
+(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1391 ((-3 $ "failed") (-1171 |#1| |#2|))) (-15 -2279 ($ (-608 |#1|) (-608 |#1|))) (-15 -2279 ($ (-608 |#1|) $)) (-15 -2279 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
+((-1391 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2279 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
+(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1391 ((-3 $ "failed") (-1171 |#1| |#2|))) (-15 -2279 ($ (-608 |#1|) (-608 |#1|))) (-15 -2279 ($ (-608 |#1|) $)) (-15 -2279 ($ $ (-608 |#1|)))))
+((-2508 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 50)) (-4109 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2582 (($ (-1 (-107) |#2|) $) 28)) (-3797 (($ $) 56)) (-3081 (($ $) 63)) (-1749 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 37)) (-1510 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1210 (((-517) |#2| $ (-517)) 61) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 47)) (-3204 (($ (-703) |#2|) 54)) (-2785 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 30)) (-3824 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-3312 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2315 (($ |#2|) 14)) (-3439 (($ $ $ (-517)) 36) (($ |#2| $ (-517)) 34)) (-1985 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 46)) (-1921 (($ $ (-1125 (-517))) 44) (($ $ (-517)) 38)) (-1704 (($ $ $ (-517)) 60)) (-2453 (($ $) 58)) (-1596 (((-107) $ $) 65)))
+(((-602 |#1| |#2|) (-10 -8 (-15 -2315 (|#1| |#2|)) (-15 -1921 (|#1| |#1| (-517))) (-15 -1921 (|#1| |#1| (-1125 (-517)))) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3439 (|#1| |#2| |#1| (-517))) (-15 -3439 (|#1| |#1| |#1| (-517))) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -3824 (|#1| |#1| |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -3797 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3204 (|#1| (-703) |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|))) (-603 |#2|) (-1112)) (T -602))
+NIL
+(-10 -8 (-15 -2315 (|#1| |#2|)) (-15 -1921 (|#1| |#1| (-517))) (-15 -1921 (|#1| |#1| (-1125 (-517)))) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3439 (|#1| |#2| |#1| (-517))) (-15 -3439 (|#1| |#1| |#1| (-517))) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -3824 (|#1| |#1| |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -3797 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3204 (|#1| (-703) |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-3351 (((-1163) $ (-517) (-517)) 97 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-2508 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-4109 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4196)))) (-2149 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 117 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) 129)) (-2317 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4195)))) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-3797 (($ $) 144 (|has| $ (-6 -4196)))) (-1894 (($ $) 134)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-3081 (($ $) 131 (|has| |#1| (-1006)))) (-2446 (($ $) 99 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 130 (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) 125)) (-1423 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4195))) (($ |#1| $) 100 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2750 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1210 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1006))) (((-517) |#1| $) 138 (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) 137)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) 108)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 95 (|has| (-517) (-779)))) (-3480 (($ $ $) 147 (|has| |#1| (-779)))) (-2785 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3824 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 94 (|has| (-517) (-779)))) (-4095 (($ $ $) 148 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2315 (($ |#1|) 122)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-3439 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-1734 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1449 (((-583 (-517)) $) 92)) (-3413 (((-107) (-517) $) 91)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2837 (($ $ |#1|) 96 (|has| $ (-6 -4196)))) (-2611 (((-107) $) 84)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 90)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1125 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3868 (((-517) $ $) 44)) (-1921 (($ $ (-1125 (-517))) 124) (($ $ (-517)) 123)) (-3779 (($ $ (-1125 (-517))) 114) (($ $ (-517)) 113)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 143 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 107)) (-3495 (($ $ $) 61) (($ $ |#1|) 60)) (-4117 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 152 (|has| |#1| (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-603 |#1|) (-1189) (-1112)) (T -603))
+((-2315 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1112)))))
+(-13 (-1051 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -2315 ($ |t#1|))))
+(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-929 |#1|) . T) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1051 |#1|) . T) ((-1112) . T) ((-1146 |#1|) . T))
+((-1993 (((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-583 (-583 |#1|)) (-583 (-1158 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-623 |#1|) (-583 (-1158 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-583 (-583 |#1|)) (-1158 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)) 13)) (-3778 (((-703) (-623 |#1|) (-1158 |#1|)) 29)) (-3454 (((-3 (-1158 |#1|) "failed") (-623 |#1|) (-1158 |#1|)) 23)) (-1432 (((-107) (-623 |#1|) (-1158 |#1|)) 26)))
+(((-604 |#1|) (-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|))) (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-583 (-583 |#1|)) (-1158 |#1|))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-623 |#1|) (-583 (-1158 |#1|)))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-583 (-583 |#1|)) (-583 (-1158 |#1|)))) (-15 -3454 ((-3 (-1158 |#1|) "failed") (-623 |#1|) (-1158 |#1|))) (-15 -1432 ((-107) (-623 |#1|) (-1158 |#1|))) (-15 -3778 ((-703) (-623 |#1|) (-1158 |#1|)))) (-333)) (T -604))
+((-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-3454 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1158 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1158 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1158 *5)))))
+(-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|))) (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-583 (-583 |#1|)) (-1158 |#1|))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-623 |#1|) (-583 (-1158 |#1|)))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-583 (-583 |#1|)) (-583 (-1158 |#1|)))) (-15 -3454 ((-3 (-1158 |#1|) "failed") (-623 |#1|) (-1158 |#1|))) (-15 -1432 ((-107) (-623 |#1|) (-1158 |#1|))) (-15 -3778 ((-703) (-623 |#1|) (-1158 |#1|))))
+((-1993 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|) 45)) (-3778 (((-703) |#4| |#3|) 17)) (-3454 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1432 (((-107) |#4| |#3|) 13)))
+(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|)) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3454 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1432 ((-107) |#4| |#3|)) (-15 -3778 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4196))) (-13 (-343 |#1|) (-10 -7 (-6 -4196))) (-621 |#1| |#2| |#3|)) (T -605))
+((-3778 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-1432 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3454 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4196)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1993 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3700 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1993 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|)) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3454 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1432 ((-107) |#4| |#3|)) (-15 -3778 ((-703) |#4| |#3|)))
+((-1296 (((-2 (|:| |particular| (-3 (-1158 (-377 |#4|)) "failed")) (|:| -3700 (-583 (-1158 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 45)))
+(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1296 ((-2 (|:| |particular| (-3 (-1158 (-377 |#4|)) "failed")) (|:| -3700 (-583 (-1158 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -606))
+((-1296 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 (-377 *8)) "failed")) (|:| -3700 (-583 (-1158 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1296 ((-2 (|:| |particular| (-3 (-1158 (-377 |#4|)) "failed")) (|:| -3700 (-583 (-1158 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1991 ((|#2| $) NIL)) (-1912 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#2|))) NIL) (((-1158 (-623 |#2|)) (-1158 $)) NIL)) (-1256 (((-107) $) NIL)) (-4026 (((-1158 $)) 37)) (-3443 (((-107) $ (-703)) NIL)) (-1634 (($ |#2|) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) NIL (|has| |#2| (-278)))) (-1397 (((-214 |#1| |#2|) $ (-517)) NIL)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1745 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2998 (((-623 |#2|)) NIL) (((-623 |#2|) (-1158 $)) NIL)) (-2496 ((|#2| $) NIL)) (-1793 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1158 $)) NIL)) (-3071 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-3928 (((-1073 (-876 |#2|))) NIL (|has| |#2| (-333)))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#2| $) NIL)) (-1363 (((-1073 |#2|) $) NIL (|has| |#2| (-509)))) (-3708 ((|#2|) NIL) ((|#2| (-1158 $)) NIL)) (-2740 (((-1073 |#2|) $) NIL)) (-2889 (((-107)) NIL)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) NIL)) (-3539 (($ (-1158 |#2|)) NIL) (($ (-1158 |#2|) (-1158 $)) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3778 (((-703) $) NIL (|has| |#2| (-509))) (((-845)) 38)) (-2557 ((|#2| $ (-517) (-517)) NIL)) (-3874 (((-107)) NIL)) (-1768 (($ $ (-845)) NIL)) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL)) (-3850 (((-703) $) NIL (|has| |#2| (-509)))) (-1671 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1409 (((-703) $) NIL)) (-3544 (((-107)) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#2| $) NIL (|has| |#2| (-6 (-4197 "*"))))) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#2|))) NIL)) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-583 (-583 |#2|)) $) NIL)) (-4016 (((-107)) NIL)) (-1627 (((-107)) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-3277 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1830 (((-623 |#2|)) NIL) (((-623 |#2|) (-1158 $)) NIL)) (-2002 ((|#2| $) NIL)) (-4044 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1158 $)) NIL)) (-2680 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-3221 (((-1073 (-876 |#2|))) NIL (|has| |#2| (-333)))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#2| $) NIL)) (-3556 (((-1073 |#2|) $) NIL (|has| |#2| (-509)))) (-1274 ((|#2|) NIL) ((|#2| (-1158 $)) NIL)) (-3570 (((-1073 |#2|) $) NIL)) (-1878 (((-107)) NIL)) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL)) (-4102 (((-107)) NIL)) (-2032 (((-107)) NIL)) (-2137 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) NIL)) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-2042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1455 ((|#2| $) NIL)) (-4025 (($ (-583 |#2|)) NIL)) (-1974 (((-107) $) NIL)) (-1298 (((-214 |#1| |#2|) $) NIL)) (-2533 ((|#2| $) NIL (|has| |#2| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-1372 (((-623 |#2|) (-1158 $)) NIL) (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $ (-1158 $)) 25)) (-3367 (($ (-1158 |#2|)) NIL) (((-1158 |#2|) $) NIL)) (-3861 (((-583 (-876 |#2|))) NIL) (((-583 (-876 |#2|)) (-1158 $)) NIL)) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL)) (-2295 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) 36)) (-3741 (((-583 (-1158 |#2|))) NIL (|has| |#2| (-509)))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL)) (-2365 (($ (-623 |#2|) $) NIL)) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL)) (-1901 (((-107)) NIL)) (-1555 (((-107)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-607 |#1| |#2|) (-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-845) (-156)) (T -607))
+NIL
+(-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|))
+((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) NIL)) (-3302 (($ $) 51)) (-2240 (((-107) $) NIL)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3549 (((-3 $ "failed") (-751 |#1|)) 23)) (-1246 (((-107) (-751 |#1|)) 15)) (-3424 (($ (-751 |#1|)) 24)) (-4105 (((-107) $ $) 29)) (-3728 (((-845) $) 36)) (-3287 (($ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3896 (((-583 $) (-751 |#1|)) 17)) (-2262 (((-787) $) 42) (($ |#1|) 33) (((-751 |#1|) $) 38) (((-612 |#1|) $) 43)) (-2036 (((-57 (-583 $)) (-583 |#1|) (-845)) 56)) (-3635 (((-583 $) (-583 |#1|) (-845)) 58)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 52)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 37)))
+(((-608 |#1|) (-13 (-779) (-955 |#1|) (-10 -8 (-15 -2240 ((-107) $)) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ((-612 |#1|) $)) (-15 -3896 ((-583 $) (-751 |#1|))) (-15 -1246 ((-107) (-751 |#1|))) (-15 -3424 ($ (-751 |#1|))) (-15 -3549 ((-3 $ "failed") (-751 |#1|))) (-15 -3375 ((-583 |#1|) $)) (-15 -2036 ((-57 (-583 $)) (-583 |#1|) (-845))) (-15 -3635 ((-583 $) (-583 |#1|) (-845))))) (-779)) (T -608))
+((-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3549 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(-13 (-779) (-955 |#1|) (-10 -8 (-15 -2240 ((-107) $)) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ((-612 |#1|) $)) (-15 -3896 ((-583 $) (-751 |#1|))) (-15 -1246 ((-107) (-751 |#1|))) (-15 -3424 ($ (-751 |#1|))) (-15 -3549 ((-3 $ "failed") (-751 |#1|))) (-15 -3375 ((-583 |#1|) $)) (-15 -2036 ((-57 (-583 $)) (-583 |#1|) (-845))) (-15 -3635 ((-583 $) (-583 |#1|) (-845)))))
+((-3112 ((|#2| $) 76)) (-1529 (($ $) 96)) (-3443 (((-107) $ (-703)) 26)) (-2429 (($ $) 85) (($ $ (-703)) 88)) (-1655 (((-107) $) 97)) (-1823 (((-583 $) $) 72)) (-1700 (((-107) $ $) 71)) (-2266 (((-107) $ (-703)) 24)) (-3531 (((-517) $) 46)) (-1969 (((-517) $) 45)) (-2328 (((-107) $ (-703)) 22)) (-3834 (((-107) $) 74)) (-1447 ((|#2| $) 89) (($ $ (-703)) 92)) (-1734 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-1449 (((-583 (-517)) $) 44)) (-3413 (((-107) (-517) $) 42)) (-2420 ((|#2| $) NIL) (($ $ (-703)) 84)) (-3175 (($ $ (-517)) 100)) (-2611 (((-107) $) 99)) (-3843 (((-107) (-1 (-107) |#2|) $) 32)) (-2862 (((-583 |#2|) $) 33)) (-2612 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1125 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-3868 (((-517) $ $) 70)) (-3779 (($ $ (-1125 (-517))) 57) (($ $ (-517)) 51)) (-1414 (((-107) $) 66)) (-2074 (($ $) 81)) (-2792 (((-703) $) 80)) (-2736 (($ $) 79)) (-2279 (($ (-583 |#2|)) 37)) (-2384 (($ $) 101)) (-3234 (((-583 $) $) 69)) (-3224 (((-107) $ $) 68)) (-1272 (((-107) (-1 (-107) |#2|) $) 31)) (-1572 (((-107) $ $) 18)) (-3573 (((-703) $) 29)))
+(((-609 |#1| |#2|) (-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-517))) (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2862 ((-583 |#2|) |#1|)) (-15 -3413 ((-107) (-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -1969 ((-517) |#1|)) (-15 -3531 ((-517) |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -3868 ((-517) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703)))) (-610 |#2|) (-1112)) (T -609))
+NIL
+(-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-517))) (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2862 ((-583 |#2|) |#1|)) (-15 -3413 ((-107) (-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -1969 ((-517) |#1|)) (-15 -3531 ((-517) |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -3868 ((-517) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-3351 (((-1163) $ (-517) (-517)) 97 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 117 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 102)) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-2314 (($ $) 124)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-2446 (($ $) 99 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 100 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 103)) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2750 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1813 (((-703) $) 123)) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) 108)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 95 (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 94 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3619 (($ $) 126)) (-2217 (((-107) $) 127)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-1734 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1449 (((-583 (-517)) $) 92)) (-3413 (((-107) (-517) $) 91)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1839 ((|#1| $) 125)) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2837 (($ $ |#1|) 96 (|has| $ (-6 -4196)))) (-3175 (($ $ (-517)) 122)) (-2611 (((-107) $) 84)) (-3500 (((-107) $) 128)) (-3847 (((-107) $) 129)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 90)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1125 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3868 (((-517) $ $) 44)) (-3779 (($ $ (-1125 (-517))) 114) (($ $ (-517)) 113)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 107)) (-3495 (($ $ $) 61 (|has| $ (-6 -4196))) (($ $ |#1|) 60 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2384 (($ $) 121)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-610 |#1|) (-1189) (-1112)) (T -610))
+((-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-3619 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) (-2314 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))))
+(-13 (-1051 |t#1|) (-10 -8 (-15 -1423 ($ (-1 (-107) |t#1|) $)) (-15 -2317 ($ (-1 (-107) |t#1|) $)) (-15 -3847 ((-107) $)) (-15 -3500 ((-107) $)) (-15 -2217 ((-107) $)) (-15 -3619 ($ $)) (-15 -1839 (|t#1| $)) (-15 -2314 ($ $)) (-15 -1813 ((-703) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1051 |#1|) . T) ((-1112) . T) ((-1146 |#1|) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1196 (($ (-703) (-703) (-703)) 34 (|has| |#1| (-964)))) (-3443 (((-107) $ (-703)) NIL)) (-1756 ((|#1| $ (-703) (-703) (-703) |#1|) 29)) (-3038 (($) NIL T CONST)) (-2324 (($ $ $) 38 (|has| |#1| (-964)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-4030 (((-1158 (-703)) $) 10)) (-3236 (($ (-1077) $ $) 24)) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1951 (($ (-703)) 36 (|has| |#1| (-964)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-703) (-703) (-703)) 27)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2279 (($ (-583 (-583 (-583 |#1|)))) 45)) (-2262 (($ (-881 (-881 (-881 |#1|)))) 17) (((-881 (-881 (-881 |#1|))) $) 14) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-964)) (PROGN (-15 -1196 ($ (-703) (-703) (-703))) (-15 -1951 ($ (-703))) (-15 -2324 ($ $ $))) |%noBranch|) (-15 -2279 ($ (-583 (-583 (-583 |#1|))))) (-15 -2612 (|#1| $ (-703) (-703) (-703))) (-15 -1756 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2262 ($ (-881 (-881 (-881 |#1|))))) (-15 -2262 ((-881 (-881 (-881 |#1|))) $)) (-15 -3236 ($ (-1077) $ $)) (-15 -4030 ((-1158 (-703)) $)))) (-1006)) (T -611))
+((-1196 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006)))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-964)) (-4 *2 (-1006)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1006)) (-5 *1 (-611 *3)))) (-2612 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006)))) (-1756 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-4 *3 (-1006)) (-5 *1 (-611 *3)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1006)))) (-3236 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-611 *3)) (-4 *3 (-1006)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1158 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1006)))))
+(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-964)) (PROGN (-15 -1196 ($ (-703) (-703) (-703))) (-15 -1951 ($ (-703))) (-15 -2324 ($ $ $))) |%noBranch|) (-15 -2279 ($ (-583 (-583 (-583 |#1|))))) (-15 -2612 (|#1| $ (-703) (-703) (-703))) (-15 -1756 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2262 ($ (-881 (-881 (-881 |#1|))))) (-15 -2262 ((-881 (-881 (-881 |#1|))) $)) (-15 -3236 ($ (-1077) $ $)) (-15 -4030 ((-1158 (-703)) $))))
+((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) 14)) (-3302 (($ $) 18)) (-2240 (((-107) $) 19)) (-3220 (((-3 |#1| "failed") $) 22)) (-3402 ((|#1| $) 20)) (-2429 (($ $) 36)) (-2833 (($ $) 24)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-4105 (((-107) $ $) 42)) (-3728 (((-845) $) 38)) (-3287 (($ $) 17)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 ((|#1| $) 35)) (-2262 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 12)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 40)) (* (($ $ $) 34)))
+(((-612 |#1|) (-13 (-779) (-955 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2420 (|#1| $)) (-15 -3287 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2833 ($ $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3302 ($ $)) (-15 -3375 ((-583 |#1|) $)))) (-779)) (T -612))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2420 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-955 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2420 (|#1| $)) (-15 -3287 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2833 ($ $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3302 ($ $)) (-15 -3375 ((-583 |#1|) $))))
+((-2722 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-3827 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
+(((-613 |#1|) (-10 -7 (-15 -3827 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2722 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1006)) (T -613))
+((-2722 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1006)) (-5 *1 (-613 *2)))) (-3827 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1006)) (-5 *1 (-613 *2)))))
+(-10 -7 (-15 -3827 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2722 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
+((-1883 ((|#2| |#1| |#2|) 9)) (-1867 ((|#1| |#1| |#2|) 8)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -1867 (|#1| |#1| |#2|)) (-15 -1883 (|#2| |#1| |#2|))) (-1006) (-1006)) (T -614))
+((-1883 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(-10 -7 (-15 -1867 (|#1| |#1| |#2|)) (-15 -1883 (|#2| |#1| |#2|)))
+((-3527 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -3527 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1006) (-1006) (-1006)) (T -615))
+((-3527 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)) (-5 *1 (-615 *5 *6 *2)))))
+(-10 -7 (-15 -3527 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2722 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3579 (((-1 |#1|) |#1|) 8)) (-3179 ((|#1| |#1|) 16)) (-2711 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2262 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
+(((-616 |#1|) (-10 -7 (-15 -3579 ((-1 |#1|) |#1|)) (-15 -2262 ((-1 |#1|) |#1|)) (-15 -2711 (|#1| (-1 |#1| |#1|))) (-15 -2711 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3179 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2722 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1006)) (T -616))
+((-2722 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1006)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1006)) (-5 *1 (-616 *4)))) (-3179 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1006)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1006)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1006)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006)))) (-3579 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006)))))
+(-10 -7 (-15 -3579 ((-1 |#1|) |#1|)) (-15 -2262 ((-1 |#1|) |#1|)) (-15 -2711 (|#1| (-1 |#1| |#1|))) (-15 -2711 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3179 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2722 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
+((-3973 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3542 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1373 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3319 (((-1 |#2| |#1|) |#2|) 11)))
+(((-617 |#1| |#2|) (-10 -7 (-15 -3319 ((-1 |#2| |#1|) |#2|)) (-15 -3542 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1373 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3973 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1006) (-1006)) (T -617))
+((-3973 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1006)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-3319 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1006)) (-4 *3 (-1006)))))
+(-10 -7 (-15 -3319 ((-1 |#2| |#1|) |#2|)) (-15 -3542 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1373 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3973 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3784 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3088 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3856 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1574 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1208 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -3088 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3856 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1574 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1208 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3784 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1006) (-1006) (-1006)) (T -618))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-1208 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1006)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1006)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1006)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(-10 -7 (-15 -3088 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3856 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1574 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1208 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3784 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-1510 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3312 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3312 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1510 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-964) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-964) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
+((-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-964)) (-4 *2 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-964)) (-4 *8 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-964)) (-4 *8 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
+(-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3312 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1510 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3904 (($ (-703) (-703)) 32)) (-2688 (($ $ $) 55)) (-1911 (($ |#3|) 51) (($ $) 52)) (-1912 (((-107) $) 27)) (-1393 (($ $ (-517) (-517)) 57)) (-3632 (($ $ (-517) (-517)) 58)) (-3031 (($ $ (-517) (-517) (-517) (-517)) 62)) (-1281 (($ $) 53)) (-1256 (((-107) $) 14)) (-3382 (($ $ (-517) (-517) $) 63)) (-2436 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 61)) (-1634 (($ (-703) |#2|) 37)) (-2362 (($ (-583 (-583 |#2|))) 35)) (-3468 (((-583 (-583 |#2|)) $) 56)) (-3095 (($ $ $) 54)) (-2333 (((-3 $ "failed") $ |#2|) 90)) (-2612 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 60)) (-4025 (($ (-583 |#2|)) 39) (($ (-583 $)) 41)) (-1974 (((-107) $) 24)) (-2262 (($ |#4|) 46) (((-787) $) NIL)) (-3007 (((-107) $) 29)) (-1692 (($ $ |#2|) 92)) (-1680 (($ $ $) 67) (($ $) 70)) (-1666 (($ $ $) 65)) (** (($ $ (-703)) 79) (($ $ (-517)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-517) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#2|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3031 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3632 (|#1| |#1| (-517) (-517))) (-15 -1393 (|#1| |#1| (-517) (-517))) (-15 -2436 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2612 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3468 ((-583 (-583 |#2|)) |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -1281 (|#1| |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -1911 (|#1| |#3|)) (-15 -2262 (|#1| |#4|)) (-15 -4025 (|#1| (-583 |#1|))) (-15 -4025 (|#1| (-583 |#2|))) (-15 -1634 (|#1| (-703) |#2|)) (-15 -2362 (|#1| (-583 (-583 |#2|)))) (-15 -3904 (|#1| (-703) (-703))) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517)))) (-621 |#2| |#3| |#4|) (-964) (-343 |#2|) (-343 |#2|)) (T -620))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#2|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3031 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3632 (|#1| |#1| (-517) (-517))) (-15 -1393 (|#1| |#1| (-517) (-517))) (-15 -2436 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2612 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3468 ((-583 (-583 |#2|)) |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -1281 (|#1| |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -1911 (|#1| |#3|)) (-15 -2262 (|#1| |#4|)) (-15 -4025 (|#1| (-583 |#1|))) (-15 -4025 (|#1| (-583 |#2|))) (-15 -1634 (|#1| (-703) |#2|)) (-15 -2362 (|#1| (-583 (-583 |#2|)))) (-15 -3904 (|#1| (-703) (-703))) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) 97)) (-2688 (($ $ $) 87)) (-1911 (($ |#2|) 91) (($ $) 90)) (-1912 (((-107) $) 99)) (-1393 (($ $ (-517) (-517)) 83)) (-3632 (($ $ (-517) (-517)) 82)) (-3031 (($ $ (-517) (-517) (-517) (-517)) 81)) (-1281 (($ $) 89)) (-1256 (((-107) $) 101)) (-3443 (((-107) $ (-703)) 8)) (-3382 (($ $ (-517) (-517) $) 80)) (-2436 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-3911 (($ $ (-517) |#2|) 42)) (-3101 (($ $ (-517) |#3|) 41)) (-1634 (($ (-703) |#1|) 95)) (-3038 (($) 7 T CONST)) (-1197 (($ $) 67 (|has| |#1| (-278)))) (-1397 ((|#2| $ (-517)) 46)) (-3778 (((-703) $) 66 (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) 43)) (-2557 ((|#1| $ (-517) (-517)) 48)) (-1525 (((-583 |#1|) $) 30)) (-3850 (((-703) $) 65 (|has| |#1| (-509)))) (-1671 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1409 (((-703) $) 51)) (-3204 (($ (-703) (-703) |#1|) 57)) (-1422 (((-703) $) 50)) (-2266 (((-107) $ (-703)) 9)) (-1779 ((|#1| $) 62 (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) 55)) (-2970 (((-517) $) 53)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 54)) (-1718 (((-517) $) 52)) (-2362 (($ (-583 (-583 |#1|))) 96)) (-2737 (($ (-1 |#1| |#1|) $) 34)) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3468 (((-583 (-583 |#1|)) $) 86)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-3095 (($ $ $) 88)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) 56)) (-2333 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-4025 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1974 (((-107) $) 100)) (-2533 ((|#1| $) 63 (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2295 ((|#3| $ (-517)) 45)) (-2262 (($ |#3|) 92) (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-3007 (((-107) $) 98)) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1680 (($ $ $) 78) (($ $) 77)) (-1666 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-621 |#1| |#2| |#3|) (-1189) (-964) (-343 |t#1|) (-343 |t#1|)) (T -621))
+((-1256 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3904 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2362 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-1911 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-1911 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1281 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3095 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2688 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-2612 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2436 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1393 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3632 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3031 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3382 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-964)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-1197 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-2137 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -1256 ((-107) $)) (-15 -1974 ((-107) $)) (-15 -1912 ((-107) $)) (-15 -3007 ((-107) $)) (-15 -3904 ($ (-703) (-703))) (-15 -2362 ($ (-583 (-583 |t#1|)))) (-15 -1634 ($ (-703) |t#1|)) (-15 -4025 ($ (-583 |t#1|))) (-15 -4025 ($ (-583 $))) (-15 -2262 ($ |t#3|)) (-15 -1911 ($ |t#2|)) (-15 -1911 ($ $)) (-15 -1281 ($ $)) (-15 -3095 ($ $ $)) (-15 -2688 ($ $ $)) (-15 -3468 ((-583 (-583 |t#1|)) $)) (-15 -2612 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2436 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -1393 ($ $ (-517) (-517))) (-15 -3632 ($ $ (-517) (-517))) (-15 -3031 ($ $ (-517) (-517) (-517) (-517))) (-15 -3382 ($ $ (-517) (-517) $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -1680 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2333 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -1692 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-278)) (-15 -1197 ($ $)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3778 ((-703) $)) (-15 -3850 ((-703) $)) (-15 -1671 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4197 "*"))) (PROGN (-15 -2533 (|t#1| $)) (-15 -1779 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2137 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-55 |#1| |#2| |#3|) . T) ((-1112) . T))
+((-1197 ((|#4| |#4|) 68 (|has| |#1| (-278)))) (-3778 (((-703) |#4|) 70 (|has| |#1| (-509)))) (-3850 (((-703) |#4|) 72 (|has| |#1| (-509)))) (-1671 (((-583 |#3|) |#4|) 79 (|has| |#1| (-509)))) (-1807 (((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 96 (|has| |#1| (-278)))) (-1779 ((|#1| |#4|) 34)) (-1799 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-509)))) (-2137 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-333)))) (-3966 ((|#4| |#4|) 55 (|has| |#1| (-509)))) (-1821 ((|#4| |#4| |#1| (-517) (-517)) 42)) (-3047 ((|#4| |#4| (-517) (-517)) 37)) (-3110 ((|#4| |#4| |#1| (-517) (-517)) 47)) (-2533 ((|#1| |#4|) 74)) (-1368 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-509)))))
+(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2533 (|#1| |#4|)) (-15 -1779 (|#1| |#4|)) (-15 -3047 (|#4| |#4| (-517) (-517))) (-15 -1821 (|#4| |#4| |#1| (-517) (-517))) (-15 -3110 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (-15 -1671 ((-583 |#3|) |#4|)) (-15 -3966 (|#4| |#4|)) (-15 -1799 ((-3 |#4| "failed") |#4|)) (-15 -1368 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1197 (|#4| |#4|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
+((-2137 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1807 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-1197 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1799 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1671 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3110 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-1821 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3047 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-1779 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-2533 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
+(-10 -7 (-15 -2533 (|#1| |#4|)) (-15 -1779 (|#1| |#4|)) (-15 -3047 (|#4| |#4| (-517) (-517))) (-15 -1821 (|#4| |#4| |#1| (-517) (-517))) (-15 -3110 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (-15 -1671 ((-583 |#3|) |#4|)) (-15 -3966 (|#4| |#4|)) (-15 -1799 ((-3 |#4| "failed") |#4|)) (-15 -1368 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1197 (|#4| |#4|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) 45)) (-2688 (($ $ $) NIL)) (-1911 (($ (-1158 |#1|)) NIL) (($ $) NIL)) (-1912 (((-107) $) NIL)) (-1393 (($ $ (-517) (-517)) 12)) (-3632 (($ $ (-517) (-517)) NIL)) (-3031 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1281 (($ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3382 (($ $ (-517) (-517) $) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3911 (($ $ (-517) (-1158 |#1|)) NIL)) (-3101 (($ $ (-517) (-1158 |#1|)) NIL)) (-1634 (($ (-703) |#1|) 22)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 30 (|has| |#1| (-278)))) (-1397 (((-1158 |#1|) $ (-517)) NIL)) (-3778 (((-703) $) 32 (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) 50)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-3850 (((-703) $) 34 (|has| |#1| (-509)))) (-1671 (((-583 (-1158 |#1|)) $) 37 (|has| |#1| (-509)))) (-1409 (((-703) $) 20)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) 21)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#1| $) 28 (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) 9)) (-2970 (((-517) $) 10)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) 11)) (-1718 (((-517) $) 46)) (-2362 (($ (-583 (-583 |#1|))) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3468 (((-583 (-583 |#1|)) $) 58)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) 41 (|has| |#1| (-333)))) (-3095 (($ $ $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-4025 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1158 |#1|)) 51)) (-1974 (((-107) $) NIL)) (-2533 ((|#1| $) 26 (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2295 (((-1158 |#1|) $ (-517)) NIL)) (-2262 (($ (-1158 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 44 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1158 |#1|) $ (-1158 |#1|)) NIL) (((-1158 |#1|) (-1158 |#1|) $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-623 |#1|) (-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 -4025 ($ (-1158 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 $ "failed") $)) |%noBranch|))) (-964)) (T -623))
+((-2137 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-964)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-623 *3)))))
+(-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 -4025 ($ (-1158 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 $ "failed") $)) |%noBranch|)))
+((-3459 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-3977 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-2148 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-2296 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-2570 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-1831 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-3789 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
+(((-624 |#1|) (-10 -7 (-15 -3789 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2296 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1831 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -3977 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3459 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2148 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-964)) (T -624))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-624 *4)))) (-2148 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-624 *4)))) (-3459 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-3977 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-1831 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-2570 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-2296 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-3789 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
+(-10 -7 (-15 -3789 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2296 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1831 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -3977 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3459 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2148 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
+((-3989 ((|#2| |#2| |#4|) 25)) (-2138 (((-623 |#2|) |#3| |#4|) 31)) (-2492 (((-623 |#2|) |#2| |#4|) 30)) (-1323 (((-1158 |#2|) |#2| |#4|) 16)) (-2110 ((|#2| |#3| |#4|) 24)) (-2963 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-1668 (((-623 |#2|) |#2| |#4| (-703)) 37)))
+(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1323 ((-1158 |#2|) |#2| |#4|)) (-15 -2110 (|#2| |#3| |#4|)) (-15 -3989 (|#2| |#2| |#4|)) (-15 -2492 ((-623 |#2|) |#2| |#4|)) (-15 -1668 ((-623 |#2|) |#2| |#4| (-703))) (-15 -2138 ((-623 |#2|) |#3| |#4|)) (-15 -2963 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1006) (-824 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4195)))) (T -625))
+((-2963 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *7 (-824 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195)))))) (-2138 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *6 (-824 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *3 (-824 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195)))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))) (-3989 (*1 *2 *2 *3) (-12 (-4 *4 (-1006)) (-4 *2 (-824 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4195)))))) (-2110 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *2 (-824 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))) (-1323 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-1158 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))))
+(-10 -7 (-15 -1323 ((-1158 |#2|) |#2| |#4|)) (-15 -2110 (|#2| |#3| |#4|)) (-15 -3989 (|#2| |#2| |#4|)) (-15 -2492 ((-623 |#2|) |#2| |#4|)) (-15 -1668 ((-623 |#2|) |#2| |#4| (-703))) (-15 -2138 ((-623 |#2|) |#3| |#4|)) (-15 -2963 ((-623 |#2|) |#3| |#4| (-703) (-703))))
+((-1955 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-1703 ((|#1| (-623 |#2|)) 9)) (-3253 (((-623 |#1|) (-623 |#2|)) 16)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -1703 (|#1| (-623 |#2|))) (-15 -3253 ((-623 |#1|) (-623 |#2|))) (-15 -1955 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-912 |#1|)) (T -626))
+((-1955 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
+(-10 -7 (-15 -1703 (|#1| (-623 |#2|))) (-15 -3253 ((-623 |#1|) (-623 |#2|))) (-15 -1955 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1278 (((-623 (-632))) NIL) (((-623 (-632)) (-1158 $)) NIL)) (-1991 (((-632) $) NIL)) (-1636 (($ $) NIL (|has| (-632) (-1098)))) (-1482 (($ $) NIL (|has| (-632) (-1098)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-1322 (($ $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-3306 (((-388 $) $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-3908 (($ $) NIL (-12 (|has| (-632) (-921)) (|has| (-632) (-1098))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-1765 (((-107) $ $) NIL (|has| (-632) (-278)))) (-2390 (((-703)) NIL (|has| (-632) (-338)))) (-1612 (($ $) NIL (|has| (-632) (-1098)))) (-1459 (($ $) NIL (|has| (-632) (-1098)))) (-1659 (($ $) NIL (|has| (-632) (-1098)))) (-1508 (($ $) NIL (|has| (-632) (-1098)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-955 (-377 (-517)))))) (-3402 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-955 (-377 (-517)))))) (-3539 (($ (-1158 (-632))) NIL) (($ (-1158 (-632)) (-1158 $)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2383 (($ $ $) NIL (|has| (-632) (-278)))) (-4028 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1158 $)) NIL)) (-2947 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-632))) (|:| |vec| (-1158 (-632)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-1510 (((-3 $ "failed") (-377 (-1073 (-632)))) NIL (|has| (-632) (-333))) (($ (-1073 (-632))) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3919 (((-632) $) 29)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-3748 (((-107) $) NIL (|has| (-632) (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| (-632) (-338)))) (-2356 (($ $ $) NIL (|has| (-632) (-278)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-4169 (($) NIL (|has| (-632) (-319)))) (-2634 (((-107) $) NIL (|has| (-632) (-319)))) (-2627 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-2022 (((-107) $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-2877 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-973)) (|has| (-632) (-1098))))) (-2102 (($) NIL (|has| (-632) (-1098)))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-632) (-810 (-349)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-632) (-810 (-517))))) (-3250 (((-765 (-845)) $) NIL (|has| (-632) (-319))) (((-845) $) NIL (|has| (-632) (-319)))) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (-12 (|has| (-632) (-921)) (|has| (-632) (-1098))))) (-3522 (((-632) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-1914 (((-1073 (-632)) $) NIL (|has| (-632) (-333)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 (-632) (-632)) $) NIL)) (-4161 (((-845) $) NIL (|has| (-632) (-338)))) (-1232 (($ $) NIL (|has| (-632) (-1098)))) (-1497 (((-1073 (-632)) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| (-632) (-333)))) (-2578 (($) NIL (|has| (-632) (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| (-632) (-338)))) (-1583 (($) NIL)) (-3931 (((-632) $) 31)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| (-632) (-278)))) (-2361 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-632) (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-3896 (((-388 $) $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| (-632) (-278)))) (-2333 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3898 (($ $) NIL (|has| (-632) (-1098)))) (-3552 (($ $ (-1077) (-632)) NIL (|has| (-632) (-478 (-1077) (-632)))) (($ $ (-583 (-1077)) (-583 (-632))) NIL (|has| (-632) (-478 (-1077) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3388 (((-703) $) NIL (|has| (-632) (-278)))) (-2612 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| (-632) (-278)))) (-3115 (((-632)) NIL) (((-632) (-1158 $)) NIL)) (-3667 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-2042 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-3248 (((-623 (-632)) (-1158 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2819 (((-1073 (-632))) NIL)) (-1670 (($ $) NIL (|has| (-632) (-1098)))) (-1521 (($ $) NIL (|has| (-632) (-1098)))) (-3718 (($) NIL (|has| (-632) (-319)))) (-1647 (($ $) NIL (|has| (-632) (-1098)))) (-1495 (($ $) NIL (|has| (-632) (-1098)))) (-1622 (($ $) NIL (|has| (-632) (-1098)))) (-1471 (($ $) NIL (|has| (-632) (-1098)))) (-1372 (((-623 (-632)) (-1158 $)) NIL) (((-1158 (-632)) $) NIL) (((-623 (-632)) (-1158 $) (-1158 $)) NIL) (((-1158 (-632)) $ (-1158 $)) NIL)) (-3367 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-940))) (((-153 (-349)) $) NIL (|has| (-632) (-940))) (((-816 (-349)) $) NIL (|has| (-632) (-558 (-816 (-349))))) (((-816 (-517)) $) NIL (|has| (-632) (-558 (-816 (-517))))) (($ (-1073 (-632))) NIL) (((-1073 (-632)) $) NIL) (($ (-1158 (-632))) NIL) (((-1158 (-632)) $) NIL)) (-1853 (($ $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-833))) (|has| (-632) (-319))))) (-3913 (($ (-632) (-632)) 12)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3786 (|has| (-632) (-955 (-377 (-517)))) (|has| (-632) (-333))))) (-3385 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-833))) (|has| (-632) (-132))))) (-3848 (((-1073 (-632)) $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL)) (-1706 (($ $) NIL (|has| (-632) (-1098)))) (-1564 (($ $) NIL (|has| (-632) (-1098)))) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) NIL (|has| (-632) (-1098)))) (-1536 (($ $) NIL (|has| (-632) (-1098)))) (-3517 (($ $) NIL (|has| (-632) (-1098)))) (-1588 (($ $) NIL (|has| (-632) (-1098)))) (-2842 (((-632) $) NIL (|has| (-632) (-1098)))) (-2815 (($ $) NIL (|has| (-632) (-1098)))) (-1601 (($ $) NIL (|has| (-632) (-1098)))) (-1722 (($ $) NIL (|has| (-632) (-1098)))) (-1577 (($ $) NIL (|has| (-632) (-1098)))) (-1698 (($ $) NIL (|has| (-632) (-1098)))) (-1550 (($ $) NIL (|has| (-632) (-1098)))) (-2829 (($ $) NIL (|has| (-632) (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL (|has| (-632) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1098))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-921)) (|has| (-632) (-1098)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
+(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2262 ($ (-153 (-349)))) (-15 -2262 ($ (-153 (-517)))) (-15 -2262 ($ (-153 (-632)))) (-15 -2262 ($ (-153 (-634)))) (-15 -2262 ((-153 (-349)) $))))) (T -627))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
+(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2262 ($ (-153 (-349)))) (-15 -2262 ($ (-153 (-517)))) (-15 -2262 ($ (-153 (-632)))) (-15 -2262 ($ (-153 (-634)))) (-15 -2262 ((-153 (-349)) $))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 62)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 61)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-628 |#1|) (-1189) (-1006)) (T -628))
+((-3439 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1006)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1006)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1006)) (-5 *2 (-583 (-2 (|:| -1846 *3) (|:| -4140 (-703))))))))
+(-13 (-209 |t#1|) (-10 -8 (-15 -3439 ($ |t#1| $ (-703))) (-15 -3081 ($ $)) (-15 -1907 ((-583 (-2 (|:| -1846 |t#1|) (|:| -4140 (-703)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2690 (((-583 |#1|) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) (-517)) 46)) (-2344 ((|#1| |#1| (-517)) 45)) (-2361 ((|#1| |#1| |#1| (-517)) 35)) (-3896 (((-583 |#1|) |#1| (-517)) 38)) (-3298 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-3496 (((-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) |#1| (-517)) 44)))
+(((-629 |#1|) (-10 -7 (-15 -2361 (|#1| |#1| |#1| (-517))) (-15 -2344 (|#1| |#1| (-517))) (-15 -3896 ((-583 |#1|) |#1| (-517))) (-15 -3496 ((-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) |#1| (-517))) (-15 -2690 ((-583 |#1|) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) (-517))) (-15 -3298 (|#1| |#1| (-517) |#1| (-517)))) (-1134 (-517))) (T -629))
+((-3298 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3896 *5) (|:| -1191 (-517))))) (-5 *4 (-517)) (-4 *5 (-1134 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1191 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1134 *4)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1134 *4)))) (-2344 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))) (-2361 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))))
+(-10 -7 (-15 -2361 (|#1| |#1| |#1| (-517))) (-15 -2344 (|#1| |#1| (-517))) (-15 -3896 ((-583 |#1|) |#1| (-517))) (-15 -3496 ((-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) |#1| (-517))) (-15 -2690 ((-583 |#1|) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) (-517))) (-15 -3298 (|#1| |#1| (-517) |#1| (-517))))
+((-3434 (((-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2008 (((-1037 (-199)) (-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 38) (((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 40) (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 42)) (-4074 (((-1037 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-583 (-236))) NIL)) (-1746 (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 43)))
+(((-630) (-10 -7 (-15 -2008 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -1746 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -4074 ((-1037 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -3434 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
+((-3434 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-867 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-4074 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) (-1746 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) (-2008 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2008 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) (-2008 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))))
+(-10 -7 (-15 -2008 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -1746 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -4074 ((-1037 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -3434 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-3896 (((-388 (-1073 |#4|)) (-1073 |#4|)) 73) (((-388 |#4|) |#4|) 217)))
+(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|)))) (-779) (-725) (-319) (-873 |#3| |#2| |#1|)) (T -631))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4)))))
+(-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 84)) (-2964 (((-517) $) 30)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2147 (($ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-3038 (($) NIL T CONST)) (-3164 (($ $) NIL)) (-3220 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3402 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2383 (($ $ $) 96)) (-3550 (((-3 $ "failed") $) 87)) (-2356 (($ $ $) 95)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3456 (((-845)) 77) (((-845) (-845)) 76)) (-2671 (((-107) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL)) (-3250 (((-517) $) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-3522 (($ $) NIL)) (-2321 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2407 (((-517) (-517)) 81) (((-517)) 82)) (-3480 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-1543 (((-517) (-517)) 79) (((-517)) 80)) (-4095 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-3743 (((-517) $) 16)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 91)) (-2848 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL)) (-2713 (($ $) NIL)) (-3202 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-845)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) 92)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1725 (((-517) $) 22)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 94)) (-3685 (((-845)) NIL) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-1753 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-3367 (((-349) $) NIL) (((-199) $) NIL) (((-816 (-349)) $) NIL)) (-2262 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-1818 (((-703)) 103)) (-3233 (($ (-517) (-517) (-845)) 44)) (-3126 (($ $) NIL)) (-2076 (((-845)) NIL) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-4003 (((-845)) 35) (((-845) (-845)) 78)) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 32 T CONST)) (-3675 (($) 17 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 83)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 101)) (-1692 (($ $ $) 65)) (-1680 (($ $) 99) (($ $ $) 100)) (-1666 (($ $ $) 98)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-632) (-13 (-374) (-357) (-333) (-955 (-349)) (-955 (-377 (-517))) (-134) (-10 -8 (-15 -3456 ((-845) (-845))) (-15 -3456 ((-845))) (-15 -4003 ((-845) (-845))) (-15 -4003 ((-845))) (-15 -1543 ((-517) (-517))) (-15 -1543 ((-517))) (-15 -2407 ((-517) (-517))) (-15 -2407 ((-517))) (-15 -2262 ((-349) $)) (-15 -2262 ($ (-634))) (-15 -3743 ((-517) $)) (-15 -1725 ((-517) $)) (-15 -3233 ($ (-517) (-517) (-845)))))) (T -632))
+((-4003 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3456 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-1543 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2407 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-3233 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-5 *1 (-632)))))
+(-13 (-374) (-357) (-333) (-955 (-349)) (-955 (-377 (-517))) (-134) (-10 -8 (-15 -3456 ((-845) (-845))) (-15 -3456 ((-845))) (-15 -4003 ((-845) (-845))) (-15 -4003 ((-845))) (-15 -1543 ((-517) (-517))) (-15 -1543 ((-517))) (-15 -2407 ((-517) (-517))) (-15 -2407 ((-517))) (-15 -2262 ((-349) $)) (-15 -2262 ($ (-634))) (-15 -3743 ((-517) $)) (-15 -1725 ((-517) $)) (-15 -3233 ($ (-517) (-517) (-845)))))
+((-3574 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 65)) (-1197 (((-623 |#1|) (-623 |#1|) |#1|) 48)) (-2444 (((-623 |#1|) (-623 |#1|) |#1|) 66)) (-2153 (((-623 |#1|) (-623 |#1|)) 49)) (-1807 (((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 64)))
+(((-633 |#1|) (-10 -7 (-15 -2153 ((-623 |#1|) (-623 |#1|))) (-15 -1197 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2444 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3574 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) (-278)) (T -633))
+((-1807 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-3574 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2444 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-1197 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(-10 -7 (-15 -2153 ((-623 |#1|) (-623 |#1|))) (-15 -1197 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2444 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3574 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) 27)) (-3402 (((-517) $) 25)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($ $) NIL) (($) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) NIL)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) NIL)) (-3480 (($ $ $) NIL)) (-3029 (((-845) (-845)) 10) (((-845)) 9)) (-4095 (($ $ $) NIL)) (-2628 (($ $) NIL)) (-3728 (($ $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) NIL)) (-4130 (((-1024) $) NIL) (($ $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL) (($ $ (-703)) NIL)) (-2909 (($ $) NIL)) (-2453 (($ $) NIL)) (-3367 (((-199) $) NIL) (((-349) $) NIL) (((-816 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) NIL)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL) (($ $ (-703)) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-634) (-13 (-357) (-502) (-10 -8 (-15 -3029 ((-845) (-845))) (-15 -3029 ((-845))) (-15 -2262 ((-286 $) (-286 (-517))))))) (T -634))
+((-3029 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634)))) (-3029 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
+(-13 (-357) (-502) (-10 -8 (-15 -3029 ((-845) (-845))) (-15 -3029 ((-845))) (-15 -2262 ((-286 $) (-286 (-517))))))
+((-2523 (((-1 |#4| |#2| |#3|) |#1| (-1077) (-1077)) 19)) (-2385 (((-1 |#4| |#2| |#3|) (-1077)) 12)))
+(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2385 ((-1 |#4| |#2| |#3|) (-1077))) (-15 -2523 ((-1 |#4| |#2| |#3|) |#1| (-1077) (-1077)))) (-558 (-493)) (-1112) (-1112) (-1112)) (T -635))
+((-2523 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)))))
+(-10 -7 (-15 -2385 ((-1 |#4| |#2| |#3|) (-1077))) (-15 -2523 ((-1 |#4| |#2| |#3|) |#1| (-1077) (-1077))))
+((-2105 (((-107) $ $) NIL)) (-1798 (((-1163) $ (-703)) 14)) (-1210 (((-703) $) 12)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 25)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 24)))
+(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2262 ($ |#1|)))) (-1006)) (T -636))
+((-2262 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1006)))))
+(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2262 ($ |#1|))))
+((-3982 (((-1 (-199) (-199) (-199)) |#1| (-1077) (-1077)) 33) (((-1 (-199) (-199)) |#1| (-1077)) 38)))
+(((-637 |#1|) (-10 -7 (-15 -3982 ((-1 (-199) (-199)) |#1| (-1077))) (-15 -3982 ((-1 (-199) (-199) (-199)) |#1| (-1077) (-1077)))) (-558 (-493))) (T -637))
+((-3982 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -3982 ((-1 (-199) (-199)) |#1| (-1077))) (-15 -3982 ((-1 (-199) (-199) (-199)) |#1| (-1077) (-1077))))
+((-2218 (((-1077) |#1| (-1077) (-583 (-1077))) 9) (((-1077) |#1| (-1077) (-1077) (-1077)) 12) (((-1077) |#1| (-1077) (-1077)) 11) (((-1077) |#1| (-1077)) 10)))
+(((-638 |#1|) (-10 -7 (-15 -2218 ((-1077) |#1| (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-583 (-1077))))) (-558 (-493))) (T -638))
+((-2218 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2218 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2218 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2218 (*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -2218 ((-1077) |#1| (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-583 (-1077)))))
+((-2392 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -2392 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1112) (-1112)) (T -639))
+((-2392 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))))
+(-10 -7 (-15 -2392 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3943 (((-1 |#3| |#2|) (-1077)) 11)) (-2523 (((-1 |#3| |#2|) |#1| (-1077)) 21)))
+(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -3943 ((-1 |#3| |#2|) (-1077))) (-15 -2523 ((-1 |#3| |#2|) |#1| (-1077)))) (-558 (-493)) (-1112) (-1112)) (T -640))
+((-2523 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)))))
+(-10 -7 (-15 -3943 ((-1 |#3| |#2|) (-1077))) (-15 -2523 ((-1 |#3| |#2|) |#1| (-1077))))
+((-1475 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1158 (-583 (-1073 |#3|))) |#3|) 59)) (-2204 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 72)) (-2158 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1073 |#4|)) (-1158 (-583 (-1073 |#3|))) |#3|) 32)))
+(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2158 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1073 |#4|)) (-1158 (-583 (-1073 |#3|))) |#3|)) (-15 -2204 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1475 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1158 (-583 (-1073 |#3|))) |#3|))) (-725) (-779) (-278) (-873 |#3| |#1| |#2|)) (T -641))
+((-1475 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1073 *13))) (-5 *3 (-1073 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1158 (-583 (-1073 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-873 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-2204 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1073 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-873 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1073 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1073 *12)))) (-2158 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1073 *11))) (-5 *3 (-1073 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1158 (-583 (-1073 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-873 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2158 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1073 |#4|)) (-1158 (-583 (-1073 |#3|))) |#3|)) (-15 -2204 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1475 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1158 (-583 (-1073 |#3|))) |#3|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 41)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-2059 (($ |#1| (-703)) 39)) (-3942 (((-703) $) 43)) (-2336 ((|#1| $) 42)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 (((-703) $) 44)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-1939 ((|#1| $ (-703)) 40)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-642 |#1|) (-1189) (-964)) (T -642))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964)))))
+(-13 (-964) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1191 ((-703) $)) (-15 -3942 ((-703) $)) (-15 -2336 (|t#1| $)) (-15 -2364 ($ $)) (-15 -1939 (|t#1| $ (-703))) (-15 -2059 ($ |t#1| (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3312 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3312 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1134 |#1|) (-1134 (-377 |#2|)) (-509) (-1134 |#4|) (-1134 (-377 |#5|))) (T -643))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1134 *5)) (-4 *2 (-1134 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1134 (-377 *6))) (-4 *8 (-1134 *7)))))
+(-10 -7 (-15 -3312 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-1510 (($ |#1| |#2|) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 ((|#2| $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1503 (((-3 $ "failed") $ $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
+((-2263 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1510 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1503 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-333) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 30)) (-1335 (((-1158 |#1|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#1|)) NIL)) (-1428 (((-1073 $) $ (-992)) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) NIL (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2390 (((-703)) 47 (|has| |#1| (-338)))) (-1401 (($ $ (-703)) NIL)) (-1861 (($ $ (-703)) NIL)) (-2535 ((|#2| |#2|) 44)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-992) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 34)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1510 (($ |#2|) 42)) (-3550 (((-3 $ "failed") $) 85)) (-2192 (($) 51 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (($ $ $) NIL)) (-1554 (($ $ $) NIL (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1332 (((-881 $)) 79)) (-1760 (($ $ |#1| (-703) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) NIL) (($ (-1073 $) (-992)) NIL)) (-2113 (($ $ (-703)) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 77) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2263 ((|#2|) 45)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3634 (((-1073 |#1|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-1497 ((|#2| $) 41)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) 28)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3593 (($ $) 78 (|has| |#1| (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#1|) NIL) (($ $ (-583 (-992)) (-583 |#1|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 86 (|has| |#1| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1191 (((-703) $) 32) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-3278 (((-881 $)) 36)) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2262 (((-787) $) 61) (($ (-517)) NIL) (($ |#1|) 58) (($ (-992)) NIL) (($ |#2|) 68) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) 63) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 20 T CONST)) (-2477 (((-1158 |#1|) $) 75)) (-1467 (($ (-1158 |#1|)) 50)) (-3675 (($) 8 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2703 (((-1158 |#1|) $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 69)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) 72) (($ $ $) NIL)) (-1666 (($ $ $) 33)) (** (($ $ (-845)) NIL) (($ $ (-703)) 80)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 57) (($ $ $) 74) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-645 |#1| |#2|) (-13 (-1134 |#1|) (-10 -8 (-15 -2535 (|#2| |#2|)) (-15 -2263 (|#2|)) (-15 -1510 ($ |#2|)) (-15 -1497 (|#2| $)) (-15 -2262 ($ |#2|)) (-15 -2477 ((-1158 |#1|) $)) (-15 -1467 ($ (-1158 |#1|))) (-15 -2703 ((-1158 |#1|) $)) (-15 -1332 ((-881 $))) (-15 -3278 ((-881 $))) (IF (|has| |#1| (-319)) (-15 -3593 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|))) (-964) (-1134 |#1|)) (T -645))
+((-2535 (*1 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) (-2263 (*1 *2) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964)))) (-1510 (*1 *1 *2) (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) (-2477 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-1332 (*1 *2) (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-3278 (*1 *2) (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-3593 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-964)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1134 *2)))))
+(-13 (-1134 |#1|) (-10 -8 (-15 -2535 (|#2| |#2|)) (-15 -2263 (|#2|)) (-15 -1510 ($ |#2|)) (-15 -1497 (|#2| $)) (-15 -2262 ($ |#2|)) (-15 -2477 ((-1158 |#1|) $)) (-15 -1467 ($ (-1158 |#1|))) (-15 -2703 ((-1158 |#1|) $)) (-15 -1332 ((-881 $))) (-15 -3278 ((-881 $))) (IF (|has| |#1| (-319)) (-15 -3593 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-2803 ((|#1| $) 13)) (-4130 (((-1024) $) NIL)) (-1725 ((|#2| $) 12)) (-2279 (($ |#1| |#2|) 16)) (-2262 (((-787) $) NIL) (($ (-2 (|:| -2803 |#1|) (|:| -1725 |#2|))) 15) (((-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) $) 14)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 11)))
+(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -1725 (|#2| $)) (-15 -2803 (|#1| $)) (-15 -2262 ($ (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)))) (-15 -2262 ((-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) $)) (-15 -2279 ($ |#1| |#2|)))) (-779) (-1006) (-1 (-107) (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)))) (T -646))
+((-1725 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *2)) (-2 (|:| -2803 *3) (|:| -1725 *2)))))) (-2803 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1006)) (-14 *4 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3)) (-2 (|:| -2803 *2) (|:| -1725 *3)))))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) (-4 *3 (-779)) (-4 *4 (-1006)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1006)) (-14 *5 (-1 (-107) *2 *2)))) (-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1006)) (-14 *4 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3)) (-2 (|:| -2803 *2) (|:| -1725 *3)))))))
+(-13 (-779) (-10 -8 (-15 -1725 (|#2| $)) (-15 -2803 (|#1| $)) (-15 -2262 ($ (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)))) (-15 -2262 ((-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) $)) (-15 -2279 ($ |#1| |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 59)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3402 ((|#1| $) NIL) (((-109) $) 39)) (-3550 (((-3 $ "failed") $) 90)) (-2618 ((|#2| (-109) |#2|) 82)) (-1690 (((-107) $) NIL)) (-1902 (($ |#1| (-331 (-109))) 13)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3364 (($ $ (-1 |#2| |#2|)) 58)) (-3490 (($ $ (-1 |#2| |#2|)) 44)) (-2612 ((|#2| $ |#2|) 32)) (-3736 ((|#1| |#1|) 100 (|has| |#1| (-156)))) (-2262 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 36)) (-1368 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 20 T CONST)) (-3675 (($) 9 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) 48) (($ $ $) NIL)) (-1666 (($ $ $) 73)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
+(((-647 |#1| |#2|) (-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#2| |#2|))) (-15 -3364 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#2| (-109) |#2|)) (-15 -1902 ($ |#1| (-331 (-109)))))) (-964) (-585 |#1|)) (T -647))
+((-1368 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1368 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3736 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-2618 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-964)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-964)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
+(-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#2| |#2|))) (-15 -3364 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#2| (-109) |#2|)) (-15 -1902 ($ |#1| (-331 (-109))))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 33)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ |#1| |#2|) 25)) (-3550 (((-3 $ "failed") $) 47)) (-1690 (((-107) $) 35)) (-2263 ((|#2| $) 12)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 48)) (-4130 (((-1024) $) NIL)) (-1503 (((-3 $ "failed") $ $) 46)) (-2262 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-1818 (((-703)) 28)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 16 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 38)) (-1680 (($ $) 43) (($ $ $) 37)) (-1666 (($ $ $) 40)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
+(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-964) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
+((-3550 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2263 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1510 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1503 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2291 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-964) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $))))
+((* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-650 |#2|) (-156)) (T -649))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-650 |#1|) (-1189) (-156)) (T -650))
NIL
(-13 (-106 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-2142 (($ |#1|) 17) (($ $ |#1|) 20)) (-3934 (($ |#1|) 18) (($ $ |#1|) 21)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1376 (((-107) $) NIL)) (-2137 (($ |#1| |#1| |#1| |#1|) 8)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 16)) (-4125 (((-1023) $) NIL)) (-3524 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1842 (($ $ $) NIL)) (-2059 (($ $ $) NIL)) (-2271 (((-787) $) 39)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3619 (($) 9 T CONST)) (-1584 (((-107) $ $) 44)) (-1704 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
-(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -2137 ($ |#1| |#1| |#1| |#1|)) (-15 -2142 ($ |#1|)) (-15 -3934 ($ |#1|)) (-15 -2560 ($)) (-15 -2142 ($ $ |#1|)) (-15 -3934 ($ $ |#1|)) (-15 -2560 ($ $)) (-15 -3524 (|#1| $ |#1|)) (-15 -3524 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
-((-2137 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2142 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3934 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2560 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2142 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2560 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3524 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3524 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
-(-13 (-442) (-10 -8 (-15 -2137 ($ |#1| |#1| |#1| |#1|)) (-15 -2142 ($ |#1|)) (-15 -3934 ($ |#1|)) (-15 -2560 ($)) (-15 -2142 ($ $ |#1|)) (-15 -3934 ($ $ |#1|)) (-15 -2560 ($ $)) (-15 -3524 (|#1| $ |#1|)) (-15 -3524 ((-765 |#1|) $ (-765 |#1|)))))
-((-3614 (($ $ (-844)) 12)) (-3200 (($ $ (-844)) 13)) (** (($ $ (-844)) 10)))
-(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-844))) (-15 -3200 (|#1| |#1| (-844))) (-15 -3614 (|#1| |#1| (-844)))) (-653)) (T -652))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-844))) (-15 -3200 (|#1| |#1| (-844))) (-15 -3614 (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-3614 (($ $ (-844)) 15)) (-3200 (($ $ (-844)) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)) (** (($ $ (-844)) 13)) (* (($ $ $) 16)))
-(((-653) (-1188)) (T -653))
-((* (*1 *1 *1 *1) (-4 *1 (-653))) (-3614 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844)))) (-3200 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844)))))
-(-13 (-1005) (-10 -8 (-15 * ($ $ $)) (-15 -3614 ($ $ (-844))) (-15 -3200 ($ $ (-844))) (-15 ** ($ $ (-844)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-3614 (($ $ (-844)) NIL) (($ $ (-703)) 17)) (-1376 (((-107) $) 10)) (-3200 (($ $ (-844)) NIL) (($ $ (-703)) 18)) (** (($ $ (-844)) NIL) (($ $ (-703)) 15)))
-(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -3200 (|#1| |#1| (-703))) (-15 -3614 (|#1| |#1| (-703))) (-15 -1376 ((-107) |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -3200 (|#1| |#1| (-844))) (-15 -3614 (|#1| |#1| (-844)))) (-655)) (T -654))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -3200 (|#1| |#1| (-703))) (-15 -3614 (|#1| |#1| (-703))) (-15 -1376 ((-107) |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -3200 (|#1| |#1| (-844))) (-15 -3614 (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-2093 (((-3 $ "failed") $) 17)) (-3614 (($ $ (-844)) 15) (($ $ (-703)) 22)) (-2560 (((-3 $ "failed") $) 19)) (-1376 (((-107) $) 23)) (-1590 (((-3 $ "failed") $) 18)) (-3200 (($ $ (-844)) 14) (($ $ (-703)) 21)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3619 (($) 24 T CONST)) (-1584 (((-107) $ $) 6)) (** (($ $ (-844)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
-(((-655) (-1188)) (T -655))
-((-3619 (*1 *1) (-4 *1 (-655))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-3614 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3200 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-2560 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1590 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2093 (*1 *1 *1) (|partial| -4 *1 (-655))))
-(-13 (-653) (-10 -8 (-15 (-3619) ($) -1385) (-15 -1376 ((-107) $)) (-15 -3614 ($ $ (-703))) (-15 -3200 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -2560 ((-3 $ "failed") $)) (-15 -1590 ((-3 $ "failed") $)) (-15 -2093 ((-3 $ "failed") $))))
-(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1005) . T))
-((-2399 (((-703)) 35)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3390 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-1522 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-2560 (((-3 $ "failed") $) 65)) (-2202 (($) 39)) (-2803 ((|#2| $) 20)) (-1318 (($) 17)) (-2060 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3973 (((-623 |#2|) (-1157 $) (-1 |#2| |#2|)) 60)) (-3359 (((-1157 |#2|) $) NIL) (($ (-1157 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1699 ((|#3| $) 32)) (-1492 (((-1157 $)) 29)))
-(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2202 (|#1|)) (-15 -2399 ((-703))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3973 ((-623 |#2|) (-1157 |#1|) (-1 |#2| |#2|))) (-15 -1522 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3359 (|#1| |#3|)) (-15 -1522 (|#1| |#3|)) (-15 -1318 (|#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3359 (|#3| |#1|)) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -1492 ((-1157 |#1|))) (-15 -1699 (|#3| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1133 |#2|)) (T -656))
-((-2399 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
-(-10 -8 (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2202 (|#1|)) (-15 -2399 ((-703))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3973 ((-623 |#2|) (-1157 |#1|) (-1 |#2| |#2|))) (-15 -1522 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3359 (|#1| |#3|)) (-15 -1522 (|#1| |#3|)) (-15 -1318 (|#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3359 (|#3| |#1|)) (-15 -3359 (|#1| (-1157 |#2|))) (-15 -3359 ((-1157 |#2|) |#1|)) (-15 -1492 ((-1157 |#1|))) (-15 -1699 (|#3| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -2560 ((-3 |#1| "failed") |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-3062 (($ $) 94 (|has| |#1| (-333)))) (-2190 (((-107) $) 96 (|has| |#1| (-333)))) (-2133 (((-623 |#1|) (-1157 $)) 46) (((-623 |#1|)) 61)) (-2009 ((|#1| $) 52)) (-1768 (((-1085 (-844) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 113 (|has| |#1| (-333)))) (-4018 (((-388 $) $) 114 (|has| |#1| (-333)))) (-3820 (((-107) $ $) 104 (|has| |#1| (-333)))) (-2399 (((-703)) 87 (|has| |#1| (-338)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 169 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3390 (((-517) $) 170 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 165)) (-3898 (($ (-1157 |#1|) (-1157 $)) 48) (($ (-1157 |#1|)) 64)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2379 (($ $ $) 108 (|has| |#1| (-333)))) (-2637 (((-623 |#1|) $ (-1157 $)) 53) (((-623 |#1|) $) 59)) (-2207 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1522 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-2560 (((-3 $ "failed") $) 34)) (-3737 (((-844)) 54)) (-2202 (($) 90 (|has| |#1| (-338)))) (-2354 (($ $ $) 107 (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-1304 (($) 149 (|has| |#1| (-319)))) (-3459 (((-107) $) 150 (|has| |#1| (-319)))) (-2855 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-1259 (((-107) $) 115 (|has| |#1| (-333)))) (-1395 (((-844) $) 152 (|has| |#1| (-319))) (((-765 (-844)) $) 138 (|has| |#1| (-319)))) (-1376 (((-107) $) 31)) (-2803 ((|#1| $) 51)) (-2243 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-2766 ((|#2| $) 44 (|has| |#1| (-333)))) (-3072 (((-844) $) 89 (|has| |#1| (-338)))) (-1509 ((|#2| $) 156)) (-2332 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-1662 (((-1059) $) 9)) (-2300 (($ $) 116 (|has| |#1| (-333)))) (-2587 (($) 143 (|has| |#1| (-319)) CONST)) (-2812 (($ (-844)) 88 (|has| |#1| (-338)))) (-4125 (((-1023) $) 10)) (-1318 (($) 160)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 101 (|has| |#1| (-333)))) (-2370 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) 146 (|has| |#1| (-319)))) (-3868 (((-388 $) $) 112 (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 109 (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3600 (((-703) $) 105 (|has| |#1| (-333)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 106 (|has| |#1| (-333)))) (-1220 ((|#1| (-1157 $)) 47) ((|#1|) 60)) (-2192 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2060 (($ $) 137 (-3747 (-3993 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3747 (-3993 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1076)) 133 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-583 (-1076))) 132 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-1076) (-703)) 131 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-583 (-1076)) (-583 (-703))) 130 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-3973 (((-623 |#1|) (-1157 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2387 ((|#2|) 159)) (-1758 (($) 148 (|has| |#1| (-319)))) (-3784 (((-1157 |#1|) $ (-1157 $)) 50) (((-623 |#1|) (-1157 $) (-1157 $)) 49) (((-1157 |#1|) $) 66) (((-623 |#1|) (-1157 $)) 65)) (-3359 (((-1157 |#1|) $) 63) (($ (-1157 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3747 (|has| |#1| (-333)) (|has| |#1| (-954 (-377 (-517))))))) (-3974 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1699 ((|#2| $) 45)) (-4099 (((-703)) 29)) (-1492 (((-1157 $)) 67)) (-2074 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $) 136 (-3747 (-3993 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3747 (-3993 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1076)) 129 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-583 (-1076))) 128 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-1076) (-703)) 127 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-583 (-1076)) (-583 (-703))) 126 (-3993 (|has| |#1| (-823 (-1076))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 121 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
-(((-657 |#1| |#2|) (-1188) (-156) (-1133 |t#1|)) (T -657))
-((-1318 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1133 *2)))) (-2387 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1133 *3)))) (-1522 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1133 *3)))) (-3359 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1133 *3)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1133 *3)))) (-1522 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1133 *5)) (-5 *2 (-623 *5)))))
-(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1318 ($)) (-15 -2387 (|t#2|)) (-15 -1522 ($ |t#2|)) (-15 -3359 ($ |t#2|)) (-15 -1509 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -1522 ((-3 $ "failed") (-377 |t#2|))) (-15 -3973 ((-623 |t#1|) (-1157 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 #0# #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3747 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3747 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3747 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1076)) -12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076)))) ((-843) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 #0#) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-969 |#1|) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) |has| |#1| (-319)) ((-1115) -3747 (|has| |#1| (-319)) (|has| |#1| (-333))))
-((-1393 (($) 14)) (-2560 (((-3 $ "failed") $) 16)) (-1376 (((-107) $) 13)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) 9)) (** (($ $ (-844)) NIL) (($ $ (-703)) 20)))
-(((-658 |#1|) (-10 -8 (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 -2815 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1376 ((-107) |#1|)) (-15 -1393 (|#1|)) (-15 -2815 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844)))) (-659)) (T -658))
-NIL
-(-10 -8 (-15 -2560 ((-3 |#1| "failed") |#1|)) (-15 -2815 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1376 ((-107) |#1|)) (-15 -1393 (|#1|)) (-15 -2815 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-1393 (($) 20 T CONST)) (-2560 (((-3 $ "failed") $) 16)) (-1376 (((-107) $) 19)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-2815 (($ $ (-844)) 13) (($ $ (-703)) 17)) (-3619 (($) 21 T CONST)) (-1584 (((-107) $ $) 6)) (** (($ $ (-844)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
-(((-659) (-1188)) (T -659))
-((-3619 (*1 *1) (-4 *1 (-659))) (-1393 (*1 *1) (-4 *1 (-659))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2815 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2560 (*1 *1 *1) (|partial| -4 *1 (-659))))
-(-13 (-1017) (-10 -8 (-15 (-3619) ($) -1385) (-15 -1393 ($) -1385) (-15 -1376 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2815 ($ $ (-703))) (-15 -2560 ((-3 $ "failed") $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1017) . T) ((-1005) . T))
-((-1291 (((-2 (|:| -1387 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1378 (((-2 (|:| -1387 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2155 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-2352 (((-2 (|:| |poly| |#2|) (|:| -1387 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
-(((-660 |#1| |#2|) (-10 -7 (-15 -1378 ((-2 (|:| -1387 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1291 ((-2 (|:| -1387 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2155 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2352 ((-2 (|:| |poly| |#2|) (|:| -1387 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1133 |#1|)) (T -660))
-((-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1387 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1133 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-1291 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1387 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-1378 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1387 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
-(-10 -7 (-15 -1378 ((-2 (|:| -1387 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1291 ((-2 (|:| -1387 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2155 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2352 ((-2 (|:| |poly| |#2|) (|:| -1387 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
-((-2498 ((|#7| (-583 |#5|) |#6|) NIL)) (-3310 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3310 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2498 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-963) (-963) (-872 |#4| |#2| |#1|) (-872 |#5| |#3| |#1|)) (T -661))
-((-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-963)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-963)) (-4 *2 (-872 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-872 *8 *6 *5)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-872 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-872 *8 *6 *5)))))
-(-10 -7 (-15 -3310 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2498 (|#7| (-583 |#5|) |#6|)))
-((-3310 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
-(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3310 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-963) (-872 |#5| |#3| |#1|) (-872 |#5| |#4| |#2|)) (T -662))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-963)) (-4 *2 (-872 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-872 *9 *7 *5)))))
-(-10 -7 (-15 -3310 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3868 (((-388 |#4|) |#4|) 39)))
-(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076))))) (-278) (-872 (-875 |#3|) |#1| |#2|)) (T -663))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-872 (-875 *6) *4 *5)))))
-(-10 -7 (-15 -3868 ((-388 |#4|) |#4|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-789 |#1|)) $) NIL)) (-1440 (((-1072 $) $ (-789 |#1|)) NIL) (((-1072 |#2|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3062 (($ $) NIL (|has| |#2| (-509)))) (-2190 (((-107) $) NIL (|has| |#2| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1224 (($ $) NIL (|has| |#2| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-789 |#1|) $) NIL)) (-2157 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#2| (-832)))) (-3014 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#2|) (-789 |#1|)) NIL) (($ (-1072 $) (-789 |#1|)) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-789 |#1|)) NIL)) (-3492 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3458 (($ $ $) NIL (|has| |#2| (-779)))) (-4084 (($ $ $) NIL (|has| |#2| (-779)))) (-2935 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-789 |#1|) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#2| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2121 (-703))) "failed") $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#2| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#2| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-1220 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2060 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3647 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3119 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3747 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-954 (-377 (-517))))))) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-664 |#1| |#2|) (-872 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1076)) (-963)) (T -664))
-NIL
-(-872 |#2| (-489 (-789 |#1|)) (-789 |#1|))
-((-4166 (((-2 (|:| -2948 (-875 |#3|)) (|:| -2890 (-875 |#3|))) |#4|) 13)) (-1615 ((|#4| |#4| |#2|) 30)) (-2693 ((|#4| (-377 (-875 |#3|)) |#2|) 64)) (-2090 ((|#4| (-1072 (-875 |#3|)) |#2|) 77)) (-1249 ((|#4| (-1072 |#4|) |#2|) 50)) (-2584 ((|#4| |#4| |#2|) 53)) (-3868 (((-388 |#4|) |#4|) 38)))
-(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-2 (|:| -2948 (-875 |#3|)) (|:| -2890 (-875 |#3|))) |#4|)) (-15 -2584 (|#4| |#4| |#2|)) (-15 -1249 (|#4| (-1072 |#4|) |#2|)) (-15 -1615 (|#4| |#4| |#2|)) (-15 -2090 (|#4| (-1072 (-875 |#3|)) |#2|)) (-15 -2693 (|#4| (-377 (-875 |#3|)) |#2|)) (-15 -3868 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)))) (-509) (-872 (-377 (-875 |#3|)) |#1| |#2|)) (T -665))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-872 (-377 (-875 *6)) *4 *5)))) (-2693 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-875 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))))) (-2090 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 (-875 *6))) (-4 *6 (-509)) (-4 *2 (-872 (-377 (-875 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))))) (-1615 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3)))) (-1249 (*1 *2 *3 *4) (-12 (-5 *3 (-1072 *2)) (-4 *2 (-872 (-377 (-875 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *6 (-509)))) (-2584 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -2948 (-875 *6)) (|:| -2890 (-875 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-872 (-377 (-875 *6)) *4 *5)))))
-(-10 -7 (-15 -4166 ((-2 (|:| -2948 (-875 |#3|)) (|:| -2890 (-875 |#3|))) |#4|)) (-15 -2584 (|#4| |#4| |#2|)) (-15 -1249 (|#4| (-1072 |#4|) |#2|)) (-15 -1615 (|#4| |#4| |#2|)) (-15 -2090 (|#4| (-1072 (-875 |#3|)) |#2|)) (-15 -2693 (|#4| (-377 (-875 |#3|)) |#2|)) (-15 -3868 ((-388 |#4|) |#4|)))
-((-3868 (((-388 |#4|) |#4|) 51)))
-(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-872 (-377 |#3|) |#1| |#2|)) (T -666))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-872 (-377 *6) *4 *5)))))
-(-10 -7 (-15 -3868 ((-388 |#4|) |#4|)))
-((-3310 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
-(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -3310 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-963) (-963) (-659)) (T -667))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
-(-10 -7 (-15 -3310 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 26)) (-1928 (((-583 (-2 (|:| -1582 |#1|) (|:| -2425 |#2|))) $) 27)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2399 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-3390 ((|#2| $) NIL) ((|#1| $) NIL)) (-2373 (($ $) 76 (|has| |#2| (-779)))) (-2560 (((-3 $ "failed") $) 63)) (-2202 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) 54)) (-3794 (((-583 $) $) 37)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| |#2|) 16)) (-3310 (($ (-1 |#1| |#1|) $) 53)) (-3072 (((-844) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-2335 ((|#2| $) 75 (|has| |#2| (-779)))) (-2347 ((|#1| $) 74 (|has| |#2| (-779)))) (-1662 (((-1059) $) NIL)) (-2812 (($ (-844)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 73) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1582 |#1|) (|:| -2425 |#2|)))) 11)) (-1998 (((-583 |#1|) $) 39)) (-1689 ((|#1| $ |#2|) 84)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 12 T CONST)) (-3619 (($) 31 T CONST)) (-1584 (((-107) $ $) 77)) (-1692 (($ $) 46) (($ $ $) NIL)) (-1678 (($ $ $) 24)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-668 |#1| |#2|) (-13 (-963) (-954 |#2|) (-954 |#1|) (-10 -8 (-15 -2078 ($ |#1| |#2|)) (-15 -1689 (|#1| $ |#2|)) (-15 -2271 ($ (-583 (-2 (|:| -1582 |#1|) (|:| -2425 |#2|))))) (-15 -1928 ((-583 (-2 (|:| -1582 |#1|) (|:| -2425 |#2|))) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (-15 -3982 ((-107) $)) (-15 -1998 ((-583 |#1|) $)) (-15 -3794 ((-583 $) $)) (-15 -3783 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2335 (|#2| $)) (-15 -2347 (|#1| $)) (-15 -2373 ($ $))) |%noBranch|))) (-963) (-659)) (T -668))
-((-2078 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-963)) (-4 *3 (-659)))) (-1689 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1582 *3) (|:| -2425 *4)))) (-4 *3 (-963)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1582 *3) (|:| -2425 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-963)) (-4 *4 (-659)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-963)) (-4 *4 (-659)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-963)) (-4 *4 (-659)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-963)) (-4 *4 (-659)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-963)) (-4 *4 (-659)))) (-2335 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-963)))) (-2347 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-963)) (-4 *3 (-659)))))
-(-13 (-963) (-954 |#2|) (-954 |#1|) (-10 -8 (-15 -2078 ($ |#1| |#2|)) (-15 -1689 (|#1| $ |#2|)) (-15 -2271 ($ (-583 (-2 (|:| -1582 |#1|) (|:| -2425 |#2|))))) (-15 -1928 ((-583 (-2 (|:| -1582 |#1|) (|:| -2425 |#2|))) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (-15 -3982 ((-107) $)) (-15 -1998 ((-583 |#1|) $)) (-15 -3794 ((-583 $) $)) (-15 -3783 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2335 (|#2| $)) (-15 -2347 (|#1| $)) (-15 -2373 ($ $))) |%noBranch|)))
-((-2119 (((-107) $ $) 19)) (-2384 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2834 (($ $ $) 72)) (-1961 (((-107) $ $) 73)) (-1851 (((-107) $ (-703)) 8)) (-1884 (($ (-583 |#1|)) 68) (($) 67)) (-3690 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-1399 (($ $) 62)) (-2455 (($ $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22)) (-2259 (($ $ $) 69)) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4125 (((-1023) $) 21)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-1527 (((-583 (-2 (|:| -1859 |#1|) (|:| -4137 (-703)))) $) 61)) (-1216 (($ $ |#1|) 71) (($ $ $) 70)) (-2176 (($) 49) (($ (-583 |#1|)) 48)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 50)) (-2271 (((-787) $) 18)) (-3075 (($ (-583 |#1|)) 66) (($) 65)) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20)) (-1608 (((-107) $ $) 64)) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-669 |#1|) (-1188) (-1005)) (T -669))
-NIL
-(-13 (-628 |t#1|) (-1003 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-628 |#1|) . T) ((-1003 |#1|) . T) ((-1005) . T) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-2384 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2834 (($ $ $) 79)) (-1961 (((-107) $ $) 82)) (-1851 (((-107) $ (-703)) NIL)) (-1884 (($ (-583 |#1|)) 24) (($) 15)) (-3690 (($ (-1 (-107) |#1|) $) 70 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-1399 (($ $) 71)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) 61 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4192))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 32 (|has| $ (-6 -4192)))) (-4064 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) 38)) (-3925 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 75)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2259 (($ $ $) 77)) (-1803 ((|#1| $) 54)) (-3241 (($ |#1| $) 55) (($ |#1| $ (-703)) 72)) (-4125 (((-1023) $) NIL)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4113 ((|#1| $) 53)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 49)) (-2452 (($) 12)) (-1527 (((-583 (-2 (|:| -1859 |#1|) (|:| -4137 (-703)))) $) 47)) (-1216 (($ $ |#1|) NIL) (($ $ $) 78)) (-2176 (($) 14) (($ (-583 |#1|)) 23)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 66)) (-3359 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 20)) (-2271 (((-787) $) 44)) (-3075 (($ (-583 |#1|)) 25) (($) 16)) (-3181 (($ (-583 |#1|)) 22)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 80)) (-1608 (((-107) $ $) 81)) (-3535 (((-703) $) 59 (|has| $ (-6 -4192)))))
-(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -4064 ($)) (-15 -4064 ($ |#1|)) (-15 -4064 ($ (-583 |#1|))) (-15 -1903 ((-583 |#1|) $)) (-15 -1423 ($ |#1| $ (-517))) (-15 -1423 ($ (-1 (-107) |#1|) $ (-517))) (-15 -2457 ($ |#1| $ (-517))) (-15 -2457 ($ (-1 (-107) |#1|) $ (-517))))) (-1005)) (T -670))
-((-4064 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1005)))) (-4064 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1005)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-670 *3)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1005)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1005)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1005)) (-5 *1 (-670 *4)))) (-2457 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1005)))) (-2457 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1005)) (-5 *1 (-670 *4)))))
-(-13 (-669 |#1|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -4064 ($)) (-15 -4064 ($ |#1|)) (-15 -4064 ($ (-583 |#1|))) (-15 -1903 ((-583 |#1|) $)) (-15 -1423 ($ |#1| $ (-517))) (-15 -1423 ($ (-1 (-107) |#1|) $ (-517))) (-15 -2457 ($ |#1| $ (-517))) (-15 -2457 ($ (-1 (-107) |#1|) $ (-517)))))
-((-1362 (((-1162) (-1059)) 8)))
-(((-671) (-10 -7 (-15 -1362 ((-1162) (-1059))))) (T -671))
-((-1362 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-671)))))
-(-10 -7 (-15 -1362 ((-1162) (-1059))))
-((-4142 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
-(((-672 |#1|) (-10 -7 (-15 -4142 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
-((-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
-(-10 -7 (-15 -4142 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 |#2|) $) 136)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-3062 (($ $) 128 (|has| |#1| (-509)))) (-2190 (((-107) $) 126 (|has| |#1| (-509)))) (-1648 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) 19)) (-3880 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1624 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1670 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) 17 T CONST)) (-2373 (($ $) 120)) (-2560 (((-3 $ "failed") $) 34)) (-2914 (((-875 |#1|) $ (-703)) 98) (((-875 |#1|) $ (-703) (-703)) 97)) (-1880 (((-107) $) 137)) (-2116 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-3982 (((-107) $) 118)) (-2078 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-3310 (($ (-1 |#1| |#1|) $) 117)) (-1226 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) 115)) (-2347 ((|#1| $) 114)) (-1662 (((-1059) $) 9)) (-2356 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) 10)) (-2671 (($ $ (-703)) 103)) (-2329 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-3870 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-2060 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-3647 (((-489 |#2|) $) 116)) (-1682 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 138)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1689 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-3974 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-1722 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) 127 (|has| |#1| (-509)))) (-1697 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-2824 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-673 |#1| |#2|) (-1188) (-963) (-779)) (T -673))
-((-1689 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-963)) (-4 *2 (-779)))) (-1689 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-963)) (-4 *5 (-779)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-963)) (-4 *4 (-779)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-963)) (-4 *2 (-779)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-963)) (-4 *5 (-779)))) (-1395 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-963)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1395 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-963)) (-4 *3 (-779)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-963)) (-4 *5 (-779)) (-5 *2 (-875 *4)))) (-2914 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-963)) (-4 *5 (-779)) (-5 *2 (-875 *4)))) (-2356 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-963)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
-(-13 (-823 |t#2|) (-892 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -1689 ($ $ |t#2| (-703))) (-15 -1689 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -2671 ($ $ (-703))) (-15 -2078 ($ $ |t#2| (-703))) (-15 -2078 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -1395 ((-703) $ |t#2|)) (-15 -1395 ((-703) $ |t#2| (-703))) (-15 -2914 ((-875 |t#1|) $ (-703))) (-15 -2914 ((-875 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $ |t#2|)) (-6 (-920)) (-6 (-1097))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-489 |#2|)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-823 |#2|) . T) ((-892 |#1| #0# |#2|) . T) ((-920) |has| |#1| (-37 (-377 (-517)))) ((-969 #1#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1100) |has| |#1| (-37 (-377 (-517)))))
-((-3868 (((-388 (-1072 |#4|)) (-1072 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 |#4|) |#4|)) (-15 -3868 ((-388 (-1072 |#4|)) (-1072 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-872 |#3| |#2| |#1|)) (T -674))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1072 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1072 *7)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
-(-10 -7 (-15 -3868 ((-388 |#4|) |#4|)) (-15 -3868 ((-388 (-1072 |#4|)) (-1072 |#4|))))
-((-2191 (((-388 |#4|) |#4| |#2|) 117)) (-2330 (((-388 |#4|) |#4|) NIL)) (-4018 (((-388 (-1072 |#4|)) (-1072 |#4|)) 108) (((-388 |#4|) |#4|) 38)) (-3775 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3868 (-1072 |#4|)) (|:| -2121 (-517)))))) (-1072 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 66)) (-2218 (((-1072 |#3|) (-1072 |#3|) (-517)) 134)) (-4017 (((-583 (-703)) (-1072 |#4|) (-583 |#2|) (-703)) 59)) (-1509 (((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-1072 |#3|) (-1072 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 63)) (-2025 (((-2 (|:| |upol| (-1072 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517))))) (|:| |ctpol| |#3|)) (-1072 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-2122 (((-2 (|:| -1694 (-1072 |#4|)) (|:| |polval| (-1072 |#3|))) (-1072 |#4|) (-1072 |#3|) (-517)) 55)) (-4021 (((-517) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517))))) 131)) (-3922 ((|#4| (-517) (-388 |#4|)) 56)) (-2169 (((-107) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517))))) NIL)))
-(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-388 |#4|) |#4|)) (-15 -4018 ((-388 (-1072 |#4|)) (-1072 |#4|))) (-15 -2330 ((-388 |#4|) |#4|)) (-15 -4021 ((-517) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))))) (-15 -2191 ((-388 |#4|) |#4| |#2|)) (-15 -2122 ((-2 (|:| -1694 (-1072 |#4|)) (|:| |polval| (-1072 |#3|))) (-1072 |#4|) (-1072 |#3|) (-517))) (-15 -3775 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3868 (-1072 |#4|)) (|:| -2121 (-517)))))) (-1072 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2025 ((-2 (|:| |upol| (-1072 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517))))) (|:| |ctpol| |#3|)) (-1072 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3922 (|#4| (-517) (-388 |#4|))) (-15 -2169 ((-107) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))))) (-15 -1509 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-1072 |#3|) (-1072 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -4017 ((-583 (-703)) (-1072 |#4|) (-583 |#2|) (-703))) (-15 -2218 ((-1072 |#3|) (-1072 |#3|) (-517)))) (-725) (-779) (-278) (-872 |#3| |#1| |#2|)) (T -675))
-((-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-4017 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1072 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-1509 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1072 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-872 *11 *9 *10)) (-5 *2 (-583 (-1072 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1072 *5)))) (-2169 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3868 (-1072 *6)) (|:| -2121 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-872 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-2025 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1072 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1072 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3868 (-1072 *8)) (|:| -2121 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-872 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3868 (-1072 *9)) (|:| -2121 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1072 *9)))) (-2122 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-872 *8 *6 *7)) (-5 *2 (-2 (|:| -1694 (-1072 *9)) (|:| |polval| (-1072 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1072 *9)) (-5 *4 (-1072 *8)))) (-2191 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3868 (-1072 *6)) (|:| -2121 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1072 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1072 *7)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5)))))
-(-10 -7 (-15 -4018 ((-388 |#4|) |#4|)) (-15 -4018 ((-388 (-1072 |#4|)) (-1072 |#4|))) (-15 -2330 ((-388 |#4|) |#4|)) (-15 -4021 ((-517) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))))) (-15 -2191 ((-388 |#4|) |#4| |#2|)) (-15 -2122 ((-2 (|:| -1694 (-1072 |#4|)) (|:| |polval| (-1072 |#3|))) (-1072 |#4|) (-1072 |#3|) (-517))) (-15 -3775 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3868 (-1072 |#4|)) (|:| -2121 (-517)))))) (-1072 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2025 ((-2 (|:| |upol| (-1072 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517))))) (|:| |ctpol| |#3|)) (-1072 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3922 (|#4| (-517) (-388 |#4|))) (-15 -2169 ((-107) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))) (-583 (-2 (|:| -3868 (-1072 |#3|)) (|:| -2121 (-517)))))) (-15 -1509 ((-3 (-583 (-1072 |#4|)) "failed") (-1072 |#4|) (-1072 |#3|) (-1072 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -4017 ((-583 (-703)) (-1072 |#4|) (-583 |#2|) (-703))) (-15 -2218 ((-1072 |#3|) (-1072 |#3|) (-517))))
-((-2193 (($ $ (-844)) 12)))
-(((-676 |#1| |#2|) (-10 -8 (-15 -2193 (|#1| |#1| (-844)))) (-677 |#2|) (-156)) (T -676))
-NIL
-(-10 -8 (-15 -2193 (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3614 (($ $ (-844)) 28)) (-2193 (($ $ (-844)) 33)) (-3200 (($ $ (-844)) 29)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2059 (($ $ $) 25)) (-2271 (((-787) $) 11)) (-3100 (($ $ $ $) 26)) (-2951 (($ $ $) 24)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-677 |#1|) (-1188) (-156)) (T -677))
-((-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
-(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -2193 ($ $ (-844)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-2644 (((-952) (-623 (-199)) (-517) (-107) (-517)) 24)) (-3041 (((-952) (-623 (-199)) (-517) (-107) (-517)) 23)))
-(((-678) (-10 -7 (-15 -3041 ((-952) (-623 (-199)) (-517) (-107) (-517))) (-15 -2644 ((-952) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
-((-2644 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-952)) (-5 *1 (-678)))) (-3041 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-952)) (-5 *1 (-678)))))
-(-10 -7 (-15 -3041 ((-952) (-623 (-199)) (-517) (-107) (-517))) (-15 -2644 ((-952) (-623 (-199)) (-517) (-107) (-517))))
-((-3872 (((-952) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-2189 (((-952) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-3034 (((-952) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) 32)))
-(((-679) (-10 -7 (-15 -3034 ((-952) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -2189 ((-952) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -3872 ((-952) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
-((-3872 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-952)) (-5 *1 (-679)))) (-2189 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-952)) (-5 *1 (-679)))) (-3034 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952)) (-5 *1 (-679)))))
-(-10 -7 (-15 -3034 ((-952) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -2189 ((-952) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -3872 ((-952) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
-((-3707 (((-952) (-517) (-517) (-623 (-199)) (-517)) 33)) (-1205 (((-952) (-517) (-517) (-623 (-199)) (-517)) 32)) (-3132 (((-952) (-517) (-623 (-199)) (-517)) 31)) (-3377 (((-952) (-517) (-623 (-199)) (-517)) 30)) (-2201 (((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2980 (((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2975 (((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3336 (((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2295 (((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-1331 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3521 (((-952) (-517) (-623 (-199)) (-517)) 21)) (-4065 (((-952) (-517) (-623 (-199)) (-517)) 20)))
-(((-680) (-10 -7 (-15 -4065 ((-952) (-517) (-623 (-199)) (-517))) (-15 -3521 ((-952) (-517) (-623 (-199)) (-517))) (-15 -1331 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2295 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3336 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2975 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2980 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2201 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3377 ((-952) (-517) (-623 (-199)) (-517))) (-15 -3132 ((-952) (-517) (-623 (-199)) (-517))) (-15 -1205 ((-952) (-517) (-517) (-623 (-199)) (-517))) (-15 -3707 ((-952) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
-((-3707 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-1205 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-3132 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-3377 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-2201 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-2980 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-2975 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-3336 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-2295 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-1331 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-3521 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))) (-4065 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-680)))))
-(-10 -7 (-15 -4065 ((-952) (-517) (-623 (-199)) (-517))) (-15 -3521 ((-952) (-517) (-623 (-199)) (-517))) (-15 -1331 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2295 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3336 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2975 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2980 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2201 ((-952) (-517) (-517) (-1059) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3377 ((-952) (-517) (-623 (-199)) (-517))) (-15 -3132 ((-952) (-517) (-623 (-199)) (-517))) (-15 -1205 ((-952) (-517) (-517) (-623 (-199)) (-517))) (-15 -3707 ((-952) (-517) (-517) (-623 (-199)) (-517))))
-((-1261 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1384 (((-952) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-2287 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3638 (((-952) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-2474 (((-952) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-1945 (((-952) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-1470 (((-952) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-3042 (((-952) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-1388 (((-952) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) 38)) (-1442 (((-952) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) 37)) (-3769 (((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) 33)) (-3830 (((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) 32)))
-(((-681) (-10 -7 (-15 -3830 ((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -3769 ((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -1442 ((-952) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -1388 ((-952) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -3042 ((-952) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1470 ((-952) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1945 ((-952) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -2474 ((-952) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3638 ((-952) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -2287 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1384 ((-952) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1261 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
-((-1261 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-1384 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-681)))) (-2287 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-3638 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-681)))) (-2474 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-1945 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-1470 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-3042 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-1388 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-1442 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-681)))) (-3769 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952)) (-5 *1 (-681)))) (-3830 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952)) (-5 *1 (-681)))))
-(-10 -7 (-15 -3830 ((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -3769 ((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -1442 ((-952) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -1388 ((-952) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725))))) (-15 -3042 ((-952) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1470 ((-952) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1945 ((-952) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -2474 ((-952) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3638 ((-952) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -2287 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1384 ((-952) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1261 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
-((-1889 (((-952) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2312 (((-952) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-952) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-4172 (((-952) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1655 (((-952) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-3461 (((-952) (-199) (-517) (-517) (-1059) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3767 (((-952) (-199) (-517) (-517) (-199) (-1059) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1783 (((-952) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-2755 (((-952) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-682) (-10 -7 (-15 -2755 ((-952) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1783 ((-952) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -3767 ((-952) (-199) (-517) (-517) (-199) (-1059) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3461 ((-952) (-199) (-517) (-517) (-1059) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1655 ((-952) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -4172 ((-952) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -2312 ((-952) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -2312 ((-952) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1889 ((-952) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
-((-1889 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))) (-2312 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-952)) (-5 *1 (-682)))) (-2312 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-952)) (-5 *1 (-682)))) (-4172 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))) (-1655 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-952)) (-5 *1 (-682)))) (-3461 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1059)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))) (-3767 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1059)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))) (-1783 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))) (-2755 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))))
-(-10 -7 (-15 -2755 ((-952) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1783 ((-952) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -3767 ((-952) (-199) (-517) (-517) (-199) (-1059) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3461 ((-952) (-199) (-517) (-517) (-1059) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1655 ((-952) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -4172 ((-952) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -2312 ((-952) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -2312 ((-952) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1889 ((-952) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-1730 (((-952) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-2947 (((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1059) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-3165 (((-952) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
-(((-683) (-10 -7 (-15 -3165 ((-952) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1059) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1730 ((-952) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
-((-1730 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-683)))) (-2947 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1059)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-952)) (-5 *1 (-683)))) (-3165 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-683)))))
-(-10 -7 (-15 -3165 ((-952) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-952) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1059) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1730 ((-952) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
-((-3475 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-2460 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-3584 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-2267 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2875 (((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1566 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-2415 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-2200 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-3786 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-3036 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
-(((-684) (-10 -7 (-15 -3036 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3786 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2200 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2415 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1566 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -2875 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2267 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3584 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -2460 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3475 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
-((-3475 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-952)) (-5 *1 (-684)))) (-2460 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-952)) (-5 *1 (-684)))) (-3584 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-684)))) (-2267 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-684)))) (-2875 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-684)))) (-1566 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-952)) (-5 *1 (-684)))) (-2415 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-684)))) (-2200 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-684)))) (-3786 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-684)))) (-3036 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-684)))))
-(-10 -7 (-15 -3036 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3786 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2200 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2415 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1566 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -2875 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2267 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3584 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -2460 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3475 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
-((-1578 (((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-3545 (((-952) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-2787 (((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-4082 (((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-1853 (((-952) (-1059) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-3519 (((-952) (-1059) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-1817 (((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-3979 (((-952) (-1059) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-3386 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-2668 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-3456 (((-952) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-3576 (((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-3677 (((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-3303 (((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-2884 (((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-2050 (((-952) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-1381 (((-952) (-517) (-623 (-199)) (-199) (-517)) 24)) (-3263 (((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
-(((-685) (-10 -7 (-15 -3263 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1381 ((-952) (-517) (-623 (-199)) (-199) (-517))) (-15 -2050 ((-952) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -2884 ((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3303 ((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -3677 ((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -3576 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3456 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -2668 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -3386 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3979 ((-952) (-1059) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1817 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -3519 ((-952) (-1059) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1853 ((-952) (-1059) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4082 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2787 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3545 ((-952) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1578 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
-((-1578 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-685)))) (-3545 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-2787 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-685)))) (-4082 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-685)))) (-1853 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3519 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1059)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-685)))) (-1817 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3979 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1059)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3386 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-685)))) (-2668 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3456 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3576 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-685)))) (-3677 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3303 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-2884 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-2050 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-1381 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))) (-3263 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-685)))))
-(-10 -7 (-15 -3263 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1381 ((-952) (-517) (-623 (-199)) (-199) (-517))) (-15 -2050 ((-952) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -2884 ((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3303 ((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -3677 ((-952) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -3576 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3456 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -2668 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -3386 ((-952) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3979 ((-952) (-1059) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1817 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -3519 ((-952) (-1059) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1853 ((-952) (-1059) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4082 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2787 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3545 ((-952) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1578 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
-((-2547 (((-952) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-2627 (((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1297 (((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-2110 (((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-2552 (((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3852 (((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2785 (((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3924 (((-952) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-686) (-10 -7 (-15 -3924 ((-952) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2785 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -3852 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -2552 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -2110 ((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1297 ((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -2627 ((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2547 ((-952) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
-((-2547 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-686)))) (-2627 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-686)))) (-1297 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-686)))) (-2110 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-952)) (-5 *1 (-686)))) (-2552 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-952)) (-5 *1 (-686)))) (-3852 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-952)) (-5 *1 (-686)))) (-2785 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-952)) (-5 *1 (-686)))) (-3924 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-686)))))
-(-10 -7 (-15 -3924 ((-952) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2785 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -3852 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -2552 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -2110 ((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1297 ((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -2627 ((-952) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2547 ((-952) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
-((-1481 (((-952) (-1059) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-1250 (((-952) (-1059) (-1059) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-1632 (((-952) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1400 (((-952) (-1059) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-3649 (((-952) (-1059) (-1059) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-2317 (((-952) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-1579 (((-952) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-2081 (((-952) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-1776 (((-952) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-1210 (((-952) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
-(((-687) (-10 -7 (-15 -1210 ((-952) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1776 ((-952) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -2081 ((-952) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1579 ((-952) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -2317 ((-952) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3649 ((-952) (-1059) (-1059) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1400 ((-952) (-1059) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1632 ((-952) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1250 ((-952) (-1059) (-1059) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1481 ((-952) (-1059) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
-((-1481 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-952)) (-5 *1 (-687)))) (-1250 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-952)) (-5 *1 (-687)))) (-1632 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-952)) (-5 *1 (-687)))) (-1400 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-687)))) (-3649 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-687)))) (-2317 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-687)))) (-1579 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-687)))) (-2081 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-687)))) (-1776 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-952)) (-5 *1 (-687)))) (-1210 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-952)) (-5 *1 (-687)))))
-(-10 -7 (-15 -1210 ((-952) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1776 ((-952) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -2081 ((-952) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1579 ((-952) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -2317 ((-952) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3649 ((-952) (-1059) (-1059) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1400 ((-952) (-1059) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1632 ((-952) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1250 ((-952) (-1059) (-1059) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1481 ((-952) (-1059) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
-((-1854 (((-952) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-2286 (((-952) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-2328 (((-952) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-952) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-3066 (((-952) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-3896 (((-952) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2047 (((-952) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-2771 (((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2104 (((-952) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-1848 (((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2058 (((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-3214 (((-952) (-517) (-517) (-623 (-199)) (-517)) 24)) (-2877 (((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3632 (((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-1602 (((-952) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3131 (((-952) (-517) (-517) (-623 (-199)) (-517)) 20)))
-(((-688) (-10 -7 (-15 -3131 ((-952) (-517) (-517) (-623 (-199)) (-517))) (-15 -1602 ((-952) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3632 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2877 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3214 ((-952) (-517) (-517) (-623 (-199)) (-517))) (-15 -2058 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1848 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2104 ((-952) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2771 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2047 ((-952) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3896 ((-952) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3066 ((-952) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2328 ((-952) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -2328 ((-952) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -2286 ((-952) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1854 ((-952) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
-((-1854 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-952)) (-5 *1 (-688)))) (-2286 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-2328 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-688)))) (-2328 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-688)))) (-3066 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-688)))) (-3896 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-688)))) (-2047 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-688)))) (-2771 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-2104 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-1848 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-2058 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-3214 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-2877 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-3632 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))) (-1602 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-688)))) (-3131 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-688)))))
-(-10 -7 (-15 -3131 ((-952) (-517) (-517) (-623 (-199)) (-517))) (-15 -1602 ((-952) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3632 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2877 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3214 ((-952) (-517) (-517) (-623 (-199)) (-517))) (-15 -2058 ((-952) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1848 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2104 ((-952) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2771 ((-952) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2047 ((-952) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3896 ((-952) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3066 ((-952) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2328 ((-952) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -2328 ((-952) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -2286 ((-952) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1854 ((-952) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
-((-2641 (((-952) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-1867 (((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-3403 (((-952) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1574 (((-952) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-1808 (((-952) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3722 (((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-2458 (((-952) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-1611 (((-952) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3517 (((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-3226 (((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-2221 (((-952) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
-(((-689) (-10 -7 (-15 -2221 ((-952) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3226 ((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3517 ((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1611 ((-952) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -2458 ((-952) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3722 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1808 ((-952) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1574 ((-952) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3403 ((-952) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -1867 ((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2641 ((-952) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
-((-2641 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-689)))) (-1867 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-689)))) (-3403 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-952)) (-5 *1 (-689)))) (-1574 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-689)))) (-1808 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-689)))) (-3722 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-689)))) (-2458 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-689)))) (-1611 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-689)))) (-3517 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-689)))) (-3226 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-689)))) (-2221 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-952)) (-5 *1 (-689)))))
-(-10 -7 (-15 -2221 ((-952) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3226 ((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3517 ((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1611 ((-952) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -2458 ((-952) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3722 ((-952) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1808 ((-952) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1574 ((-952) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3403 ((-952) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -1867 ((-952) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2641 ((-952) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
-((-2477 (((-952) (-1059) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-1705 (((-952) (-1059) (-517) (-517) (-623 (-199))) 27)) (-2117 (((-952) (-1059) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3493 (((-952) (-517) (-517) (-517) (-623 (-199))) 20)))
-(((-690) (-10 -7 (-15 -3493 ((-952) (-517) (-517) (-517) (-623 (-199)))) (-15 -2117 ((-952) (-1059) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -1705 ((-952) (-1059) (-517) (-517) (-623 (-199)))) (-15 -2477 ((-952) (-1059) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
-((-2477 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-690)))) (-1705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-690)))) (-2117 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1059)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-690)))) (-3493 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952)) (-5 *1 (-690)))))
-(-10 -7 (-15 -3493 ((-952) (-517) (-517) (-517) (-623 (-199)))) (-15 -2117 ((-952) (-1059) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -1705 ((-952) (-1059) (-517) (-517) (-623 (-199)))) (-15 -2477 ((-952) (-1059) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
-((-4120 (((-952) (-199) (-199) (-199) (-199) (-517)) 62)) (-1404 (((-952) (-199) (-199) (-199) (-517)) 61)) (-2042 (((-952) (-199) (-199) (-199) (-517)) 60)) (-4101 (((-952) (-199) (-199) (-517)) 59)) (-3851 (((-952) (-199) (-517)) 58)) (-2374 (((-952) (-199) (-517)) 57)) (-4040 (((-952) (-199) (-517)) 56)) (-2868 (((-952) (-199) (-517)) 55)) (-2378 (((-952) (-199) (-517)) 54)) (-3397 (((-952) (-199) (-517)) 53)) (-3487 (((-952) (-199) (-153 (-199)) (-517) (-1059) (-517)) 52)) (-1359 (((-952) (-199) (-153 (-199)) (-517) (-1059) (-517)) 51)) (-1337 (((-952) (-199) (-517)) 50)) (-2886 (((-952) (-199) (-517)) 49)) (-2277 (((-952) (-199) (-517)) 48)) (-2796 (((-952) (-199) (-517)) 47)) (-2756 (((-952) (-517) (-199) (-153 (-199)) (-517) (-1059) (-517)) 46)) (-3332 (((-952) (-1059) (-153 (-199)) (-1059) (-517)) 45)) (-3859 (((-952) (-1059) (-153 (-199)) (-1059) (-517)) 44)) (-3375 (((-952) (-199) (-153 (-199)) (-517) (-1059) (-517)) 43)) (-4122 (((-952) (-199) (-153 (-199)) (-517) (-1059) (-517)) 42)) (-1560 (((-952) (-199) (-517)) 39)) (-1921 (((-952) (-199) (-517)) 38)) (-1218 (((-952) (-199) (-517)) 37)) (-2987 (((-952) (-199) (-517)) 36)) (-2083 (((-952) (-199) (-517)) 35)) (-2613 (((-952) (-199) (-517)) 34)) (-1353 (((-952) (-199) (-517)) 33)) (-3085 (((-952) (-199) (-517)) 32)) (-3866 (((-952) (-199) (-517)) 31)) (-3814 (((-952) (-199) (-517)) 30)) (-3516 (((-952) (-199) (-199) (-199) (-517)) 29)) (-2655 (((-952) (-199) (-517)) 28)) (-3818 (((-952) (-199) (-517)) 27)) (-3650 (((-952) (-199) (-517)) 26)) (-2925 (((-952) (-199) (-517)) 25)) (-2978 (((-952) (-199) (-517)) 24)) (-1575 (((-952) (-153 (-199)) (-517)) 20)))
-(((-691) (-10 -7 (-15 -1575 ((-952) (-153 (-199)) (-517))) (-15 -2978 ((-952) (-199) (-517))) (-15 -2925 ((-952) (-199) (-517))) (-15 -3650 ((-952) (-199) (-517))) (-15 -3818 ((-952) (-199) (-517))) (-15 -2655 ((-952) (-199) (-517))) (-15 -3516 ((-952) (-199) (-199) (-199) (-517))) (-15 -3814 ((-952) (-199) (-517))) (-15 -3866 ((-952) (-199) (-517))) (-15 -3085 ((-952) (-199) (-517))) (-15 -1353 ((-952) (-199) (-517))) (-15 -2613 ((-952) (-199) (-517))) (-15 -2083 ((-952) (-199) (-517))) (-15 -2987 ((-952) (-199) (-517))) (-15 -1218 ((-952) (-199) (-517))) (-15 -1921 ((-952) (-199) (-517))) (-15 -1560 ((-952) (-199) (-517))) (-15 -4122 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3375 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3859 ((-952) (-1059) (-153 (-199)) (-1059) (-517))) (-15 -3332 ((-952) (-1059) (-153 (-199)) (-1059) (-517))) (-15 -2756 ((-952) (-517) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -2796 ((-952) (-199) (-517))) (-15 -2277 ((-952) (-199) (-517))) (-15 -2886 ((-952) (-199) (-517))) (-15 -1337 ((-952) (-199) (-517))) (-15 -1359 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3487 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3397 ((-952) (-199) (-517))) (-15 -2378 ((-952) (-199) (-517))) (-15 -2868 ((-952) (-199) (-517))) (-15 -4040 ((-952) (-199) (-517))) (-15 -2374 ((-952) (-199) (-517))) (-15 -3851 ((-952) (-199) (-517))) (-15 -4101 ((-952) (-199) (-199) (-517))) (-15 -2042 ((-952) (-199) (-199) (-199) (-517))) (-15 -1404 ((-952) (-199) (-199) (-199) (-517))) (-15 -4120 ((-952) (-199) (-199) (-199) (-199) (-517))))) (T -691))
-((-4120 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1404 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2042 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-4101 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3487 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059)) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1359 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059)) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2756 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1059)) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3332 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1059)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3859 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1059)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3375 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059)) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))) (-4122 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059)) (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1218 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3516 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-3650 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(-10 -7 (-15 -1575 ((-952) (-153 (-199)) (-517))) (-15 -2978 ((-952) (-199) (-517))) (-15 -2925 ((-952) (-199) (-517))) (-15 -3650 ((-952) (-199) (-517))) (-15 -3818 ((-952) (-199) (-517))) (-15 -2655 ((-952) (-199) (-517))) (-15 -3516 ((-952) (-199) (-199) (-199) (-517))) (-15 -3814 ((-952) (-199) (-517))) (-15 -3866 ((-952) (-199) (-517))) (-15 -3085 ((-952) (-199) (-517))) (-15 -1353 ((-952) (-199) (-517))) (-15 -2613 ((-952) (-199) (-517))) (-15 -2083 ((-952) (-199) (-517))) (-15 -2987 ((-952) (-199) (-517))) (-15 -1218 ((-952) (-199) (-517))) (-15 -1921 ((-952) (-199) (-517))) (-15 -1560 ((-952) (-199) (-517))) (-15 -4122 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3375 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3859 ((-952) (-1059) (-153 (-199)) (-1059) (-517))) (-15 -3332 ((-952) (-1059) (-153 (-199)) (-1059) (-517))) (-15 -2756 ((-952) (-517) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -2796 ((-952) (-199) (-517))) (-15 -2277 ((-952) (-199) (-517))) (-15 -2886 ((-952) (-199) (-517))) (-15 -1337 ((-952) (-199) (-517))) (-15 -1359 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3487 ((-952) (-199) (-153 (-199)) (-517) (-1059) (-517))) (-15 -3397 ((-952) (-199) (-517))) (-15 -2378 ((-952) (-199) (-517))) (-15 -2868 ((-952) (-199) (-517))) (-15 -4040 ((-952) (-199) (-517))) (-15 -2374 ((-952) (-199) (-517))) (-15 -3851 ((-952) (-199) (-517))) (-15 -4101 ((-952) (-199) (-199) (-517))) (-15 -2042 ((-952) (-199) (-199) (-199) (-517))) (-15 -1404 ((-952) (-199) (-199) (-199) (-517))) (-15 -4120 ((-952) (-199) (-199) (-199) (-199) (-517))))
-((-3997 (((-1162)) 18)) (-1500 (((-1059)) 22)) (-4008 (((-1059)) 21)) (-2205 (((-1009) (-1076) (-623 (-517))) 35) (((-1009) (-1076) (-623 (-199))) 31)) (-3488 (((-107)) 16)) (-2236 (((-1059) (-1059)) 25)))
-(((-692) (-10 -7 (-15 -4008 ((-1059))) (-15 -1500 ((-1059))) (-15 -2236 ((-1059) (-1059))) (-15 -2205 ((-1009) (-1076) (-623 (-199)))) (-15 -2205 ((-1009) (-1076) (-623 (-517)))) (-15 -3488 ((-107))) (-15 -3997 ((-1162))))) (T -692))
-((-3997 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-692)))) (-3488 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-623 (-517))) (-5 *2 (-1009)) (-5 *1 (-692)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-623 (-199))) (-5 *2 (-1009)) (-5 *1 (-692)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-692)))) (-1500 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-692)))) (-4008 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-692)))))
-(-10 -7 (-15 -4008 ((-1059))) (-15 -1500 ((-1059))) (-15 -2236 ((-1059) (-1059))) (-15 -2205 ((-1009) (-1076) (-623 (-199)))) (-15 -2205 ((-1009) (-1076) (-623 (-517)))) (-15 -3488 ((-107))) (-15 -3997 ((-1162))))
-((-2059 (($ $ $) 10)) (-3100 (($ $ $ $) 9)) (-2951 (($ $ $) 12)))
-(((-693 |#1|) (-10 -8 (-15 -2951 (|#1| |#1| |#1|)) (-15 -2059 (|#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
-NIL
-(-10 -8 (-15 -2951 (|#1| |#1| |#1|)) (-15 -2059 (|#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3614 (($ $ (-844)) 28)) (-3200 (($ $ (-844)) 29)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2059 (($ $ $) 25)) (-2271 (((-787) $) 11)) (-3100 (($ $ $ $) 26)) (-2951 (($ $ $) 24)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
-(((-694) (-1188)) (T -694))
-((-3100 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-2059 (*1 *1 *1 *1) (-4 *1 (-694))) (-2951 (*1 *1 *1 *1) (-4 *1 (-694))))
-(-13 (-21) (-653) (-10 -8 (-15 -3100 ($ $ $ $)) (-15 -2059 ($ $ $)) (-15 -2951 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1005) . T))
-((-2271 (((-787) $) NIL) (($ (-517)) 10)))
-(((-695 |#1|) (-10 -8 (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-696)) (T -695))
-NIL
-(-10 -8 (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2093 (((-3 $ "failed") $) 40)) (-3614 (($ $ (-844)) 28) (($ $ (-703)) 35)) (-2560 (((-3 $ "failed") $) 38)) (-1376 (((-107) $) 34)) (-1590 (((-3 $ "failed") $) 39)) (-3200 (($ $ (-844)) 29) (($ $ (-703)) 36)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2059 (($ $ $) 25)) (-2271 (((-787) $) 11) (($ (-517)) 31)) (-4099 (((-703)) 32)) (-3100 (($ $ $ $) 26)) (-2951 (($ $ $) 24)) (-3610 (($) 18 T CONST)) (-3619 (($) 33 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 30) (($ $ (-703)) 37)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
-(((-696) (-1188)) (T -696))
-((-4099 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
-(-13 (-694) (-655) (-10 -8 (-15 -4099 ((-703))) (-15 -2271 ($ (-517)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1005) . T))
-((-2918 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-3838 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-1699 (((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1076)) 16) (((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
-(((-697 |#1|) (-10 -7 (-15 -1699 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -1699 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1076))) (-15 -3838 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2918 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
-((-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1076)) (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -1699 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -1699 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1076))) (-15 -3838 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2918 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
-((-1234 (((-157 (-517)) |#1|) 25)))
-(((-698 |#1|) (-10 -7 (-15 -1234 ((-157 (-517)) |#1|))) (-374)) (T -698))
-((-1234 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
-(-10 -7 (-15 -1234 ((-157 (-517)) |#1|)))
-((-1479 ((|#1| |#1| |#1|) 25)) (-2393 ((|#1| |#1| |#1|) 24)) (-3931 ((|#1| |#1| |#1|) 32)) (-2395 ((|#1| |#1| |#1|) 28)) (-1256 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1517 (((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|) 23)))
-(((-699 |#1| |#2|) (-10 -7 (-15 -1517 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -1256 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2395 (|#1| |#1| |#1|)) (-15 -3931 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
-((-3931 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2395 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1256 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1479 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2393 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1517 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
-(-10 -7 (-15 -1517 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -1256 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2395 (|#1| |#1| |#1|)) (-15 -3931 (|#1| |#1| |#1|)))
-((-3086 (((-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-3847 (((-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-1220 (((-517)) 68)))
-(((-700 |#1| |#2|) (-10 -7 (-15 -1220 ((-517))) (-15 -3847 ((-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -3086 ((-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1133 (-517)) (-379 (-517) |#1|)) (T -700))
-((-3086 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1133 *3)) (-5 *2 (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3847 (*1 *2) (-12 (-4 *3 (-1133 (-517))) (-5 *2 (-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-1220 (*1 *2) (-12 (-4 *3 (-1133 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
-(-10 -7 (-15 -1220 ((-517))) (-15 -3847 ((-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -3086 ((-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
-((-2119 (((-107) $ $) NIL)) (-3390 (((-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 14) (($ (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1584 (((-107) $ $) NIL)))
-(((-701) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2271 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2271 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2271 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2271 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-3 (|:| |nia| (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
-((-3341 (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|))) 14) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1076))) 13)) (-1516 (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|))) 16) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1076))) 15)))
-(((-702 |#1|) (-10 -7 (-15 -3341 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -3341 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|))))) (-509)) (T -702))
-((-1516 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1076))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1076))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5)))))
-(-10 -7 (-15 -3341 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -3341 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2948 (($ $ $) 8)) (-2798 (((-3 $ "failed") $ $) 11)) (-2142 (($ $ (-517)) 9)) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($ $) NIL)) (-2354 (($ $ $) NIL)) (-1376 (((-107) $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2370 (($ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2271 (((-787) $) NIL)) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL) (($ $ $) NIL)))
-(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2354 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -3853 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2329 ((-3 $ "failed") $ $)) (-15 -2142 ($ $ (-517))) (-15 -2202 ($ $)) (-6 (-4194 "*"))))) (T -703))
-((-2354 (*1 *1 *1 *1) (-5 *1 (-703))) (-2379 (*1 *1 *1 *1) (-5 *1 (-703))) (-2370 (*1 *1 *1 *1) (-5 *1 (-703))) (-3853 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3371 (-703)) (|:| -2946 (-703)))) (-5 *1 (-703)))) (-2329 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-2142 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-2202 (*1 *1 *1) (-5 *1 (-703))))
-(-13 (-725) (-659) (-10 -8 (-15 -2354 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -3853 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2329 ((-3 $ "failed") $ $)) (-15 -2142 ($ $ (-517))) (-15 -2202 ($ $)) (-6 (-4194 "*"))))
-((-1516 (((-3 |#2| "failed") |#2| |#2| (-109) (-1076)) 35)))
-(((-704 |#1| |#2|) (-10 -7 (-15 -1516 ((-3 |#2| "failed") |#2| |#2| (-109) (-1076)))) (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1097) (-881))) (T -704))
-((-1516 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1076)) (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1097) (-881))))))
-(-10 -7 (-15 -1516 ((-3 |#2| "failed") |#2| |#2| (-109) (-1076))))
-((-2271 (((-706) |#1|) 8)))
-(((-705 |#1|) (-10 -7 (-15 -2271 ((-706) |#1|))) (-1111)) (T -705))
-((-2271 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2271 ((-706) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 7)) (-1584 (((-107) $ $) 9)))
-(((-706) (-1005)) (T -706))
-NIL
-(-1005)
-((-2803 ((|#2| |#4|) 35)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#2| |#4|))) (-421) (-1133 |#1|) (-657 |#1| |#2|) (-1133 |#3|)) (T -707))
-((-2803 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1133 *5)))))
-(-10 -7 (-15 -2803 (|#2| |#4|)))
-((-2560 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3205 (((-1162) (-1059) (-1059) |#4| |#5|) 33)) (-2510 ((|#4| |#4| |#5|) 73)) (-2788 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|) 77)) (-3986 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|) 15)))
-(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2560 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2510 (|#4| |#4| |#5|)) (-15 -2788 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -3205 ((-1162) (-1059) (-1059) |#4| |#5|)) (-15 -3986 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -708))
-((-3986 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1059)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1162)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-982 *6 *7 *8 *4)))) (-2788 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2510 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2)))) (-2560 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2560 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2510 (|#4| |#4| |#5|)) (-15 -2788 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -3205 ((-1162) (-1059) (-1059) |#4| |#5|)) (-15 -3986 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)))
-((-3228 (((-3 (-1072 (-1072 |#1|)) "failed") |#4|) 44)) (-3743 (((-583 |#4|) |#4|) 15)) (-3629 ((|#4| |#4|) 11)))
-(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3743 ((-583 |#4|) |#4|)) (-15 -3228 ((-3 (-1072 (-1072 |#1|)) "failed") |#4|)) (-15 -3629 (|#4| |#4|))) (-319) (-299 |#1|) (-1133 |#2|) (-1133 |#3|) (-844)) (T -709))
-((-3629 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1133 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1133 *5)) (-14 *6 (-844)))) (-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1133 *5)) (-5 *2 (-1072 (-1072 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1133 *6)) (-14 *7 (-844)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1133 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1133 *6)) (-14 *7 (-844)))))
-(-10 -7 (-15 -3743 ((-583 |#4|) |#4|)) (-15 -3228 ((-3 (-1072 (-1072 |#1|)) "failed") |#4|)) (-15 -3629 (|#4| |#4|)))
-((-2849 (((-2 (|:| |deter| (-583 (-1072 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1072 |#5|) (-583 |#1|) (-583 |#5|)) 53)) (-3509 (((-583 (-703)) |#1|) 12)))
-(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2849 ((-2 (|:| |deter| (-583 (-1072 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1072 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3509 ((-583 (-703)) |#1|))) (-1133 |#4|) (-725) (-779) (-278) (-872 |#4| |#2| |#3|)) (T -710))
-((-3509 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1133 *6)) (-4 *7 (-872 *6 *4 *5)))) (-2849 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1133 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-872 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1072 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1072 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-(-10 -7 (-15 -2849 ((-2 (|:| |deter| (-583 (-1072 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1072 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3509 ((-583 (-703)) |#1|)))
-((-1317 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-2941 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-1699 (((-875 (-377 (-517))) (-623 (-377 (-517))) (-1076)) 16) (((-875 (-377 (-517))) (-623 (-377 (-517)))) 15)))
-(((-711 |#1|) (-10 -7 (-15 -1699 ((-875 (-377 (-517))) (-623 (-377 (-517))))) (-15 -1699 ((-875 (-377 (-517))) (-623 (-377 (-517))) (-1076))) (-15 -2941 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -1317 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
-((-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-2941 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1076)) (-5 *2 (-875 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-875 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -1699 ((-875 (-377 (-517))) (-623 (-377 (-517))))) (-15 -1699 ((-875 (-377 (-517))) (-623 (-377 (-517))) (-1076))) (-15 -2941 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -1317 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 34)) (-2097 (((-583 |#2|) $) NIL)) (-1440 (((-1072 $) $ |#2|) NIL) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-1541 (($ $) 28)) (-2556 (((-107) $ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-4104 (($ $ $) 93 (|has| |#1| (-509)))) (-2800 (((-583 $) $ $) 106 (|has| |#1| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-875 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076))))) (((-3 $ "failed") (-875 (-517))) NIL (-3747 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076)))))) (((-3 $ "failed") (-875 |#1|)) NIL (-3747 (-12 (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-911 (-517))))))) (((-3 (-1028 |#1| |#2|) "failed") $) 18)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) ((|#2| $) NIL) (($ (-875 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076))))) (($ (-875 (-517))) NIL (-3747 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076)))))) (($ (-875 |#1|)) NIL (-3747 (-12 (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-911 (-517))))))) (((-1028 |#1| |#2|) $) NIL)) (-2157 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 104 (|has| |#1| (-509)))) (-2373 (($ $) NIL) (($ $ |#2|) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3244 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1772 (((-107) $) NIL)) (-3590 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 70)) (-3396 (($ $) 119 (|has| |#1| (-421)))) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3571 (($ $) NIL (|has| |#1| (-509)))) (-2773 (($ $) NIL (|has| |#1| (-509)))) (-1202 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3231 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3014 (($ $ |#1| (-489 |#2|) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-1253 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-2768 (($ $ $ $ $) 90 (|has| |#1| (-509)))) (-3024 ((|#2| $) 19)) (-2086 (($ (-1072 |#1|) |#2|) NIL) (($ (-1072 $) |#2|) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2089 (($ $ $) 60)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#2|) NIL)) (-1831 (((-107) $) NIL)) (-3492 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-1313 (((-703) $) 20)) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-3 |#2| "failed") $) NIL)) (-1881 (($ $) NIL (|has| |#1| (-421)))) (-1391 (($ $) NIL (|has| |#1| (-421)))) (-1453 (((-583 $) $) NIL)) (-3946 (($ $) 37)) (-1771 (($ $) NIL (|has| |#1| (-421)))) (-1523 (((-583 $) $) 41)) (-2539 (($ $) 39)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3549 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1995 (-703))) $ $) 82)) (-1688 (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $) 67) (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $ |#2|) NIL)) (-3429 (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $) NIL) (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $ |#2|) NIL)) (-3811 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1736 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1662 (((-1059) $) NIL)) (-2350 (($ $ $) 108 (|has| |#1| (-509)))) (-3661 (((-583 $) $) 30)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| |#2|) (|:| -2121 (-703))) "failed") $) NIL)) (-1732 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3998 (($ $ $) NIL)) (-2587 (($ $) 21)) (-2958 (((-107) $ $) NIL)) (-1944 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3252 (($ $ $) NIL)) (-1568 (($ $) 23)) (-4125 (((-1023) $) NIL)) (-3445 (((-2 (|:| -2370 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-509)))) (-4118 (((-2 (|:| -2370 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-509)))) (-2310 (((-107) $) 52)) (-2321 ((|#1| $) 55)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 ((|#1| |#1| $) 116 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2763 (((-2 (|:| -2370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-509)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-3581 (($ $ |#1|) 112 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3652 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-1220 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2060 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3647 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-1778 (($ $) NIL)) (-1971 (($ $) 33)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-875 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076))))) (($ (-875 (-517))) NIL (-3747 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1076))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1076)))))) (($ (-875 |#1|)) NIL (|has| |#2| (-558 (-1076)))) (((-1059) $) NIL (-12 (|has| |#1| (-954 (-517))) (|has| |#2| (-558 (-1076))))) (((-875 |#1|) $) NIL (|has| |#2| (-558 (-1076))))) (-3119 ((|#1| $) 115 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-875 |#1|) $) NIL (|has| |#2| (-558 (-1076)))) (((-1028 |#1| |#2|) $) 15) (($ (-1028 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 13 T CONST)) (-2069 (((-3 (-107) "failed") $ $) NIL)) (-3619 (($) 35 T CONST)) (-2807 (($ $ $ $ (-703)) 88 (|has| |#1| (-509)))) (-1310 (($ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3342 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 54)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) 64)) (-1678 (($ $ $) 74)) (** (($ $ (-844)) NIL) (($ $ (-703)) 61)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-712 |#1| |#2|) (-13 (-977 |#1| (-489 |#2|) |#2|) (-557 (-1028 |#1| |#2|)) (-954 (-1028 |#1| |#2|))) (-963) (-779)) (T -712))
-NIL
-(-13 (-977 |#1| (-489 |#2|) |#2|) (-557 (-1028 |#1| |#2|)) (-954 (-1028 |#1| |#2|)))
-((-3310 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
-(((-713 |#1| |#2|) (-10 -7 (-15 -3310 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-963) (-963)) (T -713))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
-(-10 -7 (-15 -3310 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 12)) (-1896 (((-1157 |#1|) $ (-703)) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3751 (($ (-1072 |#1|)) NIL)) (-1440 (((-1072 $) $ (-991)) NIL) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-991))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3882 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-4104 (($ $ $) 35 (|has| |#1| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3404 (($ $ (-703)) NIL)) (-3195 (($ $ (-703)) NIL)) (-1340 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-991) "failed") $) NIL) (((-3 (-1072 |#1|) "failed") $) 10)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-991) $) NIL) (((-1072 |#1|) $) NIL)) (-2157 (($ $ $ (-991)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-3719 (($ $ $) NIL)) (-3405 (($ $ $) 71 (|has| |#1| (-509)))) (-3590 (((-2 (|:| -1582 |#1|) (|:| -3371 $) (|:| -2946 $)) $ $) 70 (|has| |#1| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ (-991)) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-703) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-991) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-991) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1395 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-1072 |#1|) (-991)) NIL) (($ (-1072 $) (-991)) NIL)) (-2401 (($ $ (-703)) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-2089 (($ $ $) 20)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-991)) NIL) (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-3492 (((-703) $) NIL) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-703) (-703)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2688 (((-1072 |#1|) $) NIL)) (-2297 (((-3 (-991) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3549 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1995 (-703))) $ $) 26)) (-2851 (($ $ $) 29)) (-2856 (($ $ $) 32)) (-1688 (((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $) 31)) (-1662 (((-1059) $) NIL)) (-2350 (($ $ $) 41 (|has| |#1| (-509)))) (-2542 (((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703)) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-991)) (|:| -2121 (-703))) "failed") $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2587 (($) NIL (|has| |#1| (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-3445 (((-2 (|:| -2370 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-4118 (((-2 (|:| -2370 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3701 (((-2 (|:| -2157 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-2808 (((-2 (|:| -2157 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-2310 (((-107) $) 13)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3320 (($ $ (-703) |#1| $) 19)) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2763 (((-2 (|:| -2370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-4014 (((-2 (|:| -2157 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-991) |#1|) NIL) (($ $ (-583 (-991)) (-583 |#1|)) NIL) (($ $ (-991) $) NIL) (($ $ (-583 (-991)) (-583 $)) NIL)) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1193 (((-3 $ "failed") $ (-703)) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-1220 (($ $ (-991)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2060 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3647 (((-703) $) NIL) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-991) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-991) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-991) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-991)) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-3827 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-991)) NIL) (((-1072 |#1|) $) 7) (($ (-1072 |#1|)) 8) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 21 T CONST)) (-3619 (($) 24 T CONST)) (-3342 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) 28) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-714 |#1|) (-13 (-1133 |#1|) (-557 (-1072 |#1|)) (-954 (-1072 |#1|)) (-10 -8 (-15 -3320 ($ $ (-703) |#1| $)) (-15 -2089 ($ $ $)) (-15 -3549 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1995 (-703))) $ $)) (-15 -2851 ($ $ $)) (-15 -1688 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2856 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -3882 ((-583 $) $ $)) (-15 -2350 ($ $ $)) (-15 -2763 ((-2 (|:| -2370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4118 ((-2 (|:| -2370 $) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2370 $) (|:| |coef2| $)) $ $)) (-15 -4014 ((-2 (|:| -2157 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2808 ((-2 (|:| -2157 |#1|) (|:| |coef1| $)) $ $)) (-15 -3701 ((-2 (|:| -2157 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-963)) (T -714))
-((-3320 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-963)))) (-2089 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-963)))) (-3549 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1995 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-963)))) (-2851 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-963)))) (-1688 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1582 *3) (|:| |gap| (-703)) (|:| -3371 (-714 *3)) (|:| -2946 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-963)))) (-2856 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-963)))) (-3882 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))) (-2350 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-963)))) (-2763 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2370 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))) (-4118 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2370 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))) (-3445 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2370 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))) (-4014 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2157 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))) (-2808 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2157 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))) (-3701 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2157 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))))
-(-13 (-1133 |#1|) (-557 (-1072 |#1|)) (-954 (-1072 |#1|)) (-10 -8 (-15 -3320 ($ $ (-703) |#1| $)) (-15 -2089 ($ $ $)) (-15 -3549 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1995 (-703))) $ $)) (-15 -2851 ($ $ $)) (-15 -1688 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2856 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -3882 ((-583 $) $ $)) (-15 -2350 ($ $ $)) (-15 -2763 ((-2 (|:| -2370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4118 ((-2 (|:| -2370 $) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2370 $) (|:| |coef2| $)) $ $)) (-15 -4014 ((-2 (|:| -2157 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2808 ((-2 (|:| -2157 |#1|) (|:| |coef1| $)) $ $)) (-15 -3701 ((-2 (|:| -2157 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-2355 ((|#1| (-703) |#1|) 33 (|has| |#1| (-37 (-377 (-517)))))) (-1556 ((|#1| (-703) |#1|) 23)) (-2055 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))))
-(((-715 |#1|) (-10 -7 (-15 -1556 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2055 (|#1| (-703) |#1|)) (-15 -2355 (|#1| (-703) |#1|))) |%noBranch|)) (-156)) (T -715))
-((-2355 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2055 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-1556 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -1556 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2055 (|#1| (-703) |#1|)) (-15 -2355 (|#1| (-703) |#1|))) |%noBranch|))
-((-2119 (((-107) $ $) 7)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) 85)) (-2265 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2097 (((-583 |#3|) $) 33)) (-2687 (((-107) $) 26)) (-3389 (((-107) $) 17 (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) 101) (((-107) $) 97)) (-3939 ((|#4| |#4| $) 92)) (-1224 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| $) 126)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) 27)) (-1851 (((-107) $ (-703)) 44)) (-2325 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 79)) (-1393 (($) 45 T CONST)) (-3338 (((-107) $) 22 (|has| |#1| (-509)))) (-1605 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2893 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2501 (((-107) $) 25 (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2567 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 36)) (-3390 (($ (-583 |#4|)) 35)) (-2439 (((-3 $ "failed") $) 82)) (-3777 ((|#4| |#4| $) 89)) (-2455 (($ $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-2639 ((|#4| |#4| $) 87)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) 105)) (-2127 (((-107) |#4| $) 136)) (-2957 (((-107) |#4| $) 133)) (-1401 (((-107) |#4| $) 137) (((-107) $) 134)) (-1534 (((-583 |#4|) $) 52 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) 104) (((-107) $) 103)) (-3024 ((|#3| $) 34)) (-2497 (((-107) $ (-703)) 43)) (-1903 (((-583 |#4|) $) 53 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 47)) (-2241 (((-583 |#3|) $) 32)) (-2621 (((-107) |#3| $) 31)) (-1320 (((-107) $ (-703)) 42)) (-1662 (((-1059) $) 9)) (-2496 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2350 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| |#4| $) 127)) (-1446 (((-3 |#4| "failed") $) 83)) (-2305 (((-583 $) |#4| $) 129)) (-3364 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2259 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1493 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3568 (((-583 |#4|) $) 107)) (-1732 (((-107) |#4| $) 99) (((-107) $) 95)) (-3998 ((|#4| |#4| $) 90)) (-2958 (((-107) $ $) 110)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) 100) (((-107) $) 96)) (-3252 ((|#4| |#4| $) 91)) (-4125 (((-1023) $) 10)) (-2429 (((-3 |#4| "failed") $) 84)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3439 (((-3 $ "failed") $ |#4|) 78)) (-2671 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3644 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) 38)) (-2394 (((-107) $) 41)) (-2452 (($) 40)) (-3647 (((-703) $) 106)) (-4137 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4192)))) (-2462 (($ $) 39)) (-3359 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 60)) (-4028 (($ $ |#3|) 28)) (-1409 (($ $ |#3|) 30)) (-1888 (($ $) 88)) (-4159 (($ $ |#3|) 29)) (-2271 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3057 (((-703) $) 76 (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1856 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3602 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) 81)) (-3302 (((-107) |#4| $) 135)) (-1999 (((-107) |#3| $) 80)) (-1584 (((-107) $ $) 6)) (-3535 (((-703) $) 46 (|has| $ (-6 -4192)))))
-(((-716 |#1| |#2| |#3| |#4|) (-1188) (-421) (-725) (-779) (-977 |t#1| |t#2| |t#3|)) (T -716))
-NIL
-(-13 (-982 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-895 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1105 |#1| |#2| |#3| |#4|) . T) ((-1111) . T))
-((-3233 (((-3 (-349) "failed") (-286 |#1|) (-844)) 60 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 52 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-875 |#1|)) (-844)) 39 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-875 |#1|))) 35 (|has| |#1| (-509))) (((-3 (-349) "failed") (-875 |#1|) (-844)) 30 (|has| |#1| (-963))) (((-3 (-349) "failed") (-875 |#1|)) 24 (|has| |#1| (-963)))) (-3114 (((-349) (-286 |#1|) (-844)) 92 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 87 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-875 |#1|)) (-844)) 84 (|has| |#1| (-509))) (((-349) (-377 (-875 |#1|))) 81 (|has| |#1| (-509))) (((-349) (-875 |#1|) (-844)) 80 (|has| |#1| (-963))) (((-349) (-875 |#1|)) 77 (|has| |#1| (-963))) (((-349) |#1| (-844)) 73) (((-349) |#1|) 22)) (-3745 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-844)) 68 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 58 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-844)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 59 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))) (-844)) 44 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|)))) 43 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)) (-844)) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-875 |#1|))) 37 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-875 |#1|) (-844)) 28 (|has| |#1| (-963))) (((-3 (-153 (-349)) "failed") (-875 |#1|)) 26 (|has| |#1| (-963))) (((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)) (-844)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-875 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-1403 (((-153 (-349)) (-286 (-153 |#1|)) (-844)) 95 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-844)) 93 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 91 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-875 (-153 |#1|))) (-844)) 86 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-875 (-153 |#1|)))) 85 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-875 |#1|)) (-844)) 83 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-875 |#1|))) 82 (|has| |#1| (-509))) (((-153 (-349)) (-875 |#1|) (-844)) 79 (|has| |#1| (-963))) (((-153 (-349)) (-875 |#1|)) 78 (|has| |#1| (-963))) (((-153 (-349)) (-875 (-153 |#1|)) (-844)) 75 (|has| |#1| (-156))) (((-153 (-349)) (-875 (-153 |#1|))) 74 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-844)) 16 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 12 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-844)) 27) (((-153 (-349)) |#1|) 25)))
-(((-717 |#1|) (-10 -7 (-15 -3114 ((-349) |#1|)) (-15 -3114 ((-349) |#1| (-844))) (-15 -1403 ((-153 (-349)) |#1|)) (-15 -1403 ((-153 (-349)) |#1| (-844))) (IF (|has| |#1| (-156)) (PROGN (-15 -1403 ((-153 (-349)) (-153 |#1|))) (-15 -1403 ((-153 (-349)) (-153 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-875 (-153 |#1|)))) (-15 -1403 ((-153 (-349)) (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -3114 ((-349) (-875 |#1|))) (-15 -3114 ((-349) (-875 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-875 |#1|))) (-15 -1403 ((-153 (-349)) (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3114 ((-349) (-377 (-875 |#1|)))) (-15 -3114 ((-349) (-377 (-875 |#1|)) (-844))) (-15 -1403 ((-153 (-349)) (-377 (-875 |#1|)))) (-15 -1403 ((-153 (-349)) (-377 (-875 |#1|)) (-844))) (-15 -1403 ((-153 (-349)) (-377 (-875 (-153 |#1|))))) (-15 -1403 ((-153 (-349)) (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3114 ((-349) (-286 |#1|))) (-15 -3114 ((-349) (-286 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-286 |#1|))) (-15 -1403 ((-153 (-349)) (-286 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1403 ((-153 (-349)) (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -3233 ((-3 (-349) "failed") (-875 |#1|))) (-15 -3233 ((-3 (-349) "failed") (-875 |#1|) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 |#1|))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3233 ((-3 (-349) "failed") (-377 (-875 |#1|)))) (-15 -3233 ((-3 (-349) "failed") (-377 (-875 |#1|)) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3233 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3233 ((-3 (-349) "failed") (-286 |#1|) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|)) (-558 (-349))) (T -717))
-((-3745 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3745 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3233 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3745 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3745 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3233 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3745 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3233 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3745 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-844)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3114 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3114 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
-(-10 -7 (-15 -3114 ((-349) |#1|)) (-15 -3114 ((-349) |#1| (-844))) (-15 -1403 ((-153 (-349)) |#1|)) (-15 -1403 ((-153 (-349)) |#1| (-844))) (IF (|has| |#1| (-156)) (PROGN (-15 -1403 ((-153 (-349)) (-153 |#1|))) (-15 -1403 ((-153 (-349)) (-153 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-875 (-153 |#1|)))) (-15 -1403 ((-153 (-349)) (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -3114 ((-349) (-875 |#1|))) (-15 -3114 ((-349) (-875 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-875 |#1|))) (-15 -1403 ((-153 (-349)) (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3114 ((-349) (-377 (-875 |#1|)))) (-15 -3114 ((-349) (-377 (-875 |#1|)) (-844))) (-15 -1403 ((-153 (-349)) (-377 (-875 |#1|)))) (-15 -1403 ((-153 (-349)) (-377 (-875 |#1|)) (-844))) (-15 -1403 ((-153 (-349)) (-377 (-875 (-153 |#1|))))) (-15 -1403 ((-153 (-349)) (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3114 ((-349) (-286 |#1|))) (-15 -3114 ((-349) (-286 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-286 |#1|))) (-15 -1403 ((-153 (-349)) (-286 |#1|) (-844))) (-15 -1403 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1403 ((-153 (-349)) (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -3233 ((-3 (-349) "failed") (-875 |#1|))) (-15 -3233 ((-3 (-349) "failed") (-875 |#1|) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 |#1|))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3233 ((-3 (-349) "failed") (-377 (-875 |#1|)))) (-15 -3233 ((-3 (-349) "failed") (-377 (-875 |#1|)) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3233 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3233 ((-3 (-349) "failed") (-286 |#1|) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-844))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -3745 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|))
-((-2936 (((-844) (-1059)) 64)) (-3555 (((-3 (-349) "failed") (-1059)) 33)) (-2550 (((-349) (-1059)) 31)) (-2299 (((-844) (-1059)) 54)) (-2860 (((-1059) (-844)) 55)) (-1275 (((-1059) (-844)) 53)))
-(((-718) (-10 -7 (-15 -1275 ((-1059) (-844))) (-15 -2299 ((-844) (-1059))) (-15 -2860 ((-1059) (-844))) (-15 -2936 ((-844) (-1059))) (-15 -2550 ((-349) (-1059))) (-15 -3555 ((-3 (-349) "failed") (-1059))))) (T -718))
-((-3555 (*1 *2 *3) (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-844)) (-5 *1 (-718)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1059)) (-5 *1 (-718)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-844)) (-5 *1 (-718)))) (-1275 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1059)) (-5 *1 (-718)))))
-(-10 -7 (-15 -1275 ((-1059) (-844))) (-15 -2299 ((-844) (-1059))) (-15 -2860 ((-1059) (-844))) (-15 -2936 ((-844) (-1059))) (-15 -2550 ((-349) (-1059))) (-15 -3555 ((-3 (-349) "failed") (-1059))))
-((-2119 (((-107) $ $) 7)) (-2337 (((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 15) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)) 13)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-719) (-1188)) (T -719))
-((-3617 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-975)) (-5 *4 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952)))))) (-2337 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-952)) (-5 *3 (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3617 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-975)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952)))))) (-2337 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-952)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(-13 (-1005) (-10 -7 (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2337 ((-952) (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199))) (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)) (|:| |extra| (-952))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2337 ((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-952)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2981 (((-1162) (-1157 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))) (-349) (-1157 (-349)) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349))) 44) (((-1162) (-1157 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))) (-349) (-1157 (-349)) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349))) 43)) (-1280 (((-1162) (-1157 (-349)) (-517) (-349) (-349) (-517) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349))) 50)) (-3780 (((-1162) (-1157 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349))) 41)) (-2108 (((-1162) (-1157 (-349)) (-517) (-349) (-349) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349))) 52) (((-1162) (-1157 (-349)) (-517) (-349) (-349) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349))) 51)))
-(((-720) (-10 -7 (-15 -2108 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))) (-15 -2108 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)))) (-15 -3780 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))) (-15 -2981 ((-1162) (-1157 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))) (-349) (-1157 (-349)) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))) (-15 -2981 ((-1162) (-1157 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))) (-349) (-1157 (-349)) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)))) (-15 -1280 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-517) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))))) (T -720))
-((-1280 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349))) (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162)) (-5 *1 (-720)))) (-2981 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349)))) (-5 *7 (-1 (-1162) (-1157 *5) (-1157 *5) (-349))) (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162)) (-5 *1 (-720)))) (-2981 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349)))) (-5 *7 (-1 (-1162) (-1157 *5) (-1157 *5) (-349))) (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162)) (-5 *1 (-720)))) (-3780 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349))) (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162)) (-5 *1 (-720)))) (-2108 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349))) (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162)) (-5 *1 (-720)))) (-2108 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349))) (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162)) (-5 *1 (-720)))))
-(-10 -7 (-15 -2108 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))) (-15 -2108 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)))) (-15 -3780 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))) (-15 -2981 ((-1162) (-1157 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))) (-349) (-1157 (-349)) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))) (-15 -2981 ((-1162) (-1157 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))) (-349) (-1157 (-349)) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)) (-1157 (-349)))) (-15 -1280 ((-1162) (-1157 (-349)) (-517) (-349) (-349) (-517) (-1 (-1162) (-1157 (-349)) (-1157 (-349)) (-349)))))
-((-3352 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2705 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-2493 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-1712 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-3648 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-1209 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3449 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-3387 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-2864 (((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
-(((-721) (-10 -7 (-15 -2864 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3387 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3449 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1209 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1712 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2705 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3648 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2493 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3352 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
-((-3352 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2493 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3648 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2705 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1712 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1209 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3449 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3387 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2864 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(-10 -7 (-15 -2864 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3387 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3449 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1209 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1712 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2705 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3648 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2493 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3352 ((-2 (|:| -3121 (-349)) (|:| -3110 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
-((-4037 (((-1107 |#1|) |#1| (-199) (-517)) 45)))
-(((-722 |#1|) (-10 -7 (-15 -4037 ((-1107 |#1|) |#1| (-199) (-517)))) (-893)) (T -722))
-((-4037 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1107 *3)) (-5 *1 (-722 *3)) (-4 *3 (-893)))))
-(-10 -7 (-15 -4037 ((-1107 |#1|) |#1| (-199) (-517))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 24)) (-2798 (((-3 $ "failed") $ $) 26)) (-1393 (($) 23 T CONST)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 22 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1692 (($ $ $) 28) (($ $) 27)) (-1678 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21) (($ (-517) $) 29)))
-(((-723) (-1188)) (T -723))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-2127 (($ |#1|) 17) (($ $ |#1|) 20)) (-2029 (($ |#1|) 18) (($ $ |#1|) 21)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1690 (((-107) $) NIL)) (-3384 (($ |#1| |#1| |#1| |#1|) 8)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 16)) (-4130 (((-1024) $) NIL)) (-3552 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 39)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 9 T CONST)) (-1572 (((-107) $ $) 44)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
+(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -3384 ($ |#1| |#1| |#1| |#1|)) (-15 -2127 ($ |#1|)) (-15 -2029 ($ |#1|)) (-15 -3550 ($)) (-15 -2127 ($ $ |#1|)) (-15 -2029 ($ $ |#1|)) (-15 -3550 ($ $)) (-15 -3552 (|#1| $ |#1|)) (-15 -3552 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
+((-3384 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2127 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2029 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3550 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3550 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3552 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3552 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
+(-13 (-442) (-10 -8 (-15 -3384 ($ |#1| |#1| |#1| |#1|)) (-15 -2127 ($ |#1|)) (-15 -2029 ($ |#1|)) (-15 -3550 ($)) (-15 -2127 ($ $ |#1|)) (-15 -2029 ($ $ |#1|)) (-15 -3550 ($ $)) (-15 -3552 (|#1| $ |#1|)) (-15 -3552 ((-765 |#1|) $ (-765 |#1|)))))
+((-2823 (($ $ (-845)) 12)) (-4119 (($ $ (-845)) 13)) (** (($ $ (-845)) 10)))
+(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845)))) (-653)) (T -652))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-2823 (($ $ (-845)) 15)) (-4119 (($ $ (-845)) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 13)) (* (($ $ $) 16)))
+(((-653) (-1189)) (T -653))
+((* (*1 *1 *1 *1) (-4 *1 (-653))) (-2823 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) (-4119 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))))
+(-13 (-1006) (-10 -8 (-15 * ($ $ $)) (-15 -2823 ($ $ (-845))) (-15 -4119 ($ $ (-845))) (-15 ** ($ $ (-845)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2823 (($ $ (-845)) NIL) (($ $ (-703)) 17)) (-1690 (((-107) $) 10)) (-4119 (($ $ (-845)) NIL) (($ $ (-703)) 18)) (** (($ $ (-845)) NIL) (($ $ (-703)) 15)))
+(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -4119 (|#1| |#1| (-703))) (-15 -2823 (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845)))) (-655)) (T -654))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -4119 (|#1| |#1| (-703))) (-15 -2823 (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-3071 (((-3 $ "failed") $) 17)) (-2823 (($ $ (-845)) 15) (($ $ (-703)) 22)) (-3550 (((-3 $ "failed") $) 19)) (-1690 (((-107) $) 23)) (-2680 (((-3 $ "failed") $) 18)) (-4119 (($ $ (-845)) 14) (($ $ (-703)) 21)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3675 (($) 24 T CONST)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
+(((-655) (-1189)) (T -655))
+((-3675 (*1 *1) (-4 *1 (-655))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-2823 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-4119 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3550 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2680 (*1 *1 *1) (|partial| -4 *1 (-655))) (-3071 (*1 *1 *1) (|partial| -4 *1 (-655))))
+(-13 (-653) (-10 -8 (-15 (-3675) ($) -1373) (-15 -1690 ((-107) $)) (-15 -2823 ($ $ (-703))) (-15 -4119 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3550 ((-3 $ "failed") $)) (-15 -2680 ((-3 $ "failed") $)) (-15 -3071 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1006) . T))
+((-2390 (((-703)) 35)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-1510 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3550 (((-3 $ "failed") $) 65)) (-2192 (($) 39)) (-3522 ((|#2| $) 20)) (-1306 (($) 17)) (-2042 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3248 (((-623 |#2|) (-1158 $) (-1 |#2| |#2|)) 60)) (-3367 (((-1158 |#2|) $) NIL) (($ (-1158 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3848 ((|#3| $) 32)) (-3700 (((-1158 $)) 29)))
+(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2192 (|#1|)) (-15 -2390 ((-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3248 ((-623 |#2|) (-1158 |#1|) (-1 |#2| |#2|))) (-15 -1510 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3367 (|#1| |#3|)) (-15 -1510 (|#1| |#3|)) (-15 -1306 (|#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 (|#3| |#1|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3700 ((-1158 |#1|))) (-15 -3848 (|#3| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1134 |#2|)) (T -656))
+((-2390 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
+(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2192 (|#1|)) (-15 -2390 ((-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3248 ((-623 |#2|) (-1158 |#1|) (-1 |#2| |#2|))) (-15 -1510 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3367 (|#1| |#3|)) (-15 -1510 (|#1| |#3|)) (-15 -1306 (|#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 (|#3| |#1|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3700 ((-1158 |#1|))) (-15 -3848 (|#3| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-2491 (($ $) 94 (|has| |#1| (-333)))) (-2025 (((-107) $) 96 (|has| |#1| (-333)))) (-1278 (((-623 |#1|) (-1158 $)) 46) (((-623 |#1|)) 61)) (-1991 ((|#1| $) 52)) (-2461 (((-1086 (-845) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 113 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 114 (|has| |#1| (-333)))) (-1765 (((-107) $ $) 104 (|has| |#1| (-333)))) (-2390 (((-703)) 87 (|has| |#1| (-338)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 169 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3402 (((-517) $) 170 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 165)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48) (($ (-1158 |#1|)) 64)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2383 (($ $ $) 108 (|has| |#1| (-333)))) (-4028 (((-623 |#1|) $ (-1158 $)) 53) (((-623 |#1|) $) 59)) (-2947 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1510 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-845)) 54)) (-2192 (($) 90 (|has| |#1| (-338)))) (-2356 (($ $ $) 107 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-4169 (($) 149 (|has| |#1| (-319)))) (-2634 (((-107) $) 150 (|has| |#1| (-319)))) (-2627 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2022 (((-107) $) 115 (|has| |#1| (-333)))) (-3250 (((-845) $) 152 (|has| |#1| (-319))) (((-765 (-845)) $) 138 (|has| |#1| (-319)))) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 51)) (-1639 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-1914 ((|#2| $) 44 (|has| |#1| (-333)))) (-4161 (((-845) $) 89 (|has| |#1| (-338)))) (-1497 ((|#2| $) 156)) (-2323 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 116 (|has| |#1| (-333)))) (-2578 (($) 143 (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) 88 (|has| |#1| (-338)))) (-4130 (((-1024) $) 10)) (-1306 (($) 160)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 101 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 146 (|has| |#1| (-319)))) (-3896 (((-388 $) $) 112 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 109 (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3388 (((-703) $) 105 (|has| |#1| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 106 (|has| |#1| (-333)))) (-3115 ((|#1| (-1158 $)) 47) ((|#1|) 60)) (-3667 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2042 (($ $) 137 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) 133 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077))) 132 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1077) (-703)) 131 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-703))) 130 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2819 ((|#2|) 159)) (-3718 (($) 148 (|has| |#1| (-319)))) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49) (((-1158 |#1|) $) 66) (((-623 |#1|) (-1158 $)) 65)) (-3367 (((-1158 |#1|) $) 63) (($ (-1158 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3848 ((|#2| $) 45)) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 67)) (-2944 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 136 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) 129 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077))) 128 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1077) (-703)) 127 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-703))) 126 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 121 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-657 |#1| |#2|) (-1189) (-156) (-1134 |t#1|)) (T -657))
+((-1306 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1134 *2)))) (-2819 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) (-1510 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3)))) (-3367 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) (-1510 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-1158 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1134 *5)) (-5 *2 (-623 *5)))))
+(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1306 ($)) (-15 -2819 (|t#2|)) (-15 -1510 ($ |t#2|)) (-15 -3367 ($ |t#2|)) (-15 -1497 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -1510 ((-3 $ "failed") (-377 |t#2|))) (-15 -3248 ((-623 |t#1|) (-1158 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 #0# #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3786 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3786 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077)))) ((-844) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-319)) ((-1116) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))))
+((-3038 (($) 14)) (-3550 (((-3 $ "failed") $) 16)) (-1690 (((-107) $) 13)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) 9)) (** (($ $ (-845)) NIL) (($ $ (-703)) 20)))
+(((-658 |#1|) (-10 -8 (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) (-659)) (T -658))
+NIL
+(-10 -8 (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-3038 (($) 20 T CONST)) (-3550 (((-3 $ "failed") $) 16)) (-1690 (((-107) $) 19)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13) (($ $ (-703)) 17)) (-3675 (($) 21 T CONST)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
+(((-659) (-1189)) (T -659))
+((-3675 (*1 *1) (-4 *1 (-659))) (-3038 (*1 *1) (-4 *1 (-659))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3550 (*1 *1 *1) (|partial| -4 *1 (-659))))
+(-13 (-1018) (-10 -8 (-15 (-3675) ($) -1373) (-15 -3038 ($) -1373) (-15 -1690 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2806 ($ $ (-703))) (-15 -3550 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1018) . T) ((-1006) . T))
+((-1669 (((-2 (|:| -1375 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1975 (((-2 (|:| -1375 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3163 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-1784 (((-2 (|:| |poly| |#2|) (|:| -1375 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
+(((-660 |#1| |#2|) (-10 -7 (-15 -1975 ((-2 (|:| -1375 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1669 ((-2 (|:| -1375 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3163 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -1784 ((-2 (|:| |poly| |#2|) (|:| -1375 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1134 |#1|)) (T -660))
+((-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1375 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1134 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-1669 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1375 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1375 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
+(-10 -7 (-15 -1975 ((-2 (|:| -1375 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1669 ((-2 (|:| -1375 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3163 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -1784 ((-2 (|:| |poly| |#2|) (|:| -1375 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
+((-2489 ((|#7| (-583 |#5|) |#6|) NIL)) (-3312 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3312 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2489 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-964) (-964) (-873 |#4| |#2| |#1|) (-873 |#5| |#3| |#1|)) (T -661))
+((-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-964)) (-4 *2 (-873 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-873 *8 *6 *5)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-964)) (-4 *9 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-873 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-873 *8 *6 *5)))))
+(-10 -7 (-15 -3312 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2489 (|#7| (-583 |#5|) |#6|)))
+((-3312 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
+(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3312 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-964) (-873 |#5| |#3| |#1|) (-873 |#5| |#4| |#2|)) (T -662))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-964)) (-4 *2 (-873 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-873 *9 *7 *5)))))
+(-10 -7 (-15 -3312 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3896 (((-388 |#4|) |#4|) 39)))
+(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077))))) (-278) (-873 (-876 |#3|) |#1| |#2|)) (T -663))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-873 (-876 *6) *4 *5)))))
+(-10 -7 (-15 -3896 ((-388 |#4|) |#4|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-789 |#1|)) $) NIL)) (-1428 (((-1073 $) $ (-789 |#1|)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) NIL) (($ (-1073 $) (-789 |#1|)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517))))))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-664 |#1| |#2|) (-873 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1077)) (-964)) (T -664))
+NIL
+(-873 |#2| (-489 (-789 |#1|)) (-789 |#1|))
+((-2334 (((-2 (|:| -3505 (-876 |#3|)) (|:| -2720 (-876 |#3|))) |#4|) 13)) (-1321 ((|#4| |#4| |#2|) 30)) (-2052 ((|#4| (-377 (-876 |#3|)) |#2|) 64)) (-2629 ((|#4| (-1073 (-876 |#3|)) |#2|) 77)) (-1941 ((|#4| (-1073 |#4|) |#2|) 50)) (-2014 ((|#4| |#4| |#2|) 53)) (-3896 (((-388 |#4|) |#4|) 38)))
+(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2334 ((-2 (|:| -3505 (-876 |#3|)) (|:| -2720 (-876 |#3|))) |#4|)) (-15 -2014 (|#4| |#4| |#2|)) (-15 -1941 (|#4| (-1073 |#4|) |#2|)) (-15 -1321 (|#4| |#4| |#2|)) (-15 -2629 (|#4| (-1073 (-876 |#3|)) |#2|)) (-15 -2052 (|#4| (-377 (-876 |#3|)) |#2|)) (-15 -3896 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)))) (-509) (-873 (-377 (-876 |#3|)) |#1| |#2|)) (T -665))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-873 (-377 (-876 *6)) *4 *5)))) (-2052 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-876 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 (-876 *6))) (-4 *6 (-509)) (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))))) (-1321 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3)))) (-2334 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -3505 (-876 *6)) (|:| -2720 (-876 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-873 (-377 (-876 *6)) *4 *5)))))
+(-10 -7 (-15 -2334 ((-2 (|:| -3505 (-876 |#3|)) (|:| -2720 (-876 |#3|))) |#4|)) (-15 -2014 (|#4| |#4| |#2|)) (-15 -1941 (|#4| (-1073 |#4|) |#2|)) (-15 -1321 (|#4| |#4| |#2|)) (-15 -2629 (|#4| (-1073 (-876 |#3|)) |#2|)) (-15 -2052 (|#4| (-377 (-876 |#3|)) |#2|)) (-15 -3896 ((-388 |#4|) |#4|)))
+((-3896 (((-388 |#4|) |#4|) 51)))
+(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-873 (-377 |#3|) |#1| |#2|)) (T -666))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-873 (-377 *6) *4 *5)))))
+(-10 -7 (-15 -3896 ((-388 |#4|) |#4|)))
+((-3312 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
+(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-964) (-964) (-659)) (T -667))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-964)) (-4 *6 (-964)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
+(-10 -7 (-15 -3312 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 26)) (-3747 (((-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))) $) 27)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-3402 ((|#2| $) NIL) ((|#1| $) NIL)) (-2364 (($ $) 76 (|has| |#2| (-779)))) (-3550 (((-3 $ "failed") $) 63)) (-2192 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 54)) (-1300 (((-583 $) $) 37)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| |#2|) 16)) (-3312 (($ (-1 |#1| |#1|) $) 53)) (-4161 (((-845) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-2325 ((|#2| $) 75 (|has| |#2| (-779)))) (-2336 ((|#1| $) 74 (|has| |#2| (-779)))) (-3232 (((-1060) $) NIL)) (-2803 (($ (-845)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 73) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|)))) 11)) (-3186 (((-583 |#1|) $) 39)) (-1939 ((|#1| $ |#2|) 84)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 12 T CONST)) (-3675 (($) 31 T CONST)) (-1572 (((-107) $ $) 77)) (-1680 (($ $) 46) (($ $ $) NIL)) (-1666 (($ $ $) 24)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-668 |#1| |#2|) (-13 (-964) (-955 |#2|) (-955 |#1|) (-10 -8 (-15 -2059 ($ |#1| |#2|)) (-15 -1939 (|#1| $ |#2|)) (-15 -2262 ($ (-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))))) (-15 -3747 ((-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -3022 ((-107) $)) (-15 -3186 ((-583 |#1|) $)) (-15 -1300 ((-583 $) $)) (-15 -2516 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2325 (|#2| $)) (-15 -2336 (|#1| $)) (-15 -2364 ($ $))) |%noBranch|))) (-964) (-659)) (T -668))
+((-2059 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-964)) (-4 *3 (-659)))) (-1939 (*1 *2 *1 *3) (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) (-4 *3 (-964)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-2325 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-964)))) (-2336 (*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-964)) (-4 *3 (-659)))))
+(-13 (-964) (-955 |#2|) (-955 |#1|) (-10 -8 (-15 -2059 ($ |#1| |#2|)) (-15 -1939 (|#1| $ |#2|)) (-15 -2262 ($ (-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))))) (-15 -3747 ((-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -3022 ((-107) $)) (-15 -3186 ((-583 |#1|) $)) (-15 -1300 ((-583 $) $)) (-15 -2516 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2325 (|#2| $)) (-15 -2336 (|#1| $)) (-15 -2364 ($ $))) |%noBranch|)))
+((-2105 (((-107) $ $) 19)) (-2374 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4020 (($ $ $) 72)) (-3873 (((-107) $ $) 73)) (-3443 (((-107) $ (-703)) 8)) (-1871 (($ (-583 |#1|)) 68) (($) 67)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 62)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22)) (-2187 (($ $ $) 69)) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4130 (((-1024) $) 21)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 61)) (-1201 (($ $ |#1|) 71) (($ $ $) 70)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18)) (-3066 (($ (-583 |#1|)) 66) (($) 65)) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 64)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-669 |#1|) (-1189) (-1006)) (T -669))
+NIL
+(-13 (-628 |t#1|) (-1004 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-628 |#1|) . T) ((-1004 |#1|) . T) ((-1006) . T) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-2374 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-4020 (($ $ $) 79)) (-3873 (((-107) $ $) 82)) (-3443 (((-107) $ (-703)) NIL)) (-1871 (($ (-583 |#1|)) 24) (($) 15)) (-2582 (($ (-1 (-107) |#1|) $) 70 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3081 (($ $) 71)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) 61 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4195))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 32 (|has| $ (-6 -4195)))) (-1205 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) 38)) (-1949 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 75)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 77)) (-2015 ((|#1| $) 54)) (-3439 (($ |#1| $) 55) (($ |#1| $ (-703)) 72)) (-4130 (((-1024) $) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1551 ((|#1| $) 53)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 49)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 47)) (-1201 (($ $ |#1|) NIL) (($ $ $) 78)) (-3808 (($) 14) (($ (-583 |#1|)) 23)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 66)) (-3367 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 20)) (-2262 (((-787) $) 44)) (-3066 (($ (-583 |#1|)) 25) (($) 16)) (-2729 (($ (-583 |#1|)) 22)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 80)) (-1596 (((-107) $ $) 81)) (-3573 (((-703) $) 59 (|has| $ (-6 -4195)))))
+(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1205 ($)) (-15 -1205 ($ |#1|)) (-15 -1205 ($ (-583 |#1|))) (-15 -3687 ((-583 |#1|) $)) (-15 -1423 ($ |#1| $ (-517))) (-15 -1423 ($ (-1 (-107) |#1|) $ (-517))) (-15 -1749 ($ |#1| $ (-517))) (-15 -1749 ($ (-1 (-107) |#1|) $ (-517))))) (-1006)) (T -670))
+((-1205 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1205 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-670 *3)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1006)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006)) (-5 *1 (-670 *4)))) (-1749 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1749 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006)) (-5 *1 (-670 *4)))))
+(-13 (-669 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1205 ($)) (-15 -1205 ($ |#1|)) (-15 -1205 ($ (-583 |#1|))) (-15 -3687 ((-583 |#1|) $)) (-15 -1423 ($ |#1| $ (-517))) (-15 -1423 ($ (-1 (-107) |#1|) $ (-517))) (-15 -1749 ($ |#1| $ (-517))) (-15 -1749 ($ (-1 (-107) |#1|) $ (-517)))))
+((-1350 (((-1163) (-1060)) 8)))
+(((-671) (-10 -7 (-15 -1350 ((-1163) (-1060))))) (T -671))
+((-1350 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-671)))))
+(-10 -7 (-15 -1350 ((-1163) (-1060))))
+((-3672 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
+(((-672 |#1|) (-10 -7 (-15 -3672 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
+((-3672 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(-10 -7 (-15 -3672 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#2|) $) 136)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-2491 (($ $) 128 (|has| |#1| (-509)))) (-2025 (((-107) $) 126 (|has| |#1| (-509)))) (-1636 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1659 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2364 (($ $) 120)) (-3550 (((-3 $ "failed") $) 34)) (-2905 (((-876 |#1|) $ (-703)) 98) (((-876 |#1|) $ (-703) (-703)) 97)) (-3690 (((-107) $) 137)) (-2102 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-3022 (((-107) $) 118)) (-2059 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-3312 (($ (-1 |#1| |#1|) $) 117)) (-1232 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 115)) (-2336 ((|#1| $) 114)) (-3232 (((-1060) $) 9)) (-3296 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) 10)) (-3175 (($ $ (-703)) 103)) (-2333 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-3898 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-2042 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-1191 (((-489 |#2|) $) 116)) (-1670 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 138)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1939 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-3385 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-1706 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 127 (|has| |#1| (-509)))) (-1685 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-673 |#1| |#2|) (-1189) (-964) (-779)) (T -673))
+((-1939 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964)) (-4 *2 (-779)))) (-1939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-964)) (-4 *4 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)))) (-3250 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3250 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) (-4 *3 (-779)))) (-2905 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)) (-5 *2 (-876 *4)))) (-2905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)) (-5 *2 (-876 *4)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
+(-13 (-824 |t#2|) (-893 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -1939 ($ $ |t#2| (-703))) (-15 -1939 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3175 ($ $ (-703))) (-15 -2059 ($ $ |t#2| (-703))) (-15 -2059 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3250 ((-703) $ |t#2|)) (-15 -3250 ((-703) $ |t#2| (-703))) (-15 -2905 ((-876 |t#1|) $ (-703))) (-15 -2905 ((-876 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ |t#2|)) (-6 (-921)) (-6 (-1098))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-489 |#2|)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-824 |#2|) . T) ((-893 |#1| #0# |#2|) . T) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))))
+((-3896 (((-388 (-1073 |#4|)) (-1073 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-873 |#3| |#2| |#1|)) (T -674))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4)))))
+(-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|))))
+((-2793 (((-388 |#4|) |#4| |#2|) 117)) (-2990 (((-388 |#4|) |#4|) NIL)) (-3306 (((-388 (-1073 |#4|)) (-1073 |#4|)) 108) (((-388 |#4|) |#4|) 38)) (-2061 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 |#4|)) (|:| -1725 (-517)))))) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 66)) (-2141 (((-1073 |#3|) (-1073 |#3|) (-517)) 134)) (-1271 (((-583 (-703)) (-1073 |#4|) (-583 |#2|) (-703)) 59)) (-1497 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-1073 |#3|) (-1073 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 63)) (-1430 (((-2 (|:| |upol| (-1073 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) (|:| |ctpol| |#3|)) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-1834 (((-2 (|:| -2242 (-1073 |#4|)) (|:| |polval| (-1073 |#3|))) (-1073 |#4|) (-1073 |#3|) (-517)) 55)) (-3609 (((-517) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) 131)) (-2222 ((|#4| (-517) (-388 |#4|)) 56)) (-1457 (((-107) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) NIL)))
+(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 ((-388 |#4|) |#4|)) (-15 -3306 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -2990 ((-388 |#4|) |#4|)) (-15 -3609 ((-517) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -2793 ((-388 |#4|) |#4| |#2|)) (-15 -1834 ((-2 (|:| -2242 (-1073 |#4|)) (|:| |polval| (-1073 |#3|))) (-1073 |#4|) (-1073 |#3|) (-517))) (-15 -2061 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 |#4|)) (|:| -1725 (-517)))))) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1430 ((-2 (|:| |upol| (-1073 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) (|:| |ctpol| |#3|)) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2222 (|#4| (-517) (-388 |#4|))) (-15 -1457 ((-107) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -1497 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-1073 |#3|) (-1073 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -1271 ((-583 (-703)) (-1073 |#4|) (-583 |#2|) (-703))) (-15 -2141 ((-1073 |#3|) (-1073 |#3|) (-517)))) (-725) (-779) (-278) (-873 |#3| |#1| |#2|)) (T -675))
+((-2141 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-1271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-1497 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1073 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-873 *11 *9 *10)) (-5 *2 (-583 (-1073 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1073 *5)))) (-1457 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2222 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-873 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-1430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1073 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 *8)) (|:| -1725 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-2061 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-873 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 *9)) (|:| -1725 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)))) (-1834 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-873 *8 *6 *7)) (-5 *2 (-2 (|:| -2242 (-1073 *9)) (|:| |polval| (-1073 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)) (-5 *4 (-1073 *8)))) (-2793 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2990 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5)))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5)))))
+(-10 -7 (-15 -3306 ((-388 |#4|) |#4|)) (-15 -3306 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -2990 ((-388 |#4|) |#4|)) (-15 -3609 ((-517) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -2793 ((-388 |#4|) |#4| |#2|)) (-15 -1834 ((-2 (|:| -2242 (-1073 |#4|)) (|:| |polval| (-1073 |#3|))) (-1073 |#4|) (-1073 |#3|) (-517))) (-15 -2061 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 |#4|)) (|:| -1725 (-517)))))) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1430 ((-2 (|:| |upol| (-1073 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) (|:| |ctpol| |#3|)) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2222 (|#4| (-517) (-388 |#4|))) (-15 -1457 ((-107) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -1497 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-1073 |#3|) (-1073 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -1271 ((-583 (-703)) (-1073 |#4|) (-583 |#2|) (-703))) (-15 -2141 ((-1073 |#3|) (-1073 |#3|) (-517))))
+((-1768 (($ $ (-845)) 12)))
+(((-676 |#1| |#2|) (-10 -8 (-15 -1768 (|#1| |#1| (-845)))) (-677 |#2|) (-156)) (T -676))
+NIL
+(-10 -8 (-15 -1768 (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2823 (($ $ (-845)) 28)) (-1768 (($ $ (-845)) 33)) (-4119 (($ $ (-845)) 29)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1970 (($ $ $) 25)) (-2262 (((-787) $) 11)) (-2182 (($ $ $ $) 26)) (-2742 (($ $ $) 24)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-677 |#1|) (-1189) (-156)) (T -677))
+((-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -1768 ($ $ (-845)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-3310 (((-953) (-623 (-199)) (-517) (-107) (-517)) 24)) (-3897 (((-953) (-623 (-199)) (-517) (-107) (-517)) 23)))
+(((-678) (-10 -7 (-15 -3897 ((-953) (-623 (-199)) (-517) (-107) (-517))) (-15 -3310 ((-953) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
+((-3310 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-678)))) (-3897 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-678)))))
+(-10 -7 (-15 -3897 ((-953) (-623 (-199)) (-517) (-107) (-517))) (-15 -3310 ((-953) (-623 (-199)) (-517) (-107) (-517))))
+((-2009 (((-953) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-3040 (((-953) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-3303 (((-953) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 32)))
+(((-679) (-10 -7 (-15 -3303 ((-953) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3040 ((-953) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2009 ((-953) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
+((-2009 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-953)) (-5 *1 (-679)))) (-3040 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-953)) (-5 *1 (-679)))) (-3303 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-679)))))
+(-10 -7 (-15 -3303 ((-953) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3040 ((-953) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2009 ((-953) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
+((-2669 (((-953) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2208 (((-953) (-517) (-517) (-623 (-199)) (-517)) 32)) (-3481 (((-953) (-517) (-623 (-199)) (-517)) 31)) (-2166 (((-953) (-517) (-623 (-199)) (-517)) 30)) (-1641 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2375 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-4017 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-1209 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-1854 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-1842 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-1324 (((-953) (-517) (-623 (-199)) (-517)) 21)) (-1252 (((-953) (-517) (-623 (-199)) (-517)) 20)))
+(((-680) (-10 -7 (-15 -1252 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1324 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1842 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1854 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1209 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4017 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2375 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1641 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2166 ((-953) (-517) (-623 (-199)) (-517))) (-15 -3481 ((-953) (-517) (-623 (-199)) (-517))) (-15 -2208 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -2669 ((-953) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
+((-2669 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-2208 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-3481 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-2166 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1641 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-2375 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-4017 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1209 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1854 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1842 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1324 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1252 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))))
+(-10 -7 (-15 -1252 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1324 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1842 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1854 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1209 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4017 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2375 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1641 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2166 ((-953) (-517) (-623 (-199)) (-517))) (-15 -3481 ((-953) (-517) (-623 (-199)) (-517))) (-15 -2208 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -2669 ((-953) (-517) (-517) (-623 (-199)) (-517))))
+((-3937 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3337 (((-953) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-2180 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1420 (((-953) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3652 (((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-2885 (((-953) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3510 (((-953) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-4008 (((-953) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3530 (((-953) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 38)) (-1726 (((-953) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 37)) (-2778 (((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 33)) (-1380 (((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 32)))
+(((-681) (-10 -7 (-15 -1380 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -2778 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -1726 ((-953) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3530 ((-953) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -4008 ((-953) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3510 ((-953) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -2885 ((-953) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3652 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1420 ((-953) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -2180 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -3337 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -3937 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
+((-3937 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-3337 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-681)))) (-2180 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-1420 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-681)))) (-3652 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-2885 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-3510 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-4008 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-3530 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-1726 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-681)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-1380 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-681)))))
+(-10 -7 (-15 -1380 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -2778 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -1726 ((-953) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3530 ((-953) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -4008 ((-953) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3510 ((-953) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -2885 ((-953) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3652 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1420 ((-953) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -2180 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -3337 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -3937 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
+((-2546 (((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1406 (((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2631 (((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1738 (((-953) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-2805 (((-953) (-199) (-517) (-517) (-1060) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2615 (((-953) (-199) (-517) (-517) (-199) (-1060) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3660 (((-953) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-3032 (((-953) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-682) (-10 -7 (-15 -3032 ((-953) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3660 ((-953) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2615 ((-953) (-199) (-517) (-517) (-199) (-1060) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -2805 ((-953) (-199) (-517) (-517) (-1060) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1738 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2631 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -2546 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
+((-2546 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-1406 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-953)) (-5 *1 (-682)))) (-1406 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-953)) (-5 *1 (-682)))) (-2631 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-1738 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-953)) (-5 *1 (-682)))) (-2805 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-2615 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-3660 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-3032 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))))
+(-10 -7 (-15 -3032 ((-953) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3660 ((-953) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2615 ((-953) (-199) (-517) (-517) (-199) (-1060) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -2805 ((-953) (-199) (-517) (-517) (-1060) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1738 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2631 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -2546 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-3167 (((-953) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-3422 (((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1060) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-2402 (((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
+(((-683) (-10 -7 (-15 -2402 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3422 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1060) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -3167 ((-953) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
+((-3167 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-683)))) (-3422 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-953)) (-5 *1 (-683)))) (-2402 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-683)))))
+(-10 -7 (-15 -2402 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3422 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1060) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -3167 ((-953) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
+((-2531 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1200 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1611 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-3330 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-3005 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2231 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-2830 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1501 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1535 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1619 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
+(((-684) (-10 -7 (-15 -1619 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1535 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1501 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2830 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2231 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -3005 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3330 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1611 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1200 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -2531 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
+((-2531 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-684)))) (-1200 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-684)))) (-1611 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-684)))) (-3330 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-3005 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-2231 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-684)))) (-2830 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-1501 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-1535 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-1619 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))))
+(-10 -7 (-15 -1619 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1535 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1501 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2830 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2231 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -3005 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3330 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1611 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1200 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -2531 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
+((-3852 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-3015 (((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1351 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-2978 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-3592 (((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1206 (((-953) (-1060) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-3332 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-2727 (((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1916 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-2746 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-3641 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-2264 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-3656 (((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-2605 (((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-3798 (((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3832 (((-953) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-4061 (((-953) (-517) (-623 (-199)) (-199) (-517)) 24)) (-2304 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
+(((-685) (-10 -7 (-15 -2304 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4061 ((-953) (-517) (-623 (-199)) (-199) (-517))) (-15 -3832 ((-953) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -3798 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2605 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -3656 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -2264 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3641 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -2746 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1916 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2727 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -3332 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1206 ((-953) (-1060) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3592 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2978 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1351 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3015 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3852 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
+((-3852 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-3015 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-1351 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-2978 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-3592 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-1206 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3332 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2727 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))) (-1916 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-2746 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3641 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2264 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-3656 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2605 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3798 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3832 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-4061 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2304 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))))
+(-10 -7 (-15 -2304 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4061 ((-953) (-517) (-623 (-199)) (-199) (-517))) (-15 -3832 ((-953) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -3798 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2605 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -3656 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -2264 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3641 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -2746 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1916 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2727 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -3332 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1206 ((-953) (-1060) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3592 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2978 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1351 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3015 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3852 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
+((-3618 (((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1965 (((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3451 (((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-3064 (((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-4039 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3152 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2986 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2421 (((-953) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-686) (-10 -7 (-15 -2421 ((-953) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2986 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -3152 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -4039 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -3064 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -3451 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1965 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -3618 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
+((-3618 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))) (-1965 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-686)))) (-3451 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))) (-3064 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-686)))) (-4039 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-953)) (-5 *1 (-686)))) (-3152 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-953)) (-5 *1 (-686)))) (-2986 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-953)) (-5 *1 (-686)))) (-2421 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))))
+(-10 -7 (-15 -2421 ((-953) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2986 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -3152 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -4039 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -3064 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -3451 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1965 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -3618 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
+((-1621 (((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-1544 (((-953) (-1060) (-1060) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-2056 (((-953) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-3150 (((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-2640 (((-953) (-1060) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-3761 (((-953) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-3978 (((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1806 (((-953) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-3948 (((-953) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-3910 (((-953) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
+(((-687) (-10 -7 (-15 -3910 ((-953) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -3948 ((-953) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1806 ((-953) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -3978 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -3761 ((-953) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -2640 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -3150 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2056 ((-953) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1544 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1621 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
+((-1621 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-687)))) (-1544 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-687)))) (-2056 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-687)))) (-3150 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-687)))) (-2640 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-687)))) (-3761 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-687)))) (-3978 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-687)))) (-1806 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-687)))) (-3948 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-687)))) (-3910 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-687)))))
+(-10 -7 (-15 -3910 ((-953) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -3948 ((-953) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1806 ((-953) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -3978 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -3761 ((-953) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -2640 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -3150 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2056 ((-953) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1544 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1621 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-2559 (((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-2418 (((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-2188 (((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-1716 (((-953) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-2073 (((-953) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3030 (((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1923 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3482 (((-953) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3208 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3056 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-4004 (((-953) (-517) (-517) (-623 (-199)) (-517)) 24)) (-1359 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2593 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-1265 (((-953) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3446 (((-953) (-517) (-517) (-623 (-199)) (-517)) 20)))
+(((-688) (-10 -7 (-15 -3446 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -1265 ((-953) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2593 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1359 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4004 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -3056 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3208 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3482 ((-953) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1923 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3030 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2073 ((-953) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -1716 ((-953) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -2418 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2559 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
+((-2559 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-688)))) (-2418 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-2188 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-2188 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-1716 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-2073 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-3030 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-688)))) (-1923 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-3482 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-3208 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-4004 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-1359 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-2593 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-1265 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-688)))) (-3446 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))))
+(-10 -7 (-15 -3446 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -1265 ((-953) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2593 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1359 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4004 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -3056 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3208 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3482 ((-953) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1923 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3030 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2073 ((-953) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -1716 ((-953) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -2418 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2559 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-3990 (((-953) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-2518 (((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-2142 (((-953) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1747 (((-953) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-4066 (((-953) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3004 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-1890 (((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-1981 (((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3969 (((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-2696 (((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-2646 (((-953) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
+(((-689) (-10 -7 (-15 -2646 ((-953) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2696 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3969 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1981 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -1890 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3004 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4066 ((-953) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1747 ((-953) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -2142 ((-953) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -2518 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3990 ((-953) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
+((-3990 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-689)))) (-2518 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-2142 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-953)) (-5 *1 (-689)))) (-1747 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-4066 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-689)))) (-3004 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-689)))) (-1890 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-1981 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-3969 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-689)))) (-2696 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-689)))) (-2646 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-689)))))
+(-10 -7 (-15 -2646 ((-953) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2696 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3969 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1981 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -1890 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3004 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4066 ((-953) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1747 ((-953) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -2142 ((-953) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -2518 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3990 ((-953) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
+((-2925 (((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-2666 (((-953) (-1060) (-517) (-517) (-623 (-199))) 27)) (-1376 (((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-4064 (((-953) (-517) (-517) (-517) (-623 (-199))) 20)))
+(((-690) (-10 -7 (-15 -4064 ((-953) (-517) (-517) (-517) (-623 (-199)))) (-15 -1376 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -2666 ((-953) (-1060) (-517) (-517) (-623 (-199)))) (-15 -2925 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
+((-2925 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-690)))) (-2666 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-690)))) (-1376 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-690)))) (-4064 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-690)))))
+(-10 -7 (-15 -4064 ((-953) (-517) (-517) (-517) (-623 (-199)))) (-15 -1376 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -2666 ((-953) (-1060) (-517) (-517) (-623 (-199)))) (-15 -2925 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
+((-3046 (((-953) (-199) (-199) (-199) (-199) (-517)) 62)) (-1292 (((-953) (-199) (-199) (-199) (-517)) 61)) (-2670 (((-953) (-199) (-199) (-199) (-517)) 60)) (-3763 (((-953) (-199) (-199) (-517)) 59)) (-3072 (((-953) (-199) (-517)) 58)) (-2714 (((-953) (-199) (-517)) 57)) (-2167 (((-953) (-199) (-517)) 56)) (-3934 (((-953) (-199) (-517)) 55)) (-3087 (((-953) (-199) (-517)) 54)) (-3703 (((-953) (-199) (-517)) 53)) (-4018 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 52)) (-3730 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 51)) (-2484 (((-953) (-199) (-517)) 50)) (-4006 (((-953) (-199) (-517)) 49)) (-3265 (((-953) (-199) (-517)) 48)) (-1683 (((-953) (-199) (-517)) 47)) (-2896 (((-953) (-517) (-199) (-153 (-199)) (-517) (-1060) (-517)) 46)) (-3769 (((-953) (-1060) (-153 (-199)) (-1060) (-517)) 45)) (-3308 (((-953) (-1060) (-153 (-199)) (-1060) (-517)) 44)) (-3227 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 43)) (-3059 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 42)) (-2895 (((-953) (-199) (-517)) 39)) (-3241 (((-953) (-199) (-517)) 38)) (-1546 (((-953) (-199) (-517)) 37)) (-2549 (((-953) (-199) (-517)) 36)) (-3753 (((-953) (-199) (-517)) 35)) (-2355 (((-953) (-199) (-517)) 34)) (-3245 (((-953) (-199) (-517)) 33)) (-2197 (((-953) (-199) (-517)) 32)) (-2663 (((-953) (-199) (-517)) 31)) (-3130 (((-953) (-199) (-517)) 30)) (-3853 (((-953) (-199) (-199) (-199) (-517)) 29)) (-1207 (((-953) (-199) (-517)) 28)) (-1651 (((-953) (-199) (-517)) 27)) (-2759 (((-953) (-199) (-517)) 26)) (-2920 (((-953) (-199) (-517)) 25)) (-2193 (((-953) (-199) (-517)) 24)) (-1891 (((-953) (-153 (-199)) (-517)) 20)))
+(((-691) (-10 -7 (-15 -1891 ((-953) (-153 (-199)) (-517))) (-15 -2193 ((-953) (-199) (-517))) (-15 -2920 ((-953) (-199) (-517))) (-15 -2759 ((-953) (-199) (-517))) (-15 -1651 ((-953) (-199) (-517))) (-15 -1207 ((-953) (-199) (-517))) (-15 -3853 ((-953) (-199) (-199) (-199) (-517))) (-15 -3130 ((-953) (-199) (-517))) (-15 -2663 ((-953) (-199) (-517))) (-15 -2197 ((-953) (-199) (-517))) (-15 -3245 ((-953) (-199) (-517))) (-15 -2355 ((-953) (-199) (-517))) (-15 -3753 ((-953) (-199) (-517))) (-15 -2549 ((-953) (-199) (-517))) (-15 -1546 ((-953) (-199) (-517))) (-15 -3241 ((-953) (-199) (-517))) (-15 -2895 ((-953) (-199) (-517))) (-15 -3059 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3227 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3308 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -3769 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -2896 ((-953) (-517) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -1683 ((-953) (-199) (-517))) (-15 -3265 ((-953) (-199) (-517))) (-15 -4006 ((-953) (-199) (-517))) (-15 -2484 ((-953) (-199) (-517))) (-15 -3730 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -4018 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3703 ((-953) (-199) (-517))) (-15 -3087 ((-953) (-199) (-517))) (-15 -3934 ((-953) (-199) (-517))) (-15 -2167 ((-953) (-199) (-517))) (-15 -2714 ((-953) (-199) (-517))) (-15 -3072 ((-953) (-199) (-517))) (-15 -3763 ((-953) (-199) (-199) (-517))) (-15 -2670 ((-953) (-199) (-199) (-199) (-517))) (-15 -1292 ((-953) (-199) (-199) (-199) (-517))) (-15 -3046 ((-953) (-199) (-199) (-199) (-199) (-517))))) (T -691))
+((-3046 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1292 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2670 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3763 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-4018 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3730 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2896 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1060)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3769 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3308 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3227 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3059 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3853 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1207 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(-10 -7 (-15 -1891 ((-953) (-153 (-199)) (-517))) (-15 -2193 ((-953) (-199) (-517))) (-15 -2920 ((-953) (-199) (-517))) (-15 -2759 ((-953) (-199) (-517))) (-15 -1651 ((-953) (-199) (-517))) (-15 -1207 ((-953) (-199) (-517))) (-15 -3853 ((-953) (-199) (-199) (-199) (-517))) (-15 -3130 ((-953) (-199) (-517))) (-15 -2663 ((-953) (-199) (-517))) (-15 -2197 ((-953) (-199) (-517))) (-15 -3245 ((-953) (-199) (-517))) (-15 -2355 ((-953) (-199) (-517))) (-15 -3753 ((-953) (-199) (-517))) (-15 -2549 ((-953) (-199) (-517))) (-15 -1546 ((-953) (-199) (-517))) (-15 -3241 ((-953) (-199) (-517))) (-15 -2895 ((-953) (-199) (-517))) (-15 -3059 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3227 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3308 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -3769 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -2896 ((-953) (-517) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -1683 ((-953) (-199) (-517))) (-15 -3265 ((-953) (-199) (-517))) (-15 -4006 ((-953) (-199) (-517))) (-15 -2484 ((-953) (-199) (-517))) (-15 -3730 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -4018 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3703 ((-953) (-199) (-517))) (-15 -3087 ((-953) (-199) (-517))) (-15 -3934 ((-953) (-199) (-517))) (-15 -2167 ((-953) (-199) (-517))) (-15 -2714 ((-953) (-199) (-517))) (-15 -3072 ((-953) (-199) (-517))) (-15 -3763 ((-953) (-199) (-199) (-517))) (-15 -2670 ((-953) (-199) (-199) (-199) (-517))) (-15 -1292 ((-953) (-199) (-199) (-199) (-517))) (-15 -3046 ((-953) (-199) (-199) (-199) (-199) (-517))))
+((-2813 (((-1163)) 18)) (-2081 (((-1060)) 22)) (-1415 (((-1060)) 21)) (-2705 (((-1010) (-1077) (-623 (-517))) 35) (((-1010) (-1077) (-623 (-199))) 31)) (-3516 (((-107)) 16)) (-2129 (((-1060) (-1060)) 25)))
+(((-692) (-10 -7 (-15 -1415 ((-1060))) (-15 -2081 ((-1060))) (-15 -2129 ((-1060) (-1060))) (-15 -2705 ((-1010) (-1077) (-623 (-199)))) (-15 -2705 ((-1010) (-1077) (-623 (-517)))) (-15 -3516 ((-107))) (-15 -2813 ((-1163))))) (T -692))
+((-2813 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-692)))) (-3516 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-517))) (-5 *2 (-1010)) (-5 *1 (-692)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-199))) (-5 *2 (-1010)) (-5 *1 (-692)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))) (-2081 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))) (-1415 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))))
+(-10 -7 (-15 -1415 ((-1060))) (-15 -2081 ((-1060))) (-15 -2129 ((-1060) (-1060))) (-15 -2705 ((-1010) (-1077) (-623 (-199)))) (-15 -2705 ((-1010) (-1077) (-623 (-517)))) (-15 -3516 ((-107))) (-15 -2813 ((-1163))))
+((-1970 (($ $ $) 10)) (-2182 (($ $ $ $) 9)) (-2742 (($ $ $) 12)))
+(((-693 |#1|) (-10 -8 (-15 -2742 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -2182 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
+NIL
+(-10 -8 (-15 -2742 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -2182 (|#1| |#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2823 (($ $ (-845)) 28)) (-4119 (($ $ (-845)) 29)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1970 (($ $ $) 25)) (-2262 (((-787) $) 11)) (-2182 (($ $ $ $) 26)) (-2742 (($ $ $) 24)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-694) (-1189)) (T -694))
+((-2182 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-1970 (*1 *1 *1 *1) (-4 *1 (-694))) (-2742 (*1 *1 *1 *1) (-4 *1 (-694))))
+(-13 (-21) (-653) (-10 -8 (-15 -2182 ($ $ $ $)) (-15 -1970 ($ $ $)) (-15 -2742 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1006) . T))
+((-2262 (((-787) $) NIL) (($ (-517)) 10)))
+(((-695 |#1|) (-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-696)) (T -695))
+NIL
+(-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3071 (((-3 $ "failed") $) 40)) (-2823 (($ $ (-845)) 28) (($ $ (-703)) 35)) (-3550 (((-3 $ "failed") $) 38)) (-1690 (((-107) $) 34)) (-2680 (((-3 $ "failed") $) 39)) (-4119 (($ $ (-845)) 29) (($ $ (-703)) 36)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1970 (($ $ $) 25)) (-2262 (((-787) $) 11) (($ (-517)) 31)) (-1818 (((-703)) 32)) (-2182 (($ $ $ $) 26)) (-2742 (($ $ $) 24)) (-3663 (($) 18 T CONST)) (-3675 (($) 33 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30) (($ $ (-703)) 37)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-696) (-1189)) (T -696))
+((-1818 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
+(-13 (-694) (-655) (-10 -8 (-15 -1818 ((-703))) (-15 -2262 ($ (-517)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1006) . T))
+((-3464 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-1202 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-3848 (((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1077)) 16) (((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
+(((-697 |#1|) (-10 -7 (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1077))) (-15 -1202 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -3464 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
+((-3464 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-1202 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1077)) (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1077))) (-15 -1202 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -3464 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
+((-1309 (((-157 (-517)) |#1|) 25)))
+(((-698 |#1|) (-10 -7 (-15 -1309 ((-157 (-517)) |#1|))) (-374)) (T -698))
+((-1309 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
+(-10 -7 (-15 -1309 ((-157 (-517)) |#1|)))
+((-1346 ((|#1| |#1| |#1|) 25)) (-1609 ((|#1| |#1| |#1|) 24)) (-2882 ((|#1| |#1| |#1|) 32)) (-1843 ((|#1| |#1| |#1|) 28)) (-1664 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2097 (((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 23)))
+(((-699 |#1| |#2|) (-10 -7 (-15 -2097 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
+((-2882 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1843 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1664 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1346 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1609 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2097 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
+(-10 -7 (-15 -2097 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)))
+((-1486 (((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-2734 (((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-3115 (((-517)) 68)))
+(((-700 |#1| |#2|) (-10 -7 (-15 -3115 ((-517))) (-15 -2734 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -1486 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1134 (-517)) (-379 (-517) |#1|)) (T -700))
+((-1486 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2734 (*1 *2) (-12 (-4 *3 (-1134 (-517))) (-5 *2 (-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-3115 (*1 *2) (-12 (-4 *3 (-1134 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
+(-10 -7 (-15 -3115 ((-517))) (-15 -2734 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -1486 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
+((-2105 (((-107) $ $) NIL)) (-3402 (((-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 14) (($ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1572 (((-107) $ $) NIL)))
+(((-701) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
+((-3105 (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))) 14) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077))) 13)) (-1993 (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))) 16) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077))) 15)))
+(((-702 |#1|) (-10 -7 (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))))) (-509)) (T -702))
+((-1993 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5)))))
+(-10 -7 (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3505 (($ $ $) 8)) (-1783 (((-3 $ "failed") $ $) 11)) (-2127 (($ $ (-517)) 9)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-1690 (((-107) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2361 (($ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2262 (((-787) $) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL) (($ $ $) NIL)))
+(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2361 ($ $ $)) (-15 -2018 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2333 ((-3 $ "failed") $ $)) (-15 -2127 ($ $ (-517))) (-15 -2192 ($ $)) (-6 (-4197 "*"))))) (T -703))
+((-2356 (*1 *1 *1 *1) (-5 *1 (-703))) (-2383 (*1 *1 *1 *1) (-5 *1 (-703))) (-2361 (*1 *1 *1 *1) (-5 *1 (-703))) (-2018 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2773 (-703)) (|:| -3292 (-703)))) (-5 *1 (-703)))) (-2333 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-2192 (*1 *1 *1) (-5 *1 (-703))))
+(-13 (-725) (-659) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2361 ($ $ $)) (-15 -2018 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2333 ((-3 $ "failed") $ $)) (-15 -2127 ($ $ (-517))) (-15 -2192 ($ $)) (-6 (-4197 "*"))))
+((-1993 (((-3 |#2| "failed") |#2| |#2| (-109) (-1077)) 35)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2| |#2| (-109) (-1077)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882))) (T -704))
+((-1993 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1098) (-882))))))
+(-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2| |#2| (-109) (-1077))))
+((-2262 (((-706) |#1|) 8)))
+(((-705 |#1|) (-10 -7 (-15 -2262 ((-706) |#1|))) (-1112)) (T -705))
+((-2262 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1112)))))
+(-10 -7 (-15 -2262 ((-706) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 7)) (-1572 (((-107) $ $) 9)))
+(((-706) (-1006)) (T -706))
+NIL
+(-1006)
+((-3522 ((|#2| |#4|) 35)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3522 (|#2| |#4|))) (-421) (-1134 |#1|) (-657 |#1| |#2|) (-1134 |#3|)) (T -707))
+((-3522 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1134 *5)))))
+(-10 -7 (-15 -3522 (|#2| |#4|)))
+((-3550 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1370 (((-1163) (-1060) (-1060) |#4| |#5|) 33)) (-3716 ((|#4| |#4| |#5|) 73)) (-1450 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|) 77)) (-1548 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 15)))
+(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3550 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3716 (|#4| |#4| |#5|)) (-15 -1450 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1370 ((-1163) (-1060) (-1060) |#4| |#5|)) (-15 -1548 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -708))
+((-1548 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1370 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1060)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1163)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-1450 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3716 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3550 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3550 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3716 (|#4| |#4| |#5|)) (-15 -1450 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1370 ((-1163) (-1060) (-1060) |#4| |#5|)) (-15 -1548 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)))
+((-3220 (((-3 (-1073 (-1073 |#1|)) "failed") |#4|) 44)) (-1942 (((-583 |#4|) |#4|) 15)) (-4115 ((|#4| |#4|) 11)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1942 ((-583 |#4|) |#4|)) (-15 -3220 ((-3 (-1073 (-1073 |#1|)) "failed") |#4|)) (-15 -4115 (|#4| |#4|))) (-319) (-299 |#1|) (-1134 |#2|) (-1134 |#3|) (-845)) (T -709))
+((-4115 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1134 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1134 *5)) (-14 *6 (-845)))) (-3220 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5)) (-5 *2 (-1073 (-1073 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1134 *6)) (-14 *7 (-845)))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1134 *6)) (-14 *7 (-845)))))
+(-10 -7 (-15 -1942 ((-583 |#4|) |#4|)) (-15 -3220 ((-3 (-1073 (-1073 |#1|)) "failed") |#4|)) (-15 -4115 (|#4| |#4|)))
+((-3083 (((-2 (|:| |deter| (-583 (-1073 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1073 |#5|) (-583 |#1|) (-583 |#5|)) 53)) (-1427 (((-583 (-703)) |#1|) 12)))
+(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3083 ((-2 (|:| |deter| (-583 (-1073 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1073 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1427 ((-583 (-703)) |#1|))) (-1134 |#4|) (-725) (-779) (-278) (-873 |#4| |#2| |#3|)) (T -710))
+((-1427 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *6)) (-4 *7 (-873 *6 *4 *5)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1134 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-873 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1073 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1073 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+(-10 -7 (-15 -3083 ((-2 (|:| |deter| (-583 (-1073 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1073 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1427 ((-583 (-703)) |#1|)))
+((-2976 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-4014 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-3848 (((-876 (-377 (-517))) (-623 (-377 (-517))) (-1077)) 16) (((-876 (-377 (-517))) (-623 (-377 (-517)))) 15)))
+(((-711 |#1|) (-10 -7 (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))) (-1077))) (-15 -4014 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2976 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
+((-2976 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1077)) (-5 *2 (-876 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-876 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))) (-1077))) (-15 -4014 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2976 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 34)) (-2080 (((-583 |#2|) $) NIL)) (-1428 (((-1073 $) $ |#2|) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-1529 (($ $) 28)) (-2660 (((-107) $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) 93 (|has| |#1| (-509)))) (-3770 (((-583 $) $ $) 106 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-876 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))))) (((-3 $ "failed") (-876 (-517))) NIL (-3786 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077)))))) (((-3 $ "failed") (-876 |#1|)) NIL (-3786 (-12 (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-912 (-517))))))) (((-3 (-1029 |#1| |#2|) "failed") $) 18)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) ((|#2| $) NIL) (($ (-876 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))))) (($ (-876 (-517))) NIL (-3786 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077)))))) (($ (-876 |#1|)) NIL (-3786 (-12 (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-912 (-517))))))) (((-1029 |#1| |#2|) $) NIL)) (-2133 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 104 (|has| |#1| (-509)))) (-2364 (($ $) NIL) (($ $ |#2|) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3639 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-1727 (((-107) $) NIL)) (-1868 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 70)) (-3589 (($ $) 119 (|has| |#1| (-421)))) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-3345 (($ $) NIL (|has| |#1| (-509)))) (-3869 (($ $) NIL (|has| |#1| (-509)))) (-3092 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3156 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1760 (($ $ |#1| (-489 |#2|) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-3142 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-1576 (($ $ $ $ $) 90 (|has| |#1| (-509)))) (-2772 ((|#2| $) 19)) (-2069 (($ (-1073 |#1|) |#2|) NIL) (($ (-1073 $) |#2|) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2561 (($ $ $) 60)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-1837 (((-107) $) NIL)) (-3942 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2213 (((-703) $) 20)) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1958 (((-3 |#2| "failed") $) NIL)) (-3801 (($ $) NIL (|has| |#1| (-421)))) (-2768 (($ $) NIL (|has| |#1| (-421)))) (-1330 (((-583 $) $) NIL)) (-2655 (($ $) 37)) (-1604 (($ $) NIL (|has| |#1| (-421)))) (-3620 (((-583 $) $) 41)) (-2841 (($ $) 39)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $) 82)) (-3028 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 67) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-1650 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $) NIL) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |#2|) NIL)) (-1530 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1962 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3232 (((-1060) $) NIL)) (-1504 (($ $ $) 108 (|has| |#1| (-509)))) (-3497 (((-583 $) $) 30)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-703))) "failed") $) NIL)) (-1568 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-2930 (($ $ $) NIL)) (-2578 (($ $) 21)) (-1579 (((-107) $ $) NIL)) (-2788 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3877 (($ $ $) NIL)) (-2415 (($ $) 23)) (-4130 (((-1024) $) NIL)) (-3249 (((-2 (|:| -2361 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-509)))) (-1850 (((-2 (|:| -2361 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-509)))) (-2301 (((-107) $) 52)) (-2311 ((|#1| $) 55)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 ((|#1| |#1| $) 116 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-1567 (((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-2353 (($ $ |#1|) 112 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3084 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-3115 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2042 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1191 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-1216 (($ $) NIL)) (-2858 (($ $) 33)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-876 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))))) (($ (-876 (-517))) NIL (-3786 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077)))))) (($ (-876 |#1|)) NIL (|has| |#2| (-558 (-1077)))) (((-1060) $) NIL (-12 (|has| |#1| (-955 (-517))) (|has| |#2| (-558 (-1077))))) (((-876 |#1|) $) NIL (|has| |#2| (-558 (-1077))))) (-4094 ((|#1| $) 115 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-876 |#1|) $) NIL (|has| |#2| (-558 (-1077)))) (((-1029 |#1| |#2|) $) 15) (($ (-1029 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 13 T CONST)) (-4093 (((-3 (-107) "failed") $ $) NIL)) (-3675 (($) 35 T CONST)) (-3828 (($ $ $ $ (-703)) 88 (|has| |#1| (-509)))) (-2494 (($ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3348 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 54)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 64)) (-1666 (($ $ $) 74)) (** (($ $ (-845)) NIL) (($ $ (-703)) 61)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-712 |#1| |#2|) (-13 (-978 |#1| (-489 |#2|) |#2|) (-557 (-1029 |#1| |#2|)) (-955 (-1029 |#1| |#2|))) (-964) (-779)) (T -712))
+NIL
+(-13 (-978 |#1| (-489 |#2|) |#2|) (-557 (-1029 |#1| |#2|)) (-955 (-1029 |#1| |#2|)))
+((-3312 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
+(((-713 |#1| |#2|) (-10 -7 (-15 -3312 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-964) (-964)) (T -713))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
+(-10 -7 (-15 -3312 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 12)) (-1335 (((-1158 |#1|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#1|)) NIL)) (-1428 (((-1073 $) $ (-992)) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2143 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-4068 (($ $ $) 35 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1401 (($ $ (-703)) NIL)) (-1861 (($ $ (-703)) NIL)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) NIL) (((-3 (-1073 |#1|) "failed") $) 10)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-992) $) NIL) (((-1073 |#1|) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (($ $ $) NIL)) (-1554 (($ $ $) 71 (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) 70 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-703) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) NIL) (($ (-1073 $) (-992)) NIL)) (-2113 (($ $ (-703)) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2561 (($ $ $) 20)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3634 (((-1073 |#1|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1762 (-703))) $ $) 26)) (-2004 (($ $ $) 29)) (-2758 (($ $ $) 32)) (-3028 (((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 31)) (-3232 (((-1060) $) NIL)) (-1504 (($ $ $) 41 (|has| |#1| (-509)))) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-3249 (((-2 (|:| -2361 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-1850 (((-2 (|:| -2361 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-1225 (((-2 (|:| -2133 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-3956 (((-2 (|:| -2133 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-2301 (((-107) $) 13)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2555 (($ $ (-703) |#1| $) 19)) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-1567 (((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-3892 (((-2 (|:| -2133 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#1|) NIL) (($ $ (-583 (-992)) (-583 |#1|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1191 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-992)) NIL) (((-1073 |#1|) $) 7) (($ (-1073 |#1|)) 8) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 24 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) 28) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-714 |#1|) (-13 (-1134 |#1|) (-557 (-1073 |#1|)) (-955 (-1073 |#1|)) (-10 -8 (-15 -2555 ($ $ (-703) |#1| $)) (-15 -2561 ($ $ $)) (-15 -1732 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1762 (-703))) $ $)) (-15 -2004 ($ $ $)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2758 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2143 ((-583 $) $ $)) (-15 -1504 ($ $ $)) (-15 -1567 ((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1850 ((-2 (|:| -2361 $) (|:| |coef1| $)) $ $)) (-15 -3249 ((-2 (|:| -2361 $) (|:| |coef2| $)) $ $)) (-15 -3892 ((-2 (|:| -2133 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3956 ((-2 (|:| -2133 |#1|) (|:| |coef1| $)) $ $)) (-15 -1225 ((-2 (|:| -2133 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-964)) (T -714))
+((-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-964)))) (-2561 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) (-1732 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1762 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-964)))) (-2004 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) (-3028 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1570 *3) (|:| |gap| (-703)) (|:| -2773 (-714 *3)) (|:| -3292 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-964)))) (-2758 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-1504 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-964)))) (-1567 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-1850 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-3249 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-3892 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-3956 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-1225 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))))
+(-13 (-1134 |#1|) (-557 (-1073 |#1|)) (-955 (-1073 |#1|)) (-10 -8 (-15 -2555 ($ $ (-703) |#1| $)) (-15 -2561 ($ $ $)) (-15 -1732 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1762 (-703))) $ $)) (-15 -2004 ($ $ $)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2758 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2143 ((-583 $) $ $)) (-15 -1504 ($ $ $)) (-15 -1567 ((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1850 ((-2 (|:| -2361 $) (|:| |coef1| $)) $ $)) (-15 -3249 ((-2 (|:| -2361 $) (|:| |coef2| $)) $ $)) (-15 -3892 ((-2 (|:| -2133 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3956 ((-2 (|:| -2133 |#1|) (|:| |coef1| $)) $ $)) (-15 -1225 ((-2 (|:| -2133 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-1978 ((|#1| (-703) |#1|) 33 (|has| |#1| (-37 (-377 (-517)))))) (-3585 ((|#1| (-703) |#1|) 23)) (-2649 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))))
+(((-715 |#1|) (-10 -7 (-15 -3585 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2649 (|#1| (-703) |#1|)) (-15 -1978 (|#1| (-703) |#1|))) |%noBranch|)) (-156)) (T -715))
+((-1978 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2649 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3585 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -3585 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2649 (|#1| (-703) |#1|)) (-15 -1978 (|#1| (-703) |#1|))) |%noBranch|))
+((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195)))))
+(((-716 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -716))
+NIL
+(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T))
+((-1383 (((-3 (-349) "failed") (-286 |#1|) (-845)) 60 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 52 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-876 |#1|)) (-845)) 39 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-876 |#1|))) 35 (|has| |#1| (-509))) (((-3 (-349) "failed") (-876 |#1|) (-845)) 30 (|has| |#1| (-964))) (((-3 (-349) "failed") (-876 |#1|)) 24 (|has| |#1| (-964)))) (-3104 (((-349) (-286 |#1|) (-845)) 92 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 87 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-876 |#1|)) (-845)) 84 (|has| |#1| (-509))) (((-349) (-377 (-876 |#1|))) 81 (|has| |#1| (-509))) (((-349) (-876 |#1|) (-845)) 80 (|has| |#1| (-964))) (((-349) (-876 |#1|)) 77 (|has| |#1| (-964))) (((-349) |#1| (-845)) 73) (((-349) |#1|) 22)) (-3829 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-845)) 68 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 58 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-845)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 59 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))) (-845)) 44 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|)))) 43 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)) (-845)) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-876 |#1|))) 37 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-876 |#1|) (-845)) 28 (|has| |#1| (-964))) (((-3 (-153 (-349)) "failed") (-876 |#1|)) 26 (|has| |#1| (-964))) (((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)) (-845)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-876 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-1388 (((-153 (-349)) (-286 (-153 |#1|)) (-845)) 95 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-845)) 93 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 91 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-876 (-153 |#1|))) (-845)) 86 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-876 (-153 |#1|)))) 85 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-876 |#1|)) (-845)) 83 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-876 |#1|))) 82 (|has| |#1| (-509))) (((-153 (-349)) (-876 |#1|) (-845)) 79 (|has| |#1| (-964))) (((-153 (-349)) (-876 |#1|)) 78 (|has| |#1| (-964))) (((-153 (-349)) (-876 (-153 |#1|)) (-845)) 75 (|has| |#1| (-156))) (((-153 (-349)) (-876 (-153 |#1|))) 74 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-845)) 16 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 12 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-845)) 27) (((-153 (-349)) |#1|) 25)))
+(((-717 |#1|) (-10 -7 (-15 -3104 ((-349) |#1|)) (-15 -3104 ((-349) |#1| (-845))) (-15 -1388 ((-153 (-349)) |#1|)) (-15 -1388 ((-153 (-349)) |#1| (-845))) (IF (|has| |#1| (-156)) (PROGN (-15 -1388 ((-153 (-349)) (-153 |#1|))) (-15 -1388 ((-153 (-349)) (-153 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -3104 ((-349) (-876 |#1|))) (-15 -3104 ((-349) (-876 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 |#1|))) (-15 -1388 ((-153 (-349)) (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3104 ((-349) (-377 (-876 |#1|)))) (-15 -3104 ((-349) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -3104 ((-349) (-286 |#1|))) (-15 -3104 ((-349) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 |#1|))) (-15 -1388 ((-153 (-349)) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-876 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-876 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)))) (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-286 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|)) (-558 (-349))) (T -717))
+((-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-845)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-1388 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3104 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
+(-10 -7 (-15 -3104 ((-349) |#1|)) (-15 -3104 ((-349) |#1| (-845))) (-15 -1388 ((-153 (-349)) |#1|)) (-15 -1388 ((-153 (-349)) |#1| (-845))) (IF (|has| |#1| (-156)) (PROGN (-15 -1388 ((-153 (-349)) (-153 |#1|))) (-15 -1388 ((-153 (-349)) (-153 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -3104 ((-349) (-876 |#1|))) (-15 -3104 ((-349) (-876 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 |#1|))) (-15 -1388 ((-153 (-349)) (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3104 ((-349) (-377 (-876 |#1|)))) (-15 -3104 ((-349) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -3104 ((-349) (-286 |#1|))) (-15 -3104 ((-349) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 |#1|))) (-15 -1388 ((-153 (-349)) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-876 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-876 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)))) (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-286 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|))
+((-1676 (((-845) (-1060)) 64)) (-3465 (((-3 (-349) "failed") (-1060)) 33)) (-3918 (((-349) (-1060)) 31)) (-3992 (((-845) (-1060)) 54)) (-2016 (((-1060) (-845)) 55)) (-1649 (((-1060) (-845)) 53)))
+(((-718) (-10 -7 (-15 -1649 ((-1060) (-845))) (-15 -3992 ((-845) (-1060))) (-15 -2016 ((-1060) (-845))) (-15 -1676 ((-845) (-1060))) (-15 -3918 ((-349) (-1060))) (-15 -3465 ((-3 (-349) "failed") (-1060))))) (T -718))
+((-3465 (*1 *2 *3) (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718)))))
+(-10 -7 (-15 -1649 ((-1060) (-845))) (-15 -3992 ((-845) (-1060))) (-15 -2016 ((-1060) (-845))) (-15 -1676 ((-845) (-1060))) (-15 -3918 ((-349) (-1060))) (-15 -3465 ((-3 (-349) "failed") (-1060))))
+((-2105 (((-107) $ $) 7)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 15) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 13)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-719) (-1189)) (T -719))
+((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953)))))) (-2043 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-953)) (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953)))))) (-2043 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-953)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2043 ((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2043 ((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-3644 (((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349))) 44) (((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 43)) (-3473 (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 50)) (-2377 (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 41)) (-2779 (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349))) 52) (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 51)))
+(((-720) (-10 -7 (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -2377 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -3473 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))))) (T -720))
+((-3473 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-3644 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349)))) (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-3644 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349)))) (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-2377 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-2779 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-2779 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))))
+(-10 -7 (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -2377 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -3473 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))))
+((-3521 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2157 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-1892 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-1518 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-2551 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-3792 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3400 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-2045 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-2422 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
+(((-721) (-10 -7 (-15 -2422 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -2045 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3400 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3792 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1518 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2157 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2551 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1892 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3521 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
+((-3521 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1892 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2551 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2157 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1518 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3792 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3400 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2045 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2422 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(-10 -7 (-15 -2422 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -2045 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3400 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3792 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1518 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2157 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2551 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1892 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3521 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
+((-3062 (((-1108 |#1|) |#1| (-199) (-517)) 45)))
+(((-722 |#1|) (-10 -7 (-15 -3062 ((-1108 |#1|) |#1| (-199) (-517)))) (-894)) (T -722))
+((-3062 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1108 *3)) (-5 *1 (-722 *3)) (-4 *3 (-894)))))
+(-10 -7 (-15 -3062 ((-1108 |#1|) |#1| (-199) (-517))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-1783 (((-3 $ "failed") $ $) 26)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1680 (($ $ $) 28) (($ $) 27)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21) (($ (-517) $) 29)))
+(((-723) (-1189)) (T -723))
NIL
(-13 (-727) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 24)) (-1393 (($) 23 T CONST)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 22 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1678 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
-(((-724) (-1188)) (T -724))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21)))
+(((-724) (-1189)) (T -724))
NIL
(-13 (-726) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 24)) (-2948 (($ $ $) 27)) (-2798 (((-3 $ "failed") $ $) 26)) (-1393 (($) 23 T CONST)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 22 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1678 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
-(((-725) (-1188)) (T -725))
-((-2948 (*1 *1 *1 *1) (-4 *1 (-725))))
-(-13 (-727) (-10 -8 (-15 -2948 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 24)) (-1393 (($) 23 T CONST)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 22 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1678 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
-(((-726) (-1188)) (T -726))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-3505 (($ $ $) 27)) (-1783 (((-3 $ "failed") $ $) 26)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21)))
+(((-725) (-1189)) (T -725))
+((-3505 (*1 *1 *1 *1) (-4 *1 (-725))))
+(-13 (-727) (-10 -8 (-15 -3505 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21)))
+(((-726) (-1189)) (T -726))
NIL
(-13 (-779) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 24)) (-2798 (((-3 $ "failed") $ $) 26)) (-1393 (($) 23 T CONST)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 22 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1678 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
-(((-727) (-1188)) (T -727))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-1783 (((-3 $ "failed") $ $) 26)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21)))
+(((-727) (-1189)) (T -727))
NIL
(-13 (-724) (-123))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1005) . T))
-((-3097 (((-107) $) 41)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3390 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-2518 (((-3 (-377 (-517)) "failed") $) 78)) (-3000 (((-107) $) 72)) (-1843 (((-377 (-517)) $) 76)) (-2803 ((|#2| $) 26)) (-3310 (($ (-1 |#2| |#2|) $) 23)) (-2300 (($ $) 61)) (-3359 (((-493) $) 67)) (-1842 (($ $) 21)) (-2271 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-4099 (((-703)) 10)) (-2376 ((|#2| $) 71)) (-1584 (((-107) $ $) 29)) (-1608 (((-107) $ $) 69)) (-1692 (($ $) 31) (($ $ $) NIL)) (-1678 (($ $ $) 30)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-728 |#1| |#2|) (-10 -8 (-15 -1608 ((-107) |#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -2271 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -3097 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
-((-4099 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
-(-10 -8 (-15 -1608 ((-107) |#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -2271 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -3097 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-2399 (((-703)) 53 (|has| |#1| (-338)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 94 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3390 (((-517) $) 95 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 89)) (-2560 (((-3 $ "failed") $) 34)) (-3894 ((|#1| $) 79)) (-2518 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-3000 (((-107) $) 68 (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-2202 (($) 56 (|has| |#1| (-338)))) (-1376 (((-107) $) 31)) (-1828 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2803 ((|#1| $) 71)) (-3458 (($ $ $) 62 (|has| |#1| (-779)))) (-4084 (($ $ $) 61 (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) 81)) (-3072 (((-844) $) 55 (|has| |#1| (-338)))) (-1662 (((-1059) $) 9)) (-2300 (($ $) 65 (|has| |#1| (-333)))) (-2812 (($ (-844)) 54 (|has| |#1| (-338)))) (-1740 ((|#1| $) 76)) (-3289 ((|#1| $) 77)) (-2799 ((|#1| $) 78)) (-2126 ((|#1| $) 72)) (-3262 ((|#1| $) 73)) (-1414 ((|#1| $) 74)) (-1498 ((|#1| $) 75)) (-4125 (((-1023) $) 10)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) 82 (|has| |#1| (-478 (-1076) |#1|)))) (-2609 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3359 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1842 (($ $) 80)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-954 (-377 (-517)))))) (-3974 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-2376 ((|#1| $) 69 (|has| |#1| (-972)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-729 |#1|) (-1188) (-156)) (T -729))
-((-1842 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1828 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-972)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2518 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1842 ($ $)) (-15 -3894 (|t#1| $)) (-15 -2799 (|t#1| $)) (-15 -3289 (|t#1| $)) (-15 -1740 (|t#1| $)) (-15 -1498 (|t#1| $)) (-15 -1414 (|t#1| $)) (-15 -3262 (|t#1| $)) (-15 -2126 (|t#1| $)) (-15 -2803 (|t#1| $)) (-15 -1828 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -2376 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -2300 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3310 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
-(-10 -7 (-15 -3310 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-917 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3747 (|has| (-917 |#1|) (-954 (-517))) (|has| |#1| (-954 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3747 (|has| (-917 |#1|) (-954 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-3390 ((|#1| $) NIL) (((-917 |#1|) $) 33) (((-517) $) NIL (-3747 (|has| (-917 |#1|) (-954 (-517))) (|has| |#1| (-954 (-517))))) (((-377 (-517)) $) NIL (-3747 (|has| (-917 |#1|) (-954 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-2560 (((-3 $ "failed") $) NIL)) (-3894 ((|#1| $) 16)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3000 (((-107) $) NIL (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2202 (($) NIL (|has| |#1| (-338)))) (-1376 (((-107) $) NIL)) (-1828 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-917 |#1|) (-917 |#1|)) 29)) (-2803 ((|#1| $) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-1740 ((|#1| $) 22)) (-3289 ((|#1| $) 20)) (-2799 ((|#1| $) 18)) (-2126 ((|#1| $) 26)) (-3262 ((|#1| $) 25)) (-1414 ((|#1| $) 24)) (-1498 ((|#1| $) 23)) (-4125 (((-1023) $) NIL)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-478 (-1076) |#1|)))) (-2609 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1842 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-917 |#1|)) 30) (($ (-377 (-517))) NIL (-3747 (|has| (-917 |#1|) (-954 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-972)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 8 T CONST)) (-3619 (($) 12 T CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-731 |#1|) (-13 (-729 |#1|) (-381 (-917 |#1|)) (-10 -8 (-15 -1828 ($ (-917 |#1|) (-917 |#1|))))) (-156)) (T -731))
-((-1828 (*1 *1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
-(-13 (-729 |#1|) (-381 (-917 |#1|)) (-10 -8 (-15 -1828 ($ (-917 |#1|) (-917 |#1|)))))
-((-2119 (((-107) $ $) 7)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-2342 (((-952) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1584 (((-107) $ $) 6)))
-(((-732) (-1188)) (T -732))
-((-3617 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-975)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)))))) (-2342 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-952)))))
-(-13 (-1005) (-10 -7 (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2342 ((-952) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-3169 (((-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#3| |#2| (-1076)) 19)))
-(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -3169 ((-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#3| |#2| (-1076)))) (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1097) (-881)) (-593 |#2|)) (T -733))
-((-3169 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1076)) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1097) (-881))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1492 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -3169 ((-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#3| |#2| (-1076))))
-((-1516 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1076)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1076)) 17) (((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1076)) 22) (((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1076)) 24) (((-3 (-583 (-1157 |#2|)) "failed") (-623 |#2|) (-1076)) 36) (((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-623 |#2|) (-1157 |#2|) (-1076)) 34)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-623 |#2|) (-1157 |#2|) (-1076))) (-15 -1516 ((-3 (-583 (-1157 |#2|)) "failed") (-623 |#2|) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1076))) (-15 -1516 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1516 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1097) (-881))) (T -734))
-((-1516 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1097) (-881))) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1516 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1097) (-881))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))))) (-1516 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1076)) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1492 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1097) (-881))))) (-1516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1076)) (-4 *7 (-13 (-29 *6) (-1097) (-881))) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1492 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1076)) (-4 *7 (-13 (-29 *6) (-1097) (-881))) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1157 *7)) (|:| -1492 (-583 (-1157 *7))))) (-5 *1 (-734 *6 *7)))) (-1516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1076)) (-4 *7 (-13 (-29 *6) (-1097) (-881))) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1157 *7)) (|:| -1492 (-583 (-1157 *7))))) (-5 *1 (-734 *6 *7)))) (-1516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1076)) (-4 *6 (-13 (-29 *5) (-1097) (-881))) (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1157 *6))) (-5 *1 (-734 *5 *6)))) (-1516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1076)) (-4 *7 (-13 (-29 *6) (-1097) (-881))) (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1157 *7)) (|:| -1492 (-583 (-1157 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1157 *7)))))
-(-10 -7 (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-623 |#2|) (-1157 |#2|) (-1076))) (-15 -1516 ((-3 (-583 (-1157 |#2|)) "failed") (-623 |#2|) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#2|)) (|:| -1492 (-583 (-1157 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1076))) (-15 -1516 ((-3 (-2 (|:| |particular| |#2|) (|:| -1492 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1076))) (-15 -1516 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1516 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
-((-3813 (($) 9)) (-2991 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1882 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-3241 (($ (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-3892 (($ (-583 (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-3608 (((-1162)) 12)))
-(((-735) (-10 -8 (-15 -3813 ($)) (-15 -3608 ((-1162))) (-15 -1882 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -3892 ($ (-583 (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3241 ($ (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2991 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
-((-2991 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-3892 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-3608 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-735)))) (-3813 (*1 *1) (-5 *1 (-735))))
-(-10 -8 (-15 -3813 ($)) (-15 -3608 ((-1162))) (-15 -1882 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -3892 ($ (-583 (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3241 ($ (-2 (|:| -2585 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1859 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2991 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2658 ((|#2| |#2| (-1076)) 15)) (-4108 ((|#2| |#2| (-1076)) 47)) (-2669 (((-1 |#2| |#2|) (-1076)) 11)))
-(((-736 |#1| |#2|) (-10 -7 (-15 -2658 (|#2| |#2| (-1076))) (-15 -4108 (|#2| |#2| (-1076))) (-15 -2669 ((-1 |#2| |#2|) (-1076)))) (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1097) (-881))) (T -736))
-((-2669 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1097) (-881))))) (-4108 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1097) (-881))))) (-2658 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1097) (-881))))))
-(-10 -7 (-15 -2658 (|#2| |#2| (-1076))) (-15 -4108 (|#2| |#2| (-1076))) (-15 -2669 ((-1 |#2| |#2|) (-1076))))
-((-1516 (((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-952) (-740) (-975)) 105) (((-952) (-740)) 106)) (-3617 (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-740) (-975)) 71) (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-740)) 73)))
-(((-737) (-10 -7 (-15 -1516 ((-952) (-740))) (-15 -1516 ((-952) (-740) (-975))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-740))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-740) (-975))))) (T -737))
-((-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-975)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *1 (-737)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1157 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1157 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1157 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1157 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1157 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-975)) (-5 *2 (-952)) (-5 *1 (-737)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-952)) (-5 *1 (-737)))))
-(-10 -7 (-15 -1516 ((-952) (-740))) (-15 -1516 ((-952) (-740) (-975))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1516 ((-952) (-1157 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-740))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-740) (-975))))
-((-2146 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1492 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2146 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1492 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
-((-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2146 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1492 (-583 |#4|))) (-590 |#4|) |#4|)))
-((-4038 (((-2 (|:| -3781 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 52)) (-1587 (((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#4| |#2|) 60) (((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#4|) 59) (((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#3|) 21)) (-2156 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2064 ((|#2| |#3| (-583 (-377 |#2|))) 94) (((-3 |#2| "failed") |#3| (-377 |#2|)) 91)))
-(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2064 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2064 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#3|)) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#3| |#2|)) (-15 -2156 (|#2| |#3| |#1|)) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#4|)) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#4| |#2|)) (-15 -2156 (|#2| |#4| |#1|)) (-15 -4038 ((-2 (|:| -3781 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-954 (-377 (-517)))) (-1133 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
-((-4038 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-2 (|:| -3781 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-2156 (*1 *2 *3 *4) (-12 (-4 *2 (-1133 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-1587 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *4 (-1133 *5)) (-5 *2 (-583 (-2 (|:| -3569 *4) (|:| -2968 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-1587 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *2 (-583 (-2 (|:| -3569 *5) (|:| -2968 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-2156 (*1 *2 *3 *4) (-12 (-4 *2 (-1133 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-1587 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *4 (-1133 *5)) (-5 *2 (-583 (-2 (|:| -3569 *4) (|:| -2968 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-1587 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *2 (-583 (-2 (|:| -3569 *5) (|:| -2968 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1133 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-2064 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1133 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
-(-10 -7 (-15 -2064 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2064 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#3|)) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#3| |#2|)) (-15 -2156 (|#2| |#3| |#1|)) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#4|)) (-15 -1587 ((-583 (-2 (|:| -3569 |#2|) (|:| -2968 |#2|))) |#4| |#2|)) (-15 -2156 (|#2| |#4| |#1|)) (-15 -4038 ((-2 (|:| -3781 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
-((-2119 (((-107) $ $) NIL)) (-3390 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1584 (((-107) $ $) NIL)))
-(((-740) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
-((-2426 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3781 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1072 |#2|)) (-1 (-388 |#2|) |#2|)) 117)) (-3753 (((-583 (-2 (|:| |poly| |#2|) (|:| -3781 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-1855 (((-583 (-2 (|:| |deg| (-703)) (|:| -3781 |#2|))) |#3|) 94)) (-4134 ((|#2| |#3|) 37)) (-1372 (((-583 (-2 (|:| -1385 |#1|) (|:| -3781 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 81)) (-1910 ((|#3| |#3| (-377 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
-(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4134 (|#2| |#3|)) (-15 -1855 ((-583 (-2 (|:| |deg| (-703)) (|:| -3781 |#2|))) |#3|)) (-15 -1372 ((-583 (-2 (|:| -1385 |#1|) (|:| -3781 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -3753 ((-583 (-2 (|:| |poly| |#2|) (|:| -3781 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2426 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3781 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1072 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1910 (|#3| |#3| |#2|)) (-15 -1910 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-954 (-377 (-517)))) (-1133 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
-((-1910 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-1910 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-1133 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1072 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1133 *6)) (-4 *6 (-13 (-333) (-134) (-954 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3781 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-3753 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3781 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1372 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-2 (|:| -1385 *5) (|:| -3781 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1855 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-1133 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3781 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-4134 (*1 *2 *3) (-12 (-4 *2 (-1133 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
-(-10 -7 (-15 -4134 (|#2| |#3|)) (-15 -1855 ((-583 (-2 (|:| |deg| (-703)) (|:| -3781 |#2|))) |#3|)) (-15 -1372 ((-583 (-2 (|:| -1385 |#1|) (|:| -3781 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -3753 ((-583 (-2 (|:| |poly| |#2|) (|:| -3781 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2426 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3781 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1072 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1910 (|#3| |#3| |#2|)) (-15 -1910 (|#3| |#3| (-377 |#2|))))
-((-3989 (((-2 (|:| -1492 (-583 (-377 |#2|))) (|:| -3016 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 118) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1492 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 117) (((-2 (|:| -1492 (-583 (-377 |#2|))) (|:| -3016 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 112) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1492 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 110)) (-3861 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
-(((-742 |#1| |#2|) (-10 -7 (-15 -3989 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1492 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3989 ((-2 (|:| -1492 (-583 (-377 |#2|))) (|:| -3016 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3989 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1492 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3989 ((-2 (|:| -1492 (-583 (-377 |#2|))) (|:| -3016 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3861 (|#2| (-590 (-377 |#2|)))) (-15 -3861 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))) (-1133 |#1|)) (T -742))
-((-3861 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1133 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1133 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-2 (|:| -1492 (-583 (-377 *6))) (|:| -3016 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-2 (|:| -1492 (-583 (-377 *6))) (|:| -3016 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
-(-10 -7 (-15 -3989 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1492 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3989 ((-2 (|:| -1492 (-583 (-377 |#2|))) (|:| -3016 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3989 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1492 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3989 ((-2 (|:| -1492 (-583 (-377 |#2|))) (|:| -3016 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3861 (|#2| (-590 (-377 |#2|)))) (-15 -3861 (|#2| (-591 |#2| (-377 |#2|)))))
-((-3249 (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#1|))) |#5| |#4|) 47)))
-(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3249 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1133 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
-((-3249 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1133 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -3016 (-623 *6)) (|:| |vec| (-1157 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -3249 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#1|))) |#5| |#4|)))
-((-2426 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3781 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-3548 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 135 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-3753 (((-583 (-2 (|:| |poly| |#2|) (|:| -3781 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 81)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2426 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3781 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3753 ((-583 (-2 (|:| |poly| |#2|) (|:| -3781 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|)) (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))) (-1133 |#1|)) (T -744))
-((-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1133 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1133 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3781 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3781 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-3548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *7 (-1133 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-3548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *7 (-1133 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))) (-4 *6 (-1133 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
-(-10 -7 (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2426 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3781 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3753 ((-583 (-2 (|:| |poly| |#2|) (|:| -3781 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -3548 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -3548 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|))
-((-1434 (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#1|))) (-623 |#2|) (-1157 |#1|)) 85) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1157 |#1|)) (|:| -3781 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1157 |#1|)) 14)) (-3341 (((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-623 |#2|) (-1157 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1492 (-583 |#1|))) |#2| |#1|)) 91)) (-1516 (((-3 (-2 (|:| |particular| (-1157 |#1|)) (|:| -1492 (-623 |#1|))) "failed") (-623 |#1|) (-1157 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed") |#2| |#1|)) 44)))
-(((-745 |#1| |#2|) (-10 -7 (-15 -1434 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1157 |#1|)) (|:| -3781 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1157 |#1|))) (-15 -1434 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#1|))) (-623 |#2|) (-1157 |#1|))) (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#1|)) (|:| -1492 (-623 |#1|))) "failed") (-623 |#1|) (-1157 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3341 ((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-623 |#2|) (-1157 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1492 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
-((-3341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1492 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1157 *6) "failed")) (|:| -1492 (-583 (-1157 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1157 *6)))) (-1516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1492 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1157 *6)) (|:| -1492 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1157 *6)))) (-1434 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -3016 (-623 *6)) (|:| |vec| (-1157 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1157 *5)))) (-1434 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1157 *5)) (|:| -3781 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)) (-4 *6 (-593 *5)))))
-(-10 -7 (-15 -1434 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1157 |#1|)) (|:| -3781 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1157 |#1|))) (-15 -1434 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#1|))) (-623 |#2|) (-1157 |#1|))) (-15 -1516 ((-3 (-2 (|:| |particular| (-1157 |#1|)) (|:| -1492 (-623 |#1|))) "failed") (-623 |#1|) (-1157 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1492 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3341 ((-2 (|:| |particular| (-3 (-1157 |#1|) "failed")) (|:| -1492 (-583 (-1157 |#1|)))) (-623 |#2|) (-1157 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1492 (-583 |#1|))) |#2| |#1|))))
-((-3423 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-3222 (((-3 (-1157 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-1923 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -3423 ((-623 |#1|) (-583 |#1|))) (-15 -3423 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3222 ((-3 (-1157 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -1923 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
-((-1923 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-3222 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1157 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
-(-10 -7 (-15 -3423 ((-623 |#1|) (-583 |#1|))) (-15 -3423 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3222 ((-3 (-1157 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -1923 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#2| (-1005)))) (-3097 (((-107) $) NIL (|has| |#2| (-123)))) (-4170 (($ (-844)) NIL (|has| |#2| (-963)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2948 (($ $ $) NIL (|has| |#2| (-725)))) (-2798 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| |#2| (-338)))) (-2360 (((-517) $) NIL (|has| |#2| (-777)))) (-2445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1005)))) (-3390 (((-517) $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) ((|#2| $) NIL (|has| |#2| (-1005)))) (-2207 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-963)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL (|has| |#2| (-963))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-963)))) (-2560 (((-3 $ "failed") $) NIL (|has| |#2| (-963)))) (-2202 (($) NIL (|has| |#2| (-338)))) (-2759 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ (-517)) NIL)) (-2988 (((-107) $) NIL (|has| |#2| (-777)))) (-1534 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL (|has| |#2| (-963)))) (-1952 (((-107) $) NIL (|has| |#2| (-777)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1903 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2746 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#2| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#2| (-1005)))) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-2812 (($ (-844)) NIL (|has| |#2| (-338)))) (-4125 (((-1023) $) NIL (|has| |#2| (-1005)))) (-2429 ((|#2| $) NIL (|has| (-517) (-779)))) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3746 ((|#2| $ $) NIL (|has| |#2| (-963)))) (-3909 (($ (-1157 |#2|)) NIL)) (-1537 (((-125)) NIL (|has| |#2| (-333)))) (-2060 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)))) (-4137 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1157 |#2|) $) NIL) (($ (-517)) NIL (-3747 (-12 (|has| |#2| (-954 (-517))) (|has| |#2| (-1005))) (|has| |#2| (-963)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-954 (-377 (-517)))) (|has| |#2| (-1005)))) (($ |#2|) NIL (|has| |#2| (-1005))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-4099 (((-703)) NIL (|has| |#2| (-963)))) (-3602 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2376 (($ $) NIL (|has| |#2| (-777)))) (-2815 (($ $ (-703)) NIL (|has| |#2| (-963))) (($ $ (-844)) NIL (|has| |#2| (-963)))) (-3610 (($) NIL (|has| |#2| (-123)) CONST)) (-3619 (($) NIL (|has| |#2| (-963)) CONST)) (-3342 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1076))) (|has| |#2| (-963)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-963))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)))) (-1642 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1584 (((-107) $ $) NIL (|has| |#2| (-1005)))) (-1630 (((-107) $ $) NIL (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1608 (((-107) $ $) 11 (-3747 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $ $) NIL (|has| |#2| (-963))) (($ $) NIL (|has| |#2| (-963)))) (-1678 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-963))) (($ $ (-844)) NIL (|has| |#2| (-963)))) (* (($ $ $) NIL (|has| |#2| (-963))) (($ (-517) $) NIL (|has| |#2| (-963))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-844) $) NIL (|has| |#2| (-25)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1157 |#2|) (-1157 |#2|))) (T -747))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1006) . T))
+((-1992 (((-107) $) 41)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-3389 (((-3 (-377 (-517)) "failed") $) 78)) (-3748 (((-107) $) 72)) (-3727 (((-377 (-517)) $) 76)) (-3522 ((|#2| $) 26)) (-3312 (($ (-1 |#2| |#2|) $) 23)) (-2291 (($ $) 61)) (-3367 (((-493) $) 67)) (-1853 (($ $) 21)) (-2262 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-1818 (((-703)) 10)) (-2829 ((|#2| $) 71)) (-1572 (((-107) $ $) 29)) (-1596 (((-107) $ $) 69)) (-1680 (($ $) 31) (($ $ $) NIL)) (-1666 (($ $ $) 30)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-728 |#1| |#2|) (-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
+((-1818 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
+(-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-2390 (((-703)) 53 (|has| |#1| (-338)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 94 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3402 (((-517) $) 95 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 89)) (-3550 (((-3 $ "failed") $) 34)) (-3919 ((|#1| $) 79)) (-3389 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-3748 (((-107) $) 68 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-2192 (($) 56 (|has| |#1| (-338)))) (-1690 (((-107) $) 31)) (-1487 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3522 ((|#1| $) 71)) (-3480 (($ $ $) 62 (|has| |#1| (-779)))) (-4095 (($ $ $) 61 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 81)) (-4161 (((-845) $) 55 (|has| |#1| (-338)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 65 (|has| |#1| (-333)))) (-2803 (($ (-845)) 54 (|has| |#1| (-338)))) (-1739 ((|#1| $) 76)) (-1238 ((|#1| $) 77)) (-1937 ((|#1| $) 78)) (-3840 ((|#1| $) 72)) (-3061 ((|#1| $) 73)) (-1273 ((|#1| $) 74)) (-3623 ((|#1| $) 75)) (-4130 (((-1024) $) 10)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 82 (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3367 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1853 (($ $) 80)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-955 (-377 (-517)))))) (-3385 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2829 ((|#1| $) 69 (|has| |#1| (-973)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-729 |#1|) (-1189) (-156)) (T -729))
+((-1853 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1238 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1487 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2291 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1853 ($ $)) (-15 -3919 (|t#1| $)) (-15 -1937 (|t#1| $)) (-15 -1238 (|t#1| $)) (-15 -1739 (|t#1| $)) (-15 -3623 (|t#1| $)) (-15 -1273 (|t#1| $)) (-15 -3061 (|t#1| $)) (-15 -3840 (|t#1| $)) (-15 -3522 (|t#1| $)) (-15 -1487 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2829 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -2291 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3312 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
+(-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-918 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3786 (|has| (-918 |#1|) (-955 (-517))) (|has| |#1| (-955 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 ((|#1| $) NIL) (((-918 |#1|) $) 33) (((-517) $) NIL (-3786 (|has| (-918 |#1|) (-955 (-517))) (|has| |#1| (-955 (-517))))) (((-377 (-517)) $) NIL (-3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3550 (((-3 $ "failed") $) NIL)) (-3919 ((|#1| $) 16)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3748 (((-107) $) NIL (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2192 (($) NIL (|has| |#1| (-338)))) (-1690 (((-107) $) NIL)) (-1487 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-918 |#1|) (-918 |#1|)) 29)) (-3522 ((|#1| $) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1739 ((|#1| $) 22)) (-1238 ((|#1| $) 20)) (-1937 ((|#1| $) 18)) (-3840 ((|#1| $) 26)) (-3061 ((|#1| $) 25)) (-1273 ((|#1| $) 24)) (-3623 ((|#1| $) 23)) (-4130 (((-1024) $) NIL)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1853 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-918 |#1|)) 30) (($ (-377 (-517))) NIL (-3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2829 ((|#1| $) NIL (|has| |#1| (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 8 T CONST)) (-3675 (($) 12 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-731 |#1|) (-13 (-729 |#1|) (-381 (-918 |#1|)) (-10 -8 (-15 -1487 ($ (-918 |#1|) (-918 |#1|))))) (-156)) (T -731))
+((-1487 (*1 *1 *2 *2) (-12 (-5 *2 (-918 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(-13 (-729 |#1|) (-381 (-918 |#1|)) (-10 -8 (-15 -1487 ($ (-918 |#1|) (-918 |#1|)))))
+((-2105 (((-107) $ $) 7)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1572 (((-107) $ $) 6)))
+(((-732) (-1189)) (T -732))
+((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-3582 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-953)))))
+(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3582 ((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-1282 (((-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#3| |#2| (-1077)) 19)))
+(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -1282 ((-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#3| |#2| (-1077)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882)) (-593 |#2|)) (T -733))
+((-1282 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1077)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1098) (-882))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -1282 ((-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#3| |#2| (-1077))))
+((-1993 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1077)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1077)) 17) (((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1077)) 22) (((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1077)) 24) (((-3 (-583 (-1158 |#2|)) "failed") (-623 |#2|) (-1077)) 36) (((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-623 |#2|) (-1158 |#2|) (-1077)) 34)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-623 |#2|) (-1158 |#2|) (-1077))) (-15 -1993 ((-3 (-583 (-1158 |#2|)) "failed") (-623 |#2|) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1077))) (-15 -1993 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1993 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882))) (T -734))
+((-1993 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1993 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1077)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3700 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1098) (-882))))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3700 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) (-5 *1 (-734 *6 *7)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) (-5 *1 (-734 *6 *7)))) (-1993 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1077)) (-4 *6 (-13 (-29 *5) (-1098) (-882))) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1158 *6))) (-5 *1 (-734 *5 *6)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1158 *7)))))
+(-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-623 |#2|) (-1158 |#2|) (-1077))) (-15 -1993 ((-3 (-583 (-1158 |#2|)) "failed") (-623 |#2|) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1077))) (-15 -1993 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1993 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-2974 (($) 9)) (-2904 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1869 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-3439 (($ (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-2117 (($ (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-3962 (((-1163)) 12)))
+(((-735) (-10 -8 (-15 -2974 ($)) (-15 -3962 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2117 ($ (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2904 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
+((-2904 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-3962 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-735)))) (-2974 (*1 *1) (-5 *1 (-735))))
+(-10 -8 (-15 -2974 ($)) (-15 -3962 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2117 ($ (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2904 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-3462 ((|#2| |#2| (-1077)) 15)) (-3961 ((|#2| |#2| (-1077)) 47)) (-2903 (((-1 |#2| |#2|) (-1077)) 11)))
+(((-736 |#1| |#2|) (-10 -7 (-15 -3462 (|#2| |#2| (-1077))) (-15 -3961 (|#2| |#2| (-1077))) (-15 -2903 ((-1 |#2| |#2|) (-1077)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882))) (T -736))
+((-2903 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1098) (-882))))) (-3961 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882))))) (-3462 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882))))))
+(-10 -7 (-15 -3462 (|#2| |#2| (-1077))) (-15 -3961 (|#2| |#2| (-1077))) (-15 -2903 ((-1 |#2| |#2|) (-1077))))
+((-1993 (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-953) (-740) (-976)) 105) (((-953) (-740)) 106)) (-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740) (-976)) 71) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740)) 73)))
+(((-737) (-10 -7 (-15 -1993 ((-953) (-740))) (-15 -1993 ((-953) (-740) (-976))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740) (-976))))) (T -737))
+((-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-737)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-953)) (-5 *1 (-737)))))
+(-10 -7 (-15 -1993 ((-953) (-740))) (-15 -1993 ((-953) (-740) (-976))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740) (-976))))
+((-3692 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3700 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3692 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3700 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
+((-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3692 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3700 (-583 |#4|))) (-590 |#4|) |#4|)))
+((-1955 (((-2 (|:| -3817 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 52)) (-3581 (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4| |#2|) 60) (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4|) 59) (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3|) 21)) (-2071 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2357 ((|#2| |#3| (-583 (-377 |#2|))) 94) (((-3 |#2| "failed") |#3| (-377 |#2|)) 91)))
+(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2357 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2357 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3| |#2|)) (-15 -2071 (|#2| |#3| |#1|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4| |#2|)) (-15 -2071 (|#2| |#4| |#1|)) (-15 -1955 ((-2 (|:| -3817 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-955 (-377 (-517)))) (-1134 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
+((-1955 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-2 (|:| -3817 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-2071 (*1 *2 *3 *4) (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-2071 (*1 *2 *3 *4) (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1134 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-2357 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1134 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
+(-10 -7 (-15 -2357 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2357 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3| |#2|)) (-15 -2071 (|#2| |#3| |#1|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4| |#2|)) (-15 -2071 (|#2| |#4| |#1|)) (-15 -1955 ((-2 (|:| -3817 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
+((-2105 (((-107) $ $) NIL)) (-3402 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1572 (((-107) $ $) NIL)))
+(((-740) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
+((-1693 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1073 |#2|)) (-1 (-388 |#2|) |#2|)) 117)) (-1235 (((-583 (-2 (|:| |poly| |#2|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-2630 (((-583 (-2 (|:| |deg| (-703)) (|:| -3817 |#2|))) |#3|) 94)) (-4096 ((|#2| |#3|) 37)) (-2481 (((-583 (-2 (|:| -1373 |#1|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 81)) (-2580 ((|#3| |#3| (-377 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4096 (|#2| |#3|)) (-15 -2630 ((-583 (-2 (|:| |deg| (-703)) (|:| -3817 |#2|))) |#3|)) (-15 -2481 ((-583 (-2 (|:| -1373 |#1|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1073 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2580 (|#3| |#3| |#2|)) (-15 -2580 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-955 (-377 (-517)))) (-1134 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
+((-2580 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2580 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-1134 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-1693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1073 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1134 *6)) (-4 *6 (-13 (-333) (-134) (-955 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3817 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-1235 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -1373 *5) (|:| -3817 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3817 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-4096 (*1 *2 *3) (-12 (-4 *2 (-1134 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
+(-10 -7 (-15 -4096 (|#2| |#3|)) (-15 -2630 ((-583 (-2 (|:| |deg| (-703)) (|:| -3817 |#2|))) |#3|)) (-15 -2481 ((-583 (-2 (|:| -1373 |#1|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1073 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2580 (|#3| |#3| |#2|)) (-15 -2580 (|#3| |#3| (-377 |#2|))))
+((-3405 (((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 118) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 117) (((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 112) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 110)) (-3445 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
+(((-742 |#1| |#2|) (-10 -7 (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3445 (|#2| (-590 (-377 |#2|)))) (-15 -3445 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -742))
+((-3445 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
+(-10 -7 (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3445 (|#2| (-590 (-377 |#2|)))) (-15 -3445 (|#2| (-591 |#2| (-377 |#2|)))))
+((-3561 (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) |#5| |#4|) 47)))
+(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3561 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1134 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
+((-3561 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1134 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -3561 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) |#5| |#4|)))
+((-1693 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-1585 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 135 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-1235 (((-583 (-2 (|:| |poly| |#2|) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 81)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|)) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -744))
+((-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1235 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3817 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1585 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1585 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(-10 -7 (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|))
+((-4049 (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) (-623 |#2|) (-1158 |#1|)) 85) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)) (|:| -3817 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1158 |#1|)) 14)) (-3105 (((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#2|) (-1158 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3700 (-583 |#1|))) |#2| |#1|)) 91)) (-1993 (((-3 (-2 (|:| |particular| (-1158 |#1|)) (|:| -3700 (-623 |#1|))) "failed") (-623 |#1|) (-1158 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed") |#2| |#1|)) 44)))
+(((-745 |#1| |#2|) (-10 -7 (-15 -4049 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)) (|:| -3817 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1158 |#1|))) (-15 -4049 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) (-623 |#2|) (-1158 |#1|))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#1|)) (|:| -3700 (-623 |#1|))) "failed") (-623 |#1|) (-1158 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3105 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#2|) (-1158 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3700 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
+((-3105 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3700 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 *6) "failed")) (|:| -3700 (-583 (-1158 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1158 *6)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3700 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1158 *6)) (|:| -3700 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *6)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *5)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5)) (|:| -3817 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *6 (-593 *5)))))
+(-10 -7 (-15 -4049 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)) (|:| -3817 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1158 |#1|))) (-15 -4049 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) (-623 |#2|) (-1158 |#1|))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#1|)) (|:| -3700 (-623 |#1|))) "failed") (-623 |#1|) (-1158 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3105 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#2|) (-1158 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3700 (-583 |#1|))) |#2| |#1|))))
+((-2320 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-3601 (((-3 (-1158 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-3454 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -2320 ((-623 |#1|) (-583 |#1|))) (-15 -2320 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3601 ((-3 (-1158 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -3454 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
+((-3454 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-3601 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1158 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
+(-10 -7 (-15 -2320 ((-623 |#1|) (-583 |#1|))) (-15 -2320 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3601 ((-3 (-1158 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -3454 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1992 (((-107) $) NIL (|has| |#2| (-123)))) (-3622 (($ (-845)) NIL (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#2| (-338)))) (-3502 (((-517) $) NIL (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) NIL (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) NIL (|has| |#2| (-964)))) (-2192 (($) NIL (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) NIL)) (-2671 (((-107) $) NIL (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#2| (-964)))) (-2321 (((-107) $) NIL (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#2| (-338)))) (-4130 (((-1024) $) NIL (|has| |#2| (-1006)))) (-2420 ((|#2| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3912 ((|#2| $ $) NIL (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) NIL)) (-1470 (((-125)) NIL (|has| |#2| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#2|) $) NIL) (($ (-517)) NIL (-3786 (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) NIL (|has| |#2| (-1006))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#2| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (-3663 (($) NIL (|has| |#2| (-123)) CONST)) (-3675 (($) NIL (|has| |#2| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1596 (((-107) $ $) 11 (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $ $) NIL (|has| |#2| (-964))) (($ $) NIL (|has| |#2| (-964)))) (-1666 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (* (($ $ $) NIL (|has| |#2| (-964))) (($ (-517) $) NIL (|has| |#2| (-964))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-845) $) NIL (|has| |#2| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1158 |#2|) (-1158 |#2|))) (T -747))
NIL
(-212 |#1| |#2|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2774 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1076)) NIL)) (-3077 (((-703) $) NIL) (((-703) $ (-1076)) NIL)) (-2097 (((-583 (-750 (-1076))) $) NIL)) (-1440 (((-1072 $) $ (-750 (-1076))) NIL) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1076)))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-2431 (($ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-750 (-1076)) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL) (((-3 (-1028 |#1| (-1076)) "failed") $) NIL)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-750 (-1076)) $) NIL) (((-1076) $) NIL) (((-1028 |#1| (-1076)) $) NIL)) (-2157 (($ $ $ (-750 (-1076))) NIL (|has| |#1| (-156)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1076))) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-489 (-750 (-1076))) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-750 (-1076)) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-750 (-1076)) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1395 (((-703) $ (-1076)) NIL) (((-703) $) NIL)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#1|) (-750 (-1076))) NIL) (($ (-1072 $) (-750 (-1076))) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-489 (-750 (-1076)))) NIL) (($ $ (-750 (-1076)) (-703)) NIL) (($ $ (-583 (-750 (-1076))) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-750 (-1076))) NIL)) (-3492 (((-489 (-750 (-1076))) $) NIL) (((-703) $ (-750 (-1076))) NIL) (((-583 (-703)) $ (-583 (-750 (-1076)))) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-489 (-750 (-1076))) (-489 (-750 (-1076)))) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3044 (((-1 $ (-703)) (-1076)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-2297 (((-3 (-750 (-1076)) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-3301 (((-750 (-1076)) $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-1919 (((-107) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-750 (-1076))) (|:| -2121 (-703))) "failed") $) NIL)) (-2626 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1076)) |#1|) NIL) (($ $ (-583 (-750 (-1076))) (-583 |#1|)) NIL) (($ $ (-750 (-1076)) $) NIL) (($ $ (-583 (-750 (-1076))) (-583 $)) NIL) (($ $ (-1076) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1076)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1076)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-1220 (($ $ (-750 (-1076))) NIL (|has| |#1| (-156)))) (-2060 (($ $ (-750 (-1076))) NIL) (($ $ (-583 (-750 (-1076)))) NIL) (($ $ (-750 (-1076)) (-703)) NIL) (($ $ (-583 (-750 (-1076))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2861 (((-583 (-1076)) $) NIL)) (-3647 (((-489 (-750 (-1076))) $) NIL) (((-703) $ (-750 (-1076))) NIL) (((-583 (-703)) $ (-583 (-750 (-1076)))) NIL) (((-703) $ (-1076)) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-750 (-1076)) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-750 (-1076)) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1076)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1076))) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1076))) NIL) (($ (-1076)) NIL) (($ (-1028 |#1| (-1076))) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-489 (-750 (-1076)))) NIL) (($ $ (-750 (-1076)) (-703)) NIL) (($ $ (-583 (-750 (-1076))) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-750 (-1076))) NIL) (($ $ (-583 (-750 (-1076)))) NIL) (($ $ (-750 (-1076)) (-703)) NIL) (($ $ (-583 (-750 (-1076))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-748 |#1|) (-13 (-226 |#1| (-1076) (-750 (-1076)) (-489 (-750 (-1076)))) (-954 (-1028 |#1| (-1076)))) (-963)) (T -748))
-NIL
-(-13 (-226 |#1| (-1076) (-750 (-1076)) (-489 (-750 (-1076)))) (-954 (-1028 |#1| (-1076))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-3062 (($ $) NIL (|has| |#2| (-333)))) (-2190 (((-107) $) NIL (|has| |#2| (-333)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#2| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#2| (-333)))) (-3820 (((-107) $ $) NIL (|has| |#2| (-333)))) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL (|has| |#2| (-333)))) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#2| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-1259 (((-107) $) NIL (|has| |#2| (-333)))) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2332 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 20 (|has| |#2| (-333)))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#2| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3868 (((-388 $) $) NIL (|has| |#2| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#2| (-333)))) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3600 (((-703) $) NIL (|has| |#2| (-333)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-333)))) (-2060 (($ $ (-703)) NIL) (($ $) 13)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) 15 (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
-(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2271 ($ |#2|)) (-15 -2271 (|#2| $)))) (-1005) (-823 |#1|) |#1|) (T -749))
-((-2271 (*1 *1 *2) (-12 (-4 *3 (-1005)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-823 *3)))) (-2271 (*1 *2 *1) (-12 (-4 *2 (-823 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1005)) (-14 *4 *3))))
-(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2271 ($ |#2|)) (-15 -2271 (|#2| $))))
-((-2119 (((-107) $ $) NIL)) (-3077 (((-703) $) NIL)) (-3752 ((|#1| $) 10)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-1395 (((-703) $) 11)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3044 (($ |#1| (-703)) 9)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2060 (($ $) NIL) (($ $ (-703)) NIL)) (-2271 (((-787) $) NIL) (($ |#1|) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3974 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1077)) NIL)) (-3546 (((-703) $) NIL) (((-703) $ (-1077)) NIL)) (-2080 (((-583 (-750 (-1077))) $) NIL)) (-1428 (((-1073 $) $ (-750 (-1077))) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1077)))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-2588 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-750 (-1077)) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL) (((-3 (-1029 |#1| (-1077)) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-750 (-1077)) $) NIL) (((-1077) $) NIL) (((-1029 |#1| (-1077)) $) NIL)) (-2133 (($ $ $ (-750 (-1077))) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1077))) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 (-750 (-1077))) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-750 (-1077)) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-750 (-1077)) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ (-1077)) NIL) (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) (-750 (-1077))) NIL) (($ (-1073 $) (-750 (-1077))) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-750 (-1077))) NIL)) (-3942 (((-489 (-750 (-1077))) $) NIL) (((-703) $ (-750 (-1077))) NIL) (((-583 (-703)) $ (-583 (-750 (-1077)))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 (-750 (-1077))) (-489 (-750 (-1077)))) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1203 (((-1 $ (-703)) (-1077)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1958 (((-3 (-750 (-1077)) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3293 (((-750 (-1077)) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1724 (((-107) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-750 (-1077))) (|:| -1725 (-703))) "failed") $) NIL)) (-2617 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1077)) |#1|) NIL) (($ $ (-583 (-750 (-1077))) (-583 |#1|)) NIL) (($ $ (-750 (-1077)) $) NIL) (($ $ (-583 (-750 (-1077))) (-583 $)) NIL) (($ $ (-1077) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3115 (($ $ (-750 (-1077))) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-750 (-1077))) NIL) (($ $ (-583 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2125 (((-583 (-1077)) $) NIL)) (-1191 (((-489 (-750 (-1077))) $) NIL) (((-703) $ (-750 (-1077))) NIL) (((-583 (-703)) $ (-583 (-750 (-1077)))) NIL) (((-703) $ (-1077)) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-750 (-1077)) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-750 (-1077)) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1077)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1077))) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1077))) NIL) (($ (-1077)) NIL) (($ (-1029 |#1| (-1077))) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-750 (-1077))) NIL) (($ $ (-583 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-748 |#1|) (-13 (-226 |#1| (-1077) (-750 (-1077)) (-489 (-750 (-1077)))) (-955 (-1029 |#1| (-1077)))) (-964)) (T -748))
+NIL
+(-13 (-226 |#1| (-1077) (-750 (-1077)) (-489 (-750 (-1077)))) (-955 (-1029 |#1| (-1077))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-2491 (($ $) NIL (|has| |#2| (-333)))) (-2025 (((-107) $) NIL (|has| |#2| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#2| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-333)))) (-1765 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#2| (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#2| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2022 (((-107) $) NIL (|has| |#2| (-333)))) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2323 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 20 (|has| |#2| (-333)))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3388 (((-703) $) NIL (|has| |#2| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-2042 (($ $ (-703)) NIL) (($ $) 13)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) 15 (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
+(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2262 ($ |#2|)) (-15 -2262 (|#2| $)))) (-1006) (-824 |#1|) |#1|) (T -749))
+((-2262 (*1 *1 *2) (-12 (-4 *3 (-1006)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-824 *3)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-824 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1006)) (-14 *4 *3))))
+(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2262 ($ |#2|)) (-15 -2262 (|#2| $))))
+((-2105 (((-107) $ $) NIL)) (-3546 (((-703) $) NIL)) (-3791 ((|#1| $) 10)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3250 (((-703) $) 11)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-1203 (($ |#1| (-703)) 9)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2042 (($ $) NIL) (($ $ (-703)) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)))
(((-750 |#1|) (-239 |#1|) (-779)) (T -750))
NIL
(-239 |#1|)
-((-2119 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) 29)) (-2399 (((-703) $) NIL)) (-1393 (($) NIL T CONST)) (-4097 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-2439 (($ $) 31)) (-2560 (((-3 $ "failed") $) NIL)) (-3628 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1376 (((-107) $) NIL)) (-1789 ((|#1| $ (-517)) NIL)) (-1879 (((-703) $ (-517)) NIL)) (-1591 (($ $) 36)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1674 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-1701 (((-107) $ $) 34)) (-3682 (((-703) $) 25)) (-1662 (((-1059) $) NIL)) (-2869 (($ $ $) NIL)) (-2475 (($ $ $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 ((|#1| $) 30)) (-1510 (((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $) NIL)) (-2341 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2271 (((-787) $) NIL) (($ |#1|) NIL)) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3619 (($) 14 T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 35)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-751 |#1|) (-13 (-775) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2429 (|#1| $)) (-15 -2439 ($ $)) (-15 -1591 ($ $)) (-15 -1701 ((-107) $ $)) (-15 -2475 ($ $ $)) (-15 -2869 ($ $ $)) (-15 -1674 ((-3 $ "failed") $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -1674 ((-3 $ "failed") $ |#1|)) (-15 -4097 ((-3 $ "failed") $ |#1|)) (-15 -2341 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3628 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2399 ((-703) $)) (-15 -1879 ((-703) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -1510 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $)) (-15 -3682 ((-703) $)) (-15 -3367 ((-583 |#1|) $)))) (-779)) (T -751))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2429 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2439 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1701 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2475 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2869 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1674 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4097 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1674 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4097 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2341 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(-13 (-775) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2429 (|#1| $)) (-15 -2439 ($ $)) (-15 -1591 ($ $)) (-15 -1701 ((-107) $ $)) (-15 -2475 ($ $ $)) (-15 -2869 ($ $ $)) (-15 -1674 ((-3 $ "failed") $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -1674 ((-3 $ "failed") $ |#1|)) (-15 -4097 ((-3 $ "failed") $ |#1|)) (-15 -2341 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3628 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2399 ((-703) $)) (-15 -1879 ((-703) $ (-517))) (-15 -1789 (|#1| $ (-517))) (-15 -1510 ((-583 (-2 (|:| |gen| |#1|) (|:| -3870 (-703)))) $)) (-15 -3682 ((-703) $)) (-15 -3367 ((-583 |#1|) $))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-2360 (((-517) $) 53)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-2988 (((-107) $) 51)) (-1376 (((-107) $) 31)) (-1952 (((-107) $) 52)) (-3458 (($ $ $) 50)) (-4084 (($ $ $) 49)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ $) 42)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2376 (($ $) 54)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 47)) (-1618 (((-107) $ $) 46)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 48)) (-1608 (((-107) $ $) 45)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-752) (-1188)) (T -752))
+((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) 29)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-1586 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2429 (($ $) 31)) (-3550 (((-3 $ "failed") $) NIL)) (-3997 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1690 (((-107) $) NIL)) (-2115 ((|#1| $ (-517)) NIL)) (-2395 (((-703) $ (-517)) NIL)) (-2833 (($ $) 36)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2388 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-4105 (((-107) $ $) 34)) (-3728 (((-703) $) 25)) (-3232 (((-1060) $) NIL)) (-4045 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 ((|#1| $) 30)) (-2283 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $) NIL)) (-2345 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3675 (($) 14 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 35)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-751 |#1|) (-13 (-775) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2420 (|#1| $)) (-15 -2429 ($ $)) (-15 -2833 ($ $)) (-15 -4105 ((-107) $ $)) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2388 ((-3 $ "failed") $ |#1|)) (-15 -1586 ((-3 $ "failed") $ |#1|)) (-15 -2345 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -3728 ((-703) $)) (-15 -3375 ((-583 |#1|) $)))) (-779)) (T -751))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2420 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3759 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1586 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2388 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1586 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2345 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(-13 (-775) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2420 (|#1| $)) (-15 -2429 ($ $)) (-15 -2833 ($ $)) (-15 -4105 ((-107) $ $)) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2388 ((-3 $ "failed") $ |#1|)) (-15 -1586 ((-3 $ "failed") $ |#1|)) (-15 -2345 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -3728 ((-703) $)) (-15 -3375 ((-583 |#1|) $))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3502 (((-517) $) 53)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-2671 (((-107) $) 51)) (-1690 (((-107) $) 31)) (-2321 (((-107) $) 52)) (-3480 (($ $ $) 50)) (-4095 (($ $ $) 49)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 54)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 47)) (-1606 (((-107) $ $) 46)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 48)) (-1596 (((-107) $ $) 45)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-752) (-1189)) (T -752))
NIL
(-13 (-509) (-777))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-4044 (($ (-1023)) 7)) (-2274 (((-107) $ (-1059) (-1023)) 15)) (-2067 (((-754) $) 12)) (-4165 (((-754) $) 11)) (-1559 (((-1162) $) 9)) (-1860 (((-107) $ (-1023)) 16)))
-(((-753) (-10 -8 (-15 -4044 ($ (-1023))) (-15 -1559 ((-1162) $)) (-15 -4165 ((-754) $)) (-15 -2067 ((-754) $)) (-15 -2274 ((-107) $ (-1059) (-1023))) (-15 -1860 ((-107) $ (-1023))))) (T -753))
-((-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-1023)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2274 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-1023)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-753)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-753)))))
-(-10 -8 (-15 -4044 ($ (-1023))) (-15 -1559 ((-1162) $)) (-15 -4165 ((-754) $)) (-15 -2067 ((-754) $)) (-15 -2274 ((-107) $ (-1059) (-1023))) (-15 -1860 ((-107) $ (-1023))))
-((-2522 (((-1162) $ (-755)) 12)) (-1334 (((-1162) $ (-1076)) 32)) (-2919 (((-1162) $ (-1059) (-1059)) 34)) (-3672 (((-1162) $ (-1059)) 33)) (-3465 (((-1162) $) 19)) (-3173 (((-1162) $ (-517)) 28)) (-2135 (((-1162) $ (-199)) 30)) (-2558 (((-1162) $) 18)) (-3658 (((-1162) $) 26)) (-3738 (((-1162) $) 25)) (-2340 (((-1162) $) 23)) (-2974 (((-1162) $) 24)) (-4066 (((-1162) $) 22)) (-3613 (((-1162) $) 21)) (-2672 (((-1162) $) 20)) (-2461 (((-1162) $) 16)) (-3050 (((-1162) $) 17)) (-1308 (((-1162) $) 15)) (-1784 (((-1162) $) 14)) (-1497 (((-1162) $) 13)) (-1524 (($ (-1059) (-755)) 9)) (-3582 (($ (-1059) (-1059) (-755)) 8)) (-1643 (((-1076) $) 51)) (-3265 (((-1076) $) 55)) (-3660 (((-2 (|:| |cd| (-1059)) (|:| -2989 (-1059))) $) 54)) (-3664 (((-1059) $) 52)) (-3175 (((-1162) $) 41)) (-1950 (((-517) $) 49)) (-2001 (((-199) $) 50)) (-1638 (((-1162) $) 40)) (-3478 (((-1162) $) 48)) (-2068 (((-1162) $) 47)) (-2237 (((-1162) $) 45)) (-4072 (((-1162) $) 46)) (-1671 (((-1162) $) 44)) (-4029 (((-1162) $) 43)) (-3825 (((-1162) $) 42)) (-1750 (((-1162) $) 38)) (-3256 (((-1162) $) 39)) (-3526 (((-1162) $) 37)) (-2857 (((-1162) $) 36)) (-3961 (((-1162) $) 35)) (-3126 (((-1162) $) 11)))
-(((-754) (-10 -8 (-15 -3582 ($ (-1059) (-1059) (-755))) (-15 -1524 ($ (-1059) (-755))) (-15 -3126 ((-1162) $)) (-15 -2522 ((-1162) $ (-755))) (-15 -1497 ((-1162) $)) (-15 -1784 ((-1162) $)) (-15 -1308 ((-1162) $)) (-15 -2461 ((-1162) $)) (-15 -3050 ((-1162) $)) (-15 -2558 ((-1162) $)) (-15 -3465 ((-1162) $)) (-15 -2672 ((-1162) $)) (-15 -3613 ((-1162) $)) (-15 -4066 ((-1162) $)) (-15 -2340 ((-1162) $)) (-15 -2974 ((-1162) $)) (-15 -3738 ((-1162) $)) (-15 -3658 ((-1162) $)) (-15 -3173 ((-1162) $ (-517))) (-15 -2135 ((-1162) $ (-199))) (-15 -1334 ((-1162) $ (-1076))) (-15 -3672 ((-1162) $ (-1059))) (-15 -2919 ((-1162) $ (-1059) (-1059))) (-15 -3961 ((-1162) $)) (-15 -2857 ((-1162) $)) (-15 -3526 ((-1162) $)) (-15 -1750 ((-1162) $)) (-15 -3256 ((-1162) $)) (-15 -1638 ((-1162) $)) (-15 -3175 ((-1162) $)) (-15 -3825 ((-1162) $)) (-15 -4029 ((-1162) $)) (-15 -1671 ((-1162) $)) (-15 -2237 ((-1162) $)) (-15 -4072 ((-1162) $)) (-15 -2068 ((-1162) $)) (-15 -3478 ((-1162) $)) (-15 -1950 ((-517) $)) (-15 -2001 ((-199) $)) (-15 -1643 ((-1076) $)) (-15 -3664 ((-1059) $)) (-15 -3660 ((-2 (|:| |cd| (-1059)) (|:| -2989 (-1059))) $)) (-15 -3265 ((-1076) $)))) (T -754))
-((-3265 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-754)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1059)) (|:| -2989 (-1059)))) (-5 *1 (-754)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-754)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-754)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2919 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-754)))) (-3672 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-754)))) (-1334 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-754)))) (-2135 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1162)) (-5 *1 (-754)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-754)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1162)) (-5 *1 (-754)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))) (-1524 (*1 *1 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-755)) (-5 *1 (-754)))) (-3582 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(-10 -8 (-15 -3582 ($ (-1059) (-1059) (-755))) (-15 -1524 ($ (-1059) (-755))) (-15 -3126 ((-1162) $)) (-15 -2522 ((-1162) $ (-755))) (-15 -1497 ((-1162) $)) (-15 -1784 ((-1162) $)) (-15 -1308 ((-1162) $)) (-15 -2461 ((-1162) $)) (-15 -3050 ((-1162) $)) (-15 -2558 ((-1162) $)) (-15 -3465 ((-1162) $)) (-15 -2672 ((-1162) $)) (-15 -3613 ((-1162) $)) (-15 -4066 ((-1162) $)) (-15 -2340 ((-1162) $)) (-15 -2974 ((-1162) $)) (-15 -3738 ((-1162) $)) (-15 -3658 ((-1162) $)) (-15 -3173 ((-1162) $ (-517))) (-15 -2135 ((-1162) $ (-199))) (-15 -1334 ((-1162) $ (-1076))) (-15 -3672 ((-1162) $ (-1059))) (-15 -2919 ((-1162) $ (-1059) (-1059))) (-15 -3961 ((-1162) $)) (-15 -2857 ((-1162) $)) (-15 -3526 ((-1162) $)) (-15 -1750 ((-1162) $)) (-15 -3256 ((-1162) $)) (-15 -1638 ((-1162) $)) (-15 -3175 ((-1162) $)) (-15 -3825 ((-1162) $)) (-15 -4029 ((-1162) $)) (-15 -1671 ((-1162) $)) (-15 -2237 ((-1162) $)) (-15 -4072 ((-1162) $)) (-15 -2068 ((-1162) $)) (-15 -3478 ((-1162) $)) (-15 -1950 ((-517) $)) (-15 -2001 ((-199) $)) (-15 -1643 ((-1076) $)) (-15 -3664 ((-1059) $)) (-15 -3660 ((-2 (|:| |cd| (-1059)) (|:| -2989 (-1059))) $)) (-15 -3265 ((-1076) $)))
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 12)) (-2885 (($) 15)) (-2674 (($) 13)) (-2420 (($) 16)) (-2363 (($) 14)) (-1584 (((-107) $ $) 8)))
-(((-755) (-13 (-1005) (-10 -8 (-15 -2674 ($)) (-15 -2885 ($)) (-15 -2420 ($)) (-15 -2363 ($))))) (T -755))
-((-2674 (*1 *1) (-5 *1 (-755))) (-2885 (*1 *1) (-5 *1 (-755))) (-2420 (*1 *1) (-5 *1 (-755))) (-2363 (*1 *1) (-5 *1 (-755))))
-(-13 (-1005) (-10 -8 (-15 -2674 ($)) (-15 -2885 ($)) (-15 -2420 ($)) (-15 -2363 ($))))
-((-2119 (((-107) $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 21) (($ (-1076)) 17)) (-1617 (((-107) $) 10)) (-1850 (((-107) $) 9)) (-3862 (((-107) $) 11)) (-1419 (((-107) $) 8)) (-1584 (((-107) $ $) 19)))
-(((-756) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-1076))) (-15 -1419 ((-107) $)) (-15 -1850 ((-107) $)) (-15 -1617 ((-107) $)) (-15 -3862 ((-107) $))))) (T -756))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-756)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-1076))) (-15 -1419 ((-107) $)) (-15 -1850 ((-107) $)) (-15 -1617 ((-107) $)) (-15 -3862 ((-107) $))))
-((-2119 (((-107) $ $) NIL)) (-3183 (($ (-756) (-583 (-1076))) 24)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3776 (((-756) $) 25)) (-3285 (((-583 (-1076)) $) 26)) (-2271 (((-787) $) 23)) (-1584 (((-107) $ $) NIL)))
-(((-757) (-13 (-1005) (-10 -8 (-15 -3776 ((-756) $)) (-15 -3285 ((-583 (-1076)) $)) (-15 -3183 ($ (-756) (-583 (-1076))))))) (T -757))
-((-3776 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-757)))) (-3183 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1076))) (-5 *1 (-757)))))
-(-13 (-1005) (-10 -8 (-15 -3776 ((-756) $)) (-15 -3285 ((-583 (-1076)) $)) (-15 -3183 ($ (-756) (-583 (-1076))))))
-((-4032 (((-1162) (-754) (-286 |#1|) (-107)) 22) (((-1162) (-754) (-286 |#1|)) 76) (((-1059) (-286 |#1|) (-107)) 75) (((-1059) (-286 |#1|)) 74)))
-(((-758 |#1|) (-10 -7 (-15 -4032 ((-1059) (-286 |#1|))) (-15 -4032 ((-1059) (-286 |#1|) (-107))) (-15 -4032 ((-1162) (-754) (-286 |#1|))) (-15 -4032 ((-1162) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-963))) (T -758))
-((-4032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-963))) (-5 *2 (-1162)) (-5 *1 (-758 *6)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-963))) (-5 *2 (-1162)) (-5 *1 (-758 *5)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-963))) (-5 *2 (-1059)) (-5 *1 (-758 *5)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-963))) (-5 *2 (-1059)) (-5 *1 (-758 *4)))))
-(-10 -7 (-15 -4032 ((-1059) (-286 |#1|))) (-15 -4032 ((-1059) (-286 |#1|) (-107))) (-15 -4032 ((-1162) (-754) (-286 |#1|))) (-15 -4032 ((-1162) (-754) (-286 |#1|) (-107))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2242 ((|#1| $) 10)) (-1407 (($ |#1|) 9)) (-1376 (((-107) $) NIL)) (-2078 (($ |#2| (-703)) NIL)) (-3492 (((-703) $) NIL)) (-2347 ((|#2| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2060 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3647 (((-703) $) NIL)) (-2271 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-1689 ((|#2| $ (-703)) NIL)) (-4099 (((-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1407 ($ |#1|)) (-15 -2242 (|#1| $)))) (-642 |#2|) (-963)) (T -759))
-((-1407 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-963)))))
-(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1407 ($ |#1|)) (-15 -2242 (|#1| $))))
-((-4032 (((-1162) (-754) $ (-107)) 9) (((-1162) (-754) $) 8) (((-1059) $ (-107)) 7) (((-1059) $) 6)))
-(((-760) (-1188)) (T -760))
-((-4032 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1162)))) (-4032 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1162)))) (-4032 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1059)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1059)))))
-(-13 (-10 -8 (-15 -4032 ((-1059) $)) (-15 -4032 ((-1059) $ (-107))) (-15 -4032 ((-1162) (-754) $)) (-15 -4032 ((-1162) (-754) $ (-107)))))
-((-2470 (((-282) (-1059) (-1059)) 12)) (-2459 (((-107) (-1059) (-1059)) 34)) (-2883 (((-107) (-1059)) 33)) (-1468 (((-51) (-1059)) 25)) (-2302 (((-51) (-1059)) 23)) (-2435 (((-51) (-754)) 17)) (-2530 (((-583 (-1059)) (-1059)) 28)) (-3247 (((-583 (-1059))) 27)))
-(((-761) (-10 -7 (-15 -2435 ((-51) (-754))) (-15 -2302 ((-51) (-1059))) (-15 -1468 ((-51) (-1059))) (-15 -3247 ((-583 (-1059)))) (-15 -2530 ((-583 (-1059)) (-1059))) (-15 -2883 ((-107) (-1059))) (-15 -2459 ((-107) (-1059) (-1059))) (-15 -2470 ((-282) (-1059) (-1059))))) (T -761))
-((-2470 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-761)))) (-2459 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2530 (*1 *2 *3) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-761)) (-5 *3 (-1059)))) (-3247 (*1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-761)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(-10 -7 (-15 -2435 ((-51) (-754))) (-15 -2302 ((-51) (-1059))) (-15 -1468 ((-51) (-1059))) (-15 -3247 ((-583 (-1059)))) (-15 -2530 ((-583 (-1059)) (-1059))) (-15 -2883 ((-107) (-1059))) (-15 -2459 ((-107) (-1059) (-1059))) (-15 -2470 ((-282) (-1059) (-1059))))
-((-2119 (((-107) $ $) 19)) (-2384 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2834 (($ $ $) 72)) (-1961 (((-107) $ $) 73)) (-1851 (((-107) $ (-703)) 8)) (-1884 (($ (-583 |#1|)) 68) (($) 67)) (-3690 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-1399 (($ $) 62)) (-2455 (($ $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ |#1| $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-3458 ((|#1| $) 78)) (-4155 (($ $ $) 81)) (-2662 (($ $ $) 80)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-4084 ((|#1| $) 79)) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22)) (-2259 (($ $ $) 69)) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4125 (((-1023) $) 21)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-1527 (((-583 (-2 (|:| -1859 |#1|) (|:| -4137 (-703)))) $) 61)) (-1216 (($ $ |#1|) 71) (($ $ $) 70)) (-2176 (($) 49) (($ (-583 |#1|)) 48)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 50)) (-2271 (((-787) $) 18)) (-3075 (($ (-583 |#1|)) 66) (($) 65)) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20)) (-1608 (((-107) $ $) 64)) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-762 |#1|) (-1188) (-779)) (T -762))
-((-3458 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
-(-13 (-669 |t#1|) (-888 |t#1|) (-10 -8 (-15 -3458 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-888 |#1|) . T) ((-1003 |#1|) . T) ((-1005) . T) ((-1111) . T))
-((-2456 (((-1162) (-1023) (-1023)) 47)) (-3597 (((-1162) (-753) (-51)) 44)) (-2915 (((-51) (-753)) 16)))
-(((-763) (-10 -7 (-15 -2915 ((-51) (-753))) (-15 -3597 ((-1162) (-753) (-51))) (-15 -2456 ((-1162) (-1023) (-1023))))) (T -763))
-((-2456 (*1 *2 *3 *3) (-12 (-5 *3 (-1023)) (-5 *2 (-1162)) (-5 *1 (-763)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1162)) (-5 *1 (-763)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
-(-10 -7 (-15 -2915 ((-51) (-753))) (-15 -3597 ((-1162) (-753) (-51))) (-15 -2456 ((-1162) (-1023) (-1023))))
-((-3310 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
-(((-764 |#1| |#2|) (-10 -7 (-15 -3310 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3310 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1005) (-1005)) (T -764))
-((-3310 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *1 (-764 *5 *6)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
-(-10 -7 (-15 -3310 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3310 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL (|has| |#1| (-21)))) (-2798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2360 (((-517) $) NIL (|has| |#1| (-777)))) (-1393 (($) NIL (|has| |#1| (-21)) CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 9)) (-2560 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-2518 (((-3 (-377 (-517)) "failed") $) 48 (|has| |#1| (-502)))) (-3000 (((-107) $) 43 (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) 45 (|has| |#1| (-502)))) (-2988 (((-107) $) NIL (|has| |#1| (-777)))) (-1376 (((-107) $) NIL (|has| |#1| (-777)))) (-1952 (((-107) $) NIL (|has| |#1| (-777)))) (-3458 (($ $ $) NIL (|has| |#1| (-777)))) (-4084 (($ $ $) NIL (|has| |#1| (-777)))) (-1662 (((-1059) $) NIL)) (-2125 (($) 13)) (-1269 (((-107) $) 12)) (-4125 (((-1023) $) NIL)) (-3264 (((-107) $) 11)) (-2271 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3747 (|has| |#1| (-777)) (|has| |#1| (-954 (-517)))))) (-4099 (((-703)) 34 (|has| |#1| (-777)))) (-2376 (($ $) NIL (|has| |#1| (-777)))) (-2815 (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3610 (($) 22 (|has| |#1| (-21)) CONST)) (-3619 (($) 31 (|has| |#1| (-777)) CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1584 (((-107) $ $) 20)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1608 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1692 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1678 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-844) $) NIL (|has| |#1| (-21)))))
-(((-765 |#1|) (-13 (-1005) (-381 |#1|) (-10 -8 (-15 -2125 ($)) (-15 -3264 ((-107) $)) (-15 -1269 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1005)) (T -765))
-((-2125 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1005)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1005)))) (-1269 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1005)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1005)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1005)))) (-2518 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1005)))))
-(-13 (-1005) (-381 |#1|) (-10 -8 (-15 -2125 ($)) (-15 -3264 ((-107) $)) (-15 -1269 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3390 ((|#1| $) NIL) (((-109) $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1868 ((|#1| (-109) |#1|) NIL)) (-1376 (((-107) $) NIL)) (-2792 (($ |#1| (-331 (-109))) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3240 (($ $ (-1 |#1| |#1|)) NIL)) (-2449 (($ $ (-1 |#1| |#1|)) NIL)) (-2609 ((|#1| $ |#1|) NIL)) (-1676 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-1405 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-766 |#1|) (-13 (-963) (-954 |#1|) (-954 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1405 ($ $)) (-15 -1405 ($ $ $)) (-15 -1676 (|#1| |#1|))) |%noBranch|) (-15 -2449 ($ $ (-1 |#1| |#1|))) (-15 -3240 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1868 (|#1| (-109) |#1|)) (-15 -2792 ($ |#1| (-331 (-109)))))) (-963)) (T -766))
-((-1405 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-963)))) (-1405 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-963)))) (-1676 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-963)))) (-2449 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-766 *3)))) (-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-963)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-963)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-963)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-963)))))
-(-13 (-963) (-954 |#1|) (-954 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1405 ($ $)) (-15 -1405 ($ $ $)) (-15 -1676 (|#1| |#1|))) |%noBranch|) (-15 -2449 ($ $ (-1 |#1| |#1|))) (-15 -3240 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1868 (|#1| (-109) |#1|)) (-15 -2792 ($ |#1| (-331 (-109))))))
-((-1826 (((-189 (-467)) (-1059)) 8)))
-(((-767) (-10 -7 (-15 -1826 ((-189 (-467)) (-1059))))) (T -767))
-((-1826 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
-(-10 -7 (-15 -1826 ((-189 (-467)) (-1059))))
-((-2119 (((-107) $ $) 7)) (-3210 (((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 14) (((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 15)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-768) (-1188)) (T -768))
-((-3617 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-975)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)))))) (-3617 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-975)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)))))) (-3210 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) (-5 *2 (-952)))) (-3210 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-952)))))
-(-13 (-1005) (-10 -7 (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -3210 ((-952) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -3210 ((-952) (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2791 (((-952) (-583 (-286 (-349))) (-583 (-349))) 143) (((-952) (-286 (-349)) (-583 (-349))) 141) (((-952) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-952) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-952) (-770)) 112) (((-952) (-770) (-975)) 111)) (-3617 (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-770) (-975)) 76) (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-770)) 78)) (-2712 (((-952) (-583 (-286 (-349))) (-583 (-349))) 144) (((-952) (-770)) 128)))
-(((-769) (-10 -7 (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-770))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-770) (-975))) (-15 -2791 ((-952) (-770) (-975))) (-15 -2791 ((-952) (-770))) (-15 -2712 ((-952) (-770))) (-15 -2791 ((-952) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2791 ((-952) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2791 ((-952) (-286 (-349)) (-583 (-349)))) (-15 -2791 ((-952) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2712 ((-952) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
-((-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-952)) (-5 *1 (-769)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-952)) (-5 *1 (-769)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-952)) (-5 *1 (-769)))) (-2791 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-952)) (-5 *1 (-769)))) (-2791 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-952)) (-5 *1 (-769)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-952)) (-5 *1 (-769)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-952)) (-5 *1 (-769)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-975)) (-5 *2 (-952)) (-5 *1 (-769)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-975)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *1 (-769)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *1 (-769)))))
-(-10 -7 (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-770))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-770) (-975))) (-15 -2791 ((-952) (-770) (-975))) (-15 -2791 ((-952) (-770))) (-15 -2712 ((-952) (-770))) (-15 -2791 ((-952) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2791 ((-952) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2791 ((-952) (-286 (-349)) (-583 (-349)))) (-15 -2791 ((-952) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2712 ((-952) (-583 (-286 (-349))) (-583 (-349)))))
-((-2119 (((-107) $ $) NIL)) (-3390 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) $) 15)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))))) 12)) (-1584 (((-107) $ $) NIL)))
-(((-770) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2271 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -2271 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) $))))) (T -770))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))) (-5 *1 (-770)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))))) (-5 *1 (-770)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199))))))) (-5 *1 (-770)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2271 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) (-15 -2271 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))) $))))
-((-3310 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
-(((-771 |#1| |#2|) (-10 -7 (-15 -3310 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3310 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1005) (-1005)) (T -771))
-((-3310 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *1 (-771 *5 *6)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
-(-10 -7 (-15 -3310 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3310 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL (|has| |#1| (-21)))) (-4022 (((-1023) $) 24)) (-2798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2360 (((-517) $) NIL (|has| |#1| (-777)))) (-1393 (($) NIL (|has| |#1| (-21)) CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 9)) (-2560 (((-3 $ "failed") $) 47 (|has| |#1| (-777)))) (-2518 (((-3 (-377 (-517)) "failed") $) 54 (|has| |#1| (-502)))) (-3000 (((-107) $) 49 (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) 52 (|has| |#1| (-502)))) (-2988 (((-107) $) NIL (|has| |#1| (-777)))) (-3143 (($) 13)) (-1376 (((-107) $) NIL (|has| |#1| (-777)))) (-1952 (((-107) $) NIL (|has| |#1| (-777)))) (-3155 (($) 14)) (-3458 (($ $ $) NIL (|has| |#1| (-777)))) (-4084 (($ $ $) NIL (|has| |#1| (-777)))) (-1662 (((-1059) $) NIL)) (-1269 (((-107) $) 12)) (-4125 (((-1023) $) NIL)) (-3264 (((-107) $) 11)) (-2271 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3747 (|has| |#1| (-777)) (|has| |#1| (-954 (-517)))))) (-4099 (((-703)) 41 (|has| |#1| (-777)))) (-2376 (($ $) NIL (|has| |#1| (-777)))) (-2815 (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3610 (($) 29 (|has| |#1| (-21)) CONST)) (-3619 (($) 38 (|has| |#1| (-777)) CONST)) (-1642 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1584 (((-107) $ $) 27)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1608 (((-107) $ $) 48 (|has| |#1| (-777)))) (-1692 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1678 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 44 (|has| |#1| (-777))) (($ (-517) $) 32 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-844) $) NIL (|has| |#1| (-21)))))
-(((-772 |#1|) (-13 (-1005) (-381 |#1|) (-10 -8 (-15 -3143 ($)) (-15 -3155 ($)) (-15 -3264 ((-107) $)) (-15 -1269 ((-107) $)) (-15 -4022 ((-1023) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1005)) (T -772))
-((-3143 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1005)))) (-3155 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1005)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1005)))) (-1269 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1005)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-772 *3)) (-4 *3 (-1005)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1005)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1005)))) (-2518 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1005)))))
-(-13 (-1005) (-381 |#1|) (-10 -8 (-15 -3143 ($)) (-15 -3155 ($)) (-15 -3264 ((-107) $)) (-15 -1269 ((-107) $)) (-15 -4022 ((-1023) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
-((-2119 (((-107) $ $) 7)) (-2399 (((-703)) 20)) (-2202 (($) 23)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-3072 (((-844) $) 22)) (-1662 (((-1059) $) 9)) (-2812 (($ (-844)) 21)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)))
-(((-773) (-1188)) (T -773))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3610 (($ (-1024)) 7)) (-2048 (((-107) $ (-1060) (-1024)) 15)) (-3870 (((-754) $) 12)) (-2250 (((-754) $) 11)) (-2761 (((-1163) $) 9)) (-2292 (((-107) $ (-1024)) 16)))
+(((-753) (-10 -8 (-15 -3610 ($ (-1024))) (-15 -2761 ((-1163) $)) (-15 -2250 ((-754) $)) (-15 -3870 ((-754) $)) (-15 -2048 ((-107) $ (-1060) (-1024))) (-15 -2292 ((-107) $ (-1024))))) (T -753))
+((-2292 (*1 *2 *1 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2048 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-1024)) (-5 *2 (-107)) (-5 *1 (-753)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-753)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-753)))))
+(-10 -8 (-15 -3610 ($ (-1024))) (-15 -2761 ((-1163) $)) (-15 -2250 ((-754) $)) (-15 -3870 ((-754) $)) (-15 -2048 ((-107) $ (-1060) (-1024))) (-15 -2292 ((-107) $ (-1024))))
+((-3583 (((-1163) $ (-755)) 12)) (-2265 (((-1163) $ (-1077)) 32)) (-3534 (((-1163) $ (-1060) (-1060)) 34)) (-3373 (((-1163) $ (-1060)) 33)) (-3065 (((-1163) $) 19)) (-4080 (((-1163) $ (-517)) 28)) (-3290 (((-1163) $ (-199)) 30)) (-3411 (((-1163) $) 18)) (-1972 (((-1163) $) 26)) (-1386 (((-1163) $) 25)) (-2001 (((-1163) $) 23)) (-3894 (((-1163) $) 24)) (-3222 (((-1163) $) 22)) (-2695 (((-1163) $) 21)) (-2373 (((-1163) $) 20)) (-2942 (((-1163) $) 16)) (-3560 (((-1163) $) 17)) (-3256 (((-1163) $) 15)) (-2647 (((-1163) $) 14)) (-3551 (((-1163) $) 13)) (-3513 (($ (-1060) (-755)) 9)) (-2054 (($ (-1060) (-1060) (-755)) 8)) (-1917 (((-1077) $) 51)) (-2108 (((-1077) $) 55)) (-3408 (((-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))) $) 54)) (-2668 (((-1060) $) 52)) (-4005 (((-1163) $) 41)) (-2237 (((-517) $) 49)) (-3339 (((-199) $) 50)) (-1416 (((-1163) $) 40)) (-1562 (((-1163) $) 48)) (-4010 (((-1163) $) 47)) (-2299 (((-1163) $) 45)) (-3474 (((-1163) $) 46)) (-2203 (((-1163) $) 44)) (-2162 (((-1163) $) 43)) (-4037 (((-1163) $) 42)) (-3252 (((-1163) $) 38)) (-2072 (((-1163) $) 39)) (-1934 (((-1163) $) 37)) (-2871 (((-1163) $) 36)) (-1240 (((-1163) $) 35)) (-3230 (((-1163) $) 11)))
+(((-754) (-10 -8 (-15 -2054 ($ (-1060) (-1060) (-755))) (-15 -3513 ($ (-1060) (-755))) (-15 -3230 ((-1163) $)) (-15 -3583 ((-1163) $ (-755))) (-15 -3551 ((-1163) $)) (-15 -2647 ((-1163) $)) (-15 -3256 ((-1163) $)) (-15 -2942 ((-1163) $)) (-15 -3560 ((-1163) $)) (-15 -3411 ((-1163) $)) (-15 -3065 ((-1163) $)) (-15 -2373 ((-1163) $)) (-15 -2695 ((-1163) $)) (-15 -3222 ((-1163) $)) (-15 -2001 ((-1163) $)) (-15 -3894 ((-1163) $)) (-15 -1386 ((-1163) $)) (-15 -1972 ((-1163) $)) (-15 -4080 ((-1163) $ (-517))) (-15 -3290 ((-1163) $ (-199))) (-15 -2265 ((-1163) $ (-1077))) (-15 -3373 ((-1163) $ (-1060))) (-15 -3534 ((-1163) $ (-1060) (-1060))) (-15 -1240 ((-1163) $)) (-15 -2871 ((-1163) $)) (-15 -1934 ((-1163) $)) (-15 -3252 ((-1163) $)) (-15 -2072 ((-1163) $)) (-15 -1416 ((-1163) $)) (-15 -4005 ((-1163) $)) (-15 -4037 ((-1163) $)) (-15 -2162 ((-1163) $)) (-15 -2203 ((-1163) $)) (-15 -2299 ((-1163) $)) (-15 -3474 ((-1163) $)) (-15 -4010 ((-1163) $)) (-15 -1562 ((-1163) $)) (-15 -2237 ((-517) $)) (-15 -3339 ((-199) $)) (-15 -1917 ((-1077) $)) (-15 -2668 ((-1060) $)) (-15 -3408 ((-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))) $)) (-15 -2108 ((-1077) $)))) (T -754))
+((-2108 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1060)) (|:| -2981 (-1060)))) (-5 *1 (-754)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-754)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-2265 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-3290 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3583 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754)))) (-2054 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(-10 -8 (-15 -2054 ($ (-1060) (-1060) (-755))) (-15 -3513 ($ (-1060) (-755))) (-15 -3230 ((-1163) $)) (-15 -3583 ((-1163) $ (-755))) (-15 -3551 ((-1163) $)) (-15 -2647 ((-1163) $)) (-15 -3256 ((-1163) $)) (-15 -2942 ((-1163) $)) (-15 -3560 ((-1163) $)) (-15 -3411 ((-1163) $)) (-15 -3065 ((-1163) $)) (-15 -2373 ((-1163) $)) (-15 -2695 ((-1163) $)) (-15 -3222 ((-1163) $)) (-15 -2001 ((-1163) $)) (-15 -3894 ((-1163) $)) (-15 -1386 ((-1163) $)) (-15 -1972 ((-1163) $)) (-15 -4080 ((-1163) $ (-517))) (-15 -3290 ((-1163) $ (-199))) (-15 -2265 ((-1163) $ (-1077))) (-15 -3373 ((-1163) $ (-1060))) (-15 -3534 ((-1163) $ (-1060) (-1060))) (-15 -1240 ((-1163) $)) (-15 -2871 ((-1163) $)) (-15 -1934 ((-1163) $)) (-15 -3252 ((-1163) $)) (-15 -2072 ((-1163) $)) (-15 -1416 ((-1163) $)) (-15 -4005 ((-1163) $)) (-15 -4037 ((-1163) $)) (-15 -2162 ((-1163) $)) (-15 -2203 ((-1163) $)) (-15 -2299 ((-1163) $)) (-15 -3474 ((-1163) $)) (-15 -4010 ((-1163) $)) (-15 -1562 ((-1163) $)) (-15 -2237 ((-517) $)) (-15 -3339 ((-199) $)) (-15 -1917 ((-1077) $)) (-15 -2668 ((-1060) $)) (-15 -3408 ((-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))) $)) (-15 -2108 ((-1077) $)))
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 12)) (-3885 (($) 15)) (-2543 (($) 13)) (-2955 (($) 16)) (-2378 (($) 14)) (-1572 (((-107) $ $) 8)))
+(((-755) (-13 (-1006) (-10 -8 (-15 -2543 ($)) (-15 -3885 ($)) (-15 -2955 ($)) (-15 -2378 ($))))) (T -755))
+((-2543 (*1 *1) (-5 *1 (-755))) (-3885 (*1 *1) (-5 *1 (-755))) (-2955 (*1 *1) (-5 *1 (-755))) (-2378 (*1 *1) (-5 *1 (-755))))
+(-13 (-1006) (-10 -8 (-15 -2543 ($)) (-15 -3885 ($)) (-15 -2955 ($)) (-15 -2378 ($))))
+((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 21) (($ (-1077)) 17)) (-4031 (((-107) $) 10)) (-3396 (((-107) $) 9)) (-3508 (((-107) $) 11)) (-3981 (((-107) $) 8)) (-1572 (((-107) $ $) 19)))
+(((-756) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3981 ((-107) $)) (-15 -3396 ((-107) $)) (-15 -4031 ((-107) $)) (-15 -3508 ((-107) $))))) (T -756))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-756)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3981 ((-107) $)) (-15 -3396 ((-107) $)) (-15 -4031 ((-107) $)) (-15 -3508 ((-107) $))))
+((-2105 (((-107) $ $) NIL)) (-3751 (($ (-756) (-583 (-1077))) 24)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2121 (((-756) $) 25)) (-3362 (((-583 (-1077)) $) 26)) (-2262 (((-787) $) 23)) (-1572 (((-107) $ $) NIL)))
+(((-757) (-13 (-1006) (-10 -8 (-15 -2121 ((-756) $)) (-15 -3362 ((-583 (-1077)) $)) (-15 -3751 ($ (-756) (-583 (-1077))))))) (T -757))
+((-2121 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-757)))) (-3751 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1077))) (-5 *1 (-757)))))
+(-13 (-1006) (-10 -8 (-15 -2121 ((-756) $)) (-15 -3362 ((-583 (-1077)) $)) (-15 -3751 ($ (-756) (-583 (-1077))))))
+((-2514 (((-1163) (-754) (-286 |#1|) (-107)) 22) (((-1163) (-754) (-286 |#1|)) 76) (((-1060) (-286 |#1|) (-107)) 75) (((-1060) (-286 |#1|)) 74)))
+(((-758 |#1|) (-10 -7 (-15 -2514 ((-1060) (-286 |#1|))) (-15 -2514 ((-1060) (-286 |#1|) (-107))) (-15 -2514 ((-1163) (-754) (-286 |#1|))) (-15 -2514 ((-1163) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-964))) (T -758))
+((-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-964))) (-5 *2 (-1163)) (-5 *1 (-758 *6)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1163)) (-5 *1 (-758 *5)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1060)) (-5 *1 (-758 *5)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-964))) (-5 *2 (-1060)) (-5 *1 (-758 *4)))))
+(-10 -7 (-15 -2514 ((-1060) (-286 |#1|))) (-15 -2514 ((-1060) (-286 |#1|) (-107))) (-15 -2514 ((-1163) (-754) (-286 |#1|))) (-15 -2514 ((-1163) (-754) (-286 |#1|) (-107))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-1512 ((|#1| $) 10)) (-1395 (($ |#1|) 9)) (-1690 (((-107) $) NIL)) (-2059 (($ |#2| (-703)) NIL)) (-3942 (((-703) $) NIL)) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2042 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1191 (((-703) $) NIL)) (-2262 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-1939 ((|#2| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1395 ($ |#1|)) (-15 -1512 (|#1| $)))) (-642 |#2|) (-964)) (T -759))
+((-1395 (*1 *1 *2) (-12 (-4 *3 (-964)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-1512 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-964)))))
+(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1395 ($ |#1|)) (-15 -1512 (|#1| $))))
+((-2514 (((-1163) (-754) $ (-107)) 9) (((-1163) (-754) $) 8) (((-1060) $ (-107)) 7) (((-1060) $) 6)))
+(((-760) (-1189)) (T -760))
+((-2514 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1163)))) (-2514 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1163)))) (-2514 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1060)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1060)))))
+(-13 (-10 -8 (-15 -2514 ((-1060) $)) (-15 -2514 ((-1060) $ (-107))) (-15 -2514 ((-1163) (-754) $)) (-15 -2514 ((-1163) (-754) $ (-107)))))
+((-3435 (((-282) (-1060) (-1060)) 12)) (-4087 (((-107) (-1060) (-1060)) 34)) (-3717 (((-107) (-1060)) 33)) (-3336 (((-51) (-1060)) 25)) (-1211 (((-51) (-1060)) 23)) (-2894 (((-51) (-754)) 17)) (-3146 (((-583 (-1060)) (-1060)) 28)) (-2723 (((-583 (-1060))) 27)))
+(((-761) (-10 -7 (-15 -2894 ((-51) (-754))) (-15 -1211 ((-51) (-1060))) (-15 -3336 ((-51) (-1060))) (-15 -2723 ((-583 (-1060)))) (-15 -3146 ((-583 (-1060)) (-1060))) (-15 -3717 ((-107) (-1060))) (-15 -4087 ((-107) (-1060) (-1060))) (-15 -3435 ((-282) (-1060) (-1060))))) (T -761))
+((-3435 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-761)))) (-4087 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761)))) (-3146 (*1 *2 *3) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)) (-5 *3 (-1060)))) (-2723 (*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761)))) (-1211 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(-10 -7 (-15 -2894 ((-51) (-754))) (-15 -1211 ((-51) (-1060))) (-15 -3336 ((-51) (-1060))) (-15 -2723 ((-583 (-1060)))) (-15 -3146 ((-583 (-1060)) (-1060))) (-15 -3717 ((-107) (-1060))) (-15 -4087 ((-107) (-1060) (-1060))) (-15 -3435 ((-282) (-1060) (-1060))))
+((-2105 (((-107) $ $) 19)) (-2374 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4020 (($ $ $) 72)) (-3873 (((-107) $ $) 73)) (-3443 (((-107) $ (-703)) 8)) (-1871 (($ (-583 |#1|)) 68) (($) 67)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 62)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3480 ((|#1| $) 78)) (-2785 (($ $ $) 81)) (-3824 (($ $ $) 80)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-4095 ((|#1| $) 79)) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22)) (-2187 (($ $ $) 69)) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4130 (((-1024) $) 21)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 61)) (-1201 (($ $ |#1|) 71) (($ $ $) 70)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18)) (-3066 (($ (-583 |#1|)) 66) (($) 65)) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 64)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-762 |#1|) (-1189) (-779)) (T -762))
+((-3480 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
+(-13 (-669 |t#1|) (-889 |t#1|) (-10 -8 (-15 -3480 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-889 |#1|) . T) ((-1004 |#1|) . T) ((-1006) . T) ((-1112) . T))
+((-3076 (((-1163) (-1024) (-1024)) 47)) (-1563 (((-1163) (-753) (-51)) 44)) (-3320 (((-51) (-753)) 16)))
+(((-763) (-10 -7 (-15 -3320 ((-51) (-753))) (-15 -1563 ((-1163) (-753) (-51))) (-15 -3076 ((-1163) (-1024) (-1024))))) (T -763))
+((-3076 (*1 *2 *3 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-1163)) (-5 *1 (-763)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1163)) (-5 *1 (-763)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(-10 -7 (-15 -3320 ((-51) (-753))) (-15 -1563 ((-1163) (-753) (-51))) (-15 -3076 ((-1163) (-1024) (-1024))))
+((-3312 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1006) (-1006)) (T -764))
+((-3312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-764 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
+(-10 -7 (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL (|has| |#1| (-21)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3502 (((-517) $) NIL (|has| |#1| (-777)))) (-3038 (($) NIL (|has| |#1| (-21)) CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 9)) (-3550 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-3389 (((-3 (-377 (-517)) "failed") $) 48 (|has| |#1| (-502)))) (-3748 (((-107) $) 43 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 45 (|has| |#1| (-502)))) (-2671 (((-107) $) NIL (|has| |#1| (-777)))) (-1690 (((-107) $) NIL (|has| |#1| (-777)))) (-2321 (((-107) $) NIL (|has| |#1| (-777)))) (-3480 (($ $ $) NIL (|has| |#1| (-777)))) (-4095 (($ $ $) NIL (|has| |#1| (-777)))) (-3232 (((-1060) $) NIL)) (-2111 (($) 13)) (-1729 (((-107) $) 12)) (-4130 (((-1024) $) NIL)) (-2005 (((-107) $) 11)) (-2262 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3786 (|has| |#1| (-777)) (|has| |#1| (-955 (-517)))))) (-1818 (((-703)) 34 (|has| |#1| (-777)))) (-2829 (($ $) NIL (|has| |#1| (-777)))) (-2806 (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3663 (($) 22 (|has| |#1| (-21)) CONST)) (-3675 (($) 31 (|has| |#1| (-777)) CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1596 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1680 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1666 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-845) $) NIL (|has| |#1| (-21)))))
+(((-765 |#1|) (-13 (-1006) (-381 |#1|) (-10 -8 (-15 -2111 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1006)) (T -765))
+((-2111 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1006)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3389 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))))
+(-13 (-1006) (-381 |#1|) (-10 -8 (-15 -2111 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-109) $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2618 ((|#1| (-109) |#1|) NIL)) (-1690 (((-107) $) NIL)) (-1902 (($ |#1| (-331 (-109))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3364 (($ $ (-1 |#1| |#1|)) NIL)) (-3490 (($ $ (-1 |#1| |#1|)) NIL)) (-2612 ((|#1| $ |#1|) NIL)) (-3736 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-1368 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-766 |#1|) (-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#1| |#1|))) (-15 -3364 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#1| (-109) |#1|)) (-15 -1902 ($ |#1| (-331 (-109)))))) (-964)) (T -766))
+((-1368 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) (-1368 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) (-3736 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-964)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-964)))) (-2618 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-964)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-964)))))
+(-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#1| |#1|))) (-15 -3364 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#1| (-109) |#1|)) (-15 -1902 ($ |#1| (-331 (-109))))))
+((-3096 (((-189 (-467)) (-1060)) 8)))
+(((-767) (-10 -7 (-15 -3096 ((-189 (-467)) (-1060))))) (T -767))
+((-3096 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(-10 -7 (-15 -3096 ((-189 (-467)) (-1060))))
+((-2105 (((-107) $ $) 7)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 14) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 15)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-768) (-1189)) (T -768))
+((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-3857 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-953)))) (-3857 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-953)))))
+(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3857 ((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3857 ((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2782 (((-953) (-583 (-286 (-349))) (-583 (-349))) 143) (((-953) (-286 (-349)) (-583 (-349))) 141) (((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-953) (-770)) 112) (((-953) (-770) (-976)) 111)) (-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770) (-976)) 76) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770)) 78)) (-2527 (((-953) (-583 (-286 (-349))) (-583 (-349))) 144) (((-953) (-770)) 128)))
+(((-769) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770) (-976))) (-15 -2782 ((-953) (-770) (-976))) (-15 -2782 ((-953) (-770))) (-15 -2527 ((-953) (-770))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)))) (-15 -2782 ((-953) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2527 ((-953) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
+((-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-769)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-769)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-769)))))
+(-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770) (-976))) (-15 -2782 ((-953) (-770) (-976))) (-15 -2782 ((-953) (-770))) (-15 -2527 ((-953) (-770))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)))) (-15 -2782 ((-953) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2527 ((-953) (-583 (-286 (-349))) (-583 (-349)))))
+((-2105 (((-107) $ $) NIL)) (-3402 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) $) 15)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) 12)) (-1572 (((-107) $ $) NIL)))
+(((-770) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2262 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2262 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) $))))) (T -770))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *1 (-770)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) (-5 *1 (-770)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) (-5 *1 (-770)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2262 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2262 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) $))))
+((-3312 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
+(((-771 |#1| |#2|) (-10 -7 (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1006) (-1006)) (T -771))
+((-3312 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-771 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
+(-10 -7 (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL (|has| |#1| (-21)))) (-3733 (((-1024) $) 24)) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3502 (((-517) $) NIL (|has| |#1| (-777)))) (-3038 (($) NIL (|has| |#1| (-21)) CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 9)) (-3550 (((-3 $ "failed") $) 47 (|has| |#1| (-777)))) (-3389 (((-3 (-377 (-517)) "failed") $) 54 (|has| |#1| (-502)))) (-3748 (((-107) $) 49 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 52 (|has| |#1| (-502)))) (-2671 (((-107) $) NIL (|has| |#1| (-777)))) (-3135 (($) 13)) (-1690 (((-107) $) NIL (|has| |#1| (-777)))) (-2321 (((-107) $) NIL (|has| |#1| (-777)))) (-3147 (($) 14)) (-3480 (($ $ $) NIL (|has| |#1| (-777)))) (-4095 (($ $ $) NIL (|has| |#1| (-777)))) (-3232 (((-1060) $) NIL)) (-1729 (((-107) $) 12)) (-4130 (((-1024) $) NIL)) (-2005 (((-107) $) 11)) (-2262 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3786 (|has| |#1| (-777)) (|has| |#1| (-955 (-517)))))) (-1818 (((-703)) 41 (|has| |#1| (-777)))) (-2829 (($ $) NIL (|has| |#1| (-777)))) (-2806 (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3663 (($) 29 (|has| |#1| (-21)) CONST)) (-3675 (($) 38 (|has| |#1| (-777)) CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 27)) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1596 (((-107) $ $) 48 (|has| |#1| (-777)))) (-1680 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1666 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 44 (|has| |#1| (-777))) (($ (-517) $) 32 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-845) $) NIL (|has| |#1| (-21)))))
+(((-772 |#1|) (-13 (-1006) (-381 |#1|) (-10 -8 (-15 -3135 ($)) (-15 -3147 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (-15 -3733 ((-1024) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1006)) (T -772))
+((-3135 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006)))) (-3147 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3389 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))))
+(-13 (-1006) (-381 |#1|) (-10 -8 (-15 -3135 ($)) (-15 -3147 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (-15 -3733 ((-1024) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
+((-2105 (((-107) $ $) 7)) (-2390 (((-703)) 20)) (-2192 (($) 23)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-4161 (((-845) $) 22)) (-3232 (((-1060) $) 9)) (-2803 (($ (-845)) 21)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)))
+(((-773) (-1189)) (T -773))
NIL
(-13 (-779) (-338))
-(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1005) . T))
-((-2481 (((-107) (-1157 |#2|) (-1157 |#2|)) 17)) (-1829 (((-107) (-1157 |#2|) (-1157 |#2|)) 18)) (-3954 (((-107) (-1157 |#2|) (-1157 |#2|)) 14)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -3954 ((-107) (-1157 |#2|) (-1157 |#2|))) (-15 -2481 ((-107) (-1157 |#2|) (-1157 |#2|))) (-15 -1829 ((-107) (-1157 |#2|) (-1157 |#2|)))) (-703) (-724)) (T -774))
-((-1829 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-2481 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-3954 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(-10 -7 (-15 -3954 ((-107) (-1157 |#2|) (-1157 |#2|))) (-15 -2481 ((-107) (-1157 |#2|) (-1157 |#2|))) (-15 -1829 ((-107) (-1157 |#2|) (-1157 |#2|))))
-((-2119 (((-107) $ $) 7)) (-1393 (($) 24 T CONST)) (-2560 (((-3 $ "failed") $) 28)) (-1376 (((-107) $) 25)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-2815 (($ $ (-703)) 27) (($ $ (-844)) 22)) (-3619 (($) 23 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-844)) 21)) (* (($ $ $) 20)))
-(((-775) (-1188)) (T -775))
+(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1006) . T))
+((-3259 (((-107) (-1158 |#2|) (-1158 |#2|)) 17)) (-1615 (((-107) (-1158 |#2|) (-1158 |#2|)) 18)) (-1730 (((-107) (-1158 |#2|) (-1158 |#2|)) 14)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -1730 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -3259 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -1615 ((-107) (-1158 |#2|) (-1158 |#2|)))) (-703) (-724)) (T -774))
+((-1615 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-1730 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(-10 -7 (-15 -1730 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -3259 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -1615 ((-107) (-1158 |#2|) (-1158 |#2|))))
+((-2105 (((-107) $ $) 7)) (-3038 (($) 24 T CONST)) (-3550 (((-3 $ "failed") $) 28)) (-1690 (((-107) $) 25)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-703)) 27) (($ $ (-845)) 22)) (-3675 (($) 23 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-845)) 21)) (* (($ $ $) 20)))
+(((-775) (-1189)) (T -775))
NIL
(-13 (-779) (-659))
-(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1017) . T) ((-1005) . T))
-((-2360 (((-517) $) 17)) (-2988 (((-107) $) 10)) (-1952 (((-107) $) 11)) (-2376 (($ $) 19)))
-(((-776 |#1|) (-10 -8 (-15 -2376 (|#1| |#1|)) (-15 -2360 ((-517) |#1|)) (-15 -1952 ((-107) |#1|)) (-15 -2988 ((-107) |#1|))) (-777)) (T -776))
-NIL
-(-10 -8 (-15 -2376 (|#1| |#1|)) (-15 -2360 ((-517) |#1|)) (-15 -1952 ((-107) |#1|)) (-15 -2988 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 24)) (-2798 (((-3 $ "failed") $ $) 26)) (-2360 (((-517) $) 33)) (-1393 (($) 23 T CONST)) (-2560 (((-3 $ "failed") $) 39)) (-2988 (((-107) $) 35)) (-1376 (((-107) $) 42)) (-1952 (((-107) $) 34)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 45)) (-4099 (((-703)) 44)) (-2376 (($ $) 32)) (-2815 (($ $ (-703)) 40) (($ $ (-844)) 36)) (-3610 (($) 22 T CONST)) (-3619 (($) 43 T CONST)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)) (-1692 (($ $ $) 28) (($ $) 27)) (-1678 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-844)) 37)) (* (($ (-703) $) 25) (($ (-844) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
-(((-777) (-1188)) (T -777))
-((-2988 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-2360 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-2376 (*1 *1 *1) (-4 *1 (-777))))
-(-13 (-723) (-963) (-659) (-10 -8 (-15 -2988 ((-107) $)) (-15 -1952 ((-107) $)) (-15 -2360 ((-517) $)) (-15 -2376 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3458 (($ $ $) 10)) (-4084 (($ $ $) 9)) (-1642 (((-107) $ $) 13)) (-1618 (((-107) $ $) 11)) (-1630 (((-107) $ $) 14)))
-(((-778 |#1|) (-10 -8 (-15 -3458 (|#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| |#1|)) (-15 -1630 ((-107) |#1| |#1|)) (-15 -1642 ((-107) |#1| |#1|)) (-15 -1618 ((-107) |#1| |#1|))) (-779)) (T -778))
-NIL
-(-10 -8 (-15 -3458 (|#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| |#1|)) (-15 -1630 ((-107) |#1| |#1|)) (-15 -1642 ((-107) |#1| |#1|)) (-15 -1618 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3458 (($ $ $) 13)) (-4084 (($ $ $) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1642 (((-107) $ $) 16)) (-1618 (((-107) $ $) 17)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 15)) (-1608 (((-107) $ $) 18)))
-(((-779) (-1188)) (T -779))
-((-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1618 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1642 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1630 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-4084 (*1 *1 *1 *1) (-4 *1 (-779))) (-3458 (*1 *1 *1 *1) (-4 *1 (-779))))
-(-13 (-1005) (-10 -8 (-15 -1608 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -1642 ((-107) $ $)) (-15 -1630 ((-107) $ $)) (-15 -4084 ($ $ $)) (-15 -3458 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-1872 (($ $ $) 46)) (-3563 (($ $ $) 45)) (-2617 (($ $ $) 43)) (-2096 (($ $ $) 52)) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 47)) (-1763 (((-3 $ "failed") $ $) 50)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2683 (($ $) 36)) (-1479 (($ $ $) 40)) (-2393 (($ $ $) 39)) (-3931 (($ $ $) 48)) (-2395 (($ $ $) 54)) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 42)) (-1256 (((-3 $ "failed") $ $) 49)) (-2329 (((-3 $ "failed") $ |#2|) 29)) (-3119 ((|#2| $) 33)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-1998 (((-583 |#2|) $) 19)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
-(((-780 |#1| |#2|) (-10 -8 (-15 -3931 (|#1| |#1| |#1|)) (-15 -3421 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1318 |#1|)) |#1| |#1|)) (-15 -2096 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -2617 (|#1| |#1| |#1|)) (-15 -3615 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1318 |#1|)) |#1| |#1|)) (-15 -2395 (|#1| |#1| |#1|)) (-15 -1256 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1998 ((-583 |#2|) |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -2271 ((-787) |#1|))) (-781 |#2|) (-963)) (T -780))
-NIL
-(-10 -8 (-15 -3931 (|#1| |#1| |#1|)) (-15 -3421 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1318 |#1|)) |#1| |#1|)) (-15 -2096 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -2617 (|#1| |#1| |#1|)) (-15 -3615 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1318 |#1|)) |#1| |#1|)) (-15 -2395 (|#1| |#1| |#1|)) (-15 -1256 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1998 ((-583 |#2|) |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1872 (($ $ $) 45 (|has| |#1| (-333)))) (-3563 (($ $ $) 46 (|has| |#1| (-333)))) (-2617 (($ $ $) 48 (|has| |#1| (-333)))) (-2096 (($ $ $) 43 (|has| |#1| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 42 (|has| |#1| (-333)))) (-1763 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 47 (|has| |#1| (-333)))) (-3228 (((-3 (-517) "failed") $) 74 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3390 (((-517) $) 75 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 68)) (-2373 (($ $) 64)) (-2560 (((-3 $ "failed") $) 34)) (-2683 (($ $) 55 (|has| |#1| (-421)))) (-1376 (((-107) $) 31)) (-2078 (($ |#1| (-703)) 62)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57 (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 58 (|has| |#1| (-509)))) (-3492 (((-703) $) 66)) (-1479 (($ $ $) 52 (|has| |#1| (-333)))) (-2393 (($ $ $) 53 (|has| |#1| (-333)))) (-3931 (($ $ $) 41 (|has| |#1| (-333)))) (-2395 (($ $ $) 50 (|has| |#1| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 49 (|has| |#1| (-333)))) (-1256 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 54 (|has| |#1| (-333)))) (-2347 ((|#1| $) 65)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-3647 (((-703) $) 67)) (-3119 ((|#1| $) 56 (|has| |#1| (-421)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) 70)) (-1998 (((-583 |#1|) $) 61)) (-1689 ((|#1| $ (-703)) 63)) (-4099 (((-703)) 29)) (-2375 ((|#1| $ |#1| |#1|) 60)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-781 |#1|) (-1188) (-963)) (T -781))
-((-3647 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-963)) (-5 *2 (-703)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-963)) (-5 *2 (-703)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-963)))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-963)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-963)) (-5 *2 (-583 *3)))) (-2375 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)))) (-2329 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-509)))) (-3001 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3)))) (-1936 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-421)))) (-2683 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-421)))) (-1517 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-1479 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-1256 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2395 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-3615 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1318 *1))) (-4 *1 (-781 *3)))) (-2617 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3)))) (-3563 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-1872 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-1763 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2096 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-3421 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1318 *1))) (-4 *1 (-781 *3)))) (-3931 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(-13 (-963) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -3647 ((-703) $)) (-15 -3492 ((-703) $)) (-15 -2347 (|t#1| $)) (-15 -2373 ($ $)) (-15 -1689 (|t#1| $ (-703))) (-15 -2078 ($ |t#1| (-703))) (-15 -1998 ((-583 |t#1|) $)) (-15 -2375 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2329 ((-3 $ "failed") $ |t#1|)) (-15 -3001 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -1936 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3119 (|t#1| $)) (-15 -2683 ($ $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -1517 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2393 ($ $ $)) (-15 -1479 ($ $ $)) (-15 -1256 ((-3 $ "failed") $ $)) (-15 -2395 ($ $ $)) (-15 -3615 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $)) (-15 -2617 ($ $ $)) (-15 -2562 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -3563 ($ $ $)) (-15 -1872 ($ $ $)) (-15 -1763 ((-3 $ "failed") $ $)) (-15 -2096 ($ $ $)) (-15 -3421 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $)) (-15 -3931 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2386 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-2562 (((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-333)))) (-1936 (((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-1517 (((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2375 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
-(((-782 |#1| |#2|) (-10 -7 (-15 -2386 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2375 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3001 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1936 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1517 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2562 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-963) (-781 |#1|)) (T -782))
-((-2562 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1517 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1936 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3001 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2375 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2386 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
-(-10 -7 (-15 -2386 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2375 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3001 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1936 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1517 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2562 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1872 (($ $ $) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-333)))) (-2617 (($ $ $) NIL (|has| |#1| (-333)))) (-2096 (($ $ $) NIL (|has| |#1| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 25 (|has| |#1| (-333)))) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421)))) (-1988 (((-787) $ (-787)) NIL)) (-1376 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) NIL)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 21 (|has| |#1| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 19 (|has| |#1| (-509)))) (-3492 (((-703) $) NIL)) (-1479 (($ $ $) NIL (|has| |#1| (-333)))) (-2393 (($ $ $) NIL (|has| |#1| (-333)))) (-3931 (($ $ $) NIL (|has| |#1| (-333)))) (-2395 (($ $ $) NIL (|has| |#1| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-1256 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 23 (|has| |#1| (-333)))) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3647 (((-703) $) NIL)) (-3119 ((|#1| $) NIL (|has| |#1| (-421)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-954 (-377 (-517))))) (($ |#1|) NIL)) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) NIL)) (-4099 (((-703)) NIL)) (-2375 ((|#1| $ |#1| |#1|) 15)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -1988 ((-787) $ (-787))))) (-963) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
-((-1988 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-781 |#1|) (-10 -8 (-15 -1988 ((-787) $ (-787)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1872 (($ $ $) NIL (|has| |#2| (-333)))) (-3563 (($ $ $) NIL (|has| |#2| (-333)))) (-2617 (($ $ $) NIL (|has| |#2| (-333)))) (-2096 (($ $ $) NIL (|has| |#2| (-333)))) (-3421 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#2| (-333)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2562 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-333)))) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) ((|#2| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#2| (-421)))) (-1376 (((-107) $) NIL)) (-2078 (($ |#2| (-703)) 16)) (-1936 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-509)))) (-3001 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-509)))) (-3492 (((-703) $) NIL)) (-1479 (($ $ $) NIL (|has| |#2| (-333)))) (-2393 (($ $ $) NIL (|has| |#2| (-333)))) (-3931 (($ $ $) NIL (|has| |#2| (-333)))) (-2395 (($ $ $) NIL (|has| |#2| (-333)))) (-3615 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#2| (-333)))) (-1256 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1517 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-333)))) (-2347 ((|#2| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3647 (((-703) $) NIL)) (-3119 ((|#2| $) NIL (|has| |#2| (-421)))) (-2271 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-954 (-377 (-517))))) (($ |#2|) NIL) (($ (-1153 |#1|)) 18)) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-703)) NIL)) (-4099 (((-703)) NIL)) (-2375 ((|#2| $ |#2| |#2|) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) 13 T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2271 ($ (-1153 |#1|))))) (-1076) (-963) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-14 *3 (-1076)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-781 |#2|) (-10 -8 (-15 -2271 ($ (-1153 |#1|)))))
-((-2223 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-3253 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-1190 ((|#1| (-703) |#1|) 31)) (-2052 ((|#1| (-703) |#1|) 29)) (-3770 ((|#1| (-703) |#1|) 28)))
-(((-785 |#1|) (-10 -7 (-15 -3770 (|#1| (-703) |#1|)) (-15 -2052 (|#1| (-703) |#1|)) (-15 -1190 (|#1| (-703) |#1|)) (-15 -3253 (|#1| (-703) |#1|)) (-15 -3253 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2223 (|#1| (-703) |#1|)) |%noBranch|)) (-156)) (T -785))
-((-2223 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3253 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3253 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1190 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2052 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -3770 (|#1| (-703) |#1|)) (-15 -2052 (|#1| (-703) |#1|)) (-15 -1190 (|#1| (-703) |#1|)) (-15 -3253 (|#1| (-703) |#1|)) (-15 -3253 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2223 (|#1| (-703) |#1|)) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-3121 (((-517) $) 12)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 18) (($ (-517)) 11)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 8)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 9)))
-(((-786) (-13 (-779) (-10 -8 (-15 -2271 ($ (-517))) (-15 -3121 ((-517) $))))) (T -786))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
-(-13 (-779) (-10 -8 (-15 -2271 ($ (-517))) (-15 -3121 ((-517) $))))
-((-2119 (((-107) $ $) NIL)) (-2334 (($ $ $) 115)) (-3419 (((-517) $) 30) (((-517)) 35)) (-1539 (($ (-517)) 44)) (-2765 (($ $ $) 45) (($ (-583 $)) 76)) (-3299 (($ $ (-583 $)) 74)) (-1461 (((-517) $) 33)) (-3646 (($ $ $) 63)) (-3454 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2544 (((-517) $) 32)) (-2735 (($ $ $) 62)) (-1515 (($ $) 105)) (-3782 (($ $ $) 119)) (-4003 (($ (-583 $)) 52)) (-3693 (($ $ (-583 $)) 69)) (-4116 (($ (-517) (-517)) 46)) (-1392 (($ $) 116) (($ $ $) 117)) (-3300 (($ $ (-517)) 40) (($ $) 43)) (-2379 (($ $ $) 89)) (-4015 (($ $ $) 122)) (-2837 (($ $) 106)) (-2354 (($ $ $) 90)) (-3765 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3406 (((-1162) $) 8)) (-2357 (($ $) 109) (($ $ (-703)) 112)) (-1708 (($ $ $) 65)) (-1324 (($ $ $) 64)) (-4026 (($ $ (-583 $)) 100)) (-2901 (($ $ $) 104)) (-3048 (($ (-583 $)) 50)) (-3659 (($ $) 60) (($ (-583 $)) 61)) (-2109 (($ $ $) 113)) (-3401 (($ $) 107)) (-4067 (($ $ $) 118)) (-1988 (($ (-517)) 20) (($ (-1076)) 22) (($ (-1059)) 29) (($ (-199)) 24)) (-3980 (($ $ $) 93)) (-2479 (($ $) 94)) (-2129 (((-1162) (-1059)) 14)) (-2943 (($ (-1059)) 13)) (-2371 (($ (-583 (-583 $))) 48)) (-3288 (($ $ (-517)) 39) (($ $) 42)) (-1662 (((-1059) $) NIL)) (-3021 (($ $ $) 121)) (-2658 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2628 (((-107) $) 98)) (-3144 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-1827 (($ (-517)) 36)) (-1809 (((-517) $) 31) (((-517)) 34)) (-3903 (($ $ $) 37) (($ (-583 $)) 75)) (-4125 (((-1023) $) NIL)) (-2329 (($ $ $) 91)) (-2452 (($) 12)) (-2609 (($ $ (-583 $)) 99)) (-3746 (($ $) 108) (($ $ (-703)) 111)) (-2341 (($ $ $) 88)) (-2060 (($ $ (-703)) 127)) (-2632 (($ (-583 $)) 51)) (-2271 (((-787) $) 18)) (-3569 (($ $ (-517)) 38) (($ $) 41)) (-3824 (($ $) 58) (($ (-583 $)) 59)) (-3075 (($ $) 56) (($ (-583 $)) 57)) (-3440 (($ $) 114)) (-2794 (($ (-583 $)) 55)) (-1917 (($ $ $) 97)) (-2249 (($ $ $) 120)) (-3993 (($ $ $) 92)) (-2482 (($ $ $) 77)) (-1606 (($ $ $) 95) (($ $) 96)) (-1642 (($ $ $) 81)) (-1618 (($ $ $) 79)) (-1584 (((-107) $ $) 15) (($ $ $) 16)) (-1630 (($ $ $) 80)) (-1608 (($ $ $) 78)) (-1704 (($ $ $) 86)) (-1692 (($ $ $) 83) (($ $) 84)) (-1678 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-787) (-13 (-1005) (-10 -8 (-15 -3406 ((-1162) $)) (-15 -2943 ($ (-1059))) (-15 -2129 ((-1162) (-1059))) (-15 -1988 ($ (-517))) (-15 -1988 ($ (-1076))) (-15 -1988 ($ (-1059))) (-15 -1988 ($ (-199))) (-15 -2452 ($)) (-15 -3419 ((-517) $)) (-15 -1809 ((-517) $)) (-15 -3419 ((-517))) (-15 -1809 ((-517))) (-15 -2544 ((-517) $)) (-15 -1461 ((-517) $)) (-15 -1827 ($ (-517))) (-15 -1539 ($ (-517))) (-15 -4116 ($ (-517) (-517))) (-15 -3288 ($ $ (-517))) (-15 -3300 ($ $ (-517))) (-15 -3569 ($ $ (-517))) (-15 -3288 ($ $)) (-15 -3300 ($ $)) (-15 -3569 ($ $)) (-15 -3903 ($ $ $)) (-15 -2765 ($ $ $)) (-15 -3903 ($ (-583 $))) (-15 -2765 ($ (-583 $))) (-15 -4026 ($ $ (-583 $))) (-15 -3144 ($ $ (-583 $))) (-15 -3144 ($ $ $ $)) (-15 -2901 ($ $ $)) (-15 -2628 ((-107) $)) (-15 -2609 ($ $ (-583 $))) (-15 -1515 ($ $)) (-15 -3021 ($ $ $)) (-15 -3440 ($ $)) (-15 -2371 ($ (-583 (-583 $)))) (-15 -2334 ($ $ $)) (-15 -1392 ($ $)) (-15 -1392 ($ $ $)) (-15 -4067 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -2249 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -2060 ($ $ (-703))) (-15 -1917 ($ $ $)) (-15 -2735 ($ $ $)) (-15 -3646 ($ $ $)) (-15 -1324 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -3693 ($ $ (-583 $))) (-15 -3299 ($ $ (-583 $))) (-15 -2837 ($ $)) (-15 -3746 ($ $)) (-15 -3746 ($ $ (-703))) (-15 -2357 ($ $)) (-15 -2357 ($ $ (-703))) (-15 -3401 ($ $)) (-15 -2109 ($ $ $)) (-15 -3454 ($ $)) (-15 -3454 ($ $ $)) (-15 -3454 ($ $ $ $)) (-15 -3765 ($ $)) (-15 -3765 ($ $ $)) (-15 -3765 ($ $ $ $)) (-15 -2658 ($ $)) (-15 -2658 ($ $ $)) (-15 -2658 ($ $ $ $)) (-15 -3075 ($ $)) (-15 -3075 ($ (-583 $))) (-15 -3824 ($ $)) (-15 -3824 ($ (-583 $))) (-15 -3659 ($ $)) (-15 -3659 ($ (-583 $))) (-15 -3048 ($ (-583 $))) (-15 -2632 ($ (-583 $))) (-15 -4003 ($ (-583 $))) (-15 -2794 ($ (-583 $))) (-15 -1584 ($ $ $)) (-15 -2482 ($ $ $)) (-15 -1608 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1630 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1678 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1692 ($ $)) (-15 * ($ $ $)) (-15 -1704 ($ $ $)) (-15 ** ($ $ $)) (-15 -2341 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -2479 ($ $)) (-15 -1606 ($ $ $)) (-15 -1606 ($ $))))) (T -787))
-((-3406 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-787)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-787)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-787)))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-787)))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-787)))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-2452 (*1 *1) (-5 *1 (-787))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3419 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1809 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-4116 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3288 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3300 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3288 (*1 *1 *1) (-5 *1 (-787))) (-3300 (*1 *1 *1) (-5 *1 (-787))) (-3569 (*1 *1 *1) (-5 *1 (-787))) (-3903 (*1 *1 *1 *1) (-5 *1 (-787))) (-2765 (*1 *1 *1 *1) (-5 *1 (-787))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2765 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3144 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2901 (*1 *1 *1 *1) (-5 *1 (-787))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1515 (*1 *1 *1) (-5 *1 (-787))) (-3021 (*1 *1 *1 *1) (-5 *1 (-787))) (-3440 (*1 *1 *1) (-5 *1 (-787))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-2334 (*1 *1 *1 *1) (-5 *1 (-787))) (-1392 (*1 *1 *1) (-5 *1 (-787))) (-1392 (*1 *1 *1 *1) (-5 *1 (-787))) (-4067 (*1 *1 *1 *1) (-5 *1 (-787))) (-3782 (*1 *1 *1 *1) (-5 *1 (-787))) (-2249 (*1 *1 *1 *1) (-5 *1 (-787))) (-4015 (*1 *1 *1 *1) (-5 *1 (-787))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1917 (*1 *1 *1 *1) (-5 *1 (-787))) (-2735 (*1 *1 *1 *1) (-5 *1 (-787))) (-3646 (*1 *1 *1 *1) (-5 *1 (-787))) (-1324 (*1 *1 *1 *1) (-5 *1 (-787))) (-1708 (*1 *1 *1 *1) (-5 *1 (-787))) (-3693 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3299 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2837 (*1 *1 *1) (-5 *1 (-787))) (-3746 (*1 *1 *1) (-5 *1 (-787))) (-3746 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2357 (*1 *1 *1) (-5 *1 (-787))) (-2357 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3401 (*1 *1 *1) (-5 *1 (-787))) (-2109 (*1 *1 *1 *1) (-5 *1 (-787))) (-3454 (*1 *1 *1) (-5 *1 (-787))) (-3454 (*1 *1 *1 *1) (-5 *1 (-787))) (-3454 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3765 (*1 *1 *1) (-5 *1 (-787))) (-3765 (*1 *1 *1 *1) (-5 *1 (-787))) (-3765 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2658 (*1 *1 *1) (-5 *1 (-787))) (-2658 (*1 *1 *1 *1) (-5 *1 (-787))) (-2658 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3075 (*1 *1 *1) (-5 *1 (-787))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3824 (*1 *1 *1) (-5 *1 (-787))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3659 (*1 *1 *1) (-5 *1 (-787))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3048 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2632 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4003 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2794 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1584 (*1 *1 *1 *1) (-5 *1 (-787))) (-2482 (*1 *1 *1 *1) (-5 *1 (-787))) (-1608 (*1 *1 *1 *1) (-5 *1 (-787))) (-1618 (*1 *1 *1 *1) (-5 *1 (-787))) (-1630 (*1 *1 *1 *1) (-5 *1 (-787))) (-1642 (*1 *1 *1 *1) (-5 *1 (-787))) (-1678 (*1 *1 *1 *1) (-5 *1 (-787))) (-1692 (*1 *1 *1 *1) (-5 *1 (-787))) (-1692 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1704 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2341 (*1 *1 *1 *1) (-5 *1 (-787))) (-2379 (*1 *1 *1 *1) (-5 *1 (-787))) (-2354 (*1 *1 *1 *1) (-5 *1 (-787))) (-2329 (*1 *1 *1 *1) (-5 *1 (-787))) (-3993 (*1 *1 *1 *1) (-5 *1 (-787))) (-3980 (*1 *1 *1 *1) (-5 *1 (-787))) (-2479 (*1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1) (-5 *1 (-787))))
-(-13 (-1005) (-10 -8 (-15 -3406 ((-1162) $)) (-15 -2943 ($ (-1059))) (-15 -2129 ((-1162) (-1059))) (-15 -1988 ($ (-517))) (-15 -1988 ($ (-1076))) (-15 -1988 ($ (-1059))) (-15 -1988 ($ (-199))) (-15 -2452 ($)) (-15 -3419 ((-517) $)) (-15 -1809 ((-517) $)) (-15 -3419 ((-517))) (-15 -1809 ((-517))) (-15 -2544 ((-517) $)) (-15 -1461 ((-517) $)) (-15 -1827 ($ (-517))) (-15 -1539 ($ (-517))) (-15 -4116 ($ (-517) (-517))) (-15 -3288 ($ $ (-517))) (-15 -3300 ($ $ (-517))) (-15 -3569 ($ $ (-517))) (-15 -3288 ($ $)) (-15 -3300 ($ $)) (-15 -3569 ($ $)) (-15 -3903 ($ $ $)) (-15 -2765 ($ $ $)) (-15 -3903 ($ (-583 $))) (-15 -2765 ($ (-583 $))) (-15 -4026 ($ $ (-583 $))) (-15 -3144 ($ $ (-583 $))) (-15 -3144 ($ $ $ $)) (-15 -2901 ($ $ $)) (-15 -2628 ((-107) $)) (-15 -2609 ($ $ (-583 $))) (-15 -1515 ($ $)) (-15 -3021 ($ $ $)) (-15 -3440 ($ $)) (-15 -2371 ($ (-583 (-583 $)))) (-15 -2334 ($ $ $)) (-15 -1392 ($ $)) (-15 -1392 ($ $ $)) (-15 -4067 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -2249 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -2060 ($ $ (-703))) (-15 -1917 ($ $ $)) (-15 -2735 ($ $ $)) (-15 -3646 ($ $ $)) (-15 -1324 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -3693 ($ $ (-583 $))) (-15 -3299 ($ $ (-583 $))) (-15 -2837 ($ $)) (-15 -3746 ($ $)) (-15 -3746 ($ $ (-703))) (-15 -2357 ($ $)) (-15 -2357 ($ $ (-703))) (-15 -3401 ($ $)) (-15 -2109 ($ $ $)) (-15 -3454 ($ $)) (-15 -3454 ($ $ $)) (-15 -3454 ($ $ $ $)) (-15 -3765 ($ $)) (-15 -3765 ($ $ $)) (-15 -3765 ($ $ $ $)) (-15 -2658 ($ $)) (-15 -2658 ($ $ $)) (-15 -2658 ($ $ $ $)) (-15 -3075 ($ $)) (-15 -3075 ($ (-583 $))) (-15 -3824 ($ $)) (-15 -3824 ($ (-583 $))) (-15 -3659 ($ $)) (-15 -3659 ($ (-583 $))) (-15 -3048 ($ (-583 $))) (-15 -2632 ($ (-583 $))) (-15 -4003 ($ (-583 $))) (-15 -2794 ($ (-583 $))) (-15 -1584 ($ $ $)) (-15 -2482 ($ $ $)) (-15 -1608 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1630 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1678 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1692 ($ $)) (-15 * ($ $ $)) (-15 -1704 ($ $ $)) (-15 ** ($ $ $)) (-15 -2341 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -2479 ($ $)) (-15 -1606 ($ $ $)) (-15 -1606 ($ $))))
-((-3223 (((-1162) (-583 (-51))) 24)) (-2264 (((-1162) (-1059) (-787)) 14) (((-1162) (-787)) 9) (((-1162) (-1059)) 11)))
-(((-788) (-10 -7 (-15 -2264 ((-1162) (-1059))) (-15 -2264 ((-1162) (-787))) (-15 -2264 ((-1162) (-1059) (-787))) (-15 -3223 ((-1162) (-583 (-51)))))) (T -788))
-((-3223 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1162)) (-5 *1 (-788)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-787)) (-5 *2 (-1162)) (-5 *1 (-788)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-788)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-788)))))
-(-10 -7 (-15 -2264 ((-1162) (-1059))) (-15 -2264 ((-1162) (-787))) (-15 -2264 ((-1162) (-1059) (-787))) (-15 -3223 ((-1162) (-583 (-51)))))
-((-2119 (((-107) $ $) NIL)) (-3752 (((-3 $ "failed") (-1076)) 32)) (-2399 (((-703)) 30)) (-2202 (($) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3072 (((-844) $) 28)) (-1662 (((-1059) $) 38)) (-2812 (($ (-844)) 27)) (-4125 (((-1023) $) NIL)) (-3359 (((-1076) $) 13) (((-493) $) 19) (((-815 (-349)) $) 25) (((-815 (-517)) $) 22)) (-2271 (((-787) $) 16)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 35)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 34)))
-(((-789 |#1|) (-13 (-773) (-558 (-1076)) (-558 (-493)) (-558 (-815 (-349))) (-558 (-815 (-517))) (-10 -8 (-15 -3752 ((-3 $ "failed") (-1076))))) (-583 (-1076))) (T -789))
-((-3752 (*1 *1 *2) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
-(-13 (-773) (-558 (-1076)) (-558 (-493)) (-558 (-815 (-349))) (-558 (-815 (-517))) (-10 -8 (-15 -3752 ((-3 $ "failed") (-1076)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (((-875 |#1|) $) NIL) (($ (-875 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-4099 (((-703)) NIL)) (-2290 (((-1162) (-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1704 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-790 |#1| |#2| |#3| |#4|) (-13 (-963) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2271 ((-875 |#1|) $)) (-15 -2271 ($ (-875 |#1|))) (IF (|has| |#1| (-333)) (-15 -1704 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2290 ((-1162) (-703))))) (-963) (-583 (-1076)) (-583 (-703)) (-703)) (T -790))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-875 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-963)) (-14 *4 (-583 (-1076))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-963)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1076))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1704 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-963)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-963)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 *3)) (-14 *7 *3))))
-(-13 (-963) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2271 ((-875 |#1|) $)) (-15 -2271 ($ (-875 |#1|))) (IF (|has| |#1| (-333)) (-15 -1704 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2290 ((-1162) (-703)))))
-((-3197 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-3179 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
-(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -3179 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3197 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1148 |#1|) (-1133 |#1|)) (T -791))
-((-3197 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1148 *5)) (-4 *6 (-1133 *5)))) (-3179 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1148 *5)) (-4 *6 (-1133 *5)))))
-(-10 -7 (-15 -3179 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3197 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
-((-3179 (((-3 (-377 (-1130 |#2| |#1|)) "failed") (-703) (-703) (-1149 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1130 |#2| |#1|)) "failed") (-703) (-703) (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|)) 26)))
-(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -3179 ((-3 (-377 (-1130 |#2| |#1|)) "failed") (-703) (-703) (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|))) (-15 -3179 ((-3 (-377 (-1130 |#2| |#1|)) "failed") (-703) (-703) (-1149 |#1| |#2| |#3|)))) (-333) (-1076) |#1|) (T -792))
-((-3179 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1149 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1076)) (-14 *7 *5) (-5 *2 (-377 (-1130 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-3179 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1149 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1076)) (-14 *7 *5) (-5 *2 (-377 (-1130 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
-(-10 -7 (-15 -3179 ((-3 (-377 (-1130 |#2| |#1|)) "failed") (-703) (-703) (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|))) (-15 -3179 ((-3 (-377 (-1130 |#2| |#1|)) "failed") (-703) (-703) (-1149 |#1| |#2| |#3|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-3880 (($ $ (-517)) 62)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-1392 (($ (-1072 (-517)) (-517)) 61)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-1546 (($ $) 64)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1395 (((-703) $) 69)) (-1376 (((-107) $) 31)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1673 (((-517)) 66)) (-1272 (((-517) $) 65)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2671 (($ $ (-517)) 68)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-1192 (((-1057 (-517)) $) 70)) (-3624 (($ $) 67)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2204 (((-517) $ (-517)) 63)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-793 |#1|) (-1188) (-517)) (T -793))
-((-1192 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1057 (-517))))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3624 (*1 *1 *1) (-4 *1 (-793 *2))) (-1673 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1546 (*1 *1 *1) (-4 *1 (-793 *2))) (-2204 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3880 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
-(-13 (-278) (-134) (-10 -8 (-15 -1192 ((-1057 (-517)) $)) (-15 -1395 ((-703) $)) (-15 -2671 ($ $ (-517))) (-15 -3624 ($ $)) (-15 -1673 ((-517))) (-15 -1272 ((-517) $)) (-15 -1546 ($ $)) (-15 -2204 ((-517) $ (-517))) (-15 -3880 ($ $ (-517))) (-15 -1392 ($ (-1072 (-517)) (-517)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ (-517)) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-1392 (($ (-1072 (-517)) (-517)) NIL)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1546 (($ $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1395 (((-703) $) NIL)) (-1376 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1673 (((-517)) NIL)) (-1272 (((-517) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2671 (($ $ (-517)) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-1192 (((-1057 (-517)) $) NIL)) (-3624 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL)) (-2204 (((-517) $ (-517)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1018) . T) ((-1006) . T))
+((-3502 (((-517) $) 17)) (-2671 (((-107) $) 10)) (-2321 (((-107) $) 11)) (-2829 (($ $) 19)))
+(((-776 |#1|) (-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -3502 ((-517) |#1|)) (-15 -2321 ((-107) |#1|)) (-15 -2671 ((-107) |#1|))) (-777)) (T -776))
+NIL
+(-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -3502 ((-517) |#1|)) (-15 -2321 ((-107) |#1|)) (-15 -2671 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-1783 (((-3 $ "failed") $ $) 26)) (-3502 (((-517) $) 33)) (-3038 (($) 23 T CONST)) (-3550 (((-3 $ "failed") $) 39)) (-2671 (((-107) $) 35)) (-1690 (((-107) $) 42)) (-2321 (((-107) $) 34)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 45)) (-1818 (((-703)) 44)) (-2829 (($ $) 32)) (-2806 (($ $ (-703)) 40) (($ $ (-845)) 36)) (-3663 (($) 22 T CONST)) (-3675 (($) 43 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1680 (($ $ $) 28) (($ $) 27)) (-1666 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-845)) 37)) (* (($ (-703) $) 25) (($ (-845) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
+(((-777) (-1189)) (T -777))
+((-2671 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-2829 (*1 *1 *1) (-4 *1 (-777))))
+(-13 (-723) (-964) (-659) (-10 -8 (-15 -2671 ((-107) $)) (-15 -2321 ((-107) $)) (-15 -3502 ((-517) $)) (-15 -2829 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3480 (($ $ $) 10)) (-4095 (($ $ $) 9)) (-1630 (((-107) $ $) 13)) (-1606 (((-107) $ $) 11)) (-1618 (((-107) $ $) 14)))
+(((-778 |#1|) (-10 -8 (-15 -3480 (|#1| |#1| |#1|)) (-15 -4095 (|#1| |#1| |#1|)) (-15 -1618 ((-107) |#1| |#1|)) (-15 -1630 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|))) (-779)) (T -778))
+NIL
+(-10 -8 (-15 -3480 (|#1| |#1| |#1|)) (-15 -4095 (|#1| |#1| |#1|)) (-15 -1618 ((-107) |#1| |#1|)) (-15 -1630 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)))
+(((-779) (-1189)) (T -779))
+((-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1630 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1618 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-4095 (*1 *1 *1 *1) (-4 *1 (-779))) (-3480 (*1 *1 *1 *1) (-4 *1 (-779))))
+(-13 (-1006) (-10 -8 (-15 -1596 ((-107) $ $)) (-15 -1606 ((-107) $ $)) (-15 -1630 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -4095 ($ $ $)) (-15 -3480 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2948 (($ $ $) 46)) (-2762 (($ $ $) 45)) (-3612 (($ $ $) 43)) (-1580 (($ $ $) 52)) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 47)) (-3184 (((-3 $ "failed") $ $) 50)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4172 (($ $) 36)) (-1346 (($ $ $) 40)) (-1609 (($ $ $) 39)) (-2882 (($ $ $) 48)) (-1843 (($ $ $) 54)) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 42)) (-1664 (((-3 $ "failed") $ $) 49)) (-2333 (((-3 $ "failed") $ |#2|) 29)) (-4094 ((|#2| $) 33)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-3186 (((-583 |#2|) $) 19)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
+(((-780 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| |#1| |#1|)) (-15 -2200 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1580 (|#1| |#1| |#1|)) (-15 -3184 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2762 (|#1| |#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2926 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -2262 ((-787) |#1|))) (-781 |#2|) (-964)) (T -780))
+NIL
+(-10 -8 (-15 -2882 (|#1| |#1| |#1|)) (-15 -2200 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1580 (|#1| |#1| |#1|)) (-15 -3184 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2762 (|#1| |#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2926 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2948 (($ $ $) 45 (|has| |#1| (-333)))) (-2762 (($ $ $) 46 (|has| |#1| (-333)))) (-3612 (($ $ $) 48 (|has| |#1| (-333)))) (-1580 (($ $ $) 43 (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 42 (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 47 (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) 74 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3402 (((-517) $) 75 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 68)) (-2364 (($ $) 64)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 55 (|has| |#1| (-421)))) (-1690 (((-107) $) 31)) (-2059 (($ |#1| (-703)) 62)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 58 (|has| |#1| (-509)))) (-3942 (((-703) $) 66)) (-1346 (($ $ $) 52 (|has| |#1| (-333)))) (-1609 (($ $ $) 53 (|has| |#1| (-333)))) (-2882 (($ $ $) 41 (|has| |#1| (-333)))) (-1843 (($ $ $) 50 (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 49 (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 54 (|has| |#1| (-333)))) (-2336 ((|#1| $) 65)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1191 (((-703) $) 67)) (-4094 ((|#1| $) 56 (|has| |#1| (-421)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 70)) (-3186 (((-583 |#1|) $) 61)) (-1939 ((|#1| $ (-703)) 63)) (-1818 (((-703)) 29)) (-2365 ((|#1| $ |#1| |#1|) 60)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-781 |#1|) (-1189) (-964)) (T -781))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-583 *3)))) (-2365 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-3860 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-3390 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421)))) (-2097 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-1609 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1346 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1664 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1843 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2926 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) (-4 *1 (-781 *3)))) (-3612 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3602 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-2762 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2948 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3184 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1580 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2200 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) (-4 *1 (-781 *3)))) (-2882 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(-13 (-964) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -1191 ((-703) $)) (-15 -3942 ((-703) $)) (-15 -2336 (|t#1| $)) (-15 -2364 ($ $)) (-15 -1939 (|t#1| $ (-703))) (-15 -2059 ($ |t#1| (-703))) (-15 -3186 ((-583 |t#1|) $)) (-15 -2365 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2333 ((-3 $ "failed") $ |t#1|)) (-15 -3860 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -3390 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -4094 (|t#1| $)) (-15 -4172 ($ $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2097 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -1609 ($ $ $)) (-15 -1346 ($ $ $)) (-15 -1664 ((-3 $ "failed") $ $)) (-15 -1843 ($ $ $)) (-15 -2926 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $)) (-15 -3612 ($ $ $)) (-15 -3602 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2762 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -3184 ((-3 $ "failed") $ $)) (-15 -1580 ($ $ $)) (-15 -2200 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $)) (-15 -2882 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2376 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-3602 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-333)))) (-3390 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2097 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2365 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -2376 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2365 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3860 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3390 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2097 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3602 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-964) (-781 |#1|)) (T -782))
+((-3602 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2097 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3860 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2365 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-964)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2376 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-964)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(-10 -7 (-15 -2376 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2365 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3860 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3390 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2097 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3602 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 25 (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-2449 (((-787) $ (-787)) NIL)) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 21 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 19 (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 23 (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) 15)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))))) (-964) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
+((-2449 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-781 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#2| (-333)))) (-2762 (($ $ $) NIL (|has| |#2| (-333)))) (-3612 (($ $ $) NIL (|has| |#2| (-333)))) (-1580 (($ $ $) NIL (|has| |#2| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#2| (-703)) 16)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#2| (-333)))) (-1609 (($ $ $) NIL (|has| |#2| (-333)))) (-2882 (($ $ $) NIL (|has| |#2| (-333)))) (-1843 (($ $ $) NIL (|has| |#2| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-1191 (((-703) $) NIL)) (-4094 ((|#2| $) NIL (|has| |#2| (-421)))) (-2262 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) NIL) (($ (-1154 |#1|)) 18)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#2| $ |#2| |#2|) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) 13 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))))) (-1077) (-964) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-964)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-781 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|)))))
+((-2901 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-3313 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-2312 ((|#1| (-703) |#1|) 31)) (-4078 ((|#1| (-703) |#1|) 29)) (-2855 ((|#1| (-703) |#1|) 28)))
+(((-785 |#1|) (-10 -7 (-15 -2855 (|#1| (-703) |#1|)) (-15 -4078 (|#1| (-703) |#1|)) (-15 -2312 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2901 (|#1| (-703) |#1|)) |%noBranch|)) (-156)) (T -785))
+((-2901 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3313 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3313 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2312 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-4078 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -2855 (|#1| (-703) |#1|)) (-15 -4078 (|#1| (-703) |#1|)) (-15 -2312 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2901 (|#1| (-703) |#1|)) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-3112 (((-517) $) 12)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 18) (($ (-517)) 11)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 9)))
+(((-786) (-13 (-779) (-10 -8 (-15 -2262 ($ (-517))) (-15 -3112 ((-517) $))))) (T -786))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
+(-13 (-779) (-10 -8 (-15 -2262 ($ (-517))) (-15 -3112 ((-517) $))))
+((-2105 (((-107) $ $) NIL)) (-2340 (($ $ $) 115)) (-3436 (((-517) $) 30) (((-517)) 35)) (-1657 (($ (-517)) 44)) (-1787 (($ $ $) 45) (($ (-583 $)) 76)) (-4111 (($ $ (-583 $)) 74)) (-3833 (((-517) $) 33)) (-4053 (($ $ $) 63)) (-3476 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2184 (((-517) $) 32)) (-1800 (($ $ $) 62)) (-1507 (($ $) 105)) (-2456 (($ $ $) 119)) (-2245 (($ (-583 $)) 52)) (-3738 (($ $ (-583 $)) 69)) (-3291 (($ (-517) (-517)) 46)) (-2902 (($ $) 116) (($ $ $) 117)) (-3302 (($ $ (-517)) 40) (($ $) 43)) (-2383 (($ $ $) 89)) (-4027 (($ $ $) 122)) (-3307 (($ $) 106)) (-2356 (($ $ $) 90)) (-3633 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3421 (((-1163) $) 8)) (-3374 (($ $) 109) (($ $ (-703)) 112)) (-3049 (($ $ $) 65)) (-1710 (($ $ $) 64)) (-4041 (($ $ (-583 $)) 100)) (-3378 (($ $ $) 104)) (-3425 (($ (-583 $)) 50)) (-3314 (($ $) 60) (($ (-583 $)) 61)) (-2923 (($ $ $) 113)) (-3111 (($ $) 107)) (-3257 (($ $ $) 118)) (-2449 (($ (-517)) 20) (($ (-1077)) 22) (($ (-1060)) 29) (($ (-199)) 24)) (-4011 (($ $ $) 93)) (-2479 (($ $) 94)) (-4047 (((-1163) (-1060)) 14)) (-2933 (($ (-1060)) 13)) (-2362 (($ (-583 (-583 $))) 48)) (-3287 (($ $ (-517)) 39) (($ $) 42)) (-3232 (((-1060) $) NIL)) (-3017 (($ $ $) 121)) (-3462 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2620 (((-107) $) 98)) (-2924 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-3218 (($ (-517)) 36)) (-1795 (((-517) $) 31) (((-517)) 34)) (-2760 (($ $ $) 37) (($ (-583 $)) 75)) (-4130 (((-1024) $) NIL)) (-2333 (($ $ $) 91)) (-2679 (($) 12)) (-2612 (($ $ (-583 $)) 99)) (-3912 (($ $) 108) (($ $ (-703)) 111)) (-2345 (($ $ $) 88)) (-2042 (($ $ (-703)) 127)) (-2363 (($ (-583 $)) 51)) (-2262 (((-787) $) 18)) (-3605 (($ $ (-517)) 38) (($ $) 41)) (-3925 (($ $) 58) (($ (-583 $)) 59)) (-3066 (($ $) 56) (($ (-583 $)) 57)) (-3488 (($ $) 114)) (-3358 (($ (-583 $)) 55)) (-1462 (($ $ $) 97)) (-1587 (($ $ $) 120)) (-4024 (($ $ $) 92)) (-2471 (($ $ $) 77)) (-1594 (($ $ $) 95) (($ $) 96)) (-1630 (($ $ $) 81)) (-1606 (($ $ $) 79)) (-1572 (((-107) $ $) 15) (($ $ $) 16)) (-1618 (($ $ $) 80)) (-1596 (($ $ $) 78)) (-1692 (($ $ $) 86)) (-1680 (($ $ $) 83) (($ $) 84)) (-1666 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-787) (-13 (-1006) (-10 -8 (-15 -3421 ((-1163) $)) (-15 -2933 ($ (-1060))) (-15 -4047 ((-1163) (-1060))) (-15 -2449 ($ (-517))) (-15 -2449 ($ (-1077))) (-15 -2449 ($ (-1060))) (-15 -2449 ($ (-199))) (-15 -2679 ($)) (-15 -3436 ((-517) $)) (-15 -1795 ((-517) $)) (-15 -3436 ((-517))) (-15 -1795 ((-517))) (-15 -2184 ((-517) $)) (-15 -3833 ((-517) $)) (-15 -3218 ($ (-517))) (-15 -1657 ($ (-517))) (-15 -3291 ($ (-517) (-517))) (-15 -3287 ($ $ (-517))) (-15 -3302 ($ $ (-517))) (-15 -3605 ($ $ (-517))) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3605 ($ $)) (-15 -2760 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -2760 ($ (-583 $))) (-15 -1787 ($ (-583 $))) (-15 -4041 ($ $ (-583 $))) (-15 -2924 ($ $ (-583 $))) (-15 -2924 ($ $ $ $)) (-15 -3378 ($ $ $)) (-15 -2620 ((-107) $)) (-15 -2612 ($ $ (-583 $))) (-15 -1507 ($ $)) (-15 -3017 ($ $ $)) (-15 -3488 ($ $)) (-15 -2362 ($ (-583 (-583 $)))) (-15 -2340 ($ $ $)) (-15 -2902 ($ $)) (-15 -2902 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -2042 ($ $ (-703))) (-15 -1462 ($ $ $)) (-15 -1800 ($ $ $)) (-15 -4053 ($ $ $)) (-15 -1710 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3738 ($ $ (-583 $))) (-15 -4111 ($ $ (-583 $))) (-15 -3307 ($ $)) (-15 -3912 ($ $)) (-15 -3912 ($ $ (-703))) (-15 -3374 ($ $)) (-15 -3374 ($ $ (-703))) (-15 -3111 ($ $)) (-15 -2923 ($ $ $)) (-15 -3476 ($ $)) (-15 -3476 ($ $ $)) (-15 -3476 ($ $ $ $)) (-15 -3633 ($ $)) (-15 -3633 ($ $ $)) (-15 -3633 ($ $ $ $)) (-15 -3462 ($ $)) (-15 -3462 ($ $ $)) (-15 -3462 ($ $ $ $)) (-15 -3066 ($ $)) (-15 -3066 ($ (-583 $))) (-15 -3925 ($ $)) (-15 -3925 ($ (-583 $))) (-15 -3314 ($ $)) (-15 -3314 ($ (-583 $))) (-15 -3425 ($ (-583 $))) (-15 -2363 ($ (-583 $))) (-15 -2245 ($ (-583 $))) (-15 -3358 ($ (-583 $))) (-15 -1572 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1630 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -1680 ($ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ $)) (-15 -2345 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2479 ($ $)) (-15 -1594 ($ $ $)) (-15 -1594 ($ $))))) (T -787))
+((-3421 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-787)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-2679 (*1 *1) (-5 *1 (-787))) (-3436 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3436 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1795 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3291 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3287 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3605 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3287 (*1 *1 *1) (-5 *1 (-787))) (-3302 (*1 *1 *1) (-5 *1 (-787))) (-3605 (*1 *1 *1) (-5 *1 (-787))) (-2760 (*1 *1 *1 *1) (-5 *1 (-787))) (-1787 (*1 *1 *1 *1) (-5 *1 (-787))) (-2760 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4041 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2924 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3378 (*1 *1 *1 *1) (-5 *1 (-787))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1507 (*1 *1 *1) (-5 *1 (-787))) (-3017 (*1 *1 *1 *1) (-5 *1 (-787))) (-3488 (*1 *1 *1) (-5 *1 (-787))) (-2362 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-2340 (*1 *1 *1 *1) (-5 *1 (-787))) (-2902 (*1 *1 *1) (-5 *1 (-787))) (-2902 (*1 *1 *1 *1) (-5 *1 (-787))) (-3257 (*1 *1 *1 *1) (-5 *1 (-787))) (-2456 (*1 *1 *1 *1) (-5 *1 (-787))) (-1587 (*1 *1 *1 *1) (-5 *1 (-787))) (-4027 (*1 *1 *1 *1) (-5 *1 (-787))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1462 (*1 *1 *1 *1) (-5 *1 (-787))) (-1800 (*1 *1 *1 *1) (-5 *1 (-787))) (-4053 (*1 *1 *1 *1) (-5 *1 (-787))) (-1710 (*1 *1 *1 *1) (-5 *1 (-787))) (-3049 (*1 *1 *1 *1) (-5 *1 (-787))) (-3738 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3307 (*1 *1 *1) (-5 *1 (-787))) (-3912 (*1 *1 *1) (-5 *1 (-787))) (-3912 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3374 (*1 *1 *1) (-5 *1 (-787))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3111 (*1 *1 *1) (-5 *1 (-787))) (-2923 (*1 *1 *1 *1) (-5 *1 (-787))) (-3476 (*1 *1 *1) (-5 *1 (-787))) (-3476 (*1 *1 *1 *1) (-5 *1 (-787))) (-3476 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3462 (*1 *1 *1) (-5 *1 (-787))) (-3462 (*1 *1 *1 *1) (-5 *1 (-787))) (-3462 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3066 (*1 *1 *1) (-5 *1 (-787))) (-3066 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3925 (*1 *1 *1) (-5 *1 (-787))) (-3925 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3314 (*1 *1 *1) (-5 *1 (-787))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2363 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1572 (*1 *1 *1 *1) (-5 *1 (-787))) (-2471 (*1 *1 *1 *1) (-5 *1 (-787))) (-1596 (*1 *1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1 *1) (-5 *1 (-787))) (-1618 (*1 *1 *1 *1) (-5 *1 (-787))) (-1630 (*1 *1 *1 *1) (-5 *1 (-787))) (-1666 (*1 *1 *1 *1) (-5 *1 (-787))) (-1680 (*1 *1 *1 *1) (-5 *1 (-787))) (-1680 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1692 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2345 (*1 *1 *1 *1) (-5 *1 (-787))) (-2383 (*1 *1 *1 *1) (-5 *1 (-787))) (-2356 (*1 *1 *1 *1) (-5 *1 (-787))) (-2333 (*1 *1 *1 *1) (-5 *1 (-787))) (-4024 (*1 *1 *1 *1) (-5 *1 (-787))) (-4011 (*1 *1 *1 *1) (-5 *1 (-787))) (-2479 (*1 *1 *1) (-5 *1 (-787))) (-1594 (*1 *1 *1 *1) (-5 *1 (-787))) (-1594 (*1 *1 *1) (-5 *1 (-787))))
+(-13 (-1006) (-10 -8 (-15 -3421 ((-1163) $)) (-15 -2933 ($ (-1060))) (-15 -4047 ((-1163) (-1060))) (-15 -2449 ($ (-517))) (-15 -2449 ($ (-1077))) (-15 -2449 ($ (-1060))) (-15 -2449 ($ (-199))) (-15 -2679 ($)) (-15 -3436 ((-517) $)) (-15 -1795 ((-517) $)) (-15 -3436 ((-517))) (-15 -1795 ((-517))) (-15 -2184 ((-517) $)) (-15 -3833 ((-517) $)) (-15 -3218 ($ (-517))) (-15 -1657 ($ (-517))) (-15 -3291 ($ (-517) (-517))) (-15 -3287 ($ $ (-517))) (-15 -3302 ($ $ (-517))) (-15 -3605 ($ $ (-517))) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3605 ($ $)) (-15 -2760 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -2760 ($ (-583 $))) (-15 -1787 ($ (-583 $))) (-15 -4041 ($ $ (-583 $))) (-15 -2924 ($ $ (-583 $))) (-15 -2924 ($ $ $ $)) (-15 -3378 ($ $ $)) (-15 -2620 ((-107) $)) (-15 -2612 ($ $ (-583 $))) (-15 -1507 ($ $)) (-15 -3017 ($ $ $)) (-15 -3488 ($ $)) (-15 -2362 ($ (-583 (-583 $)))) (-15 -2340 ($ $ $)) (-15 -2902 ($ $)) (-15 -2902 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -2042 ($ $ (-703))) (-15 -1462 ($ $ $)) (-15 -1800 ($ $ $)) (-15 -4053 ($ $ $)) (-15 -1710 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3738 ($ $ (-583 $))) (-15 -4111 ($ $ (-583 $))) (-15 -3307 ($ $)) (-15 -3912 ($ $)) (-15 -3912 ($ $ (-703))) (-15 -3374 ($ $)) (-15 -3374 ($ $ (-703))) (-15 -3111 ($ $)) (-15 -2923 ($ $ $)) (-15 -3476 ($ $)) (-15 -3476 ($ $ $)) (-15 -3476 ($ $ $ $)) (-15 -3633 ($ $)) (-15 -3633 ($ $ $)) (-15 -3633 ($ $ $ $)) (-15 -3462 ($ $)) (-15 -3462 ($ $ $)) (-15 -3462 ($ $ $ $)) (-15 -3066 ($ $)) (-15 -3066 ($ (-583 $))) (-15 -3925 ($ $)) (-15 -3925 ($ (-583 $))) (-15 -3314 ($ $)) (-15 -3314 ($ (-583 $))) (-15 -3425 ($ (-583 $))) (-15 -2363 ($ (-583 $))) (-15 -2245 ($ (-583 $))) (-15 -3358 ($ (-583 $))) (-15 -1572 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1630 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -1680 ($ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ $)) (-15 -2345 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2479 ($ $)) (-15 -1594 ($ $ $)) (-15 -1594 ($ $))))
+((-3214 (((-1163) (-583 (-51))) 24)) (-2256 (((-1163) (-1060) (-787)) 14) (((-1163) (-787)) 9) (((-1163) (-1060)) 11)))
+(((-788) (-10 -7 (-15 -2256 ((-1163) (-1060))) (-15 -2256 ((-1163) (-787))) (-15 -2256 ((-1163) (-1060) (-787))) (-15 -3214 ((-1163) (-583 (-51)))))) (T -788))
+((-3214 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1163)) (-5 *1 (-788)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-788)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-788)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-788)))))
+(-10 -7 (-15 -2256 ((-1163) (-1060))) (-15 -2256 ((-1163) (-787))) (-15 -2256 ((-1163) (-1060) (-787))) (-15 -3214 ((-1163) (-583 (-51)))))
+((-2105 (((-107) $ $) NIL)) (-3791 (((-3 $ "failed") (-1077)) 32)) (-2390 (((-703)) 30)) (-2192 (($) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-4161 (((-845) $) 28)) (-3232 (((-1060) $) 38)) (-2803 (($ (-845)) 27)) (-4130 (((-1024) $) NIL)) (-3367 (((-1077) $) 13) (((-493) $) 19) (((-816 (-349)) $) 25) (((-816 (-517)) $) 22)) (-2262 (((-787) $) 16)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 35)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 34)))
+(((-789 |#1|) (-13 (-773) (-558 (-1077)) (-558 (-493)) (-558 (-816 (-349))) (-558 (-816 (-517))) (-10 -8 (-15 -3791 ((-3 $ "failed") (-1077))))) (-583 (-1077))) (T -789))
+((-3791 (*1 *1 *2) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
+(-13 (-773) (-558 (-1077)) (-558 (-493)) (-558 (-816 (-349))) (-558 (-816 (-517))) (-10 -8 (-15 -3791 ((-3 $ "failed") (-1077)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (((-876 |#1|) $) NIL) (($ (-876 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-1818 (((-703)) NIL)) (-3018 (((-1163) (-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-790 |#1| |#2| |#3| |#4|) (-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 ((-876 |#1|) $)) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3018 ((-1163) (-703))))) (-964) (-583 (-1077)) (-583 (-703)) (-703)) (T -790))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-964)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 *3)) (-14 *7 *3))))
+(-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 ((-876 |#1|) $)) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3018 ((-1163) (-703)))))
+((-3785 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-3011 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
+(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -3011 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3785 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1149 |#1|) (-1134 |#1|)) (T -791))
+((-3785 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5)))) (-3011 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5)))))
+(-10 -7 (-15 -3011 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3785 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
+((-3011 (((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) 26)))
+(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|)))) (-333) (-1077) |#1|) (T -792))
+((-3011 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-3011 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
+(-10 -7 (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $ (-517)) 62)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2902 (($ (-1073 (-517)) (-517)) 61)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-4021 (($ $) 64)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-3250 (((-703) $) 69)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2263 (((-517)) 66)) (-3907 (((-517) $) 65)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3175 (($ $ (-517)) 68)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3685 (((-1058 (-517)) $) 70)) (-2384 (($ $) 67)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2194 (((-517) $ (-517)) 63)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-793 |#1|) (-1189) (-517)) (T -793))
+((-3685 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1058 (-517))))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2384 (*1 *1 *1) (-4 *1 (-793 *2))) (-2263 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-4021 (*1 *1 *1) (-4 *1 (-793 *2))) (-2194 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3908 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2902 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(-13 (-278) (-134) (-10 -8 (-15 -3685 ((-1058 (-517)) $)) (-15 -3250 ((-703) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $)) (-15 -2263 ((-517))) (-15 -3907 ((-517) $)) (-15 -4021 ($ $)) (-15 -2194 ((-517) $ (-517))) (-15 -3908 ($ $ (-517))) (-15 -2902 ($ (-1073 (-517)) (-517)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $ (-517)) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2902 (($ (-1073 (-517)) (-517)) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4021 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-3250 (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 (((-517)) NIL)) (-3907 (((-517) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3175 (($ $ (-517)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-1058 (-517)) $) NIL)) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2194 (((-517) $ (-517)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
(((-794 |#1|) (-793 |#1|) (-517)) (T -794))
NIL
(-793 |#1|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-794 |#1|) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-794 |#1|) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| (-794 |#1|) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-954 (-517))))) (-3390 (((-794 |#1|) $) NIL) (((-1076) $) NIL (|has| (-794 |#1|) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-954 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-954 (-517))))) (-1336 (($ $) NIL) (($ (-517) $) NIL)) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-794 |#1|))) (|:| |vec| (-1157 (-794 |#1|)))) (-623 $) (-1157 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-794 |#1|) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-794 |#1|) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-794 |#1|) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-794 |#1|) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1052)))) (-1952 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-4084 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3310 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-794 |#1|) (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2961 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-794 |#1|) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-794 |#1|) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1076)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1076) (-794 |#1|)))) (($ $ (-1076) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1076) (-794 |#1|))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1076)) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-794 |#1|) $) NIL)) (-3359 (((-815 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-939))) (((-199) $) NIL (|has| (-794 |#1|) (-939)))) (-1234 (((-157 (-377 (-517))) $) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1076)) NIL (|has| (-794 |#1|) (-954 (-1076))))) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-832))) (|has| (-794 |#1|) (-132))))) (-4099 (((-703)) NIL)) (-3599 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2074 (((-107) $ $) NIL)) (-2204 (((-377 (-517)) $ (-517)) NIL)) (-2376 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1076)) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-794 |#1|) (-823 (-1076)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1704 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
-(((-795 |#1|) (-13 (-911 (-794 |#1|)) (-10 -8 (-15 -2204 ((-377 (-517)) $ (-517))) (-15 -1234 ((-157 (-377 (-517))) $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $)))) (-517)) (T -795))
-((-2204 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-1336 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
-(-13 (-911 (-794 |#1|)) (-10 -8 (-15 -2204 ((-377 (-517)) $ (-517))) (-15 -1234 ((-157 (-377 (-517))) $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 ((|#2| $) NIL (|has| |#2| (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| |#2| (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (|has| |#2| (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517))))) (-3390 ((|#2| $) NIL) (((-1076) $) NIL (|has| |#2| (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-517)))) (((-517) $) NIL (|has| |#2| (-954 (-517))))) (-1336 (($ $) 31) (($ (-517) $) 32)) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) 53)) (-2202 (($) NIL (|has| |#2| (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) NIL (|has| |#2| (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| |#2| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| |#2| (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 ((|#2| $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| |#2| (-1052)))) (-1952 (((-107) $) NIL (|has| |#2| (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| |#2| (-779)))) (-4084 (($ $ $) NIL (|has| |#2| (-779)))) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 49)) (-2587 (($) NIL (|has| |#2| (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| |#2| (-278)))) (-2961 ((|#2| $) NIL (|has| |#2| (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1076)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1076) |#2|))) (($ $ (-1076) |#2|) NIL (|has| |#2| (-478 (-1076) |#2|)))) (-3600 (((-703) $) NIL)) (-2609 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2484 (($ $) NIL)) (-2098 ((|#2| $) NIL)) (-3359 (((-815 (-517)) $) NIL (|has| |#2| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#2| (-558 (-815 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-939))) (((-199) $) NIL (|has| |#2| (-939)))) (-1234 (((-157 (-377 (-517))) $) 68)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2271 (((-787) $) 86) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1076)) NIL (|has| |#2| (-954 (-1076))))) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-4099 (((-703)) NIL)) (-3599 ((|#2| $) NIL (|has| |#2| (-502)))) (-2074 (((-107) $ $) NIL)) (-2204 (((-377 (-517)) $ (-517)) 60)) (-2376 (($ $) NIL (|has| |#2| (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 14 T CONST)) (-3619 (($) 16 T CONST)) (-3342 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1584 (((-107) $ $) 35)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1704 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1692 (($ $) 39) (($ $ $) 41)) (-1678 (($ $ $) 37)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-796 |#1| |#2|) (-13 (-911 |#2|) (-10 -8 (-15 -2204 ((-377 (-517)) $ (-517))) (-15 -1234 ((-157 (-377 (-517))) $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
-((-2204 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-1234 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-1336 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
-(-13 (-911 |#2|) (-10 -8 (-15 -2204 ((-377 (-517)) $ (-517))) (-15 -1234 ((-157 (-377 (-517))) $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $))))
-((-2119 (((-107) $ $) NIL)) (-1531 (((-517) $) 15)) (-1633 (($ (-142)) 11)) (-1322 (($ (-142)) 12)) (-1662 (((-1059) $) NIL)) (-2537 (((-142) $) 13)) (-4125 (((-1023) $) NIL)) (-3136 (($ (-142)) 9)) (-3345 (($ (-142)) 8)) (-2271 (((-787) $) 23) (($ (-142)) 16)) (-3491 (($ (-142)) 10)) (-1584 (((-107) $ $) NIL)))
-(((-797) (-13 (-1005) (-10 -8 (-15 -3345 ($ (-142))) (-15 -3136 ($ (-142))) (-15 -3491 ($ (-142))) (-15 -1633 ($ (-142))) (-15 -1322 ($ (-142))) (-15 -2537 ((-142) $)) (-15 -1531 ((-517) $)) (-15 -2271 ($ (-142)))))) (T -797))
-((-3345 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(-13 (-1005) (-10 -8 (-15 -3345 ($ (-142))) (-15 -3136 ($ (-142))) (-15 -3491 ($ (-142))) (-15 -1633 ($ (-142))) (-15 -1322 ($ (-142))) (-15 -2537 ((-142) $)) (-15 -1531 ((-517) $)) (-15 -2271 ($ (-142)))))
-((-2271 (((-286 (-517)) (-377 (-875 (-47)))) 21) (((-286 (-517)) (-875 (-47))) 16)))
-(((-798) (-10 -7 (-15 -2271 ((-286 (-517)) (-875 (-47)))) (-15 -2271 ((-286 (-517)) (-377 (-875 (-47))))))) (T -798))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-875 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))))
-(-10 -7 (-15 -2271 ((-286 (-517)) (-875 (-47)))) (-15 -2271 ((-286 (-517)) (-377 (-875 (-47))))))
-((-3310 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
-(((-799 |#1| |#2|) (-10 -7 (-15 -3310 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1111) (-1111)) (T -799))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
-(-10 -7 (-15 -3310 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
-((-1651 (($ |#1| |#1|) 8)) (-2303 ((|#1| $ (-703)) 10)))
-(((-800 |#1|) (-10 -8 (-15 -1651 ($ |#1| |#1|)) (-15 -2303 (|#1| $ (-703)))) (-1111)) (T -800))
-((-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1111)))) (-1651 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1111)))))
-(-10 -8 (-15 -1651 ($ |#1| |#1|)) (-15 -2303 (|#1| $ (-703))))
-((-3310 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -3310 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1111) (-1111)) (T -801))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
-(-10 -7 (-15 -3310 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
-((-1651 (($ |#1| |#1| |#1|) 8)) (-2303 ((|#1| $ (-703)) 10)))
-(((-802 |#1|) (-10 -8 (-15 -1651 ($ |#1| |#1| |#1|)) (-15 -2303 (|#1| $ (-703)))) (-1111)) (T -802))
-((-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1111)))) (-1651 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1111)))))
-(-10 -8 (-15 -1651 ($ |#1| |#1| |#1|)) (-15 -2303 (|#1| $ (-703))))
-((-2743 (((-583 (-1081)) (-1059)) 8)))
-(((-803) (-10 -7 (-15 -2743 ((-583 (-1081)) (-1059))))) (T -803))
-((-2743 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-583 (-1081))) (-5 *1 (-803)))))
-(-10 -7 (-15 -2743 ((-583 (-1081)) (-1059))))
-((-3310 (((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)) 14)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -3310 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)))) (-1111) (-1111)) (T -804))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6)))))
-(-10 -7 (-15 -3310 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|))))
-((-1644 (($ |#1| |#1| |#1|) 8)) (-2303 ((|#1| $ (-703)) 10)))
-(((-805 |#1|) (-10 -8 (-15 -1644 ($ |#1| |#1| |#1|)) (-15 -2303 (|#1| $ (-703)))) (-1111)) (T -805))
-((-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-805 *2)) (-4 *2 (-1111)))) (-1644 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1111)))))
-(-10 -8 (-15 -1644 ($ |#1| |#1| |#1|)) (-15 -2303 (|#1| $ (-703))))
-((-3082 (((-1057 (-583 (-517))) (-583 (-517)) (-1057 (-583 (-517)))) 32)) (-2734 (((-1057 (-583 (-517))) (-583 (-517)) (-583 (-517))) 28)) (-3361 (((-1057 (-583 (-517))) (-583 (-517))) 41) (((-1057 (-583 (-517))) (-583 (-517)) (-583 (-517))) 40)) (-3678 (((-1057 (-583 (-517))) (-517)) 42)) (-1609 (((-1057 (-583 (-517))) (-517) (-517)) 22) (((-1057 (-583 (-517))) (-517)) 16) (((-1057 (-583 (-517))) (-517) (-517) (-517)) 12)) (-1761 (((-1057 (-583 (-517))) (-1057 (-583 (-517)))) 26)) (-1842 (((-583 (-517)) (-583 (-517))) 25)))
-(((-806) (-10 -7 (-15 -1609 ((-1057 (-583 (-517))) (-517) (-517) (-517))) (-15 -1609 ((-1057 (-583 (-517))) (-517))) (-15 -1609 ((-1057 (-583 (-517))) (-517) (-517))) (-15 -1842 ((-583 (-517)) (-583 (-517)))) (-15 -1761 ((-1057 (-583 (-517))) (-1057 (-583 (-517))))) (-15 -2734 ((-1057 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3082 ((-1057 (-583 (-517))) (-583 (-517)) (-1057 (-583 (-517))))) (-15 -3361 ((-1057 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3361 ((-1057 (-583 (-517))) (-583 (-517)))) (-15 -3678 ((-1057 (-583 (-517))) (-517))))) (T -806))
-((-3678 (*1 *2 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))) (-3361 (*1 *2 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-583 (-517))))) (-3361 (*1 *2 *3 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-583 (-517))))) (-3082 (*1 *2 *3 *2) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-806)))) (-2734 (*1 *2 *3 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-583 (-517))))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-806)))) (-1609 (*1 *2 *3 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))) (-1609 (*1 *2 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))) (-1609 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1609 ((-1057 (-583 (-517))) (-517) (-517) (-517))) (-15 -1609 ((-1057 (-583 (-517))) (-517))) (-15 -1609 ((-1057 (-583 (-517))) (-517) (-517))) (-15 -1842 ((-583 (-517)) (-583 (-517)))) (-15 -1761 ((-1057 (-583 (-517))) (-1057 (-583 (-517))))) (-15 -2734 ((-1057 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3082 ((-1057 (-583 (-517))) (-583 (-517)) (-1057 (-583 (-517))))) (-15 -3361 ((-1057 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3361 ((-1057 (-583 (-517))) (-583 (-517)))) (-15 -3678 ((-1057 (-583 (-517))) (-517))))
-((-3359 (((-815 (-349)) $) 9 (|has| |#1| (-558 (-815 (-349))))) (((-815 (-517)) $) 8 (|has| |#1| (-558 (-815 (-517)))))))
-(((-807 |#1|) (-1188) (-1111)) (T -807))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-558 (-815 (-517)))) (-6 (-558 (-815 (-517)))) |%noBranch|) (IF (|has| |t#1| (-558 (-815 (-349)))) (-6 (-558 (-815 (-349)))) |%noBranch|)))
-(((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))))
-((-2119 (((-107) $ $) NIL)) (-3213 (($) 14)) (-3710 (($ (-812 |#1| |#2|) (-812 |#1| |#3|)) 27)) (-3170 (((-812 |#1| |#3|) $) 16)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2959 (((-107) $) 22)) (-3212 (($) 19)) (-2271 (((-787) $) 30)) (-3967 (((-812 |#1| |#2|) $) 15)) (-1584 (((-107) $ $) 25)))
-(((-808 |#1| |#2| |#3|) (-13 (-1005) (-10 -8 (-15 -2959 ((-107) $)) (-15 -3212 ($)) (-15 -3213 ($)) (-15 -3710 ($ (-812 |#1| |#2|) (-812 |#1| |#3|))) (-15 -3967 ((-812 |#1| |#2|) $)) (-15 -3170 ((-812 |#1| |#3|) $)))) (-1005) (-1005) (-603 |#2|)) (T -808))
-((-2959 (*1 *2 *1) (-12 (-4 *4 (-1005)) (-5 *2 (-107)) (-5 *1 (-808 *3 *4 *5)) (-4 *3 (-1005)) (-4 *5 (-603 *4)))) (-3212 (*1 *1) (-12 (-4 *3 (-1005)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1005)) (-4 *4 (-603 *3)))) (-3213 (*1 *1) (-12 (-4 *3 (-1005)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1005)) (-4 *4 (-603 *3)))) (-3710 (*1 *1 *2 *3) (-12 (-5 *2 (-812 *4 *5)) (-5 *3 (-812 *4 *6)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-603 *5)) (-5 *1 (-808 *4 *5 *6)))) (-3967 (*1 *2 *1) (-12 (-4 *4 (-1005)) (-5 *2 (-812 *3 *4)) (-5 *1 (-808 *3 *4 *5)) (-4 *3 (-1005)) (-4 *5 (-603 *4)))) (-3170 (*1 *2 *1) (-12 (-4 *4 (-1005)) (-5 *2 (-812 *3 *5)) (-5 *1 (-808 *3 *4 *5)) (-4 *3 (-1005)) (-4 *5 (-603 *4)))))
-(-13 (-1005) (-10 -8 (-15 -2959 ((-107) $)) (-15 -3212 ($)) (-15 -3213 ($)) (-15 -3710 ($ (-812 |#1| |#2|) (-812 |#1| |#3|))) (-15 -3967 ((-812 |#1| |#2|) $)) (-15 -3170 ((-812 |#1| |#3|) $))))
-((-2119 (((-107) $ $) 7)) (-3544 (((-812 |#1| $) $ (-815 |#1|) (-812 |#1| $)) 13)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-809 |#1|) (-1188) (-1005)) (T -809))
-((-3544 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-812 *4 *1)) (-5 *3 (-815 *4)) (-4 *1 (-809 *4)) (-4 *4 (-1005)))))
-(-13 (-1005) (-10 -8 (-15 -3544 ((-812 |t#1| $) $ (-815 |t#1|) (-812 |t#1| $)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2066 (((-107) (-583 |#2|) |#3|) 23) (((-107) |#2| |#3|) 18)) (-1960 (((-812 |#1| |#2|) |#2| |#3|) 43 (-12 (-2479 (|has| |#2| (-954 (-1076)))) (-2479 (|has| |#2| (-963))))) (((-583 (-265 (-875 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-963)) (-2479 (|has| |#2| (-954 (-1076)))))) (((-583 (-265 |#2|)) |#2| |#3|) 35 (|has| |#2| (-954 (-1076)))) (((-808 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21)))
-(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -2066 ((-107) |#2| |#3|)) (-15 -2066 ((-107) (-583 |#2|) |#3|)) (-15 -1960 ((-808 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-954 (-1076))) (-15 -1960 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-963)) (-15 -1960 ((-583 (-265 (-875 |#2|))) |#2| |#3|)) (-15 -1960 ((-812 |#1| |#2|) |#2| |#3|))))) (-1005) (-809 |#1|) (-558 (-815 |#1|))) (T -810))
-((-1960 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-812 *5 *3)) (-5 *1 (-810 *5 *3 *4)) (-2479 (-4 *3 (-954 (-1076)))) (-2479 (-4 *3 (-963))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))) (-1960 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-583 (-265 (-875 *3)))) (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-963)) (-2479 (-4 *3 (-954 (-1076)))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))) (-1960 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-954 (-1076))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))) (-1960 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-4 *6 (-809 *5)) (-5 *2 (-808 *5 *6 (-583 *6))) (-5 *1 (-810 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-815 *5))))) (-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-809 *5)) (-4 *5 (-1005)) (-5 *2 (-107)) (-5 *1 (-810 *5 *6 *4)) (-4 *4 (-558 (-815 *5))))) (-2066 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-107)) (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))))
-(-10 -7 (-15 -2066 ((-107) |#2| |#3|)) (-15 -2066 ((-107) (-583 |#2|) |#3|)) (-15 -1960 ((-808 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-954 (-1076))) (-15 -1960 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-963)) (-15 -1960 ((-583 (-265 (-875 |#2|))) |#2| |#3|)) (-15 -1960 ((-812 |#1| |#2|) |#2| |#3|)))))
-((-3310 (((-812 |#1| |#3|) (-1 |#3| |#2|) (-812 |#1| |#2|)) 21)))
-(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -3310 ((-812 |#1| |#3|) (-1 |#3| |#2|) (-812 |#1| |#2|)))) (-1005) (-1005) (-1005)) (T -811))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-812 *5 *6)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-812 *5 *7)) (-5 *1 (-811 *5 *6 *7)))))
-(-10 -7 (-15 -3310 ((-812 |#1| |#3|) (-1 |#3| |#2|) (-812 |#1| |#2|))))
-((-2119 (((-107) $ $) NIL)) (-2384 (($ $ $) 37)) (-3333 (((-3 (-107) "failed") $ (-815 |#1|)) 34)) (-3213 (($) 11)) (-1662 (((-1059) $) NIL)) (-2790 (($ (-815 |#1|) |#2| $) 20)) (-4125 (((-1023) $) NIL)) (-2726 (((-3 |#2| "failed") (-815 |#1|) $) 48)) (-2959 (((-107) $) 14)) (-3212 (($) 12)) (-3942 (((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 |#2|))) $) 25)) (-2288 (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 |#2|)))) 23)) (-2271 (((-787) $) 42)) (-1597 (($ (-815 |#1|) |#2| $ |#2|) 46)) (-1445 (($ (-815 |#1|) |#2| $) 45)) (-1584 (((-107) $ $) 39)))
-(((-812 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -2959 ((-107) $)) (-15 -3212 ($)) (-15 -3213 ($)) (-15 -2384 ($ $ $)) (-15 -2726 ((-3 |#2| "failed") (-815 |#1|) $)) (-15 -1445 ($ (-815 |#1|) |#2| $)) (-15 -2790 ($ (-815 |#1|) |#2| $)) (-15 -1597 ($ (-815 |#1|) |#2| $ |#2|)) (-15 -3942 ((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 |#2|))) $)) (-15 -2288 ($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 |#2|))))) (-15 -3333 ((-3 (-107) "failed") $ (-815 |#1|))))) (-1005) (-1005)) (T -812))
-((-2959 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3212 (*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3213 (*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-2726 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-4 *2 (-1005)) (-5 *1 (-812 *4 *2)))) (-1445 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1005)))) (-2790 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1005)))) (-1597 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1005)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 *4)))) (-5 *1 (-812 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 *4)))) (-4 *4 (-1005)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1005)))) (-3333 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-5 *2 (-107)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1005)))))
-(-13 (-1005) (-10 -8 (-15 -2959 ((-107) $)) (-15 -3212 ($)) (-15 -3213 ($)) (-15 -2384 ($ $ $)) (-15 -2726 ((-3 |#2| "failed") (-815 |#1|) $)) (-15 -1445 ($ (-815 |#1|) |#2| $)) (-15 -2790 ($ (-815 |#1|) |#2| $)) (-15 -1597 ($ (-815 |#1|) |#2| $ |#2|)) (-15 -3942 ((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 |#2|))) $)) (-15 -2288 ($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 |#2|))))) (-15 -3333 ((-3 (-107) "failed") $ (-815 |#1|)))))
-((-3558 (((-815 |#1|) (-815 |#1|) (-583 (-1076)) (-1 (-107) (-583 |#2|))) 30) (((-815 |#1|) (-815 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-815 |#1|) (-815 |#1|) (-1 (-107) |#2|)) 33)) (-3333 (((-107) (-583 |#2|) (-815 |#1|)) 39) (((-107) |#2| (-815 |#1|)) 35)) (-1690 (((-1 (-107) |#2|) (-815 |#1|)) 14)) (-1491 (((-583 |#2|) (-815 |#1|)) 23)) (-3496 (((-815 |#1|) (-815 |#1|) |#2|) 19)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -3558 ((-815 |#1|) (-815 |#1|) (-1 (-107) |#2|))) (-15 -3558 ((-815 |#1|) (-815 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3558 ((-815 |#1|) (-815 |#1|) (-583 (-1076)) (-1 (-107) (-583 |#2|)))) (-15 -1690 ((-1 (-107) |#2|) (-815 |#1|))) (-15 -3333 ((-107) |#2| (-815 |#1|))) (-15 -3333 ((-107) (-583 |#2|) (-815 |#1|))) (-15 -3496 ((-815 |#1|) (-815 |#1|) |#2|)) (-15 -1491 ((-583 |#2|) (-815 |#1|)))) (-1005) (-1111)) (T -813))
-((-1491 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-5 *2 (-583 *5)) (-5 *1 (-813 *4 *5)) (-4 *5 (-1111)))) (-3496 (*1 *2 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1111)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-4 *6 (-1111)) (-5 *2 (-107)) (-5 *1 (-813 *5 *6)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-5 *2 (-107)) (-5 *1 (-813 *5 *3)) (-4 *3 (-1111)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-813 *4 *5)) (-4 *5 (-1111)))) (-3558 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-815 *5)) (-5 *3 (-583 (-1076))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1005)) (-4 *6 (-1111)) (-5 *1 (-813 *5 *6)))) (-3558 (*1 *2 *2 *3) (-12 (-5 *2 (-815 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1005)) (-4 *5 (-1111)) (-5 *1 (-813 *4 *5)))) (-3558 (*1 *2 *2 *3) (-12 (-5 *2 (-815 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1005)) (-4 *5 (-1111)) (-5 *1 (-813 *4 *5)))))
-(-10 -7 (-15 -3558 ((-815 |#1|) (-815 |#1|) (-1 (-107) |#2|))) (-15 -3558 ((-815 |#1|) (-815 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3558 ((-815 |#1|) (-815 |#1|) (-583 (-1076)) (-1 (-107) (-583 |#2|)))) (-15 -1690 ((-1 (-107) |#2|) (-815 |#1|))) (-15 -3333 ((-107) |#2| (-815 |#1|))) (-15 -3333 ((-107) (-583 |#2|) (-815 |#1|))) (-15 -3496 ((-815 |#1|) (-815 |#1|) |#2|)) (-15 -1491 ((-583 |#2|) (-815 |#1|))))
-((-3310 (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)) 17)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -3310 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)))) (-1005) (-1005)) (T -814))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-815 *6)) (-5 *1 (-814 *5 *6)))))
-(-10 -7 (-15 -3310 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|))))
-((-2119 (((-107) $ $) NIL)) (-1614 (($ $ (-583 (-51))) 63)) (-2097 (((-583 $) $) 117)) (-2713 (((-2 (|:| |var| (-583 (-1076))) (|:| |pred| (-51))) $) 23)) (-3592 (((-107) $) 30)) (-4102 (($ $ (-583 (-1076)) (-51)) 25)) (-2152 (($ $ (-583 (-51))) 62)) (-3228 (((-3 |#1| "failed") $) 60) (((-3 (-1076) "failed") $) 139)) (-3390 ((|#1| $) 56) (((-1076) $) NIL)) (-2879 (($ $) 107)) (-3643 (((-107) $) 46)) (-3428 (((-583 (-51)) $) 44)) (-3334 (($ (-1076) (-107) (-107) (-107)) 64)) (-3800 (((-3 (-583 $) "failed") (-583 $)) 71)) (-2896 (((-107) $) 49)) (-2728 (((-107) $) 48)) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) 35)) (-1756 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-1480 (((-3 (-2 (|:| |val| $) (|:| -2121 $)) "failed") $) 82)) (-1653 (((-3 (-583 $) "failed") $) 32)) (-3832 (((-3 (-583 $) "failed") $ (-109)) 106) (((-3 (-2 (|:| -1407 (-109)) (|:| |arg| (-583 $))) "failed") $) 94)) (-3398 (((-3 (-583 $) "failed") $) 36)) (-2670 (((-3 (-2 (|:| |val| $) (|:| -2121 (-703))) "failed") $) 39)) (-3565 (((-107) $) 29)) (-4125 (((-1023) $) NIL)) (-1586 (((-107) $) 21)) (-3482 (((-107) $) 45)) (-2222 (((-583 (-51)) $) 110)) (-1755 (((-107) $) 47)) (-2609 (($ (-109) (-583 $)) 91)) (-3145 (((-703) $) 28)) (-2462 (($ $) 61)) (-3359 (($ (-583 $)) 58)) (-3591 (((-107) $) 26)) (-2271 (((-787) $) 51) (($ |#1|) 18) (($ (-1076)) 65)) (-3496 (($ $ (-51)) 109)) (-3610 (($) 90 T CONST)) (-3619 (($) 72 T CONST)) (-1584 (((-107) $ $) 78)) (-1704 (($ $ $) 99)) (-1678 (($ $ $) 103)) (** (($ $ (-703)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
-(((-815 |#1|) (-13 (-1005) (-954 |#1|) (-954 (-1076)) (-10 -8 (-15 0 ($) -1385) (-15 1 ($) -1385) (-15 -1653 ((-3 (-583 $) "failed") $)) (-15 -2745 ((-3 (-583 $) "failed") $)) (-15 -3832 ((-3 (-583 $) "failed") $ (-109))) (-15 -3832 ((-3 (-2 (|:| -1407 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -2670 ((-3 (-2 (|:| |val| $) (|:| -2121 (-703))) "failed") $)) (-15 -1756 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3398 ((-3 (-583 $) "failed") $)) (-15 -1480 ((-3 (-2 (|:| |val| $) (|:| -2121 $)) "failed") $)) (-15 -2609 ($ (-109) (-583 $))) (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1704 ($ $ $)) (-15 -3145 ((-703) $)) (-15 -3359 ($ (-583 $))) (-15 -2462 ($ $)) (-15 -3565 ((-107) $)) (-15 -3643 ((-107) $)) (-15 -3592 ((-107) $)) (-15 -3591 ((-107) $)) (-15 -1755 ((-107) $)) (-15 -2728 ((-107) $)) (-15 -2896 ((-107) $)) (-15 -3482 ((-107) $)) (-15 -3428 ((-583 (-51)) $)) (-15 -2152 ($ $ (-583 (-51)))) (-15 -1614 ($ $ (-583 (-51)))) (-15 -3334 ($ (-1076) (-107) (-107) (-107))) (-15 -4102 ($ $ (-583 (-1076)) (-51))) (-15 -2713 ((-2 (|:| |var| (-583 (-1076))) (|:| |pred| (-51))) $)) (-15 -1586 ((-107) $)) (-15 -2879 ($ $)) (-15 -3496 ($ $ (-51))) (-15 -2222 ((-583 (-51)) $)) (-15 -2097 ((-583 $) $)) (-15 -3800 ((-3 (-583 $) "failed") (-583 $))))) (-1005)) (T -815))
-((-3610 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (-3619 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (-1653 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2745 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3832 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-815 *4))) (-5 *1 (-815 *4)) (-4 *4 (-1005)))) (-3832 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1407 (-109)) (|:| |arg| (-583 (-815 *3))))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2670 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2121 (-703)))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-1756 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-815 *3)) (|:| |den| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3398 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-1480 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2121 (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-815 *4))) (-5 *1 (-815 *4)) (-4 *4 (-1005)))) (-1678 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (-1704 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2462 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2152 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3334 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-107)) (-5 *1 (-815 *4)) (-4 *4 (-1005)))) (-4102 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-51)) (-5 *1 (-815 *4)) (-4 *4 (-1005)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1076))) (|:| |pred| (-51)))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2879 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))) (-3496 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))) (-3800 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(-13 (-1005) (-954 |#1|) (-954 (-1076)) (-10 -8 (-15 (-3610) ($) -1385) (-15 (-3619) ($) -1385) (-15 -1653 ((-3 (-583 $) "failed") $)) (-15 -2745 ((-3 (-583 $) "failed") $)) (-15 -3832 ((-3 (-583 $) "failed") $ (-109))) (-15 -3832 ((-3 (-2 (|:| -1407 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -2670 ((-3 (-2 (|:| |val| $) (|:| -2121 (-703))) "failed") $)) (-15 -1756 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3398 ((-3 (-583 $) "failed") $)) (-15 -1480 ((-3 (-2 (|:| |val| $) (|:| -2121 $)) "failed") $)) (-15 -2609 ($ (-109) (-583 $))) (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1704 ($ $ $)) (-15 -3145 ((-703) $)) (-15 -3359 ($ (-583 $))) (-15 -2462 ($ $)) (-15 -3565 ((-107) $)) (-15 -3643 ((-107) $)) (-15 -3592 ((-107) $)) (-15 -3591 ((-107) $)) (-15 -1755 ((-107) $)) (-15 -2728 ((-107) $)) (-15 -2896 ((-107) $)) (-15 -3482 ((-107) $)) (-15 -3428 ((-583 (-51)) $)) (-15 -2152 ($ $ (-583 (-51)))) (-15 -1614 ($ $ (-583 (-51)))) (-15 -3334 ($ (-1076) (-107) (-107) (-107))) (-15 -4102 ($ $ (-583 (-1076)) (-51))) (-15 -2713 ((-2 (|:| |var| (-583 (-1076))) (|:| |pred| (-51))) $)) (-15 -1586 ((-107) $)) (-15 -2879 ($ $)) (-15 -3496 ($ $ (-51))) (-15 -2222 ((-583 (-51)) $)) (-15 -2097 ((-583 $) $)) (-15 -3800 ((-3 (-583 $) "failed") (-583 $)))))
-((-2119 (((-107) $ $) NIL)) (-3367 (((-583 |#1|) $) 16)) (-3258 (((-107) $) 38)) (-3228 (((-3 (-608 |#1|) "failed") $) 41)) (-3390 (((-608 |#1|) $) 39)) (-2439 (($ $) 18)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3682 (((-703) $) 45)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-608 |#1|) $) 17)) (-2271 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-3619 (($) 8 T CONST)) (-1452 (((-583 (-608 |#1|)) $) 23)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 11)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 48)))
-(((-816 |#1|) (-13 (-779) (-954 (-608 |#1|)) (-10 -8 (-15 1 ($) -1385) (-15 -2271 ((-751 |#1|) $)) (-15 -2271 ($ |#1|)) (-15 -2429 ((-608 |#1|) $)) (-15 -3682 ((-703) $)) (-15 -1452 ((-583 (-608 |#1|)) $)) (-15 -2439 ($ $)) (-15 -3258 ((-107) $)) (-15 -3367 ((-583 |#1|) $)))) (-779)) (T -816))
-((-3619 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-2271 (*1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-2439 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-954 (-608 |#1|)) (-10 -8 (-15 (-3619) ($) -1385) (-15 -2271 ((-751 |#1|) $)) (-15 -2271 ($ |#1|)) (-15 -2429 ((-608 |#1|) $)) (-15 -3682 ((-703) $)) (-15 -1452 ((-583 (-608 |#1|)) $)) (-15 -2439 ($ $)) (-15 -3258 ((-107) $)) (-15 -3367 ((-583 |#1|) $))))
-((-1997 ((|#1| |#1| |#1|) 20)))
-(((-817 |#1| |#2|) (-10 -7 (-15 -1997 (|#1| |#1| |#1|))) (-1133 |#2|) (-963)) (T -817))
-((-1997 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-817 *2 *3)) (-4 *2 (-1133 *3)))))
-(-10 -7 (-15 -1997 (|#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3617 (((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 14)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3319 (((-952) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 13)) (-1584 (((-107) $ $) 6)))
-(((-818) (-1188)) (T -818))
-((-3617 (*1 *2 *3 *4) (-12 (-4 *1 (-818)) (-5 *3 (-975)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059)))))) (-3319 (*1 *2 *3) (-12 (-4 *1 (-818)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) (-5 *2 (-952)))))
-(-13 (-1005) (-10 -7 (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))) (-975) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))))) (-15 -3319 ((-952) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-1636 ((|#1| |#1| (-703)) 24)) (-2876 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2352 (((-3 (-2 (|:| -3288 |#1|) (|:| -3300 |#1|)) "failed") |#1| (-703) (-703)) 27) (((-583 |#1|) |#1|) 29)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -2352 ((-583 |#1|) |#1|)) (-15 -2352 ((-3 (-2 (|:| -3288 |#1|) (|:| -3300 |#1|)) "failed") |#1| (-703) (-703))) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1636 (|#1| |#1| (-703)))) (-1133 |#2|) (-333)) (T -819))
-((-1636 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-819 *2 *4)) (-4 *2 (-1133 *4)))) (-2876 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-819 *2 *3)) (-4 *2 (-1133 *3)))) (-2352 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3288 *3) (|:| -3300 *3))) (-5 *1 (-819 *3 *5)) (-4 *3 (-1133 *5)))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-819 *3 *4)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -2352 ((-583 |#1|) |#1|)) (-15 -2352 ((-3 (-2 (|:| -3288 |#1|) (|:| -3300 |#1|)) "failed") |#1| (-703) (-703))) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1636 (|#1| |#1| (-703))))
-((-1516 (((-952) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1059)) 92) (((-952) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1059) (-199)) 87) (((-952) (-821) (-975)) 76) (((-952) (-821)) 77)) (-3617 (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-821) (-975)) 50) (((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-821)) 52)))
-(((-820) (-10 -7 (-15 -1516 ((-952) (-821))) (-15 -1516 ((-952) (-821) (-975))) (-15 -1516 ((-952) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1059) (-199))) (-15 -1516 ((-952) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1059))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-821))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-821) (-975))))) (T -820))
-((-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-975)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *1 (-820)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059))))) (-5 *1 (-820)))) (-1516 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1059)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-952)) (-5 *1 (-820)))) (-1516 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1059)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-952)) (-5 *1 (-820)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-975)) (-5 *2 (-952)) (-5 *1 (-820)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-952)) (-5 *1 (-820)))))
-(-10 -7 (-15 -1516 ((-952) (-821))) (-15 -1516 ((-952) (-821) (-975))) (-15 -1516 ((-952) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1059) (-199))) (-15 -1516 ((-952) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1059))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-821))) (-15 -3617 ((-2 (|:| -3617 (-349)) (|:| -2989 (-1059)) (|:| |explanations| (-583 (-1059)))) (-821) (-975))))
-((-2119 (((-107) $ $) NIL)) (-3390 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))) $) 10)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) 9)) (-1584 (((-107) $ $) NIL)))
-(((-821) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))) $))))) (T -821))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-821)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) (-5 *1 (-821)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199)))) (-5 *1 (-821)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))))) (-15 -2271 ((-787) $)) (-15 -3390 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059)) (|:| |tol| (-199))) $))))
-((-2060 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-3342 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
-(((-822 |#1| |#2|) (-10 -8 (-15 -3342 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3342 (|#1| |#1| |#2| (-703))) (-15 -3342 (|#1| |#1| (-583 |#2|))) (-15 -3342 (|#1| |#1| |#2|)) (-15 -2060 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2060 (|#1| |#1| |#2| (-703))) (-15 -2060 (|#1| |#1| (-583 |#2|))) (-15 -2060 (|#1| |#1| |#2|))) (-823 |#2|) (-1005)) (T -822))
-NIL
-(-10 -8 (-15 -3342 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3342 (|#1| |#1| |#2| (-703))) (-15 -3342 (|#1| |#1| (-583 |#2|))) (-15 -3342 (|#1| |#1| |#2|)) (-15 -2060 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2060 (|#1| |#1| |#2| (-703))) (-15 -2060 (|#1| |#1| (-583 |#2|))) (-15 -2060 (|#1| |#1| |#2|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2060 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-823 |#1|) (-1188) (-1005)) (T -823))
-((-2060 (*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1005)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1005)))) (-2060 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1005)))) (-2060 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4)) (-4 *4 (-1005)))) (-3342 (*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1005)))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1005)))) (-3342 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1005)))) (-3342 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4)) (-4 *4 (-1005)))))
-(-13 (-963) (-10 -8 (-15 -2060 ($ $ |t#1|)) (-15 -2060 ($ $ (-583 |t#1|))) (-15 -2060 ($ $ |t#1| (-703))) (-15 -2060 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -3342 ($ $ |t#1|)) (-15 -3342 ($ $ (-583 |t#1|))) (-15 -3342 ($ $ |t#1| (-703))) (-15 -3342 ($ $ (-583 |t#1|) (-583 (-703))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) 26)) (-1851 (((-107) $ (-703)) NIL)) (-1189 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-3027 (($ $ $) NIL (|has| $ (-6 -4193)))) (-2053 (($ $ $) NIL (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) (($ $ "left" $) NIL (|has| $ (-6 -4193))) (($ $ "right" $) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3300 (($ $) 25)) (-2408 (($ |#1|) 12) (($ $ $) 17)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3288 (($ $) 23)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) 20)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1844 (((-517) $ $) NIL)) (-3028 (((-107) $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1098 |#1|) $) 9) (((-787) $) 29 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 21 (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-824 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2408 ($ |#1|)) (-15 -2408 ($ $ $)) (-15 -2271 ((-1098 |#1|) $)))) (-1005)) (T -824))
-((-2408 (*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1005)))) (-2408 (*1 *1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1005)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-824 *3)) (-4 *3 (-1005)))))
-(-13 (-114 |#1|) (-10 -8 (-15 -2408 ($ |#1|)) (-15 -2408 ($ $ $)) (-15 -2271 ((-1098 |#1|) $))))
-((-2293 ((|#2| (-1043 |#1| |#2|)) 41)))
-(((-825 |#1| |#2|) (-10 -7 (-15 -2293 (|#2| (-1043 |#1| |#2|)))) (-844) (-13 (-963) (-10 -7 (-6 (-4194 "*"))))) (T -825))
-((-2293 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *2)) (-14 *4 (-844)) (-4 *2 (-13 (-963) (-10 -7 (-6 (-4194 "*"))))) (-5 *1 (-825 *4 *2)))))
-(-10 -7 (-15 -2293 (|#2| (-1043 |#1| |#2|))))
-((-2119 (((-107) $ $) 7)) (-1393 (($) 20 T CONST)) (-2560 (((-3 $ "failed") $) 16)) (-3022 (((-1007 |#1|) $ |#1|) 35)) (-1376 (((-107) $) 19)) (-3458 (($ $ $) 33 (-3747 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-4084 (($ $ $) 32 (-3747 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1662 (((-1059) $) 9)) (-2300 (($ $) 27)) (-4125 (((-1023) $) 10)) (-3524 ((|#1| $ |#1|) 37)) (-2609 ((|#1| $ |#1|) 36)) (-3840 (($ (-583 (-583 |#1|))) 38)) (-2046 (($ (-583 |#1|)) 39)) (-1842 (($ $ $) 23)) (-2059 (($ $ $) 22)) (-2271 (((-787) $) 11)) (-2815 (($ $ (-844)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3619 (($) 21 T CONST)) (-1642 (((-107) $ $) 30 (-3747 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1618 (((-107) $ $) 29 (-3747 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 31 (-3747 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1608 (((-107) $ $) 34)) (-1704 (($ $ $) 26)) (** (($ $ (-844)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
-(((-826 |#1|) (-1188) (-1005)) (T -826))
-((-2046 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-826 *3)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-4 *1 (-826 *3)))) (-3524 (*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1005)))) (-2609 (*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1005)))) (-3022 (*1 *2 *1 *3) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1005)) (-5 *2 (-1007 *3)))) (-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1005)) (-5 *2 (-107)))))
-(-13 (-442) (-10 -8 (-15 -2046 ($ (-583 |t#1|))) (-15 -3840 ($ (-583 (-583 |t#1|)))) (-15 -3524 (|t#1| $ |t#1|)) (-15 -2609 (|t#1| $ |t#1|)) (-15 -3022 ((-1007 |t#1|) $ |t#1|)) (-15 -1608 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |%noBranch|)))
-(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3747 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-2228 (((-583 (-583 (-703))) $) 108)) (-1355 (((-583 (-703)) (-828 |#1|) $) 130)) (-3030 (((-583 (-703)) (-828 |#1|) $) 131)) (-3553 (((-583 (-828 |#1|)) $) 98)) (-2202 (((-828 |#1|) $ (-517)) 103) (((-828 |#1|) $) 104)) (-2301 (($ (-583 (-828 |#1|))) 110)) (-1395 (((-703) $) 105)) (-1599 (((-1007 (-1007 |#1|)) $) 128)) (-3022 (((-1007 |#1|) $ |#1|) 121) (((-1007 (-1007 |#1|)) $ (-1007 |#1|)) 139) (((-1007 (-583 |#1|)) $ (-583 |#1|)) 142)) (-2659 (((-1007 |#1|) $) 101)) (-3925 (((-107) (-828 |#1|) $) 92)) (-1662 (((-1059) $) NIL)) (-2257 (((-1162) $) 95) (((-1162) $ (-517) (-517)) 143)) (-4125 (((-1023) $) NIL)) (-3938 (((-583 (-828 |#1|)) $) 96)) (-2609 (((-828 |#1|) $ (-703)) 99)) (-3647 (((-703) $) 106)) (-2271 (((-787) $) 119) (((-583 (-828 |#1|)) $) 22) (($ (-583 (-828 |#1|))) 109)) (-3985 (((-583 |#1|) $) 107)) (-1584 (((-107) $ $) 136)) (-1630 (((-107) $ $) 134)) (-1608 (((-107) $ $) 133)))
-(((-827 |#1|) (-13 (-1005) (-10 -8 (-15 -2271 ((-583 (-828 |#1|)) $)) (-15 -3938 ((-583 (-828 |#1|)) $)) (-15 -2609 ((-828 |#1|) $ (-703))) (-15 -2202 ((-828 |#1|) $ (-517))) (-15 -2202 ((-828 |#1|) $)) (-15 -1395 ((-703) $)) (-15 -3647 ((-703) $)) (-15 -3985 ((-583 |#1|) $)) (-15 -3553 ((-583 (-828 |#1|)) $)) (-15 -2228 ((-583 (-583 (-703))) $)) (-15 -2271 ($ (-583 (-828 |#1|)))) (-15 -2301 ($ (-583 (-828 |#1|)))) (-15 -3022 ((-1007 |#1|) $ |#1|)) (-15 -1599 ((-1007 (-1007 |#1|)) $)) (-15 -3022 ((-1007 (-1007 |#1|)) $ (-1007 |#1|))) (-15 -3022 ((-1007 (-583 |#1|)) $ (-583 |#1|))) (-15 -3925 ((-107) (-828 |#1|) $)) (-15 -1355 ((-583 (-703)) (-828 |#1|) $)) (-15 -3030 ((-583 (-703)) (-828 |#1|) $)) (-15 -2659 ((-1007 |#1|) $)) (-15 -1608 ((-107) $ $)) (-15 -1630 ((-107) $ $)) (-15 -2257 ((-1162) $)) (-15 -2257 ((-1162) $ (-517) (-517))))) (-1005)) (T -827))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4)) (-4 *4 (-1005)))) (-2202 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4)) (-4 *4 (-1005)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1005)) (-5 *1 (-827 *3)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1005)) (-5 *1 (-827 *3)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *2 (-1007 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1007 (-1007 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-3022 (*1 *2 *1 *3) (-12 (-4 *4 (-1005)) (-5 *2 (-1007 (-1007 *4))) (-5 *1 (-827 *4)) (-5 *3 (-1007 *4)))) (-3022 (*1 *2 *1 *3) (-12 (-4 *4 (-1005)) (-5 *2 (-1007 (-583 *4))) (-5 *1 (-827 *4)) (-5 *3 (-583 *4)))) (-3925 (*1 *2 *3 *1) (-12 (-5 *3 (-828 *4)) (-4 *4 (-1005)) (-5 *2 (-107)) (-5 *1 (-827 *4)))) (-1355 (*1 *2 *3 *1) (-12 (-5 *3 (-828 *4)) (-4 *4 (-1005)) (-5 *2 (-583 (-703))) (-5 *1 (-827 *4)))) (-3030 (*1 *2 *3 *1) (-12 (-5 *3 (-828 *4)) (-4 *4 (-1005)) (-5 *2 (-583 (-703))) (-5 *1 (-827 *4)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-1007 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-1608 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-1630 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-2257 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))) (-2257 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-827 *4)) (-4 *4 (-1005)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ((-583 (-828 |#1|)) $)) (-15 -3938 ((-583 (-828 |#1|)) $)) (-15 -2609 ((-828 |#1|) $ (-703))) (-15 -2202 ((-828 |#1|) $ (-517))) (-15 -2202 ((-828 |#1|) $)) (-15 -1395 ((-703) $)) (-15 -3647 ((-703) $)) (-15 -3985 ((-583 |#1|) $)) (-15 -3553 ((-583 (-828 |#1|)) $)) (-15 -2228 ((-583 (-583 (-703))) $)) (-15 -2271 ($ (-583 (-828 |#1|)))) (-15 -2301 ($ (-583 (-828 |#1|)))) (-15 -3022 ((-1007 |#1|) $ |#1|)) (-15 -1599 ((-1007 (-1007 |#1|)) $)) (-15 -3022 ((-1007 (-1007 |#1|)) $ (-1007 |#1|))) (-15 -3022 ((-1007 (-583 |#1|)) $ (-583 |#1|))) (-15 -3925 ((-107) (-828 |#1|) $)) (-15 -1355 ((-583 (-703)) (-828 |#1|) $)) (-15 -3030 ((-583 (-703)) (-828 |#1|) $)) (-15 -2659 ((-1007 |#1|) $)) (-15 -1608 ((-107) $ $)) (-15 -1630 ((-107) $ $)) (-15 -2257 ((-1162) $)) (-15 -2257 ((-1162) $ (-517) (-517)))))
-((-2119 (((-107) $ $) NIL)) (-2163 (((-583 $) (-583 $)) 77)) (-2360 (((-517) $) 60)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1395 (((-703) $) 58)) (-3022 (((-1007 |#1|) $ |#1|) 49)) (-1376 (((-107) $) NIL)) (-2686 (((-107) $) 63)) (-2468 (((-703) $) 61)) (-2659 (((-1007 |#1|) $) 42)) (-3458 (($ $ $) NIL (-3747 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-4084 (($ $ $) NIL (-3747 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-2406 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 36)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 93)) (-4125 (((-1023) $) NIL)) (-2123 (((-1007 |#1|) $) 99 (|has| |#1| (-338)))) (-1766 (((-107) $) 59)) (-3524 ((|#1| $ |#1|) 47)) (-2609 ((|#1| $ |#1|) 94)) (-3647 (((-703) $) 44)) (-3840 (($ (-583 (-583 |#1|))) 85)) (-2407 (((-890) $) 53)) (-2046 (($ (-583 |#1|)) 21)) (-1842 (($ $ $) NIL)) (-2059 (($ $ $) NIL)) (-1700 (($ (-583 (-583 |#1|))) 39)) (-2777 (($ (-583 (-583 |#1|))) 88)) (-3002 (($ (-583 |#1|)) 96)) (-2271 (((-787) $) 84) (($ (-583 (-583 |#1|))) 66) (($ (-583 |#1|)) 67)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3619 (($) 16 T CONST)) (-1642 (((-107) $ $) NIL (-3747 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1584 (((-107) $ $) 45)) (-1630 (((-107) $ $) NIL (-3747 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1608 (((-107) $ $) 65)) (-1704 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
-(((-828 |#1|) (-13 (-826 |#1|) (-10 -8 (-15 -2406 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -1700 ($ (-583 (-583 |#1|)))) (-15 -2271 ($ (-583 (-583 |#1|)))) (-15 -2271 ($ (-583 |#1|))) (-15 -2777 ($ (-583 (-583 |#1|)))) (-15 -3647 ((-703) $)) (-15 -2659 ((-1007 |#1|) $)) (-15 -2407 ((-890) $)) (-15 -1395 ((-703) $)) (-15 -2468 ((-703) $)) (-15 -2360 ((-517) $)) (-15 -1766 ((-107) $)) (-15 -2686 ((-107) $)) (-15 -2163 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2123 ((-1007 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3002 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3002 ($ (-583 |#1|))) |%noBranch|)))) (-1005)) (T -828))
-((-2406 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-1700 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-828 *3)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-828 *3)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-828 *3)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-828 *3)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-1007 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-1766 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2163 (*1 *2 *2) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1005)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-1007 *3)) (-5 *1 (-828 *3)) (-4 *3 (-338)) (-4 *3 (-1005)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-828 *3)))))
-(-13 (-826 |#1|) (-10 -8 (-15 -2406 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -1700 ($ (-583 (-583 |#1|)))) (-15 -2271 ($ (-583 (-583 |#1|)))) (-15 -2271 ($ (-583 |#1|))) (-15 -2777 ($ (-583 (-583 |#1|)))) (-15 -3647 ((-703) $)) (-15 -2659 ((-1007 |#1|) $)) (-15 -2407 ((-890) $)) (-15 -1395 ((-703) $)) (-15 -2468 ((-703) $)) (-15 -2360 ((-517) $)) (-15 -1766 ((-107) $)) (-15 -2686 ((-107) $)) (-15 -2163 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2123 ((-1007 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3002 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3002 ($ (-583 |#1|))) |%noBranch|))))
-((-4034 (((-3 (-583 (-1072 |#4|)) "failed") (-583 (-1072 |#4|)) (-1072 |#4|)) 128)) (-3366 ((|#1|) 76)) (-1652 (((-388 (-1072 |#4|)) (-1072 |#4|)) 137)) (-3708 (((-388 (-1072 |#4|)) (-583 |#3|) (-1072 |#4|)) 68)) (-1427 (((-388 (-1072 |#4|)) (-1072 |#4|)) 147)) (-3142 (((-3 (-583 (-1072 |#4|)) "failed") (-583 (-1072 |#4|)) (-1072 |#4|) |#3|) 92)))
-(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4034 ((-3 (-583 (-1072 |#4|)) "failed") (-583 (-1072 |#4|)) (-1072 |#4|))) (-15 -1427 ((-388 (-1072 |#4|)) (-1072 |#4|))) (-15 -1652 ((-388 (-1072 |#4|)) (-1072 |#4|))) (-15 -3366 (|#1|)) (-15 -3142 ((-3 (-583 (-1072 |#4|)) "failed") (-583 (-1072 |#4|)) (-1072 |#4|) |#3|)) (-15 -3708 ((-388 (-1072 |#4|)) (-583 |#3|) (-1072 |#4|)))) (-832) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -829))
-((-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-832)) (-4 *6 (-725)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-388 (-1072 *8))) (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-1072 *8)))) (-3142 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1072 *7))) (-5 *3 (-1072 *7)) (-4 *7 (-872 *5 *6 *4)) (-4 *5 (-832)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-829 *5 *6 *4 *7)))) (-3366 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832)) (-5 *1 (-829 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1072 *7))) (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1072 *7)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1072 *7))) (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1072 *7)))) (-4034 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1072 *7))) (-5 *3 (-1072 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-829 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4034 ((-3 (-583 (-1072 |#4|)) "failed") (-583 (-1072 |#4|)) (-1072 |#4|))) (-15 -1427 ((-388 (-1072 |#4|)) (-1072 |#4|))) (-15 -1652 ((-388 (-1072 |#4|)) (-1072 |#4|))) (-15 -3366 (|#1|)) (-15 -3142 ((-3 (-583 (-1072 |#4|)) "failed") (-583 (-1072 |#4|)) (-1072 |#4|) |#3|)) (-15 -3708 ((-388 (-1072 |#4|)) (-583 |#3|) (-1072 |#4|))))
-((-4034 (((-3 (-583 (-1072 |#2|)) "failed") (-583 (-1072 |#2|)) (-1072 |#2|)) 36)) (-3366 ((|#1|) 54)) (-1652 (((-388 (-1072 |#2|)) (-1072 |#2|)) 102)) (-3708 (((-388 (-1072 |#2|)) (-1072 |#2|)) 89)) (-1427 (((-388 (-1072 |#2|)) (-1072 |#2|)) 113)))
-(((-830 |#1| |#2|) (-10 -7 (-15 -4034 ((-3 (-583 (-1072 |#2|)) "failed") (-583 (-1072 |#2|)) (-1072 |#2|))) (-15 -1427 ((-388 (-1072 |#2|)) (-1072 |#2|))) (-15 -1652 ((-388 (-1072 |#2|)) (-1072 |#2|))) (-15 -3366 (|#1|)) (-15 -3708 ((-388 (-1072 |#2|)) (-1072 |#2|)))) (-832) (-1133 |#1|)) (T -830))
-((-3708 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-1133 *4)) (-5 *2 (-388 (-1072 *5))) (-5 *1 (-830 *4 *5)) (-5 *3 (-1072 *5)))) (-3366 (*1 *2) (-12 (-4 *2 (-832)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1133 *2)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-1133 *4)) (-5 *2 (-388 (-1072 *5))) (-5 *1 (-830 *4 *5)) (-5 *3 (-1072 *5)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-1133 *4)) (-5 *2 (-388 (-1072 *5))) (-5 *1 (-830 *4 *5)) (-5 *3 (-1072 *5)))) (-4034 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1072 *5))) (-5 *3 (-1072 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-832)) (-5 *1 (-830 *4 *5)))))
-(-10 -7 (-15 -4034 ((-3 (-583 (-1072 |#2|)) "failed") (-583 (-1072 |#2|)) (-1072 |#2|))) (-15 -1427 ((-388 (-1072 |#2|)) (-1072 |#2|))) (-15 -1652 ((-388 (-1072 |#2|)) (-1072 |#2|))) (-15 -3366 (|#1|)) (-15 -3708 ((-388 (-1072 |#2|)) (-1072 |#2|))))
-((-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 39)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 18)) (-3974 (((-3 $ "failed") $) 33)))
-(((-831 |#1|) (-10 -8 (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)))) (-832)) (T -831))
-NIL
-(-10 -8 (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-3327 (((-388 (-1072 $)) (-1072 $)) 60)) (-1224 (($ $) 51)) (-4018 (((-388 $) $) 52)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 57)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1259 (((-107) $) 53)) (-1376 (((-107) $) 31)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2276 (((-388 (-1072 $)) (-1072 $)) 58)) (-3442 (((-388 (-1072 $)) (-1072 $)) 59)) (-3868 (((-388 $) $) 50)) (-2329 (((-3 $ "failed") $ $) 42)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-3974 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-832) (-1188)) (T -832))
-((-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-832)))) (-3327 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1072 *1))) (-5 *3 (-1072 *1)))) (-3442 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1072 *1))) (-5 *3 (-1072 *1)))) (-2276 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1072 *1))) (-5 *3 (-1072 *1)))) (-2019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1072 *1))) (-5 *3 (-1072 *1)) (-4 *1 (-832)))) (-1818 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-832)) (-5 *2 (-1157 *1)))) (-3974 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-832)))))
-(-13 (-1115) (-10 -8 (-15 -3327 ((-388 (-1072 $)) (-1072 $))) (-15 -3442 ((-388 (-1072 $)) (-1072 $))) (-15 -2276 ((-388 (-1072 $)) (-1072 $))) (-15 -1943 ((-1072 $) (-1072 $) (-1072 $))) (-15 -2019 ((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $))) (IF (|has| $ (-132)) (PROGN (-15 -1818 ((-3 (-1157 $) "failed") (-623 $))) (-15 -3974 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2928 (((-107) $) NIL)) (-1305 (((-703)) NIL)) (-2009 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-1768 (((-1085 (-844) (-703)) (-517)) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2399 (((-703)) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 $ "failed") $) NIL)) (-3390 (($ $) NIL)) (-3898 (($ (-1157 $)) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1304 (($) NIL)) (-3459 (((-107) $) NIL)) (-2855 (($ $) NIL) (($ $ (-703)) NIL)) (-1259 (((-107) $) NIL)) (-1395 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-1376 (((-107) $) NIL)) (-3669 (($) NIL (|has| $ (-338)))) (-2548 (((-107) $) NIL (|has| $ (-338)))) (-2803 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-2243 (((-3 $ "failed") $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2766 (((-1072 $) $ (-844)) NIL (|has| $ (-338))) (((-1072 $) $) NIL)) (-3072 (((-844) $) NIL)) (-3018 (((-1072 $) $) NIL (|has| $ (-338)))) (-1425 (((-3 (-1072 $) "failed") $ $) NIL (|has| $ (-338))) (((-1072 $) $) NIL (|has| $ (-338)))) (-2421 (($ $ (-1072 $)) NIL (|has| $ (-338)))) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL T CONST)) (-2812 (($ (-844)) NIL)) (-1603 (((-107) $) NIL)) (-4125 (((-1023) $) NIL)) (-1318 (($) NIL (|has| $ (-338)))) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL)) (-3868 (((-388 $) $) NIL)) (-2402 (((-844)) NIL) (((-765 (-844))) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2192 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1537 (((-125)) NIL)) (-2060 (($ $ (-703)) NIL) (($ $) NIL)) (-3647 (((-844) $) NIL) (((-765 (-844)) $) NIL)) (-2387 (((-1072 $)) NIL)) (-1758 (($) NIL)) (-1426 (($) NIL (|has| $ (-338)))) (-3784 (((-623 $) (-1157 $)) NIL) (((-1157 $) $) NIL)) (-3359 (((-517) $) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-3974 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4099 (((-703)) NIL)) (-1492 (((-1157 $) (-844)) NIL) (((-1157 $)) NIL)) (-2074 (((-107) $ $) NIL)) (-1999 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3629 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-833 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-844)) (T -833))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-794 |#1|) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-955 (-517))))) (-3402 (((-794 |#1|) $) NIL) (((-1077) $) NIL (|has| (-794 |#1|) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-955 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-955 (-517))))) (-2419 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-794 |#1|))) (|:| |vec| (-1158 (-794 |#1|)))) (-623 $) (-1158 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-794 |#1|) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-794 |#1|) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-794 |#1|) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-794 |#1|) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1053)))) (-2321 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-4095 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3312 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-794 |#1|) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2713 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1077)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1077) (-794 |#1|)))) (($ $ (-1077) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1077) (-794 |#1|))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-794 |#1|) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-940))) (((-199) $) NIL (|has| (-794 |#1|) (-940)))) (-1309 (((-157 (-377 (-517))) $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1077)) NIL (|has| (-794 |#1|) (-955 (-1077))))) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-833))) (|has| (-794 |#1|) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ (-517)) NIL)) (-2829 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1692 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
+(((-795 |#1|) (-13 (-912 (-794 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) (-517)) (T -795))
+((-2194 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
+(-13 (-912 (-794 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 ((|#2| $) NIL (|has| |#2| (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| |#2| (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| |#2| (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517))))) (-3402 ((|#2| $) NIL) (((-1077) $) NIL (|has| |#2| (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-517)))) (((-517) $) NIL (|has| |#2| (-955 (-517))))) (-2419 (($ $) 31) (($ (-517) $) 32)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 53)) (-2192 (($) NIL (|has| |#2| (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| |#2| (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| |#2| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| |#2| (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 ((|#2| $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#2| (-1053)))) (-2321 (((-107) $) NIL (|has| |#2| (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 49)) (-2578 (($) NIL (|has| |#2| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| |#2| (-278)))) (-2713 ((|#2| $) NIL (|has| |#2| (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1077)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1077) |#2|))) (($ $ (-1077) |#2|) NIL (|has| |#2| (-478 (-1077) |#2|)))) (-3388 (((-703) $) NIL)) (-2612 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1463 (($ $) NIL)) (-2082 ((|#2| $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| |#2| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#2| (-558 (-816 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-940))) (((-199) $) NIL (|has| |#2| (-940)))) (-1309 (((-157 (-377 (-517))) $) 68)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) 86) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1077)) NIL (|has| |#2| (-955 (-1077))))) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-3126 ((|#2| $) NIL (|has| |#2| (-502)))) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ (-517)) 60)) (-2829 (($ $) NIL (|has| |#2| (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 14 T CONST)) (-3675 (($) 16 T CONST)) (-3348 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) 35)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1680 (($ $) 39) (($ $ $) 41)) (-1666 (($ $ $) 37)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-796 |#1| |#2|) (-13 (-912 |#2|) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
+((-2194 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-1309 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2419 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(-13 (-912 |#2|) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $))))
+((-2105 (((-107) $ $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) (-2567 ((|#2| $) 12)) (-2844 (($ |#1| |#2|) 9)) (-3232 (((-1060) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) (-4130 (((-1024) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#1| $) 11)) (-2279 (($ |#1| |#2|) 10)) (-2262 (((-787) $) 18 (-3786 (-12 (|has| |#1| (-557 (-787))) (|has| |#2| (-557 (-787)))) (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))))) (-1572 (((-107) $ $) 22 (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))))
+(((-797 |#1| |#2|) (-13 (-1112) (-10 -8 (IF (|has| |#1| (-557 (-787))) (IF (|has| |#2| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1006)) (IF (|has| |#2| (-1006)) (-6 (-1006)) |%noBranch|) |%noBranch|) (-15 -2844 ($ |#1| |#2|)) (-15 -2279 ($ |#1| |#2|)) (-15 -2420 (|#1| $)) (-15 -2567 (|#2| $)))) (-1112) (-1112)) (T -797))
+((-2844 (*1 *1 *2 *3) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-2420 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-797 *2 *3)) (-4 *3 (-1112)))) (-2567 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-797 *3 *2)) (-4 *3 (-1112)))))
+(-13 (-1112) (-10 -8 (IF (|has| |#1| (-557 (-787))) (IF (|has| |#2| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1006)) (IF (|has| |#2| (-1006)) (-6 (-1006)) |%noBranch|) |%noBranch|) (-15 -2844 ($ |#1| |#2|)) (-15 -2279 ($ |#1| |#2|)) (-15 -2420 (|#1| $)) (-15 -2567 (|#2| $))))
+((-2105 (((-107) $ $) NIL)) (-4154 (((-517) $) 15)) (-1557 (($ (-142)) 11)) (-2128 (($ (-142)) 12)) (-3232 (((-1060) $) NIL)) (-2623 (((-142) $) 13)) (-4130 (((-1024) $) NIL)) (-3124 (($ (-142)) 9)) (-1602 (($ (-142)) 8)) (-2262 (((-787) $) 23) (($ (-142)) 16)) (-3519 (($ (-142)) 10)) (-1572 (((-107) $ $) NIL)))
+(((-798) (-13 (-1006) (-10 -8 (-15 -1602 ($ (-142))) (-15 -3124 ($ (-142))) (-15 -3519 ($ (-142))) (-15 -1557 ($ (-142))) (-15 -2128 ($ (-142))) (-15 -2623 ((-142) $)) (-15 -4154 ((-517) $)) (-15 -2262 ($ (-142)))))) (T -798))
+((-1602 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-798)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))))
+(-13 (-1006) (-10 -8 (-15 -1602 ($ (-142))) (-15 -3124 ($ (-142))) (-15 -3519 ($ (-142))) (-15 -1557 ($ (-142))) (-15 -2128 ($ (-142))) (-15 -2623 ((-142) $)) (-15 -4154 ((-517) $)) (-15 -2262 ($ (-142)))))
+((-2262 (((-286 (-517)) (-377 (-876 (-47)))) 21) (((-286 (-517)) (-876 (-47))) 16)))
+(((-799) (-10 -7 (-15 -2262 ((-286 (-517)) (-876 (-47)))) (-15 -2262 ((-286 (-517)) (-377 (-876 (-47))))))) (T -799))
+((-2262 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-799)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-876 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-799)))))
+(-10 -7 (-15 -2262 ((-286 (-517)) (-876 (-47)))) (-15 -2262 ((-286 (-517)) (-377 (-876 (-47))))))
+((-3312 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 14)))
+(((-800 |#1| |#2|) (-10 -7 (-15 -3312 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1112) (-1112)) (T -800))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-801 *6)) (-5 *1 (-800 *5 *6)))))
+(-10 -7 (-15 -3312 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|))))
+((-1290 (($ |#1| |#1|) 8)) (-1295 ((|#1| $ (-703)) 10)))
+(((-801 |#1|) (-10 -8 (-15 -1290 ($ |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) (-1112)) (T -801))
+((-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-801 *2)) (-4 *2 (-1112)))) (-1290 (*1 *1 *2 *2) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1112)))))
+(-10 -8 (-15 -1290 ($ |#1| |#1|)) (-15 -1295 (|#1| $ (-703))))
+((-3312 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 14)))
+(((-802 |#1| |#2|) (-10 -7 (-15 -3312 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1112) (-1112)) (T -802))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6)))))
+(-10 -7 (-15 -3312 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))))
+((-1290 (($ |#1| |#1| |#1|) 8)) (-1295 ((|#1| $ (-703)) 10)))
+(((-803 |#1|) (-10 -8 (-15 -1290 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) (-1112)) (T -803))
+((-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-803 *2)) (-4 *2 (-1112)))) (-1290 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1112)))))
+(-10 -8 (-15 -1290 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703))))
+((-1469 (((-583 (-1082)) (-1060)) 8)))
+(((-804) (-10 -7 (-15 -1469 ((-583 (-1082)) (-1060))))) (T -804))
+((-1469 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-804)))))
+(-10 -7 (-15 -1469 ((-583 (-1082)) (-1060))))
+((-3312 (((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)) 14)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -3312 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) (-1112) (-1112)) (T -805))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6)))))
+(-10 -7 (-15 -3312 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|))))
+((-2034 (($ |#1| |#1| |#1|) 8)) (-1295 ((|#1| $ (-703)) 10)))
+(((-806 |#1|) (-10 -8 (-15 -2034 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) (-1112)) (T -806))
+((-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-806 *2)) (-4 *2 (-1112)))) (-2034 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1112)))))
+(-10 -8 (-15 -2034 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703))))
+((-3052 (((-1058 (-583 (-517))) (-583 (-517)) (-1058 (-583 (-517)))) 32)) (-1687 (((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517))) 28)) (-1251 (((-1058 (-583 (-517))) (-583 (-517))) 41) (((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517))) 40)) (-2632 (((-1058 (-583 (-517))) (-517)) 42)) (-2380 (((-1058 (-583 (-517))) (-517) (-517)) 22) (((-1058 (-583 (-517))) (-517)) 16) (((-1058 (-583 (-517))) (-517) (-517) (-517)) 12)) (-2951 (((-1058 (-583 (-517))) (-1058 (-583 (-517)))) 26)) (-1853 (((-583 (-517)) (-583 (-517))) 25)))
+(((-807) (-10 -7 (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517))) (-15 -1853 ((-583 (-517)) (-583 (-517)))) (-15 -2951 ((-1058 (-583 (-517))) (-1058 (-583 (-517))))) (-15 -1687 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3052 ((-1058 (-583 (-517))) (-583 (-517)) (-1058 (-583 (-517))))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)))) (-15 -2632 ((-1058 (-583 (-517))) (-517))))) (T -807))
+((-2632 (*1 *2 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) (-1251 (*1 *2 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-583 (-517))))) (-1251 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-583 (-517))))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-807)))) (-1687 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-583 (-517))))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-807)))) (-2380 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) (-2380 (*1 *2 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) (-2380 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517))) (-15 -1853 ((-583 (-517)) (-583 (-517)))) (-15 -2951 ((-1058 (-583 (-517))) (-1058 (-583 (-517))))) (-15 -1687 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3052 ((-1058 (-583 (-517))) (-583 (-517)) (-1058 (-583 (-517))))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)))) (-15 -2632 ((-1058 (-583 (-517))) (-517))))
+((-3367 (((-816 (-349)) $) 9 (|has| |#1| (-558 (-816 (-349))))) (((-816 (-517)) $) 8 (|has| |#1| (-558 (-816 (-517)))))))
+(((-808 |#1|) (-1189) (-1112)) (T -808))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-558 (-816 (-517)))) (-6 (-558 (-816 (-517)))) |%noBranch|) (IF (|has| |t#1| (-558 (-816 (-349)))) (-6 (-558 (-816 (-349)))) |%noBranch|)))
+(((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))))
+((-2105 (((-107) $ $) NIL)) (-3204 (($) 14)) (-3078 (($ (-813 |#1| |#2|) (-813 |#1| |#3|)) 27)) (-3162 (((-813 |#1| |#3|) $) 16)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2521 (((-107) $) 22)) (-3212 (($) 19)) (-2262 (((-787) $) 30)) (-1364 (((-813 |#1| |#2|) $) 15)) (-1572 (((-107) $ $) 25)))
+(((-809 |#1| |#2| |#3|) (-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -3078 ($ (-813 |#1| |#2|) (-813 |#1| |#3|))) (-15 -1364 ((-813 |#1| |#2|) $)) (-15 -3162 ((-813 |#1| |#3|) $)))) (-1006) (-1006) (-603 |#2|)) (T -809))
+((-2521 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-809 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-603 *4)))) (-3212 (*1 *1) (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006)) (-4 *4 (-603 *3)))) (-3204 (*1 *1) (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006)) (-4 *4 (-603 *3)))) (-3078 (*1 *1 *2 *3) (-12 (-5 *2 (-813 *4 *5)) (-5 *3 (-813 *4 *6)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-603 *5)) (-5 *1 (-809 *4 *5 *6)))) (-1364 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *4)) (-5 *1 (-809 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-603 *4)))) (-3162 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *5)) (-5 *1 (-809 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-603 *4)))))
+(-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -3078 ($ (-813 |#1| |#2|) (-813 |#1| |#3|))) (-15 -1364 ((-813 |#1| |#2|) $)) (-15 -3162 ((-813 |#1| |#3|) $))))
+((-2105 (((-107) $ $) 7)) (-2939 (((-813 |#1| $) $ (-816 |#1|) (-813 |#1| $)) 13)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-810 |#1|) (-1189) (-1006)) (T -810))
+((-2939 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-813 *4 *1)) (-5 *3 (-816 *4)) (-4 *1 (-810 *4)) (-4 *4 (-1006)))))
+(-13 (-1006) (-10 -8 (-15 -2939 ((-813 |t#1| $) $ (-816 |t#1|) (-813 |t#1| $)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-3731 (((-107) (-583 |#2|) |#3|) 23) (((-107) |#2| |#3|) 18)) (-2057 (((-813 |#1| |#2|) |#2| |#3|) 43 (-12 (-2479 (|has| |#2| (-955 (-1077)))) (-2479 (|has| |#2| (-964))))) (((-583 (-265 (-876 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-964)) (-2479 (|has| |#2| (-955 (-1077)))))) (((-583 (-265 |#2|)) |#2| |#3|) 35 (|has| |#2| (-955 (-1077)))) (((-809 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21)))
+(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-107) |#2| |#3|)) (-15 -3731 ((-107) (-583 |#2|) |#3|)) (-15 -2057 ((-809 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-955 (-1077))) (-15 -2057 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-964)) (-15 -2057 ((-583 (-265 (-876 |#2|))) |#2| |#3|)) (-15 -2057 ((-813 |#1| |#2|) |#2| |#3|))))) (-1006) (-810 |#1|) (-558 (-816 |#1|))) (T -811))
+((-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-813 *5 *3)) (-5 *1 (-811 *5 *3 *4)) (-2479 (-4 *3 (-955 (-1077)))) (-2479 (-4 *3 (-964))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 (-876 *3)))) (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-964)) (-2479 (-4 *3 (-955 (-1077)))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-955 (-1077))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *6 (-810 *5)) (-5 *2 (-809 *5 *6 (-583 *6))) (-5 *1 (-811 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-816 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-810 *5)) (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-811 *5 *6 *4)) (-4 *4 (-558 (-816 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))))
+(-10 -7 (-15 -3731 ((-107) |#2| |#3|)) (-15 -3731 ((-107) (-583 |#2|) |#3|)) (-15 -2057 ((-809 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-955 (-1077))) (-15 -2057 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-964)) (-15 -2057 ((-583 (-265 (-876 |#2|))) |#2| |#3|)) (-15 -2057 ((-813 |#1| |#2|) |#2| |#3|)))))
+((-3312 (((-813 |#1| |#3|) (-1 |#3| |#2|) (-813 |#1| |#2|)) 21)))
+(((-812 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-813 |#1| |#3|) (-1 |#3| |#2|) (-813 |#1| |#2|)))) (-1006) (-1006) (-1006)) (T -812))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-813 *5 *6)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-813 *5 *7)) (-5 *1 (-812 *5 *6 *7)))))
+(-10 -7 (-15 -3312 ((-813 |#1| |#3|) (-1 |#3| |#2|) (-813 |#1| |#2|))))
+((-2105 (((-107) $ $) NIL)) (-2374 (($ $ $) 37)) (-3867 (((-3 (-107) "failed") $ (-816 |#1|)) 34)) (-3204 (($) 11)) (-3232 (((-1060) $) NIL)) (-1757 (($ (-816 |#1|) |#2| $) 20)) (-4130 (((-1024) $) NIL)) (-1632 (((-3 |#2| "failed") (-816 |#1|) $) 48)) (-2521 (((-107) $) 14)) (-3212 (($) 12)) (-3964 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))) $) 25)) (-2279 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|)))) 23)) (-2262 (((-787) $) 42)) (-1527 (($ (-816 |#1|) |#2| $ |#2|) 46)) (-3795 (($ (-816 |#1|) |#2| $) 45)) (-1572 (((-107) $ $) 39)))
+(((-813 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -2374 ($ $ $)) (-15 -1632 ((-3 |#2| "failed") (-816 |#1|) $)) (-15 -3795 ($ (-816 |#1|) |#2| $)) (-15 -1757 ($ (-816 |#1|) |#2| $)) (-15 -1527 ($ (-816 |#1|) |#2| $ |#2|)) (-15 -3964 ((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))))) (-15 -3867 ((-3 (-107) "failed") $ (-816 |#1|))))) (-1006) (-1006)) (T -813))
+((-2521 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3212 (*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3204 (*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2374 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-1632 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) (-5 *1 (-813 *4 *2)))) (-3795 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1006)))) (-1757 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1006)))) (-1527 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1006)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4)))) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4)))) (-4 *4 (-1006)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)))) (-3867 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-813 *4 *5)) (-4 *5 (-1006)))))
+(-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -2374 ($ $ $)) (-15 -1632 ((-3 |#2| "failed") (-816 |#1|) $)) (-15 -3795 ($ (-816 |#1|) |#2| $)) (-15 -1757 ($ (-816 |#1|) |#2| $)) (-15 -1527 ($ (-816 |#1|) |#2| $ |#2|)) (-15 -3964 ((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))))) (-15 -3867 ((-3 (-107) "failed") $ (-816 |#1|)))))
+((-3594 (((-816 |#1|) (-816 |#1|) (-583 (-1077)) (-1 (-107) (-583 |#2|))) 30) (((-816 |#1|) (-816 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-816 |#1|) (-816 |#1|) (-1 (-107) |#2|)) 33)) (-3867 (((-107) (-583 |#2|) (-816 |#1|)) 39) (((-107) |#2| (-816 |#1|)) 35)) (-1678 (((-1 (-107) |#2|) (-816 |#1|)) 14)) (-3631 (((-583 |#2|) (-816 |#1|)) 23)) (-1537 (((-816 |#1|) (-816 |#1|) |#2|) 19)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -3594 ((-816 |#1|) (-816 |#1|) (-1 (-107) |#2|))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1077)) (-1 (-107) (-583 |#2|)))) (-15 -1678 ((-1 (-107) |#2|) (-816 |#1|))) (-15 -3867 ((-107) |#2| (-816 |#1|))) (-15 -3867 ((-107) (-583 |#2|) (-816 |#1|))) (-15 -1537 ((-816 |#1|) (-816 |#1|) |#2|)) (-15 -3631 ((-583 |#2|) (-816 |#1|)))) (-1006) (-1112)) (T -814))
+((-3631 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-583 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-1112)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-814 *4 *3)) (-4 *3 (-1112)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *2 (-107)) (-5 *1 (-814 *5 *6)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-814 *5 *3)) (-4 *3 (-1112)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-1112)))) (-3594 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-816 *5)) (-5 *3 (-583 (-1077))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *1 (-814 *5 *6)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *2 (-816 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1006)) (-4 *5 (-1112)) (-5 *1 (-814 *4 *5)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *2 (-816 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1006)) (-4 *5 (-1112)) (-5 *1 (-814 *4 *5)))))
+(-10 -7 (-15 -3594 ((-816 |#1|) (-816 |#1|) (-1 (-107) |#2|))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1077)) (-1 (-107) (-583 |#2|)))) (-15 -1678 ((-1 (-107) |#2|) (-816 |#1|))) (-15 -3867 ((-107) |#2| (-816 |#1|))) (-15 -3867 ((-107) (-583 |#2|) (-816 |#1|))) (-15 -1537 ((-816 |#1|) (-816 |#1|) |#2|)) (-15 -3631 ((-583 |#2|) (-816 |#1|))))
+((-3312 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 17)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -3312 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) (-1006) (-1006)) (T -815))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))))
+(-10 -7 (-15 -3312 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))))
+((-2105 (((-107) $ $) NIL)) (-2423 (($ $ (-583 (-51))) 63)) (-2080 (((-583 $) $) 117)) (-1413 (((-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))) $) 23)) (-2798 (((-107) $) 30)) (-3859 (($ $ (-583 (-1077)) (-51)) 25)) (-3021 (($ $ (-583 (-51))) 62)) (-3220 (((-3 |#1| "failed") $) 60) (((-3 (-1077) "failed") $) 139)) (-3402 ((|#1| $) 56) (((-1077) $) NIL)) (-1478 (($ $) 107)) (-3762 (((-107) $) 46)) (-1541 (((-583 (-51)) $) 44)) (-3983 (($ (-1077) (-107) (-107) (-107)) 64)) (-1479 (((-3 (-583 $) "failed") (-583 $)) 71)) (-1485 (((-107) $) 49)) (-3697 (((-107) $) 48)) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) 35)) (-1742 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 $)) "failed") $) 82)) (-1442 (((-3 (-583 $) "failed") $) 32)) (-1694 (((-3 (-583 $) "failed") $ (-109)) 106) (((-3 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 $))) "failed") $) 94)) (-2692 (((-3 (-583 $) "failed") $) 36)) (-3044 (((-3 (-2 (|:| |val| $) (|:| -1725 (-703))) "failed") $) 39)) (-1193 (((-107) $) 29)) (-4130 (((-1024) $) NIL)) (-3475 (((-107) $) 21)) (-1989 (((-107) $) 45)) (-2753 (((-583 (-51)) $) 110)) (-3647 (((-107) $) 47)) (-2612 (($ (-109) (-583 $)) 91)) (-3137 (((-703) $) 28)) (-2453 (($ $) 61)) (-3367 (($ (-583 $)) 58)) (-1968 (((-107) $) 26)) (-2262 (((-787) $) 51) (($ |#1|) 18) (($ (-1077)) 65)) (-1537 (($ $ (-51)) 109)) (-3663 (($) 90 T CONST)) (-3675 (($) 72 T CONST)) (-1572 (((-107) $ $) 78)) (-1692 (($ $ $) 99)) (-1666 (($ $ $) 103)) (** (($ $ (-703)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
+(((-816 |#1|) (-13 (-1006) (-955 |#1|) (-955 (-1077)) (-10 -8 (-15 0 ($) -1373) (-15 1 ($) -1373) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -1694 ((-3 (-583 $) "failed") $ (-109))) (-15 -1694 ((-3 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |val| $) (|:| -1725 (-703))) "failed") $)) (-15 -1742 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2692 ((-3 (-583 $) "failed") $)) (-15 -1481 ((-3 (-2 (|:| |val| $) (|:| -1725 $)) "failed") $)) (-15 -2612 ($ (-109) (-583 $))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1692 ($ $ $)) (-15 -3137 ((-703) $)) (-15 -3367 ($ (-583 $))) (-15 -2453 ($ $)) (-15 -1193 ((-107) $)) (-15 -3762 ((-107) $)) (-15 -2798 ((-107) $)) (-15 -1968 ((-107) $)) (-15 -3647 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -1485 ((-107) $)) (-15 -1989 ((-107) $)) (-15 -1541 ((-583 (-51)) $)) (-15 -3021 ($ $ (-583 (-51)))) (-15 -2423 ($ $ (-583 (-51)))) (-15 -3983 ($ (-1077) (-107) (-107) (-107))) (-15 -3859 ($ $ (-583 (-1077)) (-51))) (-15 -1413 ((-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))) $)) (-15 -3475 ((-107) $)) (-15 -1478 ($ $)) (-15 -1537 ($ $ (-51))) (-15 -2753 ((-583 (-51)) $)) (-15 -2080 ((-583 $) $)) (-15 -1479 ((-3 (-583 $) "failed") (-583 $))))) (-1006)) (T -816))
+((-3663 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-3675 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1442 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1743 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1694 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-816 *4))) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-1694 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 (-816 *3))))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3044 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-703)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1742 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-816 *3)) (|:| |den| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2692 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1481 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-816 *4))) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-1666 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1692 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2453 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1193 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3983 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-107)) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-3859 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-51)) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1537 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1479 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(-13 (-1006) (-955 |#1|) (-955 (-1077)) (-10 -8 (-15 (-3663) ($) -1373) (-15 (-3675) ($) -1373) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -1694 ((-3 (-583 $) "failed") $ (-109))) (-15 -1694 ((-3 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |val| $) (|:| -1725 (-703))) "failed") $)) (-15 -1742 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2692 ((-3 (-583 $) "failed") $)) (-15 -1481 ((-3 (-2 (|:| |val| $) (|:| -1725 $)) "failed") $)) (-15 -2612 ($ (-109) (-583 $))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1692 ($ $ $)) (-15 -3137 ((-703) $)) (-15 -3367 ($ (-583 $))) (-15 -2453 ($ $)) (-15 -1193 ((-107) $)) (-15 -3762 ((-107) $)) (-15 -2798 ((-107) $)) (-15 -1968 ((-107) $)) (-15 -3647 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -1485 ((-107) $)) (-15 -1989 ((-107) $)) (-15 -1541 ((-583 (-51)) $)) (-15 -3021 ($ $ (-583 (-51)))) (-15 -2423 ($ $ (-583 (-51)))) (-15 -3983 ($ (-1077) (-107) (-107) (-107))) (-15 -3859 ($ $ (-583 (-1077)) (-51))) (-15 -1413 ((-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))) $)) (-15 -3475 ((-107) $)) (-15 -1478 ($ $)) (-15 -1537 ($ $ (-51))) (-15 -2753 ((-583 (-51)) $)) (-15 -2080 ((-583 $) $)) (-15 -1479 ((-3 (-583 $) "failed") (-583 $)))))
+((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) 16)) (-2240 (((-107) $) 38)) (-3220 (((-3 (-608 |#1|) "failed") $) 41)) (-3402 (((-608 |#1|) $) 39)) (-2429 (($ $) 18)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3728 (((-703) $) 45)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-608 |#1|) $) 17)) (-2262 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-3675 (($) 8 T CONST)) (-1226 (((-583 (-608 |#1|)) $) 23)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 11)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 48)))
+(((-817 |#1|) (-13 (-779) (-955 (-608 |#1|)) (-10 -8 (-15 1 ($) -1373) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ($ |#1|)) (-15 -2420 ((-608 |#1|) $)) (-15 -3728 ((-703) $)) (-15 -1226 ((-583 (-608 |#1|)) $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3375 ((-583 |#1|) $)))) (-779)) (T -817))
+((-3675 (*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-2262 (*1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-955 (-608 |#1|)) (-10 -8 (-15 (-3675) ($) -1373) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ($ |#1|)) (-15 -2420 ((-608 |#1|) $)) (-15 -3728 ((-703) $)) (-15 -1226 ((-583 (-608 |#1|)) $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3375 ((-583 |#1|) $))))
+((-4077 ((|#1| |#1| |#1|) 20)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -4077 (|#1| |#1| |#1|))) (-1134 |#2|) (-964)) (T -818))
+((-4077 (*1 *2 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1134 *3)))))
+(-10 -7 (-15 -4077 (|#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-4147 (((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 13)) (-1572 (((-107) $ $) 6)))
+(((-819) (-1189)) (T -819))
+((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-819)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-4147 (*1 *2 *3) (-12 (-4 *1 (-819)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *2 (-953)))))
+(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))) (-15 -4147 ((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-3001 ((|#1| |#1| (-703)) 24)) (-3120 (((-3 |#1| "failed") |#1| |#1|) 23)) (-1784 (((-3 (-2 (|:| -3287 |#1|) (|:| -3302 |#1|)) "failed") |#1| (-703) (-703)) 27) (((-583 |#1|) |#1|) 29)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -1784 ((-583 |#1|) |#1|)) (-15 -1784 ((-3 (-2 (|:| -3287 |#1|) (|:| -3302 |#1|)) "failed") |#1| (-703) (-703))) (-15 -3120 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3001 (|#1| |#1| (-703)))) (-1134 |#2|) (-333)) (T -820))
+((-3001 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-820 *2 *4)) (-4 *2 (-1134 *4)))) (-3120 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-820 *2 *3)) (-4 *2 (-1134 *3)))) (-1784 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-820 *3 *5)) (-4 *3 (-1134 *5)))) (-1784 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -1784 ((-583 |#1|) |#1|)) (-15 -1784 ((-3 (-2 (|:| -3287 |#1|) (|:| -3302 |#1|)) "failed") |#1| (-703) (-703))) (-15 -3120 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3001 (|#1| |#1| (-703))))
+((-1993 (((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060)) 92) (((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060) (-199)) 87) (((-953) (-822) (-976)) 76) (((-953) (-822)) 77)) (-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822) (-976)) 50) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822)) 52)))
+(((-821) (-10 -7 (-15 -1993 ((-953) (-822))) (-15 -1993 ((-953) (-822) (-976))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060) (-199))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822) (-976))))) (T -821))
+((-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-821)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-821)))) (-1993 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-953)) (-5 *1 (-821)))) (-1993 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-953)) (-5 *1 (-821)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-821)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-953)) (-5 *1 (-821)))))
+(-10 -7 (-15 -1993 ((-953) (-822))) (-15 -1993 ((-953) (-822) (-976))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060) (-199))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822) (-976))))
+((-2105 (((-107) $ $) NIL)) (-3402 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))) $) 10)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 9)) (-1572 (((-107) $ $) NIL)))
+(((-822) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))) $))))) (T -822))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-822)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *1 (-822)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *1 (-822)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))) $))))
+((-2042 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-3348 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
+(((-823 |#1| |#2|) (-10 -8 (-15 -3348 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3348 (|#1| |#1| |#2| (-703))) (-15 -3348 (|#1| |#1| (-583 |#2|))) (-15 -3348 (|#1| |#1| |#2|)) (-15 -2042 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#2| (-703))) (-15 -2042 (|#1| |#1| (-583 |#2|))) (-15 -2042 (|#1| |#1| |#2|))) (-824 |#2|) (-1006)) (T -823))
+NIL
+(-10 -8 (-15 -3348 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3348 (|#1| |#1| |#2| (-703))) (-15 -3348 (|#1| |#1| (-583 |#2|))) (-15 -3348 (|#1| |#1| |#2|)) (-15 -2042 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#2| (-703))) (-15 -2042 (|#1| |#1| (-583 |#2|))) (-15 -2042 (|#1| |#1| |#2|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-824 |#1|) (-1189) (-1006)) (T -824))
+((-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4)) (-4 *4 (-1006)))) (-3348 (*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006)))) (-3348 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-3348 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4)) (-4 *4 (-1006)))))
+(-13 (-964) (-10 -8 (-15 -2042 ($ $ |t#1|)) (-15 -2042 ($ $ (-583 |t#1|))) (-15 -2042 ($ $ |t#1| (-703))) (-15 -2042 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -3348 ($ $ |t#1|)) (-15 -3348 ($ $ (-583 |t#1|))) (-15 -3348 ($ $ |t#1| (-703))) (-15 -3348 ($ $ (-583 |t#1|) (-583 (-703))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 26)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-3149 (($ $ $) NIL (|has| $ (-6 -4196)))) (-4174 (($ $ $) NIL (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 25)) (-2399 (($ |#1|) 12) (($ $ $) 17)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 23)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) 20)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1099 |#1|) $) 9) (((-787) $) 29 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 21 (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-825 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2399 ($ |#1|)) (-15 -2399 ($ $ $)) (-15 -2262 ((-1099 |#1|) $)))) (-1006)) (T -825))
+((-2399 (*1 *1 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006)))) (-2399 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1006)))))
+(-13 (-114 |#1|) (-10 -8 (-15 -2399 ($ |#1|)) (-15 -2399 ($ $ $)) (-15 -2262 ((-1099 |#1|) $))))
+((-1723 ((|#2| (-1044 |#1| |#2|)) 41)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -1723 (|#2| (-1044 |#1| |#2|)))) (-845) (-13 (-964) (-10 -7 (-6 (-4197 "*"))))) (T -826))
+((-1723 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *2)) (-14 *4 (-845)) (-4 *2 (-13 (-964) (-10 -7 (-6 (-4197 "*"))))) (-5 *1 (-826 *4 *2)))))
+(-10 -7 (-15 -1723 (|#2| (-1044 |#1| |#2|))))
+((-2105 (((-107) $ $) 7)) (-3038 (($) 20 T CONST)) (-3550 (((-3 $ "failed") $) 16)) (-1259 (((-1008 |#1|) $ |#1|) 35)) (-1690 (((-107) $) 19)) (-3480 (($ $ $) 33 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-4095 (($ $ $) 32 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 27)) (-4130 (((-1024) $) 10)) (-3552 ((|#1| $ |#1|) 37)) (-2612 ((|#1| $ |#1|) 36)) (-3318 (($ (-583 (-583 |#1|))) 38)) (-2927 (($ (-583 |#1|)) 39)) (-1853 (($ $ $) 23)) (-1970 (($ $ $) 22)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3675 (($) 21 T CONST)) (-1630 (((-107) $ $) 30 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1606 (((-107) $ $) 29 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 31 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1596 (((-107) $ $) 34)) (-1692 (($ $ $) 26)) (** (($ $ (-845)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-827 |#1|) (-1189) (-1006)) (T -827))
+((-2927 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-827 *3)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-4 *1 (-827 *3)))) (-3552 (*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006)))) (-2612 (*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006)))) (-1259 (*1 *2 *1 *3) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-1008 *3)))) (-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))))
+(-13 (-442) (-10 -8 (-15 -2927 ($ (-583 |t#1|))) (-15 -3318 ($ (-583 (-583 |t#1|)))) (-15 -3552 (|t#1| $ |t#1|)) (-15 -2612 (|t#1| $ |t#1|)) (-15 -1259 ((-1008 |t#1|) $ |t#1|)) (-15 -1596 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |%noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3786 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1575 (((-583 (-583 (-703))) $) 108)) (-3417 (((-583 (-703)) (-829 |#1|) $) 130)) (-1688 (((-583 (-703)) (-829 |#1|) $) 131)) (-3342 (((-583 (-829 |#1|)) $) 98)) (-2192 (((-829 |#1|) $ (-517)) 103) (((-829 |#1|) $) 104)) (-4110 (($ (-583 (-829 |#1|))) 110)) (-3250 (((-703) $) 105)) (-2573 (((-1008 (-1008 |#1|)) $) 128)) (-1259 (((-1008 |#1|) $ |#1|) 121) (((-1008 (-1008 |#1|)) $ (-1008 |#1|)) 139) (((-1008 (-583 |#1|)) $ (-583 |#1|)) 142)) (-1772 (((-1008 |#1|) $) 101)) (-1949 (((-107) (-829 |#1|) $) 92)) (-3232 (((-1060) $) NIL)) (-1357 (((-1163) $) 95) (((-1163) $ (-517) (-517)) 143)) (-4130 (((-1024) $) NIL)) (-2433 (((-583 (-829 |#1|)) $) 96)) (-2612 (((-829 |#1|) $ (-703)) 99)) (-1191 (((-703) $) 106)) (-2262 (((-787) $) 119) (((-583 (-829 |#1|)) $) 22) (($ (-583 (-829 |#1|))) 109)) (-4003 (((-583 |#1|) $) 107)) (-1572 (((-107) $ $) 136)) (-1618 (((-107) $ $) 134)) (-1596 (((-107) $ $) 133)))
+(((-828 |#1|) (-13 (-1006) (-10 -8 (-15 -2262 ((-583 (-829 |#1|)) $)) (-15 -2433 ((-583 (-829 |#1|)) $)) (-15 -2612 ((-829 |#1|) $ (-703))) (-15 -2192 ((-829 |#1|) $ (-517))) (-15 -2192 ((-829 |#1|) $)) (-15 -3250 ((-703) $)) (-15 -1191 ((-703) $)) (-15 -4003 ((-583 |#1|) $)) (-15 -3342 ((-583 (-829 |#1|)) $)) (-15 -1575 ((-583 (-583 (-703))) $)) (-15 -2262 ($ (-583 (-829 |#1|)))) (-15 -4110 ($ (-583 (-829 |#1|)))) (-15 -1259 ((-1008 |#1|) $ |#1|)) (-15 -2573 ((-1008 (-1008 |#1|)) $)) (-15 -1259 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -1259 ((-1008 (-583 |#1|)) $ (-583 |#1|))) (-15 -1949 ((-107) (-829 |#1|) $)) (-15 -3417 ((-583 (-703)) (-829 |#1|) $)) (-15 -1688 ((-583 (-703)) (-829 |#1|) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -1596 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -1357 ((-1163) $)) (-15 -1357 ((-1163) $ (-517) (-517))))) (-1006)) (T -828))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4)) (-4 *4 (-1006)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4)) (-4 *4 (-1006)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3)))) (-1259 (*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1259 (*1 *2 *1 *3) (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-828 *4)) (-5 *3 (-1008 *4)))) (-1259 (*1 *2 *1 *3) (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-828 *4)) (-5 *3 (-583 *4)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-828 *4)))) (-3417 (*1 *2 *3 *1) (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703))) (-5 *1 (-828 *4)))) (-1688 (*1 *2 *3 *1) (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703))) (-5 *1 (-828 *4)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1596 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1618 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1357 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-828 *4)) (-4 *4 (-1006)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ((-583 (-829 |#1|)) $)) (-15 -2433 ((-583 (-829 |#1|)) $)) (-15 -2612 ((-829 |#1|) $ (-703))) (-15 -2192 ((-829 |#1|) $ (-517))) (-15 -2192 ((-829 |#1|) $)) (-15 -3250 ((-703) $)) (-15 -1191 ((-703) $)) (-15 -4003 ((-583 |#1|) $)) (-15 -3342 ((-583 (-829 |#1|)) $)) (-15 -1575 ((-583 (-583 (-703))) $)) (-15 -2262 ($ (-583 (-829 |#1|)))) (-15 -4110 ($ (-583 (-829 |#1|)))) (-15 -1259 ((-1008 |#1|) $ |#1|)) (-15 -2573 ((-1008 (-1008 |#1|)) $)) (-15 -1259 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -1259 ((-1008 (-583 |#1|)) $ (-583 |#1|))) (-15 -1949 ((-107) (-829 |#1|) $)) (-15 -3417 ((-583 (-703)) (-829 |#1|) $)) (-15 -1688 ((-583 (-703)) (-829 |#1|) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -1596 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -1357 ((-1163) $)) (-15 -1357 ((-1163) $ (-517) (-517)))))
+((-2105 (((-107) $ $) NIL)) (-2149 (((-583 $) (-583 $)) 77)) (-3502 (((-517) $) 60)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-3250 (((-703) $) 58)) (-1259 (((-1008 |#1|) $ |#1|) 49)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) 63)) (-3803 (((-703) $) 61)) (-1772 (((-1008 |#1|) $) 42)) (-3480 (($ $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-4095 (($ $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-2428 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 36)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 93)) (-4130 (((-1024) $) NIL)) (-1952 (((-1008 |#1|) $) 99 (|has| |#1| (-338)))) (-2278 (((-107) $) 59)) (-3552 ((|#1| $ |#1|) 47)) (-2612 ((|#1| $ |#1|) 94)) (-1191 (((-703) $) 44)) (-3318 (($ (-583 (-583 |#1|))) 85)) (-2500 (((-891) $) 53)) (-2927 (($ (-583 |#1|)) 21)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-3985 (($ (-583 (-583 |#1|))) 39)) (-3893 (($ (-583 (-583 |#1|))) 88)) (-3975 (($ (-583 |#1|)) 96)) (-2262 (((-787) $) 84) (($ (-583 (-583 |#1|))) 66) (($ (-583 |#1|)) 67)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 16 T CONST)) (-1630 (((-107) $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1572 (((-107) $ $) 45)) (-1618 (((-107) $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1596 (((-107) $ $) 65)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
+(((-829 |#1|) (-13 (-827 |#1|) (-10 -8 (-15 -2428 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -3985 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 |#1|))) (-15 -3893 ($ (-583 (-583 |#1|)))) (-15 -1191 ((-703) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -2500 ((-891) $)) (-15 -3250 ((-703) $)) (-15 -3803 ((-703) $)) (-15 -3502 ((-517) $)) (-15 -2278 ((-107) $)) (-15 -3448 ((-107) $)) (-15 -2149 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -1952 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3975 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3975 ($ (-583 |#1|))) |%noBranch|)))) (-1006)) (T -829))
+((-2428 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-891)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-2149 (*1 *2 *2) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-338)) (-4 *3 (-1006)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3)))))
+(-13 (-827 |#1|) (-10 -8 (-15 -2428 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -3985 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 |#1|))) (-15 -3893 ($ (-583 (-583 |#1|)))) (-15 -1191 ((-703) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -2500 ((-891) $)) (-15 -3250 ((-703) $)) (-15 -3803 ((-703) $)) (-15 -3502 ((-517) $)) (-15 -2278 ((-107) $)) (-15 -3448 ((-107) $)) (-15 -2149 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -1952 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3975 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3975 ($ (-583 |#1|))) |%noBranch|))))
+((-2701 (((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|)) 128)) (-3526 ((|#1|) 76)) (-1301 (((-388 (-1073 |#4|)) (-1073 |#4|)) 137)) (-2807 (((-388 (-1073 |#4|)) (-583 |#3|) (-1073 |#4|)) 68)) (-2996 (((-388 (-1073 |#4|)) (-1073 |#4|)) 147)) (-2845 (((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|) |#3|) 92)))
+(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|))) (-15 -2996 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -1301 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -3526 (|#1|)) (-15 -2845 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|) |#3|)) (-15 -2807 ((-388 (-1073 |#4|)) (-583 |#3|) (-1073 |#4|)))) (-833) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -830))
+((-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-833)) (-4 *6 (-725)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-388 (-1073 *8))) (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-1073 *8)))) (-2845 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7)) (-4 *7 (-873 *5 *6 *4)) (-4 *5 (-833)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-830 *5 *6 *4 *7)))) (-3526 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833)) (-5 *1 (-830 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-2701 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-830 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|))) (-15 -2996 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -1301 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -3526 (|#1|)) (-15 -2845 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|) |#3|)) (-15 -2807 ((-388 (-1073 |#4|)) (-583 |#3|) (-1073 |#4|))))
+((-2701 (((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)) 36)) (-3526 ((|#1|) 54)) (-1301 (((-388 (-1073 |#2|)) (-1073 |#2|)) 102)) (-2807 (((-388 (-1073 |#2|)) (-1073 |#2|)) 89)) (-2996 (((-388 (-1073 |#2|)) (-1073 |#2|)) 113)))
+(((-831 |#1| |#2|) (-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|))) (-15 -2996 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -1301 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -3526 (|#1|)) (-15 -2807 ((-388 (-1073 |#2|)) (-1073 |#2|)))) (-833) (-1134 |#1|)) (T -831))
+((-2807 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))) (-3526 (*1 *2) (-12 (-4 *2 (-833)) (-5 *1 (-831 *2 *3)) (-4 *3 (-1134 *2)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))) (-2701 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-833)) (-5 *1 (-831 *4 *5)))))
+(-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|))) (-15 -2996 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -1301 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -3526 (|#1|)) (-15 -2807 ((-388 (-1073 |#2|)) (-1073 |#2|))))
+((-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 39)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 18)) (-3385 (((-3 $ "failed") $) 33)))
+(((-832 |#1|) (-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)))) (-833)) (T -832))
+NIL
+(-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 60)) (-1322 (($ $) 51)) (-3306 (((-388 $) $) 52)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 57)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-2022 (((-107) $) 53)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3835 (((-388 (-1073 $)) (-1073 $)) 58)) (-1195 (((-388 (-1073 $)) (-1073 $)) 59)) (-3896 (((-388 $) $) 50)) (-2333 (((-3 $ "failed") $ $) 42)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-3385 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-833) (-1189)) (T -833))
+((-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-833)))) (-1453 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))) (-1195 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))) (-3835 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))) (-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *1))) (-5 *3 (-1073 *1)) (-4 *1 (-833)))) (-2767 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-833)) (-5 *2 (-1158 *1)))) (-3385 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-833)))))
+(-13 (-1116) (-10 -8 (-15 -1453 ((-388 (-1073 $)) (-1073 $))) (-15 -1195 ((-388 (-1073 $)) (-1073 $))) (-15 -3835 ((-388 (-1073 $)) (-1073 $))) (-15 -2664 ((-1073 $) (-1073 $) (-1073 $))) (-15 -3862 ((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $))) (IF (|has| $ (-132)) (PROGN (-15 -2767 ((-3 (-1158 $) "failed") (-623 $))) (-15 -3385 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 $ "failed") $) NIL)) (-3402 (($ $) NIL)) (-3539 (($ (-1158 $)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL)) (-2634 (((-107) $) NIL)) (-2627 (($ $) NIL) (($ $ (-703)) NIL)) (-2022 (((-107) $) NIL)) (-3250 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| $ (-338)))) (-3715 (((-107) $) NIL (|has| $ (-338)))) (-3522 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 $) $ (-845)) NIL (|has| $ (-338))) (((-1073 $) $) NIL)) (-4161 (((-845) $) NIL)) (-3905 (((-1073 $) $) NIL (|has| $ (-338)))) (-3211 (((-3 (-1073 $) "failed") $ $) NIL (|has| $ (-338))) (((-1073 $) $) NIL (|has| $ (-338)))) (-3063 (($ $ (-1073 $)) NIL (|has| $ (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL T CONST)) (-2803 (($ (-845)) NIL)) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| $ (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL)) (-3896 (((-388 $) $) NIL)) (-2177 (((-845)) NIL) (((-765 (-845))) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1470 (((-125)) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-1191 (((-845) $) NIL) (((-765 (-845)) $) NIL)) (-2819 (((-1073 $)) NIL)) (-3718 (($) NIL)) (-3297 (($) NIL (|has| $ (-338)))) (-1372 (((-623 $) (-1158 $)) NIL) (((-1158 $) $) NIL)) (-3367 (((-517) $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $) (-845)) NIL) (((-1158 $)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-834 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-845)) (T -834))
NIL
(-13 (-319) (-299 $) (-558 (-517)))
-((-3140 (((-3 (-2 (|:| -1395 (-703)) (|:| -2227 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-1368 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-1395 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
-(((-834 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1395 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -1368 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3140 ((-3 (-2 (|:| -1395 (-703)) (|:| -2227 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-954 (-517))) (-400 |#1|) (-1133 |#2|) (-1133 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -834))
-((-3140 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-2 (|:| -1395 (-703)) (|:| -2227 *8))) (-5 *1 (-834 *4 *5 *6 *7 *8)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6 *7 *8)))) (-1395 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1395 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -1368 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3140 ((-3 (-2 (|:| -1395 (-703)) (|:| -2227 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
-((-3140 (((-3 (-2 (|:| -1395 (-703)) (|:| -2227 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-1368 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-1395 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
-(((-835 |#1| |#2| |#3|) (-10 -7 (-15 -1395 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -1368 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3140 ((-3 (-2 (|:| -1395 (-703)) (|:| -2227 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1133 (-377 (-517))) (-1133 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -835))
-((-3140 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -1395 (-703)) (|:| -2227 *6))) (-5 *1 (-835 *4 *5 *6)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-835 *4 *5 *6)))) (-1395 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-835 *4 *5 *6)))))
-(-10 -7 (-15 -1395 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -1368 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3140 ((-3 (-2 (|:| -1395 (-703)) (|:| -2227 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
-((-1555 ((|#2| |#2|) 25)) (-3276 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-2623 (((-844) (-517)) 35)) (-3919 (((-517) |#2|) 42)) (-2003 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
-(((-836 |#1| |#2|) (-10 -7 (-15 -2623 ((-844) (-517))) (-15 -2003 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -2003 ((-517) |#2|)) (-15 -3276 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3919 ((-517) |#2|)) (-15 -1555 (|#2| |#2|))) (-1133 (-377 (-517))) (-1133 (-377 |#1|))) (T -836))
-((-1555 (*1 *2 *2) (-12 (-4 *3 (-1133 (-377 (-517)))) (-5 *1 (-836 *3 *2)) (-4 *2 (-1133 (-377 *3))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-1133 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3)) (-4 *3 (-1133 (-377 *4))))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1133 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *5)) (-4 *5 (-1133 (-377 *4))))) (-2003 (*1 *2 *3) (-12 (-4 *4 (-1133 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3)) (-4 *3 (-1133 (-377 *4))))) (-2003 (*1 *2 *3) (-12 (-4 *3 (-1133 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-836 *3 *4)) (-4 *4 (-1133 (-377 *3))))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1133 (-377 *3))) (-5 *2 (-844)) (-5 *1 (-836 *4 *5)) (-4 *5 (-1133 (-377 *4))))))
-(-10 -7 (-15 -2623 ((-844) (-517))) (-15 -2003 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -2003 ((-517) |#2|)) (-15 -3276 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3919 ((-517) |#2|)) (-15 -1555 (|#2| |#2|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 ((|#1| $) 81)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2379 (($ $ $) NIL)) (-2560 (((-3 $ "failed") $) 75)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-1503 (($ |#1| (-388 |#1|)) 73)) (-1954 (((-1072 |#1|) |#1| |#1|) 40)) (-3236 (($ $) 49)) (-1376 (((-107) $) NIL)) (-2895 (((-517) $) 78)) (-3510 (($ $ (-517)) 80)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2240 ((|#1| $) 77)) (-2994 (((-388 |#1|) $) 76)) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) 74)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2428 (($ $) 38)) (-2271 (((-787) $) 99) (($ (-517)) 54) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 59) (($ (-377 (-388 |#1|))) 67)) (-4099 (((-703)) 52)) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 23 T CONST)) (-3619 (($) 11 T CONST)) (-1584 (((-107) $ $) 68)) (-1704 (($ $ $) NIL)) (-1692 (($ $) 88) (($ $ $) NIL)) (-1678 (($ $ $) 37)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 90) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-837 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2271 ((-377 |#1|) $)) (-15 -2271 ($ (-377 (-388 |#1|)))) (-15 -2428 ($ $)) (-15 -2994 ((-388 |#1|) $)) (-15 -2240 (|#1| $)) (-15 -3510 ($ $ (-517))) (-15 -2895 ((-517) $)) (-15 -1954 ((-1072 |#1|) |#1| |#1|)) (-15 -3236 ($ $)) (-15 -1503 ($ |#1| (-388 |#1|))) (-15 -1363 (|#1| $)))) (-278)) (T -837))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-837 *3)))) (-2428 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-2240 (*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-1954 (*1 *2 *3 *3) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-3236 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))) (-1503 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-837 *2)))) (-1363 (*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
-(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2271 ((-377 |#1|) $)) (-15 -2271 ($ (-377 (-388 |#1|)))) (-15 -2428 ($ $)) (-15 -2994 ((-388 |#1|) $)) (-15 -2240 (|#1| $)) (-15 -3510 ($ $ (-517))) (-15 -2895 ((-517) $)) (-15 -1954 ((-1072 |#1|) |#1| |#1|)) (-15 -3236 ($ $)) (-15 -1503 ($ |#1| (-388 |#1|))) (-15 -1363 (|#1| $))))
-((-1503 (((-51) (-875 |#1|) (-388 (-875 |#1|)) (-1076)) 16) (((-51) (-377 (-875 |#1|)) (-1076)) 17)))
-(((-838 |#1|) (-10 -7 (-15 -1503 ((-51) (-377 (-875 |#1|)) (-1076))) (-15 -1503 ((-51) (-875 |#1|) (-388 (-875 |#1|)) (-1076)))) (-13 (-278) (-134))) (T -838))
-((-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-875 *6))) (-5 *5 (-1076)) (-5 *3 (-875 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *5)))))
-(-10 -7 (-15 -1503 ((-51) (-377 (-875 |#1|)) (-1076))) (-15 -1503 ((-51) (-875 |#1|) (-388 (-875 |#1|)) (-1076))))
-((-3137 ((|#4| (-583 |#4|)) 119) (((-1072 |#4|) (-1072 |#4|) (-1072 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2370 (((-1072 |#4|) (-583 (-1072 |#4|))) 112) (((-1072 |#4|) (-1072 |#4|) (-1072 |#4|)) 49) ((|#4| (-583 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
-(((-839 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2370 (|#4| |#4| |#4|)) (-15 -2370 (|#4| (-583 |#4|))) (-15 -2370 ((-1072 |#4|) (-1072 |#4|) (-1072 |#4|))) (-15 -2370 ((-1072 |#4|) (-583 (-1072 |#4|)))) (-15 -3137 (|#4| |#4| |#4|)) (-15 -3137 ((-1072 |#4|) (-1072 |#4|) (-1072 |#4|))) (-15 -3137 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-872 |#3| |#1| |#2|)) (T -839))
-((-3137 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5)) (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-3137 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6)))) (-3137 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1072 *7)) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-2370 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5)) (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2370 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4)))))
-(-10 -7 (-15 -2370 (|#4| |#4| |#4|)) (-15 -2370 (|#4| (-583 |#4|))) (-15 -2370 ((-1072 |#4|) (-1072 |#4|) (-1072 |#4|))) (-15 -2370 ((-1072 |#4|) (-583 (-1072 |#4|)))) (-15 -3137 (|#4| |#4| |#4|)) (-15 -3137 ((-1072 |#4|) (-1072 |#4|) (-1072 |#4|))) (-15 -3137 (|#4| (-583 |#4|))))
-((-3941 (((-827 (-517)) (-890)) 22) (((-827 (-517)) (-583 (-517))) 19)) (-2806 (((-827 (-517)) (-583 (-517))) 46) (((-827 (-517)) (-844)) 47)) (-1925 (((-827 (-517))) 23)) (-2486 (((-827 (-517))) 36) (((-827 (-517)) (-583 (-517))) 35)) (-4146 (((-827 (-517))) 34) (((-827 (-517)) (-583 (-517))) 33)) (-1203 (((-827 (-517))) 32) (((-827 (-517)) (-583 (-517))) 31)) (-1505 (((-827 (-517))) 30) (((-827 (-517)) (-583 (-517))) 29)) (-2319 (((-827 (-517))) 28) (((-827 (-517)) (-583 (-517))) 27)) (-3115 (((-827 (-517))) 38) (((-827 (-517)) (-583 (-517))) 37)) (-3307 (((-827 (-517)) (-583 (-517))) 50) (((-827 (-517)) (-844)) 51)) (-2652 (((-827 (-517)) (-583 (-517))) 48) (((-827 (-517)) (-844)) 49)) (-2411 (((-827 (-517)) (-583 (-517))) 43) (((-827 (-517)) (-844)) 45)) (-4109 (((-827 (-517)) (-583 (-844))) 40)))
-(((-840) (-10 -7 (-15 -2806 ((-827 (-517)) (-844))) (-15 -2806 ((-827 (-517)) (-583 (-517)))) (-15 -2411 ((-827 (-517)) (-844))) (-15 -2411 ((-827 (-517)) (-583 (-517)))) (-15 -4109 ((-827 (-517)) (-583 (-844)))) (-15 -2652 ((-827 (-517)) (-844))) (-15 -2652 ((-827 (-517)) (-583 (-517)))) (-15 -3307 ((-827 (-517)) (-844))) (-15 -3307 ((-827 (-517)) (-583 (-517)))) (-15 -2319 ((-827 (-517)) (-583 (-517)))) (-15 -2319 ((-827 (-517)))) (-15 -1505 ((-827 (-517)) (-583 (-517)))) (-15 -1505 ((-827 (-517)))) (-15 -1203 ((-827 (-517)) (-583 (-517)))) (-15 -1203 ((-827 (-517)))) (-15 -4146 ((-827 (-517)) (-583 (-517)))) (-15 -4146 ((-827 (-517)))) (-15 -2486 ((-827 (-517)) (-583 (-517)))) (-15 -2486 ((-827 (-517)))) (-15 -3115 ((-827 (-517)) (-583 (-517)))) (-15 -3115 ((-827 (-517)))) (-15 -1925 ((-827 (-517)))) (-15 -3941 ((-827 (-517)) (-583 (-517)))) (-15 -3941 ((-827 (-517)) (-890))))) (T -840))
-((-3941 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1925 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3115 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2486 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-4146 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1203 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1203 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1505 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2319 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-583 (-844))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(-10 -7 (-15 -2806 ((-827 (-517)) (-844))) (-15 -2806 ((-827 (-517)) (-583 (-517)))) (-15 -2411 ((-827 (-517)) (-844))) (-15 -2411 ((-827 (-517)) (-583 (-517)))) (-15 -4109 ((-827 (-517)) (-583 (-844)))) (-15 -2652 ((-827 (-517)) (-844))) (-15 -2652 ((-827 (-517)) (-583 (-517)))) (-15 -3307 ((-827 (-517)) (-844))) (-15 -3307 ((-827 (-517)) (-583 (-517)))) (-15 -2319 ((-827 (-517)) (-583 (-517)))) (-15 -2319 ((-827 (-517)))) (-15 -1505 ((-827 (-517)) (-583 (-517)))) (-15 -1505 ((-827 (-517)))) (-15 -1203 ((-827 (-517)) (-583 (-517)))) (-15 -1203 ((-827 (-517)))) (-15 -4146 ((-827 (-517)) (-583 (-517)))) (-15 -4146 ((-827 (-517)))) (-15 -2486 ((-827 (-517)) (-583 (-517)))) (-15 -2486 ((-827 (-517)))) (-15 -3115 ((-827 (-517)) (-583 (-517)))) (-15 -3115 ((-827 (-517)))) (-15 -1925 ((-827 (-517)))) (-15 -3941 ((-827 (-517)) (-583 (-517)))) (-15 -3941 ((-827 (-517)) (-890))))
-((-3723 (((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076))) 10)) (-1338 (((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076))) 9)))
-(((-841 |#1|) (-10 -7 (-15 -1338 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -3723 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076))))) (-421)) (T -841))
-((-3723 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1076))) (-4 *4 (-421)) (-5 *1 (-841 *4)))) (-1338 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1076))) (-4 *4 (-421)) (-5 *1 (-841 *4)))))
-(-10 -7 (-15 -1338 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -3723 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1076)))))
-((-2271 (((-286 |#1|) (-446)) 15)))
-(((-842 |#1|) (-10 -7 (-15 -2271 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -842))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-842 *4)) (-4 *4 (-13 (-779) (-509))))))
-(-10 -7 (-15 -2271 ((-286 |#1|) (-446))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1376 (((-107) $) 31)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-843) (-1188)) (T -843))
-((-1762 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-2 (|:| -1582 (-583 *1)) (|:| -1318 *1))) (-5 *3 (-583 *1)))) (-3006 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-843)))))
-(-13 (-421) (-10 -8 (-15 -1762 ((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $))) (-15 -3006 ((-3 (-583 $) "failed") (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2370 (($ $ $) NIL)) (-2271 (((-787) $) NIL)) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3619 (($) NIL T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ $ $) NIL)))
-(((-844) (-13 (-25) (-779) (-659) (-10 -8 (-15 -2370 ($ $ $)) (-6 (-4194 "*"))))) (T -844))
-((-2370 (*1 *1 *1 *1) (-5 *1 (-844))))
-(-13 (-25) (-779) (-659) (-10 -8 (-15 -2370 ($ $ $)) (-6 (-4194 "*"))))
-((-3542 ((|#2| (-583 |#1|) (-583 |#1|)) 24)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -3542 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1133 |#1|)) (T -845))
-((-3542 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1133 *4)) (-5 *1 (-845 *4 *2)))))
-(-10 -7 (-15 -3542 (|#2| (-583 |#1|) (-583 |#1|))))
-((-1326 (((-1072 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1130 |#1| |#2|) (-1130 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
-(((-846 |#1| |#2|) (-10 -7 (-15 -1326 ((-1130 |#1| |#2|) (-1130 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -1326 ((-1072 |#2|) (-583 |#2|) (-583 |#2|)))) (-1076) (-333)) (T -846))
-((-1326 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1072 *5)) (-5 *1 (-846 *4 *5)) (-14 *4 (-1076)))) (-1326 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1130 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1076)) (-4 *5 (-333)) (-5 *1 (-846 *4 *5)))))
-(-10 -7 (-15 -1326 ((-1130 |#1| |#2|) (-1130 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -1326 ((-1072 |#2|) (-583 |#2|) (-583 |#2|))))
-((-2344 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-1059)) 138)) (-3355 ((|#4| |#4|) 154)) (-3562 (((-583 (-377 (-875 |#1|))) (-583 (-1076))) 117)) (-3158 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-1841 (((-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-583 |#4|)) 57)) (-1983 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-2036 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-1059)) 150)) (-3090 (((-517) (-623 |#4|) (-844) (-1059)) 131) (((-517) (-623 |#4|) (-583 (-1076)) (-844) (-1059)) 130) (((-517) (-623 |#4|) (-583 |#4|) (-844) (-1059)) 129) (((-517) (-623 |#4|) (-1059)) 126) (((-517) (-623 |#4|) (-583 (-1076)) (-1059)) 125) (((-517) (-623 |#4|) (-583 |#4|) (-1059)) 124) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-844)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1076)) (-844)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-844)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|)) 119) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1076))) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 115)) (-3347 ((|#4| (-875 |#1|)) 66)) (-1742 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 151)) (-2762 (((-583 (-583 (-517))) (-517) (-517)) 128)) (-1994 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-2147 (((-703) (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-2409 (((-703) (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-2071 (((-107) (-583 (-875 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-3318 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-1909 (((-583 |#4|) |#4|) 47)) (-4035 (((-583 (-377 (-875 |#1|))) (-583 |#4|)) 113) (((-623 (-377 (-875 |#1|))) (-623 |#4|)) 54) (((-377 (-875 |#1|)) |#4|) 110)) (-1428 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-703) (-1059) (-517)) 89)) (-1530 (((-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3147 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-1990 (((-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-2 (|:| -3016 (-623 (-377 (-875 |#1|)))) (|:| |vec| (-583 (-377 (-875 |#1|)))) (|:| -3737 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
-(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1076)))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-844))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1076)) (-844))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-844))) (-15 -3090 ((-517) (-623 |#4|) (-583 |#4|) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-583 (-1076)) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-583 |#4|) (-844) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-583 (-1076)) (-844) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-844) (-1059))) (-15 -2344 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-1059))) (-15 -2036 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-1059))) (-15 -1428 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-703) (-1059) (-517))) (-15 -4035 ((-377 (-875 |#1|)) |#4|)) (-15 -4035 ((-623 (-377 (-875 |#1|))) (-623 |#4|))) (-15 -4035 ((-583 (-377 (-875 |#1|))) (-583 |#4|))) (-15 -3562 ((-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -3347 (|#4| (-875 |#1|))) (-15 -3318 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -1530 ((-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -1841 ((-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-583 |#4|))) (-15 -1990 ((-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-2 (|:| -3016 (-623 (-377 (-875 |#1|)))) (|:| |vec| (-583 (-377 (-875 |#1|)))) (|:| -3737 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -1909 ((-583 |#4|) |#4|)) (-15 -2409 ((-703) (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2147 ((-703) (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1994 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2762 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1742 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3147 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -1983 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -3158 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3355 (|#4| |#4|)) (-15 -2071 ((-107) (-583 |#4|))) (-15 -2071 ((-107) (-583 (-875 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1076))) (-725) (-872 |#1| |#3| |#2|)) (T -847))
-((-2071 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *4 *5 *6 *7)))) (-3355 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1076)))) (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-872 *3 *5 *4)))) (-3158 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-875 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-872 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1076)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-875 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *9)))) (|:| -1492 (-583 (-1157 (-377 (-875 *9))))))))) (-5 *1 (-847 *9 *10 *11 *12)))) (-1983 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-847 *5 *6 *7 *8)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *5 *6 *7 *8)))) (-2762 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *6 *5)))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-872 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1076)))) (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *6)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-847 *4 *5 *6 *7)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-847 *4 *5 *6 *7)))) (-1909 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-847 *4 *5 *6 *3)) (-4 *3 (-872 *4 *6 *5)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3016 (-623 (-377 (-875 *4)))) (|:| |vec| (-583 (-377 (-875 *4)))) (|:| -3737 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1157 (-377 (-875 *4)))) (|:| -1492 (-583 (-1157 (-377 (-875 *4))))))) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-1841 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1157 (-377 (-875 *4)))) (|:| -1492 (-583 (-1157 (-377 (-875 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-872 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-703)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-4 *7 (-872 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-872 *4 *6 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-583 (-1076))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-377 (-875 *4))) (-5 *1 (-847 *4 *5 *6 *3)) (-4 *3 (-872 *4 *6 *5)))) (-1428 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-875 *8)))) (-5 *5 (-703)) (-5 *6 (-1059)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-872 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1076)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-875 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *8)))) (|:| -1492 (-583 (-1157 (-377 (-875 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-847 *8 *9 *10 *11)) (-5 *7 (-517)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-875 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *4)))) (|:| -1492 (-583 (-1157 (-377 (-875 *4)))))))))) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *5)))) (|:| -1492 (-583 (-1157 (-377 (-875 *5)))))))))) (-5 *4 (-1059)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-872 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *5 *6 *7 *8)))) (-3090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-844)) (-5 *5 (-1059)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *6 *7 *8 *9)))) (-3090 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1076))) (-5 *5 (-844)) (-5 *6 (-1059)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1076)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *7 *8 *9 *10)))) (-3090 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-844)) (-5 *6 (-1059)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1076)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *7 *8 *9 *10)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1059)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *5 *6 *7 *8)))) (-3090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1076))) (-5 *5 (-1059)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *6 *7 *8 *9)))) (-3090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1059)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *6 *7 *8 *9)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-844)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *5)))) (|:| -1492 (-583 (-1157 (-377 (-875 *5)))))))))) (-5 *1 (-847 *5 *6 *7 *8)))) (-3090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1076))) (-5 *5 (-844)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-875 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *6)))) (|:| -1492 (-583 (-1157 (-377 (-875 *6)))))))))) (-5 *1 (-847 *6 *7 *8 *9)))) (-3090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-844)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-875 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *6)))) (|:| -1492 (-583 (-1157 (-377 (-875 *6)))))))))) (-5 *1 (-847 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-875 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *4)))) (|:| -1492 (-583 (-1157 (-377 (-875 *4)))))))))) (-5 *1 (-847 *4 *5 *6 *7)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1076))) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *5)))) (|:| -1492 (-583 (-1157 (-377 (-875 *5)))))))))) (-5 *1 (-847 *5 *6 *7 *8)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 *5)))) (|:| -1492 (-583 (-1157 (-377 (-875 *5)))))))))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(-10 -7 (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1076)))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-844))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1076)) (-844))) (-15 -3090 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-623 |#4|) (-844))) (-15 -3090 ((-517) (-623 |#4|) (-583 |#4|) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-583 (-1076)) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-583 |#4|) (-844) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-583 (-1076)) (-844) (-1059))) (-15 -3090 ((-517) (-623 |#4|) (-844) (-1059))) (-15 -2344 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-1059))) (-15 -2036 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|))))))))) (-1059))) (-15 -1428 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-703) (-1059) (-517))) (-15 -4035 ((-377 (-875 |#1|)) |#4|)) (-15 -4035 ((-623 (-377 (-875 |#1|))) (-623 |#4|))) (-15 -4035 ((-583 (-377 (-875 |#1|))) (-583 |#4|))) (-15 -3562 ((-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -3347 (|#4| (-875 |#1|))) (-15 -3318 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -1530 ((-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -1841 ((-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-583 |#4|))) (-15 -1990 ((-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))) (-2 (|:| -3016 (-623 (-377 (-875 |#1|)))) (|:| |vec| (-583 (-377 (-875 |#1|)))) (|:| -3737 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -1909 ((-583 |#4|) |#4|)) (-15 -2409 ((-703) (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2147 ((-703) (-583 (-2 (|:| -3737 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1994 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2762 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1742 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3147 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -1983 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -3158 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1157 (-377 (-875 |#1|)))) (|:| -1492 (-583 (-1157 (-377 (-875 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3355 (|#4| |#4|)) (-15 -2071 ((-107) (-583 |#4|))) (-15 -2071 ((-107) (-583 (-875 |#1|)))))
-((-3093 (((-850) |#1| (-1076)) 16) (((-850) |#1| (-1076) (-1000 (-199))) 20)) (-2171 (((-850) |#1| |#1| (-1076) (-1000 (-199))) 18) (((-850) |#1| (-1076) (-1000 (-199))) 14)))
-(((-848 |#1|) (-10 -7 (-15 -2171 ((-850) |#1| (-1076) (-1000 (-199)))) (-15 -2171 ((-850) |#1| |#1| (-1076) (-1000 (-199)))) (-15 -3093 ((-850) |#1| (-1076) (-1000 (-199)))) (-15 -3093 ((-850) |#1| (-1076)))) (-558 (-493))) (T -848))
-((-3093 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1076)) (-5 *5 (-1000 (-199))) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))) (-2171 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1076)) (-5 *5 (-1000 (-199))) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))) (-2171 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1076)) (-5 *5 (-1000 (-199))) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -2171 ((-850) |#1| (-1076) (-1000 (-199)))) (-15 -2171 ((-850) |#1| |#1| (-1076) (-1000 (-199)))) (-15 -3093 ((-850) |#1| (-1076) (-1000 (-199)))) (-15 -3093 ((-850) |#1| (-1076))))
-((-2540 (($ $ (-1000 (-199)) (-1000 (-199)) (-1000 (-199))) 69)) (-2733 (((-1000 (-199)) $) 40)) (-2721 (((-1000 (-199)) $) 39)) (-2709 (((-1000 (-199)) $) 38)) (-2938 (((-583 (-583 (-199))) $) 43)) (-3952 (((-1000 (-199)) $) 41)) (-3269 (((-517) (-517)) 32)) (-3059 (((-517) (-517)) 28)) (-2565 (((-517) (-517)) 30)) (-2737 (((-107) (-107)) 35)) (-3891 (((-517)) 31)) (-3574 (($ $ (-1000 (-199))) 72) (($ $) 73)) (-1825 (($ (-1 (-866 (-199)) (-199)) (-1000 (-199))) 77) (($ (-1 (-866 (-199)) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199))) 78)) (-2171 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199))) 81) (($ $ (-1000 (-199))) 75)) (-2813 (((-517)) 36)) (-3368 (((-517)) 27)) (-3768 (((-517)) 29)) (-2195 (((-583 (-583 (-866 (-199)))) $) 93)) (-3353 (((-107) (-107)) 37)) (-2271 (((-787) $) 92)) (-3559 (((-107)) 34)))
-(((-849) (-13 (-893) (-10 -8 (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)))) (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ $ (-1000 (-199)))) (-15 -2540 ($ $ (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -3574 ($ $ (-1000 (-199)))) (-15 -3574 ($ $)) (-15 -3952 ((-1000 (-199)) $)) (-15 -2938 ((-583 (-583 (-199))) $)) (-15 -3368 ((-517))) (-15 -3059 ((-517) (-517))) (-15 -3768 ((-517))) (-15 -2565 ((-517) (-517))) (-15 -3891 ((-517))) (-15 -3269 ((-517) (-517))) (-15 -3559 ((-107))) (-15 -2737 ((-107) (-107))) (-15 -2813 ((-517))) (-15 -3353 ((-107) (-107)))))) (T -849))
-((-1825 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-849)))) (-1825 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-849)))) (-2171 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-849)))) (-2171 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-849)))) (-2171 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849)))) (-2540 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849)))) (-3574 (*1 *1 *1) (-5 *1 (-849))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-849)))) (-3368 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3768 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2565 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3891 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3559 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2813 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(-13 (-893) (-10 -8 (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)))) (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ $ (-1000 (-199)))) (-15 -2540 ($ $ (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -3574 ($ $ (-1000 (-199)))) (-15 -3574 ($ $)) (-15 -3952 ((-1000 (-199)) $)) (-15 -2938 ((-583 (-583 (-199))) $)) (-15 -3368 ((-517))) (-15 -3059 ((-517) (-517))) (-15 -3768 ((-517))) (-15 -2565 ((-517) (-517))) (-15 -3891 ((-517))) (-15 -3269 ((-517) (-517))) (-15 -3559 ((-107))) (-15 -2737 ((-107) (-107))) (-15 -2813 ((-517))) (-15 -3353 ((-107) (-107)))))
-((-2540 (($ $ (-1000 (-199))) 70) (($ $ (-1000 (-199)) (-1000 (-199))) 71)) (-2721 (((-1000 (-199)) $) 43)) (-2709 (((-1000 (-199)) $) 42)) (-3952 (((-1000 (-199)) $) 44)) (-2954 (((-517) (-517)) 36)) (-4053 (((-517) (-517)) 32)) (-4046 (((-517) (-517)) 34)) (-3388 (((-107) (-107)) 38)) (-2161 (((-517)) 35)) (-3574 (($ $ (-1000 (-199))) 74) (($ $) 75)) (-1825 (($ (-1 (-866 (-199)) (-199)) (-1000 (-199))) 84) (($ (-1 (-866 (-199)) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199))) 85)) (-3093 (($ (-1 (-199) (-199)) (-1000 (-199))) 92) (($ (-1 (-199) (-199))) 95)) (-2171 (($ (-1 (-199) (-199)) (-1000 (-199))) 79) (($ (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199))) 80) (($ (-583 (-1 (-199) (-199))) (-1000 (-199))) 87) (($ (-583 (-1 (-199) (-199))) (-1000 (-199)) (-1000 (-199))) 88) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199))) 81) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199))) 82) (($ $ (-1000 (-199))) 76)) (-2285 (((-107) $) 39)) (-3357 (((-517)) 40)) (-2194 (((-517)) 31)) (-2490 (((-517)) 33)) (-2195 (((-583 (-583 (-866 (-199)))) $) 22)) (-1364 (((-107) (-107)) 41)) (-2271 (((-787) $) 106)) (-4151 (((-107)) 37)))
-(((-850) (-13 (-877) (-10 -8 (-15 -2171 ($ (-1 (-199) (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ (-583 (-1 (-199) (-199))) (-1000 (-199)))) (-15 -2171 ($ (-583 (-1 (-199) (-199))) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)))) (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -3093 ($ (-1 (-199) (-199)) (-1000 (-199)))) (-15 -3093 ($ (-1 (-199) (-199)))) (-15 -2171 ($ $ (-1000 (-199)))) (-15 -2285 ((-107) $)) (-15 -2540 ($ $ (-1000 (-199)))) (-15 -2540 ($ $ (-1000 (-199)) (-1000 (-199)))) (-15 -3574 ($ $ (-1000 (-199)))) (-15 -3574 ($ $)) (-15 -3952 ((-1000 (-199)) $)) (-15 -2194 ((-517))) (-15 -4053 ((-517) (-517))) (-15 -2490 ((-517))) (-15 -4046 ((-517) (-517))) (-15 -2161 ((-517))) (-15 -2954 ((-517) (-517))) (-15 -4151 ((-107))) (-15 -3388 ((-107) (-107))) (-15 -3357 ((-517))) (-15 -1364 ((-107) (-107)))))) (T -850))
-((-2171 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-2171 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-2171 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-2171 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-2171 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-2171 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-1825 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-1825 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-3093 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199))) (-5 *1 (-850)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-850)))) (-2171 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-2540 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850)))) (-2540 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850)))) (-3574 (*1 *1 *1) (-5 *1 (-850))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850)))) (-2194 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2490 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2161 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2954 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-4151 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3357 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-1364 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
-(-13 (-877) (-10 -8 (-15 -2171 ($ (-1 (-199) (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ (-583 (-1 (-199) (-199))) (-1000 (-199)))) (-15 -2171 ($ (-583 (-1 (-199) (-199))) (-1000 (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)))) (-15 -2171 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)))) (-15 -1825 ($ (-1 (-866 (-199)) (-199)) (-1000 (-199)) (-1000 (-199)) (-1000 (-199)))) (-15 -3093 ($ (-1 (-199) (-199)) (-1000 (-199)))) (-15 -3093 ($ (-1 (-199) (-199)))) (-15 -2171 ($ $ (-1000 (-199)))) (-15 -2285 ((-107) $)) (-15 -2540 ($ $ (-1000 (-199)))) (-15 -2540 ($ $ (-1000 (-199)) (-1000 (-199)))) (-15 -3574 ($ $ (-1000 (-199)))) (-15 -3574 ($ $)) (-15 -3952 ((-1000 (-199)) $)) (-15 -2194 ((-517))) (-15 -4053 ((-517) (-517))) (-15 -2490 ((-517))) (-15 -4046 ((-517) (-517))) (-15 -2161 ((-517))) (-15 -2954 ((-517) (-517))) (-15 -4151 ((-107))) (-15 -3388 ((-107) (-107))) (-15 -3357 ((-517))) (-15 -1364 ((-107) (-107)))))
-((-2650 (((-583 (-1000 (-199))) (-583 (-583 (-866 (-199))))) 23)))
-(((-851) (-10 -7 (-15 -2650 ((-583 (-1000 (-199))) (-583 (-583 (-866 (-199)))))))) (T -851))
-((-2650 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-1000 (-199)))) (-5 *1 (-851)))))
-(-10 -7 (-15 -2650 ((-583 (-1000 (-199))) (-583 (-583 (-866 (-199)))))))
-((-3448 ((|#2| |#2|) 25)) (-3507 ((|#2| |#2|) 26)) (-1385 ((|#2| |#2|) 24)) (-3123 ((|#2| |#2| (-1059)) 23)))
-(((-852 |#1| |#2|) (-10 -7 (-15 -3123 (|#2| |#2| (-1059))) (-15 -1385 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3507 (|#2| |#2|))) (-779) (-400 |#1|)) (T -852))
-((-3507 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3)))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3)))) (-3123 (*1 *2 *2 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-779)) (-5 *1 (-852 *4 *2)) (-4 *2 (-400 *4)))))
-(-10 -7 (-15 -3123 (|#2| |#2| (-1059))) (-15 -1385 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3507 (|#2| |#2|)))
-((-3448 (((-286 (-517)) (-1076)) 15)) (-3507 (((-286 (-517)) (-1076)) 13)) (-1385 (((-286 (-517)) (-1076)) 11)) (-3123 (((-286 (-517)) (-1076) (-1059)) 18)))
-(((-853) (-10 -7 (-15 -3123 ((-286 (-517)) (-1076) (-1059))) (-15 -1385 ((-286 (-517)) (-1076))) (-15 -3448 ((-286 (-517)) (-1076))) (-15 -3507 ((-286 (-517)) (-1076))))) (T -853))
-((-3507 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-1059)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))))
-(-10 -7 (-15 -3123 ((-286 (-517)) (-1076) (-1059))) (-15 -1385 ((-286 (-517)) (-1076))) (-15 -3448 ((-286 (-517)) (-1076))) (-15 -3507 ((-286 (-517)) (-1076))))
-((-3544 (((-812 |#1| |#3|) |#2| (-815 |#1|) (-812 |#1| |#3|)) 24)) (-2633 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
-(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -2633 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3544 ((-812 |#1| |#3|) |#2| (-815 |#1|) (-812 |#1| |#3|)))) (-1005) (-809 |#1|) (-13 (-1005) (-954 |#2|))) (T -854))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-4 *6 (-13 (-1005) (-954 *3))) (-4 *3 (-809 *5)) (-5 *1 (-854 *5 *3 *6)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1005) (-954 *5))) (-4 *5 (-809 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-854 *4 *5 *6)))))
-(-10 -7 (-15 -2633 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3544 ((-812 |#1| |#3|) |#2| (-815 |#1|) (-812 |#1| |#3|))))
-((-3544 (((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)) 29)))
-(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3544 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-1005) (-13 (-509) (-779) (-809 |#1|)) (-13 (-400 |#2|) (-558 (-815 |#1|)) (-809 |#1|) (-954 (-556 $)))) (T -855))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-13 (-400 *6) (-558 *4) (-809 *5) (-954 (-556 $)))) (-5 *4 (-815 *5)) (-4 *6 (-13 (-509) (-779) (-809 *5))) (-5 *1 (-855 *5 *6 *3)))))
-(-10 -7 (-15 -3544 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))))
-((-3544 (((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|)) 12)))
-(((-856 |#1|) (-10 -7 (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|)))) (-502)) (T -856))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 (-517) *3)) (-5 *4 (-815 (-517))) (-4 *3 (-502)) (-5 *1 (-856 *3)))))
-(-10 -7 (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))))
-((-3544 (((-812 |#1| |#2|) (-556 |#2|) (-815 |#1|) (-812 |#1| |#2|)) 52)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -3544 ((-812 |#1| |#2|) (-556 |#2|) (-815 |#1|) (-812 |#1| |#2|)))) (-1005) (-13 (-779) (-954 (-556 $)) (-558 (-815 |#1|)) (-809 |#1|))) (T -857))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1005)) (-4 *6 (-13 (-779) (-954 (-556 $)) (-558 *4) (-809 *5))) (-5 *4 (-815 *5)) (-5 *1 (-857 *5 *6)))))
-(-10 -7 (-15 -3544 ((-812 |#1| |#2|) (-556 |#2|) (-815 |#1|) (-812 |#1| |#2|))))
-((-3544 (((-808 |#1| |#2| |#3|) |#3| (-815 |#1|) (-808 |#1| |#2| |#3|)) 14)))
-(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -3544 ((-808 |#1| |#2| |#3|) |#3| (-815 |#1|) (-808 |#1| |#2| |#3|)))) (-1005) (-809 |#1|) (-603 |#2|)) (T -858))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-4 *6 (-809 *5)) (-4 *3 (-603 *6)) (-5 *1 (-858 *5 *6 *3)))))
-(-10 -7 (-15 -3544 ((-808 |#1| |#2| |#3|) |#3| (-815 |#1|) (-808 |#1| |#2| |#3|))))
-((-3544 (((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|)) 17 (|has| |#3| (-809 |#1|))) (((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|) (-1 (-812 |#1| |#5|) |#3| (-815 |#1|) (-812 |#1| |#5|))) 16)))
-(((-859 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3544 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|) (-1 (-812 |#1| |#5|) |#3| (-815 |#1|) (-812 |#1| |#5|)))) (IF (|has| |#3| (-809 |#1|)) (-15 -3544 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|))) |%noBranch|)) (-1005) (-725) (-779) (-13 (-963) (-779) (-809 |#1|)) (-13 (-872 |#4| |#2| |#3|) (-558 (-815 |#1|)))) (T -859))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-13 (-872 *8 *6 *7) (-558 *4))) (-5 *4 (-815 *5)) (-4 *7 (-809 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-963) (-779) (-809 *5))) (-5 *1 (-859 *5 *6 *7 *8 *3)))) (-3544 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-812 *6 *3) *8 (-815 *6) (-812 *6 *3))) (-4 *8 (-779)) (-5 *2 (-812 *6 *3)) (-5 *4 (-815 *6)) (-4 *6 (-1005)) (-4 *3 (-13 (-872 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-963) (-779) (-809 *6))) (-5 *1 (-859 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3544 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|) (-1 (-812 |#1| |#5|) |#3| (-815 |#1|) (-812 |#1| |#5|)))) (IF (|has| |#3| (-809 |#1|)) (-15 -3544 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|))) |%noBranch|))
-((-3558 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
-(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -3558 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3558 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1111)) (T -860))
-((-3558 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1111)) (-4 *4 (-779)) (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3558 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1111)) (-4 *4 (-779)) (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4)))))
-(-10 -7 (-15 -3558 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3558 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
-((-3558 (((-286 (-517)) (-1076) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1076) (-1 (-107) |#1|)) 13)))
-(((-861 |#1|) (-10 -7 (-15 -3558 ((-286 (-517)) (-1076) (-1 (-107) |#1|))) (-15 -3558 ((-286 (-517)) (-1076) (-583 (-1 (-107) |#1|))))) (-1111)) (T -861))
-((-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1111)) (-5 *2 (-286 (-517))) (-5 *1 (-861 *5)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1111)) (-5 *2 (-286 (-517))) (-5 *1 (-861 *5)))))
-(-10 -7 (-15 -3558 ((-286 (-517)) (-1076) (-1 (-107) |#1|))) (-15 -3558 ((-286 (-517)) (-1076) (-583 (-1 (-107) |#1|)))))
-((-3544 (((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)) 25)))
-(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -3544 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-1005) (-13 (-509) (-809 |#1|) (-558 (-815 |#1|))) (-911 |#2|)) (T -862))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-911 *6)) (-4 *6 (-13 (-509) (-809 *5) (-558 *4))) (-5 *4 (-815 *5)) (-5 *1 (-862 *5 *6 *3)))))
-(-10 -7 (-15 -3544 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))))
-((-3544 (((-812 |#1| (-1076)) (-1076) (-815 |#1|) (-812 |#1| (-1076))) 17)))
-(((-863 |#1|) (-10 -7 (-15 -3544 ((-812 |#1| (-1076)) (-1076) (-815 |#1|) (-812 |#1| (-1076))))) (-1005)) (T -863))
-((-3544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 (-1076))) (-5 *3 (-1076)) (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-5 *1 (-863 *5)))))
-(-10 -7 (-15 -3544 ((-812 |#1| (-1076)) (-1076) (-815 |#1|) (-812 |#1| (-1076)))))
-((-3694 (((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) 33)) (-3544 (((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-1 |#3| (-583 |#3|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) 32)))
-(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3544 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-1 |#3| (-583 |#3|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-15 -3694 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))))) (-1005) (-13 (-963) (-779)) (-13 (-963) (-558 (-815 |#1|)) (-954 |#2|))) (T -864))
-((-3694 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-815 *6))) (-5 *5 (-1 (-812 *6 *8) *8 (-815 *6) (-812 *6 *8))) (-4 *6 (-1005)) (-4 *8 (-13 (-963) (-558 (-815 *6)) (-954 *7))) (-5 *2 (-812 *6 *8)) (-4 *7 (-13 (-963) (-779))) (-5 *1 (-864 *6 *7 *8)))) (-3544 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-815 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-812 *7 *9) *9 (-815 *7) (-812 *7 *9))) (-4 *7 (-1005)) (-4 *9 (-13 (-963) (-558 (-815 *7)) (-954 *8))) (-5 *2 (-812 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-963) (-779))) (-5 *1 (-864 *7 *8 *9)))))
-(-10 -7 (-15 -3544 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-1 |#3| (-583 |#3|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-15 -3694 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))))
-((-2660 (((-1072 (-377 (-517))) (-517)) 62)) (-2922 (((-1072 (-517)) (-517)) 65)) (-3272 (((-1072 (-517)) (-517)) 59)) (-1915 (((-517) (-1072 (-517))) 54)) (-3480 (((-1072 (-377 (-517))) (-517)) 48)) (-1556 (((-1072 (-517)) (-517)) 37)) (-2052 (((-1072 (-517)) (-517)) 67)) (-3770 (((-1072 (-517)) (-517)) 66)) (-3950 (((-1072 (-377 (-517))) (-517)) 50)))
-(((-865) (-10 -7 (-15 -3950 ((-1072 (-377 (-517))) (-517))) (-15 -3770 ((-1072 (-517)) (-517))) (-15 -2052 ((-1072 (-517)) (-517))) (-15 -1556 ((-1072 (-517)) (-517))) (-15 -3480 ((-1072 (-377 (-517))) (-517))) (-15 -1915 ((-517) (-1072 (-517)))) (-15 -3272 ((-1072 (-517)) (-517))) (-15 -2922 ((-1072 (-517)) (-517))) (-15 -2660 ((-1072 (-377 (-517))) (-517))))) (T -865))
-((-2660 (*1 *2 *3) (-12 (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))) (-2922 (*1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-3272 (*1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-1072 (-517))) (-5 *2 (-517)) (-5 *1 (-865)))) (-3480 (*1 *2 *3) (-12 (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))) (-1556 (*1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-2052 (*1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-3770 (*1 *2 *3) (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
-(-10 -7 (-15 -3950 ((-1072 (-377 (-517))) (-517))) (-15 -3770 ((-1072 (-517)) (-517))) (-15 -2052 ((-1072 (-517)) (-517))) (-15 -1556 ((-1072 (-517)) (-517))) (-15 -3480 ((-1072 (-377 (-517))) (-517))) (-15 -1915 ((-517) (-1072 (-517)))) (-15 -3272 ((-1072 (-517)) (-517))) (-15 -2922 ((-1072 (-517)) (-517))) (-15 -2660 ((-1072 (-377 (-517))) (-517))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3877 (($ (-703)) NIL (|has| |#1| (-23)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-3416 (($ (-583 |#1|)) 13)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2690 (((-623 |#1|) $ $) NIL (|has| |#1| (-963)))) (-3213 (($ (-703) |#1|) 8)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 10 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1241 ((|#1| $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-963))))) (-1320 (((-107) $ (-703)) NIL)) (-3682 ((|#1| $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-963))))) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-2671 (($ $ (-583 |#1|)) 24)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1124 (-517))) NIL)) (-3746 ((|#1| $ $) NIL (|has| |#1| (-963)))) (-1537 (((-844) $) 16)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-2326 (($ $ $) 22)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2288 (($ (-583 |#1|)) NIL)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1678 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3535 (((-703) $) 14 (|has| $ (-6 -4192)))))
-(((-866 |#1|) (-899 |#1|) (-963)) (T -866))
-NIL
-(-899 |#1|)
-((-3380 (((-449 |#1| |#2|) (-875 |#2|)) 17)) (-1377 (((-221 |#1| |#2|) (-875 |#2|)) 29)) (-1221 (((-875 |#2|) (-449 |#1| |#2|)) 22)) (-1443 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-3858 (((-875 |#2|) (-221 |#1| |#2|)) 26)) (-2533 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
-(((-867 |#1| |#2|) (-10 -7 (-15 -2533 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1443 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -3380 ((-449 |#1| |#2|) (-875 |#2|))) (-15 -1221 ((-875 |#2|) (-449 |#1| |#2|))) (-15 -3858 ((-875 |#2|) (-221 |#1| |#2|))) (-15 -1377 ((-221 |#1| |#2|) (-875 |#2|)))) (-583 (-1076)) (-963)) (T -867))
-((-1377 (*1 *2 *3) (-12 (-5 *3 (-875 *5)) (-4 *5 (-963)) (-5 *2 (-221 *4 *5)) (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1076))))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963)) (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963)) (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-875 *5)) (-4 *5 (-963)) (-5 *2 (-449 *4 *5)) (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1076))))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963)) (-5 *2 (-221 *4 *5)) (-5 *1 (-867 *4 *5)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963)) (-5 *2 (-449 *4 *5)) (-5 *1 (-867 *4 *5)))))
-(-10 -7 (-15 -2533 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1443 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -3380 ((-449 |#1| |#2|) (-875 |#2|))) (-15 -1221 ((-875 |#2|) (-449 |#1| |#2|))) (-15 -3858 ((-875 |#2|) (-221 |#1| |#2|))) (-15 -1377 ((-221 |#1| |#2|) (-875 |#2|))))
-((-2904 (((-583 |#2|) |#2| |#2|) 10)) (-3622 (((-703) (-583 |#1|)) 38 (|has| |#1| (-777)))) (-3823 (((-583 |#2|) |#2|) 11)) (-2318 (((-703) (-583 |#1|) (-517) (-517)) 37 (|has| |#1| (-777)))) (-2580 ((|#1| |#2|) 33 (|has| |#1| (-777)))))
-(((-868 |#1| |#2|) (-10 -7 (-15 -2904 ((-583 |#2|) |#2| |#2|)) (-15 -3823 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2580 (|#1| |#2|)) (-15 -3622 ((-703) (-583 |#1|))) (-15 -2318 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|)) (-333) (-1133 |#1|)) (T -868))
-((-2318 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-868 *5 *6)) (-4 *6 (-1133 *5)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-868 *4 *5)) (-4 *5 (-1133 *4)))) (-2580 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1133 *2)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1133 *4)))) (-2904 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -2904 ((-583 |#2|) |#2| |#2|)) (-15 -3823 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2580 (|#1| |#2|)) (-15 -3622 ((-703) (-583 |#1|))) (-15 -2318 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|))
-((-3310 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 18)))
-(((-869 |#1| |#2|) (-10 -7 (-15 -3310 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-963) (-963)) (T -869))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-875 *6)) (-5 *1 (-869 *5 *6)))))
-(-10 -7 (-15 -3310 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
-((-1440 (((-1130 |#1| (-875 |#2|)) (-875 |#2|) (-1153 |#1|)) 18)))
-(((-870 |#1| |#2|) (-10 -7 (-15 -1440 ((-1130 |#1| (-875 |#2|)) (-875 |#2|) (-1153 |#1|)))) (-1076) (-963)) (T -870))
-((-1440 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-14 *5 (-1076)) (-4 *6 (-963)) (-5 *2 (-1130 *5 (-875 *6))) (-5 *1 (-870 *5 *6)) (-5 *3 (-875 *6)))))
-(-10 -7 (-15 -1440 ((-1130 |#1| (-875 |#2|)) (-875 |#2|) (-1153 |#1|))))
-((-1302 (((-703) $) 70) (((-703) $ (-583 |#4|)) 73)) (-1224 (($ $) 170)) (-4018 (((-388 $) $) 162)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 113)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 58)) (-2157 (($ $ $ |#4|) 75)) (-2207 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) 103) (((-623 |#2|) (-623 $)) 96)) (-2683 (($ $) 177) (($ $ |#4|) 180)) (-2359 (((-583 $) $) 62)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 195) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 189)) (-3794 (((-583 $) $) 28)) (-2078 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 56)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#4|) 159)) (-2745 (((-3 (-583 $) "failed") $) 42)) (-1653 (((-3 (-583 $) "failed") $) 31)) (-2670 (((-3 (-2 (|:| |var| |#4|) (|:| -2121 (-703))) "failed") $) 46)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 106)) (-2276 (((-388 (-1072 $)) (-1072 $)) 119)) (-3442 (((-388 (-1072 $)) (-1072 $)) 117)) (-3868 (((-388 $) $) 137)) (-3524 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-1220 (($ $ |#4|) 77)) (-3359 (((-815 (-349)) $) 209) (((-815 (-517)) $) 202) (((-493) $) 217)) (-3119 ((|#2| $) NIL) (($ $ |#4|) 172)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 151)) (-1689 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 51) (($ $ (-583 |#4|) (-583 (-703))) 54)) (-3974 (((-3 $ "failed") $) 153)) (-1608 (((-107) $ $) 183)))
-(((-871 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -1224 (|#1| |#1|)) (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3442 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2276 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -1818 ((-3 (-1157 |#1|) "failed") (-623 |#1|))) (-15 -2683 (|#1| |#1| |#4|)) (-15 -3119 (|#1| |#1| |#4|)) (-15 -1220 (|#1| |#1| |#4|)) (-15 -2157 (|#1| |#1| |#1| |#4|)) (-15 -2359 ((-583 |#1|) |#1|)) (-15 -1302 ((-703) |#1| (-583 |#4|))) (-15 -1302 ((-703) |#1|)) (-15 -2670 ((-3 (-2 (|:| |var| |#4|) (|:| -2121 (-703))) "failed") |#1|)) (-15 -2745 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1653 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2078 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2078 (|#1| |#1| |#4| (-703))) (-15 -3291 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1| |#4|)) (-15 -3794 ((-583 |#1|) |#1|)) (-15 -1689 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1689 (|#1| |#1| |#4| (-703))) (-15 -2207 ((-623 |#2|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -3390 (|#4| |#1|)) (-15 -3228 ((-3 |#4| "failed") |#1|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#4| |#1|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#4| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2078 (|#1| |#2| |#3|)) (-15 -1689 (|#2| |#1| |#3|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2683 (|#1| |#1|))) (-872 |#2| |#3| |#4|) (-963) (-725) (-779)) (T -871))
-NIL
-(-10 -8 (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -1224 (|#1| |#1|)) (-15 -3974 ((-3 |#1| "failed") |#1|)) (-15 -1608 ((-107) |#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3442 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2276 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -1818 ((-3 (-1157 |#1|) "failed") (-623 |#1|))) (-15 -2683 (|#1| |#1| |#4|)) (-15 -3119 (|#1| |#1| |#4|)) (-15 -1220 (|#1| |#1| |#4|)) (-15 -2157 (|#1| |#1| |#1| |#4|)) (-15 -2359 ((-583 |#1|) |#1|)) (-15 -1302 ((-703) |#1| (-583 |#4|))) (-15 -1302 ((-703) |#1|)) (-15 -2670 ((-3 (-2 (|:| |var| |#4|) (|:| -2121 (-703))) "failed") |#1|)) (-15 -2745 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1653 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2078 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2078 (|#1| |#1| |#4| (-703))) (-15 -3291 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1| |#4|)) (-15 -3794 ((-583 |#1|) |#1|)) (-15 -1689 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1689 (|#1| |#1| |#4| (-703))) (-15 -2207 ((-623 |#2|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -3390 (|#4| |#1|)) (-15 -3228 ((-3 |#4| "failed") |#1|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#4| |#1|)) (-15 -3524 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3524 (|#1| |#1| |#4| |#2|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2078 (|#1| |#2| |#3|)) (-15 -1689 (|#2| |#1| |#3|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2683 (|#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 |#3|) $) 110)) (-1440 (((-1072 $) $ |#3|) 125) (((-1072 |#1|) $) 124)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3062 (($ $) 88 (|has| |#1| (-509)))) (-2190 (((-107) $) 90 (|has| |#1| (-509)))) (-1302 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2798 (((-3 $ "failed") $ $) 19)) (-3327 (((-388 (-1072 $)) (-1072 $)) 100 (|has| |#1| (-832)))) (-1224 (($ $) 98 (|has| |#1| (-421)))) (-4018 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 103 (|has| |#1| (-832)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-954 (-517)))) (((-3 |#3| "failed") $) 136)) (-3390 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-954 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-954 (-517)))) ((|#3| $) 135)) (-2157 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2373 (($ $) 154)) (-2207 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-2560 (((-3 $ "failed") $) 34)) (-2683 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2359 (((-583 $) $) 109)) (-1259 (((-107) $) 96 (|has| |#1| (-832)))) (-3014 (($ $ |#1| |#2| $) 172)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| |#3| (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| |#3| (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1376 (((-107) $) 31)) (-3783 (((-703) $) 169)) (-2086 (($ (-1072 |#1|) |#3|) 117) (($ (-1072 $) |#3|) 116)) (-3794 (((-583 $) $) 126)) (-3982 (((-107) $) 152)) (-2078 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#3|) 120)) (-3492 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3458 (($ $ $) 79 (|has| |#1| (-779)))) (-4084 (($ $ $) 78 (|has| |#1| (-779)))) (-2935 (($ (-1 |#2| |#2|) $) 171)) (-3310 (($ (-1 |#1| |#1|) $) 151)) (-2297 (((-3 |#3| "failed") $) 123)) (-2335 (($ $) 149)) (-2347 ((|#1| $) 148)) (-2332 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1662 (((-1059) $) 9)) (-2745 (((-3 (-583 $) "failed") $) 114)) (-1653 (((-3 (-583 $) "failed") $) 115)) (-2670 (((-3 (-2 (|:| |var| |#3|) (|:| -2121 (-703))) "failed") $) 113)) (-4125 (((-1023) $) 10)) (-2310 (((-107) $) 166)) (-2321 ((|#1| $) 167)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 95 (|has| |#1| (-421)))) (-2370 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 102 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 101 (|has| |#1| (-832)))) (-3868 (((-388 $) $) 99 (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-1220 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2060 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3647 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3359 (((-815 (-349)) $) 82 (-12 (|has| |#3| (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| |#3| (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 104 (-3993 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3747 (|has| |#1| (-954 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1998 (((-583 |#1|) $) 168)) (-1689 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3974 (((-3 $ "failed") $) 73 (-3747 (-3993 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) 29)) (-2863 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2074 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1642 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1704 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-872 |#1| |#2| |#3|) (-1188) (-963) (-725) (-779)) (T -872))
-((-2683 (*1 *1 *1) (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3647 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3647 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-1689 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1689 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)))) (-3794 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-1440 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1072 *1)) (-4 *1 (-872 *4 *5 *3)))) (-1440 (*1 *2 *1) (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1072 *3)))) (-2297 (*1 *2 *1) (|partial| -12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3492 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3492 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-3291 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-872 *4 *5 *3)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)))) (-2086 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 *4)) (-4 *4 (-963)) (-4 *1 (-872 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-2086 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1653 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-2745 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-2670 (*1 *2 *1) (|partial| -12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2121 (-703)))))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2359 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-2157 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-1220 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3119 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2683 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-1224 (*1 *1 *1) (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4018 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-872 *3 *4 *5)))))
-(-13 (-823 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-954 |t#3|) (-347 |t#1|) (-10 -8 (-15 -3647 ((-703) $ |t#3|)) (-15 -3647 ((-583 (-703)) $ (-583 |t#3|))) (-15 -1689 ($ $ |t#3| (-703))) (-15 -1689 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -3794 ((-583 $) $)) (-15 -1440 ((-1072 $) $ |t#3|)) (-15 -1440 ((-1072 |t#1|) $)) (-15 -2297 ((-3 |t#3| "failed") $)) (-15 -3492 ((-703) $ |t#3|)) (-15 -3492 ((-583 (-703)) $ (-583 |t#3|))) (-15 -3291 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |t#3|)) (-15 -2078 ($ $ |t#3| (-703))) (-15 -2078 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -2086 ($ (-1072 |t#1|) |t#3|)) (-15 -2086 ($ (-1072 $) |t#3|)) (-15 -1653 ((-3 (-583 $) "failed") $)) (-15 -2745 ((-3 (-583 $) "failed") $)) (-15 -2670 ((-3 (-2 (|:| |var| |t#3|) (|:| -2121 (-703))) "failed") $)) (-15 -1302 ((-703) $)) (-15 -1302 ((-703) $ (-583 |t#3|))) (-15 -2097 ((-583 |t#3|) $)) (-15 -2359 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-815 (-517)))) (IF (|has| |t#3| (-558 (-815 (-517)))) (-6 (-558 (-815 (-517)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-815 (-349)))) (IF (|has| |t#3| (-558 (-815 (-349)))) (-6 (-558 (-815 (-349)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-809 (-517))) (IF (|has| |t#3| (-809 (-517))) (-6 (-809 (-517))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-809 (-349))) (IF (|has| |t#3| (-809 (-349))) (-6 (-809 (-349))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -2157 ($ $ $ |t#3|)) (-15 -1220 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -3119 ($ $ |t#3|)) (-15 -2683 ($ $)) (-15 -2683 ($ $ |t#3|)) (-15 -4018 ((-388 $) $)) (-15 -1224 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4190)) (-6 -4190) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) ((-262) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3747 (|has| |#1| (-832)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 |#3|) . T) ((-809 (-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) ((-832) |has| |#1| (-832)) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-954 |#3|) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) |has| |#1| (-832)))
-((-2097 (((-583 |#2|) |#5|) 36)) (-1440 (((-1072 |#5|) |#5| |#2| (-1072 |#5|)) 23) (((-377 (-1072 |#5|)) |#5| |#2|) 16)) (-2086 ((|#5| (-377 (-1072 |#5|)) |#2|) 30)) (-2297 (((-3 |#2| "failed") |#5|) 61)) (-2745 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-1480 (((-3 (-2 (|:| |val| |#5|) (|:| -2121 (-517))) "failed") |#5|) 45)) (-1653 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-2670 (((-3 (-2 (|:| |var| |#2|) (|:| -2121 (-517))) "failed") |#5|) 48)))
-(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2097 ((-583 |#2|) |#5|)) (-15 -2297 ((-3 |#2| "failed") |#5|)) (-15 -1440 ((-377 (-1072 |#5|)) |#5| |#2|)) (-15 -2086 (|#5| (-377 (-1072 |#5|)) |#2|)) (-15 -1440 ((-1072 |#5|) |#5| |#2| (-1072 |#5|))) (-15 -1653 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -2745 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -2670 ((-3 (-2 (|:| |var| |#2|) (|:| -2121 (-517))) "failed") |#5|)) (-15 -1480 ((-3 (-2 (|:| |val| |#5|) (|:| -2121 (-517))) "failed") |#5|))) (-725) (-779) (-963) (-872 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2271 ($ |#4|)) (-15 -3826 (|#4| $)) (-15 -2098 (|#4| $))))) (T -873))
-((-1480 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2121 (-517)))) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))) (-2670 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2121 (-517)))) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))) (-2745 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))) (-1653 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))) (-1440 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))) (-4 *7 (-872 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-963)) (-5 *1 (-873 *5 *4 *6 *7 *3)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1072 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-963)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))) (-5 *1 (-873 *5 *4 *6 *7 *2)) (-4 *7 (-872 *6 *5 *4)))) (-1440 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-963)) (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-377 (-1072 *3))) (-5 *1 (-873 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))) (-2297 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-963)) (-4 *6 (-872 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-873 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *6)) (-15 -3826 (*6 $)) (-15 -2098 (*6 $))))))) (-2097 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $))))))))
-(-10 -7 (-15 -2097 ((-583 |#2|) |#5|)) (-15 -2297 ((-3 |#2| "failed") |#5|)) (-15 -1440 ((-377 (-1072 |#5|)) |#5| |#2|)) (-15 -2086 (|#5| (-377 (-1072 |#5|)) |#2|)) (-15 -1440 ((-1072 |#5|) |#5| |#2| (-1072 |#5|))) (-15 -1653 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -2745 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -2670 ((-3 (-2 (|:| |var| |#2|) (|:| -2121 (-517))) "failed") |#5|)) (-15 -1480 ((-3 (-2 (|:| |val| |#5|) (|:| -2121 (-517))) "failed") |#5|)))
-((-3310 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-874 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3310 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-963) (-872 |#3| |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -874))
-((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-963)) (-4 *6 (-725)) (-4 *2 (-13 (-1005) (-10 -8 (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-874 *6 *7 *8 *5 *2)) (-4 *5 (-872 *8 *6 *7)))))
-(-10 -7 (-15 -3310 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-1076)) $) 15)) (-1440 (((-1072 $) $ (-1076)) 21) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-1076))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-1076) "failed") $) NIL)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-1076) $) NIL)) (-2157 (($ $ $ (-1076)) NIL (|has| |#1| (-156)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1076)) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-489 (-1076)) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-1076) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-1076) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#1|) (-1076)) NIL) (($ (-1072 $) (-1076)) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-489 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-1076)) NIL)) (-3492 (((-489 (-1076)) $) NIL) (((-703) $ (-1076)) NIL) (((-583 (-703)) $ (-583 (-1076))) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-489 (-1076)) (-489 (-1076))) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-3 (-1076) "failed") $) 19)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-1076)) (|:| -2121 (-703))) "failed") $) NIL)) (-2356 (($ $ (-1076)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-583 (-1076)) (-583 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-583 (-1076)) (-583 $)) NIL)) (-1220 (($ $ (-1076)) NIL (|has| |#1| (-156)))) (-2060 (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-3647 (((-489 (-1076)) $) NIL) (((-703) $ (-1076)) NIL) (((-583 (-703)) $ (-583 (-1076))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-1076) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-1076) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-1076) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1076)) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1076)) 27) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-489 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-875 |#1|) (-13 (-872 |#1| (-489 (-1076)) (-1076)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1076))) |%noBranch|))) (-963)) (T -875))
-((-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-875 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)))))
-(-13 (-872 |#1| (-489 (-1076)) (-1076)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1076))) |%noBranch|)))
-((-3410 (((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-3328 (((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-3124 (((-2 (|:| -2121 (-703)) (|:| -1582 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-1836 (((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
-(((-876 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3410 ((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -3328 ((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -1836 ((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -3124 ((-2 (|:| -2121 (-703)) (|:| -1582 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-872 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -3826 (|#4| $)) (-15 -2098 (|#4| $)) (-15 -2271 ($ |#4|))))) (T -876))
-((-3124 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-872 *7 *5 *6)) (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-876 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3826 (*3 $)) (-15 -2098 (*3 $)) (-15 -2271 ($ *3))))))) (-1836 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-872 *7 *5 *6)) (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *3) (|:| |radicand| *3))) (-5 *1 (-876 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -3826 (*8 $)) (-15 -2098 (*8 $)) (-15 -2271 ($ *8))))))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-872 *7 *5 *6)) (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *9) (|:| |radicand| *9))) (-5 *1 (-876 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -3826 (*8 $)) (-15 -2098 (*8 $)) (-15 -2271 ($ *8))))))) (-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-872 *3 *5 *6)) (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *8) (|:| |radicand| *8))) (-5 *1 (-876 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3826 (*7 $)) (-15 -2098 (*7 $)) (-15 -2271 ($ *7))))))))
-(-10 -7 (-15 -3410 ((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -3328 ((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -1836 ((-2 (|:| -2121 (-703)) (|:| -1582 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -3124 ((-2 (|:| -2121 (-703)) (|:| -1582 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
-((-2721 (((-1000 (-199)) $) 8)) (-2709 (((-1000 (-199)) $) 9)) (-2195 (((-583 (-583 (-866 (-199)))) $) 10)) (-2271 (((-787) $) 6)))
-(((-877) (-1188)) (T -877))
-((-2195 (*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-583 (-583 (-866 (-199))))))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-1000 (-199))))) (-2721 (*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-1000 (-199))))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2195 ((-583 (-583 (-866 (-199)))) $)) (-15 -2709 ((-1000 (-199)) $)) (-15 -2721 ((-1000 (-199)) $))))
+((-2754 (((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-2109 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-3250 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
+(((-835 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -2109 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-955 (-517))) (-400 |#1|) (-1134 |#2|) (-1134 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -835))
+((-2754 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *8))) (-5 *1 (-835 *4 *5 *6 *7 *8)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-107)) (-5 *1 (-835 *4 *5 *6 *7 *8)))) (-3250 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-703)) (-5 *1 (-835 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -2109 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
+((-2754 (((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-2109 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-3250 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
+(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2109 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1134 (-377 (-517))) (-1134 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -836))
+((-2754 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *6))) (-5 *1 (-836 *4 *5 *6)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-836 *4 *5 *6)))) (-3250 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-836 *4 *5 *6)))))
+(-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2109 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
+((-3509 ((|#2| |#2|) 25)) (-2011 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-1999 (((-845) (-517)) 35)) (-1310 (((-517) |#2|) 42)) (-3279 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -1999 ((-845) (-517))) (-15 -3279 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3279 ((-517) |#2|)) (-15 -2011 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -1310 ((-517) |#2|)) (-15 -3509 (|#2| |#2|))) (-1134 (-377 (-517))) (-1134 (-377 |#1|))) (T -837))
+((-3509 (*1 *2 *2) (-12 (-4 *3 (-1134 (-377 (-517)))) (-5 *1 (-837 *3 *2)) (-4 *2 (-1134 (-377 *3))))) (-1310 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3)) (-4 *3 (-1134 (-377 *4))))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *5)) (-4 *5 (-1134 (-377 *4))))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3)) (-4 *3 (-1134 (-377 *4))))) (-3279 (*1 *2 *3) (-12 (-4 *3 (-1134 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-837 *3 *4)) (-4 *4 (-1134 (-377 *3))))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1134 (-377 *3))) (-5 *2 (-845)) (-5 *1 (-837 *4 *5)) (-4 *5 (-1134 (-377 *4))))))
+(-10 -7 (-15 -1999 ((-845) (-517))) (-15 -3279 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3279 ((-517) |#2|)) (-15 -2011 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -1310 ((-517) |#2|)) (-15 -3509 (|#2| |#2|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 ((|#1| $) 81)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 75)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2468 (($ |#1| (-388 |#1|)) 73)) (-2513 (((-1073 |#1|) |#1| |#1|) 40)) (-1773 (($ $) 49)) (-1690 (((-107) $) NIL)) (-1377 (((-517) $) 78)) (-1569 (($ $ (-517)) 80)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1316 ((|#1| $) 77)) (-2065 (((-388 |#1|) $) 76)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) 74)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3674 (($ $) 38)) (-2262 (((-787) $) 99) (($ (-517)) 54) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 59) (($ (-377 (-388 |#1|))) 67)) (-1818 (((-703)) 52)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 23 T CONST)) (-3675 (($) 11 T CONST)) (-1572 (((-107) $ $) 68)) (-1692 (($ $ $) NIL)) (-1680 (($ $) 88) (($ $ $) NIL)) (-1666 (($ $ $) 37)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 90) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-838 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2262 ((-377 |#1|) $)) (-15 -2262 ($ (-377 (-388 |#1|)))) (-15 -3674 ($ $)) (-15 -2065 ((-388 |#1|) $)) (-15 -1316 (|#1| $)) (-15 -1569 ($ $ (-517))) (-15 -1377 ((-517) $)) (-15 -2513 ((-1073 |#1|) |#1| |#1|)) (-15 -1773 ($ $)) (-15 -2468 ($ |#1| (-388 |#1|))) (-15 -2964 (|#1| $)))) (-278)) (T -838))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-838 *3)))) (-3674 (*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-1316 (*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-2513 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-1773 (*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) (-2468 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-838 *2)))) (-2964 (*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))))
+(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2262 ((-377 |#1|) $)) (-15 -2262 ($ (-377 (-388 |#1|)))) (-15 -3674 ($ $)) (-15 -2065 ((-388 |#1|) $)) (-15 -1316 (|#1| $)) (-15 -1569 ($ $ (-517))) (-15 -1377 ((-517) $)) (-15 -2513 ((-1073 |#1|) |#1| |#1|)) (-15 -1773 ($ $)) (-15 -2468 ($ |#1| (-388 |#1|))) (-15 -2964 (|#1| $))))
+((-2468 (((-51) (-876 |#1|) (-388 (-876 |#1|)) (-1077)) 16) (((-51) (-377 (-876 |#1|)) (-1077)) 17)))
+(((-839 |#1|) (-10 -7 (-15 -2468 ((-51) (-377 (-876 |#1|)) (-1077))) (-15 -2468 ((-51) (-876 |#1|) (-388 (-876 |#1|)) (-1077)))) (-13 (-278) (-134))) (T -839))
+((-2468 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-876 *6))) (-5 *5 (-1077)) (-5 *3 (-876 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *6)))) (-2468 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *5)))))
+(-10 -7 (-15 -2468 ((-51) (-377 (-876 |#1|)) (-1077))) (-15 -2468 ((-51) (-876 |#1|) (-388 (-876 |#1|)) (-1077))))
+((-3669 ((|#4| (-583 |#4|)) 119) (((-1073 |#4|) (-1073 |#4|) (-1073 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2361 (((-1073 |#4|) (-583 (-1073 |#4|))) 112) (((-1073 |#4|) (-1073 |#4|) (-1073 |#4|)) 49) ((|#4| (-583 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
+(((-840 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2361 (|#4| |#4| |#4|)) (-15 -2361 (|#4| (-583 |#4|))) (-15 -2361 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -2361 ((-1073 |#4|) (-583 (-1073 |#4|)))) (-15 -3669 (|#4| |#4| |#4|)) (-15 -3669 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3669 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-873 |#3| |#1| |#2|)) (T -840))
+((-3669 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5)) (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-3669 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6)))) (-3669 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1073 *7)) (-5 *1 (-840 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5)) (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2361 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4)))))
+(-10 -7 (-15 -2361 (|#4| |#4| |#4|)) (-15 -2361 (|#4| (-583 |#4|))) (-15 -2361 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -2361 ((-1073 |#4|) (-583 (-1073 |#4|)))) (-15 -3669 (|#4| |#4| |#4|)) (-15 -3669 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3669 (|#4| (-583 |#4|))))
+((-3946 (((-828 (-517)) (-891)) 22) (((-828 (-517)) (-583 (-517))) 19)) (-3720 (((-828 (-517)) (-583 (-517))) 46) (((-828 (-517)) (-845)) 47)) (-3529 (((-828 (-517))) 23)) (-2545 (((-828 (-517))) 36) (((-828 (-517)) (-583 (-517))) 35)) (-1241 (((-828 (-517))) 34) (((-828 (-517)) (-583 (-517))) 33)) (-2003 (((-828 (-517))) 32) (((-828 (-517)) (-583 (-517))) 31)) (-2062 (((-828 (-517))) 30) (((-828 (-517)) (-583 (-517))) 29)) (-4054 (((-828 (-517))) 28) (((-828 (-517)) (-583 (-517))) 27)) (-3819 (((-828 (-517))) 38) (((-828 (-517)) (-583 (-517))) 37)) (-3082 (((-828 (-517)) (-583 (-517))) 50) (((-828 (-517)) (-845)) 51)) (-3820 (((-828 (-517)) (-583 (-517))) 48) (((-828 (-517)) (-845)) 49)) (-3658 (((-828 (-517)) (-583 (-517))) 43) (((-828 (-517)) (-845)) 45)) (-4088 (((-828 (-517)) (-583 (-845))) 40)))
+(((-841) (-10 -7 (-15 -3720 ((-828 (-517)) (-845))) (-15 -3720 ((-828 (-517)) (-583 (-517)))) (-15 -3658 ((-828 (-517)) (-845))) (-15 -3658 ((-828 (-517)) (-583 (-517)))) (-15 -4088 ((-828 (-517)) (-583 (-845)))) (-15 -3820 ((-828 (-517)) (-845))) (-15 -3820 ((-828 (-517)) (-583 (-517)))) (-15 -3082 ((-828 (-517)) (-845))) (-15 -3082 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)))) (-15 -2062 ((-828 (-517)) (-583 (-517)))) (-15 -2062 ((-828 (-517)))) (-15 -2003 ((-828 (-517)) (-583 (-517)))) (-15 -2003 ((-828 (-517)))) (-15 -1241 ((-828 (-517)) (-583 (-517)))) (-15 -1241 ((-828 (-517)))) (-15 -2545 ((-828 (-517)) (-583 (-517)))) (-15 -2545 ((-828 (-517)))) (-15 -3819 ((-828 (-517)) (-583 (-517)))) (-15 -3819 ((-828 (-517)))) (-15 -3529 ((-828 (-517)))) (-15 -3946 ((-828 (-517)) (-583 (-517)))) (-15 -3946 ((-828 (-517)) (-891))))) (T -841))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3529 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3819 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2545 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-1241 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2003 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2062 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-4054 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-583 (-845))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(-10 -7 (-15 -3720 ((-828 (-517)) (-845))) (-15 -3720 ((-828 (-517)) (-583 (-517)))) (-15 -3658 ((-828 (-517)) (-845))) (-15 -3658 ((-828 (-517)) (-583 (-517)))) (-15 -4088 ((-828 (-517)) (-583 (-845)))) (-15 -3820 ((-828 (-517)) (-845))) (-15 -3820 ((-828 (-517)) (-583 (-517)))) (-15 -3082 ((-828 (-517)) (-845))) (-15 -3082 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)))) (-15 -2062 ((-828 (-517)) (-583 (-517)))) (-15 -2062 ((-828 (-517)))) (-15 -2003 ((-828 (-517)) (-583 (-517)))) (-15 -2003 ((-828 (-517)))) (-15 -1241 ((-828 (-517)) (-583 (-517)))) (-15 -1241 ((-828 (-517)))) (-15 -2545 ((-828 (-517)) (-583 (-517)))) (-15 -2545 ((-828 (-517)))) (-15 -3819 ((-828 (-517)) (-583 (-517)))) (-15 -3819 ((-828 (-517)))) (-15 -3529 ((-828 (-517)))) (-15 -3946 ((-828 (-517)) (-583 (-517)))) (-15 -3946 ((-828 (-517)) (-891))))
+((-1905 (((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))) 10)) (-2547 (((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))) 9)))
+(((-842 |#1|) (-10 -7 (-15 -2547 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1905 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))))) (-421)) (T -842))
+((-1905 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421)) (-5 *1 (-842 *4)))) (-2547 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421)) (-5 *1 (-842 *4)))))
+(-10 -7 (-15 -2547 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1905 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)))))
+((-2262 (((-286 |#1|) (-446)) 15)))
+(((-843 |#1|) (-10 -7 (-15 -2262 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -843))
+((-2262 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-843 *4)) (-4 *4 (-13 (-779) (-509))))))
+(-10 -7 (-15 -2262 ((-286 |#1|) (-446))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-844) (-1189)) (T -844))
+((-3106 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-2 (|:| -1570 (-583 *1)) (|:| -1306 *1))) (-5 *3 (-583 *1)))) (-2677 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-844)))))
+(-13 (-421) (-10 -8 (-15 -3106 ((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $))) (-15 -2677 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2361 (($ $ $) NIL)) (-2262 (((-787) $) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3675 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ $ $) NIL)))
+(((-845) (-13 (-25) (-779) (-659) (-10 -8 (-15 -2361 ($ $ $)) (-6 (-4197 "*"))))) (T -845))
+((-2361 (*1 *1 *1 *1) (-5 *1 (-845))))
+(-13 (-25) (-779) (-659) (-10 -8 (-15 -2361 ($ $ $)) (-6 (-4197 "*"))))
+((-2771 ((|#2| (-583 |#1|) (-583 |#1|)) 24)))
+(((-846 |#1| |#2|) (-10 -7 (-15 -2771 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1134 |#1|)) (T -846))
+((-2771 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1134 *4)) (-5 *1 (-846 *4 *2)))))
+(-10 -7 (-15 -2771 (|#2| (-583 |#1|) (-583 |#1|))))
+((-2086 (((-1073 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1131 |#1| |#2|) (-1131 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -2086 ((-1131 |#1| |#2|) (-1131 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -2086 ((-1073 |#2|) (-583 |#2|) (-583 |#2|)))) (-1077) (-333)) (T -847))
+((-2086 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1073 *5)) (-5 *1 (-847 *4 *5)) (-14 *4 (-1077)))) (-2086 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1131 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1077)) (-4 *5 (-333)) (-5 *1 (-847 *4 *5)))))
+(-10 -7 (-15 -2086 ((-1131 |#1| |#2|) (-1131 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -2086 ((-1073 |#2|) (-583 |#2|) (-583 |#2|))))
+((-2980 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060)) 138)) (-2012 ((|#4| |#4|) 154)) (-2686 (((-583 (-377 (-876 |#1|))) (-583 (-1077))) 117)) (-2440 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-1682 (((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-583 |#4|)) 57)) (-3019 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3493 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060)) 150)) (-2751 (((-517) (-623 |#4|) (-845) (-1060)) 131) (((-517) (-623 |#4|) (-583 (-1077)) (-845) (-1060)) 130) (((-517) (-623 |#4|) (-583 |#4|) (-845) (-1060)) 129) (((-517) (-623 |#4|) (-1060)) 126) (((-517) (-623 |#4|) (-583 (-1077)) (-1060)) 125) (((-517) (-623 |#4|) (-583 |#4|) (-1060)) 124) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-845)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)) (-845)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-845)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|)) 119) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077))) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 115)) (-1874 ((|#4| (-876 |#1|)) 66)) (-1957 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 151)) (-1461 (((-583 (-583 (-517))) (-517) (-517)) 128)) (-4040 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-2626 (((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-2556 (((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-2601 (((-107) (-583 (-876 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-4058 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-1221 (((-583 |#4|) |#4|) 47)) (-2828 (((-583 (-377 (-876 |#1|))) (-583 |#4|)) 113) (((-623 (-377 (-876 |#1|))) (-623 |#4|)) 54) (((-377 (-876 |#1|)) |#4|) 110)) (-3343 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-703) (-1060) (-517)) 89)) (-4019 (((-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3099 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2358 (((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| -3725 (-623 (-377 (-876 |#1|)))) (|:| |vec| (-583 (-377 (-876 |#1|)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
+(((-848 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-845))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-845) (-1060))) (-15 -2980 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3493 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3343 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-703) (-1060) (-517))) (-15 -2828 ((-377 (-876 |#1|)) |#4|)) (-15 -2828 ((-623 (-377 (-876 |#1|))) (-623 |#4|))) (-15 -2828 ((-583 (-377 (-876 |#1|))) (-583 |#4|))) (-15 -2686 ((-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1874 (|#4| (-876 |#1|))) (-15 -4058 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4019 ((-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -1682 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-583 |#4|))) (-15 -2358 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| -3725 (-623 (-377 (-876 |#1|)))) (|:| |vec| (-583 (-377 (-876 |#1|)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -1221 ((-583 |#4|) |#4|)) (-15 -2556 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2626 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -4040 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -1461 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3099 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3019 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2440 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -2012 (|#4| |#4|)) (-15 -2601 ((-107) (-583 |#4|))) (-15 -2601 ((-107) (-583 (-876 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1077))) (-725) (-873 |#1| |#3| |#2|)) (T -848))
+((-2601 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *4 *5 *6 *7)))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077)))) (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *2)) (-4 *2 (-873 *3 *5 *4)))) (-2440 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-876 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-873 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1077)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-876 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *9)))) (|:| -3700 (-583 (-1158 (-377 (-876 *9))))))))) (-5 *1 (-848 *9 *10 *11 *12)))) (-3019 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7)))) (-3099 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-848 *5 *6 *7 *8)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *5 *6 *7 *8)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *6 *5)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-873 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077)))) (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *6)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-848 *4 *5 *6 *7)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-848 *4 *5 *6 *7)))) (-1221 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-848 *4 *5 *6 *3)) (-4 *3 (-873 *4 *6 *5)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3725 (-623 (-377 (-876 *4)))) (|:| |vec| (-583 (-377 (-876 *4)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-873 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-703)))) (-4058 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-4 *7 (-873 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-873 *4 *6 *5)) (-5 *1 (-848 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-377 (-876 *4))) (-5 *1 (-848 *4 *5 *6 *3)) (-4 *3 (-873 *4 *6 *5)))) (-3343 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-876 *8)))) (-5 *5 (-703)) (-5 *6 (-1060)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-873 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1077)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-876 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *8)))) (|:| -3700 (-583 (-1158 (-377 (-876 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-848 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-876 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))))) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *4 (-1060)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-873 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-845)) (-5 *5 (-1060)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1077))) (-5 *5 (-845)) (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *7 *8 *9 *10)))) (-2751 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-845)) (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *7 *8 *9 *10)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1060)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-1060)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1060)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-845)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-845)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-876 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *6)))) (|:| -3700 (-583 (-1158 (-377 (-876 *6)))))))))) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-845)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-876 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *6)))) (|:| -3700 (-583 (-1158 (-377 (-876 *6)))))))))) (-5 *1 (-848 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-876 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))))) (-5 *1 (-848 *4 *5 *6 *7)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1077))) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(-10 -7 (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-845))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-845) (-1060))) (-15 -2980 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3493 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3343 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-703) (-1060) (-517))) (-15 -2828 ((-377 (-876 |#1|)) |#4|)) (-15 -2828 ((-623 (-377 (-876 |#1|))) (-623 |#4|))) (-15 -2828 ((-583 (-377 (-876 |#1|))) (-583 |#4|))) (-15 -2686 ((-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1874 (|#4| (-876 |#1|))) (-15 -4058 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4019 ((-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -1682 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-583 |#4|))) (-15 -2358 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| -3725 (-623 (-377 (-876 |#1|)))) (|:| |vec| (-583 (-377 (-876 |#1|)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -1221 ((-583 |#4|) |#4|)) (-15 -2556 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2626 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -4040 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -1461 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3099 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3019 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2440 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -2012 (|#4| |#4|)) (-15 -2601 ((-107) (-583 |#4|))) (-15 -2601 ((-107) (-583 (-876 |#1|)))))
+((-2962 (((-851) |#1| (-1077)) 16) (((-851) |#1| (-1077) (-1001 (-199))) 20)) (-1645 (((-851) |#1| |#1| (-1077) (-1001 (-199))) 18) (((-851) |#1| (-1077) (-1001 (-199))) 14)))
+(((-849 |#1|) (-10 -7 (-15 -1645 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -1645 ((-851) |#1| |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077)))) (-558 (-493))) (T -849))
+((-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) (-2962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) (-1645 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -1645 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -1645 ((-851) |#1| |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077))))
+((-2954 (($ $ (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 69)) (-2724 (((-1001 (-199)) $) 40)) (-2712 (((-1001 (-199)) $) 39)) (-2700 (((-1001 (-199)) $) 38)) (-1943 (((-583 (-583 (-199))) $) 43)) (-1491 (((-1001 (-199)) $) 41)) (-2064 (((-517) (-517)) 32)) (-2191 (((-517) (-517)) 28)) (-2699 (((-517) (-517)) 30)) (-1735 (((-107) (-107)) 35)) (-2017 (((-517)) 31)) (-2104 (($ $ (-1001 (-199))) 72) (($ $) 73)) (-2952 (($ (-1 (-867 (-199)) (-199)) (-1001 (-199))) 77) (($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 78)) (-1645 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 81) (($ $ (-1001 (-199))) 75)) (-3886 (((-517)) 36)) (-3603 (((-517)) 27)) (-2691 (((-517)) 29)) (-1515 (((-583 (-583 (-867 (-199)))) $) 93)) (-3625 (((-107) (-107)) 37)) (-2262 (((-787) $) 92)) (-3678 (((-107)) 34)))
+(((-850) (-13 (-894) (-10 -8 (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1943 ((-583 (-583 (-199))) $)) (-15 -3603 ((-517))) (-15 -2191 ((-517) (-517))) (-15 -2691 ((-517))) (-15 -2699 ((-517) (-517))) (-15 -2017 ((-517))) (-15 -2064 ((-517) (-517))) (-15 -3678 ((-107))) (-15 -1735 ((-107) (-107))) (-15 -3886 ((-517))) (-15 -3625 ((-107) (-107)))))) (T -850))
+((-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-2952 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-1645 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-1645 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-2954 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-2104 (*1 *1 *1) (-5 *1 (-850))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-850)))) (-3603 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2691 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2017 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-3678 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3886 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(-13 (-894) (-10 -8 (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1943 ((-583 (-583 (-199))) $)) (-15 -3603 ((-517))) (-15 -2191 ((-517) (-517))) (-15 -2691 ((-517))) (-15 -2699 ((-517) (-517))) (-15 -2017 ((-517))) (-15 -2064 ((-517) (-517))) (-15 -3678 ((-107))) (-15 -1735 ((-107) (-107))) (-15 -3886 ((-517))) (-15 -3625 ((-107) (-107)))))
+((-2954 (($ $ (-1001 (-199))) 70) (($ $ (-1001 (-199)) (-1001 (-199))) 71)) (-2712 (((-1001 (-199)) $) 43)) (-2700 (((-1001 (-199)) $) 42)) (-1491 (((-1001 (-199)) $) 44)) (-3136 (((-517) (-517)) 36)) (-1675 (((-517) (-517)) 32)) (-3787 (((-517) (-517)) 34)) (-3863 (((-107) (-107)) 38)) (-2305 (((-517)) 35)) (-2104 (($ $ (-1001 (-199))) 74) (($ $) 75)) (-2952 (($ (-1 (-867 (-199)) (-199)) (-1001 (-199))) 84) (($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 85)) (-2962 (($ (-1 (-199) (-199)) (-1001 (-199))) 92) (($ (-1 (-199) (-199))) 95)) (-1645 (($ (-1 (-199) (-199)) (-1001 (-199))) 79) (($ (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199))) 80) (($ (-583 (-1 (-199) (-199))) (-1001 (-199))) 87) (($ (-583 (-1 (-199) (-199))) (-1001 (-199)) (-1001 (-199))) 88) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199))) 81) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 82) (($ $ (-1001 (-199))) 76)) (-2271 (((-107) $) 39)) (-3945 (((-517)) 40)) (-1931 (((-517)) 31)) (-2876 (((-517)) 33)) (-1515 (((-583 (-583 (-867 (-199)))) $) 22)) (-1352 (((-107) (-107)) 41)) (-2262 (((-787) $) 106)) (-3575 (((-107)) 37)))
+(((-851) (-13 (-878) (-10 -8 (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2271 ((-107) $)) (-15 -2954 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1931 ((-517))) (-15 -1675 ((-517) (-517))) (-15 -2876 ((-517))) (-15 -3787 ((-517) (-517))) (-15 -2305 ((-517))) (-15 -3136 ((-517) (-517))) (-15 -3575 ((-107))) (-15 -3863 ((-107) (-107))) (-15 -3945 ((-517))) (-15 -1352 ((-107) (-107)))))) (T -851))
+((-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2952 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-851)))) (-2954 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2954 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2104 (*1 *1 *1) (-5 *1 (-851))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-1931 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-2876 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-2305 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-3136 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-3575 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))) (-3945 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))))
+(-13 (-878) (-10 -8 (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2271 ((-107) $)) (-15 -2954 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1931 ((-517))) (-15 -1675 ((-517) (-517))) (-15 -2876 ((-517))) (-15 -3787 ((-517) (-517))) (-15 -2305 ((-517))) (-15 -3136 ((-517) (-517))) (-15 -3575 ((-107))) (-15 -3863 ((-107) (-107))) (-15 -3945 ((-517))) (-15 -1352 ((-107) (-107)))))
+((-1836 (((-583 (-1001 (-199))) (-583 (-583 (-867 (-199))))) 23)))
+(((-852) (-10 -7 (-15 -1836 ((-583 (-1001 (-199))) (-583 (-583 (-867 (-199)))))))) (T -852))
+((-1836 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-583 (-1001 (-199)))) (-5 *1 (-852)))))
+(-10 -7 (-15 -1836 ((-583 (-1001 (-199))) (-583 (-583 (-867 (-199)))))))
+((-3469 ((|#2| |#2|) 25)) (-3533 ((|#2| |#2|) 26)) (-1373 ((|#2| |#2|) 24)) (-3125 ((|#2| |#2| (-1060)) 23)))
+(((-853 |#1| |#2|) (-10 -7 (-15 -3125 (|#2| |#2| (-1060))) (-15 -1373 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3533 (|#2| |#2|))) (-779) (-400 |#1|)) (T -853))
+((-3533 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-779)) (-5 *1 (-853 *4 *2)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -3125 (|#2| |#2| (-1060))) (-15 -1373 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3533 (|#2| |#2|)))
+((-3469 (((-286 (-517)) (-1077)) 15)) (-3533 (((-286 (-517)) (-1077)) 13)) (-1373 (((-286 (-517)) (-1077)) 11)) (-3125 (((-286 (-517)) (-1077) (-1060)) 18)))
+(((-854) (-10 -7 (-15 -3125 ((-286 (-517)) (-1077) (-1060))) (-15 -1373 ((-286 (-517)) (-1077))) (-15 -3469 ((-286 (-517)) (-1077))) (-15 -3533 ((-286 (-517)) (-1077))))) (T -854))
+((-3533 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-1060)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))))
+(-10 -7 (-15 -3125 ((-286 (-517)) (-1077) (-1060))) (-15 -1373 ((-286 (-517)) (-1077))) (-15 -3469 ((-286 (-517)) (-1077))) (-15 -3533 ((-286 (-517)) (-1077))))
+((-2939 (((-813 |#1| |#3|) |#2| (-816 |#1|) (-813 |#1| |#3|)) 24)) (-3627 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
+(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3627 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -2939 ((-813 |#1| |#3|) |#2| (-816 |#1|) (-813 |#1| |#3|)))) (-1006) (-810 |#1|) (-13 (-1006) (-955 |#2|))) (T -855))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-13 (-1006) (-955 *3))) (-4 *3 (-810 *5)) (-5 *1 (-855 *5 *3 *6)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1006) (-955 *5))) (-4 *5 (-810 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-855 *4 *5 *6)))))
+(-10 -7 (-15 -3627 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -2939 ((-813 |#1| |#3|) |#2| (-816 |#1|) (-813 |#1| |#3|))))
+((-2939 (((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)) 29)))
+(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-1006) (-13 (-509) (-779) (-810 |#1|)) (-13 (-400 |#2|) (-558 (-816 |#1|)) (-810 |#1|) (-955 (-556 $)))) (T -856))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-13 (-400 *6) (-558 *4) (-810 *5) (-955 (-556 $)))) (-5 *4 (-816 *5)) (-4 *6 (-13 (-509) (-779) (-810 *5))) (-5 *1 (-856 *5 *6 *3)))))
+(-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))))
+((-2939 (((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|)) 12)))
+(((-857 |#1|) (-10 -7 (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|)))) (-502)) (T -857))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 (-517) *3)) (-5 *4 (-816 (-517))) (-4 *3 (-502)) (-5 *1 (-857 *3)))))
+(-10 -7 (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))))
+((-2939 (((-813 |#1| |#2|) (-556 |#2|) (-816 |#1|) (-813 |#1| |#2|)) 52)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -2939 ((-813 |#1| |#2|) (-556 |#2|) (-816 |#1|) (-813 |#1| |#2|)))) (-1006) (-13 (-779) (-955 (-556 $)) (-558 (-816 |#1|)) (-810 |#1|))) (T -858))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1006)) (-4 *6 (-13 (-779) (-955 (-556 $)) (-558 *4) (-810 *5))) (-5 *4 (-816 *5)) (-5 *1 (-858 *5 *6)))))
+(-10 -7 (-15 -2939 ((-813 |#1| |#2|) (-556 |#2|) (-816 |#1|) (-813 |#1| |#2|))))
+((-2939 (((-809 |#1| |#2| |#3|) |#3| (-816 |#1|) (-809 |#1| |#2| |#3|)) 14)))
+(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-809 |#1| |#2| |#3|) |#3| (-816 |#1|) (-809 |#1| |#2| |#3|)))) (-1006) (-810 |#1|) (-603 |#2|)) (T -859))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-809 *5 *6 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-810 *5)) (-4 *3 (-603 *6)) (-5 *1 (-859 *5 *6 *3)))))
+(-10 -7 (-15 -2939 ((-809 |#1| |#2| |#3|) |#3| (-816 |#1|) (-809 |#1| |#2| |#3|))))
+((-2939 (((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|)) 17 (|has| |#3| (-810 |#1|))) (((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|) (-1 (-813 |#1| |#5|) |#3| (-816 |#1|) (-813 |#1| |#5|))) 16)))
+(((-860 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|) (-1 (-813 |#1| |#5|) |#3| (-816 |#1|) (-813 |#1| |#5|)))) (IF (|has| |#3| (-810 |#1|)) (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|))) |%noBranch|)) (-1006) (-725) (-779) (-13 (-964) (-779) (-810 |#1|)) (-13 (-873 |#4| |#2| |#3|) (-558 (-816 |#1|)))) (T -860))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-13 (-873 *8 *6 *7) (-558 *4))) (-5 *4 (-816 *5)) (-4 *7 (-810 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-964) (-779) (-810 *5))) (-5 *1 (-860 *5 *6 *7 *8 *3)))) (-2939 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-813 *6 *3) *8 (-816 *6) (-813 *6 *3))) (-4 *8 (-779)) (-5 *2 (-813 *6 *3)) (-5 *4 (-816 *6)) (-4 *6 (-1006)) (-4 *3 (-13 (-873 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-964) (-779) (-810 *6))) (-5 *1 (-860 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|) (-1 (-813 |#1| |#5|) |#3| (-816 |#1|) (-813 |#1| |#5|)))) (IF (|has| |#3| (-810 |#1|)) (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|))) |%noBranch|))
+((-3594 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3594 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3594 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1112)) (T -861))
+((-3594 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) (-4 *4 (-779)) (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1112)) (-4 *4 (-779)) (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -3594 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3594 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
+((-3594 (((-286 (-517)) (-1077) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1077) (-1 (-107) |#1|)) 13)))
+(((-862 |#1|) (-10 -7 (-15 -3594 ((-286 (-517)) (-1077) (-1 (-107) |#1|))) (-15 -3594 ((-286 (-517)) (-1077) (-583 (-1 (-107) |#1|))))) (-1112)) (T -862))
+((-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) (-5 *2 (-286 (-517))) (-5 *1 (-862 *5)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1112)) (-5 *2 (-286 (-517))) (-5 *1 (-862 *5)))))
+(-10 -7 (-15 -3594 ((-286 (-517)) (-1077) (-1 (-107) |#1|))) (-15 -3594 ((-286 (-517)) (-1077) (-583 (-1 (-107) |#1|)))))
+((-2939 (((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)) 25)))
+(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-1006) (-13 (-509) (-810 |#1|) (-558 (-816 |#1|))) (-912 |#2|)) (T -863))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-912 *6)) (-4 *6 (-13 (-509) (-810 *5) (-558 *4))) (-5 *4 (-816 *5)) (-5 *1 (-863 *5 *6 *3)))))
+(-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))))
+((-2939 (((-813 |#1| (-1077)) (-1077) (-816 |#1|) (-813 |#1| (-1077))) 17)))
+(((-864 |#1|) (-10 -7 (-15 -2939 ((-813 |#1| (-1077)) (-1077) (-816 |#1|) (-813 |#1| (-1077))))) (-1006)) (T -864))
+((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 (-1077))) (-5 *3 (-1077)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-5 *1 (-864 *5)))))
+(-10 -7 (-15 -2939 ((-813 |#1| (-1077)) (-1077) (-816 |#1|) (-813 |#1| (-1077)))))
+((-1737 (((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) 33)) (-2939 (((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-1 |#3| (-583 |#3|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) 32)))
+(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-1 |#3| (-583 |#3|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-15 -1737 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))))) (-1006) (-13 (-964) (-779)) (-13 (-964) (-558 (-816 |#1|)) (-955 |#2|))) (T -865))
+((-1737 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-816 *6))) (-5 *5 (-1 (-813 *6 *8) *8 (-816 *6) (-813 *6 *8))) (-4 *6 (-1006)) (-4 *8 (-13 (-964) (-558 (-816 *6)) (-955 *7))) (-5 *2 (-813 *6 *8)) (-4 *7 (-13 (-964) (-779))) (-5 *1 (-865 *6 *7 *8)))) (-2939 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-816 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-813 *7 *9) *9 (-816 *7) (-813 *7 *9))) (-4 *7 (-1006)) (-4 *9 (-13 (-964) (-558 (-816 *7)) (-955 *8))) (-5 *2 (-813 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-964) (-779))) (-5 *1 (-865 *7 *8 *9)))))
+(-10 -7 (-15 -2939 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-1 |#3| (-583 |#3|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-15 -1737 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))))
+((-1895 (((-1073 (-377 (-517))) (-517)) 62)) (-3709 (((-1073 (-517)) (-517)) 65)) (-1686 (((-1073 (-517)) (-517)) 59)) (-3116 (((-517) (-1073 (-517))) 54)) (-1796 (((-1073 (-377 (-517))) (-517)) 48)) (-3585 (((-1073 (-517)) (-517)) 37)) (-4078 (((-1073 (-517)) (-517)) 67)) (-2855 (((-1073 (-517)) (-517)) 66)) (-3132 (((-1073 (-377 (-517))) (-517)) 50)))
+(((-866) (-10 -7 (-15 -3132 ((-1073 (-377 (-517))) (-517))) (-15 -2855 ((-1073 (-517)) (-517))) (-15 -4078 ((-1073 (-517)) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -1796 ((-1073 (-377 (-517))) (-517))) (-15 -3116 ((-517) (-1073 (-517)))) (-15 -1686 ((-1073 (-517)) (-517))) (-15 -3709 ((-1073 (-517)) (-517))) (-15 -1895 ((-1073 (-377 (-517))) (-517))))) (T -866))
+((-1895 (*1 *2 *3) (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-1686 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-517)) (-5 *1 (-866)))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-4078 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-2855 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3132 ((-1073 (-377 (-517))) (-517))) (-15 -2855 ((-1073 (-517)) (-517))) (-15 -4078 ((-1073 (-517)) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -1796 ((-1073 (-377 (-517))) (-517))) (-15 -3116 ((-517) (-1073 (-517)))) (-15 -1686 ((-1073 (-517)) (-517))) (-15 -3709 ((-1073 (-517)) (-517))) (-15 -1895 ((-1073 (-377 (-517))) (-517))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703)) NIL (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-3432 (($ (-583 |#1|)) 13)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) NIL (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) 8)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 10 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1492 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-2328 (((-107) $ (-703)) NIL)) (-3728 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3175 (($ $ (-583 |#1|)) 24)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1125 (-517))) NIL)) (-3912 ((|#1| $ $) NIL (|has| |#1| (-964)))) (-1470 (((-845) $) 16)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1305 (($ $ $) 22)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1666 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3573 (((-703) $) 14 (|has| $ (-6 -4195)))))
+(((-867 |#1|) (-900 |#1|) (-964)) (T -867))
+NIL
+(-900 |#1|)
+((-2435 (((-449 |#1| |#2|) (-876 |#2|)) 17)) (-1822 (((-221 |#1| |#2|) (-876 |#2|)) 29)) (-3381 (((-876 |#2|) (-449 |#1| |#2|)) 22)) (-1848 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-2000 (((-876 |#2|) (-221 |#1| |#2|)) 26)) (-1438 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
+(((-868 |#1| |#2|) (-10 -7 (-15 -1438 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1848 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2435 ((-449 |#1| |#2|) (-876 |#2|))) (-15 -3381 ((-876 |#2|) (-449 |#1| |#2|))) (-15 -2000 ((-876 |#2|) (-221 |#1| |#2|))) (-15 -1822 ((-221 |#1| |#2|) (-876 |#2|)))) (-583 (-1077)) (-964)) (T -868))
+((-1822 (*1 *2 *3) (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-221 *4 *5)) (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077))))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-449 *4 *5)) (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077))))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-221 *4 *5)) (-5 *1 (-868 *4 *5)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-449 *4 *5)) (-5 *1 (-868 *4 *5)))))
+(-10 -7 (-15 -1438 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1848 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2435 ((-449 |#1| |#2|) (-876 |#2|))) (-15 -3381 ((-876 |#2|) (-449 |#1| |#2|))) (-15 -2000 ((-876 |#2|) (-221 |#1| |#2|))) (-15 -1822 ((-221 |#1| |#2|) (-876 |#2|))))
+((-3642 (((-583 |#2|) |#2| |#2|) 10)) (-2259 (((-703) (-583 |#1|)) 38 (|has| |#1| (-777)))) (-3811 (((-583 |#2|) |#2|) 11)) (-3895 (((-703) (-583 |#1|) (-517) (-517)) 37 (|has| |#1| (-777)))) (-2366 ((|#1| |#2|) 33 (|has| |#1| (-777)))))
+(((-869 |#1| |#2|) (-10 -7 (-15 -3642 ((-583 |#2|) |#2| |#2|)) (-15 -3811 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2366 (|#1| |#2|)) (-15 -2259 ((-703) (-583 |#1|))) (-15 -3895 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|)) (-333) (-1134 |#1|)) (T -869))
+((-3895 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-869 *5 *6)) (-4 *6 (-1134 *5)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-869 *4 *5)) (-4 *5 (-1134 *4)))) (-2366 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1134 *2)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3)) (-4 *3 (-1134 *4)))) (-3642 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -3642 ((-583 |#2|) |#2| |#2|)) (-15 -3811 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2366 (|#1| |#2|)) (-15 -2259 ((-703) (-583 |#1|))) (-15 -3895 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|))
+((-3312 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 18)))
+(((-870 |#1| |#2|) (-10 -7 (-15 -3312 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-964) (-964)) (T -870))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-876 *6)) (-5 *1 (-870 *5 *6)))))
+(-10 -7 (-15 -3312 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|))))
+((-1428 (((-1131 |#1| (-876 |#2|)) (-876 |#2|) (-1154 |#1|)) 18)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -1428 ((-1131 |#1| (-876 |#2|)) (-876 |#2|) (-1154 |#1|)))) (-1077) (-964)) (T -871))
+((-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-1154 *5)) (-14 *5 (-1077)) (-4 *6 (-964)) (-5 *2 (-1131 *5 (-876 *6))) (-5 *1 (-871 *5 *6)) (-5 *3 (-876 *6)))))
+(-10 -7 (-15 -1428 ((-1131 |#1| (-876 |#2|)) (-876 |#2|) (-1154 |#1|))))
+((-2675 (((-703) $) 70) (((-703) $ (-583 |#4|)) 73)) (-1322 (($ $) 170)) (-3306 (((-388 $) $) 162)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 113)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 58)) (-2133 (($ $ $ |#4|) 75)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 103) (((-623 |#2|) (-623 $)) 96)) (-4172 (($ $) 177) (($ $ |#4|) 180)) (-2350 (((-583 $) $) 62)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 195) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 189)) (-1300 (((-583 $) $) 28)) (-2059 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 56)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#4|) 159)) (-1743 (((-3 (-583 $) "failed") $) 42)) (-1442 (((-3 (-583 $) "failed") $) 31)) (-3044 (((-3 (-2 (|:| |var| |#4|) (|:| -1725 (-703))) "failed") $) 46)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 106)) (-3835 (((-388 (-1073 $)) (-1073 $)) 119)) (-1195 (((-388 (-1073 $)) (-1073 $)) 117)) (-3896 (((-388 $) $) 137)) (-3552 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-3115 (($ $ |#4|) 77)) (-3367 (((-816 (-349)) $) 209) (((-816 (-517)) $) 202) (((-493) $) 217)) (-4094 ((|#2| $) NIL) (($ $ |#4|) 172)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 151)) (-1939 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 51) (($ $ (-583 |#4|) (-583 (-703))) 54)) (-3385 (((-3 $ "failed") $) 153)) (-1596 (((-107) $ $) 183)))
+(((-872 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -4172 (|#1| |#1| |#4|)) (-15 -4094 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#4|)) (-15 -2133 (|#1| |#1| |#1| |#4|)) (-15 -2350 ((-583 |#1|) |#1|)) (-15 -2675 ((-703) |#1| (-583 |#4|))) (-15 -2675 ((-703) |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| |#4|) (|:| -1725 (-703))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2059 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#4| (-703))) (-15 -2302 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1300 ((-583 |#1|) |#1|)) (-15 -1939 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1939 (|#1| |#1| |#4| (-703))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1939 (|#2| |#1| |#3|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -4172 (|#1| |#1|))) (-873 |#2| |#3| |#4|) (-964) (-725) (-779)) (T -872))
+NIL
+(-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -4172 (|#1| |#1| |#4|)) (-15 -4094 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#4|)) (-15 -2133 (|#1| |#1| |#1| |#4|)) (-15 -2350 ((-583 |#1|) |#1|)) (-15 -2675 ((-703) |#1| (-583 |#4|))) (-15 -2675 ((-703) |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| |#4|) (|:| -1725 (-703))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2059 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#4| (-703))) (-15 -2302 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1300 ((-583 |#1|) |#1|)) (-15 -1939 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1939 (|#1| |#1| |#4| (-703))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1939 (|#2| |#1| |#3|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -4172 (|#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#3|) $) 110)) (-1428 (((-1073 $) $ |#3|) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) 136)) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) ((|#3| $) 135)) (-2133 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2364 (($ $) 154)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-1760 (($ $ |#1| |#2| $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| |#3| (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| |#3| (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-2069 (($ (-1073 |#1|) |#3|) 117) (($ (-1073 $) |#3|) 116)) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3942 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 |#2| |#2|) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-1958 (((-3 |#3| "failed") $) 123)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3232 (((-1060) $) 9)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) 113)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3115 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2042 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-1191 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| |#3| (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| |#3| (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-873 |#1| |#2| |#3|) (-1189) (-964) (-725) (-779)) (T -873))
+((-4172 (*1 *1 *1) (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1191 (*1 *2 *1 *3) (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1191 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-1939 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1300 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-1428 (*1 *2 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1073 *1)) (-4 *1 (-873 *4 *5 *3)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1073 *3)))) (-1958 (*1 *2 *1) (|partial| -12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3942 (*1 *2 *1 *3) (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2302 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-873 *4 *5 *3)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)))) (-2069 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *4)) (-4 *4 (-964)) (-4 *1 (-873 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-2069 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-1743 (*1 *2 *1) (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-3044 (*1 *2 *1) (|partial| -12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-703)))))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2350 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-2133 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3115 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-4094 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-4172 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3306 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-873 *3 *4 *5)))))
+(-13 (-824 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-955 |t#3|) (-347 |t#1|) (-10 -8 (-15 -1191 ((-703) $ |t#3|)) (-15 -1191 ((-583 (-703)) $ (-583 |t#3|))) (-15 -1939 ($ $ |t#3| (-703))) (-15 -1939 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1300 ((-583 $) $)) (-15 -1428 ((-1073 $) $ |t#3|)) (-15 -1428 ((-1073 |t#1|) $)) (-15 -1958 ((-3 |t#3| "failed") $)) (-15 -3942 ((-703) $ |t#3|)) (-15 -3942 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2302 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |t#3|)) (-15 -2059 ($ $ |t#3| (-703))) (-15 -2059 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -2069 ($ (-1073 |t#1|) |t#3|)) (-15 -2069 ($ (-1073 $) |t#3|)) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |var| |t#3|) (|:| -1725 (-703))) "failed") $)) (-15 -2675 ((-703) $)) (-15 -2675 ((-703) $ (-583 |t#3|))) (-15 -2080 ((-583 |t#3|) $)) (-15 -2350 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-816 (-517)))) (IF (|has| |t#3| (-558 (-816 (-517)))) (-6 (-558 (-816 (-517)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-816 (-349)))) (IF (|has| |t#3| (-558 (-816 (-349)))) (-6 (-558 (-816 (-349)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-810 (-517))) (IF (|has| |t#3| (-810 (-517))) (-6 (-810 (-517))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-810 (-349))) (IF (|has| |t#3| (-810 (-349))) (-6 (-810 (-349))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -2133 ($ $ $ |t#3|)) (-15 -3115 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -4094 ($ $ |t#3|)) (-15 -4172 ($ $)) (-15 -4172 ($ $ |t#3|)) (-15 -3306 ((-388 $) $)) (-15 -1322 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4193)) (-6 -4193) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 |#3|) . T) ((-810 (-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) ((-833) |has| |#1| (-833)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-955 |#3|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) |has| |#1| (-833)))
+((-2080 (((-583 |#2|) |#5|) 36)) (-1428 (((-1073 |#5|) |#5| |#2| (-1073 |#5|)) 23) (((-377 (-1073 |#5|)) |#5| |#2|) 16)) (-2069 ((|#5| (-377 (-1073 |#5|)) |#2|) 30)) (-1958 (((-3 |#2| "failed") |#5|) 61)) (-1743 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-1481 (((-3 (-2 (|:| |val| |#5|) (|:| -1725 (-517))) "failed") |#5|) 45)) (-1442 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-3044 (((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-517))) "failed") |#5|) 48)))
+(((-874 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2080 ((-583 |#2|) |#5|)) (-15 -1958 ((-3 |#2| "failed") |#5|)) (-15 -1428 ((-377 (-1073 |#5|)) |#5| |#2|)) (-15 -2069 (|#5| (-377 (-1073 |#5|)) |#2|)) (-15 -1428 ((-1073 |#5|) |#5| |#2| (-1073 |#5|))) (-15 -1442 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -1743 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3044 ((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-517))) "failed") |#5|)) (-15 -1481 ((-3 (-2 (|:| |val| |#5|) (|:| -1725 (-517))) "failed") |#5|))) (-725) (-779) (-964) (-873 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2262 ($ |#4|)) (-15 -3858 (|#4| $)) (-15 -2082 (|#4| $))))) (T -874))
+((-1481 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1725 (-517)))) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-3044 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-517)))) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1743 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1442 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1428 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))) (-4 *7 (-873 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) (-5 *1 (-874 *5 *4 *6 *7 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1073 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))) (-5 *1 (-874 *5 *4 *6 *7 *2)) (-4 *7 (-873 *6 *5 *4)))) (-1428 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-377 (-1073 *3))) (-5 *1 (-874 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1958 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-964)) (-4 *6 (-873 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-874 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *6)) (-15 -3858 (*6 $)) (-15 -2082 (*6 $))))))) (-2080 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))))
+(-10 -7 (-15 -2080 ((-583 |#2|) |#5|)) (-15 -1958 ((-3 |#2| "failed") |#5|)) (-15 -1428 ((-377 (-1073 |#5|)) |#5| |#2|)) (-15 -2069 (|#5| (-377 (-1073 |#5|)) |#2|)) (-15 -1428 ((-1073 |#5|) |#5| |#2| (-1073 |#5|))) (-15 -1442 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -1743 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3044 ((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-517))) "failed") |#5|)) (-15 -1481 ((-3 (-2 (|:| |val| |#5|) (|:| -1725 (-517))) "failed") |#5|)))
+((-3312 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3312 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-964) (-873 |#3| |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -875))
+((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-964)) (-4 *6 (-725)) (-4 *2 (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-875 *6 *7 *8 *5 *2)) (-4 *5 (-873 *8 *6 *7)))))
+(-10 -7 (-15 -3312 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-1077)) $) 15)) (-1428 (((-1073 $) $ (-1077)) 21) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-1077))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-1077) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-1077) $) NIL)) (-2133 (($ $ $ (-1077)) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1077)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 (-1077)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-1077) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-1077) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) (-1077)) NIL) (($ (-1073 $) (-1077)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-1077)) NIL)) (-3942 (((-489 (-1077)) $) NIL) (((-703) $ (-1077)) NIL) (((-583 (-703)) $ (-583 (-1077))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 (-1077)) (-489 (-1077))) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1958 (((-3 (-1077) "failed") $) 19)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-1077)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $ (-1077)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1077) |#1|) NIL) (($ $ (-583 (-1077)) (-583 |#1|)) NIL) (($ $ (-1077) $) NIL) (($ $ (-583 (-1077)) (-583 $)) NIL)) (-3115 (($ $ (-1077)) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1191 (((-489 (-1077)) $) NIL) (((-703) $ (-1077)) NIL) (((-583 (-703)) $ (-583 (-1077))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-1077) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-1077) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-1077) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1077)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1077)) 27) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-876 |#1|) (-13 (-873 |#1| (-489 (-1077)) (-1077)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1077))) |%noBranch|))) (-964)) (T -876))
+((-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-876 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)))))
+(-13 (-873 |#1| (-489 (-1077)) (-1077)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1077))) |%noBranch|)))
+((-2802 (((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-1598 (((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-1261 (((-2 (|:| -1725 (-703)) (|:| -1570 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-4127 (((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
+(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -1598 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -4127 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -1261 ((-2 (|:| -1725 (-703)) (|:| -1570 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-873 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -3858 (|#4| $)) (-15 -2082 (|#4| $)) (-15 -2262 ($ |#4|))))) (T -877))
+((-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-873 *7 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-877 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3858 (*3 $)) (-15 -2082 (*3 $)) (-15 -2262 ($ *3))))))) (-4127 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-873 *7 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *3))) (-5 *1 (-877 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8))))))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-873 *7 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *9) (|:| |radicand| *9))) (-5 *1 (-877 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8))))))) (-2802 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-873 *3 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *8) (|:| |radicand| *8))) (-5 *1 (-877 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3858 (*7 $)) (-15 -2082 (*7 $)) (-15 -2262 ($ *7))))))))
+(-10 -7 (-15 -2802 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -1598 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -4127 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -1261 ((-2 (|:| -1725 (-703)) (|:| -1570 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
+((-2712 (((-1001 (-199)) $) 8)) (-2700 (((-1001 (-199)) $) 9)) (-1515 (((-583 (-583 (-867 (-199)))) $) 10)) (-2262 (((-787) $) 6)))
+(((-878) (-1189)) (T -878))
+((-1515 (*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-583 (-583 (-867 (-199))))))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199))))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1515 ((-583 (-583 (-867 (-199)))) $)) (-15 -2700 ((-1001 (-199)) $)) (-15 -2712 ((-1001 (-199)) $))))
(((-557 (-787)) . T))
-((-1890 (((-3 (-623 |#1|) "failed") |#2| (-844)) 14)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -1890 ((-3 (-623 |#1|) "failed") |#2| (-844)))) (-509) (-593 |#1|)) (T -878))
-((-1890 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-844)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-878 *5 *3)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -1890 ((-3 (-623 |#1|) "failed") |#2| (-844))))
-((-1532 (((-880 |#2|) (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|) 16)) (-1522 ((|#2| (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|) 18)) (-3310 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 13)))
-(((-879 |#1| |#2|) (-10 -7 (-15 -1532 ((-880 |#2|) (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -3310 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1111) (-1111)) (T -879))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-880 *5)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-879 *5 *2)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-880 *6)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-5 *2 (-880 *5)) (-5 *1 (-879 *6 *5)))))
-(-10 -7 (-15 -1532 ((-880 |#2|) (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -3310 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 14)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3213 (($ (-703) |#1|) 13)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) 10 (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) 12 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) 11)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1124 (-517))) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) NIL)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3535 (((-703) $) 8 (|has| $ (-6 -4192)))))
-(((-880 |#1|) (-19 |#1|) (-1111)) (T -880))
+((-2635 (((-3 (-623 |#1|) "failed") |#2| (-845)) 14)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -2635 ((-3 (-623 |#1|) "failed") |#2| (-845)))) (-509) (-593 |#1|)) (T -879))
+((-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-845)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-879 *5 *3)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -2635 ((-3 (-623 |#1|) "failed") |#2| (-845))))
+((-1250 (((-881 |#2|) (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|) 16)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|) 18)) (-3312 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 13)))
+(((-880 |#1| |#2|) (-10 -7 (-15 -1250 ((-881 |#2|) (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -3312 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1112) (-1112)) (T -880))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-881 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-880 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-881 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-881 *5)) (-5 *1 (-880 *6 *5)))))
+(-10 -7 (-15 -1250 ((-881 |#2|) (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -3312 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 14)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 13)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 10 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) 12 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 11)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 8 (|has| $ (-6 -4195)))))
+(((-881 |#1|) (-19 |#1|) (-1112)) (T -881))
NIL
(-19 |#1|)
-((-2483 (($ $ (-998 $)) 7) (($ $ (-1076)) 6)))
-(((-881) (-1188)) (T -881))
-((-2483 (*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-881)))) (-2483 (*1 *1 *1 *2) (-12 (-4 *1 (-881)) (-5 *2 (-1076)))))
-(-13 (-10 -8 (-15 -2483 ($ $ (-1076))) (-15 -2483 ($ $ (-998 $)))))
-((-1304 (((-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 |#1|))) (|:| |prim| (-1072 |#1|))) (-583 (-875 |#1|)) (-583 (-1076)) (-1076)) 23) (((-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 |#1|))) (|:| |prim| (-1072 |#1|))) (-583 (-875 |#1|)) (-583 (-1076))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1072 |#1|))) (-875 |#1|) (-1076) (-875 |#1|) (-1076)) 41)))
-(((-882 |#1|) (-10 -7 (-15 -1304 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1072 |#1|))) (-875 |#1|) (-1076) (-875 |#1|) (-1076))) (-15 -1304 ((-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 |#1|))) (|:| |prim| (-1072 |#1|))) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -1304 ((-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 |#1|))) (|:| |prim| (-1072 |#1|))) (-583 (-875 |#1|)) (-583 (-1076)) (-1076)))) (-13 (-333) (-134))) (T -882))
-((-1304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1076))) (-5 *5 (-1076)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 *6))) (|:| |prim| (-1072 *6)))) (-5 *1 (-882 *6)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1076))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 *5))) (|:| |prim| (-1072 *5)))) (-5 *1 (-882 *5)))) (-1304 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1076)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1072 *5)))) (-5 *1 (-882 *5)))))
-(-10 -7 (-15 -1304 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1072 |#1|))) (-875 |#1|) (-1076) (-875 |#1|) (-1076))) (-15 -1304 ((-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 |#1|))) (|:| |prim| (-1072 |#1|))) (-583 (-875 |#1|)) (-583 (-1076)))) (-15 -1304 ((-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 |#1|))) (|:| |prim| (-1072 |#1|))) (-583 (-875 |#1|)) (-583 (-1076)) (-1076))))
-((-2930 (((-583 |#1|) |#1| |#1|) 42)) (-1259 (((-107) |#1|) 39)) (-2313 ((|#1| |#1|) 65)) (-2793 ((|#1| |#1|) 64)))
-(((-883 |#1|) (-10 -7 (-15 -1259 ((-107) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2930 ((-583 |#1|) |#1| |#1|))) (-502)) (T -883))
-((-2930 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-883 *3)) (-4 *3 (-502)))) (-2313 (*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))) (-2793 (*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))) (-1259 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-883 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -1259 ((-107) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2930 ((-583 |#1|) |#1| |#1|)))
-((-3406 (((-1162) (-787)) 9)))
-(((-884) (-10 -7 (-15 -3406 ((-1162) (-787))))) (T -884))
-((-3406 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-884)))))
-(-10 -7 (-15 -3406 ((-1162) (-787))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 63 (|has| |#1| (-509)))) (-3062 (($ $) 64 (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2373 (($ $) 24)) (-2560 (((-3 $ "failed") $) 35)) (-2683 (($ $) NIL (|has| |#1| (-421)))) (-3014 (($ $ |#1| |#2| $) 48)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) 16)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| |#2|) NIL)) (-3492 ((|#2| $) 19)) (-2935 (($ (-1 |#2| |#2|) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2335 (($ $) 23)) (-2347 ((|#1| $) 21)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) 40)) (-2321 ((|#1| $) NIL)) (-3320 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2329 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-509)))) (-3647 ((|#2| $) 17)) (-3119 ((|#1| $) NIL (|has| |#1| (-421)))) (-2271 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ |#2|) 31)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) 15)) (-2863 (($ $ $ (-703)) 59 (|has| |#1| (-156)))) (-2074 (((-107) $ $) 69 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 55) (($ $ (-703)) 56)) (-3610 (($) 22 T CONST)) (-3619 (($) 12 T CONST)) (-1584 (((-107) $ $) 68)) (-1704 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) 54) (($ $ (-703)) 52)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-885 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -3320 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4190)) (-6 -4190) |%noBranch|))) (-963) (-724)) (T -885))
-((-3320 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-885 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-963)) (-4 *2 (-724)))))
-(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -3320 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4190)) (-6 -4190) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-2948 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-2798 (((-3 $ "failed") $ $) 50 (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-2399 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3594 ((|#2| $) 21)) (-3846 ((|#1| $) 20)) (-1393 (($) NIL (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-2560 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2202 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1376 (((-107) $) NIL (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3458 (($ $ $) NIL (-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-4084 (($ $ $) NIL (-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3096 (($ |#1| |#2|) 19)) (-3072 (((-844) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2812 (($ (-844)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4125 (((-1023) $) NIL)) (-1842 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2059 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2271 (((-787) $) 14)) (-2815 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-844)) NIL (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3610 (($) 40 (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3619 (($) 24 (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1642 (((-107) $ $) NIL (-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1618 (((-107) $ $) NIL (-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1584 (((-107) $ $) 18)) (-1630 (((-107) $ $) NIL (-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1608 (((-107) $ $) 66 (-3747 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1704 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1692 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1678 (($ $ $) 43 (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-844)) NIL (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-844) $) NIL (-3747 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3747 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
-(((-886 |#1| |#2|) (-13 (-1005) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3096 ($ |#1| |#2|)) (-15 -3846 (|#1| $)) (-15 -3594 (|#2| $)))) (-1005) (-1005)) (T -886))
-((-3096 (*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3846 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1005)))) (-3594 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1005)))))
-(-13 (-1005) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3096 ($ |#1| |#2|)) (-15 -3846 (|#1| $)) (-15 -3594 (|#2| $))))
-((-3980 (($ $ $) 8)) (-2479 (($ $) 6)) (-2280 (($ $ $) 9)) (-2184 (($ $ $) 10)) (-3993 (($ $ $) 7)))
-(((-887) (-1188)) (T -887))
-((-2184 (*1 *1 *1 *1) (-4 *1 (-887))) (-2280 (*1 *1 *1 *1) (-4 *1 (-887))) (-3980 (*1 *1 *1 *1) (-4 *1 (-887))) (-3993 (*1 *1 *1 *1) (-4 *1 (-887))) (-2479 (*1 *1 *1) (-4 *1 (-887))))
-(-13 (-10 -8 (-15 -2479 ($ $)) (-15 -3993 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -2280 ($ $ $)) (-15 -2184 ($ $ $))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-4155 (($ $ $) 43)) (-2662 (($ $ $) 44)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-4084 ((|#1| $) 45)) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-888 |#1|) (-1188) (-779)) (T -888))
-((-4084 (*1 *2 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-779)))) (-2662 (*1 *1 *1 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-779)))) (-4155 (*1 *1 *1 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-779)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4192) (-15 -4084 (|t#1| $)) (-15 -2662 ($ $ $)) (-15 -4155 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2570 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2370 |#2|)) |#2| |#2|) 85)) (-4104 ((|#2| |#2| |#2|) 83)) (-3627 (((-2 (|:| |coef2| |#2|) (|:| -2370 |#2|)) |#2| |#2|) 87)) (-2593 (((-2 (|:| |coef1| |#2|) (|:| -2370 |#2|)) |#2| |#2|) 89)) (-1645 (((-2 (|:| |coef2| |#2|) (|:| -3337 |#1|)) |#2| |#2|) 107 (|has| |#1| (-421)))) (-3067 (((-2 (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|) 46)) (-3455 (((-2 (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|) 64)) (-2437 (((-2 (|:| |coef1| |#2|) (|:| -2157 |#1|)) |#2| |#2|) 66)) (-1369 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1311 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 71)) (-4076 (((-2 (|:| |coef2| |#2|) (|:| -1220 |#1|)) |#2|) 97)) (-3987 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 74)) (-1592 (((-583 (-703)) |#2| |#2|) 82)) (-3579 ((|#1| |#2| |#2|) 42)) (-3680 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3337 |#1|)) |#2| |#2|) 105 (|has| |#1| (-421)))) (-3337 ((|#1| |#2| |#2|) 103 (|has| |#1| (-421)))) (-3180 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|) 44)) (-1958 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|) 63)) (-2157 ((|#1| |#2| |#2|) 61)) (-3590 (((-2 (|:| -1582 |#1|) (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2|) 35)) (-3527 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3556 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2350 ((|#2| |#2| |#2|) 75)) (-1567 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 69)) (-3772 ((|#2| |#2| |#2| (-703)) 67)) (-2370 ((|#2| |#2| |#2|) 111 (|has| |#1| (-421)))) (-2329 (((-1157 |#2|) (-1157 |#2|) |#1|) 21)) (-3853 (((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2|) 39)) (-2040 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1220 |#1|)) |#2|) 95)) (-1220 ((|#1| |#2|) 92)) (-2507 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-3151 ((|#2| |#2| |#2| (-703)) 72)) (-3703 (((-583 |#2|) |#2| |#2|) 80)) (-3420 ((|#2| |#2| |#1| |#1| (-703)) 50)) (-2151 ((|#1| |#1| |#1| (-703)) 49)) (* (((-1157 |#2|) |#1| (-1157 |#2|)) 16)))
-(((-889 |#1| |#2|) (-10 -7 (-15 -2157 (|#1| |#2| |#2|)) (-15 -1958 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -3455 ((-2 (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -2437 ((-2 (|:| |coef1| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2| (-703))) (-15 -1567 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1311 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3151 (|#2| |#2| |#2| (-703))) (-15 -2507 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3987 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2350 (|#2| |#2| |#2|)) (-15 -3556 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1369 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4104 (|#2| |#2| |#2|)) (-15 -2570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2370 |#2|)) |#2| |#2|)) (-15 -3627 ((-2 (|:| |coef2| |#2|) (|:| -2370 |#2|)) |#2| |#2|)) (-15 -2593 ((-2 (|:| |coef1| |#2|) (|:| -2370 |#2|)) |#2| |#2|)) (-15 -1220 (|#1| |#2|)) (-15 -2040 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1220 |#1|)) |#2|)) (-15 -4076 ((-2 (|:| |coef2| |#2|) (|:| -1220 |#1|)) |#2|)) (-15 -3703 ((-583 |#2|) |#2| |#2|)) (-15 -1592 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -3337 (|#1| |#2| |#2|)) (-15 -3680 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3337 |#1|)) |#2| |#2|)) (-15 -1645 ((-2 (|:| |coef2| |#2|) (|:| -3337 |#1|)) |#2| |#2|)) (-15 -2370 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1157 |#2|) |#1| (-1157 |#2|))) (-15 -2329 ((-1157 |#2|) (-1157 |#2|) |#1|)) (-15 -3590 ((-2 (|:| -1582 |#1|) (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2|)) (-15 -3853 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2|)) (-15 -2151 (|#1| |#1| |#1| (-703))) (-15 -3420 (|#2| |#2| |#1| |#1| (-703))) (-15 -3527 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3579 (|#1| |#2| |#2|)) (-15 -3180 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -3067 ((-2 (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|))) (-509) (-1133 |#1|)) (T -889))
-((-3067 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2157 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3180 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2157 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3579 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2)))) (-3527 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3)))) (-3420 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3)))) (-2151 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-889 *2 *4)) (-4 *4 (-1133 *2)))) (-3853 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1582 *4) (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-2329 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-509)) (-5 *1 (-889 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-509)) (-5 *1 (-889 *3 *4)))) (-2370 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3)))) (-1645 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3337 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3680 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3337 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3337 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2)))) (-1592 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3703 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1220 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1220 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-1220 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2)))) (-2593 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2370 *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3627 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2370 *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-2570 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2370 *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-4104 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3)))) (-1369 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-2350 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3)))) (-3987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))) (-2507 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))) (-3151 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-889 *4 *2)) (-4 *2 (-1133 *4)))) (-1311 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))) (-1567 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))) (-3772 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-889 *4 *2)) (-4 *2 (-1133 *4)))) (-2437 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2157 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-3455 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2157 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-1958 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2157 *4))) (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))) (-2157 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2)))))
-(-10 -7 (-15 -2157 (|#1| |#2| |#2|)) (-15 -1958 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -3455 ((-2 (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -2437 ((-2 (|:| |coef1| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2| (-703))) (-15 -1567 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1311 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3151 (|#2| |#2| |#2| (-703))) (-15 -2507 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3987 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2350 (|#2| |#2| |#2|)) (-15 -3556 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1369 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4104 (|#2| |#2| |#2|)) (-15 -2570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2370 |#2|)) |#2| |#2|)) (-15 -3627 ((-2 (|:| |coef2| |#2|) (|:| -2370 |#2|)) |#2| |#2|)) (-15 -2593 ((-2 (|:| |coef1| |#2|) (|:| -2370 |#2|)) |#2| |#2|)) (-15 -1220 (|#1| |#2|)) (-15 -2040 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1220 |#1|)) |#2|)) (-15 -4076 ((-2 (|:| |coef2| |#2|) (|:| -1220 |#1|)) |#2|)) (-15 -3703 ((-583 |#2|) |#2| |#2|)) (-15 -1592 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -3337 (|#1| |#2| |#2|)) (-15 -3680 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3337 |#1|)) |#2| |#2|)) (-15 -1645 ((-2 (|:| |coef2| |#2|) (|:| -3337 |#1|)) |#2| |#2|)) (-15 -2370 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1157 |#2|) |#1| (-1157 |#2|))) (-15 -2329 ((-1157 |#2|) (-1157 |#2|) |#1|)) (-15 -3590 ((-2 (|:| -1582 |#1|) (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2|)) (-15 -3853 ((-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) |#2| |#2|)) (-15 -2151 (|#1| |#1| |#1| (-703))) (-15 -3420 (|#2| |#2| |#1| |#1| (-703))) (-15 -3527 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3579 (|#1| |#2| |#2|)) (-15 -3180 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)) (-15 -3067 ((-2 (|:| |coef2| |#2|) (|:| -2157 |#1|)) |#2| |#2|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) 27)) (-1393 (($) NIL T CONST)) (-1996 (((-583 (-583 (-517))) (-583 (-517))) 29)) (-3717 (((-517) $) 45)) (-3441 (($ (-583 (-517))) 17)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3359 (((-583 (-517)) $) 11)) (-1842 (($ $) 32)) (-2271 (((-787) $) 43) (((-583 (-517)) $) 9)) (-3610 (($) 7 T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 20)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 19)) (-1678 (($ $ $) 21)) (* (($ (-703) $) 25) (($ (-844) $) NIL)))
-(((-890) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3441 ($ (-583 (-517)))) (-15 -1996 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -3717 ((-517) $)) (-15 -1842 ($ $)) (-15 -2271 ((-583 (-517)) $))))) (T -890))
-((-3441 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-890)))) (-1996 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-890)) (-5 *3 (-583 (-517))))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-890)))) (-1842 (*1 *1 *1) (-5 *1 (-890))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-890)))))
-(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3441 ($ (-583 (-517)))) (-15 -1996 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -3717 ((-517) $)) (-15 -1842 ($ $)) (-15 -2271 ((-583 (-517)) $))))
-((-1704 (($ $ |#2|) 30)) (-1692 (($ $) 22) (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
-(((-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1704 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-892 |#2| |#3| |#4|) (-963) (-724) (-779)) (T -891))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1704 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 |#3|) $) 74)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-1880 (((-107) $) 73)) (-1376 (((-107) $) 31)) (-3982 (((-107) $) 62)) (-2078 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3647 ((|#2| $) 64)) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1689 ((|#1| $ |#2|) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-892 |#1| |#2| |#3|) (-1188) (-963) (-724) (-779)) (T -892))
-((-2347 (*1 *2 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-963)))) (-2335 (*1 *1 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-724)) (-4 *4 (-779)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *2 (-724)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-892 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-724)) (-4 *2 (-779)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-724)) (-4 *6 (-779)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3624 (*1 *1 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2078 ($ $ |t#3| |t#2|)) (-15 -2078 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2335 ($ $)) (-15 -2347 (|t#1| $)) (-15 -3647 (|t#2| $)) (-15 -2097 ((-583 |t#3|) $)) (-15 -1880 ((-107) $)) (-15 -3624 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2733 (((-1000 (-199)) $) 8)) (-2721 (((-1000 (-199)) $) 9)) (-2709 (((-1000 (-199)) $) 10)) (-2195 (((-583 (-583 (-866 (-199)))) $) 11)) (-2271 (((-787) $) 6)))
-(((-893) (-1188)) (T -893))
-((-2195 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-583 (-583 (-866 (-199))))))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1000 (-199))))) (-2721 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1000 (-199))))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1000 (-199))))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2195 ((-583 (-583 (-866 (-199)))) $)) (-15 -2709 ((-1000 (-199)) $)) (-15 -2721 ((-1000 (-199)) $)) (-15 -2733 ((-1000 (-199)) $))))
+((-1329 (($ $ (-999 $)) 7) (($ $ (-1077)) 6)))
+(((-882) (-1189)) (T -882))
+((-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-882)))) (-1329 (*1 *1 *1 *2) (-12 (-4 *1 (-882)) (-5 *2 (-1077)))))
+(-13 (-10 -8 (-15 -1329 ($ $ (-1077))) (-15 -1329 ($ $ (-999 $)))))
+((-4169 (((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)) (-1077)) 23) (((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 |#1|))) (-876 |#1|) (-1077) (-876 |#1|) (-1077)) 41)))
+(((-883 |#1|) (-10 -7 (-15 -4169 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 |#1|))) (-876 |#1|) (-1077) (-876 |#1|) (-1077))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)) (-1077)))) (-13 (-333) (-134))) (T -883))
+((-4169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-5 *5 (-1077)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *6))) (|:| |prim| (-1073 *6)))) (-5 *1 (-883 *6)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *5))) (|:| |prim| (-1073 *5)))) (-5 *1 (-883 *5)))) (-4169 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1077)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 *5)))) (-5 *1 (-883 *5)))))
+(-10 -7 (-15 -4169 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 |#1|))) (-876 |#1|) (-1077) (-876 |#1|) (-1077))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)) (-1077))))
+((-2251 (((-583 |#1|) |#1| |#1|) 42)) (-2022 (((-107) |#1|) 39)) (-1561 ((|#1| |#1|) 65)) (-3258 ((|#1| |#1|) 64)))
+(((-884 |#1|) (-10 -7 (-15 -2022 ((-107) |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -2251 ((-583 |#1|) |#1| |#1|))) (-502)) (T -884))
+((-2251 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-884 *3)) (-4 *3 (-502)))) (-1561 (*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502)))) (-3258 (*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502)))) (-2022 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-884 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -2022 ((-107) |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -2251 ((-583 |#1|) |#1| |#1|)))
+((-3421 (((-1163) (-787)) 9)))
+(((-885) (-10 -7 (-15 -3421 ((-1163) (-787))))) (T -885))
+((-3421 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-885)))))
+(-10 -7 (-15 -3421 ((-1163) (-787))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 63 (|has| |#1| (-509)))) (-2491 (($ $) 64 (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) 24)) (-3550 (((-3 $ "failed") $) 35)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1760 (($ $ |#1| |#2| $) 48)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 16)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3942 ((|#2| $) 19)) (-1542 (($ (-1 |#2| |#2|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2325 (($ $) 23)) (-2336 ((|#1| $) 21)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 40)) (-2311 ((|#1| $) NIL)) (-2555 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2333 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-509)))) (-1191 ((|#2| $) 17)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ |#2|) 31)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 15)) (-2308 (($ $ $ (-703)) 59 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 69 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 55) (($ $ (-703)) 56)) (-3663 (($) 22 T CONST)) (-3675 (($) 12 T CONST)) (-1572 (((-107) $ $) 68)) (-1692 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) 54) (($ $ (-703)) 52)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-886 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -2555 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) (-964) (-724)) (T -886))
+((-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-886 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-964)) (-4 *2 (-724)))))
+(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -2555 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-3505 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-1783 (((-3 $ "failed") $ $) 50 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-2390 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4122 ((|#2| $) 21)) (-2650 ((|#1| $) 20)) (-3038 (($) NIL (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2192 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1690 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3480 (($ $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-4095 (($ $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3139 (($ |#1| |#2|) 19)) (-4161 (((-845) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2803 (($ (-845)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4130 (((-1024) $) NIL)) (-1853 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1970 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2262 (((-787) $) 14)) (-2806 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-845)) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3663 (($) 40 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3675 (($) 24 (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1630 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1606 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1572 (((-107) $ $) 18)) (-1618 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1596 (((-107) $ $) 66 (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1692 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1680 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1666 (($ $ $) 43 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-845)) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-845) $) NIL (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
+(((-887 |#1| |#2|) (-13 (-1006) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3139 ($ |#1| |#2|)) (-15 -2650 (|#1| $)) (-15 -4122 (|#2| $)))) (-1006) (-1006)) (T -887))
+((-3139 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2650 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1006)))) (-4122 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1006)))))
+(-13 (-1006) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3139 ($ |#1| |#2|)) (-15 -2650 (|#1| $)) (-15 -4122 (|#2| $))))
+((-4011 (($ $ $) 8)) (-2479 (($ $) 6)) (-2272 (($ $ $) 9)) (-1840 (($ $ $) 10)) (-4024 (($ $ $) 7)))
+(((-888) (-1189)) (T -888))
+((-1840 (*1 *1 *1 *1) (-4 *1 (-888))) (-2272 (*1 *1 *1 *1) (-4 *1 (-888))) (-4011 (*1 *1 *1 *1) (-4 *1 (-888))) (-4024 (*1 *1 *1 *1) (-4 *1 (-888))) (-2479 (*1 *1 *1) (-4 *1 (-888))))
+(-13 (-10 -8 (-15 -2479 ($ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2272 ($ $ $)) (-15 -1840 ($ $ $))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-2785 (($ $ $) 43)) (-3824 (($ $ $) 44)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-4095 ((|#1| $) 45)) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-889 |#1|) (-1189) (-779)) (T -889))
+((-4095 (*1 *2 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4195) (-15 -4095 (|t#1| $)) (-15 -3824 ($ $ $)) (-15 -2785 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-2060 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|) 85)) (-4068 ((|#2| |#2| |#2|) 83)) (-3879 (((-2 (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|) 87)) (-1979 (((-2 (|:| |coef1| |#2|) (|:| -2361 |#2|)) |#2| |#2|) 89)) (-3842 (((-2 (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|) 107 (|has| |#1| (-421)))) (-1849 (((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 46)) (-3587 (((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 64)) (-1304 (((-2 (|:| |coef1| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 66)) (-2201 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2538 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 71)) (-3651 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|) 97)) (-1695 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 74)) (-2958 (((-583 (-703)) |#2| |#2|) 82)) (-3003 ((|#1| |#2| |#2|) 42)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|) 105 (|has| |#1| (-421)))) (-2589 ((|#1| |#2| |#2|) 103 (|has| |#1| (-421)))) (-3354 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 44)) (-1769 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 63)) (-2133 ((|#1| |#2| |#2|) 61)) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|) 35)) (-3799 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3535 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1504 ((|#2| |#2| |#2|) 75)) (-2310 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 69)) (-3037 ((|#2| |#2| |#2| (-703)) 67)) (-2361 ((|#2| |#2| |#2|) 111 (|has| |#1| (-421)))) (-2333 (((-1158 |#2|) (-1158 |#2|) |#1|) 21)) (-2018 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|) 39)) (-3637 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|) 95)) (-3115 ((|#1| |#2|) 92)) (-1654 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-2170 ((|#2| |#2| |#2| (-703)) 72)) (-3379 (((-583 |#2|) |#2| |#2|) 80)) (-2165 ((|#2| |#2| |#1| |#1| (-703)) 50)) (-2934 ((|#1| |#1| |#1| (-703)) 49)) (* (((-1158 |#2|) |#1| (-1158 |#2|)) 16)))
+(((-890 |#1| |#2|) (-10 -7 (-15 -2133 (|#1| |#2| |#2|)) (-15 -1769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3587 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1304 ((-2 (|:| |coef1| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3037 (|#2| |#2| |#2| (-703))) (-15 -2310 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2538 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2170 (|#2| |#2| |#2| (-703))) (-15 -1654 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1695 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1504 (|#2| |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -2060 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3879 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -1979 ((-2 (|:| |coef1| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3115 (|#1| |#2|)) (-15 -3637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3651 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3379 ((-583 |#2|) |#2| |#2|)) (-15 -2958 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2589 (|#1| |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -3842 ((-2 (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -2361 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1158 |#2|) |#1| (-1158 |#2|))) (-15 -2333 ((-1158 |#2|) (-1158 |#2|) |#1|)) (-15 -1868 ((-2 (|:| -1570 |#1|) (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2018 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2934 (|#1| |#1| |#1| (-703))) (-15 -2165 (|#2| |#2| |#1| |#1| (-703))) (-15 -3799 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3003 (|#1| |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1849 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|))) (-509) (-1134 |#1|)) (T -890))
+((-1849 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3354 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3003 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) (-3799 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-2165 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-2934 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-890 *2 *4)) (-4 *4 (-1134 *2)))) (-2018 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-1868 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1570 *4) (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2333 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509)) (-5 *1 (-890 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509)) (-5 *1 (-890 *3 *4)))) (-2361 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-3842 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2589 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2589 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2589 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) (-2958 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3379 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3637 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3115 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) (-1979 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2361 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3879 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2060 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-4068 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-2201 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-1504 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-1695 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-1654 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-2170 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2)) (-4 *2 (-1134 *4)))) (-2538 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-2310 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-3037 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2)) (-4 *2 (-1134 *4)))) (-1304 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3587 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-1769 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2133 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))))
+(-10 -7 (-15 -2133 (|#1| |#2| |#2|)) (-15 -1769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3587 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1304 ((-2 (|:| |coef1| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3037 (|#2| |#2| |#2| (-703))) (-15 -2310 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2538 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2170 (|#2| |#2| |#2| (-703))) (-15 -1654 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1695 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1504 (|#2| |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -2060 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3879 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -1979 ((-2 (|:| |coef1| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3115 (|#1| |#2|)) (-15 -3637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3651 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3379 ((-583 |#2|) |#2| |#2|)) (-15 -2958 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2589 (|#1| |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -3842 ((-2 (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -2361 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1158 |#2|) |#1| (-1158 |#2|))) (-15 -2333 ((-1158 |#2|) (-1158 |#2|) |#1|)) (-15 -1868 ((-2 (|:| -1570 |#1|) (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2018 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2934 (|#1| |#1| |#1| (-703))) (-15 -2165 (|#2| |#2| |#1| |#1| (-703))) (-15 -3799 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3003 (|#1| |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1849 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) 27)) (-3038 (($) NIL T CONST)) (-3952 (((-583 (-583 (-517))) (-583 (-517))) 29)) (-2565 (((-517) $) 45)) (-4126 (($ (-583 (-517))) 17)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3367 (((-583 (-517)) $) 11)) (-1853 (($ $) 32)) (-2262 (((-787) $) 43) (((-583 (-517)) $) 9)) (-3663 (($) 7 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 19)) (-1666 (($ $ $) 21)) (* (($ (-703) $) 25) (($ (-845) $) NIL)))
+(((-891) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -4126 ($ (-583 (-517)))) (-15 -3952 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2565 ((-517) $)) (-15 -1853 ($ $)) (-15 -2262 ((-583 (-517)) $))))) (T -891))
+((-4126 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-891)) (-5 *3 (-583 (-517))))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-891)))) (-1853 (*1 *1 *1) (-5 *1 (-891))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891)))))
+(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -4126 ($ (-583 (-517)))) (-15 -3952 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2565 ((-517) $)) (-15 -1853 ($ $)) (-15 -2262 ((-583 (-517)) $))))
+((-1692 (($ $ |#2|) 30)) (-1680 (($ $) 22) (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
+(((-892 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1692 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-893 |#2| |#3| |#4|) (-964) (-724) (-779)) (T -892))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1692 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#3|) $) 74)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-3690 (((-107) $) 73)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1191 ((|#2| $) 64)) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-893 |#1| |#2| |#3|) (-1189) (-964) (-724) (-779)) (T -893))
+((-2336 (*1 *2 *1) (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-964)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *4 (-779)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *2 *4)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *2 (-724)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-893 *4 *3 *2)) (-4 *4 (-964)) (-4 *3 (-724)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-893 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-724)) (-4 *6 (-779)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2059 ($ $ |t#3| |t#2|)) (-15 -2059 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2325 ($ $)) (-15 -2336 (|t#1| $)) (-15 -1191 (|t#2| $)) (-15 -2080 ((-583 |t#3|) $)) (-15 -3690 ((-107) $)) (-15 -2384 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2724 (((-1001 (-199)) $) 8)) (-2712 (((-1001 (-199)) $) 9)) (-2700 (((-1001 (-199)) $) 10)) (-1515 (((-583 (-583 (-867 (-199)))) $) 11)) (-2262 (((-787) $) 6)))
+(((-894) (-1189)) (T -894))
+((-1515 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-583 (-583 (-867 (-199))))))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1515 ((-583 (-583 (-867 (-199)))) $)) (-15 -2700 ((-1001 (-199)) $)) (-15 -2712 ((-1001 (-199)) $)) (-15 -2724 ((-1001 (-199)) $))))
(((-557 (-787)) . T))
-((-2097 (((-583 |#4|) $) 23)) (-2687 (((-107) $) 48)) (-3389 (((-107) $) 47)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#4|) 36)) (-3338 (((-107) $) 49)) (-1605 (((-107) $ $) 55)) (-2893 (((-107) $ $) 58)) (-2501 (((-107) $) 53)) (-2567 (((-583 |#5|) (-583 |#5|) $) 90)) (-2821 (((-583 |#5|) (-583 |#5|) $) 87)) (-2946 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2241 (((-583 |#4|) $) 27)) (-2621 (((-107) |#4| $) 30)) (-2707 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-4028 (($ $ |#4|) 33)) (-1409 (($ $ |#4|) 32)) (-4159 (($ $ |#4|) 34)) (-1584 (((-107) $ $) 40)))
-(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3389 ((-107) |#1|)) (-15 -2567 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2821 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2946 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2707 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3338 ((-107) |#1|)) (-15 -2893 ((-107) |#1| |#1|)) (-15 -1605 ((-107) |#1| |#1|)) (-15 -2501 ((-107) |#1|)) (-15 -2687 ((-107) |#1|)) (-15 -2163 ((-2 (|:| |under| |#1|) (|:| -2961 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4028 (|#1| |#1| |#4|)) (-15 -4159 (|#1| |#1| |#4|)) (-15 -1409 (|#1| |#1| |#4|)) (-15 -2621 ((-107) |#4| |#1|)) (-15 -2241 ((-583 |#4|) |#1|)) (-15 -2097 ((-583 |#4|) |#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-895 |#2| |#3| |#4| |#5|) (-963) (-725) (-779) (-977 |#2| |#3| |#4|)) (T -894))
-NIL
-(-10 -8 (-15 -3389 ((-107) |#1|)) (-15 -2567 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2821 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2946 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2707 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3338 ((-107) |#1|)) (-15 -2893 ((-107) |#1| |#1|)) (-15 -1605 ((-107) |#1| |#1|)) (-15 -2501 ((-107) |#1|)) (-15 -2687 ((-107) |#1|)) (-15 -2163 ((-2 (|:| |under| |#1|) (|:| -2961 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4028 (|#1| |#1| |#4|)) (-15 -4159 (|#1| |#1| |#4|)) (-15 -1409 (|#1| |#1| |#4|)) (-15 -2621 ((-107) |#4| |#1|)) (-15 -2241 ((-583 |#4|) |#1|)) (-15 -2097 ((-583 |#4|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-2097 (((-583 |#3|) $) 33)) (-2687 (((-107) $) 26)) (-3389 (((-107) $) 17 (|has| |#1| (-509)))) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) 27)) (-1851 (((-107) $ (-703)) 44)) (-2325 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4192)))) (-1393 (($) 45 T CONST)) (-3338 (((-107) $) 22 (|has| |#1| (-509)))) (-1605 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2893 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2501 (((-107) $) 25 (|has| |#1| (-509)))) (-2567 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 36)) (-3390 (($ (-583 |#4|)) 35)) (-2455 (($ $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4192)))) (-1534 (((-583 |#4|) $) 52 (|has| $ (-6 -4192)))) (-3024 ((|#3| $) 34)) (-2497 (((-107) $ (-703)) 43)) (-1903 (((-583 |#4|) $) 53 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 47)) (-2241 (((-583 |#3|) $) 32)) (-2621 (((-107) |#3| $) 31)) (-1320 (((-107) $ (-703)) 42)) (-1662 (((-1059) $) 9)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-4125 (((-1023) $) 10)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3644 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) 38)) (-2394 (((-107) $) 41)) (-2452 (($) 40)) (-4137 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4192)))) (-2462 (($ $) 39)) (-3359 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 60)) (-4028 (($ $ |#3|) 28)) (-1409 (($ $ |#3|) 30)) (-4159 (($ $ |#3|) 29)) (-2271 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3602 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 6)) (-3535 (((-703) $) 46 (|has| $ (-6 -4192)))))
-(((-895 |#1| |#2| |#3| |#4|) (-1188) (-963) (-725) (-779) (-977 |t#1| |t#2| |t#3|)) (T -895))
-((-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-895 *3 *4 *5 *6)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-895 *3 *4 *5 *6)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-779)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2621 (*1 *2 *3 *1) (-12 (-4 *1 (-895 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-107)))) (-1409 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-977 *3 *4 *2)))) (-4159 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-977 *3 *4 *2)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-977 *3 *4 *2)))) (-2163 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2961 *1) (|:| |upper| *1))) (-4 *1 (-895 *4 *5 *3 *6)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1605 (*1 *2 *1 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2893 (*1 *2 *1 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2707 (*1 *2 *3 *1) (-12 (-4 *1 (-895 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2946 (*1 *2 *3 *1) (-12 (-4 *1 (-895 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2821 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)))) (-2567 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(-13 (-1005) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4192) (-15 -3228 ((-3 $ "failed") (-583 |t#4|))) (-15 -3390 ($ (-583 |t#4|))) (-15 -3024 (|t#3| $)) (-15 -2097 ((-583 |t#3|) $)) (-15 -2241 ((-583 |t#3|) $)) (-15 -2621 ((-107) |t#3| $)) (-15 -1409 ($ $ |t#3|)) (-15 -4159 ($ $ |t#3|)) (-15 -4028 ($ $ |t#3|)) (-15 -2163 ((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |t#3|)) (-15 -2687 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2501 ((-107) $)) (-15 -1605 ((-107) $ $)) (-15 -2893 ((-107) $ $)) (-15 -3338 ((-107) $)) (-15 -2707 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2946 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2821 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2567 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3389 ((-107) $))) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-1005) . T) ((-1111) . T))
-((-3673 (((-583 |#4|) |#4| |#4|) 115)) (-2235 (((-583 |#4|) (-583 |#4|) (-107)) 104 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 105 (|has| |#1| (-421)))) (-4057 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 35)) (-2070 (((-107) |#4|) 34)) (-2871 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-2985 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 20)) (-3546 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-3457 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 23)) (-2597 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|)) 73)) (-2091 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3651 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-1332 (((-583 |#4|) (-583 |#4|)) 107)) (-1806 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 48) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 50)) (-2708 ((|#4| |#4| (-583 |#4|)) 49)) (-3227 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 111 (|has| |#1| (-421)))) (-1719 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-3514 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 113 (|has| |#1| (-421)))) (-2008 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 87) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 89) (((-583 |#4|) (-583 |#4|) |#4|) 118) (((-583 |#4|) |#4| |#4|) 116) (((-583 |#4|) (-583 |#4|)) 88)) (-3729 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3331 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 41)) (-1794 (((-107) (-583 |#4|)) 62)) (-3560 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 53)) (-1286 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 29)) (-3761 (((-107) |#4|) 28)) (-1663 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4083 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-2795 (((-583 |#4|) (-583 |#4|)) 66)) (-2739 (((-583 |#4|) (-583 |#4|)) 79)) (-1640 (((-107) (-583 |#4|) (-583 |#4|)) 51)) (-1698 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 39)) (-1957 (((-107) |#4|) 36)))
-(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2008 ((-583 |#4|) (-583 |#4|))) (-15 -2008 ((-583 |#4|) |#4| |#4|)) (-15 -1332 ((-583 |#4|) (-583 |#4|))) (-15 -3673 ((-583 |#4|) |#4| |#4|)) (-15 -2008 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2008 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2008 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -1640 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3560 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -1794 ((-107) (-583 |#4|))) (-15 -2985 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3546 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3457 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3331 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2070 ((-107) |#4|)) (-15 -4057 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3761 ((-107) |#4|)) (-15 -1286 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1957 ((-107) |#4|)) (-15 -1698 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1806 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1806 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2708 (|#4| |#4| (-583 |#4|))) (-15 -2795 ((-583 |#4|) (-583 |#4|))) (-15 -2597 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2739 ((-583 |#4|) (-583 |#4|))) (-15 -2091 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3651 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2871 ((-583 |#4|) |#4|)) (-15 -2235 ((-583 |#4|) (-583 |#4|))) (-15 -2235 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -3227 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3514 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1719 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -4083 ((-583 |#4|) (-583 |#4|))) (-15 -1663 ((-583 |#4|) (-583 |#4|))) (-15 -3729 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-509) (-725) (-779) (-977 |#1| |#2| |#3|)) (T -896))
-((-3729 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-1719 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-3227 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-2235 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *7)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-3651 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-896 *5 *6 *7 *8)))) (-2091 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-896 *6 *7 *8 *9)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-2597 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2553 (-583 *7)))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-2708 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *2)))) (-1806 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *7)))) (-1806 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-1286 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-896 *4 *5 *6 *7)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-896 *5 *6 *7 *8)))) (-1640 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-896 *4 *5 *6 *7)))) (-2008 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *7)))) (-2008 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *3)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))) (-2008 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2008 ((-583 |#4|) (-583 |#4|))) (-15 -2008 ((-583 |#4|) |#4| |#4|)) (-15 -1332 ((-583 |#4|) (-583 |#4|))) (-15 -3673 ((-583 |#4|) |#4| |#4|)) (-15 -2008 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2008 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2008 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -1640 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3560 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -1794 ((-107) (-583 |#4|))) (-15 -2985 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3546 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3457 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3331 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2070 ((-107) |#4|)) (-15 -4057 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3761 ((-107) |#4|)) (-15 -1286 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1957 ((-107) |#4|)) (-15 -1698 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1806 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1806 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2708 (|#4| |#4| (-583 |#4|))) (-15 -2795 ((-583 |#4|) (-583 |#4|))) (-15 -2597 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2739 ((-583 |#4|) (-583 |#4|))) (-15 -2091 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3651 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2871 ((-583 |#4|) |#4|)) (-15 -2235 ((-583 |#4|) (-583 |#4|))) (-15 -2235 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -3227 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3514 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1719 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -4083 ((-583 |#4|) (-583 |#4|))) (-15 -1663 ((-583 |#4|) (-583 |#4|))) (-15 -3729 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|))
-((-2862 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-1373 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1157 |#1|)))) (-623 |#1|) (-1157 |#1|)) 36)) (-1948 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-897 |#1|) (-10 -7 (-15 -2862 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1948 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1373 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1157 |#1|)))) (-623 |#1|) (-1157 |#1|)))) (-333)) (T -897))
-((-1373 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1157 *5))))) (-5 *1 (-897 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)))) (-1948 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-897 *5)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-897 *6)) (-5 *3 (-623 *6)))))
-(-10 -7 (-15 -2862 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1948 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1373 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1157 |#1|)))) (-623 |#1|) (-1157 |#1|))))
-((-4018 (((-388 |#4|) |#4|) 47)))
-(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-872 |#3| |#2| |#1|)) (T -898))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
-(-10 -7 (-15 -4018 ((-388 |#4|) |#4|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3877 (($ (-703)) 112 (|has| |#1| (-23)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4193))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2549 (($ $) 90 (|has| $ (-6 -4193)))) (-1908 (($ $) 100)) (-2455 (($ $) 78 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 51)) (-1212 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1005)))) (-3416 (($ (-583 |#1|)) 118)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2690 (((-623 |#1|) $ $) 105 (|has| |#1| (-963)))) (-3213 (($ (-703) |#1|) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 87 (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 86 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1241 ((|#1| $) 102 (-12 (|has| |#1| (-963)) (|has| |#1| (-920))))) (-1320 (((-107) $ (-703)) 10)) (-3682 ((|#1| $) 103 (-12 (|has| |#1| (-963)) (|has| |#1| (-920))))) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 42 (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2846 (($ $ |#1|) 41 (|has| $ (-6 -4193)))) (-2671 (($ $ (-583 |#1|)) 115)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1124 (-517))) 63)) (-3746 ((|#1| $ $) 106 (|has| |#1| (-963)))) (-1537 (((-844) $) 117)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-2326 (($ $ $) 104)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 91 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2288 (($ (-583 |#1|)) 70)) (-4110 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-1630 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1692 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1678 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-899 |#1|) (-1188) (-963)) (T -899))
-((-3416 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-963)) (-4 *1 (-899 *3)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-963)) (-5 *2 (-844)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-963)) (-4 *1 (-899 *3)))) (-2326 (*1 *1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-963)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-899 *3)) (-4 *3 (-963)))))
-(-13 (-1155 |t#1|) (-10 -8 (-15 -3416 ($ (-583 |t#1|))) (-15 -1537 ((-844) $)) (-15 -3359 ($ (-583 |t#1|))) (-15 -2326 ($ $ $)) (-15 -2671 ($ $ (-583 |t#1|)))))
-(((-33) . T) ((-97) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1005) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-1111) . T) ((-1155 |#1|) . T))
-((-3310 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 17)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -3310 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-963) (-963)) (T -900))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-866 *6)) (-5 *1 (-900 *5 *6)))))
-(-10 -7 (-15 -3310 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|))))
-((-3243 ((|#1| (-866 |#1|)) 13)) (-2814 ((|#1| (-866 |#1|)) 12)) (-3771 ((|#1| (-866 |#1|)) 11)) (-4007 ((|#1| (-866 |#1|)) 15)) (-1531 ((|#1| (-866 |#1|)) 21)) (-3468 ((|#1| (-866 |#1|)) 14)) (-2216 ((|#1| (-866 |#1|)) 16)) (-2537 ((|#1| (-866 |#1|)) 20)) (-2926 ((|#1| (-866 |#1|)) 19)))
-(((-901 |#1|) (-10 -7 (-15 -3771 (|#1| (-866 |#1|))) (-15 -2814 (|#1| (-866 |#1|))) (-15 -3243 (|#1| (-866 |#1|))) (-15 -3468 (|#1| (-866 |#1|))) (-15 -4007 (|#1| (-866 |#1|))) (-15 -2216 (|#1| (-866 |#1|))) (-15 -2926 (|#1| (-866 |#1|))) (-15 -2537 (|#1| (-866 |#1|))) (-15 -1531 (|#1| (-866 |#1|)))) (-963)) (T -901))
-((-1531 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(-10 -7 (-15 -3771 (|#1| (-866 |#1|))) (-15 -2814 (|#1| (-866 |#1|))) (-15 -3243 (|#1| (-866 |#1|))) (-15 -3468 (|#1| (-866 |#1|))) (-15 -4007 (|#1| (-866 |#1|))) (-15 -2216 (|#1| (-866 |#1|))) (-15 -2926 (|#1| (-866 |#1|))) (-15 -2537 (|#1| (-866 |#1|))) (-15 -1531 (|#1| (-866 |#1|))))
-((-1593 (((-3 |#1| "failed") |#1|) 18)) (-3991 (((-3 |#1| "failed") |#1|) 6)) (-2410 (((-3 |#1| "failed") |#1|) 16)) (-3878 (((-3 |#1| "failed") |#1|) 4)) (-3583 (((-3 |#1| "failed") |#1|) 20)) (-1922 (((-3 |#1| "failed") |#1|) 8)) (-3816 (((-3 |#1| "failed") |#1| (-703)) 1)) (-1974 (((-3 |#1| "failed") |#1|) 3)) (-2872 (((-3 |#1| "failed") |#1|) 2)) (-1287 (((-3 |#1| "failed") |#1|) 21)) (-2284 (((-3 |#1| "failed") |#1|) 9)) (-2694 (((-3 |#1| "failed") |#1|) 19)) (-3283 (((-3 |#1| "failed") |#1|) 7)) (-3425 (((-3 |#1| "failed") |#1|) 17)) (-2446 (((-3 |#1| "failed") |#1|) 5)) (-2605 (((-3 |#1| "failed") |#1|) 24)) (-3216 (((-3 |#1| "failed") |#1|) 12)) (-2444 (((-3 |#1| "failed") |#1|) 22)) (-1312 (((-3 |#1| "failed") |#1|) 10)) (-3501 (((-3 |#1| "failed") |#1|) 26)) (-3796 (((-3 |#1| "failed") |#1|) 14)) (-1905 (((-3 |#1| "failed") |#1|) 27)) (-3251 (((-3 |#1| "failed") |#1|) 15)) (-2651 (((-3 |#1| "failed") |#1|) 25)) (-4009 (((-3 |#1| "failed") |#1|) 13)) (-2602 (((-3 |#1| "failed") |#1|) 23)) (-1309 (((-3 |#1| "failed") |#1|) 11)))
-(((-902 |#1|) (-1188) (-1097)) (T -902))
-((-1905 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3501 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2651 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2605 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2602 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2444 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-1287 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3583 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2694 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-1593 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3425 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2410 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3251 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3796 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-4009 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3216 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-1309 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-1312 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2284 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-1922 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3283 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3991 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2446 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3878 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-1974 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-2872 (*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))) (-3816 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(-13 (-10 -7 (-15 -3816 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -2872 ((-3 |t#1| "failed") |t#1|)) (-15 -1974 ((-3 |t#1| "failed") |t#1|)) (-15 -3878 ((-3 |t#1| "failed") |t#1|)) (-15 -2446 ((-3 |t#1| "failed") |t#1|)) (-15 -3991 ((-3 |t#1| "failed") |t#1|)) (-15 -3283 ((-3 |t#1| "failed") |t#1|)) (-15 -1922 ((-3 |t#1| "failed") |t#1|)) (-15 -2284 ((-3 |t#1| "failed") |t#1|)) (-15 -1312 ((-3 |t#1| "failed") |t#1|)) (-15 -1309 ((-3 |t#1| "failed") |t#1|)) (-15 -3216 ((-3 |t#1| "failed") |t#1|)) (-15 -4009 ((-3 |t#1| "failed") |t#1|)) (-15 -3796 ((-3 |t#1| "failed") |t#1|)) (-15 -3251 ((-3 |t#1| "failed") |t#1|)) (-15 -2410 ((-3 |t#1| "failed") |t#1|)) (-15 -3425 ((-3 |t#1| "failed") |t#1|)) (-15 -1593 ((-3 |t#1| "failed") |t#1|)) (-15 -2694 ((-3 |t#1| "failed") |t#1|)) (-15 -3583 ((-3 |t#1| "failed") |t#1|)) (-15 -1287 ((-3 |t#1| "failed") |t#1|)) (-15 -2444 ((-3 |t#1| "failed") |t#1|)) (-15 -2602 ((-3 |t#1| "failed") |t#1|)) (-15 -2605 ((-3 |t#1| "failed") |t#1|)) (-15 -2651 ((-3 |t#1| "failed") |t#1|)) (-15 -3501 ((-3 |t#1| "failed") |t#1|)) (-15 -1905 ((-3 |t#1| "failed") |t#1|))))
-((-1615 ((|#4| |#4| (-583 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2584 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3310 ((|#4| (-1 |#4| (-875 |#1|)) |#4|) 30)))
-(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2584 (|#4| |#4| |#3|)) (-15 -2584 (|#4| |#4| (-583 |#3|))) (-15 -1615 (|#4| |#4| |#3|)) (-15 -1615 (|#4| |#4| (-583 |#3|))) (-15 -3310 (|#4| (-1 |#4| (-875 |#1|)) |#4|))) (-963) (-725) (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076))))) (-872 (-875 |#1|) |#2| |#3|)) (T -903))
-((-3310 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-875 *4))) (-4 *4 (-963)) (-4 *2 (-872 (-875 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-5 *1 (-903 *4 *5 *6 *2)))) (-1615 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-4 *4 (-963)) (-4 *5 (-725)) (-5 *1 (-903 *4 *5 *6 *2)) (-4 *2 (-872 (-875 *4) *5 *6)))) (-1615 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-5 *1 (-903 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3)))) (-2584 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-4 *4 (-963)) (-4 *5 (-725)) (-5 *1 (-903 *4 *5 *6 *2)) (-4 *2 (-872 (-875 *4) *5 *6)))) (-2584 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)) (-15 -3752 ((-3 $ "failed") (-1076)))))) (-5 *1 (-903 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3)))))
-(-10 -7 (-15 -2584 (|#4| |#4| |#3|)) (-15 -2584 (|#4| |#4| (-583 |#3|))) (-15 -1615 (|#4| |#4| |#3|)) (-15 -1615 (|#4| |#4| (-583 |#3|))) (-15 -3310 (|#4| (-1 |#4| (-875 |#1|)) |#4|)))
-((-2061 ((|#2| |#3|) 34)) (-3086 (((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-3847 (((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
-(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3847 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -3086 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2061 (|#2| |#3|))) (-319) (-1133 |#1|) (-1133 |#2|) (-657 |#2| |#3|)) (T -904))
-((-2061 (*1 *2 *3) (-12 (-4 *3 (-1133 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-904 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-3086 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 *3)) (-5 *2 (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-904 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-3847 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| -1492 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
-(-10 -7 (-15 -3847 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -3086 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2061 (|#2| |#3|)))
-((-3547 (((-906 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-906 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 65)))
-(((-905 |#1| |#2|) (-10 -7 (-15 -3547 ((-906 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-906 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1076)) (-703)) (T -905))
-((-3547 (*1 *2 *2) (-12 (-5 *2 (-906 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1076))) (-14 *4 (-703)) (-5 *1 (-905 *3 *4)))))
-(-10 -7 (-15 -3547 ((-906 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-906 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
-((-2119 (((-107) $ $) NIL)) (-1569 (((-3 (-107) "failed") $) 67)) (-3725 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-2246 (($ $ (-3 (-107) "failed")) 68)) (-3395 (($ (-583 |#4|) |#4|) 24)) (-1662 (((-1059) $) NIL)) (-3325 (($ $) 65)) (-4125 (((-1023) $) NIL)) (-2394 (((-107) $) 66)) (-2452 (($) 29)) (-4079 ((|#4| $) 70)) (-1270 (((-583 |#4|) $) 69)) (-2271 (((-787) $) 64)) (-1584 (((-107) $ $) NIL)))
-(((-906 |#1| |#2| |#3| |#4|) (-13 (-1005) (-557 (-787)) (-10 -8 (-15 -2452 ($)) (-15 -3395 ($ (-583 |#4|) |#4|)) (-15 -1569 ((-3 (-107) "failed") $)) (-15 -2246 ($ $ (-3 (-107) "failed"))) (-15 -2394 ((-107) $)) (-15 -1270 ((-583 |#4|) $)) (-15 -4079 (|#4| $)) (-15 -3325 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3725 ($ $)) |%noBranch|) |%noBranch|))) (-421) (-779) (-725) (-872 |#1| |#3| |#2|)) (T -906))
-((-2452 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))) (-3395 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-872 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-906 *4 *5 *6 *3)))) (-1569 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-2246 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-2394 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-1270 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-4079 (*1 *2 *1) (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-3325 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))) (-3725 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))))
-(-13 (-1005) (-557 (-787)) (-10 -8 (-15 -2452 ($)) (-15 -3395 ($ (-583 |#4|) |#4|)) (-15 -1569 ((-3 (-107) "failed") $)) (-15 -2246 ($ $ (-3 (-107) "failed"))) (-15 -2394 ((-107) $)) (-15 -1270 ((-583 |#4|) $)) (-15 -4079 (|#4| $)) (-15 -3325 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3725 ($ $)) |%noBranch|) |%noBranch|)))
-((-4011 (((-107) |#5| |#5|) 38)) (-1863 (((-107) |#5| |#5|) 52)) (-3988 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 61)) (-2608 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-1610 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) 63)) (-1781 (((-1162)) 33)) (-3012 (((-1162) (-1059) (-1059) (-1059)) 29)) (-1379 (((-583 |#5|) (-583 |#5|)) 81)) (-1307 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) 79)) (-2692 (((-583 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-2314 (((-107) |#5| |#5|) 47)) (-2323 (((-3 (-107) "failed") |#5| |#5|) 71)) (-2714 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3940 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-2958 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3293 (((-3 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-3015 (((-583 |#5|) (-583 |#5|)) 43)))
-(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3012 ((-1162) (-1059) (-1059) (-1059))) (-15 -1781 ((-1162))) (-15 -4011 ((-107) |#5| |#5|)) (-15 -3015 ((-583 |#5|) (-583 |#5|))) (-15 -2314 ((-107) |#5| |#5|)) (-15 -1863 ((-107) |#5| |#5|)) (-15 -2608 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2714 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3940 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2958 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2323 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3988 ((-107) |#5| |#5|)) (-15 -3988 ((-107) |#5| (-583 |#5|))) (-15 -1379 ((-583 |#5|) (-583 |#5|))) (-15 -1610 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -1307 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-15 -2692 ((-583 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3293 ((-3 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -907))
-((-3293 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3781 (-583 *9)) (|:| -3834 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-907 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-2692 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3781 (-583 *9)) (|:| -3834 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-907 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3834 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-907 *3 *4 *5 *6 *7)))) (-1610 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-907 *3 *4 *5 *6 *7)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-907 *5 *6 *7 *8 *3)))) (-3988 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-2958 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3940 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-2714 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-2608 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-1863 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-907 *3 *4 *5 *6 *7)))) (-4011 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-1781 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162)) (-5 *1 (-907 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3012 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162)) (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3012 ((-1162) (-1059) (-1059) (-1059))) (-15 -1781 ((-1162))) (-15 -4011 ((-107) |#5| |#5|)) (-15 -3015 ((-583 |#5|) (-583 |#5|))) (-15 -2314 ((-107) |#5| |#5|)) (-15 -1863 ((-107) |#5| |#5|)) (-15 -2608 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2714 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3940 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2958 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2323 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3988 ((-107) |#5| |#5|)) (-15 -3988 ((-107) |#5| (-583 |#5|))) (-15 -1379 ((-583 |#5|) (-583 |#5|))) (-15 -1610 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -1307 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-15 -2692 ((-583 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3293 ((-3 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-3752 (((-1076) $) 15)) (-3121 (((-1059) $) 16)) (-2968 (($ (-1076) (-1059)) 14)) (-2271 (((-787) $) 13)))
-(((-908) (-13 (-557 (-787)) (-10 -8 (-15 -2968 ($ (-1076) (-1059))) (-15 -3752 ((-1076) $)) (-15 -3121 ((-1059) $))))) (T -908))
-((-2968 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1059)) (-5 *1 (-908)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-908)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-908)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2968 ($ (-1076) (-1059))) (-15 -3752 ((-1076) $)) (-15 -3121 ((-1059) $))))
-((-3310 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-911 |#1|) (-911 |#2|)) (T -909))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-911 *6)) (-5 *1 (-909 *5 *6 *4 *2)) (-4 *4 (-911 *5)))))
-(-10 -7 (-15 -3310 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-1076) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3390 ((|#2| $) NIL) (((-1076) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-2207 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-2202 (($) 98)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 74) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 83)) (-1862 (($ $) 10)) (-2243 (((-3 $ "failed") $) 20)) (-3310 (($ (-1 |#2| |#2|) $) 22)) (-2587 (($) 16)) (-2041 (($ $) 54)) (-2060 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2484 (($ $) 12)) (-3359 (((-815 (-517)) $) 69) (((-815 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1076)) 57)) (-4099 (((-703)) 31)) (-1608 (((-107) $ $) 50)))
-(((-910 |#1| |#2|) (-10 -8 (-15 -1608 ((-107) |#1| |#1|)) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3359 ((-199) |#1|)) (-15 -3359 ((-349) |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3390 ((-1076) |#1|)) (-15 -3228 ((-3 (-1076) "failed") |#1|)) (-15 -2271 (|#1| (-1076))) (-15 -2202 (|#1|)) (-15 -2041 (|#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -2207 ((-623 |#2|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 -2271 ((-787) |#1|))) (-911 |#2|) (-509)) (T -910))
-((-4099 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))))
-(-10 -8 (-15 -1608 ((-107) |#1| |#1|)) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3359 ((-199) |#1|)) (-15 -3359 ((-349) |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3390 ((-1076) |#1|)) (-15 -3228 ((-3 (-1076) "failed") |#1|)) (-15 -2271 (|#1| (-1076))) (-15 -2202 (|#1|)) (-15 -2041 (|#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3544 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -2207 ((-623 |#2|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1363 ((|#1| $) 139 (|has| |#1| (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-3327 (((-388 (-1072 $)) (-1072 $)) 130 (|has| |#1| (-832)))) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 133 (|has| |#1| (-832)))) (-3820 (((-107) $ $) 59)) (-2360 (((-517) $) 120 (|has| |#1| (-752)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 178) (((-3 (-1076) "failed") $) 128 (|has| |#1| (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-954 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-954 (-517))))) (-3390 ((|#1| $) 177) (((-1076) $) 127 (|has| |#1| (-954 (-1076)))) (((-377 (-517)) $) 111 (|has| |#1| (-954 (-517)))) (((-517) $) 109 (|has| |#1| (-954 (-517))))) (-2379 (($ $ $) 55)) (-2207 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-2560 (((-3 $ "failed") $) 34)) (-2202 (($) 137 (|has| |#1| (-502)))) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1259 (((-107) $) 71)) (-2988 (((-107) $) 122 (|has| |#1| (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 146 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 145 (|has| |#1| (-809 (-349))))) (-1376 (((-107) $) 31)) (-1862 (($ $) 141)) (-3826 ((|#1| $) 143)) (-2243 (((-3 $ "failed") $) 108 (|has| |#1| (-1052)))) (-1952 (((-107) $) 121 (|has| |#1| (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3458 (($ $ $) 118 (|has| |#1| (-779)))) (-4084 (($ $ $) 117 (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) 169)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-2587 (($) 107 (|has| |#1| (-1052)) CONST)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2041 (($ $) 138 (|has| |#1| (-278)))) (-2961 ((|#1| $) 135 (|has| |#1| (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 132 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 131 (|has| |#1| (-832)))) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) 170 (|has| |#1| (-478 (-1076) |#1|)))) (-3600 (((-703) $) 58)) (-2609 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2060 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1076)) 164 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 163 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 162 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 161 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2484 (($ $) 140)) (-2098 ((|#1| $) 142)) (-3359 (((-815 (-517)) $) 148 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 147 (|has| |#1| (-558 (-815 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-939))) (((-199) $) 123 (|has| |#1| (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 134 (-3993 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1076)) 129 (|has| |#1| (-954 (-1076))))) (-3974 (((-3 $ "failed") $) 126 (-3747 (|has| |#1| (-132)) (-3993 (|has| $ (-132)) (|has| |#1| (-832)))))) (-4099 (((-703)) 29)) (-3599 ((|#1| $) 136 (|has| |#1| (-502)))) (-2074 (((-107) $ $) 39)) (-2376 (($ $) 119 (|has| |#1| (-752)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1076)) 160 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 159 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 158 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 157 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1642 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1704 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-911 |#1|) (-1188) (-509)) (T -911))
-((-1704 (*1 *1 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))) (-1862 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2041 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2202 (*1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
-(-13 (-333) (-37 |t#1|) (-954 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-807 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1704 ($ |t#1| |t#1|)) (-15 -3826 (|t#1| $)) (-15 -2098 (|t#1| $)) (-15 -1862 ($ $)) (-15 -2484 ($ $)) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-954 (-517))) (PROGN (-6 (-954 (-517))) (-6 (-954 (-377 (-517))))) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |%noBranch|) (IF (|has| |t#1| (-939)) (-6 (-939)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-954 (-1076))) (-6 (-954 (-1076))) |%noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -1363 (|t#1| $)) (-15 -2041 ($ $))) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2202 ($)) (-15 -3599 (|t#1| $)) (-15 -2961 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-939)) ((-558 (-349)) |has| |#1| (-939)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3747 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-823 (-1076)) |has| |#1| (-823 (-1076))) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-832) |has| |#1| (-832)) ((-843) . T) ((-939) |has| |#1| (-939)) ((-954 (-377 (-517))) |has| |#1| (-954 (-517))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 (-1076)) |has| |#1| (-954 (-1076))) ((-954 |#1|) . T) ((-969 #0#) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) |has| |#1| (-1052)) ((-1111) . T) ((-1115) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3692 (($ (-1043 |#1| |#2|)) 11)) (-2371 (((-1043 |#1| |#2|) $) 12)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2609 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2271 (((-787) $) NIL)) (-3610 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
-(((-912 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3692 ($ (-1043 |#1| |#2|))) (-15 -2371 ((-1043 |#1| |#2|) $)) (-15 -2609 (|#2| $ (-214 |#1| |#2|))))) (-844) (-333)) (T -912))
-((-3692 (*1 *1 *2) (-12 (-5 *2 (-1043 *3 *4)) (-14 *3 (-844)) (-4 *4 (-333)) (-5 *1 (-912 *3 *4)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-1043 *3 *4)) (-5 *1 (-912 *3 *4)) (-14 *3 (-844)) (-4 *4 (-333)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-844)) (-4 *2 (-333)) (-5 *1 (-912 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3692 ($ (-1043 |#1| |#2|))) (-15 -2371 ((-1043 |#1| |#2|) $)) (-15 -2609 (|#2| $ (-214 |#1| |#2|)))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-2809 (($ $) 46)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-3682 (((-703) $) 45)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2656 ((|#1| $) 44)) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3975 ((|#1| |#1| $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-1258 ((|#1| $) 47)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-2505 ((|#1| $) 43)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-913 |#1|) (-1188) (-1111)) (T -913))
-((-3975 (*1 *2 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))) (-1258 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))) (-2809 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4192) (-15 -3975 (|t#1| |t#1| $)) (-15 -1258 (|t#1| $)) (-15 -2809 ($ $)) (-15 -3682 ((-703) $)) (-15 -2656 (|t#1| $)) (-15 -2505 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-3097 (((-107) $) 42)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3390 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-2518 (((-3 (-377 (-517)) "failed") $) 78)) (-3000 (((-107) $) 72)) (-1843 (((-377 (-517)) $) 76)) (-1376 (((-107) $) 41)) (-2803 ((|#2| $) 22)) (-3310 (($ (-1 |#2| |#2|) $) 19)) (-2300 (($ $) 61)) (-2060 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3359 (((-493) $) 67)) (-1842 (($ $) 17)) (-2271 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-4099 (((-703)) 10)) (-2376 ((|#2| $) 71)) (-1584 (((-107) $ $) 25)) (-1608 (((-107) $ $) 69)) (-1692 (($ $) 29) (($ $ $) 28)) (-1678 (($ $ $) 26)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-914 |#1| |#2|) (-10 -8 (-15 -2271 (|#1| (-377 (-517)))) (-15 -1608 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2300 (|#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -2271 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 -1376 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -3097 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-915 |#2|) (-156)) (T -914))
-((-4099 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-914 *3 *4)) (-4 *3 (-915 *4)))))
-(-10 -8 (-15 -2271 (|#1| (-377 (-517)))) (-15 -1608 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2300 (|#1| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2803 (|#2| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -3310 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -2271 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 -1376 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -3097 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1678 (|#1| |#1| |#1|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-3228 (((-3 (-517) "failed") $) 119 (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3390 (((-517) $) 120 (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) 115)) (-2207 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-2560 (((-3 $ "failed") $) 34)) (-3894 ((|#1| $) 80)) (-2518 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-3000 (((-107) $) 78 (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-1547 (($ |#1| |#1| |#1| |#1|) 81)) (-1376 (((-107) $) 31)) (-2803 ((|#1| $) 82)) (-3458 (($ $ $) 68 (|has| |#1| (-779)))) (-4084 (($ $ $) 67 (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) 91)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 73 (|has| |#1| (-333)))) (-2126 ((|#1| $) 83)) (-3262 ((|#1| $) 84)) (-1414 ((|#1| $) 85)) (-4125 (((-1023) $) 10)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) 92 (|has| |#1| (-478 (-1076) |#1|)))) (-2609 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-2060 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1076)) 110 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 109 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 108 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 107 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3359 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1842 (($ $) 86)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3747 (|has| |#1| (-333)) (|has| |#1| (-954 (-377 (-517))))))) (-3974 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-2376 ((|#1| $) 79 (|has| |#1| (-972)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1076)) 106 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 105 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 104 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 103 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1642 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
-(((-915 |#1|) (-1188) (-156)) (T -915))
-((-1842 (*1 *1 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-1547 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)) (-4 *2 (-972)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-915 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-915 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2518 (*1 *2 *1) (|partial| -12 (-4 *1 (-915 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
-(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1842 ($ $)) (-15 -1414 (|t#1| $)) (-15 -3262 (|t#1| $)) (-15 -2126 (|t#1| $)) (-15 -2803 (|t#1| $)) (-15 -1547 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3894 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -2376 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3000 ((-107) $)) (-15 -1843 ((-377 (-517)) $)) (-15 -2518 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3747 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1076) |#1|) |has| |#1| (-478 (-1076) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 #0#) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 (-1076)) |has| |#1| (-823 (-1076))) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-969 #0#) |has| |#1| (-333)) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3310 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#3| (-1 |#4| |#2|) |#1|))) (-915 |#2|) (-156) (-915 |#4|) (-156)) (T -916))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-915 *6)) (-5 *1 (-916 *4 *5 *2 *6)) (-4 *4 (-915 *5)))))
-(-10 -7 (-15 -3310 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-3894 ((|#1| $) 12)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3000 (((-107) $) NIL (|has| |#1| (-502)))) (-1843 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-1547 (($ |#1| |#1| |#1| |#1|) 16)) (-1376 (((-107) $) NIL)) (-2803 ((|#1| $) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2126 ((|#1| $) 15)) (-3262 ((|#1| $) 14)) (-1414 ((|#1| $) 13)) (-4125 (((-1023) $) NIL)) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1076)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1076) |#1|))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-478 (-1076) |#1|)))) (-2609 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2060 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1842 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-333)) (|has| |#1| (-954 (-377 (-517))))))) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-972)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 8 T CONST)) (-3619 (($) 10 T CONST)) (-3342 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
-(((-917 |#1|) (-915 |#1|) (-156)) (T -917))
-NIL
-(-915 |#1|)
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1851 (((-107) $ (-703)) NIL)) (-1393 (($) NIL T CONST)) (-2809 (($ $) 20)) (-3040 (($ (-583 |#1|)) 29)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-3682 (((-703) $) 22)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1803 ((|#1| $) 24)) (-3241 (($ |#1| $) 15)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2656 ((|#1| $) 23)) (-4113 ((|#1| $) 19)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3975 ((|#1| |#1| $) 14)) (-2394 (((-107) $) 17)) (-2452 (($) NIL)) (-1258 ((|#1| $) 18)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) NIL)) (-2505 ((|#1| $) 26)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-918 |#1|) (-13 (-913 |#1|) (-10 -8 (-15 -3040 ($ (-583 |#1|))))) (-1005)) (T -918))
-((-3040 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-918 *3)))))
-(-13 (-913 |#1|) (-10 -8 (-15 -3040 ($ (-583 |#1|)))))
-((-3880 (($ $) 12)) (-2092 (($ $ (-517)) 13)))
-(((-919 |#1|) (-10 -8 (-15 -3880 (|#1| |#1|)) (-15 -2092 (|#1| |#1| (-517)))) (-920)) (T -919))
-NIL
-(-10 -8 (-15 -3880 (|#1| |#1|)) (-15 -2092 (|#1| |#1| (-517))))
-((-3880 (($ $) 6)) (-2092 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
-(((-920) (-1188)) (T -920))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-377 (-517))))) (-2092 (*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-517)))) (-3880 (*1 *1 *1) (-4 *1 (-920))))
-(-13 (-10 -8 (-15 -3880 ($ $)) (-15 -2092 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3593 (((-2 (|:| |num| (-1157 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-3062 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2190 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-2133 (((-623 (-377 |#2|)) (-1157 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-2009 (((-377 |#2|) $) NIL)) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-4018 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3820 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2399 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-1315 (((-107)) NIL)) (-1711 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-954 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| (-377 |#2|) (-954 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-954 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3898 (($ (-1157 (-377 |#2|)) (-1157 $)) NIL) (($ (-1157 (-377 |#2|))) 70) (($ (-1157 |#2|) |#2|) NIL)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2379 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2637 (((-623 (-377 |#2|)) $ (-1157 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-377 |#2|))) (|:| |vec| (-1157 (-377 |#2|)))) (-623 $) (-1157 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-1484 (((-1157 $) (-1157 $)) NIL)) (-1522 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-2560 (((-3 $ "failed") $) NIL)) (-2525 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-2940 (((-107) |#1| |#1|) NIL)) (-3737 (((-844)) NIL)) (-2202 (($) NIL (|has| (-377 |#2|) (-338)))) (-3411 (((-107)) NIL)) (-3523 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2354 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-2683 (($ $) NIL)) (-1304 (($) NIL (|has| (-377 |#2|) (-319)))) (-3459 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2855 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-1259 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1395 (((-844) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-844)) $) NIL (|has| (-377 |#2|) (-319)))) (-1376 (((-107) $) NIL)) (-2894 (((-703)) NIL)) (-3117 (((-1157 $) (-1157 $)) NIL)) (-2803 (((-377 |#2|) $) NIL)) (-2557 (((-583 (-875 |#1|)) (-1076)) NIL (|has| |#1| (-333)))) (-2243 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2766 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-3072 (((-844) $) NIL (|has| (-377 |#2|) (-338)))) (-1509 ((|#3| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1662 (((-1059) $) NIL)) (-3665 (((-623 (-377 |#2|))) 52)) (-4088 (((-623 (-377 |#2|))) 51)) (-2300 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1418 (($ (-1157 |#2|) |#2|) 71)) (-1554 (((-623 (-377 |#2|))) 50)) (-3705 (((-623 (-377 |#2|))) 49)) (-3885 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2581 (((-2 (|:| |num| (-1157 |#2|)) (|:| |den| |#2|)) $) 77)) (-4093 (((-1157 $)) 46)) (-3847 (((-1157 $)) 45)) (-3966 (((-107) $) NIL)) (-2253 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2587 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2812 (($ (-844)) NIL (|has| (-377 |#2|) (-338)))) (-4078 (((-3 |#2| "failed")) 63)) (-4125 (((-1023) $) NIL)) (-2111 (((-703)) NIL)) (-1318 (($) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| (-377 |#2|) (-333)))) (-2370 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3868 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2329 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3600 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2609 ((|#1| $ |#1| |#1|) NIL)) (-2532 (((-3 |#2| "failed")) 62)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1220 (((-377 |#2|) (-1157 $)) NIL) (((-377 |#2|)) 42)) (-2192 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2060 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-703)) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3973 (((-623 (-377 |#2|)) (-1157 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2387 ((|#3|) 53)) (-1758 (($) NIL (|has| (-377 |#2|) (-319)))) (-3784 (((-1157 (-377 |#2|)) $ (-1157 $)) NIL) (((-623 (-377 |#2|)) (-1157 $) (-1157 $)) NIL) (((-1157 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1157 $)) NIL)) (-3359 (((-1157 (-377 |#2|)) $) NIL) (($ (-1157 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3895 (((-1157 $) (-1157 $)) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3747 (|has| (-377 |#2|) (-954 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3974 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-1699 ((|#3| $) NIL)) (-4099 (((-703)) NIL)) (-4168 (((-107)) 60)) (-3957 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-1492 (((-1157 $)) 124)) (-2074 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2967 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3444 (((-107)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3610 (($) 94 T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1076))))) (($ $ (-703)) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3747 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
-(((-921 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1115) (-1133 |#1|) (-1133 (-377 |#2|)) (-377 |#2|) (-703)) (T -921))
+((-2080 (((-583 |#4|) $) 23)) (-3538 (((-107) $) 48)) (-4001 (((-107) $) 47)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#4|) 36)) (-2697 (((-107) $) 49)) (-2171 (((-107) $ $) 55)) (-3000 (((-107) $ $) 58)) (-3764 (((-107) $) 53)) (-2774 (((-583 |#5|) (-583 |#5|) $) 90)) (-3821 (((-583 |#5|) (-583 |#5|) $) 87)) (-3292 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1425 (((-583 |#4|) $) 27)) (-1808 (((-107) |#4| $) 30)) (-2236 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3231 (($ $ |#4|) 33)) (-2316 (($ $ |#4|) 32)) (-3127 (($ $ |#4|) 34)) (-1572 (((-107) $ $) 40)))
+(((-895 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4001 ((-107) |#1|)) (-15 -2774 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3821 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3292 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2697 ((-107) |#1|)) (-15 -3000 ((-107) |#1| |#1|)) (-15 -2171 ((-107) |#1| |#1|)) (-15 -3764 ((-107) |#1|)) (-15 -3538 ((-107) |#1|)) (-15 -2149 ((-2 (|:| |under| |#1|) (|:| -2713 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -1808 ((-107) |#4| |#1|)) (-15 -1425 ((-583 |#4|) |#1|)) (-15 -2080 ((-583 |#4|) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-896 |#2| |#3| |#4| |#5|) (-964) (-725) (-779) (-978 |#2| |#3| |#4|)) (T -895))
+NIL
+(-10 -8 (-15 -4001 ((-107) |#1|)) (-15 -2774 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3821 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3292 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2697 ((-107) |#1|)) (-15 -3000 ((-107) |#1| |#1|)) (-15 -2171 ((-107) |#1| |#1|)) (-15 -3764 ((-107) |#1|)) (-15 -3538 ((-107) |#1|)) (-15 -2149 ((-2 (|:| |under| |#1|) (|:| -2713 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -1808 ((-107) |#4| |#1|)) (-15 -1425 ((-583 |#4|) |#1|)) (-15 -2080 ((-583 |#4|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195)))) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195)))) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-4130 (((-1024) $) 10)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195)))))
+(((-896 |#1| |#2| |#3| |#4|) (-1189) (-964) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -896))
+((-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-896 *3 *4 *5 *6)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-896 *3 *4 *5 *6)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-779)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1808 (*1 *2 *3 *1) (-12 (-4 *1 (-896 *4 *5 *3 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107)))) (-2316 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))) (-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))) (-3231 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))) (-2149 (*1 *2 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2713 *1) (|:| |upper| *1))) (-4 *1 (-896 *4 *5 *3 *6)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2171 (*1 *2 *1 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-3000 (*1 *2 *1 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2236 (*1 *2 *3 *1) (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3821 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)))) (-2774 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(-13 (-1006) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4195) (-15 -3220 ((-3 $ "failed") (-583 |t#4|))) (-15 -3402 ($ (-583 |t#4|))) (-15 -2772 (|t#3| $)) (-15 -2080 ((-583 |t#3|) $)) (-15 -1425 ((-583 |t#3|) $)) (-15 -1808 ((-107) |t#3| $)) (-15 -2316 ($ $ |t#3|)) (-15 -3127 ($ $ |t#3|)) (-15 -3231 ($ $ |t#3|)) (-15 -2149 ((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |t#3|)) (-15 -3538 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -3764 ((-107) $)) (-15 -2171 ((-107) $ $)) (-15 -3000 ((-107) $ $)) (-15 -2697 ((-107) $)) (-15 -2236 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3292 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3821 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2774 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -4001 ((-107) $))) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-1006) . T) ((-1112) . T))
+((-3438 (((-583 |#4|) |#4| |#4|) 115)) (-3200 (((-583 |#4|) (-583 |#4|) (-107)) 104 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 105 (|has| |#1| (-421)))) (-3732 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 35)) (-2515 (((-107) |#4|) 34)) (-2566 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-4065 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 20)) (-3117 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2575 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 23)) (-4133 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|)) 73)) (-2797 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2928 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-1947 (((-583 |#4|) (-583 |#4|)) 107)) (-1378 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 48) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 50)) (-2309 ((|#4| |#4| (-583 |#4|)) 49)) (-2809 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 111 (|has| |#1| (-421)))) (-3930 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-1944 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 113 (|has| |#1| (-421)))) (-2886 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 87) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 89) (((-583 |#4|) (-583 |#4|) |#4|) 118) (((-583 |#4|) |#4| |#4|) 116) (((-583 |#4|) (-583 |#4|)) 88)) (-2398 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3698 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 41)) (-2654 (((-107) (-583 |#4|)) 62)) (-2621 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 53)) (-2890 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 29)) (-3460 (((-107) |#4|) 28)) (-3329 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3077 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3447 (((-583 |#4|) (-583 |#4|)) 66)) (-1961 (((-583 |#4|) (-583 |#4|)) 79)) (-1677 (((-107) (-583 |#4|) (-583 |#4|)) 51)) (-3739 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 39)) (-1652 (((-107) |#4|) 36)))
+(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2886 ((-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) |#4| |#4|)) (-15 -1947 ((-583 |#4|) (-583 |#4|))) (-15 -3438 ((-583 |#4|) |#4| |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -1677 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2621 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2654 ((-107) (-583 |#4|))) (-15 -4065 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3117 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2575 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3698 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2515 ((-107) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3460 ((-107) |#4|)) (-15 -2890 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1652 ((-107) |#4|)) (-15 -3739 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2309 (|#4| |#4| (-583 |#4|))) (-15 -3447 ((-583 |#4|) (-583 |#4|))) (-15 -4133 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -1961 ((-583 |#4|) (-583 |#4|))) (-15 -2797 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2928 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2566 ((-583 |#4|) |#4|)) (-15 -3200 ((-583 |#4|) (-583 |#4|))) (-15 -3200 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2809 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1944 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3930 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3077 ((-583 |#4|) (-583 |#4|))) (-15 -3329 ((-583 |#4|) (-583 |#4|))) (-15 -2398 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-509) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -897))
+((-2398 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3930 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-1944 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2809 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3200 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *7)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2566 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2928 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-897 *5 *6 *7 *8)))) (-2797 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-897 *6 *7 *8 *9)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-4133 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2544 (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2309 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *2)))) (-1378 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *7)))) (-1378 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2890 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *5 *6 *7 *8)))) (-1677 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2886 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *3)))) (-3438 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2886 ((-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) |#4| |#4|)) (-15 -1947 ((-583 |#4|) (-583 |#4|))) (-15 -3438 ((-583 |#4|) |#4| |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -1677 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2621 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2654 ((-107) (-583 |#4|))) (-15 -4065 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3117 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2575 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3698 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2515 ((-107) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3460 ((-107) |#4|)) (-15 -2890 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1652 ((-107) |#4|)) (-15 -3739 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2309 (|#4| |#4| (-583 |#4|))) (-15 -3447 ((-583 |#4|) (-583 |#4|))) (-15 -4133 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -1961 ((-583 |#4|) (-583 |#4|))) (-15 -2797 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2928 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2566 ((-583 |#4|) |#4|)) (-15 -3200 ((-583 |#4|) (-583 |#4|))) (-15 -3200 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2809 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1944 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3930 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3077 ((-583 |#4|) (-583 |#4|))) (-15 -3329 ((-583 |#4|) (-583 |#4|))) (-15 -2398 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|))
+((-2223 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2553 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)) 36)) (-3233 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-898 |#1|) (-10 -7 (-15 -2223 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3233 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2553 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)))) (-333)) (T -898))
+((-2553 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5))))) (-5 *1 (-898 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)))) (-3233 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-898 *5)))) (-2223 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-898 *6)) (-5 *3 (-623 *6)))))
+(-10 -7 (-15 -2223 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3233 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2553 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|))))
+((-3306 (((-388 |#4|) |#4|) 47)))
+(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-873 |#3| |#2| |#1|)) (T -899))
+((-3306 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-899 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4)))))
+(-10 -7 (-15 -3306 ((-388 |#4|) |#4|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3904 (($ (-703)) 112 (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-3432 (($ (-583 |#1|)) 118)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) 105 (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1492 ((|#1| $) 102 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-2328 (((-107) $ (-703)) 10)) (-3728 ((|#1| $) 103 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3175 (($ $ (-583 |#1|)) 115)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3912 ((|#1| $ $) 106 (|has| |#1| (-964)))) (-1470 (((-845) $) 117)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-1305 (($ $ $) 104)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1680 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1666 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-900 |#1|) (-1189) (-964)) (T -900))
+((-3432 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-964)) (-5 *2 (-845)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3)))) (-1305 (*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-964)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-900 *3)) (-4 *3 (-964)))))
+(-13 (-1156 |t#1|) (-10 -8 (-15 -3432 ($ (-583 |t#1|))) (-15 -1470 ((-845) $)) (-15 -3367 ($ (-583 |t#1|))) (-15 -1305 ($ $ $)) (-15 -3175 ($ $ (-583 |t#1|)))))
+(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T) ((-1156 |#1|) . T))
+((-3312 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 17)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -3312 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-964) (-964)) (T -901))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-867 *6)) (-5 *1 (-901 *5 *6)))))
+(-10 -7 (-15 -3312 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|))))
+((-3567 ((|#1| (-867 |#1|)) 13)) (-4042 ((|#1| (-867 |#1|)) 12)) (-2945 ((|#1| (-867 |#1|)) 11)) (-2528 ((|#1| (-867 |#1|)) 15)) (-4154 ((|#1| (-867 |#1|)) 21)) (-2083 ((|#1| (-867 |#1|)) 14)) (-3134 ((|#1| (-867 |#1|)) 16)) (-2623 ((|#1| (-867 |#1|)) 20)) (-3060 ((|#1| (-867 |#1|)) 19)))
+(((-902 |#1|) (-10 -7 (-15 -2945 (|#1| (-867 |#1|))) (-15 -4042 (|#1| (-867 |#1|))) (-15 -3567 (|#1| (-867 |#1|))) (-15 -2083 (|#1| (-867 |#1|))) (-15 -2528 (|#1| (-867 |#1|))) (-15 -3134 (|#1| (-867 |#1|))) (-15 -3060 (|#1| (-867 |#1|))) (-15 -2623 (|#1| (-867 |#1|))) (-15 -4154 (|#1| (-867 |#1|)))) (-964)) (T -902))
+((-4154 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(-10 -7 (-15 -2945 (|#1| (-867 |#1|))) (-15 -4042 (|#1| (-867 |#1|))) (-15 -3567 (|#1| (-867 |#1|))) (-15 -2083 (|#1| (-867 |#1|))) (-15 -2528 (|#1| (-867 |#1|))) (-15 -3134 (|#1| (-867 |#1|))) (-15 -3060 (|#1| (-867 |#1|))) (-15 -2623 (|#1| (-867 |#1|))) (-15 -4154 (|#1| (-867 |#1|))))
+((-3090 (((-3 |#1| "failed") |#1|) 18)) (-3543 (((-3 |#1| "failed") |#1|) 6)) (-3607 (((-3 |#1| "failed") |#1|) 16)) (-2485 (((-3 |#1| "failed") |#1|) 4)) (-2488 (((-3 |#1| "failed") |#1|) 20)) (-3369 (((-3 |#1| "failed") |#1|) 8)) (-1514 (((-3 |#1| "failed") |#1| (-703)) 1)) (-3207 (((-3 |#1| "failed") |#1|) 3)) (-2644 (((-3 |#1| "failed") |#1|) 2)) (-3051 (((-3 |#1| "failed") |#1|) 21)) (-2228 (((-3 |#1| "failed") |#1|) 9)) (-2164 (((-3 |#1| "failed") |#1|) 19)) (-3013 (((-3 |#1| "failed") |#1|) 7)) (-2480 (((-3 |#1| "failed") |#1|) 17)) (-3420 (((-3 |#1| "failed") |#1|) 5)) (-2831 (((-3 |#1| "failed") |#1|) 24)) (-3216 (((-3 |#1| "failed") |#1|) 12)) (-3325 (((-3 |#1| "failed") |#1|) 22)) (-2094 (((-3 |#1| "failed") |#1|) 10)) (-3704 (((-3 |#1| "failed") |#1|) 26)) (-3994 (((-3 |#1| "failed") |#1|) 14)) (-3875 (((-3 |#1| "failed") |#1|) 27)) (-2092 (((-3 |#1| "failed") |#1|) 15)) (-1964 (((-3 |#1| "failed") |#1|) 25)) (-1556 (((-3 |#1| "failed") |#1|) 13)) (-3608 (((-3 |#1| "failed") |#1|) 23)) (-3333 (((-3 |#1| "failed") |#1|) 11)))
+(((-903 |#1|) (-1189) (-1098)) (T -903))
+((-3875 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3704 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-1964 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2831 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3608 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3325 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3051 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2488 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2164 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2480 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3607 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2092 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3994 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-1556 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3216 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3333 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2094 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2228 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3013 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3543 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3420 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2485 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3207 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2644 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-1514 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(-13 (-10 -7 (-15 -1514 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -2644 ((-3 |t#1| "failed") |t#1|)) (-15 -3207 ((-3 |t#1| "failed") |t#1|)) (-15 -2485 ((-3 |t#1| "failed") |t#1|)) (-15 -3420 ((-3 |t#1| "failed") |t#1|)) (-15 -3543 ((-3 |t#1| "failed") |t#1|)) (-15 -3013 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -2228 ((-3 |t#1| "failed") |t#1|)) (-15 -2094 ((-3 |t#1| "failed") |t#1|)) (-15 -3333 ((-3 |t#1| "failed") |t#1|)) (-15 -3216 ((-3 |t#1| "failed") |t#1|)) (-15 -1556 ((-3 |t#1| "failed") |t#1|)) (-15 -3994 ((-3 |t#1| "failed") |t#1|)) (-15 -2092 ((-3 |t#1| "failed") |t#1|)) (-15 -3607 ((-3 |t#1| "failed") |t#1|)) (-15 -2480 ((-3 |t#1| "failed") |t#1|)) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -2164 ((-3 |t#1| "failed") |t#1|)) (-15 -2488 ((-3 |t#1| "failed") |t#1|)) (-15 -3051 ((-3 |t#1| "failed") |t#1|)) (-15 -3325 ((-3 |t#1| "failed") |t#1|)) (-15 -3608 ((-3 |t#1| "failed") |t#1|)) (-15 -2831 ((-3 |t#1| "failed") |t#1|)) (-15 -1964 ((-3 |t#1| "failed") |t#1|)) (-15 -3704 ((-3 |t#1| "failed") |t#1|)) (-15 -3875 ((-3 |t#1| "failed") |t#1|))))
+((-1321 ((|#4| |#4| (-583 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2014 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3312 ((|#4| (-1 |#4| (-876 |#1|)) |#4|) 30)))
+(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2014 (|#4| |#4| |#3|)) (-15 -2014 (|#4| |#4| (-583 |#3|))) (-15 -1321 (|#4| |#4| |#3|)) (-15 -1321 (|#4| |#4| (-583 |#3|))) (-15 -3312 (|#4| (-1 |#4| (-876 |#1|)) |#4|))) (-964) (-725) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077))))) (-873 (-876 |#1|) |#2| |#3|)) (T -904))
+((-3312 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-876 *4))) (-4 *4 (-964)) (-4 *2 (-873 (-876 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-5 *1 (-904 *4 *5 *6 *2)))) (-1321 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *2 (-873 (-876 *4) *5 *6)))) (-1321 (*1 *2 *2 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *2 (-873 (-876 *4) *5 *6)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3)))))
+(-10 -7 (-15 -2014 (|#4| |#4| |#3|)) (-15 -2014 (|#4| |#4| (-583 |#3|))) (-15 -1321 (|#4| |#4| |#3|)) (-15 -1321 (|#4| |#4| (-583 |#3|))) (-15 -3312 (|#4| (-1 |#4| (-876 |#1|)) |#4|)))
+((-2087 ((|#2| |#3|) 34)) (-1486 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-2734 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
+(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2087 (|#2| |#3|))) (-319) (-1134 |#1|) (-1134 |#2|) (-657 |#2| |#3|)) (T -905))
+((-2087 (*1 *2 *3) (-12 (-4 *3 (-1134 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-905 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-905 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-2734 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
+(-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2087 (|#2| |#3|)))
+((-1445 (((-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 65)))
+(((-906 |#1| |#2|) (-10 -7 (-15 -1445 ((-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1077)) (-703)) (T -906))
+((-1445 (*1 *2 *2) (-12 (-5 *2 (-907 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-906 *3 *4)))))
+(-10 -7 (-15 -1445 ((-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
+((-2105 (((-107) $ $) NIL)) (-1558 (((-3 (-107) "failed") $) 67)) (-2130 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4143 (($ $ (-3 (-107) "failed")) 68)) (-3491 (($ (-583 |#4|) |#4|) 24)) (-3232 (((-1060) $) NIL)) (-3108 (($ $) 65)) (-4130 (((-1024) $) NIL)) (-1754 (((-107) $) 66)) (-2679 (($) 29)) (-2728 ((|#4| $) 70)) (-1896 (((-583 |#4|) $) 69)) (-2262 (((-787) $) 64)) (-1572 (((-107) $ $) NIL)))
+(((-907 |#1| |#2| |#3| |#4|) (-13 (-1006) (-557 (-787)) (-10 -8 (-15 -2679 ($)) (-15 -3491 ($ (-583 |#4|) |#4|)) (-15 -1558 ((-3 (-107) "failed") $)) (-15 -4143 ($ $ (-3 (-107) "failed"))) (-15 -1754 ((-107) $)) (-15 -1896 ((-583 |#4|) $)) (-15 -2728 (|#4| $)) (-15 -3108 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -2130 ($ $)) |%noBranch|) |%noBranch|))) (-421) (-779) (-725) (-873 |#1| |#3| |#2|)) (T -907))
+((-2679 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))) (-3491 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-873 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-907 *4 *5 *6 *3)))) (-1558 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-1754 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-1896 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-2728 (*1 *2 *1) (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-907 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-3108 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))) (-2130 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))))
+(-13 (-1006) (-557 (-787)) (-10 -8 (-15 -2679 ($)) (-15 -3491 ($ (-583 |#4|) |#4|)) (-15 -1558 ((-3 (-107) "failed") $)) (-15 -4143 ($ $ (-3 (-107) "failed"))) (-15 -1754 ((-107) $)) (-15 -1896 ((-583 |#4|) $)) (-15 -2728 (|#4| $)) (-15 -3108 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -2130 ($ $)) |%noBranch|) |%noBranch|)))
+((-1788 (((-107) |#5| |#5|) 38)) (-3752 (((-107) |#5| |#5|) 52)) (-3331 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 61)) (-1361 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-2457 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 63)) (-3455 (((-1163)) 33)) (-1533 (((-1163) (-1060) (-1060) (-1060)) 29)) (-3812 (((-583 |#5|) (-583 |#5|)) 81)) (-3825 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) 79)) (-1950 (((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-1719 (((-107) |#5| |#5|) 47)) (-2451 (((-3 (-107) "failed") |#5| |#5|) 71)) (-1526 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3818 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-1579 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3673 (((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-1908 (((-583 |#5|) (-583 |#5|)) 43)))
+(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -908))
+((-3673 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-908 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-1950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-908 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-908 *5 *6 *7 *8 *3)))) (-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-2451 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3818 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1361 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1719 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) (-1788 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3455 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-908 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-1533 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-3791 (((-1077) $) 15)) (-3112 (((-1060) $) 16)) (-2960 (($ (-1077) (-1060)) 14)) (-2262 (((-787) $) 13)))
+(((-909) (-13 (-557 (-787)) (-10 -8 (-15 -2960 ($ (-1077) (-1060))) (-15 -3791 ((-1077) $)) (-15 -3112 ((-1060) $))))) (T -909))
+((-2960 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-909)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-909)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-909)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2960 ($ (-1077) (-1060))) (-15 -3791 ((-1077) $)) (-15 -3112 ((-1060) $))))
+((-3312 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-912 |#1|) (-912 |#2|)) (T -910))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-912 *6)) (-5 *1 (-910 *5 *6 *4 *2)) (-4 *4 (-912 *5)))))
+(-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-1077) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3402 ((|#2| $) NIL) (((-1077) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-2192 (($) 98)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 74) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 83)) (-3662 (($ $) 10)) (-1639 (((-3 $ "failed") $) 20)) (-3312 (($ (-1 |#2| |#2|) $) 22)) (-2578 (($) 16)) (-2590 (($ $) 54)) (-2042 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1463 (($ $) 12)) (-3367 (((-816 (-517)) $) 69) (((-816 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1077)) 57)) (-1818 (((-703)) 31)) (-1596 (((-107) $ $) 50)))
+(((-911 |#1| |#2|) (-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -2192 (|#1|)) (-15 -2590 (|#1| |#1|)) (-15 -1463 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|))) (-912 |#2|) (-509)) (T -911))
+((-1818 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))))
+(-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -2192 (|#1|)) (-15 -2590 (|#1| |#1|)) (-15 -1463 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 ((|#1| $) 139 (|has| |#1| (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 130 (|has| |#1| (-833)))) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 133 (|has| |#1| (-833)))) (-1765 (((-107) $ $) 59)) (-3502 (((-517) $) 120 (|has| |#1| (-752)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 178) (((-3 (-1077) "failed") $) 128 (|has| |#1| (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-955 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-955 (-517))))) (-3402 ((|#1| $) 177) (((-1077) $) 127 (|has| |#1| (-955 (-1077)))) (((-377 (-517)) $) 111 (|has| |#1| (-955 (-517)))) (((-517) $) 109 (|has| |#1| (-955 (-517))))) (-2383 (($ $ $) 55)) (-2947 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3550 (((-3 $ "failed") $) 34)) (-2192 (($) 137 (|has| |#1| (-502)))) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-2671 (((-107) $) 122 (|has| |#1| (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 146 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 145 (|has| |#1| (-810 (-349))))) (-1690 (((-107) $) 31)) (-3662 (($ $) 141)) (-3858 ((|#1| $) 143)) (-1639 (((-3 $ "failed") $) 108 (|has| |#1| (-1053)))) (-2321 (((-107) $) 121 (|has| |#1| (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3480 (($ $ $) 118 (|has| |#1| (-779)))) (-4095 (($ $ $) 117 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 169)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2578 (($) 107 (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2590 (($ $) 138 (|has| |#1| (-278)))) (-2713 ((|#1| $) 135 (|has| |#1| (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 132 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 131 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 170 (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) 58)) (-2612 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2042 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1077)) 164 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 163 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 162 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 161 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-1463 (($ $) 140)) (-2082 ((|#1| $) 142)) (-3367 (((-816 (-517)) $) 148 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 147 (|has| |#1| (-558 (-816 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-940))) (((-199) $) 123 (|has| |#1| (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 134 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1077)) 129 (|has| |#1| (-955 (-1077))))) (-3385 (((-3 $ "failed") $) 126 (-3786 (|has| |#1| (-132)) (-4024 (|has| $ (-132)) (|has| |#1| (-833)))))) (-1818 (((-703)) 29)) (-3126 ((|#1| $) 136 (|has| |#1| (-502)))) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 119 (|has| |#1| (-752)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1077)) 160 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 159 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 158 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 157 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1630 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1692 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-912 |#1|) (-1189) (-509)) (T -912))
+((-1692 (*1 *1 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-3662 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-1463 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2590 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2192 (*1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
+(-13 (-333) (-37 |t#1|) (-955 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-808 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1692 ($ |t#1| |t#1|)) (-15 -3858 (|t#1| $)) (-15 -2082 (|t#1| $)) (-15 -3662 ($ $)) (-15 -1463 ($ $)) (IF (|has| |t#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |t#1| (-955 (-517))) (PROGN (-6 (-955 (-517))) (-6 (-955 (-377 (-517))))) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |%noBranch|) (IF (|has| |t#1| (-940)) (-6 (-940)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-955 (-1077))) (-6 (-955 (-1077))) |%noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2964 (|t#1| $)) (-15 -2590 ($ $))) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2192 ($)) (-15 -3126 (|t#1| $)) (-15 -2713 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-940)) ((-558 (-349)) |has| |#1| (-940)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3786 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-833) |has| |#1| (-833)) ((-844) . T) ((-940) |has| |#1| (-940)) ((-955 (-377 (-517))) |has| |#1| (-955 (-517))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 (-1077)) |has| |#1| (-955 (-1077))) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-1053)) ((-1112) . T) ((-1116) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1616 (($ (-1044 |#1| |#2|)) 11)) (-2362 (((-1044 |#1| |#2|) $) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2612 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2262 (((-787) $) NIL)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
+(((-913 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1616 ($ (-1044 |#1| |#2|))) (-15 -2362 ((-1044 |#1| |#2|) $)) (-15 -2612 (|#2| $ (-214 |#1| |#2|))))) (-845) (-333)) (T -913))
+((-1616 (*1 *1 *2) (-12 (-5 *2 (-1044 *3 *4)) (-14 *3 (-845)) (-4 *4 (-333)) (-5 *1 (-913 *3 *4)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-1044 *3 *4)) (-5 *1 (-913 *3 *4)) (-14 *3 (-845)) (-4 *4 (-333)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-845)) (-4 *2 (-333)) (-5 *1 (-913 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1616 ($ (-1044 |#1| |#2|))) (-15 -2362 ((-1044 |#1| |#2|) $)) (-15 -2612 (|#2| $ (-214 |#1| |#2|)))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2205 (($ $) 46)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3728 (((-703) $) 45)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1319 ((|#1| $) 44)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-3461 ((|#1| |#1| $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1903 ((|#1| $) 47)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-2522 ((|#1| $) 43)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-914 |#1|) (-1189) (-1112)) (T -914))
+((-3461 (*1 *2 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-2205 (*1 *1 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4195) (-15 -3461 (|t#1| |t#1| $)) (-15 -1903 (|t#1| $)) (-15 -2205 ($ $)) (-15 -3728 ((-703) $)) (-15 -1319 (|t#1| $)) (-15 -2522 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-1992 (((-107) $) 42)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-3389 (((-3 (-377 (-517)) "failed") $) 78)) (-3748 (((-107) $) 72)) (-3727 (((-377 (-517)) $) 76)) (-1690 (((-107) $) 41)) (-3522 ((|#2| $) 22)) (-3312 (($ (-1 |#2| |#2|) $) 19)) (-2291 (($ $) 61)) (-2042 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3367 (((-493) $) 67)) (-1853 (($ $) 17)) (-2262 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-1818 (((-703)) 10)) (-2829 ((|#2| $) 71)) (-1572 (((-107) $ $) 25)) (-1596 (((-107) $ $) 69)) (-1680 (($ $) 29) (($ $ $) 28)) (-1666 (($ $ $) 26)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-915 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2291 (|#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -1690 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-916 |#2|) (-156)) (T -915))
+((-1818 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-915 *3 *4)) (-4 *3 (-916 *4)))))
+(-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2291 (|#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -1690 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 119 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3402 (((-517) $) 120 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 115)) (-2947 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3550 (((-3 $ "failed") $) 34)) (-3919 ((|#1| $) 80)) (-3389 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-3748 (((-107) $) 78 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-4124 (($ |#1| |#1| |#1| |#1|) 81)) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 82)) (-3480 (($ $ $) 68 (|has| |#1| (-779)))) (-4095 (($ $ $) 67 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 91)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 73 (|has| |#1| (-333)))) (-3840 ((|#1| $) 83)) (-3061 ((|#1| $) 84)) (-1273 ((|#1| $) 85)) (-4130 (((-1024) $) 10)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 92 (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-2042 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1077)) 110 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 109 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 108 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 107 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3367 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1853 (($ $) 86)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2829 ((|#1| $) 79 (|has| |#1| (-973)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1077)) 106 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 105 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 104 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 103 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1630 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
+(((-916 |#1|) (-1189) (-156)) (T -916))
+((-1853 (*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-4124 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1853 ($ $)) (-15 -1273 (|t#1| $)) (-15 -3061 (|t#1| $)) (-15 -3840 (|t#1| $)) (-15 -3522 (|t#1| $)) (-15 -4124 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3919 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2829 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3786 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 #0#) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) |has| |#1| (-333)) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3312 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) (-916 |#2|) (-156) (-916 |#4|) (-156)) (T -917))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-916 *6)) (-5 *1 (-917 *4 *5 *2 *6)) (-4 *4 (-916 *5)))))
+(-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3919 ((|#1| $) 12)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3748 (((-107) $) NIL (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-4124 (($ |#1| |#1| |#1| |#1|) 16)) (-1690 (((-107) $) NIL)) (-3522 ((|#1| $) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3840 ((|#1| $) 15)) (-3061 ((|#1| $) 14)) (-1273 ((|#1| $) 13)) (-4130 (((-1024) $) NIL)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2042 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1853 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2829 ((|#1| $) NIL (|has| |#1| (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 8 T CONST)) (-3675 (($) 10 T CONST)) (-3348 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
+(((-918 |#1|) (-916 |#1|) (-156)) (T -918))
+NIL
+(-916 |#1|)
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2205 (($ $) 20)) (-3790 (($ (-583 |#1|)) 29)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3728 (((-703) $) 22)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 24)) (-3439 (($ |#1| $) 15)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1319 ((|#1| $) 23)) (-1551 ((|#1| $) 19)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-3461 ((|#1| |#1| $) 14)) (-1754 (((-107) $) 17)) (-2679 (($) NIL)) (-1903 ((|#1| $) 18)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) NIL)) (-2522 ((|#1| $) 26)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-919 |#1|) (-13 (-914 |#1|) (-10 -8 (-15 -3790 ($ (-583 |#1|))))) (-1006)) (T -919))
+((-3790 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-919 *3)))))
+(-13 (-914 |#1|) (-10 -8 (-15 -3790 ($ (-583 |#1|)))))
+((-3908 (($ $) 12)) (-2940 (($ $ (-517)) 13)))
+(((-920 |#1|) (-10 -8 (-15 -3908 (|#1| |#1|)) (-15 -2940 (|#1| |#1| (-517)))) (-921)) (T -920))
+NIL
+(-10 -8 (-15 -3908 (|#1| |#1|)) (-15 -2940 (|#1| |#1| (-517))))
+((-3908 (($ $) 6)) (-2940 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
+(((-921) (-1189)) (T -921))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-377 (-517))))) (-2940 (*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-517)))) (-3908 (*1 *1 *1) (-4 *1 (-921))))
+(-13 (-10 -8 (-15 -3908 ($ $)) (-15 -2940 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2861 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2491 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2025 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1278 (((-623 (-377 |#2|)) (-1158 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1991 (((-377 |#2|) $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3306 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1765 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2390 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2401 (((-107)) NIL)) (-1369 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3539 (($ (-1158 (-377 |#2|)) (-1158 $)) NIL) (($ (-1158 (-377 |#2|))) 70) (($ (-1158 |#2|) |#2|) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-4028 (((-623 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-377 |#2|))) (|:| |vec| (-1158 (-377 |#2|)))) (-623 $) (-1158 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-1852 (((-1158 $) (-1158 $)) NIL)) (-1510 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3810 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3881 (((-107) |#1| |#1|) NIL)) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| (-377 |#2|) (-338)))) (-2897 (((-107)) NIL)) (-1607 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2356 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-4172 (($ $) NIL)) (-4169 (($) NIL (|has| (-377 |#2|) (-319)))) (-2634 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2627 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2022 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3250 (((-845) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-845)) $) NIL (|has| (-377 |#2|) (-319)))) (-1690 (((-107) $) NIL)) (-3128 (((-703)) NIL)) (-3947 (((-1158 $) (-1158 $)) NIL)) (-3522 (((-377 |#2|) $) NIL)) (-2784 (((-583 (-876 |#1|)) (-1077)) NIL (|has| |#1| (-333)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1914 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-4161 (((-845) $) NIL (|has| (-377 |#2|) (-338)))) (-1497 ((|#3| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3232 (((-1060) $) NIL)) (-2765 (((-623 (-377 |#2|))) 52)) (-2160 (((-623 (-377 |#2|))) 51)) (-2291 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1792 (($ (-1158 |#2|) |#2|) 71)) (-3444 (((-623 (-377 |#2|))) 50)) (-3564 (((-623 (-377 |#2|))) 49)) (-2303 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2067 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 77)) (-2474 (((-1158 $)) 46)) (-2734 (((-1158 $)) 45)) (-3093 (((-107) $) NIL)) (-3138 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2578 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| (-377 |#2|) (-338)))) (-2645 (((-3 |#2| "failed")) 63)) (-4130 (((-1024) $) NIL)) (-2224 (((-703)) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| (-377 |#2|) (-333)))) (-2361 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3896 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3388 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2612 ((|#1| $ |#1| |#1|) NIL)) (-2178 (((-3 |#2| "failed")) 62)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3115 (((-377 |#2|) (-1158 $)) NIL) (((-377 |#2|)) 42)) (-3667 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2042 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3248 (((-623 (-377 |#2|)) (-1158 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2819 ((|#3|) 53)) (-3718 (($) NIL (|has| (-377 |#2|) (-319)))) (-1372 (((-1158 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) (-1158 $) (-1158 $)) NIL) (((-1158 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1158 $)) NIL)) (-3367 (((-1158 (-377 |#2|)) $) NIL) (($ (-1158 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-1697 (((-1158 $) (-1158 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| (-377 |#2|) (-955 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3385 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3848 ((|#3| $) NIL)) (-1818 (((-703)) NIL)) (-3471 (((-107)) 60)) (-3788 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-3700 (((-1158 $)) 124)) (-2944 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2159 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1288 (((-107)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3663 (($) 94 T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-922 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1116) (-1134 |#1|) (-1134 (-377 |#2|)) (-377 |#2|) (-703)) (T -922))
NIL
(-312 |#1| |#2| |#3|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2870 (((-583 (-517)) $) 54)) (-3835 (($ (-583 (-517))) 62)) (-1363 (((-517) $) 40 (|has| (-517) (-278)))) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL (|has| (-517) (-752)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) 49) (((-3 (-1076) "failed") $) NIL (|has| (-517) (-954 (-1076)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-954 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-954 (-517))))) (-3390 (((-517) $) NIL) (((-1076) $) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) NIL (|has| (-517) (-954 (-517)))) (((-517) $) NIL (|has| (-517) (-954 (-517))))) (-2379 (($ $ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2202 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-1734 (((-583 (-517)) $) 60)) (-2988 (((-107) $) NIL (|has| (-517) (-752)))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL)) (-3826 (((-517) $) 37)) (-2243 (((-3 $ "failed") $) NIL (|has| (-517) (-1052)))) (-1952 (((-107) $) NIL (|has| (-517) (-752)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-517) (-779)))) (-3310 (($ (-1 (-517) (-517)) $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL)) (-2587 (($) NIL (|has| (-517) (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2041 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-3609 (((-1057 (-517)) $) 59)) (-1911 (($ (-583 (-517)) (-583 (-517))) 63)) (-2961 (((-517) $) 53 (|has| (-517) (-502)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| (-517) (-832)))) (-3868 (((-388 $) $) NIL)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3524 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1076)) (-583 (-517))) NIL (|has| (-517) (-478 (-1076) (-517)))) (($ $ (-1076) (-517)) NIL (|has| (-517) (-478 (-1076) (-517))))) (-3600 (((-703) $) NIL)) (-2609 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2484 (($ $) NIL)) (-2098 (((-517) $) 39)) (-2004 (((-583 (-517)) $) 61)) (-3359 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-939))) (((-199) $) NIL (|has| (-517) (-939)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2271 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1076)) NIL (|has| (-517) (-954 (-1076)))) (((-377 (-517)) $) 17)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-4099 (((-703)) 9)) (-3599 (((-517) $) 51 (|has| (-517) (-502)))) (-2074 (((-107) $ $) NIL)) (-2376 (($ $) NIL (|has| (-517) (-752)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 10 T CONST)) (-3619 (($) 12 T CONST)) (-3342 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1076)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| (-517) (-823 (-1076)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1642 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1584 (((-107) $ $) 14)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1608 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1704 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1692 (($ $) 15) (($ $ $) 22)) (-1678 (($ $ $) 20)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
-(((-922 |#1|) (-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -2870 ((-583 (-517)) $)) (-15 -3609 ((-1057 (-517)) $)) (-15 -1734 ((-583 (-517)) $)) (-15 -2004 ((-583 (-517)) $)) (-15 -3835 ($ (-583 (-517)))) (-15 -1911 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -922))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-1057 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))) (-1911 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
-(-13 (-911 (-517)) (-10 -8 (-15 -2271 ((-377 (-517)) $)) (-15 -2041 ((-377 (-517)) $)) (-15 -2870 ((-583 (-517)) $)) (-15 -3609 ((-1057 (-517)) $)) (-15 -1734 ((-583 (-517)) $)) (-15 -2004 ((-583 (-517)) $)) (-15 -3835 ($ (-583 (-517)))) (-15 -1911 ($ (-583 (-517)) (-583 (-517))))))
-((-1594 (((-51) (-377 (-517)) (-517)) 9)))
-(((-923) (-10 -7 (-15 -1594 ((-51) (-377 (-517)) (-517))))) (T -923))
-((-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-923)))))
-(-10 -7 (-15 -1594 ((-51) (-377 (-517)) (-517))))
-((-2399 (((-517)) 13)) (-1511 (((-517)) 16)) (-3250 (((-1162) (-517)) 15)) (-3566 (((-517) (-517)) 17) (((-517)) 12)))
-(((-924) (-10 -7 (-15 -3566 ((-517))) (-15 -2399 ((-517))) (-15 -3566 ((-517) (-517))) (-15 -3250 ((-1162) (-517))) (-15 -1511 ((-517))))) (T -924))
-((-1511 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-924)))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924)))) (-2399 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924)))) (-3566 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924)))))
-(-10 -7 (-15 -3566 ((-517))) (-15 -2399 ((-517))) (-15 -3566 ((-517) (-517))) (-15 -3250 ((-1162) (-517))) (-15 -1511 ((-517))))
-((-2711 (((-388 |#1|) |#1|) 40)) (-3868 (((-388 |#1|) |#1|) 39)))
-(((-925 |#1|) (-10 -7 (-15 -3868 ((-388 |#1|) |#1|)) (-15 -2711 ((-388 |#1|) |#1|))) (-1133 (-377 (-517)))) (T -925))
-((-2711 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-925 *3)) (-4 *3 (-1133 (-377 (-517)))))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-925 *3)) (-4 *3 (-1133 (-377 (-517)))))))
-(-10 -7 (-15 -3868 ((-388 |#1|) |#1|)) (-15 -2711 ((-388 |#1|) |#1|)))
-((-2518 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-3000 (((-107) |#1|) 13)) (-1843 (((-377 (-517)) |#1|) 9)))
-(((-926 |#1|) (-10 -7 (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|))) (-954 (-377 (-517)))) (T -926))
-((-2518 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-926 *3)) (-4 *3 (-954 *2)))) (-3000 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-926 *3)) (-4 *3 (-954 (-377 (-517)))))) (-1843 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-926 *3)) (-4 *3 (-954 *2)))))
-(-10 -7 (-15 -1843 ((-377 (-517)) |#1|)) (-15 -3000 ((-107) |#1|)) (-15 -2518 ((-3 (-377 (-517)) "failed") |#1|)))
-((-2445 ((|#2| $ "value" |#2|) 12)) (-2609 ((|#2| $ "value") 10)) (-2836 (((-107) $ $) 18)))
-(((-927 |#1| |#2|) (-10 -8 (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -2836 ((-107) |#1| |#1|)) (-15 -2609 (|#2| |#1| "value"))) (-928 |#2|) (-1111)) (T -927))
-NIL
-(-10 -8 (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -2836 ((-107) |#1| |#1|)) (-15 -2609 (|#2| |#1| "value")))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-1393 (($) 7 T CONST)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47)) (-1844 (((-517) $ $) 44)) (-3028 (((-107) $) 46)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-928 |#1|) (-1188) (-1111)) (T -928))
-((-2199 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-5 *2 (-583 *1)) (-4 *1 (-928 *3)))) (-3657 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-5 *2 (-583 *1)) (-4 *1 (-928 *3)))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-1111)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-928 *2)) (-4 *2 (-1111)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))) (-1939 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-583 *3)))) (-1844 (*1 *2 *1 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-517)))) (-2836 (*1 *2 *1 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-107)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-107)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4193)) (-4 *1 (-928 *3)) (-4 *3 (-1111)))) (-2445 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4193)) (-4 *1 (-928 *2)) (-4 *2 (-1111)))) (-1189 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-928 *2)) (-4 *2 (-1111)))))
-(-13 (-456 |t#1|) (-10 -8 (-15 -2199 ((-583 $) $)) (-15 -3657 ((-583 $) $)) (-15 -3017 ((-107) $)) (-15 -3121 (|t#1| $)) (-15 -2609 (|t#1| $ "value")) (-15 -3028 ((-107) $)) (-15 -1939 ((-583 |t#1|) $)) (-15 -1844 ((-517) $ $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -2836 ((-107) $ $)) (-15 -2441 ((-107) $ $))) |%noBranch|) (IF (|has| $ (-6 -4193)) (PROGN (-15 -3929 ($ $ (-583 $))) (-15 -2445 (|t#1| $ "value" |t#1|)) (-15 -1189 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-3880 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-3522 (((-3 $ "failed") (-1072 $) (-844) (-787)) 23) (((-3 $ "failed") (-1072 $) (-844)) 28)) (-2092 (($ $ (-517)) 49)) (-4099 (((-703)) 16)) (-3443 (((-583 $) (-1072 $)) NIL) (((-583 $) (-1072 (-377 (-517)))) 54) (((-583 $) (-1072 (-517))) 59) (((-583 $) (-875 $)) 63) (((-583 $) (-875 (-377 (-517)))) 67) (((-583 $) (-875 (-517))) 71)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
-(((-929 |#1|) (-10 -8 (-15 -3880 (|#1| (-517))) (-15 -3880 (|#1| (-377 (-517)))) (-15 -3880 (|#1| |#1| (-703))) (-15 -3443 ((-583 |#1|) (-875 (-517)))) (-15 -3443 ((-583 |#1|) (-875 (-377 (-517))))) (-15 -3443 ((-583 |#1|) (-875 |#1|))) (-15 -3443 ((-583 |#1|) (-1072 (-517)))) (-15 -3443 ((-583 |#1|) (-1072 (-377 (-517))))) (-15 -3443 ((-583 |#1|) (-1072 |#1|))) (-15 -3522 ((-3 |#1| "failed") (-1072 |#1|) (-844))) (-15 -3522 ((-3 |#1| "failed") (-1072 |#1|) (-844) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2092 (|#1| |#1| (-517))) (-15 -3880 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -4099 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844)))) (-930)) (T -929))
-((-4099 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-929 *3)) (-4 *3 (-930)))))
-(-10 -8 (-15 -3880 (|#1| (-517))) (-15 -3880 (|#1| (-377 (-517)))) (-15 -3880 (|#1| |#1| (-703))) (-15 -3443 ((-583 |#1|) (-875 (-517)))) (-15 -3443 ((-583 |#1|) (-875 (-377 (-517))))) (-15 -3443 ((-583 |#1|) (-875 |#1|))) (-15 -3443 ((-583 |#1|) (-1072 (-517)))) (-15 -3443 ((-583 |#1|) (-1072 (-377 (-517))))) (-15 -3443 ((-583 |#1|) (-1072 |#1|))) (-15 -3522 ((-3 |#1| "failed") (-1072 |#1|) (-844))) (-15 -3522 ((-3 |#1| "failed") (-1072 |#1|) (-844) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2092 (|#1| |#1| (-517))) (-15 -3880 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -4099 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 89)) (-3062 (($ $) 90)) (-2190 (((-107) $) 92)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 109)) (-4018 (((-388 $) $) 110)) (-3880 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-3820 (((-107) $ $) 100)) (-2360 (((-517) $) 127)) (-1393 (($) 17 T CONST)) (-3522 (((-3 $ "failed") (-1072 $) (-844) (-787)) 67) (((-3 $ "failed") (-1072 $) (-844)) 66)) (-3228 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-954 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3390 (((-517) $) 86 (|has| (-377 (-517)) (-954 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-954 (-377 (-517))))) (((-377 (-517)) $) 80)) (-3148 (($ $ (-787)) 56)) (-1553 (($ $ (-787)) 55)) (-2379 (($ $ $) 104)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 103)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 98)) (-1259 (((-107) $) 111)) (-2988 (((-107) $) 125)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 72)) (-1952 (((-107) $) 126)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-3458 (($ $ $) 124)) (-4084 (($ $ $) 123)) (-4119 (((-3 (-1072 $) "failed") $) 68)) (-3189 (((-3 (-787) "failed") $) 70)) (-1801 (((-3 (-1072 $) "failed") $) 69)) (-2332 (($ (-583 $)) 96) (($ $ $) 95)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 112)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 97)) (-2370 (($ (-583 $)) 94) (($ $ $) 93)) (-3868 (((-388 $) $) 108)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 105)) (-2329 (((-3 $ "failed") $ $) 88)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3600 (((-703) $) 101)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 102)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 91)) (-2204 (((-377 (-517)) $ $) 54)) (-3443 (((-583 $) (-1072 $)) 65) (((-583 $) (-1072 (-377 (-517)))) 64) (((-583 $) (-1072 (-517))) 63) (((-583 $) (-875 $)) 62) (((-583 $) (-875 (-377 (-517)))) 61) (((-583 $) (-875 (-517))) 60)) (-2376 (($ $) 128)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 121)) (-1618 (((-107) $ $) 120)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 122)) (-1608 (((-107) $ $) 119)) (-1704 (($ $ $) 118)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
-(((-930) (-1188)) (T -930))
-((-3880 (*1 *1 *1) (-4 *1 (-930))) (-3189 (*1 *2 *1) (|partial| -12 (-4 *1 (-930)) (-5 *2 (-787)))) (-1801 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072 *1)) (-4 *1 (-930)))) (-4119 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072 *1)) (-4 *1 (-930)))) (-3522 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1072 *1)) (-5 *3 (-844)) (-5 *4 (-787)) (-4 *1 (-930)))) (-3522 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1072 *1)) (-5 *3 (-844)) (-4 *1 (-930)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1072 *1)) (-4 *1 (-930)) (-5 *2 (-583 *1)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1072 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-930)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1072 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-930)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-930)) (-5 *2 (-583 *1)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-930)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-930)))) (-3880 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-703)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-930)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-930)))) (-3148 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-787)))) (-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-787)))) (-2204 (*1 *2 *1 *1) (-12 (-4 *1 (-930)) (-5 *2 (-377 (-517))))))
-(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-920) (-10 -8 (-15 -3189 ((-3 (-787) "failed") $)) (-15 -1801 ((-3 (-1072 $) "failed") $)) (-15 -4119 ((-3 (-1072 $) "failed") $)) (-15 -3522 ((-3 $ "failed") (-1072 $) (-844) (-787))) (-15 -3522 ((-3 $ "failed") (-1072 $) (-844))) (-15 -3443 ((-583 $) (-1072 $))) (-15 -3443 ((-583 $) (-1072 (-377 (-517))))) (-15 -3443 ((-583 $) (-1072 (-517)))) (-15 -3443 ((-583 $) (-875 $))) (-15 -3443 ((-583 $) (-875 (-377 (-517))))) (-15 -3443 ((-583 $) (-875 (-517)))) (-15 -3880 ($ $ (-703))) (-15 -3880 ($ $)) (-15 -3880 ($ (-377 (-517)))) (-15 -3880 ($ (-517))) (-15 -3148 ($ $ (-787))) (-15 -1553 ($ $ (-787))) (-15 -2204 ((-377 (-517)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 #1=(-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 #1#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-843) . T) ((-920) . T) ((-954 (-377 (-517))) . T) ((-954 (-517)) |has| (-377 (-517)) (-954 (-517))) ((-969 #0#) . T) ((-969 #1#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-2372 (((-2 (|:| |ans| |#2|) (|:| -3300 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1076) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -2372 ((-2 (|:| |ans| |#2|) (|:| -3300 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1076) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-27) (-400 |#1|))) (T -931))
-((-2372 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1076)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2212 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1097) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-954 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3300 *4) (|:| |sol?| (-107)))) (-5 *1 (-931 *8 *4)))))
-(-10 -7 (-15 -2372 ((-2 (|:| |ans| |#2|) (|:| -3300 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1076) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3625 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1076) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
-(((-932 |#1| |#2|) (-10 -7 (-15 -3625 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1076) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))) (-13 (-1097) (-27) (-400 |#1|))) (T -932))
-((-3625 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1076)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2212 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1097) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-954 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-932 *8 *4)))))
-(-10 -7 (-15 -3625 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1076) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2212 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1764 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3781 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-1335 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1713 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 57)) (-2619 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 62)))
-(((-933 |#1| |#2|) (-10 -7 (-15 -1335 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1713 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2619 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1764 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3781 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-954 (-517))) (-1133 |#1|)) (T -933))
-((-1764 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1133 *6)) (-4 *6 (-13 (-333) (-134) (-954 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -3781 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-933 *6 *3)))) (-2619 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-954 (-517)))) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-933 *4 *5)) (-5 *3 (-377 *5)))) (-1335 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -1713 *6))) (-5 *1 (-933 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -1335 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1713 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2619 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1764 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3781 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
-((-1710 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1713 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-1874 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
-(((-934 |#1| |#2|) (-10 -7 (-15 -1710 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1713 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1874 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-954 (-517))) (-1133 |#1|)) (T -934))
-((-1874 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-954 (-517)))) (-4 *5 (-1133 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-934 *4 *5)) (-5 *3 (-377 *5)))) (-1710 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1713 *6))) (-5 *1 (-934 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -1710 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1713 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1874 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
-((-2252 (((-1 |#1|) (-583 (-2 (|:| -3121 |#1|) (|:| -3077 (-517))))) 37)) (-1342 (((-1 |#1|) (-1007 |#1|)) 45)) (-2509 (((-1 |#1|) (-1157 |#1|) (-1157 (-517)) (-517)) 34)))
-(((-935 |#1|) (-10 -7 (-15 -1342 ((-1 |#1|) (-1007 |#1|))) (-15 -2252 ((-1 |#1|) (-583 (-2 (|:| -3121 |#1|) (|:| -3077 (-517)))))) (-15 -2509 ((-1 |#1|) (-1157 |#1|) (-1157 (-517)) (-517)))) (-1005)) (T -935))
-((-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *6)) (-5 *4 (-1157 (-517))) (-5 *5 (-517)) (-4 *6 (-1005)) (-5 *2 (-1 *6)) (-5 *1 (-935 *6)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3121 *4) (|:| -3077 (-517))))) (-4 *4 (-1005)) (-5 *2 (-1 *4)) (-5 *1 (-935 *4)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1007 *4)) (-4 *4 (-1005)) (-5 *2 (-1 *4)) (-5 *1 (-935 *4)))))
-(-10 -7 (-15 -1342 ((-1 |#1|) (-1007 |#1|))) (-15 -2252 ((-1 |#1|) (-583 (-2 (|:| -3121 |#1|) (|:| -3077 (-517)))))) (-15 -2509 ((-1 |#1|) (-1157 |#1|) (-1157 (-517)) (-517))))
-((-1395 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1395 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1133 |#1|) (-1133 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -936))
-((-1395 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1133 *6)) (-4 *4 (-1133 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-936 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -1395 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3574 (((-3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) "failed") |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) 31) (((-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517))) 28)) (-2018 (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) 32) (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1|) 27)) (-3490 (((-583 (-377 (-517))) (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) 19)) (-1774 (((-377 (-517)) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) 16)))
-(((-937 |#1|) (-10 -7 (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1|)) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) "failed") |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -1774 ((-377 (-517)) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -3490 ((-583 (-377 (-517))) (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))))) (-1133 (-517))) (T -937))
-((-3490 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-937 *4)) (-4 *4 (-1133 (-517))))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-937 *4)) (-4 *4 (-1133 (-517))))) (-3574 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))))) (-3574 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))))) (-2018 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3288 *5) (|:| -3300 *5)))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))) (-5 *4 (-2 (|:| -3288 *5) (|:| -3300 *5))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))) (-5 *4 (-377 (-517))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))) (-5 *4 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))) (-2018 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))))))
-(-10 -7 (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1|)) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) "failed") |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -1774 ((-377 (-517)) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -3490 ((-583 (-377 (-517))) (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))))
-((-3574 (((-3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) "failed") |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) 35) (((-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517))) 32)) (-2018 (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) 28) (((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1|) 24)))
-(((-938 |#1|) (-10 -7 (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1|)) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) "failed") |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))) (-1133 (-377 (-517)))) (T -938))
-((-3574 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) (-5 *1 (-938 *3)) (-4 *3 (-1133 (-377 (-517)))))) (-3574 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-938 *3)) (-4 *3 (-1133 *4)))) (-2018 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3288 *5) (|:| -3300 *5)))) (-5 *1 (-938 *3)) (-4 *3 (-1133 *5)) (-5 *4 (-2 (|:| -3288 *5) (|:| -3300 *5))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3288 *4) (|:| -3300 *4)))) (-5 *1 (-938 *3)) (-4 *3 (-1133 *4)))) (-2018 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1133 (-377 (-517)))) (-5 *4 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))) (-2018 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1133 (-377 (-517)))))))
-(-10 -7 (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1|)) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2018 ((-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-377 (-517)))) (-15 -3574 ((-3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) "failed") |#1| (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))) (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))))
-((-3359 (((-199) $) 6) (((-349) $) 9)))
-(((-939) (-1188)) (T -939))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1194 (((-583 (-517)) $) 54)) (-3754 (($ (-583 (-517))) 62)) (-2964 (((-517) $) 40 (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) 49) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1812 (((-583 (-517)) $) 60)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) 37)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-4089 (((-1058 (-517)) $) 59)) (-2708 (($ (-583 (-517)) (-583 (-517))) 63)) (-2713 (((-517) $) 53 (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) 39)) (-3713 (((-583 (-517)) $) 61)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) 17)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) 9)) (-3126 (((-517) $) 51 (|has| (-517) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 10 T CONST)) (-3675 (($) 12 T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) 14)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1692 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1680 (($ $) 15) (($ $ $) 22)) (-1666 (($ $ $) 20)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
+(((-923 |#1|) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -1194 ((-583 (-517)) $)) (-15 -4089 ((-1058 (-517)) $)) (-15 -1812 ((-583 (-517)) $)) (-15 -3713 ((-583 (-517)) $)) (-15 -3754 ($ (-583 (-517)))) (-15 -2708 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -923))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-1194 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-2708 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
+(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -1194 ((-583 (-517)) $)) (-15 -4089 ((-1058 (-517)) $)) (-15 -1812 ((-583 (-517)) $)) (-15 -3713 ((-583 (-517)) $)) (-15 -3754 ($ (-583 (-517)))) (-15 -2708 ($ (-583 (-517)) (-583 (-517))))))
+((-3198 (((-51) (-377 (-517)) (-517)) 9)))
+(((-924) (-10 -7 (-15 -3198 ((-51) (-377 (-517)) (-517))))) (T -924))
+((-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-924)))))
+(-10 -7 (-15 -3198 ((-51) (-377 (-517)) (-517))))
+((-2390 (((-517)) 13)) (-2441 (((-517)) 16)) (-1997 (((-1163) (-517)) 15)) (-3586 (((-517) (-517)) 17) (((-517)) 12)))
+(((-925) (-10 -7 (-15 -3586 ((-517))) (-15 -2390 ((-517))) (-15 -3586 ((-517) (-517))) (-15 -1997 ((-1163) (-517))) (-15 -2441 ((-517))))) (T -925))
+((-2441 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-925)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) (-2390 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) (-3586 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))))
+(-10 -7 (-15 -3586 ((-517))) (-15 -2390 ((-517))) (-15 -3586 ((-517) (-517))) (-15 -1997 ((-1163) (-517))) (-15 -2441 ((-517))))
+((-2470 (((-388 |#1|) |#1|) 40)) (-3896 (((-388 |#1|) |#1|) 39)))
+(((-926 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|))) (-1134 (-377 (-517)))) (T -926))
+((-2470 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3)) (-4 *3 (-1134 (-377 (-517)))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3)) (-4 *3 (-1134 (-377 (-517)))))))
+(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|)))
+((-3389 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-3748 (((-107) |#1|) 13)) (-3727 (((-377 (-517)) |#1|) 9)))
+(((-927 |#1|) (-10 -7 (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|))) (-955 (-377 (-517)))) (T -927))
+((-3389 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) (-4 *3 (-955 *2)))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-927 *3)) (-4 *3 (-955 (-377 (-517)))))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) (-4 *3 (-955 *2)))))
+(-10 -7 (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)))
+((-2436 ((|#2| $ "value" |#2|) 12)) (-2612 ((|#2| $ "value") 10)) (-3224 (((-107) $ $) 18)))
+(((-928 |#1| |#2|) (-10 -8 (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -2612 (|#2| |#1| "value"))) (-929 |#2|) (-1112)) (T -928))
+NIL
+(-10 -8 (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -2612 (|#2| |#1| "value")))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-929 |#1|) (-1189) (-1112)) (T -929))
+((-3234 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3)))) (-1823 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-929 *2)) (-4 *2 (-1112)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))) (-3868 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-517)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-2638 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4196)) (-4 *1 (-929 *3)) (-4 *3 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) (-4 *2 (-1112)))) (-2226 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) (-4 *2 (-1112)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -3234 ((-583 $) $)) (-15 -1823 ((-583 $) $)) (-15 -3834 ((-107) $)) (-15 -3112 (|t#1| $)) (-15 -2612 (|t#1| $ "value")) (-15 -1414 ((-107) $)) (-15 -1925 ((-583 |t#1|) $)) (-15 -3868 ((-517) $ $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -3224 ((-107) $ $)) (-15 -1700 ((-107) $ $))) |%noBranch|) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2638 ($ $ (-583 $))) (-15 -2436 (|t#1| $ "value" |t#1|)) (-15 -2226 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-3908 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-1454 (((-3 $ "failed") (-1073 $) (-845) (-787)) 23) (((-3 $ "failed") (-1073 $) (-845)) 28)) (-2940 (($ $ (-517)) 49)) (-1818 (((-703)) 16)) (-1244 (((-583 $) (-1073 $)) NIL) (((-583 $) (-1073 (-377 (-517)))) 54) (((-583 $) (-1073 (-517))) 59) (((-583 $) (-876 $)) 63) (((-583 $) (-876 (-377 (-517)))) 67) (((-583 $) (-876 (-517))) 71)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
+(((-930 |#1|) (-10 -8 (-15 -3908 (|#1| (-517))) (-15 -3908 (|#1| (-377 (-517)))) (-15 -3908 (|#1| |#1| (-703))) (-15 -1244 ((-583 |#1|) (-876 (-517)))) (-15 -1244 ((-583 |#1|) (-876 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-876 |#1|))) (-15 -1244 ((-583 |#1|) (-1073 (-517)))) (-15 -1244 ((-583 |#1|) (-1073 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-1073 |#1|))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2940 (|#1| |#1| (-517))) (-15 -3908 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845)))) (-931)) (T -930))
+((-1818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-930 *3)) (-4 *3 (-931)))))
+(-10 -8 (-15 -3908 (|#1| (-517))) (-15 -3908 (|#1| (-377 (-517)))) (-15 -3908 (|#1| |#1| (-703))) (-15 -1244 ((-583 |#1|) (-876 (-517)))) (-15 -1244 ((-583 |#1|) (-876 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-876 |#1|))) (-15 -1244 ((-583 |#1|) (-1073 (-517)))) (-15 -1244 ((-583 |#1|) (-1073 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-1073 |#1|))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2940 (|#1| |#1| (-517))) (-15 -3908 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 89)) (-2491 (($ $) 90)) (-2025 (((-107) $) 92)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 109)) (-3306 (((-388 $) $) 110)) (-3908 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-1765 (((-107) $ $) 100)) (-3502 (((-517) $) 127)) (-3038 (($) 17 T CONST)) (-1454 (((-3 $ "failed") (-1073 $) (-845) (-787)) 67) (((-3 $ "failed") (-1073 $) (-845)) 66)) (-3220 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3402 (((-517) $) 86 (|has| (-377 (-517)) (-955 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-377 (-517)) $) 80)) (-3171 (($ $ (-787)) 56)) (-3383 (($ $ (-787)) 55)) (-2383 (($ $ $) 104)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 103)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 98)) (-2022 (((-107) $) 111)) (-2671 (((-107) $) 125)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 72)) (-2321 (((-107) $) 126)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-3480 (($ $ $) 124)) (-4095 (($ $ $) 123)) (-3712 (((-3 (-1073 $) "failed") $) 68)) (-3107 (((-3 (-787) "failed") $) 70)) (-2411 (((-3 (-1073 $) "failed") $) 69)) (-2323 (($ (-583 $)) 96) (($ $ $) 95)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 112)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 97)) (-2361 (($ (-583 $)) 94) (($ $ $) 93)) (-3896 (((-388 $) $) 108)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 105)) (-2333 (((-3 $ "failed") $ $) 88)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3388 (((-703) $) 101)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 102)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 91)) (-2194 (((-377 (-517)) $ $) 54)) (-1244 (((-583 $) (-1073 $)) 65) (((-583 $) (-1073 (-377 (-517)))) 64) (((-583 $) (-1073 (-517))) 63) (((-583 $) (-876 $)) 62) (((-583 $) (-876 (-377 (-517)))) 61) (((-583 $) (-876 (-517))) 60)) (-2829 (($ $) 128)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 121)) (-1606 (((-107) $ $) 120)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 122)) (-1596 (((-107) $ $) 119)) (-1692 (($ $ $) 118)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
+(((-931) (-1189)) (T -931))
+((-3908 (*1 *1 *1) (-4 *1 (-931))) (-3107 (*1 *2 *1) (|partial| -12 (-4 *1 (-931)) (-5 *2 (-787)))) (-2411 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931)))) (-3712 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931)))) (-1454 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-5 *4 (-787)) (-4 *1 (-931)))) (-1454 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-1073 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-3908 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-703)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-931)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-931)))) (-3171 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787)))) (-3383 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787)))) (-2194 (*1 *2 *1 *1) (-12 (-4 *1 (-931)) (-5 *2 (-377 (-517))))))
+(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-921) (-10 -8 (-15 -3107 ((-3 (-787) "failed") $)) (-15 -2411 ((-3 (-1073 $) "failed") $)) (-15 -3712 ((-3 (-1073 $) "failed") $)) (-15 -1454 ((-3 $ "failed") (-1073 $) (-845) (-787))) (-15 -1454 ((-3 $ "failed") (-1073 $) (-845))) (-15 -1244 ((-583 $) (-1073 $))) (-15 -1244 ((-583 $) (-1073 (-377 (-517))))) (-15 -1244 ((-583 $) (-1073 (-517)))) (-15 -1244 ((-583 $) (-876 $))) (-15 -1244 ((-583 $) (-876 (-377 (-517))))) (-15 -1244 ((-583 $) (-876 (-517)))) (-15 -3908 ($ $ (-703))) (-15 -3908 ($ $)) (-15 -3908 ($ (-377 (-517)))) (-15 -3908 ($ (-517))) (-15 -3171 ($ $ (-787))) (-15 -3383 ($ $ (-787))) (-15 -2194 ((-377 (-517)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 #1=(-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 #1#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-844) . T) ((-921) . T) ((-955 (-377 (-517))) . T) ((-955 (-517)) |has| (-377 (-517)) (-955 (-517))) ((-970 #0#) . T) ((-970 #1#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-1648 (((-2 (|:| |ans| |#2|) (|:| -3302 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -1648 ((-2 (|:| |ans| |#2|) (|:| -3302 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-27) (-400 |#1|))) (T -932))
+((-1648 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1077)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1098) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107)))) (-5 *1 (-932 *8 *4)))))
+(-10 -7 (-15 -1648 ((-2 (|:| |ans| |#2|) (|:| -3302 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3640 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
+(((-933 |#1| |#2|) (-10 -7 (-15 -3640 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-27) (-400 |#1|))) (T -933))
+((-3640 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1077)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1098) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-933 *8 *4)))))
+(-10 -7 (-15 -3640 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2119 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2341 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 57)) (-3523 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 62)))
+(((-934 |#1| |#2|) (-10 -7 (-15 -2341 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3523 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -2119 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-955 (-517))) (-1134 |#1|)) (T -934))
+((-2119 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1134 *6)) (-4 *6 (-13 (-333) (-134) (-955 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-934 *6 *3)))) (-3523 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-934 *4 *5)) (-5 *3 (-377 *5)))) (-2341 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -1701 *6))) (-5 *1 (-934 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2341 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3523 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -2119 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
+((-1275 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-1990 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
+(((-935 |#1| |#2|) (-10 -7 (-15 -1275 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1990 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-955 (-517))) (-1134 |#1|)) (T -935))
+((-1990 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-377 *5)))) (-1275 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1701 *6))) (-5 *1 (-935 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -1275 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1990 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
+((-3070 (((-1 |#1|) (-583 (-2 (|:| -3112 |#1|) (|:| -3546 (-517))))) 37)) (-1610 (((-1 |#1|) (-1008 |#1|)) 45)) (-1829 (((-1 |#1|) (-1158 |#1|) (-1158 (-517)) (-517)) 34)))
+(((-936 |#1|) (-10 -7 (-15 -1610 ((-1 |#1|) (-1008 |#1|))) (-15 -3070 ((-1 |#1|) (-583 (-2 (|:| -3112 |#1|) (|:| -3546 (-517)))))) (-15 -1829 ((-1 |#1|) (-1158 |#1|) (-1158 (-517)) (-517)))) (-1006)) (T -936))
+((-1829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1158 *6)) (-5 *4 (-1158 (-517))) (-5 *5 (-517)) (-4 *6 (-1006)) (-5 *2 (-1 *6)) (-5 *1 (-936 *6)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3112 *4) (|:| -3546 (-517))))) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-936 *4)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-936 *4)))))
+(-10 -7 (-15 -1610 ((-1 |#1|) (-1008 |#1|))) (-15 -3070 ((-1 |#1|) (-583 (-2 (|:| -3112 |#1|) (|:| -3546 (-517)))))) (-15 -1829 ((-1 |#1|) (-1158 |#1|) (-1158 (-517)) (-517))))
+((-3250 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-937 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -937))
+((-3250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-4 *4 (-1134 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-937 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2104 (((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 31) (((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 28)) (-2046 (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 32) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|) 27)) (-1752 (((-583 (-377 (-517))) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) 19)) (-1982 (((-377 (-517)) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 16)))
+(((-938 |#1|) (-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1982 ((-377 (-517)) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1752 ((-583 (-377 (-517))) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))))) (-1134 (-517))) (T -938))
+((-1752 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-938 *4)) (-4 *4 (-1134 (-517))))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-938 *4)) (-4 *4 (-1134 (-517))))) (-2104 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) (-2104 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-377 (-517))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))))
+(-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1982 ((-377 (-517)) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1752 ((-583 (-377 (-517))) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))))
+((-2104 (((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 35) (((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 32)) (-2046 (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 28) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|) 24)))
+(((-939 |#1|) (-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-1134 (-377 (-517)))) (T -939))
+((-2104 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))))) (-2104 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *4)))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *5)) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3287 *4) (|:| -3302 *4)))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *4)))) (-2046 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))) (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))))))
+(-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))))
+((-3367 (((-199) $) 6) (((-349) $) 9)))
+(((-940) (-1189)) (T -940))
NIL
(-13 (-558 (-199)) (-558 (-349)))
(((-558 (-199)) . T) ((-558 (-349)) . T))
-((-1516 (((-583 (-349)) (-875 (-517)) (-349)) 27) (((-583 (-349)) (-875 (-377 (-517))) (-349)) 26)) (-1588 (((-583 (-583 (-349))) (-583 (-875 (-517))) (-583 (-1076)) (-349)) 36)))
-(((-940) (-10 -7 (-15 -1516 ((-583 (-349)) (-875 (-377 (-517))) (-349))) (-15 -1516 ((-583 (-349)) (-875 (-517)) (-349))) (-15 -1588 ((-583 (-583 (-349))) (-583 (-875 (-517))) (-583 (-1076)) (-349))))) (T -940))
-((-1588 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-583 (-1076))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-940)) (-5 *5 (-349)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-940)) (-5 *4 (-349)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-940)) (-5 *4 (-349)))))
-(-10 -7 (-15 -1516 ((-583 (-349)) (-875 (-377 (-517))) (-349))) (-15 -1516 ((-583 (-349)) (-875 (-517)) (-349))) (-15 -1588 ((-583 (-583 (-349))) (-583 (-875 (-517))) (-583 (-1076)) (-349))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 70)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3880 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) 65)) (-1393 (($) NIL T CONST)) (-3522 (((-3 $ "failed") (-1072 $) (-844) (-787)) NIL) (((-3 $ "failed") (-1072 $) (-844)) 49)) (-3228 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-954 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3747 (|has| (-377 (-517)) (-954 (-517))) (|has| |#1| (-954 (-517)))))) (-3390 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-954 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3747 (|has| (-377 (-517)) (-954 (-517))) (|has| |#1| (-954 (-517)))))) (-3148 (($ $ (-787)) 40)) (-1553 (($ $ (-787)) 41)) (-2379 (($ $ $) NIL)) (-4090 (((-377 (-517)) $ $) 18)) (-2560 (((-3 $ "failed") $) 83)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-2988 (((-107) $) 60)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL)) (-1952 (((-107) $) 63)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-4119 (((-3 (-1072 $) "failed") $) 78)) (-3189 (((-3 (-787) "failed") $) 77)) (-1801 (((-3 (-1072 $) "failed") $) 75)) (-3791 (((-3 (-973 $ (-1072 $)) "failed") $) 73)) (-2332 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 84)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2271 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-4099 (((-703)) NIL)) (-2074 (((-107) $ $) NIL)) (-2204 (((-377 (-517)) $ $) 24)) (-3443 (((-583 $) (-1072 $)) 55) (((-583 $) (-1072 (-377 (-517)))) NIL) (((-583 $) (-1072 (-517))) NIL) (((-583 $) (-875 $)) NIL) (((-583 $) (-875 (-377 (-517)))) NIL) (((-583 $) (-875 (-517))) NIL)) (-1795 (($ (-973 $ (-1072 $)) (-787)) 39)) (-2376 (($ $) 19)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3610 (($) 28 T CONST)) (-3619 (($) 34 T CONST)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 71)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 21)) (-1704 (($ $ $) 32)) (-1692 (($ $) 33) (($ $ $) 69)) (-1678 (($ $ $) 104)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
-(((-941 |#1|) (-13 (-930) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -1795 ($ (-973 $ (-1072 $)) (-787))) (-15 -3791 ((-3 (-973 $ (-1072 $)) "failed") $)) (-15 -4090 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-939))) (T -941))
-((-1795 (*1 *1 *2 *3) (-12 (-5 *2 (-973 (-941 *4) (-1072 (-941 *4)))) (-5 *3 (-787)) (-5 *1 (-941 *4)) (-4 *4 (-13 (-777) (-333) (-939))))) (-3791 (*1 *2 *1) (|partial| -12 (-5 *2 (-973 (-941 *3) (-1072 (-941 *3)))) (-5 *1 (-941 *3)) (-4 *3 (-13 (-777) (-333) (-939))))) (-4090 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-941 *3)) (-4 *3 (-13 (-777) (-333) (-939))))))
-(-13 (-930) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -1795 ($ (-973 $ (-1072 $)) (-787))) (-15 -3791 ((-3 (-973 $ (-1072 $)) "failed") $)) (-15 -4090 ((-377 (-517)) $ $))))
-((-3163 (((-2 (|:| -3781 |#2|) (|:| -1407 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-942 |#1| |#2|) (-10 -7 (-15 -3163 (|#2| |#2| |#1|)) (-15 -3163 ((-2 (|:| -3781 |#2|) (|:| -1407 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -942))
-((-3163 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3781 *3) (|:| -1407 (-583 *5)))) (-5 *1 (-942 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-3163 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-942 *3 *2)) (-4 *2 (-593 *3)))))
-(-10 -7 (-15 -3163 (|#2| |#2| |#1|)) (-15 -3163 ((-2 (|:| -3781 |#2|) (|:| -1407 (-583 |#1|))) |#2| (-583 |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1970 ((|#1| $ |#1|) 14)) (-2445 ((|#1| $ |#1|) 12)) (-3287 (($ |#1|) 10)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2609 ((|#1| $) 11)) (-3242 ((|#1| $) 13)) (-2271 (((-787) $) 21 (|has| |#1| (-1005)))) (-1584 (((-107) $ $) 9)))
-(((-943 |#1|) (-13 (-1111) (-10 -8 (-15 -3287 ($ |#1|)) (-15 -2609 (|#1| $)) (-15 -2445 (|#1| $ |#1|)) (-15 -3242 (|#1| $)) (-15 -1970 (|#1| $ |#1|)) (-15 -1584 ((-107) $ $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|))) (-1111)) (T -943))
-((-3287 (*1 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))) (-2609 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))) (-2445 (*1 *2 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))) (-3242 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))) (-1970 (*1 *2 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))) (-1584 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-943 *3)) (-4 *3 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -3287 ($ |#1|)) (-15 -2609 (|#1| $)) (-15 -2445 (|#1| $ |#1|)) (-15 -3242 (|#1| $)) (-15 -1970 (|#1| $ |#1|)) (-15 -1584 ((-107) $ $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2265 (((-583 $) (-583 |#4|)) 105) (((-583 $) (-583 |#4|) (-107)) 106) (((-583 $) (-583 |#4|) (-107) (-107)) 104) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 107)) (-2097 (((-583 |#3|) $) NIL)) (-2687 (((-107) $) NIL)) (-3389 (((-107) $) NIL (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3939 ((|#4| |#4| $) NIL)) (-1224 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| $) 99)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2325 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 54)) (-1393 (($) NIL T CONST)) (-3338 (((-107) $) 26 (|has| |#1| (-509)))) (-1605 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2893 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2501 (((-107) $) NIL (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2567 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3390 (($ (-583 |#4|)) NIL)) (-2439 (((-3 $ "failed") $) 39)) (-3777 ((|#4| |#4| $) 57)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-2639 ((|#4| |#4| $) NIL)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) NIL)) (-2127 (((-107) |#4| $) NIL)) (-2957 (((-107) |#4| $) NIL)) (-1401 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3360 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 119)) (-1534 (((-583 |#4|) $) 16 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3024 ((|#3| $) 33)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#4|) $) 17 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-2746 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 21)) (-2241 (((-583 |#3|) $) NIL)) (-2621 (((-107) |#3| $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2496 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-2350 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| |#4| $) 97)) (-1446 (((-3 |#4| "failed") $) 37)) (-2305 (((-583 $) |#4| $) 80)) (-3364 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |#4| $) 90) (((-107) |#4| $) 52)) (-2259 (((-583 $) |#4| $) 102) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 103) (((-583 $) |#4| (-583 $)) NIL)) (-1815 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 114)) (-1493 (($ |#4| $) 70) (($ (-583 |#4|) $) 71) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 67)) (-3568 (((-583 |#4|) $) NIL)) (-1732 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3998 ((|#4| |#4| $) NIL)) (-2958 (((-107) $ $) NIL)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-3 |#4| "failed") $) 35)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3439 (((-3 $ "failed") $ |#4|) 48)) (-2671 (($ $ |#4|) NIL) (((-583 $) |#4| $) 82) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 77)) (-3644 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 15)) (-2452 (($) 13)) (-3647 (((-703) $) NIL)) (-4137 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) 12)) (-3359 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 20)) (-4028 (($ $ |#3|) 42)) (-1409 (($ $ |#3|) 44)) (-1888 (($ $) NIL)) (-4159 (($ $ |#3|) NIL)) (-2271 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3057 (((-703) $) NIL (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1856 (((-583 $) |#4| $) 79) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3602 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) NIL)) (-3302 (((-107) |#4| $) NIL)) (-1999 (((-107) |#3| $) 53)) (-1584 (((-107) $ $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-944 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1493 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -1815 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3360 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|)) (T -944))
-((-1493 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-944 *5 *6 *7 *3))) (-5 *1 (-944 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-2265 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8)))) (-2265 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8)))) (-1815 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8)))) (-3360 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-944 *5 *6 *7 *8))))) (-5 *1 (-944 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1493 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -1815 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3360 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
-((-3238 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2933 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844)) 51) (((-623 |#1|) (-623 |#1|) (-844)) 50)) (-3537 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-828 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-828 (-517)) (-517)) 62)) (-2511 (((-623 (-875 |#1|)) (-703)) 80)) (-3372 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844)) 36 (|has| |#1| (-6 (-4194 "*")))) (((-623 |#1|) (-623 |#1|) (-844)) 34 (|has| |#1| (-6 (-4194 "*"))))))
-(((-945 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4194 "*"))) (-15 -3372 ((-623 |#1|) (-623 |#1|) (-844))) |%noBranch|) (IF (|has| |#1| (-6 (-4194 "*"))) (-15 -3372 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) |%noBranch|) (-15 -2511 ((-623 (-875 |#1|)) (-703))) (-15 -2933 ((-623 |#1|) (-623 |#1|) (-844))) (-15 -2933 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) (-15 -3238 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3238 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3238 ((-623 |#1|) (-623 |#1|))) (-15 -3238 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3537 ((-623 (-517)) (-828 (-517)) (-517))) (-15 -3537 ((-623 (-517)) (-583 (-517)))) (-15 -3537 ((-583 (-623 (-517))) (-583 (-828 (-517))) (-517))) (-15 -3537 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-963)) (T -945))
-((-3537 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-945 *4)) (-4 *4 (-963)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-828 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-945 *5)) (-4 *5 (-963)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-945 *4)) (-4 *4 (-963)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-828 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-945 *5)) (-4 *5 (-963)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-963)) (-5 *1 (-945 *3)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-945 *3)))) (-3238 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-963)) (-5 *1 (-945 *3)))) (-3238 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-945 *3)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844)) (-4 *4 (-963)) (-5 *1 (-945 *4)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (-4 *4 (-963)) (-5 *1 (-945 *4)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-875 *4))) (-5 *1 (-945 *4)) (-4 *4 (-963)))) (-3372 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844)) (|has| *4 (-6 (-4194 "*"))) (-4 *4 (-963)) (-5 *1 (-945 *4)))) (-3372 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (|has| *4 (-6 (-4194 "*"))) (-4 *4 (-963)) (-5 *1 (-945 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4194 "*"))) (-15 -3372 ((-623 |#1|) (-623 |#1|) (-844))) |%noBranch|) (IF (|has| |#1| (-6 (-4194 "*"))) (-15 -3372 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) |%noBranch|) (-15 -2511 ((-623 (-875 |#1|)) (-703))) (-15 -2933 ((-623 |#1|) (-623 |#1|) (-844))) (-15 -2933 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) (-15 -3238 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3238 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3238 ((-623 |#1|) (-623 |#1|))) (-15 -3238 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3537 ((-623 (-517)) (-828 (-517)) (-517))) (-15 -3537 ((-623 (-517)) (-583 (-517)))) (-15 -3537 ((-583 (-623 (-517))) (-583 (-828 (-517))) (-517))) (-15 -3537 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
-((-3407 (((-623 |#1|) (-583 (-623 |#1|)) (-1157 |#1|)) 50 (|has| |#1| (-278)))) (-1378 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1157 (-1157 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1157 |#1|)) 71 (|has| |#1| (-333)))) (-1462 (((-1157 |#1|) (-583 (-1157 |#1|)) (-517)) 75 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-2932 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-844)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 77 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 76 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3185 (((-107) (-583 (-623 |#1|))) 69 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 68 (|has| |#1| (-333)))) (-2629 (((-1157 (-1157 |#1|)) (-583 (-623 |#1|)) (-1157 |#1|)) 48 (|has| |#1| (-278)))) (-3026 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 33)) (-2367 (((-623 |#1|) (-1157 (-1157 |#1|))) 30)) (-1389 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 64 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 63 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 62 (|has| |#1| (-333)))))
-(((-946 |#1|) (-10 -7 (-15 -2367 ((-623 |#1|) (-1157 (-1157 |#1|)))) (-15 -3026 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -2629 ((-1157 (-1157 |#1|)) (-583 (-623 |#1|)) (-1157 |#1|))) (-15 -3407 ((-623 |#1|) (-583 (-623 |#1|)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1389 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -1389 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1389 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3185 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3185 ((-107) (-583 (-623 |#1|)))) (-15 -1378 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1157 |#1|))) (-15 -1378 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1157 (-1157 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-844))) (-15 -1462 ((-1157 |#1|) (-583 (-1157 |#1|)) (-517)))) |%noBranch|) |%noBranch|)) (-963)) (T -946))
-((-1462 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1157 *5))) (-5 *4 (-517)) (-5 *2 (-1157 *5)) (-5 *1 (-946 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-963)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-963)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5)) (-5 *3 (-583 (-623 *5))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-963)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5)) (-5 *3 (-583 (-623 *5))))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-963)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-946 *4)) (-5 *3 (-583 (-623 *4))))) (-2932 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-963)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-946 *6)) (-5 *3 (-583 (-623 *6))))) (-1378 (*1 *2 *3 *4) (-12 (-5 *4 (-1157 (-1157 *5))) (-4 *5 (-333)) (-4 *5 (-963)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5)) (-5 *3 (-583 (-623 *5))))) (-1378 (*1 *2 *3 *4) (-12 (-5 *4 (-1157 *5)) (-4 *5 (-333)) (-4 *5 (-963)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5)) (-5 *3 (-583 (-623 *5))))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-963)) (-5 *2 (-107)) (-5 *1 (-946 *4)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-963)) (-5 *2 (-107)) (-5 *1 (-946 *5)))) (-1389 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-946 *5)) (-4 *5 (-333)) (-4 *5 (-963)))) (-1389 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-946 *4)) (-4 *4 (-333)) (-4 *4 (-963)))) (-1389 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-946 *6)) (-4 *6 (-333)) (-4 *6 (-963)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1157 *5)) (-4 *5 (-278)) (-4 *5 (-963)) (-5 *2 (-623 *5)) (-5 *1 (-946 *5)))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-963)) (-5 *2 (-1157 (-1157 *5))) (-5 *1 (-946 *5)) (-5 *4 (-1157 *5)))) (-3026 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-963)) (-5 *1 (-946 *4)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-4 *4 (-963)) (-5 *2 (-623 *4)) (-5 *1 (-946 *4)))))
-(-10 -7 (-15 -2367 ((-623 |#1|) (-1157 (-1157 |#1|)))) (-15 -3026 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -2629 ((-1157 (-1157 |#1|)) (-583 (-623 |#1|)) (-1157 |#1|))) (-15 -3407 ((-623 |#1|) (-583 (-623 |#1|)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1389 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -1389 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1389 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3185 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3185 ((-107) (-583 (-623 |#1|)))) (-15 -1378 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1157 |#1|))) (-15 -1378 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1157 (-1157 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2932 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-844))) (-15 -1462 ((-1157 |#1|) (-583 (-1157 |#1|)) (-517)))) |%noBranch|) |%noBranch|))
-((-3992 ((|#1| (-844) |#1|) 9)))
-(((-947 |#1|) (-10 -7 (-15 -3992 (|#1| (-844) |#1|))) (-13 (-1005) (-10 -8 (-15 -1678 ($ $ $))))) (T -947))
-((-3992 (*1 *2 *3 *2) (-12 (-5 *3 (-844)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1005) (-10 -8 (-15 -1678 ($ $ $))))))))
-(-10 -7 (-15 -3992 (|#1| (-844) |#1|)))
-((-2706 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-875 (-517))))) 58)) (-3076 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-875 (-517))))) 48)) (-1634 (((-583 (-286 (-517))) (-623 (-377 (-875 (-517))))) 41)) (-3905 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-875 (-517))))) 68)) (-3759 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-3323 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-3812 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-875 (-517))))) 65)))
-(((-948) (-10 -7 (-15 -2706 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-875 (-517)))))) (-15 -3076 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-875 (-517)))))) (-15 -1634 ((-583 (-286 (-517))) (-623 (-377 (-875 (-517)))))) (-15 -3812 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-875 (-517)))))) (-15 -3759 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -3323 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3905 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-875 (-517)))))))) (T -948))
-((-3905 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-948)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-948)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-948)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-948)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-948)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-948)) (-5 *3 (-286 (-517))))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-948)))))
-(-10 -7 (-15 -2706 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-875 (-517)))))) (-15 -3076 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-875 (-517)))))) (-15 -1634 ((-583 (-286 (-517))) (-623 (-377 (-875 (-517)))))) (-15 -3812 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-875 (-517)))))) (-15 -3759 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -3323 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3905 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-875 (-517)))))))
-((-2487 ((|#1| |#1| (-844)) 9)))
-(((-949 |#1|) (-10 -7 (-15 -2487 (|#1| |#1| (-844)))) (-13 (-1005) (-10 -8 (-15 * ($ $ $))))) (T -949))
-((-2487 (*1 *2 *2 *3) (-12 (-5 *3 (-844)) (-5 *1 (-949 *2)) (-4 *2 (-13 (-1005) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2487 (|#1| |#1| (-844))))
-((-2271 ((|#1| (-282)) 11) (((-1162) |#1|) 9)))
-(((-950 |#1|) (-10 -7 (-15 -2271 ((-1162) |#1|)) (-15 -2271 (|#1| (-282)))) (-1111)) (T -950))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-950 *2)) (-4 *2 (-1111)))) (-2271 (*1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *1 (-950 *3)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2271 ((-1162) |#1|)) (-15 -2271 (|#1| (-282))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-1522 (($ |#4|) 25)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-1509 ((|#4| $) 27)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4099 (((-703)) 43)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 21 T CONST)) (-3619 (($) 23 T CONST)) (-1584 (((-107) $ $) 40)) (-1692 (($ $) 31) (($ $ $) NIL)) (-1678 (($ $ $) 29)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-951 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -1522 ($ |#4|)) (-15 -2271 ($ |#4|)) (-15 -1509 (|#4| $)))) (-333) (-725) (-779) (-872 |#1| |#2| |#3|) (-583 |#4|)) (T -951))
-((-1522 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5)) (-14 *6 (-583 *2)))) (-1509 (*1 *2 *1) (-12 (-4 *2 (-872 *3 *4 *5)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
-(-13 (-156) (-37 |#1|) (-10 -8 (-15 -1522 ($ |#4|)) (-15 -2271 ($ |#4|)) (-15 -1509 (|#4| $))))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-2034 (((-1162) $ (-1076) (-1076)) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-3399 (((-107) (-107)) 39)) (-4092 (((-107) (-107)) 38)) (-2445 (((-51) $ (-1076) (-51)) NIL)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 (-51) "failed") (-1076) $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-2457 (($ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-3 (-51) "failed") (-1076) $) NIL)) (-1423 (($ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-2759 (((-51) $ (-1076) (-51)) NIL (|has| $ (-6 -4193)))) (-2566 (((-51) $ (-1076)) NIL)) (-1534 (((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-583 (-51)) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-1076) $) NIL (|has| (-1076) (-779)))) (-1903 (((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-583 (-51)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005))))) (-1989 (((-1076) $) NIL (|has| (-1076) (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4193))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-1882 (((-583 (-1076)) $) 34)) (-3577 (((-107) (-1076) $) NIL)) (-1803 (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL)) (-3241 (($ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL)) (-2817 (((-583 (-1076)) $) NIL)) (-3130 (((-107) (-1076) $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-2429 (((-51) $) NIL (|has| (-1076) (-779)))) (-1528 (((-3 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) "failed") (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL)) (-2846 (($ $ (-51)) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-265 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005))))) (-2891 (((-583 (-51)) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 (((-51) $ (-1076)) 35) (((-51) $ (-1076) (-51)) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-2271 (((-787) $) 37 (-3747 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-952) (-13 (-1088 (-1076) (-51)) (-10 -7 (-15 -3399 ((-107) (-107))) (-15 -4092 ((-107) (-107))) (-6 -4192)))) (T -952))
-((-3399 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-952)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-952)))))
-(-13 (-1088 (-1076) (-51)) (-10 -7 (-15 -3399 ((-107) (-107))) (-15 -4092 ((-107) (-107))) (-6 -4192)))
-((-3390 ((|#2| $) 10)))
-(((-953 |#1| |#2|) (-10 -8 (-15 -3390 (|#2| |#1|))) (-954 |#2|) (-1111)) (T -953))
-NIL
-(-10 -8 (-15 -3390 (|#2| |#1|)))
-((-3228 (((-3 |#1| "failed") $) 7)) (-3390 ((|#1| $) 8)) (-2271 (($ |#1|) 6)))
-(((-954 |#1|) (-1188) (-1111)) (T -954))
-((-3390 (*1 *2 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1111)))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1111)))) (-2271 (*1 *1 *2) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1111)))))
-(-13 (-10 -8 (-15 -2271 ($ |t#1|)) (-15 -3228 ((-3 |t#1| "failed") $)) (-15 -3390 (|t#1| $))))
-((-3990 (((-583 (-583 (-265 (-377 (-875 |#2|))))) (-583 (-875 |#2|)) (-583 (-1076))) 35)))
-(((-955 |#1| |#2|) (-10 -7 (-15 -3990 ((-583 (-583 (-265 (-377 (-875 |#2|))))) (-583 (-875 |#2|)) (-583 (-1076))))) (-509) (-13 (-509) (-954 |#1|))) (T -955))
-((-3990 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1076))) (-4 *6 (-13 (-509) (-954 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *6)))))) (-5 *1 (-955 *5 *6)))))
-(-10 -7 (-15 -3990 ((-583 (-583 (-265 (-377 (-875 |#2|))))) (-583 (-875 |#2|)) (-583 (-1076)))))
-((-1230 (((-349)) 15)) (-1342 (((-1 (-349)) (-349) (-349)) 20)) (-1713 (((-1 (-349)) (-703)) 43)) (-3160 (((-349)) 34)) (-1387 (((-1 (-349)) (-349) (-349)) 35)) (-3311 (((-349)) 26)) (-3804 (((-1 (-349)) (-349)) 27)) (-2162 (((-349) (-703)) 38)) (-4121 (((-1 (-349)) (-703)) 39)) (-1725 (((-1 (-349)) (-703) (-703)) 42)) (-2902 (((-1 (-349)) (-703) (-703)) 40)))
-(((-956) (-10 -7 (-15 -1230 ((-349))) (-15 -3160 ((-349))) (-15 -3311 ((-349))) (-15 -2162 ((-349) (-703))) (-15 -1342 ((-1 (-349)) (-349) (-349))) (-15 -1387 ((-1 (-349)) (-349) (-349))) (-15 -3804 ((-1 (-349)) (-349))) (-15 -4121 ((-1 (-349)) (-703))) (-15 -2902 ((-1 (-349)) (-703) (-703))) (-15 -1725 ((-1 (-349)) (-703) (-703))) (-15 -1713 ((-1 (-349)) (-703))))) (T -956))
-((-1713 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))) (-1725 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))) (-2902 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))) (-3804 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-956)) (-5 *3 (-349)))) (-1387 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-956)) (-5 *3 (-349)))) (-1342 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-956)) (-5 *3 (-349)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-956)))) (-3311 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-956)))) (-3160 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-956)))) (-1230 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-956)))))
-(-10 -7 (-15 -1230 ((-349))) (-15 -3160 ((-349))) (-15 -3311 ((-349))) (-15 -2162 ((-349) (-703))) (-15 -1342 ((-1 (-349)) (-349) (-349))) (-15 -1387 ((-1 (-349)) (-349) (-349))) (-15 -3804 ((-1 (-349)) (-349))) (-15 -4121 ((-1 (-349)) (-703))) (-15 -2902 ((-1 (-349)) (-703) (-703))) (-15 -1725 ((-1 (-349)) (-703) (-703))) (-15 -1713 ((-1 (-349)) (-703))))
-((-3868 (((-388 |#1|) |#1|) 31)))
-(((-957 |#1|) (-10 -7 (-15 -3868 ((-388 |#1|) |#1|))) (-1133 (-377 (-875 (-517))))) (T -957))
-((-3868 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-957 *3)) (-4 *3 (-1133 (-377 (-875 (-517))))))))
-(-10 -7 (-15 -3868 ((-388 |#1|) |#1|)))
-((-1646 (((-377 (-388 (-875 |#1|))) (-377 (-875 |#1|))) 14)))
-(((-958 |#1|) (-10 -7 (-15 -1646 ((-377 (-388 (-875 |#1|))) (-377 (-875 |#1|))))) (-278)) (T -958))
-((-1646 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-875 *4)))) (-5 *1 (-958 *4)))))
-(-10 -7 (-15 -1646 ((-377 (-388 (-875 |#1|))) (-377 (-875 |#1|)))))
-((-2097 (((-583 (-1076)) (-377 (-875 |#1|))) 15)) (-1440 (((-377 (-1072 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1076)) 22)) (-2086 (((-377 (-875 |#1|)) (-377 (-1072 (-377 (-875 |#1|)))) (-1076)) 24)) (-2297 (((-3 (-1076) "failed") (-377 (-875 |#1|))) 18)) (-3524 (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-265 (-377 (-875 |#1|))))) 29) (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|)))) 31) (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-1076)) (-583 (-377 (-875 |#1|)))) 26) (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|))) 27)) (-2271 (((-377 (-875 |#1|)) |#1|) 11)))
-(((-959 |#1|) (-10 -7 (-15 -2097 ((-583 (-1076)) (-377 (-875 |#1|)))) (-15 -2297 ((-3 (-1076) "failed") (-377 (-875 |#1|)))) (-15 -1440 ((-377 (-1072 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1076))) (-15 -2086 ((-377 (-875 |#1|)) (-377 (-1072 (-377 (-875 |#1|)))) (-1076))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|)))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-1076)) (-583 (-377 (-875 |#1|))))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -2271 ((-377 (-875 |#1|)) |#1|))) (-509)) (T -959))
-((-2271 (*1 *2 *3) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-959 *3)) (-4 *3 (-509)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-875 *4))))) (-5 *2 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *1 (-959 *4)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-875 *4)))) (-5 *2 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *1 (-959 *4)))) (-3524 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1076))) (-5 *4 (-583 (-377 (-875 *5)))) (-5 *2 (-377 (-875 *5))) (-4 *5 (-509)) (-5 *1 (-959 *5)))) (-3524 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1076)) (-4 *4 (-509)) (-5 *1 (-959 *4)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1072 (-377 (-875 *5))))) (-5 *4 (-1076)) (-5 *2 (-377 (-875 *5))) (-5 *1 (-959 *5)) (-4 *5 (-509)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-509)) (-5 *2 (-377 (-1072 (-377 (-875 *5))))) (-5 *1 (-959 *5)) (-5 *3 (-377 (-875 *5))))) (-2297 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-1076)) (-5 *1 (-959 *4)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1076))) (-5 *1 (-959 *4)))))
-(-10 -7 (-15 -2097 ((-583 (-1076)) (-377 (-875 |#1|)))) (-15 -2297 ((-3 (-1076) "failed") (-377 (-875 |#1|)))) (-15 -1440 ((-377 (-1072 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1076))) (-15 -2086 ((-377 (-875 |#1|)) (-377 (-1072 (-377 (-875 |#1|)))) (-1076))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|)))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-1076)) (-583 (-377 (-875 |#1|))))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3524 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -2271 ((-377 (-875 |#1|)) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2265 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-2097 (((-583 (-789 |#2|)) $) NIL)) (-2687 (((-107) $) NIL)) (-3389 (((-107) $) NIL (|has| |#1| (-509)))) (-3801 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3939 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1224 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3834 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2325 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-1393 (($) NIL T CONST)) (-3338 (((-107) $) NIL (|has| |#1| (-509)))) (-1605 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2893 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2501 (((-107) $) NIL (|has| |#1| (-509)))) (-2230 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2567 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-2821 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3390 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2439 (((-3 $ "failed") $) NIL)) (-3777 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-712 |#1| (-789 |#2|)) (-1005))))) (-1423 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-712 |#1| (-789 |#2|)) (-1005)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3244 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2639 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1522 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-712 |#1| (-789 |#2|)) (-1005)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4192))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4130 (((-2 (|:| -1724 (-583 (-712 |#1| (-789 |#2|)))) (|:| -3676 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-2127 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2957 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1401 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1534 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1253 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3024 (((-789 |#2|) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-712 |#1| (-789 |#2|)) (-1005))))) (-2746 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-2241 (((-583 (-789 |#2|)) $) NIL)) (-2621 (((-107) (-789 |#2|) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2496 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2350 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3834 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1446 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2305 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-3364 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2259 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-1493 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3568 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1732 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3998 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2958 (((-107) $ $) NIL)) (-2707 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-1944 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3252 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-1528 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-3439 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-2671 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3644 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1005)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1005)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1005)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-3647 (((-703) $) NIL)) (-4137 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-712 |#1| (-789 |#2|)) (-1005)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-4028 (($ $ (-789 |#2|)) NIL)) (-1409 (($ $ (-789 |#2|)) NIL)) (-1888 (($ $) NIL)) (-4159 (($ $ (-789 |#2|)) NIL)) (-2271 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3057 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4135 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-1856 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3602 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3943 (((-583 (-789 |#2|)) $) NIL)) (-3302 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1999 (((-107) (-789 |#2|) $) NIL)) (-1584 (((-107) $ $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-960 |#1| |#2|) (-13 (-982 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -2265 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1076))) (T -960))
-((-2265 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-960 *5 *6)))))
-(-13 (-982 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -2265 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
-((-1342 (((-1 (-517)) (-1000 (-517))) 33)) (-4144 (((-517) (-517) (-517) (-517) (-517)) 30)) (-1276 (((-1 (-517)) |RationalNumber|) NIL)) (-1830 (((-1 (-517)) |RationalNumber|) NIL)) (-1917 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
-(((-961) (-10 -7 (-15 -1342 ((-1 (-517)) (-1000 (-517)))) (-15 -1917 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1276 ((-1 (-517)) |RationalNumber|)) (-15 -1830 ((-1 (-517)) |RationalNumber|)) (-15 -4144 ((-517) (-517) (-517) (-517) (-517))))) (T -961))
-((-4144 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-961)))) (-1830 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-961)))) (-1276 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-961)))) (-1917 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-961)) (-5 *3 (-517)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1000 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-961)))))
-(-10 -7 (-15 -1342 ((-1 (-517)) (-1000 (-517)))) (-15 -1917 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1276 ((-1 (-517)) |RationalNumber|)) (-15 -1830 ((-1 (-517)) |RationalNumber|)) (-15 -4144 ((-517) (-517) (-517) (-517) (-517))))
-((-2271 (((-787) $) NIL) (($ (-517)) 10)))
-(((-962 |#1|) (-10 -8 (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-963)) (T -962))
-NIL
-(-10 -8 (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-963) (-1188)) (T -963))
-((-4099 (*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-703)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-963)))))
-(-13 (-970) (-659) (-585 $) (-10 -8 (-15 -4099 ((-703))) (-15 -2271 ($ (-517))) (-6 -4189)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1326 (((-377 (-875 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
-(((-964 |#1| |#2|) (-10 -7 (-15 -1326 ((-377 (-875 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1076) (-333)) (T -964))
-((-1326 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-875 *6))) (-5 *1 (-964 *5 *6)) (-14 *5 (-1076)))))
-(-10 -7 (-15 -1326 ((-377 (-875 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
-((-3933 (((-107) $) 28)) (-1223 (((-107) $) 16)) (-1421 (((-703) $) 13)) (-1435 (((-703) $) 14)) (-1832 (((-107) $) 26)) (-2909 (((-107) $) 30)))
-(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1435 ((-703) |#1|)) (-15 -1421 ((-703) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -3933 ((-107) |#1|)) (-15 -1832 ((-107) |#1|)) (-15 -1223 ((-107) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-963) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -965))
-NIL
-(-10 -8 (-15 -1435 ((-703) |#1|)) (-15 -1421 ((-703) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -3933 ((-107) |#1|)) (-15 -1832 ((-107) |#1|)) (-15 -1223 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3933 (((-107) $) 51)) (-2798 (((-3 $ "failed") $ $) 19)) (-1223 (((-107) $) 53)) (-1851 (((-107) $ (-703)) 61)) (-1393 (($) 17 T CONST)) (-1382 (($ $) 34 (|has| |#3| (-278)))) (-3476 ((|#4| $ (-517)) 39)) (-3737 (((-703) $) 33 (|has| |#3| (-509)))) (-2566 ((|#3| $ (-517) (-517)) 41)) (-1534 (((-583 |#3|) $) 68 (|has| $ (-6 -4192)))) (-2720 (((-703) $) 32 (|has| |#3| (-509)))) (-2620 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1421 (((-703) $) 45)) (-1435 (((-703) $) 44)) (-2497 (((-107) $ (-703)) 60)) (-1683 (((-517) $) 49)) (-3400 (((-517) $) 47)) (-1903 (((-583 |#3|) $) 69 (|has| $ (-6 -4192)))) (-3925 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1005)) (|has| $ (-6 -4192))))) (-1207 (((-517) $) 48)) (-3797 (((-517) $) 46)) (-2371 (($ (-583 (-583 |#3|))) 54)) (-2746 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3704 (((-583 (-583 |#3|)) $) 43)) (-1320 (((-107) $ (-703)) 59)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-3644 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))) (-2727 (((-107) $ $) 55)) (-2394 (((-107) $) 58)) (-2452 (($) 57)) (-2609 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1832 (((-107) $) 52)) (-4137 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4192)))) (-2462 (($ $) 56)) (-3259 ((|#5| $ (-517)) 38)) (-2271 (((-787) $) 11)) (-3602 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4192)))) (-2909 (((-107) $) 50)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3535 (((-703) $) 62 (|has| $ (-6 -4192)))))
-(((-966 |#1| |#2| |#3| |#4| |#5|) (-1188) (-703) (-703) (-963) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -966))
-((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-963)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1223 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-2609 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-963)))) (-2566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-963)))) (-2609 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-963)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-3476 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-963)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-963)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-3310 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2329 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1704 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-1382 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
-(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4192) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |%noBranch|) (-15 -2371 ($ (-583 (-583 |t#3|)))) (-15 -1223 ((-107) $)) (-15 -1832 ((-107) $)) (-15 -3933 ((-107) $)) (-15 -2909 ((-107) $)) (-15 -1683 ((-517) $)) (-15 -1207 ((-517) $)) (-15 -3400 ((-517) $)) (-15 -3797 ((-517) $)) (-15 -1421 ((-703) $)) (-15 -1435 ((-703) $)) (-15 -3704 ((-583 (-583 |t#3|)) $)) (-15 -2609 (|t#3| $ (-517) (-517))) (-15 -2566 (|t#3| $ (-517) (-517))) (-15 -2609 (|t#3| $ (-517) (-517) |t#3|)) (-15 -3476 (|t#4| $ (-517))) (-15 -3259 (|t#5| $ (-517))) (-15 -3310 ($ (-1 |t#3| |t#3|) $)) (-15 -3310 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2329 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-333)) (-15 -1704 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-278)) (-15 -1382 ($ $)) |%noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -3737 ((-703) $)) (-15 -2720 ((-703) $)) (-15 -2620 ((-583 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-969 |#3|) . T) ((-1005) . T) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3933 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1223 (((-107) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-1393 (($) NIL T CONST)) (-1382 (($ $) 40 (|has| |#3| (-278)))) (-3476 (((-214 |#2| |#3|) $ (-517)) 29)) (-1296 (($ (-623 |#3|)) 38)) (-3737 (((-703) $) 42 (|has| |#3| (-509)))) (-2566 ((|#3| $ (-517) (-517)) NIL)) (-1534 (((-583 |#3|) $) NIL (|has| $ (-6 -4192)))) (-2720 (((-703) $) 44 (|has| |#3| (-509)))) (-2620 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1421 (((-703) $) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-1683 (((-517) $) NIL)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#3|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-1207 (((-517) $) NIL)) (-3797 (((-517) $) NIL)) (-2371 (($ (-583 (-583 |#3|))) 24)) (-2746 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3704 (((-583 (-583 |#3|)) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-3644 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-1537 (((-125)) 51 (|has| |#3| (-333)))) (-1832 (((-107) $) NIL)) (-4137 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-3259 (((-214 |#1| |#3|) $ (-517)) 33)) (-2271 (((-787) $) 16) (((-623 |#3|) $) 35)) (-3602 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-2909 (((-107) $) NIL)) (-3610 (($) 13 T CONST)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1164 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -1296 ($ (-623 |#3|))) (-15 -2271 ((-623 |#3|) $)))) (-703) (-703) (-963)) (T -967))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-963)))) (-1296 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-963)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
-(-13 (-966 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1164 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -1296 ($ (-623 |#3|))) (-15 -2271 ((-623 |#3|) $))))
-((-1522 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3310 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3310 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1522 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-963) (-212 |#2| |#3|) (-212 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-963) (-212 |#2| |#7|) (-212 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968))
-((-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
-(-10 -7 (-15 -3310 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1522 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
-(((-969 |#1|) (-1188) (-970)) (T -969))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-969 *2)) (-4 *2 (-970)))))
+((-1993 (((-583 (-349)) (-876 (-517)) (-349)) 27) (((-583 (-349)) (-876 (-377 (-517))) (-349)) 26)) (-3695 (((-583 (-583 (-349))) (-583 (-876 (-517))) (-583 (-1077)) (-349)) 36)))
+(((-941) (-10 -7 (-15 -1993 ((-583 (-349)) (-876 (-377 (-517))) (-349))) (-15 -1993 ((-583 (-349)) (-876 (-517)) (-349))) (-15 -3695 ((-583 (-583 (-349))) (-583 (-876 (-517))) (-583 (-1077)) (-349))))) (T -941))
+((-3695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-941)) (-5 *5 (-349)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-941)) (-5 *4 (-349)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-941)) (-5 *4 (-349)))))
+(-10 -7 (-15 -1993 ((-583 (-349)) (-876 (-377 (-517))) (-349))) (-15 -1993 ((-583 (-349)) (-876 (-517)) (-349))) (-15 -3695 ((-583 (-583 (-349))) (-583 (-876 (-517))) (-583 (-1077)) (-349))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 70)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) 65)) (-3038 (($) NIL T CONST)) (-1454 (((-3 $ "failed") (-1073 $) (-845) (-787)) NIL) (((-3 $ "failed") (-1073 $) (-845)) 49)) (-3220 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3786 (|has| (-377 (-517)) (-955 (-517))) (|has| |#1| (-955 (-517)))))) (-3402 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3786 (|has| (-377 (-517)) (-955 (-517))) (|has| |#1| (-955 (-517)))))) (-3171 (($ $ (-787)) 40)) (-3383 (($ $ (-787)) 41)) (-2383 (($ $ $) NIL)) (-2255 (((-377 (-517)) $ $) 18)) (-3550 (((-3 $ "failed") $) 83)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) 60)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-2321 (((-107) $) 63)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3712 (((-3 (-1073 $) "failed") $) 78)) (-3107 (((-3 (-787) "failed") $) 77)) (-2411 (((-3 (-1073 $) "failed") $) 75)) (-3816 (((-3 (-974 $ (-1073 $)) "failed") $) 73)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 84)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2262 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ $) 24)) (-1244 (((-583 $) (-1073 $)) 55) (((-583 $) (-1073 (-377 (-517)))) NIL) (((-583 $) (-1073 (-517))) NIL) (((-583 $) (-876 $)) NIL) (((-583 $) (-876 (-377 (-517)))) NIL) (((-583 $) (-876 (-517))) NIL)) (-2763 (($ (-974 $ (-1073 $)) (-787)) 39)) (-2829 (($ $) 19)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 28 T CONST)) (-3675 (($) 34 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 71)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 21)) (-1692 (($ $ $) 32)) (-1680 (($ $) 33) (($ $ $) 69)) (-1666 (($ $ $) 104)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
+(((-942 |#1|) (-13 (-931) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2763 ($ (-974 $ (-1073 $)) (-787))) (-15 -3816 ((-3 (-974 $ (-1073 $)) "failed") $)) (-15 -2255 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-940))) (T -942))
+((-2763 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-942 *4) (-1073 (-942 *4)))) (-5 *3 (-787)) (-5 *1 (-942 *4)) (-4 *4 (-13 (-777) (-333) (-940))))) (-3816 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-942 *3) (-1073 (-942 *3)))) (-5 *1 (-942 *3)) (-4 *3 (-13 (-777) (-333) (-940))))) (-2255 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-942 *3)) (-4 *3 (-13 (-777) (-333) (-940))))))
+(-13 (-931) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2763 ($ (-974 $ (-1073 $)) (-787))) (-15 -3816 ((-3 (-974 $ (-1073 $)) "failed") $)) (-15 -2255 ((-377 (-517)) $ $))))
+((-2214 (((-2 (|:| -3817 |#2|) (|:| -1395 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-943 |#1| |#2|) (-10 -7 (-15 -2214 (|#2| |#2| |#1|)) (-15 -2214 ((-2 (|:| -3817 |#2|) (|:| -1395 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -943))
+((-2214 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3817 *3) (|:| -1395 (-583 *5)))) (-5 *1 (-943 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-2214 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-943 *3 *2)) (-4 *2 (-593 *3)))))
+(-10 -7 (-15 -2214 (|#2| |#2| |#1|)) (-15 -2214 ((-2 (|:| -3817 |#2|) (|:| -1395 (-583 |#1|))) |#2| (-583 |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2717 ((|#1| $ |#1|) 14)) (-2436 ((|#1| $ |#1|) 12)) (-4151 (($ |#1|) 10)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2612 ((|#1| $) 11)) (-3494 ((|#1| $) 13)) (-2262 (((-787) $) 21 (|has| |#1| (-1006)))) (-1572 (((-107) $ $) 9)))
+(((-944 |#1|) (-13 (-1112) (-10 -8 (-15 -4151 ($ |#1|)) (-15 -2612 (|#1| $)) (-15 -2436 (|#1| $ |#1|)) (-15 -3494 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1112)) (T -944))
+((-4151 (*1 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-3494 (*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-2717 (*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-944 *3)) (-4 *3 (-1112)))))
+(-13 (-1112) (-10 -8 (-15 -4151 ($ |#1|)) (-15 -2612 (|#1| $)) (-15 -2436 (|#1| $ |#1|)) (-15 -3494 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) 105) (((-583 $) (-583 |#4|) (-107)) 106) (((-583 $) (-583 |#4|) (-107) (-107)) 104) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 107)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 99)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 54)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) 26 (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 39)) (-2195 ((|#4| |#4| $) 57)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-3901 (((-107) |#4| $) NIL)) (-1426 (((-107) |#4| $) NIL)) (-3403 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4145 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 119)) (-1525 (((-583 |#4|) $) 16 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 17 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 97)) (-1447 (((-3 |#4| "failed") $) 37)) (-1243 (((-583 $) |#4| $) 80)) (-3398 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 90) (((-107) |#4| $) 52)) (-2187 (((-583 $) |#4| $) 102) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 103) (((-583 $) |#4| (-583 $)) NIL)) (-3334 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 114)) (-2642 (($ |#4| $) 70) (($ (-583 |#4|) $) 71) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 67)) (-3846 (((-583 |#4|) $) NIL)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 35)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) 48)) (-3175 (($ $ |#4|) NIL) (((-583 $) |#4| $) 82) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 77)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 13)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 12)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-2316 (($ $ |#3|) 44)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2709 (((-583 $) |#4| $) 79) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-2525 (((-107) |#4| $) NIL)) (-3275 (((-107) |#3| $) 53)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-945 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -945))
+((-2642 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *3))) (-5 *1 (-945 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) (-3334 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) (-4145 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-945 *5 *6 *7 *8))))) (-5 *1 (-945 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-1986 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2534 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845)) 51) (((-623 |#1|) (-623 |#1|) (-845)) 50)) (-3565 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-829 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-829 (-517)) (-517)) 62)) (-3845 (((-623 (-876 |#1|)) (-703)) 80)) (-2907 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845)) 36 (|has| |#1| (-6 (-4197 "*")))) (((-623 |#1|) (-623 |#1|) (-845)) 34 (|has| |#1| (-6 (-4197 "*"))))))
+(((-946 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-623 |#1|) (-623 |#1|) (-845))) |%noBranch|) (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) |%noBranch|) (-15 -3845 ((-623 (-876 |#1|)) (-703))) (-15 -2534 ((-623 |#1|) (-623 |#1|) (-845))) (-15 -2534 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) (-15 -1986 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1986 ((-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3565 ((-623 (-517)) (-829 (-517)) (-517))) (-15 -3565 ((-623 (-517)) (-583 (-517)))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-829 (-517))) (-517))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-964)) (T -946))
+((-3565 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-946 *4)) (-4 *4 (-964)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-829 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-946 *5)) (-4 *5 (-964)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-946 *4)) (-4 *4 (-964)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-829 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-946 *5)) (-4 *5 (-964)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-1986 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-1986 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) (-4 *4 (-964)) (-5 *1 (-946 *4)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (-4 *4 (-964)) (-5 *1 (-946 *4)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-876 *4))) (-5 *1 (-946 *4)) (-4 *4 (-964)))) (-2907 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) (|has| *4 (-6 (-4197 "*"))) (-4 *4 (-964)) (-5 *1 (-946 *4)))) (-2907 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (|has| *4 (-6 (-4197 "*"))) (-4 *4 (-964)) (-5 *1 (-946 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-623 |#1|) (-623 |#1|) (-845))) |%noBranch|) (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) |%noBranch|) (-15 -3845 ((-623 (-876 |#1|)) (-703))) (-15 -2534 ((-623 |#1|) (-623 |#1|) (-845))) (-15 -2534 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) (-15 -1986 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1986 ((-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3565 ((-623 (-517)) (-829 (-517)) (-517))) (-15 -3565 ((-623 (-517)) (-583 (-517)))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-829 (-517))) (-517))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
+((-2498 (((-623 |#1|) (-583 (-623 |#1|)) (-1158 |#1|)) 50 (|has| |#1| (-278)))) (-1975 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 (-1158 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 |#1|)) 71 (|has| |#1| (-333)))) (-3995 (((-1158 |#1|) (-583 (-1158 |#1|)) (-517)) 75 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-2452 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-845)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 77 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 76 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-4099 (((-107) (-583 (-623 |#1|))) 69 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 68 (|has| |#1| (-333)))) (-2091 (((-1158 (-1158 |#1|)) (-583 (-623 |#1|)) (-1158 |#1|)) 48 (|has| |#1| (-278)))) (-3058 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 33)) (-2028 (((-623 |#1|) (-1158 (-1158 |#1|))) 30)) (-3643 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 64 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 63 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 62 (|has| |#1| (-333)))))
+(((-947 |#1|) (-10 -7 (-15 -2028 ((-623 |#1|) (-1158 (-1158 |#1|)))) (-15 -3058 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -2091 ((-1158 (-1158 |#1|)) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -2498 ((-623 |#1|) (-583 (-623 |#1|)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 (-1158 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-845))) (-15 -3995 ((-1158 |#1|) (-583 (-1158 |#1|)) (-517)))) |%noBranch|) |%noBranch|)) (-964)) (T -947))
+((-3995 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1158 *5))) (-5 *4 (-517)) (-5 *2 (-1158 *5)) (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-964)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-947 *4)) (-5 *3 (-583 (-623 *4))))) (-2452 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-964)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-583 (-623 *6))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-1158 (-1158 *5))) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-964)) (-5 *2 (-107)) (-5 *1 (-947 *4)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-107)) (-5 *1 (-947 *5)))) (-3643 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-964)))) (-3643 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-947 *4)) (-4 *4 (-333)) (-4 *4 (-964)))) (-3643 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-947 *6)) (-4 *6 (-333)) (-4 *6 (-964)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1158 *5)) (-4 *5 (-278)) (-4 *5 (-964)) (-5 *2 (-623 *5)) (-5 *1 (-947 *5)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-964)) (-5 *2 (-1158 (-1158 *5))) (-5 *1 (-947 *5)) (-5 *4 (-1158 *5)))) (-3058 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-964)) (-5 *1 (-947 *4)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-4 *4 (-964)) (-5 *2 (-623 *4)) (-5 *1 (-947 *4)))))
+(-10 -7 (-15 -2028 ((-623 |#1|) (-1158 (-1158 |#1|)))) (-15 -3058 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -2091 ((-1158 (-1158 |#1|)) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -2498 ((-623 |#1|) (-583 (-623 |#1|)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 (-1158 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-845))) (-15 -3995 ((-1158 |#1|) (-583 (-1158 |#1|)) (-517)))) |%noBranch|) |%noBranch|))
+((-4009 ((|#1| (-845) |#1|) 9)))
+(((-948 |#1|) (-10 -7 (-15 -4009 (|#1| (-845) |#1|))) (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $))))) (T -948))
+((-4009 (*1 *2 *3 *2) (-12 (-5 *3 (-845)) (-5 *1 (-948 *2)) (-4 *2 (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $))))))))
+(-10 -7 (-15 -4009 (|#1| (-845) |#1|)))
+((-2190 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-876 (-517))))) 58)) (-3442 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-876 (-517))))) 48)) (-2875 (((-583 (-286 (-517))) (-623 (-377 (-876 (-517))))) 41)) (-4091 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-876 (-517))))) 68)) (-3392 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2866 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-2840 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-876 (-517))))) 65)))
+(((-949) (-10 -7 (-15 -2190 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-876 (-517)))))) (-15 -3442 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-876 (-517)))))) (-15 -2875 ((-583 (-286 (-517))) (-623 (-377 (-876 (-517)))))) (-15 -2840 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-876 (-517)))))) (-15 -3392 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2866 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -4091 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-876 (-517)))))))) (T -949))
+((-4091 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)))) (-2866 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949)))) (-2840 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-949)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)) (-5 *3 (-286 (-517))))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-949)))))
+(-10 -7 (-15 -2190 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-876 (-517)))))) (-15 -3442 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-876 (-517)))))) (-15 -2875 ((-583 (-286 (-517))) (-623 (-377 (-876 (-517)))))) (-15 -2840 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-876 (-517)))))) (-15 -3392 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2866 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -4091 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-876 (-517)))))))
+((-2643 ((|#1| |#1| (-845)) 9)))
+(((-950 |#1|) (-10 -7 (-15 -2643 (|#1| |#1| (-845)))) (-13 (-1006) (-10 -8 (-15 * ($ $ $))))) (T -950))
+((-2643 (*1 *2 *2 *3) (-12 (-5 *3 (-845)) (-5 *1 (-950 *2)) (-4 *2 (-13 (-1006) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2643 (|#1| |#1| (-845))))
+((-2262 ((|#1| (-282)) 11) (((-1163) |#1|) 9)))
+(((-951 |#1|) (-10 -7 (-15 -2262 ((-1163) |#1|)) (-15 -2262 (|#1| (-282)))) (-1112)) (T -951))
+((-2262 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-951 *2)) (-4 *2 (-1112)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-951 *3)) (-4 *3 (-1112)))))
+(-10 -7 (-15 -2262 ((-1163) |#1|)) (-15 -2262 (|#1| (-282))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ |#4|) 25)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-1497 ((|#4| $) 27)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1818 (((-703)) 43)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 23 T CONST)) (-1572 (((-107) $ $) 40)) (-1680 (($ $) 31) (($ $ $) NIL)) (-1666 (($ $ $) 29)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-952 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -1510 ($ |#4|)) (-15 -2262 ($ |#4|)) (-15 -1497 (|#4| $)))) (-333) (-725) (-779) (-873 |#1| |#2| |#3|) (-583 |#4|)) (T -952))
+((-1510 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5)) (-14 *6 (-583 *2)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-873 *3 *4 *5)) (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(-13 (-156) (-37 |#1|) (-10 -8 (-15 -1510 ($ |#4|)) (-15 -2262 ($ |#4|)) (-15 -1497 (|#4| $))))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-3351 (((-1163) $ (-1077) (-1077)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2846 (((-107) (-107)) 39)) (-2410 (((-107) (-107)) 38)) (-2436 (((-51) $ (-1077) (-51)) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 (-51) "failed") (-1077) $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-3 (-51) "failed") (-1077) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-51) $ (-1077) (-51)) NIL (|has| $ (-6 -4196)))) (-2557 (((-51) $ (-1077)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1077) $) NIL (|has| (-1077) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-1969 (((-1077) $) NIL (|has| (-1077) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1869 (((-583 (-1077)) $) 34)) (-2409 (((-107) (-1077) $) NIL)) (-2015 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-1449 (((-583 (-1077)) $) NIL)) (-3413 (((-107) (-1077) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-2420 (((-51) $) NIL (|has| (-1077) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) "failed") (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL)) (-2837 (($ $ (-51)) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-2862 (((-583 (-51)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-51) $ (-1077)) 35) (((-51) $ (-1077) (-51)) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-2262 (((-787) $) 37 (-3786 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-953) (-13 (-1089 (-1077) (-51)) (-10 -7 (-15 -2846 ((-107) (-107))) (-15 -2410 ((-107) (-107))) (-6 -4195)))) (T -953))
+((-2846 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953)))))
+(-13 (-1089 (-1077) (-51)) (-10 -7 (-15 -2846 ((-107) (-107))) (-15 -2410 ((-107) (-107))) (-6 -4195)))
+((-3402 ((|#2| $) 10)))
+(((-954 |#1| |#2|) (-10 -8 (-15 -3402 (|#2| |#1|))) (-955 |#2|) (-1112)) (T -954))
+NIL
+(-10 -8 (-15 -3402 (|#2| |#1|)))
+((-3220 (((-3 |#1| "failed") $) 7)) (-3402 ((|#1| $) 8)) (-2262 (($ |#1|) 6)))
+(((-955 |#1|) (-1189) (-1112)) (T -955))
+((-3402 (*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) (-3220 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) (-2262 (*1 *1 *2) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))))
+(-13 (-10 -8 (-15 -2262 ($ |t#1|)) (-15 -3220 ((-3 |t#1| "failed") $)) (-15 -3402 (|t#1| $))))
+((-3472 (((-583 (-583 (-265 (-377 (-876 |#2|))))) (-583 (-876 |#2|)) (-583 (-1077))) 35)))
+(((-956 |#1| |#2|) (-10 -7 (-15 -3472 ((-583 (-583 (-265 (-377 (-876 |#2|))))) (-583 (-876 |#2|)) (-583 (-1077))))) (-509) (-13 (-509) (-955 |#1|))) (T -956))
+((-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-4 *6 (-13 (-509) (-955 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *6)))))) (-5 *1 (-956 *5 *6)))))
+(-10 -7 (-15 -3472 ((-583 (-583 (-265 (-377 (-876 |#2|))))) (-583 (-876 |#2|)) (-583 (-1077)))))
+((-2442 (((-349)) 15)) (-1610 (((-1 (-349)) (-349) (-349)) 20)) (-1701 (((-1 (-349)) (-703)) 43)) (-1347 (((-349)) 34)) (-1375 (((-1 (-349)) (-349) (-349)) 35)) (-2116 (((-349)) 26)) (-3054 (((-1 (-349)) (-349)) 27)) (-2389 (((-349) (-703)) 38)) (-2908 (((-1 (-349)) (-703)) 39)) (-4057 (((-1 (-349)) (-703) (-703)) 42)) (-3466 (((-1 (-349)) (-703) (-703)) 40)))
+(((-957) (-10 -7 (-15 -2442 ((-349))) (-15 -1347 ((-349))) (-15 -2116 ((-349))) (-15 -2389 ((-349) (-703))) (-15 -1610 ((-1 (-349)) (-349) (-349))) (-15 -1375 ((-1 (-349)) (-349) (-349))) (-15 -3054 ((-1 (-349)) (-349))) (-15 -2908 ((-1 (-349)) (-703))) (-15 -3466 ((-1 (-349)) (-703) (-703))) (-15 -4057 ((-1 (-349)) (-703) (-703))) (-15 -1701 ((-1 (-349)) (-703))))) (T -957))
+((-1701 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-4057 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-3466 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-3054 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) (-1375 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) (-1610 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-957)))) (-2116 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))) (-1347 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))) (-2442 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))))
+(-10 -7 (-15 -2442 ((-349))) (-15 -1347 ((-349))) (-15 -2116 ((-349))) (-15 -2389 ((-349) (-703))) (-15 -1610 ((-1 (-349)) (-349) (-349))) (-15 -1375 ((-1 (-349)) (-349) (-349))) (-15 -3054 ((-1 (-349)) (-349))) (-15 -2908 ((-1 (-349)) (-703))) (-15 -3466 ((-1 (-349)) (-703) (-703))) (-15 -4057 ((-1 (-349)) (-703) (-703))) (-15 -1701 ((-1 (-349)) (-703))))
+((-3896 (((-388 |#1|) |#1|) 31)))
+(((-958 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|))) (-1134 (-377 (-876 (-517))))) (T -958))
+((-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-958 *3)) (-4 *3 (-1134 (-377 (-876 (-517))))))))
+(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)))
+((-3949 (((-377 (-388 (-876 |#1|))) (-377 (-876 |#1|))) 14)))
+(((-959 |#1|) (-10 -7 (-15 -3949 ((-377 (-388 (-876 |#1|))) (-377 (-876 |#1|))))) (-278)) (T -959))
+((-3949 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-876 *4)))) (-5 *1 (-959 *4)))))
+(-10 -7 (-15 -3949 ((-377 (-388 (-876 |#1|))) (-377 (-876 |#1|)))))
+((-2080 (((-583 (-1077)) (-377 (-876 |#1|))) 15)) (-1428 (((-377 (-1073 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077)) 22)) (-2069 (((-377 (-876 |#1|)) (-377 (-1073 (-377 (-876 |#1|)))) (-1077)) 24)) (-1958 (((-3 (-1077) "failed") (-377 (-876 |#1|))) 18)) (-3552 (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-265 (-377 (-876 |#1|))))) 29) (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|)))) 31) (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-1077)) (-583 (-377 (-876 |#1|)))) 26) (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))) 27)) (-2262 (((-377 (-876 |#1|)) |#1|) 11)))
+(((-960 |#1|) (-10 -7 (-15 -2080 ((-583 (-1077)) (-377 (-876 |#1|)))) (-15 -1958 ((-3 (-1077) "failed") (-377 (-876 |#1|)))) (-15 -1428 ((-377 (-1073 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -2069 ((-377 (-876 |#1|)) (-377 (-1073 (-377 (-876 |#1|)))) (-1077))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-1077)) (-583 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -2262 ((-377 (-876 |#1|)) |#1|))) (-509)) (T -960))
+((-2262 (*1 *2 *3) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-960 *3)) (-4 *3 (-509)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) (-5 *2 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *1 (-960 *4)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-876 *4)))) (-5 *2 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *1 (-960 *4)))) (-3552 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1077))) (-5 *4 (-583 (-377 (-876 *5)))) (-5 *2 (-377 (-876 *5))) (-4 *5 (-509)) (-5 *1 (-960 *5)))) (-3552 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) (-4 *4 (-509)) (-5 *1 (-960 *4)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1073 (-377 (-876 *5))))) (-5 *4 (-1077)) (-5 *2 (-377 (-876 *5))) (-5 *1 (-960 *5)) (-4 *5 (-509)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-509)) (-5 *2 (-377 (-1073 (-377 (-876 *5))))) (-5 *1 (-960 *5)) (-5 *3 (-377 (-876 *5))))) (-1958 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-1077)) (-5 *1 (-960 *4)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1077))) (-5 *1 (-960 *4)))))
+(-10 -7 (-15 -2080 ((-583 (-1077)) (-377 (-876 |#1|)))) (-15 -1958 ((-3 (-1077) "failed") (-377 (-876 |#1|)))) (-15 -1428 ((-377 (-1073 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -2069 ((-377 (-876 |#1|)) (-377 (-1073 (-377 (-876 |#1|)))) (-1077))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-1077)) (-583 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -2262 ((-377 (-876 |#1|)) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3246 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-2080 (((-583 (-789 |#2|)) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3710 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1322 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3864 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) NIL (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2774 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3402 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2429 (((-3 $ "failed") $) NIL)) (-2195 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006))))) (-1423 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3639 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4142 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1510 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4195))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1954 (((-2 (|:| -1712 (-583 (-712 |#1| (-789 |#2|)))) (|:| -3723 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-3901 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1426 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3403 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1525 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3142 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2772 (((-789 |#2|) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006))))) (-2737 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-1425 (((-583 (-789 |#2|)) $) NIL)) (-1808 (((-107) (-789 |#2|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2211 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1504 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3864 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1447 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-1243 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-3398 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2187 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-2642 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3846 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1568 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2930 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-2788 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3877 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-1985 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-4059 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-3175 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3843 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-1191 (((-703) $) NIL)) (-4140 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3231 (($ $ (-789 |#2|)) NIL)) (-2316 (($ $ (-789 |#2|)) NIL)) (-4158 (($ $) NIL)) (-3127 (($ $ (-789 |#2|)) NIL)) (-2262 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3192 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1217 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-2709 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-1272 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 (-789 |#2|)) $) NIL)) (-2525 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3275 (((-107) (-789 |#2|) $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-961 |#1| |#2|) (-13 (-983 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -3246 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1077))) (T -961))
+((-3246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-961 *5 *6)))))
+(-13 (-983 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -3246 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
+((-1610 (((-1 (-517)) (-1001 (-517))) 33)) (-3953 (((-517) (-517) (-517) (-517) (-517)) 30)) (-1777 (((-1 (-517)) |RationalNumber|) NIL)) (-1748 (((-1 (-517)) |RationalNumber|) NIL)) (-1462 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
+(((-962) (-10 -7 (-15 -1610 ((-1 (-517)) (-1001 (-517)))) (-15 -1462 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1777 ((-1 (-517)) |RationalNumber|)) (-15 -1748 ((-1 (-517)) |RationalNumber|)) (-15 -3953 ((-517) (-517) (-517) (-517) (-517))))) (T -962))
+((-3953 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-962)))) (-1748 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)))) (-1777 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)))) (-1462 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)) (-5 *3 (-517)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1001 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-962)))))
+(-10 -7 (-15 -1610 ((-1 (-517)) (-1001 (-517)))) (-15 -1462 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1777 ((-1 (-517)) |RationalNumber|)) (-15 -1748 ((-1 (-517)) |RationalNumber|)) (-15 -3953 ((-517) (-517) (-517) (-517) (-517))))
+((-2262 (((-787) $) NIL) (($ (-517)) 10)))
+(((-963 |#1|) (-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-964)) (T -963))
+NIL
+(-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-964) (-1189)) (T -964))
+((-1818 (*1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-964)))))
+(-13 (-971) (-659) (-585 $) (-10 -8 (-15 -1818 ((-703))) (-15 -2262 ($ (-517))) (-6 -4192)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2086 (((-377 (-876 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
+(((-965 |#1| |#2|) (-10 -7 (-15 -2086 ((-377 (-876 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1077) (-333)) (T -965))
+((-2086 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-876 *6))) (-5 *1 (-965 *5 *6)) (-14 *5 (-1077)))))
+(-10 -7 (-15 -2086 ((-377 (-876 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
+((-1912 (((-107) $) 28)) (-1256 (((-107) $) 16)) (-1409 (((-703) $) 13)) (-1422 (((-703) $) 14)) (-1974 (((-107) $) 26)) (-3007 (((-107) $) 30)))
+(((-966 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1422 ((-703) |#1|)) (-15 -1409 ((-703) |#1|)) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|))) (-967 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-964) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -966))
+NIL
+(-10 -8 (-15 -1422 ((-703) |#1|)) (-15 -1409 ((-703) |#1|)) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1912 (((-107) $) 51)) (-1783 (((-3 $ "failed") $ $) 19)) (-1256 (((-107) $) 53)) (-3443 (((-107) $ (-703)) 61)) (-3038 (($) 17 T CONST)) (-1197 (($ $) 34 (|has| |#3| (-278)))) (-1397 ((|#4| $ (-517)) 39)) (-3778 (((-703) $) 33 (|has| |#3| (-509)))) (-2557 ((|#3| $ (-517) (-517)) 41)) (-1525 (((-583 |#3|) $) 68 (|has| $ (-6 -4195)))) (-3850 (((-703) $) 32 (|has| |#3| (-509)))) (-1671 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1409 (((-703) $) 45)) (-1422 (((-703) $) 44)) (-2266 (((-107) $ (-703)) 60)) (-2560 (((-517) $) 49)) (-2970 (((-517) $) 47)) (-3687 (((-583 |#3|) $) 69 (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 48)) (-1718 (((-517) $) 46)) (-2362 (($ (-583 (-583 |#3|))) 54)) (-2737 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3468 (((-583 (-583 |#3|)) $) 43)) (-2328 (((-107) $ (-703)) 59)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-3843 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) 55)) (-1754 (((-107) $) 58)) (-2679 (($) 57)) (-2612 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1974 (((-107) $) 52)) (-4140 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4195)))) (-2453 (($ $) 56)) (-2295 ((|#5| $ (-517)) 38)) (-2262 (((-787) $) 11)) (-1272 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4195)))) (-3007 (((-107) $) 50)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3573 (((-703) $) 62 (|has| $ (-6 -4195)))))
+(((-967 |#1| |#2| |#3| |#4| |#5|) (-1189) (-703) (-703) (-964) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -967))
+((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2362 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-964)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1256 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964)))) (-2557 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964)))) (-2612 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-964)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-1397 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-964)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-964)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-1197 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
+(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4195) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |%noBranch|) (-15 -2362 ($ (-583 (-583 |t#3|)))) (-15 -1256 ((-107) $)) (-15 -1974 ((-107) $)) (-15 -1912 ((-107) $)) (-15 -3007 ((-107) $)) (-15 -2560 ((-517) $)) (-15 -2413 ((-517) $)) (-15 -2970 ((-517) $)) (-15 -1718 ((-517) $)) (-15 -1409 ((-703) $)) (-15 -1422 ((-703) $)) (-15 -3468 ((-583 (-583 |t#3|)) $)) (-15 -2612 (|t#3| $ (-517) (-517))) (-15 -2557 (|t#3| $ (-517) (-517))) (-15 -2612 (|t#3| $ (-517) (-517) |t#3|)) (-15 -1397 (|t#4| $ (-517))) (-15 -2295 (|t#5| $ (-517))) (-15 -3312 ($ (-1 |t#3| |t#3|) $)) (-15 -3312 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2333 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-333)) (-15 -1692 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-278)) (-15 -1197 ($ $)) |%noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -3778 ((-703) $)) (-15 -3850 ((-703) $)) (-15 -1671 ((-583 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-970 |#3|) . T) ((-1006) . T) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1912 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 40 (|has| |#3| (-278)))) (-1397 (((-214 |#2| |#3|) $ (-517)) 29)) (-3391 (($ (-623 |#3|)) 38)) (-3778 (((-703) $) 42 (|has| |#3| (-509)))) (-2557 ((|#3| $ (-517) (-517)) NIL)) (-1525 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-3850 (((-703) $) 44 (|has| |#3| (-509)))) (-1671 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1409 (((-703) $) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#3|))) 24)) (-2737 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3468 (((-583 (-583 |#3|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-3843 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-1470 (((-125)) 51 (|has| |#3| (-333)))) (-1974 (((-107) $) NIL)) (-4140 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-2295 (((-214 |#1| |#3|) $ (-517)) 33)) (-2262 (((-787) $) 16) (((-623 |#3|) $) 35)) (-1272 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-3663 (($) 13 T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-968 |#1| |#2| |#3|) (-13 (-967 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1165 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -3391 ($ (-623 |#3|))) (-15 -2262 ((-623 |#3|) $)))) (-703) (-703) (-964)) (T -968))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-964)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-964)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
+(-13 (-967 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1165 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -3391 ($ (-623 |#3|))) (-15 -2262 ((-623 |#3|) $))))
+((-1510 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3312 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-969 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3312 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1510 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-964) (-212 |#2| |#3|) (-212 |#1| |#3|) (-967 |#1| |#2| |#3| |#4| |#5|) (-964) (-212 |#2| |#7|) (-212 |#1| |#7|) (-967 |#1| |#2| |#7| |#8| |#9|)) (T -969))
+((-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-964)) (-4 *2 (-964)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-964)) (-4 *10 (-964)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
+(-10 -7 (-15 -3312 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1510 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
+(((-970 |#1|) (-1189) (-971)) (T -970))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-970 *2)) (-4 *2 (-971)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-2815 (($ $ (-844)) 26)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-970) (-1188)) (T -970))
-NIL
-(-13 (-21) (-1017))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1017) . T) ((-1005) . T))
-((-2853 (($ $) 16)) (-3983 (($ $) 22)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 49)) (-2803 (($ $) 24)) (-2041 (($ $) 11)) (-2961 (($ $) 38)) (-3359 (((-349) $) NIL) (((-199) $) NIL) (((-815 (-349)) $) 33)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-4099 (((-703)) 8)) (-3599 (($ $) 39)))
-(((-971 |#1|) (-10 -8 (-15 -3983 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 -2041 (|#1| |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| (-517))) (-15 -3359 ((-199) |#1|)) (-15 -3359 ((-349) |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 -2271 ((-787) |#1|))) (-972)) (T -971))
-((-4099 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-971 *3)) (-4 *3 (-972)))))
-(-10 -8 (-15 -3983 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 -2041 (|#1| |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -3544 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| (-517))) (-15 -3359 ((-199) |#1|)) (-15 -3359 ((-349) |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-517))) (-15 -4099 ((-703))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1363 (((-517) $) 89)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2853 (($ $) 87)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3880 (($ $) 97)) (-3820 (((-107) $ $) 59)) (-2360 (((-517) $) 114)) (-1393 (($) 17 T CONST)) (-3983 (($ $) 86)) (-3228 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3390 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-1259 (((-107) $) 71)) (-2988 (((-107) $) 112)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 93)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 96)) (-2803 (($ $) 92)) (-1952 (((-107) $) 113)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3458 (($ $ $) 111)) (-4084 (($ $ $) 110)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-2041 (($ $) 88)) (-2961 (($ $) 90)) (-3868 (((-388 $) $) 74)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-3359 (((-349) $) 105) (((-199) $) 104) (((-815 (-349)) $) 94)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-4099 (((-703)) 29)) (-3599 (($ $) 91)) (-2074 (((-107) $ $) 39)) (-2376 (($ $) 115)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1642 (((-107) $ $) 108)) (-1618 (((-107) $ $) 107)) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 109)) (-1608 (((-107) $ $) 106)) (-1704 (($ $ $) 64)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-972) (-1188)) (T -972))
-((-2376 (*1 *1 *1) (-4 *1 (-972))) (-2803 (*1 *1 *1) (-4 *1 (-972))) (-3599 (*1 *1 *1) (-4 *1 (-972))) (-2961 (*1 *1 *1) (-4 *1 (-972))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-517)))) (-2041 (*1 *1 *1) (-4 *1 (-972))) (-2853 (*1 *1 *1) (-4 *1 (-972))) (-3983 (*1 *1 *1) (-4 *1 (-972))))
-(-13 (-333) (-777) (-939) (-954 (-517)) (-954 (-377 (-517))) (-920) (-558 (-815 (-349))) (-809 (-349)) (-134) (-10 -8 (-15 -2803 ($ $)) (-15 -3599 ($ $)) (-15 -2961 ($ $)) (-15 -1363 ((-517) $)) (-15 -2041 ($ $)) (-15 -2853 ($ $)) (-15 -3983 ($ $)) (-15 -2376 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-815 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-809 (-349)) . T) ((-843) . T) ((-920) . T) ((-939) . T) ((-954 (-377 (-517))) . T) ((-954 (-517)) . T) ((-969 #0#) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) |#2| $) 23)) (-2399 ((|#1| $) 10)) (-2360 (((-517) |#2| $) 89)) (-3522 (((-3 $ "failed") |#2| (-844)) 58)) (-3300 ((|#1| $) 28)) (-4090 ((|#1| |#2| $ |#1|) 37)) (-3574 (($ $) 25)) (-2560 (((-3 |#2| "failed") |#2| $) 88)) (-2988 (((-107) |#2| $) NIL)) (-1952 (((-107) |#2| $) NIL)) (-1819 (((-107) |#2| $) 24)) (-3731 ((|#1| $) 90)) (-3288 ((|#1| $) 27)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2387 ((|#2| $) 80)) (-2271 (((-787) $) 71)) (-2204 ((|#1| |#2| $ |#1|) 38)) (-3443 (((-583 $) |#2|) 60)) (-1584 (((-107) $ $) 75)))
-(((-973 |#1| |#2|) (-13 (-979 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| $)) (-15 -3300 (|#1| $)) (-15 -2399 (|#1| $)) (-15 -3731 (|#1| $)) (-15 -3574 ($ $)) (-15 -1819 ((-107) |#2| $)) (-15 -4090 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1133 |#1|)) (T -973))
-((-4090 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1133 *2)))) (-3288 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1133 *2)))) (-3300 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1133 *2)))) (-2399 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1133 *2)))) (-3731 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1133 *2)))) (-3574 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1133 *2)))) (-1819 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1133 *4)))))
-(-13 (-979 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| $)) (-15 -3300 (|#1| $)) (-15 -2399 (|#1| $)) (-15 -3731 (|#1| $)) (-15 -3574 ($ $)) (-15 -1819 ((-107) |#2| $)) (-15 -4090 (|#1| |#2| $ |#1|))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-1876 (($ $ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $ $ $) NIL)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL)) (-2142 (($ $ $) NIL)) (-1393 (($) NIL T CONST)) (-3382 (($ (-1076)) 10) (($ (-517)) 7)) (-3228 (((-3 (-517) "failed") $) NIL)) (-3390 (((-517) $) NIL)) (-2379 (($ $ $) NIL)) (-2207 (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL)) (-3000 (((-107) $) NIL)) (-1843 (((-377 (-517)) $) NIL)) (-2202 (($) NIL) (($ $) NIL)) (-2354 (($ $ $) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3631 (($ $ $ $) NIL)) (-3248 (($ $ $) NIL)) (-2988 (((-107) $) NIL)) (-2144 (($ $ $) NIL)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1376 (((-107) $) NIL)) (-2686 (((-107) $) NIL)) (-2243 (((-3 $ "failed") $) NIL)) (-1952 (((-107) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2767 (($ $ $ $) NIL)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-2638 (($ $) NIL)) (-3682 (($ $) NIL)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2949 (($ $ $) NIL)) (-2587 (($) NIL T CONST)) (-4006 (($ $) NIL)) (-4125 (((-1023) $) NIL) (($ $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1691 (($ $) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1766 (((-107) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-2060 (($ $ (-703)) NIL) (($ $) NIL)) (-2917 (($ $) NIL)) (-2462 (($ $) NIL)) (-3359 (((-517) $) 16) (((-493) $) NIL) (((-815 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1076)) 9)) (-2271 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-4099 (((-703)) NIL)) (-3969 (((-107) $ $) NIL)) (-1917 (($ $ $) NIL)) (-3985 (($) NIL)) (-2074 (((-107) $ $) NIL)) (-3696 (($ $ $ $) NIL)) (-2376 (($ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) NIL)) (-1692 (($ $) 19) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
-(((-974) (-13 (-502) (-10 -8 (-6 -4179) (-6 -4184) (-6 -4180) (-15 -3359 ($ (-1076))) (-15 -3382 ($ (-1076))) (-15 -3382 ($ (-517)))))) (T -974))
-((-3359 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-974)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-974)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-974)))))
-(-13 (-502) (-10 -8 (-6 -4179) (-6 -4184) (-6 -4180) (-15 -3359 ($ (-1076))) (-15 -3382 ($ (-1076))) (-15 -3382 ($ (-517)))))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-2034 (((-1162) $ (-1076) (-1076)) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-3774 (($) 9)) (-2445 (((-51) $ (-1076) (-51)) NIL)) (-3893 (($ $) 23)) (-1723 (($ $) 21)) (-3187 (($ $) 20)) (-2845 (($ $) 22)) (-2219 (($ $) 25)) (-2345 (($ $) 26)) (-1454 (($ $) 19)) (-2075 (($ $) 24)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) 18 (|has| $ (-6 -4192)))) (-3564 (((-3 (-51) "failed") (-1076) $) 34)) (-1393 (($) NIL T CONST)) (-1661 (($) 7)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-2457 (($ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) 46 (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-3 (-51) "failed") (-1076) $) NIL)) (-1423 (($ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192)))) (-3621 (((-3 (-1059) "failed") $ (-1059) (-517)) 59)) (-2759 (((-51) $ (-1076) (-51)) NIL (|has| $ (-6 -4193)))) (-2566 (((-51) $ (-1076)) NIL)) (-1534 (((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-583 (-51)) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-1076) $) NIL (|has| (-1076) (-779)))) (-1903 (((-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) 28 (|has| $ (-6 -4192))) (((-583 (-51)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005))))) (-1989 (((-1076) $) NIL (|has| (-1076) (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4193))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-1882 (((-583 (-1076)) $) NIL)) (-3577 (((-107) (-1076) $) NIL)) (-1803 (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL)) (-3241 (($ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) 37)) (-2817 (((-583 (-1076)) $) NIL)) (-3130 (((-107) (-1076) $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-2229 (((-349) $ (-1076)) 45)) (-2087 (((-583 (-1059)) $ (-1059)) 60)) (-2429 (((-51) $) NIL (|has| (-1076) (-779)))) (-1528 (((-3 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) "failed") (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL)) (-2846 (($ $ (-51)) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-265 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL (-12 (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-280 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005))))) (-2891 (((-583 (-51)) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 (((-51) $ (-1076)) NIL) (((-51) $ (-1076) (-51)) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-1978 (($ $ (-1076)) 47)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-51) (-1005)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) 30)) (-4110 (($ $ $) 31)) (-2271 (((-787) $) NIL (-3747 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-557 (-787)))))) (-3178 (($ $ (-1076) (-349)) 43)) (-2311 (($ $ (-1076) (-349)) 44)) (-3181 (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 (-1076)) (|:| -1859 (-51)))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-51) (-1005)) (|has| (-2 (|:| -2585 (-1076)) (|:| -1859 (-51))) (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-975) (-13 (-1088 (-1076) (-51)) (-10 -8 (-15 -4110 ($ $ $)) (-15 -1661 ($)) (-15 -1454 ($ $)) (-15 -3187 ($ $)) (-15 -1723 ($ $)) (-15 -2845 ($ $)) (-15 -2075 ($ $)) (-15 -3893 ($ $)) (-15 -2219 ($ $)) (-15 -2345 ($ $)) (-15 -3178 ($ $ (-1076) (-349))) (-15 -2311 ($ $ (-1076) (-349))) (-15 -2229 ((-349) $ (-1076))) (-15 -2087 ((-583 (-1059)) $ (-1059))) (-15 -1978 ($ $ (-1076))) (-15 -3774 ($)) (-15 -3621 ((-3 (-1059) "failed") $ (-1059) (-517))) (-6 -4192)))) (T -975))
-((-4110 (*1 *1 *1 *1) (-5 *1 (-975))) (-1661 (*1 *1) (-5 *1 (-975))) (-1454 (*1 *1 *1) (-5 *1 (-975))) (-3187 (*1 *1 *1) (-5 *1 (-975))) (-1723 (*1 *1 *1) (-5 *1 (-975))) (-2845 (*1 *1 *1) (-5 *1 (-975))) (-2075 (*1 *1 *1) (-5 *1 (-975))) (-3893 (*1 *1 *1) (-5 *1 (-975))) (-2219 (*1 *1 *1) (-5 *1 (-975))) (-2345 (*1 *1 *1) (-5 *1 (-975))) (-3178 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-349)) (-5 *1 (-975)))) (-2311 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-349)) (-5 *1 (-975)))) (-2229 (*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-349)) (-5 *1 (-975)))) (-2087 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-975)) (-5 *3 (-1059)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-975)))) (-3774 (*1 *1) (-5 *1 (-975))) (-3621 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1059)) (-5 *3 (-517)) (-5 *1 (-975)))))
-(-13 (-1088 (-1076) (-51)) (-10 -8 (-15 -4110 ($ $ $)) (-15 -1661 ($)) (-15 -1454 ($ $)) (-15 -3187 ($ $)) (-15 -1723 ($ $)) (-15 -2845 ($ $)) (-15 -2075 ($ $)) (-15 -3893 ($ $)) (-15 -2219 ($ $)) (-15 -2345 ($ $)) (-15 -3178 ($ $ (-1076) (-349))) (-15 -2311 ($ $ (-1076) (-349))) (-15 -2229 ((-349) $ (-1076))) (-15 -2087 ((-583 (-1059)) $ (-1059))) (-15 -1978 ($ $ (-1076))) (-15 -3774 ($)) (-15 -3621 ((-3 (-1059) "failed") $ (-1059) (-517))) (-6 -4192)))
-((-1541 (($ $) 45)) (-2556 (((-107) $ $) 74)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-875 (-377 (-517)))) 227) (((-3 $ "failed") (-875 (-517))) 226) (((-3 $ "failed") (-875 |#2|)) 229)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-875 (-377 (-517)))) 215) (($ (-875 (-517))) 211) (($ (-875 |#2|)) 231)) (-2373 (($ $) NIL) (($ $ |#4|) 43)) (-3244 (((-107) $ $) 112) (((-107) $ (-583 $)) 113)) (-1772 (((-107) $) 56)) (-3590 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 107)) (-3396 (($ $) 138)) (-3571 (($ $) 134)) (-2773 (($ $) 133)) (-1202 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3231 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1253 (((-107) $ $) 121) (((-107) $ (-583 $)) 122)) (-3024 ((|#4| $) 33)) (-2089 (($ $ $) 110)) (-1831 (((-107) $) 55)) (-1313 (((-703) $) 35)) (-1881 (($ $) 152)) (-1391 (($ $) 149)) (-1453 (((-583 $) $) 68)) (-3946 (($ $) 57)) (-1771 (($ $) 145)) (-1523 (((-583 $) $) 65)) (-2539 (($ $) 59)) (-2347 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3549 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1995 (-703))) $ $) 111)) (-1688 (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $) 108) (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $ |#4|) 109)) (-3429 (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $) 104) (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $ |#4|) 105)) (-3811 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1736 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3661 (((-583 $) $) 51)) (-1732 (((-107) $ $) 118) (((-107) $ (-583 $)) 119)) (-3998 (($ $ $) 103)) (-2587 (($ $) 37)) (-2958 (((-107) $ $) 72)) (-1944 (((-107) $ $) 114) (((-107) $ (-583 $)) 116)) (-3252 (($ $ $) 101)) (-1568 (($ $) 40)) (-2370 ((|#2| |#2| $) 142) (($ (-583 $)) NIL) (($ $ $) NIL)) (-3581 (($ $ |#2|) NIL) (($ $ $) 131)) (-3652 (($ $ |#2|) 126) (($ $ $) 129)) (-1778 (($ $) 48)) (-1971 (($ $) 52)) (-3359 (((-815 (-349)) $) NIL) (((-815 (-517)) $) NIL) (((-493) $) NIL) (($ (-875 (-377 (-517)))) 217) (($ (-875 (-517))) 213) (($ (-875 |#2|)) 228) (((-1059) $) 250) (((-875 |#2|) $) 162)) (-2271 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-875 |#2|) $) 163) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2069 (((-3 (-107) "failed") $ $) 71)))
-(((-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 ((-875 |#2|) |#1|)) (-15 -3359 ((-875 |#2|) |#1|)) (-15 -3359 ((-1059) |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -2370 (|#2| |#2| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -3359 (|#1| (-875 |#2|))) (-15 -3390 (|#1| (-875 |#2|))) (-15 -3228 ((-3 |#1| "failed") (-875 |#2|))) (-15 -3359 (|#1| (-875 (-517)))) (-15 -3390 (|#1| (-875 (-517)))) (-15 -3228 ((-3 |#1| "failed") (-875 (-517)))) (-15 -3359 (|#1| (-875 (-377 (-517))))) (-15 -3390 (|#1| (-875 (-377 (-517))))) (-15 -3228 ((-3 |#1| "failed") (-875 (-377 (-517))))) (-15 -3998 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -3549 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1995 (-703))) |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -3590 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -1688 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1| |#4|)) (-15 -1688 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -3429 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -2946 |#1|)) |#1| |#1| |#4|)) (-15 -3429 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -1736 (|#1| |#1| |#1| |#4|)) (-15 -3811 (|#1| |#1| |#1| |#4|)) (-15 -1736 (|#1| |#1| |#1|)) (-15 -3811 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1| |#4|)) (-15 -1202 (|#1| |#1| |#1| |#4|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -1202 (|#1| |#1| |#1|)) (-15 -1253 ((-107) |#1| (-583 |#1|))) (-15 -1253 ((-107) |#1| |#1|)) (-15 -1732 ((-107) |#1| (-583 |#1|))) (-15 -1732 ((-107) |#1| |#1|)) (-15 -1944 ((-107) |#1| (-583 |#1|))) (-15 -1944 ((-107) |#1| |#1|)) (-15 -3244 ((-107) |#1| (-583 |#1|))) (-15 -3244 ((-107) |#1| |#1|)) (-15 -2556 ((-107) |#1| |#1|)) (-15 -2958 ((-107) |#1| |#1|)) (-15 -2069 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1453 ((-583 |#1|) |#1|)) (-15 -1523 ((-583 |#1|) |#1|)) (-15 -2539 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -1772 ((-107) |#1|)) (-15 -1831 ((-107) |#1|)) (-15 -2373 (|#1| |#1| |#4|)) (-15 -2347 (|#1| |#1| |#4|)) (-15 -1971 (|#1| |#1|)) (-15 -3661 ((-583 |#1|) |#1|)) (-15 -1778 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -2587 (|#1| |#1|)) (-15 -1313 ((-703) |#1|)) (-15 -3024 (|#4| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3390 (|#4| |#1|)) (-15 -3228 ((-3 |#4| "failed") |#1|)) (-15 -2271 (|#1| |#4|)) (-15 -2347 (|#2| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-977 |#2| |#3| |#4|) (-963) (-725) (-779)) (T -976))
-NIL
-(-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -2370 (|#1| (-583 |#1|))) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 ((-875 |#2|) |#1|)) (-15 -3359 ((-875 |#2|) |#1|)) (-15 -3359 ((-1059) |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -2370 (|#2| |#2| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -3359 (|#1| (-875 |#2|))) (-15 -3390 (|#1| (-875 |#2|))) (-15 -3228 ((-3 |#1| "failed") (-875 |#2|))) (-15 -3359 (|#1| (-875 (-517)))) (-15 -3390 (|#1| (-875 (-517)))) (-15 -3228 ((-3 |#1| "failed") (-875 (-517)))) (-15 -3359 (|#1| (-875 (-377 (-517))))) (-15 -3390 (|#1| (-875 (-377 (-517))))) (-15 -3228 ((-3 |#1| "failed") (-875 (-377 (-517))))) (-15 -3998 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -3549 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1995 (-703))) |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -3590 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -1688 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1| |#4|)) (-15 -1688 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -3429 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -2946 |#1|)) |#1| |#1| |#4|)) (-15 -3429 ((-2 (|:| -1582 |#1|) (|:| |gap| (-703)) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -1736 (|#1| |#1| |#1| |#4|)) (-15 -3811 (|#1| |#1| |#1| |#4|)) (-15 -1736 (|#1| |#1| |#1|)) (-15 -3811 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1| |#4|)) (-15 -1202 (|#1| |#1| |#1| |#4|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -1202 (|#1| |#1| |#1|)) (-15 -1253 ((-107) |#1| (-583 |#1|))) (-15 -1253 ((-107) |#1| |#1|)) (-15 -1732 ((-107) |#1| (-583 |#1|))) (-15 -1732 ((-107) |#1| |#1|)) (-15 -1944 ((-107) |#1| (-583 |#1|))) (-15 -1944 ((-107) |#1| |#1|)) (-15 -3244 ((-107) |#1| (-583 |#1|))) (-15 -3244 ((-107) |#1| |#1|)) (-15 -2556 ((-107) |#1| |#1|)) (-15 -2958 ((-107) |#1| |#1|)) (-15 -2069 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1453 ((-583 |#1|) |#1|)) (-15 -1523 ((-583 |#1|) |#1|)) (-15 -2539 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -1772 ((-107) |#1|)) (-15 -1831 ((-107) |#1|)) (-15 -2373 (|#1| |#1| |#4|)) (-15 -2347 (|#1| |#1| |#4|)) (-15 -1971 (|#1| |#1|)) (-15 -3661 ((-583 |#1|) |#1|)) (-15 -1778 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -2587 (|#1| |#1|)) (-15 -1313 ((-703) |#1|)) (-15 -3024 (|#4| |#1|)) (-15 -3359 ((-493) |#1|)) (-15 -3359 ((-815 (-517)) |#1|)) (-15 -3359 ((-815 (-349)) |#1|)) (-15 -3390 (|#4| |#1|)) (-15 -3228 ((-3 |#4| "failed") |#1|)) (-15 -2271 (|#1| |#4|)) (-15 -2347 (|#2| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 |#3|) $) 110)) (-1440 (((-1072 $) $ |#3|) 125) (((-1072 |#1|) $) 124)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3062 (($ $) 88 (|has| |#1| (-509)))) (-2190 (((-107) $) 90 (|has| |#1| (-509)))) (-1302 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1541 (($ $) 271)) (-2556 (((-107) $ $) 257)) (-2798 (((-3 $ "failed") $ $) 19)) (-4104 (($ $ $) 216 (|has| |#1| (-509)))) (-2800 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) 100 (|has| |#1| (-832)))) (-1224 (($ $) 98 (|has| |#1| (-421)))) (-4018 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 103 (|has| |#1| (-832)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-954 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-875 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076))))) (((-3 $ "failed") (-875 (-517))) 228 (-3747 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1076)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076)))))) (((-3 $ "failed") (-875 |#1|)) 225 (-3747 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1076)))) (-12 (-2479 (|has| |#1| (-502))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1076)))) (-12 (-2479 (|has| |#1| (-911 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076))))))) (-3390 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-954 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-954 (-517)))) ((|#3| $) 135) (($ (-875 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076))))) (($ (-875 (-517))) 227 (-3747 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1076)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076)))))) (($ (-875 |#1|)) 224 (-3747 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1076)))) (-12 (-2479 (|has| |#1| (-502))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1076)))) (-12 (-2479 (|has| |#1| (-911 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076))))))) (-2157 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-2373 (($ $) 154) (($ $ |#3|) 266)) (-2207 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3244 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-2560 (((-3 $ "failed") $) 34)) (-1772 (((-107) $) 264)) (-3590 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 236)) (-3396 (($ $) 205 (|has| |#1| (-421)))) (-2683 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2359 (((-583 $) $) 109)) (-1259 (((-107) $) 96 (|has| |#1| (-832)))) (-3571 (($ $) 221 (|has| |#1| (-509)))) (-2773 (($ $) 222 (|has| |#1| (-509)))) (-1202 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3231 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3014 (($ $ |#1| |#2| $) 172)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| |#3| (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| |#3| (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1376 (((-107) $) 31)) (-3783 (((-703) $) 169)) (-1253 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-2768 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-3024 ((|#3| $) 275)) (-2086 (($ (-1072 |#1|) |#3|) 117) (($ (-1072 $) |#3|) 116)) (-3794 (((-583 $) $) 126)) (-3982 (((-107) $) 152)) (-2078 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2089 (($ $ $) 235)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#3|) 120)) (-1831 (((-107) $) 265)) (-3492 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3458 (($ $ $) 79 (|has| |#1| (-779)))) (-1313 (((-703) $) 274)) (-4084 (($ $ $) 78 (|has| |#1| (-779)))) (-2935 (($ (-1 |#2| |#2|) $) 171)) (-3310 (($ (-1 |#1| |#1|) $) 151)) (-2297 (((-3 |#3| "failed") $) 123)) (-1881 (($ $) 202 (|has| |#1| (-421)))) (-1391 (($ $) 203 (|has| |#1| (-421)))) (-1453 (((-583 $) $) 260)) (-3946 (($ $) 263)) (-1771 (($ $) 204 (|has| |#1| (-421)))) (-1523 (((-583 $) $) 261)) (-2539 (($ $) 262)) (-2335 (($ $) 149)) (-2347 ((|#1| $) 148) (($ $ |#3|) 267)) (-2332 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3549 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1995 (-703))) $ $) 234)) (-1688 (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $) 238) (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $ |#3|) 237)) (-3429 (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $) 240) (((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $ |#3|) 239)) (-3811 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1736 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1662 (((-1059) $) 9)) (-2350 (($ $ $) 210 (|has| |#1| (-509)))) (-3661 (((-583 $) $) 269)) (-2745 (((-3 (-583 $) "failed") $) 114)) (-1653 (((-3 (-583 $) "failed") $) 115)) (-2670 (((-3 (-2 (|:| |var| |#3|) (|:| -2121 (-703))) "failed") $) 113)) (-1732 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-3998 (($ $ $) 232)) (-2587 (($ $) 273)) (-2958 (((-107) $ $) 258)) (-1944 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3252 (($ $ $) 233)) (-1568 (($ $) 272)) (-4125 (((-1023) $) 10)) (-3445 (((-2 (|:| -2370 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-4118 (((-2 (|:| -2370 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-2310 (((-107) $) 166)) (-2321 ((|#1| $) 167)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 95 (|has| |#1| (-421)))) (-2370 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 102 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 101 (|has| |#1| (-832)))) (-3868 (((-388 $) $) 99 (|has| |#1| (-832)))) (-2763 (((-2 (|:| -2370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2329 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3581 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3652 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-1220 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2060 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3647 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-1778 (($ $) 270)) (-1971 (($ $) 268)) (-3359 (((-815 (-349)) $) 82 (-12 (|has| |#3| (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| |#3| (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-875 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076))))) (($ (-875 (-517))) 226 (-3747 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1076)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1076)))))) (($ (-875 |#1|)) 223 (|has| |#3| (-558 (-1076)))) (((-1059) $) 201 (-12 (|has| |#1| (-954 (-517))) (|has| |#3| (-558 (-1076))))) (((-875 |#1|) $) 200 (|has| |#3| (-558 (-1076))))) (-3119 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 104 (-3993 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-875 |#1|) $) 199 (|has| |#3| (-558 (-1076)))) (($ (-377 (-517))) 72 (-3747 (|has| |#1| (-954 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) 168)) (-1689 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3974 (((-3 $ "failed") $) 73 (-3747 (-3993 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) 29)) (-2863 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2074 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-2069 (((-3 (-107) "failed") $ $) 259)) (-3619 (($) 30 T CONST)) (-2807 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-1310 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-3342 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1642 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1704 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-977 |#1| |#2| |#3|) (-1188) (-963) (-725) (-779)) (T -977))
-((-3024 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2587 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1541 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1778 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3661 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-1971 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2347 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2373 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3946 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2539 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1523 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-1453 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-2069 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2958 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2556 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3244 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1944 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1944 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1732 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1253 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1253 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1202 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1202 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3231 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3811 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1736 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3811 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1736 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3429 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -2946 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3429 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -2946 *1))) (-4 *1 (-977 *4 *5 *3)))) (-1688 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-977 *3 *4 *5)))) (-1688 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3590 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-977 *3 *4 *5)))) (-2089 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3549 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1995 (-703)))) (-4 *1 (-977 *3 *4 *5)))) (-3252 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3998 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3228 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3228 (*1 *1 *2) (|partial| -3747 (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3390 (*1 *1 *2) (-3747 (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3359 (*1 *1 *2) (-3747 (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3228 (*1 *1 *2) (|partial| -3747 (-12 (-5 *2 (-875 *3)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2479 (-4 *3 (-911 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3390 (*1 *1 *2) (-3747 (-12 (-5 *2 (-875 *3)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2479 (-4 *3 (-911 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076)))) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-558 (-1076))) (-4 *4 (-725)) (-4 *5 (-779)))) (-2773 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3571 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3652 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3581 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3652 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-4104 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2763 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2370 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-4118 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2370 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3445 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2370 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-2157 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2800 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1310 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-2807 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-2768 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2370 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1771 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(-13 (-872 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3024 (|t#3| $)) (-15 -1313 ((-703) $)) (-15 -2587 ($ $)) (-15 -1568 ($ $)) (-15 -1541 ($ $)) (-15 -1778 ($ $)) (-15 -3661 ((-583 $) $)) (-15 -1971 ($ $)) (-15 -2347 ($ $ |t#3|)) (-15 -2373 ($ $ |t#3|)) (-15 -1831 ((-107) $)) (-15 -1772 ((-107) $)) (-15 -3946 ($ $)) (-15 -2539 ($ $)) (-15 -1523 ((-583 $) $)) (-15 -1453 ((-583 $) $)) (-15 -2069 ((-3 (-107) "failed") $ $)) (-15 -2958 ((-107) $ $)) (-15 -2556 ((-107) $ $)) (-15 -3244 ((-107) $ $)) (-15 -3244 ((-107) $ (-583 $))) (-15 -1944 ((-107) $ $)) (-15 -1944 ((-107) $ (-583 $))) (-15 -1732 ((-107) $ $)) (-15 -1732 ((-107) $ (-583 $))) (-15 -1253 ((-107) $ $)) (-15 -1253 ((-107) $ (-583 $))) (-15 -1202 ($ $ $)) (-15 -3231 ($ $ $)) (-15 -1202 ($ $ $ |t#3|)) (-15 -3231 ($ $ $ |t#3|)) (-15 -3811 ($ $ $)) (-15 -1736 ($ $ $)) (-15 -3811 ($ $ $ |t#3|)) (-15 -1736 ($ $ $ |t#3|)) (-15 -3429 ((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $)) (-15 -3429 ((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -2946 $)) $ $ |t#3|)) (-15 -1688 ((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -1688 ((-2 (|:| -1582 $) (|:| |gap| (-703)) (|:| -3371 $) (|:| -2946 $)) $ $ |t#3|)) (-15 -3590 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2089 ($ $ $)) (-15 -3549 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1995 (-703))) $ $)) (-15 -3252 ($ $ $)) (-15 -3998 ($ $ $)) (IF (|has| |t#3| (-558 (-1076))) (PROGN (-6 (-557 (-875 |t#1|))) (-6 (-558 (-875 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3228 ((-3 $ "failed") (-875 (-377 (-517))))) (-15 -3390 ($ (-875 (-377 (-517))))) (-15 -3359 ($ (-875 (-377 (-517))))) (-15 -3228 ((-3 $ "failed") (-875 (-517)))) (-15 -3390 ($ (-875 (-517)))) (-15 -3359 ($ (-875 (-517)))) (IF (|has| |t#1| (-911 (-517))) |%noBranch| (PROGN (-15 -3228 ((-3 $ "failed") (-875 |t#1|))) (-15 -3390 ($ (-875 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3228 ((-3 $ "failed") (-875 (-517)))) (-15 -3390 ($ (-875 (-517)))) (-15 -3359 ($ (-875 (-517)))) (IF (|has| |t#1| (-502)) |%noBranch| (PROGN (-15 -3228 ((-3 $ "failed") (-875 |t#1|))) (-15 -3390 ($ (-875 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) |%noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3228 ((-3 $ "failed") (-875 |t#1|))) (-15 -3390 ($ (-875 |t#1|)))))) (-15 -3359 ($ (-875 |t#1|))) (IF (|has| |t#1| (-954 (-517))) (-6 (-558 (-1059))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2773 ($ $)) (-15 -3571 ($ $)) (-15 -3652 ($ $ |t#1|)) (-15 -3581 ($ $ |t#1|)) (-15 -3652 ($ $ $)) (-15 -3581 ($ $ $)) (-15 -4104 ($ $ $)) (-15 -2763 ((-2 (|:| -2370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4118 ((-2 (|:| -2370 $) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2370 $) (|:| |coef2| $)) $ $)) (-15 -2157 ($ $ $)) (-15 -2800 ((-583 $) $ $)) (-15 -2350 ($ $ $)) (-15 -1310 ($ $ $ (-703))) (-15 -2807 ($ $ $ $ (-703))) (-15 -2768 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -2370 (|t#1| |t#1| $)) (-15 -3396 ($ $)) (-15 -1771 ($ $)) (-15 -1391 ($ $)) (-15 -1881 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-875 |#1|)) |has| |#3| (-558 (-1076))) ((-156) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) ((-558 (-875 |#1|)) |has| |#3| (-558 (-1076))) ((-558 (-1059)) -12 (|has| |#1| (-954 (-517))) (|has| |#3| (-558 (-1076)))) ((-262) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3747 (|has| |#1| (-832)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 |#3|) . T) ((-809 (-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) ((-872 |#1| |#2| |#3|) . T) ((-832) |has| |#1| (-832)) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 |#1|) . T) ((-954 |#3|) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) |has| |#1| (-832)))
-((-3097 (((-107) |#3| $) 13)) (-3522 (((-3 $ "failed") |#3| (-844)) 23)) (-2560 (((-3 |#3| "failed") |#3| $) 37)) (-2988 (((-107) |#3| $) 16)) (-1952 (((-107) |#3| $) 14)))
-(((-978 |#1| |#2| |#3|) (-10 -8 (-15 -3522 ((-3 |#1| "failed") |#3| (-844))) (-15 -2560 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2988 ((-107) |#3| |#1|)) (-15 -1952 ((-107) |#3| |#1|)) (-15 -3097 ((-107) |#3| |#1|))) (-979 |#2| |#3|) (-13 (-777) (-333)) (-1133 |#2|)) (T -978))
-NIL
-(-10 -8 (-15 -3522 ((-3 |#1| "failed") |#3| (-844))) (-15 -2560 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2988 ((-107) |#3| |#1|)) (-15 -1952 ((-107) |#3| |#1|)) (-15 -3097 ((-107) |#3| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) |#2| $) 21)) (-2360 (((-517) |#2| $) 22)) (-3522 (((-3 $ "failed") |#2| (-844)) 15)) (-4090 ((|#1| |#2| $ |#1|) 13)) (-2560 (((-3 |#2| "failed") |#2| $) 18)) (-2988 (((-107) |#2| $) 19)) (-1952 (((-107) |#2| $) 20)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2387 ((|#2| $) 17)) (-2271 (((-787) $) 11)) (-2204 ((|#1| |#2| $ |#1|) 14)) (-3443 (((-583 $) |#2|) 16)) (-1584 (((-107) $ $) 6)))
-(((-979 |#1| |#2|) (-1188) (-13 (-777) (-333)) (-1133 |t#1|)) (T -979))
-((-2360 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1133 *4)) (-5 *2 (-517)))) (-3097 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1133 *4)) (-5 *2 (-107)))) (-1952 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1133 *4)) (-5 *2 (-107)))) (-2988 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1133 *4)) (-5 *2 (-107)))) (-2560 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1133 *3)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1133 *3)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1133 *4)) (-5 *2 (-583 *1)) (-4 *1 (-979 *4 *3)))) (-3522 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-844)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-979 *4 *2)) (-4 *2 (-1133 *4)))) (-2204 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1133 *2)))) (-4090 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1133 *2)))))
-(-13 (-1005) (-10 -8 (-15 -2360 ((-517) |t#2| $)) (-15 -3097 ((-107) |t#2| $)) (-15 -1952 ((-107) |t#2| $)) (-15 -2988 ((-107) |t#2| $)) (-15 -2560 ((-3 |t#2| "failed") |t#2| $)) (-15 -2387 (|t#2| $)) (-15 -3443 ((-583 $) |t#2|)) (-15 -3522 ((-3 $ "failed") |t#2| (-844))) (-15 -2204 (|t#1| |t#2| $ |t#1|)) (-15 -4090 (|t#1| |t#2| $ |t#1|))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-1244 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-703)) 96)) (-2956 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703)) 55)) (-2618 (((-1162) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-703)) 87)) (-2840 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-3164 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-2352 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3359 (((-1059) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) 82)) (-2278 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-107)) 54)) (-1779 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
-(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1779 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2840 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2278 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-107))) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -1244 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-703))) (-15 -3359 ((-1059) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -2618 ((-1162) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-703)))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -980))
-((-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9)))) (-5 *4 (-703)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1162)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1059)) (-5 *1 (-980 *4 *5 *6 *7 *8)))) (-1244 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3834 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3834 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-980 *7 *8 *9 *10 *11)))) (-2352 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-2352 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3164 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3)))) (-2956 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-2278 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-980 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1779 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2840 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2278 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-107))) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -1244 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-703))) (-15 -3359 ((-1059) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -2618 ((-1162) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-703))))
-((-2127 (((-107) |#5| $) 21)) (-2957 (((-107) |#5| $) 24)) (-1401 (((-107) |#5| $) 16) (((-107) $) 45)) (-2259 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 77) (((-583 $) (-583 |#5|) (-583 $)) 75) (((-583 $) |#5| (-583 $)) 78)) (-2671 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 60) (((-583 $) (-583 |#5|) $) 62) (((-583 $) (-583 |#5|) (-583 $)) 64)) (-1856 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 54) (((-583 $) (-583 |#5|) $) 56) (((-583 $) (-583 |#5|) (-583 $)) 58)) (-3302 (((-107) |#5| $) 27)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2671 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2671 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2671 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2671 ((-583 |#1|) |#5| |#1|)) (-15 -1856 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1856 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1856 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1856 ((-583 |#1|) |#5| |#1|)) (-15 -2259 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2259 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2259 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2259 ((-583 |#1|) |#5| |#1|)) (-15 -2957 ((-107) |#5| |#1|)) (-15 -1401 ((-107) |#1|)) (-15 -3302 ((-107) |#5| |#1|)) (-15 -2127 ((-107) |#5| |#1|)) (-15 -1401 ((-107) |#5| |#1|)) (-15 -2671 (|#1| |#1| |#5|))) (-982 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-977 |#2| |#3| |#4|)) (T -981))
-NIL
-(-10 -8 (-15 -2671 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2671 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2671 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2671 ((-583 |#1|) |#5| |#1|)) (-15 -1856 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1856 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1856 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1856 ((-583 |#1|) |#5| |#1|)) (-15 -2259 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2259 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2259 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2259 ((-583 |#1|) |#5| |#1|)) (-15 -2957 ((-107) |#5| |#1|)) (-15 -1401 ((-107) |#1|)) (-15 -3302 ((-107) |#5| |#1|)) (-15 -2127 ((-107) |#5| |#1|)) (-15 -1401 ((-107) |#5| |#1|)) (-15 -2671 (|#1| |#1| |#5|)))
-((-2119 (((-107) $ $) 7)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) 85)) (-2265 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2097 (((-583 |#3|) $) 33)) (-2687 (((-107) $) 26)) (-3389 (((-107) $) 17 (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) 101) (((-107) $) 97)) (-3939 ((|#4| |#4| $) 92)) (-1224 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| $) 126)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) 27)) (-1851 (((-107) $ (-703)) 44)) (-2325 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 79)) (-1393 (($) 45 T CONST)) (-3338 (((-107) $) 22 (|has| |#1| (-509)))) (-1605 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2893 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2501 (((-107) $) 25 (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2567 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 36)) (-3390 (($ (-583 |#4|)) 35)) (-2439 (((-3 $ "failed") $) 82)) (-3777 ((|#4| |#4| $) 89)) (-2455 (($ $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-2639 ((|#4| |#4| $) 87)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) 105)) (-2127 (((-107) |#4| $) 136)) (-2957 (((-107) |#4| $) 133)) (-1401 (((-107) |#4| $) 137) (((-107) $) 134)) (-1534 (((-583 |#4|) $) 52 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) 104) (((-107) $) 103)) (-3024 ((|#3| $) 34)) (-2497 (((-107) $ (-703)) 43)) (-1903 (((-583 |#4|) $) 53 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 47)) (-2241 (((-583 |#3|) $) 32)) (-2621 (((-107) |#3| $) 31)) (-1320 (((-107) $ (-703)) 42)) (-1662 (((-1059) $) 9)) (-2496 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2350 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| |#4| $) 127)) (-1446 (((-3 |#4| "failed") $) 83)) (-2305 (((-583 $) |#4| $) 129)) (-3364 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2259 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1493 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3568 (((-583 |#4|) $) 107)) (-1732 (((-107) |#4| $) 99) (((-107) $) 95)) (-3998 ((|#4| |#4| $) 90)) (-2958 (((-107) $ $) 110)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) 100) (((-107) $) 96)) (-3252 ((|#4| |#4| $) 91)) (-4125 (((-1023) $) 10)) (-2429 (((-3 |#4| "failed") $) 84)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3439 (((-3 $ "failed") $ |#4|) 78)) (-2671 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3644 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) 38)) (-2394 (((-107) $) 41)) (-2452 (($) 40)) (-3647 (((-703) $) 106)) (-4137 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4192)))) (-2462 (($ $) 39)) (-3359 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 60)) (-4028 (($ $ |#3|) 28)) (-1409 (($ $ |#3|) 30)) (-1888 (($ $) 88)) (-4159 (($ $ |#3|) 29)) (-2271 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3057 (((-703) $) 76 (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1856 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3602 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) 81)) (-3302 (((-107) |#4| $) 135)) (-1999 (((-107) |#3| $) 80)) (-1584 (((-107) $ $) 6)) (-3535 (((-703) $) 46 (|has| $ (-6 -4192)))))
-(((-982 |#1| |#2| |#3| |#4|) (-1188) (-421) (-725) (-779) (-977 |t#1| |t#2| |t#3|)) (T -982))
-((-1401 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-2127 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-3302 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-2957 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-3364 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-2305 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-2496 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-2350 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-1224 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-2259 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-2259 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-2259 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)))) (-2259 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)))) (-1856 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-1856 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)))) (-1856 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-1856 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)))) (-1493 (*1 *1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-1493 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)))) (-2671 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-2671 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)))) (-2671 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-2671 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-982 *5 *6 *7 *8)))))
-(-13 (-1105 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1401 ((-107) |t#4| $)) (-15 -2127 ((-107) |t#4| $)) (-15 -3302 ((-107) |t#4| $)) (-15 -1401 ((-107) $)) (-15 -2957 ((-107) |t#4| $)) (-15 -3364 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -3605 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |t#4| $)) (-15 -3605 ((-107) |t#4| $)) (-15 -2305 ((-583 $) |t#4| $)) (-15 -2496 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -2350 ((-583 (-2 (|:| |val| |t#4|) (|:| -3834 $))) |t#4| |t#4| $)) (-15 -1224 ((-583 (-2 (|:| |val| |t#4|) (|:| -3834 $))) |t#4| $)) (-15 -2259 ((-583 $) |t#4| $)) (-15 -2259 ((-583 $) (-583 |t#4|) $)) (-15 -2259 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2259 ((-583 $) |t#4| (-583 $))) (-15 -1856 ((-583 $) |t#4| $)) (-15 -1856 ((-583 $) |t#4| (-583 $))) (-15 -1856 ((-583 $) (-583 |t#4|) $)) (-15 -1856 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -1493 ($ |t#4| $)) (-15 -1493 ($ (-583 |t#4|) $)) (-15 -2671 ((-583 $) |t#4| $)) (-15 -2671 ((-583 $) |t#4| (-583 $))) (-15 -2671 ((-583 $) (-583 |t#4|) $)) (-15 -2671 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2265 ((-583 $) (-583 |t#4|) (-107)))))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-895 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1105 |#1| |#2| |#3| |#4|) . T) ((-1111) . T))
-((-1770 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|) 81)) (-3913 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|) 113)) (-3413 (((-583 |#5|) |#4| |#5|) 70)) (-3431 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2281 (((-1162)) 35)) (-1415 (((-1162)) 25)) (-2030 (((-1162) (-1059) (-1059) (-1059)) 31)) (-3841 (((-1162) (-1059) (-1059) (-1059)) 20)) (-2072 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#4| |#4| |#5|) 96)) (-2829 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#3| (-107)) 107) (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-2616 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|) 102)))
-(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 ((-1162) (-1059) (-1059) (-1059))) (-15 -1415 ((-1162))) (-15 -2030 ((-1162) (-1059) (-1059) (-1059))) (-15 -2281 ((-1162))) (-15 -2072 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -2829 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2829 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#3| (-107))) (-15 -2616 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -3913 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -3431 ((-107) |#4| |#5|)) (-15 -3431 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -3413 ((-583 |#5|) |#4| |#5|)) (-15 -1770 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -983))
-((-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3413 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3913 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2616 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9)))) (-5 *5 (-107)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3834 *9)))) (-5 *1 (-983 *6 *7 *4 *8 *9)))) (-2829 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-2072 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2281 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-2030 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-1415 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3841 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3841 ((-1162) (-1059) (-1059) (-1059))) (-15 -1415 ((-1162))) (-15 -2030 ((-1162) (-1059) (-1059) (-1059))) (-15 -2281 ((-1162))) (-15 -2072 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -2829 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2829 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#3| (-107))) (-15 -2616 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -3913 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -3431 ((-107) |#4| |#5|)) (-15 -3431 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -3413 ((-583 |#5|) |#4| |#5|)) (-15 -1770 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|)))
-((-2119 (((-107) $ $) NIL)) (-2989 (((-1076) $) 8)) (-1662 (((-1059) $) 16)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 13)))
-(((-984 |#1|) (-13 (-1005) (-10 -8 (-15 -2989 ((-1076) $)))) (-1076)) (T -984))
-((-2989 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-984 *3)) (-14 *3 *2))))
-(-13 (-1005) (-10 -8 (-15 -2989 ((-1076) $))))
-((-2119 (((-107) $ $) NIL)) (-3558 (($ $ (-583 (-1076)) (-1 (-107) (-583 |#3|))) 29)) (-2039 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1076))) 19)) (-2515 ((|#3| $) 13)) (-3228 (((-3 (-265 |#3|) "failed") $) 56)) (-3390 (((-265 |#3|) $) NIL)) (-2338 (((-583 (-1076)) $) 15)) (-1339 (((-815 |#1|) $) 11)) (-2508 ((|#3| $) 12)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2609 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-844)) 36)) (-2271 (((-787) $) 85) (($ (-265 |#3|)) 20)) (-1584 (((-107) $ $) 33)))
-(((-985 |#1| |#2| |#3|) (-13 (-1005) (-258 |#3| |#3|) (-954 (-265 |#3|)) (-10 -8 (-15 -2039 ($ |#3| |#3|)) (-15 -2039 ($ |#3| |#3| (-583 (-1076)))) (-15 -3558 ($ $ (-583 (-1076)) (-1 (-107) (-583 |#3|)))) (-15 -1339 ((-815 |#1|) $)) (-15 -2508 (|#3| $)) (-15 -2515 (|#3| $)) (-15 -2609 (|#3| $ |#3| (-844))) (-15 -2338 ((-583 (-1076)) $)))) (-1005) (-13 (-963) (-809 |#1|) (-779) (-558 (-815 |#1|))) (-13 (-400 |#2|) (-809 |#1|) (-558 (-815 |#1|)))) (T -985))
-((-2039 (*1 *1 *2 *2) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3)))) (-5 *1 (-985 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))) (-2039 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1076))) (-4 *4 (-1005)) (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-985 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))) (-3558 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))) (-4 *4 (-1005)) (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-985 *4 *5 *6)))) (-1339 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 *2))) (-5 *2 (-815 *3)) (-5 *1 (-985 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 *2))))) (-2508 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))) (-5 *1 (-985 *3 *4 *2)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3)))))) (-2515 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))) (-5 *1 (-985 *3 *4 *2)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3)))))) (-2609 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-844)) (-4 *4 (-1005)) (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-985 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))) (-2338 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3)))) (-5 *2 (-583 (-1076))) (-5 *1 (-985 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
-(-13 (-1005) (-258 |#3| |#3|) (-954 (-265 |#3|)) (-10 -8 (-15 -2039 ($ |#3| |#3|)) (-15 -2039 ($ |#3| |#3| (-583 (-1076)))) (-15 -3558 ($ $ (-583 (-1076)) (-1 (-107) (-583 |#3|)))) (-15 -1339 ((-815 |#1|) $)) (-15 -2508 (|#3| $)) (-15 -2515 (|#3| $)) (-15 -2609 (|#3| $ |#3| (-844))) (-15 -2338 ((-583 (-1076)) $))))
-((-2119 (((-107) $ $) NIL)) (-3538 (($ (-583 (-985 |#1| |#2| |#3|))) 12)) (-3908 (((-583 (-985 |#1| |#2| |#3|)) $) 19)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2609 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-844)) 25)) (-2271 (((-787) $) 15)) (-1584 (((-107) $ $) 18)))
-(((-986 |#1| |#2| |#3|) (-13 (-1005) (-258 |#3| |#3|) (-10 -8 (-15 -3538 ($ (-583 (-985 |#1| |#2| |#3|)))) (-15 -3908 ((-583 (-985 |#1| |#2| |#3|)) $)) (-15 -2609 (|#3| $ |#3| (-844))))) (-1005) (-13 (-963) (-809 |#1|) (-779) (-558 (-815 |#1|))) (-13 (-400 |#2|) (-809 |#1|) (-558 (-815 |#1|)))) (T -986))
-((-3538 (*1 *1 *2) (-12 (-5 *2 (-583 (-985 *3 *4 *5))) (-4 *3 (-1005)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3)))) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))) (-5 *1 (-986 *3 *4 *5)))) (-3908 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3)))) (-5 *2 (-583 (-985 *3 *4 *5))) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))) (-2609 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-844)) (-4 *4 (-1005)) (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))))
-(-13 (-1005) (-258 |#3| |#3|) (-10 -8 (-15 -3538 ($ (-583 (-985 |#1| |#2| |#3|)))) (-15 -3908 ((-583 (-985 |#1| |#2| |#3|)) $)) (-15 -2609 (|#3| $ |#3| (-844)))))
-((-2801 (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107)) 74) (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|))) 76) (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107)) 75)))
-(((-987 |#1| |#2|) (-10 -7 (-15 -2801 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -2801 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -2801 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1076))) (T -987))
-((-2801 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5)))))) (-5 *1 (-987 *5 *6)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1076))))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *4)) (|:| -3784 (-583 (-875 *4)))))) (-5 *1 (-987 *4 *5)) (-5 *3 (-583 (-875 *4))) (-14 *5 (-583 (-1076))))) (-2801 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5)))))) (-5 *1 (-987 *5 *6)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1076))))))
-(-10 -7 (-15 -2801 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -2801 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -2801 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107))))
-((-3868 (((-388 |#3|) |#3|) 16)))
-(((-988 |#1| |#2| |#3|) (-10 -7 (-15 -3868 ((-388 |#3|) |#3|))) (-1133 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1133 |#2|)) (T -988))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1133 *5)))))
-(-10 -7 (-15 -3868 ((-388 |#3|) |#3|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 125)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-3062 (($ $) NIL (|has| |#1| (-333)))) (-2190 (((-107) $) NIL (|has| |#1| (-333)))) (-2133 (((-623 |#1|) (-1157 $)) NIL) (((-623 |#1|)) 115)) (-2009 ((|#1| $) 119)) (-1768 (((-1085 (-844) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2399 (((-703)) 40 (|has| |#1| (-338)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-3898 (($ (-1157 |#1|) (-1157 $)) NIL) (($ (-1157 |#1|)) 43)) (-1717 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2637 (((-623 |#1|) $ (-1157 $)) NIL) (((-623 |#1|) $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-1522 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-2560 (((-3 $ "failed") $) NIL)) (-3737 (((-844)) 77)) (-2202 (($) 44 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1304 (($) NIL (|has| |#1| (-319)))) (-3459 (((-107) $) NIL (|has| |#1| (-319)))) (-2855 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-1395 (((-844) $) NIL (|has| |#1| (-319))) (((-765 (-844)) $) NIL (|has| |#1| (-319)))) (-1376 (((-107) $) NIL)) (-2803 ((|#1| $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2766 ((|#2| $) 84 (|has| |#1| (-333)))) (-3072 (((-844) $) 130 (|has| |#1| (-338)))) (-1509 ((|#2| $) 58)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2587 (($) NIL (|has| |#1| (-319)) CONST)) (-2812 (($ (-844)) 124 (|has| |#1| (-338)))) (-4125 (((-1023) $) NIL)) (-1318 (($) 121)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-4005 (((-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))) NIL (|has| |#1| (-319)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-1220 ((|#1| (-1157 $)) NIL) ((|#1|) 109)) (-2192 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2060 (($ $) NIL (-3747 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3747 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-3973 (((-623 |#1|) (-1157 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2387 ((|#2|) 73)) (-1758 (($) NIL (|has| |#1| (-319)))) (-3784 (((-1157 |#1|) $ (-1157 $)) 89) (((-623 |#1|) (-1157 $) (-1157 $)) NIL) (((-1157 |#1|) $) 71) (((-623 |#1|) (-1157 $)) 85)) (-3359 (((-1157 |#1|) $) NIL) (($ (-1157 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2271 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-333)) (|has| |#1| (-954 (-377 (-517))))))) (-3974 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1699 ((|#2| $) 82)) (-4099 (((-703)) 75)) (-1492 (((-1157 $)) 81)) (-2074 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 30 T CONST)) (-3619 (($) 19 T CONST)) (-3342 (($ $) NIL (-3747 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3747 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1076))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1584 (((-107) $ $) 63)) (-1704 (($ $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) 67) (($ $ $) NIL)) (-1678 (($ $ $) 65)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
-(((-989 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1133 |#1|) |#2|) (T -989))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 26)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-971) (-1189)) (T -971))
+NIL
+(-13 (-21) (-1018))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1018) . T) ((-1006) . T))
+((-2147 (($ $) 16)) (-3164 (($ $) 22)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 49)) (-3522 (($ $) 24)) (-2590 (($ $) 11)) (-2713 (($ $) 38)) (-3367 (((-349) $) NIL) (((-199) $) NIL) (((-816 (-349)) $) 33)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-1818 (((-703)) 8)) (-3126 (($ $) 39)))
+(((-972 |#1|) (-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2713 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|))) (-973)) (T -972))
+((-1818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
+(-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2713 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 (((-517) $) 89)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2147 (($ $) 87)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 97)) (-1765 (((-107) $ $) 59)) (-3502 (((-517) $) 114)) (-3038 (($) 17 T CONST)) (-3164 (($ $) 86)) (-3220 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3402 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-2671 (((-107) $) 112)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 93)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 96)) (-3522 (($ $) 92)) (-2321 (((-107) $) 113)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3480 (($ $ $) 111)) (-4095 (($ $ $) 110)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2590 (($ $) 88)) (-2713 (($ $) 90)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3367 (((-349) $) 105) (((-199) $) 104) (((-816 (-349)) $) 94)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1818 (((-703)) 29)) (-3126 (($ $) 91)) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 115)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 108)) (-1606 (((-107) $ $) 107)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 109)) (-1596 (((-107) $ $) 106)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-973) (-1189)) (T -973))
+((-2829 (*1 *1 *1) (-4 *1 (-973))) (-3522 (*1 *1 *1) (-4 *1 (-973))) (-3126 (*1 *1 *1) (-4 *1 (-973))) (-2713 (*1 *1 *1) (-4 *1 (-973))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-517)))) (-2590 (*1 *1 *1) (-4 *1 (-973))) (-2147 (*1 *1 *1) (-4 *1 (-973))) (-3164 (*1 *1 *1) (-4 *1 (-973))))
+(-13 (-333) (-777) (-940) (-955 (-517)) (-955 (-377 (-517))) (-921) (-558 (-816 (-349))) (-810 (-349)) (-134) (-10 -8 (-15 -3522 ($ $)) (-15 -3126 ($ $)) (-15 -2713 ($ $)) (-15 -2964 ((-517) $)) (-15 -2590 ($ $)) (-15 -2147 ($ $)) (-15 -3164 ($ $)) (-15 -2829 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-816 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-810 (-349)) . T) ((-844) . T) ((-921) . T) ((-940) . T) ((-955 (-377 (-517))) . T) ((-955 (-517)) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) |#2| $) 23)) (-2390 ((|#1| $) 10)) (-3502 (((-517) |#2| $) 89)) (-1454 (((-3 $ "failed") |#2| (-845)) 58)) (-3302 ((|#1| $) 28)) (-2255 ((|#1| |#2| $ |#1|) 37)) (-2104 (($ $) 25)) (-3550 (((-3 |#2| "failed") |#2| $) 88)) (-2671 (((-107) |#2| $) NIL)) (-2321 (((-107) |#2| $) NIL)) (-3338 (((-107) |#2| $) 24)) (-2230 ((|#1| $) 90)) (-3287 ((|#1| $) 27)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2819 ((|#2| $) 80)) (-2262 (((-787) $) 71)) (-2194 ((|#1| |#2| $ |#1|) 38)) (-1244 (((-583 $) |#2|) 60)) (-1572 (((-107) $ $) 75)))
+(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3287 (|#1| $)) (-15 -3302 (|#1| $)) (-15 -2390 (|#1| $)) (-15 -2230 (|#1| $)) (-15 -2104 ($ $)) (-15 -3338 ((-107) |#2| $)) (-15 -2255 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1134 |#1|)) (T -974))
+((-2255 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-3287 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-3302 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-2390 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-2230 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-2104 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-3338 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1134 *4)))))
+(-13 (-980 |#1| |#2|) (-10 -8 (-15 -3287 (|#1| $)) (-15 -3302 (|#1| $)) (-15 -2390 (|#1| $)) (-15 -2230 (|#1| $)) (-15 -2104 ($ $)) (-15 -3338 ((-107) |#2| $)) (-15 -2255 (|#1| |#2| $ |#1|))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) NIL)) (-3038 (($) NIL T CONST)) (-1389 (($ (-1077)) 10) (($ (-517)) 7)) (-3220 (((-3 (-517) "failed") $) NIL)) (-3402 (((-517) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($) NIL) (($ $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) NIL)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2628 (($ $) NIL)) (-3728 (($ $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) NIL)) (-4130 (((-1024) $) NIL) (($ $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2909 (($ $) NIL)) (-2453 (($ $) NIL)) (-3367 (((-517) $) 16) (((-493) $) NIL) (((-816 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1077)) 9)) (-2262 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) NIL)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1680 (($ $) 19) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-975) (-13 (-502) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -3367 ($ (-1077))) (-15 -1389 ($ (-1077))) (-15 -1389 ($ (-517)))))) (T -975))
+((-3367 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-975)))))
+(-13 (-502) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -3367 ($ (-1077))) (-15 -1389 ($ (-1077))) (-15 -1389 ($ (-517)))))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-3351 (((-1163) $ (-1077) (-1077)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-3181 (($) 9)) (-2436 (((-51) $ (-1077) (-51)) NIL)) (-2393 (($ $) 23)) (-2541 (($ $) 21)) (-2814 (($ $) 20)) (-2721 (($ $) 22)) (-3563 (($ $) 25)) (-3144 (($ $) 26)) (-1345 (($ $) 19)) (-3075 (($ $) 24)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) 18 (|has| $ (-6 -4195)))) (-3599 (((-3 (-51) "failed") (-1077) $) 34)) (-3038 (($) NIL T CONST)) (-1212 (($) 7)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) 46 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-3 (-51) "failed") (-1077) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2173 (((-3 (-1060) "failed") $ (-1060) (-517)) 59)) (-2750 (((-51) $ (-1077) (-51)) NIL (|has| $ (-6 -4196)))) (-2557 (((-51) $ (-1077)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1077) $) NIL (|has| (-1077) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) 28 (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-1969 (((-1077) $) NIL (|has| (-1077) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1869 (((-583 (-1077)) $) NIL)) (-2409 (((-107) (-1077) $) NIL)) (-2015 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) 37)) (-1449 (((-583 (-1077)) $) NIL)) (-3413 (((-107) (-1077) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1708 (((-349) $ (-1077)) 45)) (-4067 (((-583 (-1060)) $ (-1060)) 60)) (-2420 (((-51) $) NIL (|has| (-1077) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) "failed") (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL)) (-2837 (($ $ (-51)) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-2862 (((-583 (-51)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-51) $ (-1077)) NIL) (((-51) $ (-1077) (-51)) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-2505 (($ $ (-1077)) 47)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) 30)) (-4117 (($ $ $) 31)) (-2262 (((-787) $) NIL (-3786 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-557 (-787)))))) (-3322 (($ $ (-1077) (-349)) 43)) (-1283 (($ $ (-1077) (-349)) 44)) (-2729 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-976) (-13 (-1089 (-1077) (-51)) (-10 -8 (-15 -4117 ($ $ $)) (-15 -1212 ($)) (-15 -1345 ($ $)) (-15 -2814 ($ $)) (-15 -2541 ($ $)) (-15 -2721 ($ $)) (-15 -3075 ($ $)) (-15 -2393 ($ $)) (-15 -3563 ($ $)) (-15 -3144 ($ $)) (-15 -3322 ($ $ (-1077) (-349))) (-15 -1283 ($ $ (-1077) (-349))) (-15 -1708 ((-349) $ (-1077))) (-15 -4067 ((-583 (-1060)) $ (-1060))) (-15 -2505 ($ $ (-1077))) (-15 -3181 ($)) (-15 -2173 ((-3 (-1060) "failed") $ (-1060) (-517))) (-6 -4195)))) (T -976))
+((-4117 (*1 *1 *1 *1) (-5 *1 (-976))) (-1212 (*1 *1) (-5 *1 (-976))) (-1345 (*1 *1 *1) (-5 *1 (-976))) (-2814 (*1 *1 *1) (-5 *1 (-976))) (-2541 (*1 *1 *1) (-5 *1 (-976))) (-2721 (*1 *1 *1) (-5 *1 (-976))) (-3075 (*1 *1 *1) (-5 *1 (-976))) (-2393 (*1 *1 *1) (-5 *1 (-976))) (-3563 (*1 *1 *1) (-5 *1 (-976))) (-3144 (*1 *1 *1) (-5 *1 (-976))) (-3322 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976)))) (-1283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976)))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-349)) (-5 *1 (-976)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-976)) (-5 *3 (-1060)))) (-2505 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-976)))) (-3181 (*1 *1) (-5 *1 (-976))) (-2173 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-976)))))
+(-13 (-1089 (-1077) (-51)) (-10 -8 (-15 -4117 ($ $ $)) (-15 -1212 ($)) (-15 -1345 ($ $)) (-15 -2814 ($ $)) (-15 -2541 ($ $)) (-15 -2721 ($ $)) (-15 -3075 ($ $)) (-15 -2393 ($ $)) (-15 -3563 ($ $)) (-15 -3144 ($ $)) (-15 -3322 ($ $ (-1077) (-349))) (-15 -1283 ($ $ (-1077) (-349))) (-15 -1708 ((-349) $ (-1077))) (-15 -4067 ((-583 (-1060)) $ (-1060))) (-15 -2505 ($ $ (-1077))) (-15 -3181 ($)) (-15 -2173 ((-3 (-1060) "failed") $ (-1060) (-517))) (-6 -4195)))
+((-1529 (($ $) 45)) (-2660 (((-107) $ $) 74)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-876 (-377 (-517)))) 227) (((-3 $ "failed") (-876 (-517))) 226) (((-3 $ "failed") (-876 |#2|)) 229)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-876 (-377 (-517)))) 215) (($ (-876 (-517))) 211) (($ (-876 |#2|)) 231)) (-2364 (($ $) NIL) (($ $ |#4|) 43)) (-3639 (((-107) $ $) 112) (((-107) $ (-583 $)) 113)) (-1727 (((-107) $) 56)) (-1868 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 107)) (-3589 (($ $) 138)) (-3345 (($ $) 134)) (-3869 (($ $) 133)) (-3092 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3156 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3142 (((-107) $ $) 121) (((-107) $ (-583 $)) 122)) (-2772 ((|#4| $) 33)) (-2561 (($ $ $) 110)) (-1837 (((-107) $) 55)) (-2213 (((-703) $) 35)) (-3801 (($ $) 152)) (-2768 (($ $) 149)) (-1330 (((-583 $) $) 68)) (-2655 (($ $) 57)) (-1604 (($ $) 145)) (-3620 (((-583 $) $) 65)) (-2841 (($ $) 59)) (-2336 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $) 111)) (-3028 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 108) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |#4|) 109)) (-1650 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $) 104) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |#4|) 105)) (-1530 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1962 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3497 (((-583 $) $) 51)) (-1568 (((-107) $ $) 118) (((-107) $ (-583 $)) 119)) (-2930 (($ $ $) 103)) (-2578 (($ $) 37)) (-1579 (((-107) $ $) 72)) (-2788 (((-107) $ $) 114) (((-107) $ (-583 $)) 116)) (-3877 (($ $ $) 101)) (-2415 (($ $) 40)) (-2361 ((|#2| |#2| $) 142) (($ (-583 $)) NIL) (($ $ $) NIL)) (-2353 (($ $ |#2|) NIL) (($ $ $) 131)) (-3084 (($ $ |#2|) 126) (($ $ $) 129)) (-1216 (($ $) 48)) (-2858 (($ $) 52)) (-3367 (((-816 (-349)) $) NIL) (((-816 (-517)) $) NIL) (((-493) $) NIL) (($ (-876 (-377 (-517)))) 217) (($ (-876 (-517))) 213) (($ (-876 |#2|)) 228) (((-1060) $) 250) (((-876 |#2|) $) 162)) (-2262 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-876 |#2|) $) 163) (($ (-377 (-517))) NIL) (($ $) NIL)) (-4093 (((-3 (-107) "failed") $ $) 71)))
+(((-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 ((-876 |#2|) |#1|)) (-15 -3367 ((-876 |#2|) |#1|)) (-15 -3367 ((-1060) |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -2768 (|#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -2361 (|#2| |#2| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3084 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#2|)) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3345 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3367 (|#1| (-876 |#2|))) (-15 -3402 (|#1| (-876 |#2|))) (-15 -3220 ((-3 |#1| "failed") (-876 |#2|))) (-15 -3367 (|#1| (-876 (-517)))) (-15 -3402 (|#1| (-876 (-517)))) (-15 -3220 ((-3 |#1| "failed") (-876 (-517)))) (-15 -3367 (|#1| (-876 (-377 (-517))))) (-15 -3402 (|#1| (-876 (-377 (-517))))) (-15 -3220 ((-3 |#1| "failed") (-876 (-377 (-517))))) (-15 -2930 (|#1| |#1| |#1|)) (-15 -3877 (|#1| |#1| |#1|)) (-15 -1732 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1762 (-703))) |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1868 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1962 (|#1| |#1| |#1| |#4|)) (-15 -1530 (|#1| |#1| |#1| |#4|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1| |#4|)) (-15 -3092 (|#1| |#1| |#1| |#4|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3142 ((-107) |#1| (-583 |#1|))) (-15 -3142 ((-107) |#1| |#1|)) (-15 -1568 ((-107) |#1| (-583 |#1|))) (-15 -1568 ((-107) |#1| |#1|)) (-15 -2788 ((-107) |#1| (-583 |#1|))) (-15 -2788 ((-107) |#1| |#1|)) (-15 -3639 ((-107) |#1| (-583 |#1|))) (-15 -3639 ((-107) |#1| |#1|)) (-15 -2660 ((-107) |#1| |#1|)) (-15 -1579 ((-107) |#1| |#1|)) (-15 -4093 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1330 ((-583 |#1|) |#1|)) (-15 -3620 ((-583 |#1|) |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1727 ((-107) |#1|)) (-15 -1837 ((-107) |#1|)) (-15 -2364 (|#1| |#1| |#4|)) (-15 -2336 (|#1| |#1| |#4|)) (-15 -2858 (|#1| |#1|)) (-15 -3497 ((-583 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2578 (|#1| |#1|)) (-15 -2213 ((-703) |#1|)) (-15 -2772 (|#4| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -2336 (|#2| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-978 |#2| |#3| |#4|) (-964) (-725) (-779)) (T -977))
+NIL
+(-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 ((-876 |#2|) |#1|)) (-15 -3367 ((-876 |#2|) |#1|)) (-15 -3367 ((-1060) |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -2768 (|#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -2361 (|#2| |#2| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3084 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#2|)) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3345 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3367 (|#1| (-876 |#2|))) (-15 -3402 (|#1| (-876 |#2|))) (-15 -3220 ((-3 |#1| "failed") (-876 |#2|))) (-15 -3367 (|#1| (-876 (-517)))) (-15 -3402 (|#1| (-876 (-517)))) (-15 -3220 ((-3 |#1| "failed") (-876 (-517)))) (-15 -3367 (|#1| (-876 (-377 (-517))))) (-15 -3402 (|#1| (-876 (-377 (-517))))) (-15 -3220 ((-3 |#1| "failed") (-876 (-377 (-517))))) (-15 -2930 (|#1| |#1| |#1|)) (-15 -3877 (|#1| |#1| |#1|)) (-15 -1732 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1762 (-703))) |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1868 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1962 (|#1| |#1| |#1| |#4|)) (-15 -1530 (|#1| |#1| |#1| |#4|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1| |#4|)) (-15 -3092 (|#1| |#1| |#1| |#4|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3142 ((-107) |#1| (-583 |#1|))) (-15 -3142 ((-107) |#1| |#1|)) (-15 -1568 ((-107) |#1| (-583 |#1|))) (-15 -1568 ((-107) |#1| |#1|)) (-15 -2788 ((-107) |#1| (-583 |#1|))) (-15 -2788 ((-107) |#1| |#1|)) (-15 -3639 ((-107) |#1| (-583 |#1|))) (-15 -3639 ((-107) |#1| |#1|)) (-15 -2660 ((-107) |#1| |#1|)) (-15 -1579 ((-107) |#1| |#1|)) (-15 -4093 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1330 ((-583 |#1|) |#1|)) (-15 -3620 ((-583 |#1|) |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1727 ((-107) |#1|)) (-15 -1837 ((-107) |#1|)) (-15 -2364 (|#1| |#1| |#4|)) (-15 -2336 (|#1| |#1| |#4|)) (-15 -2858 (|#1| |#1|)) (-15 -3497 ((-583 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2578 (|#1| |#1|)) (-15 -2213 ((-703) |#1|)) (-15 -2772 (|#4| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -2336 (|#2| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#3|) $) 110)) (-1428 (((-1073 $) $ |#3|) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1529 (($ $) 271)) (-2660 (((-107) $ $) 257)) (-1783 (((-3 $ "failed") $ $) 19)) (-4068 (($ $ $) 216 (|has| |#1| (-509)))) (-3770 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-876 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))) (((-3 $ "failed") (-876 (-517))) 228 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077)))))) (((-3 $ "failed") (-876 |#1|)) 225 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-502))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-912 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))))) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) ((|#3| $) 135) (($ (-876 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))) (($ (-876 (-517))) 227 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077)))))) (($ (-876 |#1|)) 224 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-502))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-912 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))))) (-2133 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-2364 (($ $) 154) (($ $ |#3|) 266)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3639 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3550 (((-3 $ "failed") $) 34)) (-1727 (((-107) $) 264)) (-1868 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 236)) (-3589 (($ $) 205 (|has| |#1| (-421)))) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-3345 (($ $) 221 (|has| |#1| (-509)))) (-3869 (($ $) 222 (|has| |#1| (-509)))) (-3092 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3156 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1760 (($ $ |#1| |#2| $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| |#3| (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| |#3| (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-3142 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-1576 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-2772 ((|#3| $) 275)) (-2069 (($ (-1073 |#1|) |#3|) 117) (($ (-1073 $) |#3|) 116)) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2561 (($ $ $) 235)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 120)) (-1837 (((-107) $) 265)) (-3942 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-2213 (((-703) $) 274)) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 |#2| |#2|) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-1958 (((-3 |#3| "failed") $) 123)) (-3801 (($ $) 202 (|has| |#1| (-421)))) (-2768 (($ $) 203 (|has| |#1| (-421)))) (-1330 (((-583 $) $) 260)) (-2655 (($ $) 263)) (-1604 (($ $) 204 (|has| |#1| (-421)))) (-3620 (((-583 $) $) 261)) (-2841 (($ $) 262)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148) (($ $ |#3|) 267)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $) 234)) (-3028 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 238) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 237)) (-1650 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $) 240) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |#3|) 239)) (-1530 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1962 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3232 (((-1060) $) 9)) (-1504 (($ $ $) 210 (|has| |#1| (-509)))) (-3497 (((-583 $) $) 269)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) 113)) (-1568 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-2930 (($ $ $) 232)) (-2578 (($ $) 273)) (-1579 (((-107) $ $) 258)) (-2788 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3877 (($ $ $) 233)) (-2415 (($ $) 272)) (-4130 (((-1024) $) 10)) (-3249 (((-2 (|:| -2361 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-1850 (((-2 (|:| -2361 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-1567 (((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2353 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3084 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3115 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2042 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-1191 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-1216 (($ $) 270)) (-2858 (($ $) 268)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| |#3| (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| |#3| (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-876 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))) (($ (-876 (-517))) 226 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077)))))) (($ (-876 |#1|)) 223 (|has| |#3| (-558 (-1077)))) (((-1060) $) 201 (-12 (|has| |#1| (-955 (-517))) (|has| |#3| (-558 (-1077))))) (((-876 |#1|) $) 200 (|has| |#3| (-558 (-1077))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-876 |#1|) $) 199 (|has| |#3| (-558 (-1077)))) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-4093 (((-3 (-107) "failed") $ $) 259)) (-3675 (($) 30 T CONST)) (-3828 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-2494 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-3348 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-978 |#1| |#2| |#3|) (-1189) (-964) (-725) (-779)) (T -978))
+((-2772 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2578 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2415 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1216 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3497 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-2858 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2336 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2841 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3620 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-1330 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-4093 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1579 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2660 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3639 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3639 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2788 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1568 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3142 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3142 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3092 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3156 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1530 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1962 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1530 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1962 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1650 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) (-1650 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3028 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *4 *5 *3)))) (-1868 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) (-2561 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1732 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1762 (-703)))) (-4 *1 (-978 *3 *4 *5)))) (-3877 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3220 (*1 *1 *2) (|partial| -3786 (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3402 (*1 *1 *2) (-3786 (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3367 (*1 *1 *2) (-3786 (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3220 (*1 *1 *2) (|partial| -3786 (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3402 (*1 *1 *2) (-3786 (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-558 (-1077))) (-4 *4 (-725)) (-4 *5 (-779)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3084 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2353 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3084 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2353 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-4068 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1567 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-1850 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3249 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2361 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-2133 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3770 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-1504 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2494 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3828 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-1576 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2361 (*1 *2 *2 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3589 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1604 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2768 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(-13 (-873 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2772 (|t#3| $)) (-15 -2213 ((-703) $)) (-15 -2578 ($ $)) (-15 -2415 ($ $)) (-15 -1529 ($ $)) (-15 -1216 ($ $)) (-15 -3497 ((-583 $) $)) (-15 -2858 ($ $)) (-15 -2336 ($ $ |t#3|)) (-15 -2364 ($ $ |t#3|)) (-15 -1837 ((-107) $)) (-15 -1727 ((-107) $)) (-15 -2655 ($ $)) (-15 -2841 ($ $)) (-15 -3620 ((-583 $) $)) (-15 -1330 ((-583 $) $)) (-15 -4093 ((-3 (-107) "failed") $ $)) (-15 -1579 ((-107) $ $)) (-15 -2660 ((-107) $ $)) (-15 -3639 ((-107) $ $)) (-15 -3639 ((-107) $ (-583 $))) (-15 -2788 ((-107) $ $)) (-15 -2788 ((-107) $ (-583 $))) (-15 -1568 ((-107) $ $)) (-15 -1568 ((-107) $ (-583 $))) (-15 -3142 ((-107) $ $)) (-15 -3142 ((-107) $ (-583 $))) (-15 -3092 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3092 ($ $ $ |t#3|)) (-15 -3156 ($ $ $ |t#3|)) (-15 -1530 ($ $ $)) (-15 -1962 ($ $ $)) (-15 -1530 ($ $ $ |t#3|)) (-15 -1962 ($ $ $ |t#3|)) (-15 -1650 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $)) (-15 -1650 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |t#3|)) (-15 -3028 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -3028 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |t#3|)) (-15 -1868 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2561 ($ $ $)) (-15 -1732 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $)) (-15 -3877 ($ $ $)) (-15 -2930 ($ $ $)) (IF (|has| |t#3| (-558 (-1077))) (PROGN (-6 (-557 (-876 |t#1|))) (-6 (-558 (-876 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3220 ((-3 $ "failed") (-876 (-377 (-517))))) (-15 -3402 ($ (-876 (-377 (-517))))) (-15 -3367 ($ (-876 (-377 (-517))))) (-15 -3220 ((-3 $ "failed") (-876 (-517)))) (-15 -3402 ($ (-876 (-517)))) (-15 -3367 ($ (-876 (-517)))) (IF (|has| |t#1| (-912 (-517))) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 |t#1|))) (-15 -3402 ($ (-876 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 (-517)))) (-15 -3402 ($ (-876 (-517)))) (-15 -3367 ($ (-876 (-517)))) (IF (|has| |t#1| (-502)) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 |t#1|))) (-15 -3402 ($ (-876 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) |%noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 |t#1|))) (-15 -3402 ($ (-876 |t#1|)))))) (-15 -3367 ($ (-876 |t#1|))) (IF (|has| |t#1| (-955 (-517))) (-6 (-558 (-1060))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3869 ($ $)) (-15 -3345 ($ $)) (-15 -3084 ($ $ |t#1|)) (-15 -2353 ($ $ |t#1|)) (-15 -3084 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -4068 ($ $ $)) (-15 -1567 ((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1850 ((-2 (|:| -2361 $) (|:| |coef1| $)) $ $)) (-15 -3249 ((-2 (|:| -2361 $) (|:| |coef2| $)) $ $)) (-15 -2133 ($ $ $)) (-15 -3770 ((-583 $) $ $)) (-15 -1504 ($ $ $)) (-15 -2494 ($ $ $ (-703))) (-15 -3828 ($ $ $ $ (-703))) (-15 -1576 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -2361 (|t#1| |t#1| $)) (-15 -3589 ($ $)) (-15 -1604 ($ $)) (-15 -2768 ($ $)) (-15 -3801 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-876 |#1|)) |has| |#3| (-558 (-1077))) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) ((-558 (-876 |#1|)) |has| |#3| (-558 (-1077))) ((-558 (-1060)) -12 (|has| |#1| (-955 (-517))) (|has| |#3| (-558 (-1077)))) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 |#3|) . T) ((-810 (-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) ((-873 |#1| |#2| |#3|) . T) ((-833) |has| |#1| (-833)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-955 |#3|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) |has| |#1| (-833)))
+((-1992 (((-107) |#3| $) 13)) (-1454 (((-3 $ "failed") |#3| (-845)) 23)) (-3550 (((-3 |#3| "failed") |#3| $) 37)) (-2671 (((-107) |#3| $) 16)) (-2321 (((-107) |#3| $) 14)))
+(((-979 |#1| |#2| |#3|) (-10 -8 (-15 -1454 ((-3 |#1| "failed") |#3| (-845))) (-15 -3550 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2671 ((-107) |#3| |#1|)) (-15 -2321 ((-107) |#3| |#1|)) (-15 -1992 ((-107) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-777) (-333)) (-1134 |#2|)) (T -979))
+NIL
+(-10 -8 (-15 -1454 ((-3 |#1| "failed") |#3| (-845))) (-15 -3550 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2671 ((-107) |#3| |#1|)) (-15 -2321 ((-107) |#3| |#1|)) (-15 -1992 ((-107) |#3| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) |#2| $) 21)) (-3502 (((-517) |#2| $) 22)) (-1454 (((-3 $ "failed") |#2| (-845)) 15)) (-2255 ((|#1| |#2| $ |#1|) 13)) (-3550 (((-3 |#2| "failed") |#2| $) 18)) (-2671 (((-107) |#2| $) 19)) (-2321 (((-107) |#2| $) 20)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2819 ((|#2| $) 17)) (-2262 (((-787) $) 11)) (-2194 ((|#1| |#2| $ |#1|) 14)) (-1244 (((-583 $) |#2|) 16)) (-1572 (((-107) $ $) 6)))
+(((-980 |#1| |#2|) (-1189) (-13 (-777) (-333)) (-1134 |t#1|)) (T -980))
+((-3502 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-517)))) (-1992 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-107)))) (-2321 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-107)))) (-2671 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-107)))) (-3550 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1134 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1134 *3)))) (-1244 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *3)))) (-1454 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-845)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1134 *4)))) (-2194 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1134 *2)))) (-2255 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1134 *2)))))
+(-13 (-1006) (-10 -8 (-15 -3502 ((-517) |t#2| $)) (-15 -1992 ((-107) |t#2| $)) (-15 -2321 ((-107) |t#2| $)) (-15 -2671 ((-107) |t#2| $)) (-15 -3550 ((-3 |t#2| "failed") |t#2| $)) (-15 -2819 (|t#2| $)) (-15 -1244 ((-583 $) |t#2|)) (-15 -1454 ((-3 $ "failed") |t#2| (-845))) (-15 -2194 (|t#1| |t#2| $ |t#1|)) (-15 -2255 (|t#1| |t#2| $ |t#1|))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-3068 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703)) 96)) (-2172 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 55)) (-2606 (((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)) 87)) (-3532 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2329 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-1784 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3367 (((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 82)) (-2458 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-107)) 54)) (-1331 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-107))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981))
+((-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3068 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-1784 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2329 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2172 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-107))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703))))
+((-3901 (((-107) |#5| $) 21)) (-1426 (((-107) |#5| $) 24)) (-3403 (((-107) |#5| $) 16) (((-107) $) 45)) (-2187 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 77) (((-583 $) (-583 |#5|) (-583 $)) 75) (((-583 $) |#5| (-583 $)) 78)) (-3175 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 60) (((-583 $) (-583 |#5|) $) 62) (((-583 $) (-583 |#5|) (-583 $)) 64)) (-2709 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 54) (((-583 $) (-583 |#5|) $) 56) (((-583 $) (-583 |#5|) (-583 $)) 58)) (-2525 (((-107) |#5| $) 27)))
+(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3175 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3175 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3175 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3175 ((-583 |#1|) |#5| |#1|)) (-15 -2709 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2709 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2709 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2709 ((-583 |#1|) |#5| |#1|)) (-15 -2187 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2187 ((-583 |#1|) |#5| |#1|)) (-15 -1426 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#1|)) (-15 -2525 ((-107) |#5| |#1|)) (-15 -3901 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#5| |#1|)) (-15 -3175 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-978 |#2| |#3| |#4|)) (T -982))
+NIL
+(-10 -8 (-15 -3175 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3175 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3175 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3175 ((-583 |#1|) |#5| |#1|)) (-15 -2709 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2709 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2709 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2709 ((-583 |#1|) |#5| |#1|)) (-15 -2187 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2187 ((-583 |#1|) |#5| |#1|)) (-15 -1426 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#1|)) (-15 -2525 ((-107) |#5| |#1|)) (-15 -3901 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#5| |#1|)) (-15 -3175 (|#1| |#1| |#5|)))
+((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195)))))
+(((-983 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -983))
+((-3403 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3901 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-2525 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-1426 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3398 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-2179 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-2179 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-1243 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-2211 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-1504 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-1322 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-2187 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-2187 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-2187 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)))) (-2187 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) (-2709 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-2709 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) (-2709 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)))) (-2642 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2642 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) (-3175 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3175 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8)))))
+(-13 (-1106 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3403 ((-107) |t#4| $)) (-15 -3901 ((-107) |t#4| $)) (-15 -2525 ((-107) |t#4| $)) (-15 -3403 ((-107) $)) (-15 -1426 ((-107) |t#4| $)) (-15 -3398 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -2179 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |t#4| $)) (-15 -2179 ((-107) |t#4| $)) (-15 -1243 ((-583 $) |t#4| $)) (-15 -2211 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -1504 ((-583 (-2 (|:| |val| |t#4|) (|:| -3864 $))) |t#4| |t#4| $)) (-15 -1322 ((-583 (-2 (|:| |val| |t#4|) (|:| -3864 $))) |t#4| $)) (-15 -2187 ((-583 $) |t#4| $)) (-15 -2187 ((-583 $) (-583 |t#4|) $)) (-15 -2187 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2187 ((-583 $) |t#4| (-583 $))) (-15 -2709 ((-583 $) |t#4| $)) (-15 -2709 ((-583 $) |t#4| (-583 $))) (-15 -2709 ((-583 $) (-583 |t#4|) $)) (-15 -2709 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2642 ($ |t#4| $)) (-15 -2642 ($ (-583 |t#4|) $)) (-15 -3175 ((-583 $) |t#4| $)) (-15 -3175 ((-583 $) |t#4| (-583 $))) (-15 -3175 ((-583 $) (-583 |t#4|) $)) (-15 -3175 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3246 ((-583 $) (-583 |t#4|) (-107)))))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T))
+((-1464 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|) 81)) (-3103 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 113)) (-1932 (((-583 |#5|) |#4| |#5|) 70)) (-1889 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2558 (((-1163)) 35)) (-1367 (((-1163)) 25)) (-3944 (((-1163) (-1060) (-1060) (-1060)) 31)) (-3404 (((-1163) (-1060) (-1060) (-1060)) 20)) (-2702 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|) 96)) (-1547 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107)) 107) (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-2051 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 102)))
+(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2702 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -2051 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -3103 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1889 ((-107) |#4| |#5|)) (-15 -1889 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1932 ((-583 |#5|) |#4| |#5|)) (-15 -1464 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984))
+((-1464 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1932 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1889 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1889 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3103 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2051 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-1547 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2702 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3944 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1367 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3404 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2702 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -2051 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -3103 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1889 ((-107) |#4| |#5|)) (-15 -1889 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1932 ((-583 |#5|) |#4| |#5|)) (-15 -1464 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|)))
+((-2105 (((-107) $ $) NIL)) (-2981 (((-1077) $) 8)) (-3232 (((-1060) $) 16)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 13)))
+(((-985 |#1|) (-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $)))) (-1077)) (T -985))
+((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-985 *3)) (-14 *3 *2))))
+(-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $))))
+((-2105 (((-107) $ $) NIL)) (-3594 (($ $ (-583 (-1077)) (-1 (-107) (-583 |#3|))) 29)) (-2021 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1077))) 19)) (-2506 ((|#3| $) 13)) (-3220 (((-3 (-265 |#3|) "failed") $) 56)) (-3402 (((-265 |#3|) $) NIL)) (-2318 (((-583 (-1077)) $) 15)) (-1328 (((-816 |#1|) $) 11)) (-2499 ((|#3| $) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2612 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-845)) 36)) (-2262 (((-787) $) 85) (($ (-265 |#3|)) 20)) (-1572 (((-107) $ $) 33)))
+(((-986 |#1| |#2| |#3|) (-13 (-1006) (-258 |#3| |#3|) (-955 (-265 |#3|)) (-10 -8 (-15 -2021 ($ |#3| |#3|)) (-15 -2021 ($ |#3| |#3| (-583 (-1077)))) (-15 -3594 ($ $ (-583 (-1077)) (-1 (-107) (-583 |#3|)))) (-15 -1328 ((-816 |#1|) $)) (-15 -2499 (|#3| $)) (-15 -2506 (|#3| $)) (-15 -2612 (|#3| $ |#3| (-845))) (-15 -2318 ((-583 (-1077)) $)))) (-1006) (-13 (-964) (-810 |#1|) (-779) (-558 (-816 |#1|))) (-13 (-400 |#2|) (-810 |#1|) (-558 (-816 |#1|)))) (T -986))
+((-2021 (*1 *1 *2 *2) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))) (-2021 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) (-3594 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-986 *4 *5 *6)))) (-1328 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 *2))) (-5 *2 (-816 *3)) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 *2))))) (-2499 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))))) (-2506 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))))) (-2612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-845)) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) (-2318 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-5 *2 (-583 (-1077))) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))))
+(-13 (-1006) (-258 |#3| |#3|) (-955 (-265 |#3|)) (-10 -8 (-15 -2021 ($ |#3| |#3|)) (-15 -2021 ($ |#3| |#3| (-583 (-1077)))) (-15 -3594 ($ $ (-583 (-1077)) (-1 (-107) (-583 |#3|)))) (-15 -1328 ((-816 |#1|) $)) (-15 -2499 (|#3| $)) (-15 -2506 (|#3| $)) (-15 -2612 (|#3| $ |#3| (-845))) (-15 -2318 ((-583 (-1077)) $))))
+((-2105 (((-107) $ $) NIL)) (-3566 (($ (-583 (-986 |#1| |#2| |#3|))) 12)) (-3933 (((-583 (-986 |#1| |#2| |#3|)) $) 19)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2612 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-845)) 25)) (-2262 (((-787) $) 15)) (-1572 (((-107) $ $) 18)))
+(((-987 |#1| |#2| |#3|) (-13 (-1006) (-258 |#3| |#3|) (-10 -8 (-15 -3566 ($ (-583 (-986 |#1| |#2| |#3|)))) (-15 -3933 ((-583 (-986 |#1| |#2| |#3|)) $)) (-15 -2612 (|#3| $ |#3| (-845))))) (-1006) (-13 (-964) (-810 |#1|) (-779) (-558 (-816 |#1|))) (-13 (-400 |#2|) (-810 |#1|) (-558 (-816 |#1|)))) (T -987))
+((-3566 (*1 *1 *2) (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) (-5 *1 (-987 *3 *4 *5)))) (-3933 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))) (-2612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-845)) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))))
+(-13 (-1006) (-258 |#3| |#3|) (-10 -8 (-15 -3566 ($ (-583 (-986 |#1| |#2| |#3|)))) (-15 -3933 ((-583 (-986 |#1| |#2| |#3|)) $)) (-15 -2612 (|#3| $ |#3| (-845)))))
+((-3327 (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)) 74) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|))) 76) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107)) 75)))
+(((-988 |#1| |#2|) (-10 -7 (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1077))) (T -988))
+((-3327 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) (-5 *1 (-988 *4 *5)) (-5 *3 (-583 (-876 *4))) (-14 *5 (-583 (-1077))))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))))))
+(-10 -7 (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107))))
+((-3896 (((-388 |#3|) |#3|) 16)))
+(((-989 |#1| |#2| |#3|) (-10 -7 (-15 -3896 ((-388 |#3|) |#3|))) (-1134 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1134 |#2|)) (T -989))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-989 *4 *5 *3)) (-4 *3 (-1134 *5)))))
+(-10 -7 (-15 -3896 ((-388 |#3|) |#3|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 125)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-2491 (($ $) NIL (|has| |#1| (-333)))) (-2025 (((-107) $) NIL (|has| |#1| (-333)))) (-1278 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) 115)) (-1991 ((|#1| $) 119)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2390 (((-703)) 40 (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|) (-1158 $)) NIL) (($ (-1158 |#1|)) 43)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-4028 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-1510 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3778 (((-845)) 77)) (-2192 (($) 44 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4169 (($) NIL (|has| |#1| (-319)))) (-2634 (((-107) $) NIL (|has| |#1| (-319)))) (-2627 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3250 (((-845) $) NIL (|has| |#1| (-319))) (((-765 (-845)) $) NIL (|has| |#1| (-319)))) (-1690 (((-107) $) NIL)) (-3522 ((|#1| $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1914 ((|#2| $) 84 (|has| |#1| (-333)))) (-4161 (((-845) $) 130 (|has| |#1| (-338)))) (-1497 ((|#2| $) 58)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-2578 (($) NIL (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) 124 (|has| |#1| (-338)))) (-4130 (((-1024) $) NIL)) (-1306 (($) 121)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-319)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3115 ((|#1| (-1158 $)) NIL) ((|#1|) 109)) (-3667 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2042 (($ $) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2819 ((|#2|) 73)) (-3718 (($) NIL (|has| |#1| (-319)))) (-1372 (((-1158 |#1|) $ (-1158 $)) 89) (((-623 |#1|) (-1158 $) (-1158 $)) NIL) (((-1158 |#1|) $) 71) (((-623 |#1|) (-1158 $)) 85)) (-3367 (((-1158 |#1|) $) NIL) (($ (-1158 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2262 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3848 ((|#2| $) 82)) (-1818 (((-703)) 75)) (-3700 (((-1158 $)) 81)) (-2944 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 30 T CONST)) (-3675 (($) 19 T CONST)) (-3348 (($ $) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1572 (((-107) $ $) 63)) (-1692 (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) 67) (($ $ $) NIL)) (-1666 (($ $ $) 65)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+(((-990 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1134 |#1|) |#2|) (T -990))
NIL
(-657 |#1| |#2|)
-((-3868 (((-388 |#3|) |#3|) 16)))
-(((-990 |#1| |#2| |#3|) (-10 -7 (-15 -3868 ((-388 |#3|) |#3|))) (-1133 (-377 (-875 (-517)))) (-13 (-333) (-134) (-657 (-377 (-875 (-517))) |#1|)) (-1133 |#2|)) (T -990))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-1133 (-377 (-875 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-875 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-990 *4 *5 *3)) (-4 *3 (-1133 *5)))))
-(-10 -7 (-15 -3868 ((-388 |#3|) |#3|)))
-((-2119 (((-107) $ $) NIL)) (-3458 (($ $ $) 14)) (-4084 (($ $ $) 15)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3374 (($) 6)) (-3359 (((-1076) $) 18)) (-2271 (((-787) $) 12)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 13)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 8)))
-(((-991) (-13 (-779) (-10 -8 (-15 -3374 ($)) (-15 -3359 ((-1076) $))))) (T -991))
-((-3374 (*1 *1) (-5 *1 (-991))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-991)))))
-(-13 (-779) (-10 -8 (-15 -3374 ($)) (-15 -3359 ((-1076) $))))
-((-1727 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-107) |#1|)) 20)) (-2289 (((-1162)) 15)) (-3819 (((-583 |#1|)) 9)))
-(((-992 |#1|) (-10 -7 (-15 -2289 ((-1162))) (-15 -3819 ((-583 |#1|))) (-15 -1727 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1727 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -992))
-((-1727 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-992 *2)))) (-1727 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-992 *2)))) (-3819 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-992 *3)) (-4 *3 (-124)))) (-2289 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-992 *3)) (-4 *3 (-124)))))
-(-10 -7 (-15 -2289 ((-1162))) (-15 -3819 ((-583 |#1|))) (-15 -1727 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1727 (|#1| |#1| (-1 (-517) |#1| |#1|))))
-((-2520 (((-1157 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1157 (-623 (-875 |#1|))) (-583 (-1076)) (-623 (-875 |#1|))) 61) (((-1157 (-623 (-377 (-875 |#1|)))) (-583 (-1076)) (-623 (-377 (-875 |#1|)))) 77)) (-3784 (((-1157 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
-(((-993 |#1|) (-10 -7 (-15 -2520 ((-1157 (-623 (-377 (-875 |#1|)))) (-583 (-1076)) (-623 (-377 (-875 |#1|))))) (-15 -2520 ((-1157 (-623 (-875 |#1|))) (-583 (-1076)) (-623 (-875 |#1|)))) (-15 -2520 ((-1157 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3784 ((-1157 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -993))
-((-3784 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1157 *5)) (-5 *1 (-993 *5)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1157 (-623 *4))) (-5 *1 (-993 *4)))) (-2520 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1076))) (-4 *5 (-333)) (-5 *2 (-1157 (-623 (-875 *5)))) (-5 *1 (-993 *5)) (-5 *4 (-623 (-875 *5))))) (-2520 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1076))) (-4 *5 (-333)) (-5 *2 (-1157 (-623 (-377 (-875 *5))))) (-5 *1 (-993 *5)) (-5 *4 (-623 (-377 (-875 *5)))))))
-(-10 -7 (-15 -2520 ((-1157 (-623 (-377 (-875 |#1|)))) (-583 (-1076)) (-623 (-377 (-875 |#1|))))) (-15 -2520 ((-1157 (-623 (-875 |#1|))) (-583 (-1076)) (-623 (-875 |#1|)))) (-15 -2520 ((-1157 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3784 ((-1157 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2774 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1076)) NIL)) (-3077 (((-703) $) NIL) (((-703) $ (-1076)) NIL)) (-2097 (((-583 (-995 (-1076))) $) NIL)) (-1440 (((-1072 $) $ (-995 (-1076))) NIL) (((-1072 |#1|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-995 (-1076)))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-2431 (($ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-995 (-1076)) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL) (((-3 (-1028 |#1| (-1076)) "failed") $) NIL)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-995 (-1076)) $) NIL) (((-1076) $) NIL) (((-1028 |#1| (-1076)) $) NIL)) (-2157 (($ $ $ (-995 (-1076))) NIL (|has| |#1| (-156)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ (-995 (-1076))) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-489 (-995 (-1076))) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-995 (-1076)) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-995 (-1076)) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1395 (((-703) $ (-1076)) NIL) (((-703) $) NIL)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2086 (($ (-1072 |#1|) (-995 (-1076))) NIL) (($ (-1072 $) (-995 (-1076))) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-489 (-995 (-1076)))) NIL) (($ $ (-995 (-1076)) (-703)) NIL) (($ $ (-583 (-995 (-1076))) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-995 (-1076))) NIL)) (-3492 (((-489 (-995 (-1076))) $) NIL) (((-703) $ (-995 (-1076))) NIL) (((-583 (-703)) $ (-583 (-995 (-1076)))) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-489 (-995 (-1076))) (-489 (-995 (-1076)))) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-3044 (((-1 $ (-703)) (-1076)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-2297 (((-3 (-995 (-1076)) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-3301 (((-995 (-1076)) $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-1919 (((-107) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-995 (-1076))) (|:| -2121 (-703))) "failed") $) NIL)) (-2626 (($ $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-995 (-1076)) |#1|) NIL) (($ $ (-583 (-995 (-1076))) (-583 |#1|)) NIL) (($ $ (-995 (-1076)) $) NIL) (($ $ (-583 (-995 (-1076))) (-583 $)) NIL) (($ $ (-1076) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1076)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1076)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-1220 (($ $ (-995 (-1076))) NIL (|has| |#1| (-156)))) (-2060 (($ $ (-995 (-1076))) NIL) (($ $ (-583 (-995 (-1076)))) NIL) (($ $ (-995 (-1076)) (-703)) NIL) (($ $ (-583 (-995 (-1076))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2861 (((-583 (-1076)) $) NIL)) (-3647 (((-489 (-995 (-1076))) $) NIL) (((-703) $ (-995 (-1076))) NIL) (((-583 (-703)) $ (-583 (-995 (-1076)))) NIL) (((-703) $ (-1076)) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-995 (-1076)) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-995 (-1076)) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-995 (-1076)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-995 (-1076))) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-995 (-1076))) NIL) (($ (-1076)) NIL) (($ (-1028 |#1| (-1076))) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-489 (-995 (-1076)))) NIL) (($ $ (-995 (-1076)) (-703)) NIL) (($ $ (-583 (-995 (-1076))) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-995 (-1076))) NIL) (($ $ (-583 (-995 (-1076)))) NIL) (($ $ (-995 (-1076)) (-703)) NIL) (($ $ (-583 (-995 (-1076))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-994 |#1|) (-13 (-226 |#1| (-1076) (-995 (-1076)) (-489 (-995 (-1076)))) (-954 (-1028 |#1| (-1076)))) (-963)) (T -994))
-NIL
-(-13 (-226 |#1| (-1076) (-995 (-1076)) (-489 (-995 (-1076)))) (-954 (-1028 |#1| (-1076))))
-((-2119 (((-107) $ $) NIL)) (-3077 (((-703) $) NIL)) (-3752 ((|#1| $) 10)) (-3228 (((-3 |#1| "failed") $) NIL)) (-3390 ((|#1| $) NIL)) (-1395 (((-703) $) 11)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-3044 (($ |#1| (-703)) 9)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2060 (($ $) NIL) (($ $ (-703)) NIL)) (-2271 (((-787) $) NIL) (($ |#1|) NIL)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 15)))
-(((-995 |#1|) (-239 |#1|) (-779)) (T -995))
+((-3896 (((-388 |#3|) |#3|) 16)))
+(((-991 |#1| |#2| |#3|) (-10 -7 (-15 -3896 ((-388 |#3|) |#3|))) (-1134 (-377 (-876 (-517)))) (-13 (-333) (-134) (-657 (-377 (-876 (-517))) |#1|)) (-1134 |#2|)) (T -991))
+((-3896 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 (-876 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-876 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1134 *5)))))
+(-10 -7 (-15 -3896 ((-388 |#3|) |#3|)))
+((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) 14)) (-4095 (($ $ $) 15)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3154 (($) 6)) (-3367 (((-1077) $) 18)) (-2262 (((-787) $) 12)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 8)))
+(((-992) (-13 (-779) (-10 -8 (-15 -3154 ($)) (-15 -3367 ((-1077) $))))) (T -992))
+((-3154 (*1 *1) (-5 *1 (-992))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-992)))))
+(-13 (-779) (-10 -8 (-15 -3154 ($)) (-15 -3367 ((-1077) $))))
+((-2786 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-107) |#1|)) 20)) (-2280 (((-1163)) 15)) (-3851 (((-583 |#1|)) 9)))
+(((-993 |#1|) (-10 -7 (-15 -2280 ((-1163))) (-15 -3851 ((-583 |#1|))) (-15 -2786 (|#1| |#1| (-1 (-107) |#1|))) (-15 -2786 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -993))
+((-2786 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-993 *2)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-993 *2)))) (-3851 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-993 *3)) (-4 *3 (-124)))) (-2280 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-993 *3)) (-4 *3 (-124)))))
+(-10 -7 (-15 -2280 ((-1163))) (-15 -3851 ((-583 |#1|))) (-15 -2786 (|#1| |#1| (-1 (-107) |#1|))) (-15 -2786 (|#1| |#1| (-1 (-517) |#1| |#1|))))
+((-3449 (((-1158 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1158 (-623 (-876 |#1|))) (-583 (-1077)) (-623 (-876 |#1|))) 61) (((-1158 (-623 (-377 (-876 |#1|)))) (-583 (-1077)) (-623 (-377 (-876 |#1|)))) 77)) (-1372 (((-1158 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
+(((-994 |#1|) (-10 -7 (-15 -3449 ((-1158 (-623 (-377 (-876 |#1|)))) (-583 (-1077)) (-623 (-377 (-876 |#1|))))) (-15 -3449 ((-1158 (-623 (-876 |#1|))) (-583 (-1077)) (-623 (-876 |#1|)))) (-15 -3449 ((-1158 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1372 ((-1158 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -994))
+((-1372 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1158 *5)) (-5 *1 (-994 *5)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-994 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333)) (-5 *2 (-1158 (-623 (-876 *5)))) (-5 *1 (-994 *5)) (-5 *4 (-623 (-876 *5))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333)) (-5 *2 (-1158 (-623 (-377 (-876 *5))))) (-5 *1 (-994 *5)) (-5 *4 (-623 (-377 (-876 *5)))))))
+(-10 -7 (-15 -3449 ((-1158 (-623 (-377 (-876 |#1|)))) (-583 (-1077)) (-623 (-377 (-876 |#1|))))) (-15 -3449 ((-1158 (-623 (-876 |#1|))) (-583 (-1077)) (-623 (-876 |#1|)))) (-15 -3449 ((-1158 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1372 ((-1158 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3974 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1077)) NIL)) (-3546 (((-703) $) NIL) (((-703) $ (-1077)) NIL)) (-2080 (((-583 (-996 (-1077))) $) NIL)) (-1428 (((-1073 $) $ (-996 (-1077))) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-996 (-1077)))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-2588 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-996 (-1077)) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL) (((-3 (-1029 |#1| (-1077)) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-996 (-1077)) $) NIL) (((-1077) $) NIL) (((-1029 |#1| (-1077)) $) NIL)) (-2133 (($ $ $ (-996 (-1077))) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-996 (-1077))) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 (-996 (-1077))) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-996 (-1077)) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-996 (-1077)) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ (-1077)) NIL) (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) (-996 (-1077))) NIL) (($ (-1073 $) (-996 (-1077))) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-996 (-1077))) NIL)) (-3942 (((-489 (-996 (-1077))) $) NIL) (((-703) $ (-996 (-1077))) NIL) (((-583 (-703)) $ (-583 (-996 (-1077)))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 (-996 (-1077))) (-489 (-996 (-1077)))) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1203 (((-1 $ (-703)) (-1077)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1958 (((-3 (-996 (-1077)) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3293 (((-996 (-1077)) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1724 (((-107) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-996 (-1077))) (|:| -1725 (-703))) "failed") $) NIL)) (-2617 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-996 (-1077)) |#1|) NIL) (($ $ (-583 (-996 (-1077))) (-583 |#1|)) NIL) (($ $ (-996 (-1077)) $) NIL) (($ $ (-583 (-996 (-1077))) (-583 $)) NIL) (($ $ (-1077) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3115 (($ $ (-996 (-1077))) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-996 (-1077))) NIL) (($ $ (-583 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2125 (((-583 (-1077)) $) NIL)) (-1191 (((-489 (-996 (-1077))) $) NIL) (((-703) $ (-996 (-1077))) NIL) (((-583 (-703)) $ (-583 (-996 (-1077)))) NIL) (((-703) $ (-1077)) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-996 (-1077)) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-996 (-1077)) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-996 (-1077)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-996 (-1077))) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-996 (-1077))) NIL) (($ (-1077)) NIL) (($ (-1029 |#1| (-1077))) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-996 (-1077))) NIL) (($ $ (-583 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-995 |#1|) (-13 (-226 |#1| (-1077) (-996 (-1077)) (-489 (-996 (-1077)))) (-955 (-1029 |#1| (-1077)))) (-964)) (T -995))
+NIL
+(-13 (-226 |#1| (-1077) (-996 (-1077)) (-489 (-996 (-1077)))) (-955 (-1029 |#1| (-1077))))
+((-2105 (((-107) $ $) NIL)) (-3546 (((-703) $) NIL)) (-3791 ((|#1| $) 10)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3250 (((-703) $) 11)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-1203 (($ |#1| (-703)) 9)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2042 (($ $) NIL) (($ $ (-703)) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 15)))
+(((-996 |#1|) (-239 |#1|) (-779)) (T -996))
NIL
(-239 |#1|)
-((-3310 (((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 24 (|has| |#1| (-777))) (((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 14)))
-(((-996 |#1| |#2|) (-10 -7 (-15 -3310 ((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) (IF (|has| |#1| (-777)) (-15 -3310 ((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) |%noBranch|)) (-1111) (-1111)) (T -996))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-777)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-583 *6)) (-5 *1 (-996 *5 *6)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1000 *6)) (-5 *1 (-996 *5 *6)))))
-(-10 -7 (-15 -3310 ((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) (IF (|has| |#1| (-777)) (-15 -3310 ((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) |%noBranch|))
-((-3310 (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 19)))
-(((-997 |#1| |#2|) (-10 -7 (-15 -3310 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)))) (-1111) (-1111)) (T -997))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-998 *6)) (-5 *1 (-997 *5 *6)))))
-(-10 -7 (-15 -3310 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3752 (((-1076) $) 11)) (-2211 (((-1000 |#1|) $) 12)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2968 (($ (-1076) (-1000 |#1|)) 10)) (-2271 (((-787) $) 20 (|has| |#1| (-1005)))) (-1584 (((-107) $ $) 15 (|has| |#1| (-1005)))))
-(((-998 |#1|) (-13 (-1111) (-10 -8 (-15 -2968 ($ (-1076) (-1000 |#1|))) (-15 -3752 ((-1076) $)) (-15 -2211 ((-1000 |#1|) $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|))) (-1111)) (T -998))
-((-2968 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1000 *4)) (-4 *4 (-1111)) (-5 *1 (-998 *4)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-998 *3)) (-4 *3 (-1111)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-998 *3)) (-4 *3 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -2968 ($ (-1076) (-1000 |#1|))) (-15 -3752 ((-1076) $)) (-15 -2211 ((-1000 |#1|) $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|)))
-((-2211 (($ |#1| |#1|) 7)) (-4068 ((|#1| $) 10)) (-2158 ((|#1| $) 12)) (-2168 (((-517) $) 8)) (-2998 ((|#1| $) 9)) (-2174 ((|#1| $) 11)) (-3359 (($ |#1|) 6)) (-1606 (($ |#1| |#1|) 14)) (-1327 (($ $ (-517)) 13)))
-(((-999 |#1|) (-1188) (-1111)) (T -999))
-((-1606 (*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))) (-1327 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-999 *3)) (-4 *3 (-1111)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))) (-4068 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1111)) (-5 *2 (-517)))) (-2211 (*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))) (-3359 (*1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -1606 ($ |t#1| |t#1|)) (-15 -1327 ($ $ (-517))) (-15 -2158 (|t#1| $)) (-15 -2174 (|t#1| $)) (-15 -4068 (|t#1| $)) (-15 -2998 (|t#1| $)) (-15 -2168 ((-517) $)) (-15 -2211 ($ |t#1| |t#1|)) (-15 -3359 ($ |t#1|))))
-(((-1111) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2211 (($ |#1| |#1|) 15)) (-3310 (((-583 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-777)))) (-4068 ((|#1| $) 10)) (-2158 ((|#1| $) 9)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-2168 (((-517) $) 14)) (-2998 ((|#1| $) 12)) (-2174 ((|#1| $) 11)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2296 (((-583 |#1|) $) 36 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 35 (|has| |#1| (-777)))) (-3359 (($ |#1|) 26)) (-2271 (((-787) $) 25 (|has| |#1| (-1005)))) (-1606 (($ |#1| |#1|) 8)) (-1327 (($ $ (-517)) 16)) (-1584 (((-107) $ $) 19 (|has| |#1| (-1005)))))
-(((-1000 |#1|) (-13 (-999 |#1|) (-10 -7 (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1001 |#1| (-583 |#1|))) |%noBranch|))) (-1111)) (T -1000))
-NIL
-(-13 (-999 |#1|) (-10 -7 (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1001 |#1| (-583 |#1|))) |%noBranch|)))
-((-2211 (($ |#1| |#1|) 7)) (-3310 ((|#2| (-1 |#1| |#1|) $) 16)) (-4068 ((|#1| $) 10)) (-2158 ((|#1| $) 12)) (-2168 (((-517) $) 8)) (-2998 ((|#1| $) 9)) (-2174 ((|#1| $) 11)) (-2296 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3359 (($ |#1|) 6)) (-1606 (($ |#1| |#1|) 14)) (-1327 (($ $ (-517)) 13)))
-(((-1001 |#1| |#2|) (-1188) (-777) (-1050 |t#1|)) (T -1001))
-((-2296 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1050 *4)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1050 *3)))) (-3310 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1050 *4)))))
-(-13 (-999 |t#1|) (-10 -8 (-15 -2296 (|t#2| (-583 $))) (-15 -2296 (|t#2| $)) (-15 -3310 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-999 |#1|) . T) ((-1111) . T))
-((-2384 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2834 (($ $ $) 10)) (-1216 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1002 |#1| |#2|) (-10 -8 (-15 -2384 (|#1| |#2| |#1|)) (-15 -2384 (|#1| |#1| |#2|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -2834 (|#1| |#1| |#1|)) (-15 -1216 (|#1| |#1| |#2|)) (-15 -1216 (|#1| |#1| |#1|))) (-1003 |#2|) (-1005)) (T -1002))
-NIL
-(-10 -8 (-15 -2384 (|#1| |#2| |#1|)) (-15 -2384 (|#1| |#1| |#2|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -2834 (|#1| |#1| |#1|)) (-15 -1216 (|#1| |#1| |#2|)) (-15 -1216 (|#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-2384 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2834 (($ $ $) 20)) (-1961 (((-107) $ $) 19)) (-1851 (((-107) $ (-703)) 35)) (-1884 (($) 25) (($ (-583 |#1|)) 24)) (-2325 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4192)))) (-1393 (($) 36 T CONST)) (-2455 (($ $) 59 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4192)))) (-1534 (((-583 |#1|) $) 43 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 34)) (-1903 (((-583 |#1|) $) 44 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 38)) (-1320 (((-107) $ (-703)) 33)) (-1662 (((-1059) $) 9)) (-2259 (($ $ $) 23)) (-4125 (((-1023) $) 10)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-3644 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 29)) (-2394 (((-107) $) 32)) (-2452 (($) 31)) (-1216 (($ $ $) 22) (($ $ |#1|) 21)) (-4137 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4192)))) (-2462 (($ $) 30)) (-3359 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 51)) (-2271 (((-787) $) 11)) (-3075 (($) 27) (($ (-583 |#1|)) 26)) (-3602 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 6)) (-1608 (((-107) $ $) 28)) (-3535 (((-703) $) 37 (|has| $ (-6 -4192)))))
-(((-1003 |#1|) (-1188) (-1005)) (T -1003))
-((-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-107)))) (-3075 (*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3)))) (-1884 (*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3)))) (-2259 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-1216 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-1216 (*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-2834 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-1961 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-107)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-2384 (*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-2384 (*1 *1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(-13 (-1005) (-138 |t#1|) (-10 -8 (-6 -4182) (-15 -1608 ((-107) $ $)) (-15 -3075 ($)) (-15 -3075 ($ (-583 |t#1|))) (-15 -1884 ($)) (-15 -1884 ($ (-583 |t#1|))) (-15 -2259 ($ $ $)) (-15 -1216 ($ $ $)) (-15 -1216 ($ $ |t#1|)) (-15 -2834 ($ $ $)) (-15 -1961 ((-107) $ $)) (-15 -2384 ($ $ $)) (-15 -2384 ($ $ |t#1|)) (-15 -2384 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) . T) ((-1111) . T))
-((-1662 (((-1059) $) 10)) (-4125 (((-1023) $) 8)))
-(((-1004 |#1|) (-10 -8 (-15 -1662 ((-1059) |#1|)) (-15 -4125 ((-1023) |#1|))) (-1005)) (T -1004))
-NIL
-(-10 -8 (-15 -1662 ((-1059) |#1|)) (-15 -4125 ((-1023) |#1|)))
-((-2119 (((-107) $ $) 7)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-1005) (-1188)) (T -1005))
-((-4125 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1023)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1059)))))
-(-13 (-97) (-557 (-787)) (-10 -8 (-15 -4125 ((-1023) $)) (-15 -1662 ((-1059) $))))
+((-3312 (((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 24 (|has| |#1| (-777))) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14)))
+(((-997 |#1| |#2|) (-10 -7 (-15 -3312 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1112) (-1112)) (T -997))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-777)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-583 *6)) (-5 *1 (-997 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1001 *6)) (-5 *1 (-997 *5 *6)))))
+(-10 -7 (-15 -3312 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|))
+((-3312 (((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|)) 19)))
+(((-998 |#1| |#2|) (-10 -7 (-15 -3312 ((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|)))) (-1112) (-1112)) (T -998))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-999 *6)) (-5 *1 (-998 *5 *6)))))
+(-10 -7 (-15 -3312 ((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3791 (((-1077) $) 11)) (-2202 (((-1001 |#1|) $) 12)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2960 (($ (-1077) (-1001 |#1|)) 10)) (-2262 (((-787) $) 20 (|has| |#1| (-1006)))) (-1572 (((-107) $ $) 15 (|has| |#1| (-1006)))))
+(((-999 |#1|) (-13 (-1112) (-10 -8 (-15 -2960 ($ (-1077) (-1001 |#1|))) (-15 -3791 ((-1077) $)) (-15 -2202 ((-1001 |#1|) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1112)) (T -999))
+((-2960 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1001 *4)) (-4 *4 (-1112)) (-5 *1 (-999 *4)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-999 *3)) (-4 *3 (-1112)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1112)))))
+(-13 (-1112) (-10 -8 (-15 -2960 ($ (-1077) (-1001 |#1|))) (-15 -3791 ((-1077) $)) (-15 -2202 ((-1001 |#1|) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|)))
+((-2202 (($ |#1| |#1|) 7)) (-3315 ((|#1| $) 10)) (-2144 ((|#1| $) 12)) (-2154 (((-517) $) 8)) (-2370 ((|#1| $) 9)) (-2163 ((|#1| $) 11)) (-3367 (($ |#1|) 6)) (-1594 (($ |#1| |#1|) 14)) (-1315 (($ $ (-517)) 13)))
+(((-1000 |#1|) (-1189) (-1112)) (T -1000))
+((-1594 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-1315 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1000 *3)) (-4 *3 (-1112)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1112)) (-5 *2 (-517)))) (-2202 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))))
+(-13 (-1112) (-10 -8 (-15 -1594 ($ |t#1| |t#1|)) (-15 -1315 ($ $ (-517))) (-15 -2144 (|t#1| $)) (-15 -2163 (|t#1| $)) (-15 -3315 (|t#1| $)) (-15 -2370 (|t#1| $)) (-15 -2154 ((-517) $)) (-15 -2202 ($ |t#1| |t#1|)) (-15 -3367 ($ |t#1|))))
+(((-1112) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2202 (($ |#1| |#1|) 15)) (-3312 (((-583 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-777)))) (-3315 ((|#1| $) 10)) (-2144 ((|#1| $) 9)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2154 (((-517) $) 14)) (-2370 ((|#1| $) 12)) (-2163 ((|#1| $) 11)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2287 (((-583 |#1|) $) 36 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 35 (|has| |#1| (-777)))) (-3367 (($ |#1|) 26)) (-2262 (((-787) $) 25 (|has| |#1| (-1006)))) (-1594 (($ |#1| |#1|) 8)) (-1315 (($ $ (-517)) 16)) (-1572 (((-107) $ $) 19 (|has| |#1| (-1006)))))
+(((-1001 |#1|) (-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-583 |#1|))) |%noBranch|))) (-1112)) (T -1001))
+NIL
+(-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-583 |#1|))) |%noBranch|)))
+((-2202 (($ |#1| |#1|) 7)) (-3312 ((|#2| (-1 |#1| |#1|) $) 16)) (-3315 ((|#1| $) 10)) (-2144 ((|#1| $) 12)) (-2154 (((-517) $) 8)) (-2370 ((|#1| $) 9)) (-2163 ((|#1| $) 11)) (-2287 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3367 (($ |#1|) 6)) (-1594 (($ |#1| |#1|) 14)) (-1315 (($ $ (-517)) 13)))
+(((-1002 |#1| |#2|) (-1189) (-777) (-1051 |t#1|)) (T -1002))
+((-2287 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1051 *4)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1051 *3)))) (-3312 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1051 *4)))))
+(-13 (-1000 |t#1|) (-10 -8 (-15 -2287 (|t#2| (-583 $))) (-15 -2287 (|t#2| $)) (-15 -3312 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1000 |#1|) . T) ((-1112) . T))
+((-2374 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4020 (($ $ $) 10)) (-1201 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1003 |#1| |#2|) (-10 -8 (-15 -2374 (|#1| |#2| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -1201 (|#1| |#1| |#1|))) (-1004 |#2|) (-1006)) (T -1003))
+NIL
+(-10 -8 (-15 -2374 (|#1| |#2| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -1201 (|#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-2374 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-4020 (($ $ $) 20)) (-3873 (((-107) $ $) 19)) (-3443 (((-107) $ (-703)) 35)) (-1871 (($) 25) (($ (-583 |#1|)) 24)) (-2317 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4195)))) (-3038 (($) 36 T CONST)) (-2446 (($ $) 59 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 43 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 34)) (-3687 (((-583 |#1|) $) 44 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 38)) (-2328 (((-107) $ (-703)) 33)) (-3232 (((-1060) $) 9)) (-2187 (($ $ $) 23)) (-4130 (((-1024) $) 10)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-3843 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 29)) (-1754 (((-107) $) 32)) (-2679 (($) 31)) (-1201 (($ $ $) 22) (($ $ |#1|) 21)) (-4140 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4195)))) (-2453 (($ $) 30)) (-3367 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 51)) (-2262 (((-787) $) 11)) (-3066 (($) 27) (($ (-583 |#1|)) 26)) (-1272 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 6)) (-1596 (((-107) $ $) 28)) (-3573 (((-703) $) 37 (|has| $ (-6 -4195)))))
+(((-1004 |#1|) (-1189) (-1006)) (T -1004))
+((-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-3066 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3066 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) (-1871 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) (-2187 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-1201 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-1201 (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3873 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-2374 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-2374 (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-2374 (*1 *1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(-13 (-1006) (-138 |t#1|) (-10 -8 (-6 -4185) (-15 -1596 ((-107) $ $)) (-15 -3066 ($)) (-15 -3066 ($ (-583 |t#1|))) (-15 -1871 ($)) (-15 -1871 ($ (-583 |t#1|))) (-15 -2187 ($ $ $)) (-15 -1201 ($ $ $)) (-15 -1201 ($ $ |t#1|)) (-15 -4020 ($ $ $)) (-15 -3873 ((-107) $ $)) (-15 -2374 ($ $ $)) (-15 -2374 ($ $ |t#1|)) (-15 -2374 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) . T) ((-1112) . T))
+((-3232 (((-1060) $) 10)) (-4130 (((-1024) $) 8)))
+(((-1005 |#1|) (-10 -8 (-15 -3232 ((-1060) |#1|)) (-15 -4130 ((-1024) |#1|))) (-1006)) (T -1005))
+NIL
+(-10 -8 (-15 -3232 ((-1060) |#1|)) (-15 -4130 ((-1024) |#1|)))
+((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-1006) (-1189)) (T -1006))
+((-4130 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1024)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1060)))))
+(-13 (-97) (-557 (-787)) (-10 -8 (-15 -4130 ((-1024) $)) (-15 -3232 ((-1060) $))))
(((-97) . T) ((-557 (-787)) . T))
-((-2119 (((-107) $ $) NIL)) (-2399 (((-703)) 30)) (-2105 (($ (-583 (-844))) 52)) (-3010 (((-3 $ "failed") $ (-844) (-844)) 57)) (-2202 (($) 32)) (-3925 (((-107) (-844) $) 35)) (-3072 (((-844) $) 50)) (-1662 (((-1059) $) NIL)) (-2812 (($ (-844)) 31)) (-2653 (((-3 $ "failed") $ (-844)) 55)) (-4125 (((-1023) $) NIL)) (-3515 (((-1157 $)) 40)) (-2485 (((-583 (-844)) $) 23)) (-1857 (((-703) $ (-844) (-844)) 56)) (-2271 (((-787) $) 29)) (-1584 (((-107) $ $) 21)))
-(((-1006 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -2653 ((-3 $ "failed") $ (-844))) (-15 -3010 ((-3 $ "failed") $ (-844) (-844))) (-15 -2485 ((-583 (-844)) $)) (-15 -2105 ($ (-583 (-844)))) (-15 -3515 ((-1157 $))) (-15 -3925 ((-107) (-844) $)) (-15 -1857 ((-703) $ (-844) (-844))))) (-844) (-844)) (T -1006))
-((-2653 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3010 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-3515 (*1 *2) (-12 (-5 *2 (-1157 (-1006 *3 *4))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-3925 (*1 *2 *3 *1) (-12 (-5 *3 (-844)) (-5 *2 (-107)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-703)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-338) (-10 -8 (-15 -2653 ((-3 $ "failed") $ (-844))) (-15 -3010 ((-3 $ "failed") $ (-844) (-844))) (-15 -2485 ((-583 (-844)) $)) (-15 -2105 ($ (-583 (-844)))) (-15 -3515 ((-1157 $))) (-15 -3925 ((-107) (-844) $)) (-15 -1857 ((-703) $ (-844) (-844)))))
-((-2119 (((-107) $ $) NIL)) (-2778 (($) NIL (|has| |#1| (-338)))) (-2384 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2834 (($ $ $) 72)) (-1961 (((-107) $ $) 73)) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| |#1| (-338)))) (-1884 (($ (-583 |#1|)) NIL) (($) 13)) (-3690 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2457 (($ |#1| $) 67 (|has| $ (-6 -4192))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4192)))) (-2202 (($) NIL (|has| |#1| (-338)))) (-1534 (((-583 |#1|) $) 19 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3458 ((|#1| $) 57 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-4084 ((|#1| $) 55 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 34)) (-3072 (((-844) $) NIL (|has| |#1| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2259 (($ $ $) 70)) (-1803 ((|#1| $) 25)) (-3241 (($ |#1| $) 65)) (-2812 (($ (-844)) NIL (|has| |#1| (-338)))) (-4125 (((-1023) $) NIL)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-4113 ((|#1| $) 27)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 21)) (-2452 (($) 11)) (-1216 (($ $ |#1|) NIL) (($ $ $) 71)) (-2176 (($) NIL) (($ (-583 |#1|)) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 16)) (-3359 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 61)) (-1695 (($ $) NIL (|has| |#1| (-338)))) (-2271 (((-787) $) NIL)) (-2521 (((-703) $) NIL)) (-3075 (($ (-583 |#1|)) NIL) (($) 12)) (-3181 (($ (-583 |#1|)) NIL)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 54)) (-1608 (((-107) $ $) NIL)) (-3535 (((-703) $) 10 (|has| $ (-6 -4192)))))
-(((-1007 |#1|) (-395 |#1|) (-1005)) (T -1007))
+((-2105 (((-107) $ $) NIL)) (-2390 (((-703)) 30)) (-3580 (($ (-583 (-845))) 52)) (-1284 (((-3 $ "failed") $ (-845) (-845)) 57)) (-2192 (($) 32)) (-1949 (((-107) (-845) $) 35)) (-4161 (((-845) $) 50)) (-3232 (((-1060) $) NIL)) (-2803 (($ (-845)) 31)) (-3959 (((-3 $ "failed") $ (-845)) 55)) (-4130 (((-1024) $) NIL)) (-2058 (((-1158 $)) 40)) (-2463 (((-583 (-845)) $) 23)) (-1844 (((-703) $ (-845) (-845)) 56)) (-2262 (((-787) $) 29)) (-1572 (((-107) $ $) 21)))
+(((-1007 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -3959 ((-3 $ "failed") $ (-845))) (-15 -1284 ((-3 $ "failed") $ (-845) (-845))) (-15 -2463 ((-583 (-845)) $)) (-15 -3580 ($ (-583 (-845)))) (-15 -2058 ((-1158 $))) (-15 -1949 ((-107) (-845) $)) (-15 -1844 ((-703) $ (-845) (-845))))) (-845) (-845)) (T -1007))
+((-3959 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1284 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-3580 (*1 *1 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-2058 (*1 *2) (-12 (-5 *2 (-1158 (-1007 *3 *4))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-845)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1844 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-703)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-338) (-10 -8 (-15 -3959 ((-3 $ "failed") $ (-845))) (-15 -1284 ((-3 $ "failed") $ (-845) (-845))) (-15 -2463 ((-583 (-845)) $)) (-15 -3580 ($ (-583 (-845)))) (-15 -2058 ((-1158 $))) (-15 -1949 ((-107) (-845) $)) (-15 -1844 ((-703) $ (-845) (-845)))))
+((-2105 (((-107) $ $) NIL)) (-3963 (($) NIL (|has| |#1| (-338)))) (-2374 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-4020 (($ $ $) 72)) (-3873 (((-107) $ $) 73)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-1871 (($ (-583 |#1|)) NIL) (($) 13)) (-2582 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) 67 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4195)))) (-2192 (($) NIL (|has| |#1| (-338)))) (-1525 (((-583 |#1|) $) 19 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3480 ((|#1| $) 57 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-4095 ((|#1| $) 55 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 34)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 70)) (-2015 ((|#1| $) 25)) (-3439 (($ |#1| $) 65)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-4130 (((-1024) $) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-1551 ((|#1| $) 27)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 21)) (-2679 (($) 11)) (-1201 (($ $ |#1|) NIL) (($ $ $) 71)) (-3808 (($) NIL) (($ (-583 |#1|)) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 16)) (-3367 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 61)) (-2332 (($ $) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL)) (-3515 (((-703) $) NIL)) (-3066 (($ (-583 |#1|)) NIL) (($) 12)) (-2729 (($ (-583 |#1|)) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 54)) (-1596 (((-107) $ $) NIL)) (-3573 (((-703) $) 10 (|has| $ (-6 -4195)))))
+(((-1008 |#1|) (-395 |#1|) (-1006)) (T -1008))
NIL
(-395 |#1|)
-((-2119 (((-107) $ $) 7)) (-3592 (((-107) $) 32)) (-2251 ((|#2| $) 27)) (-3607 (((-107) $) 33)) (-1515 ((|#1| $) 28)) (-2136 (((-107) $) 35)) (-2999 (((-107) $) 37)) (-3637 (((-107) $) 34)) (-1662 (((-1059) $) 9)) (-2982 (((-107) $) 31)) (-2268 ((|#3| $) 26)) (-4125 (((-1023) $) 10)) (-3887 (((-107) $) 30)) (-3211 ((|#4| $) 25)) (-3713 ((|#5| $) 24)) (-3781 (((-107) $ $) 38)) (-2609 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3942 (((-583 $) $) 29)) (-3359 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2271 (((-787) $) 11)) (-3309 (($ $) 16)) (-3297 (($ $) 17)) (-4145 (((-107) $) 36)) (-1584 (((-107) $ $) 6)) (-3535 (((-517) $) 15)))
-(((-1008 |#1| |#2| |#3| |#4| |#5|) (-1188) (-1005) (-1005) (-1005) (-1005) (-1005)) (T -1008))
-((-3781 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))) (-3942 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-583 *1)) (-4 *1 (-1008 *3 *4 *5 *6 *7)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *2 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *2)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)))) (-3359 (*1 *1 *2) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3359 (*1 *1 *2) (-12 (-4 *1 (-1008 *3 *2 *4 *5 *6)) (-4 *3 (-1005)) (-4 *2 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3359 (*1 *1 *2) (-12 (-4 *1 (-1008 *3 *4 *2 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *2 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3359 (*1 *1 *2) (-12 (-4 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *2 (-1005)) (-4 *6 (-1005)))) (-3359 (*1 *1 *2) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *2)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3297 (*1 *1 *1) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-517)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)))))
-(-13 (-1005) (-10 -8 (-15 -3781 ((-107) $ $)) (-15 -2999 ((-107) $)) (-15 -4145 ((-107) $)) (-15 -2136 ((-107) $)) (-15 -3637 ((-107) $)) (-15 -3607 ((-107) $)) (-15 -3592 ((-107) $)) (-15 -2982 ((-107) $)) (-15 -3887 ((-107) $)) (-15 -3942 ((-583 $) $)) (-15 -1515 (|t#1| $)) (-15 -2251 (|t#2| $)) (-15 -2268 (|t#3| $)) (-15 -3211 (|t#4| $)) (-15 -3713 (|t#5| $)) (-15 -3359 ($ (-583 $))) (-15 -3359 ($ |t#1|)) (-15 -3359 ($ |t#2|)) (-15 -3359 ($ |t#3|)) (-15 -3359 ($ |t#4|)) (-15 -3359 ($ |t#5|)) (-15 -3297 ($ $)) (-15 -3309 ($ $)) (-15 -3535 ((-517) $)) (-15 -2609 ($ $ (-517))) (-15 -2609 ($ $ (-583 (-517))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3592 (((-107) $) NIL)) (-2251 (((-1076) $) NIL)) (-3607 (((-107) $) NIL)) (-1515 (((-1059) $) NIL)) (-2136 (((-107) $) NIL)) (-2999 (((-107) $) NIL)) (-3637 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-2982 (((-107) $) NIL)) (-2268 (((-517) $) NIL)) (-4125 (((-1023) $) NIL)) (-3887 (((-107) $) NIL)) (-3211 (((-199) $) NIL)) (-3713 (((-787) $) NIL)) (-3781 (((-107) $ $) NIL)) (-2609 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3942 (((-583 $) $) NIL)) (-3359 (($ (-583 $)) NIL) (($ (-1059)) NIL) (($ (-1076)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2271 (((-787) $) NIL)) (-3309 (($ $) NIL)) (-3297 (($ $) NIL)) (-4145 (((-107) $) NIL)) (-1584 (((-107) $ $) NIL)) (-3535 (((-517) $) NIL)))
-(((-1009) (-1008 (-1059) (-1076) (-517) (-199) (-787))) (T -1009))
-NIL
-(-1008 (-1059) (-1076) (-517) (-199) (-787))
-((-2119 (((-107) $ $) NIL)) (-3592 (((-107) $) 38)) (-2251 ((|#2| $) 42)) (-3607 (((-107) $) 37)) (-1515 ((|#1| $) 41)) (-2136 (((-107) $) 35)) (-2999 (((-107) $) 14)) (-3637 (((-107) $) 36)) (-1662 (((-1059) $) NIL)) (-2982 (((-107) $) 39)) (-2268 ((|#3| $) 44)) (-4125 (((-1023) $) NIL)) (-3887 (((-107) $) 40)) (-3211 ((|#4| $) 43)) (-3713 ((|#5| $) 45)) (-3781 (((-107) $ $) 34)) (-2609 (($ $ (-517)) 56) (($ $ (-583 (-517))) 58)) (-3942 (((-583 $) $) 22)) (-3359 (($ (-583 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2271 (((-787) $) 23)) (-3309 (($ $) 21)) (-3297 (($ $) 52)) (-4145 (((-107) $) 18)) (-1584 (((-107) $ $) 33)) (-3535 (((-517) $) 54)))
-(((-1010 |#1| |#2| |#3| |#4| |#5|) (-1008 |#1| |#2| |#3| |#4| |#5|) (-1005) (-1005) (-1005) (-1005) (-1005)) (T -1010))
-NIL
-(-1008 |#1| |#2| |#3| |#4| |#5|)
-((-1898 (((-1162) $) 23)) (-2702 (($ (-1076) (-404) |#2|) 11)) (-2271 (((-787) $) 16)))
-(((-1011 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2702 ($ (-1076) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1011))
-((-2702 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1076)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1011 *5 *4)) (-4 *4 (-400 *5)))))
-(-13 (-365) (-10 -8 (-15 -2702 ($ (-1076) (-404) |#2|))))
-((-4011 (((-107) |#5| |#5|) 38)) (-1863 (((-107) |#5| |#5|) 52)) (-3988 (((-107) |#5| (-583 |#5|)) 75) (((-107) |#5| |#5|) 61)) (-2608 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-1610 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) 63)) (-1781 (((-1162)) 33)) (-3012 (((-1162) (-1059) (-1059) (-1059)) 29)) (-1379 (((-583 |#5|) (-583 |#5|)) 82)) (-1307 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) 80)) (-2692 (((-583 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 102)) (-2314 (((-107) |#5| |#5|) 47)) (-2323 (((-3 (-107) "failed") |#5| |#5|) 71)) (-2714 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3940 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-2958 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3293 (((-3 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 98)) (-3015 (((-583 |#5|) (-583 |#5|)) 43)))
-(((-1012 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3012 ((-1162) (-1059) (-1059) (-1059))) (-15 -1781 ((-1162))) (-15 -4011 ((-107) |#5| |#5|)) (-15 -3015 ((-583 |#5|) (-583 |#5|))) (-15 -2314 ((-107) |#5| |#5|)) (-15 -1863 ((-107) |#5| |#5|)) (-15 -2608 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2714 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3940 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2958 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2323 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3988 ((-107) |#5| |#5|)) (-15 -3988 ((-107) |#5| (-583 |#5|))) (-15 -1379 ((-583 |#5|) (-583 |#5|))) (-15 -1610 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -1307 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-15 -2692 ((-583 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3293 ((-3 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1012))
-((-3293 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3781 (-583 *9)) (|:| -3834 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1012 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-2692 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3781 (-583 *9)) (|:| -3834 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1012 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3834 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))) (-1610 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *8)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1012 *5 *6 *7 *8 *3)))) (-3988 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-2958 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3940 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-2714 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-2608 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-1863 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))) (-4011 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-1781 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3012 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3012 ((-1162) (-1059) (-1059) (-1059))) (-15 -1781 ((-1162))) (-15 -4011 ((-107) |#5| |#5|)) (-15 -3015 ((-583 |#5|) (-583 |#5|))) (-15 -2314 ((-107) |#5| |#5|)) (-15 -1863 ((-107) |#5| |#5|)) (-15 -2608 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2714 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3940 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2958 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2323 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3988 ((-107) |#5| |#5|)) (-15 -3988 ((-107) |#5| (-583 |#5|))) (-15 -1379 ((-583 |#5|) (-583 |#5|))) (-15 -1610 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -1307 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-15 -2692 ((-583 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3293 ((-3 (-2 (|:| -3781 (-583 |#4|)) (|:| -3834 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-3019 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|) 95)) (-2783 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#4| |#4| |#5|) 71)) (-2769 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|) 89)) (-4111 (((-583 |#5|) |#4| |#5|) 110)) (-2797 (((-583 |#5|) |#4| |#5|) 117)) (-3645 (((-583 |#5|) |#4| |#5|) 118)) (-3681 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|) 96)) (-3277 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|) 116)) (-1406 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1345 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#3| (-107)) 83) (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1257 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|) 78)) (-2281 (((-1162)) 35)) (-1415 (((-1162)) 25)) (-2030 (((-1162) (-1059) (-1059) (-1059)) 31)) (-3841 (((-1162) (-1059) (-1059) (-1059)) 20)))
-(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 ((-1162) (-1059) (-1059) (-1059))) (-15 -1415 ((-1162))) (-15 -2030 ((-1162) (-1059) (-1059) (-1059))) (-15 -2281 ((-1162))) (-15 -2783 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -1345 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1345 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#3| (-107))) (-15 -1257 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -2769 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -1406 ((-107) |#4| |#5|)) (-15 -3681 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -4111 ((-583 |#5|) |#4| |#5|)) (-15 -3277 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -2797 ((-583 |#5|) |#4| |#5|)) (-15 -1406 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -3645 ((-583 |#5|) |#4| |#5|)) (-15 -3019 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1013))
-((-3019 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3645 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-1406 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2797 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-4111 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3681 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-1406 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2769 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-1257 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9)))) (-5 *5 (-107)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3834 *9)))) (-5 *1 (-1013 *6 *7 *4 *8 *9)))) (-1345 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-1013 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-2783 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))) (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2281 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-2030 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-1415 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3841 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3841 ((-1162) (-1059) (-1059) (-1059))) (-15 -1415 ((-1162))) (-15 -2030 ((-1162) (-1059) (-1059) (-1059))) (-15 -2281 ((-1162))) (-15 -2783 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -1345 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1345 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) |#3| (-107))) (-15 -1257 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -2769 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#4| |#5|)) (-15 -1406 ((-107) |#4| |#5|)) (-15 -3681 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -4111 ((-583 |#5|) |#4| |#5|)) (-15 -3277 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -2797 ((-583 |#5|) |#4| |#5|)) (-15 -1406 ((-583 (-2 (|:| |val| (-107)) (|:| -3834 |#5|))) |#4| |#5|)) (-15 -3645 ((-583 |#5|) |#4| |#5|)) (-15 -3019 ((-583 (-2 (|:| |val| |#4|) (|:| -3834 |#5|))) |#4| |#5|)))
-((-2119 (((-107) $ $) 7)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) 85)) (-2265 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2097 (((-583 |#3|) $) 33)) (-2687 (((-107) $) 26)) (-3389 (((-107) $) 17 (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) 101) (((-107) $) 97)) (-3939 ((|#4| |#4| $) 92)) (-1224 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| $) 126)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) 27)) (-1851 (((-107) $ (-703)) 44)) (-2325 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 79)) (-1393 (($) 45 T CONST)) (-3338 (((-107) $) 22 (|has| |#1| (-509)))) (-1605 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2893 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2501 (((-107) $) 25 (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2567 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 36)) (-3390 (($ (-583 |#4|)) 35)) (-2439 (((-3 $ "failed") $) 82)) (-3777 ((|#4| |#4| $) 89)) (-2455 (($ $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-2639 ((|#4| |#4| $) 87)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) 105)) (-2127 (((-107) |#4| $) 136)) (-2957 (((-107) |#4| $) 133)) (-1401 (((-107) |#4| $) 137) (((-107) $) 134)) (-1534 (((-583 |#4|) $) 52 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) 104) (((-107) $) 103)) (-3024 ((|#3| $) 34)) (-2497 (((-107) $ (-703)) 43)) (-1903 (((-583 |#4|) $) 53 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 47)) (-2241 (((-583 |#3|) $) 32)) (-2621 (((-107) |#3| $) 31)) (-1320 (((-107) $ (-703)) 42)) (-1662 (((-1059) $) 9)) (-2496 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2350 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| |#4| $) 127)) (-1446 (((-3 |#4| "failed") $) 83)) (-2305 (((-583 $) |#4| $) 129)) (-3364 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2259 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1493 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3568 (((-583 |#4|) $) 107)) (-1732 (((-107) |#4| $) 99) (((-107) $) 95)) (-3998 ((|#4| |#4| $) 90)) (-2958 (((-107) $ $) 110)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) 100) (((-107) $) 96)) (-3252 ((|#4| |#4| $) 91)) (-4125 (((-1023) $) 10)) (-2429 (((-3 |#4| "failed") $) 84)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3439 (((-3 $ "failed") $ |#4|) 78)) (-2671 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3644 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) 38)) (-2394 (((-107) $) 41)) (-2452 (($) 40)) (-3647 (((-703) $) 106)) (-4137 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4192)))) (-2462 (($ $) 39)) (-3359 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 60)) (-4028 (($ $ |#3|) 28)) (-1409 (($ $ |#3|) 30)) (-1888 (($ $) 88)) (-4159 (($ $ |#3|) 29)) (-2271 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3057 (((-703) $) 76 (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1856 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3602 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) 81)) (-3302 (((-107) |#4| $) 135)) (-1999 (((-107) |#3| $) 80)) (-1584 (((-107) $ $) 6)) (-3535 (((-703) $) 46 (|has| $ (-6 -4192)))))
-(((-1014 |#1| |#2| |#3| |#4|) (-1188) (-421) (-725) (-779) (-977 |t#1| |t#2| |t#3|)) (T -1014))
-NIL
-(-13 (-982 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-895 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1105 |#1| |#2| |#3| |#4|) . T) ((-1111) . T))
-((-2390 (((-583 (-517)) (-517) (-517) (-517)) 22)) (-3335 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1341 (((-583 (-517)) (-517) (-517) (-517)) 18)) (-3727 (((-517) (-517) (-517)) 9)) (-4112 (((-1157 (-517)) (-583 (-517)) (-1157 (-517)) (-517)) 45) (((-1157 (-517)) (-1157 (-517)) (-1157 (-517)) (-517)) 40)) (-3589 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 27)) (-2718 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 44)) (-3730 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 32)) (-2159 (((-583 (-623 (-517))) (-583 (-517))) 34)) (-2667 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 47)) (-1714 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 55)))
-(((-1015) (-10 -7 (-15 -1714 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2667 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2159 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3730 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2718 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3589 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -4112 ((-1157 (-517)) (-1157 (-517)) (-1157 (-517)) (-517))) (-15 -4112 ((-1157 (-517)) (-583 (-517)) (-1157 (-517)) (-517))) (-15 -3727 ((-517) (-517) (-517))) (-15 -1341 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3335 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2390 ((-583 (-517)) (-517) (-517) (-517))))) (T -1015))
-((-2390 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1015)) (-5 *3 (-517)))) (-3335 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1015)) (-5 *3 (-517)))) (-1341 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1015)) (-5 *3 (-517)))) (-3727 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1015)))) (-4112 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1157 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1015)))) (-4112 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1157 (-517))) (-5 *3 (-517)) (-5 *1 (-1015)))) (-3589 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1015)))) (-2718 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1015)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1015)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1015)))) (-2667 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1015)))) (-1714 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1015)))))
-(-10 -7 (-15 -1714 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2667 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2159 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3730 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2718 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3589 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -4112 ((-1157 (-517)) (-1157 (-517)) (-1157 (-517)) (-517))) (-15 -4112 ((-1157 (-517)) (-583 (-517)) (-1157 (-517)) (-517))) (-15 -3727 ((-517) (-517) (-517))) (-15 -1341 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3335 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2390 ((-583 (-517)) (-517) (-517) (-517))))
-((-2815 (($ $ (-844)) 12)) (** (($ $ (-844)) 10)))
-(((-1016 |#1|) (-10 -8 (-15 -2815 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844)))) (-1017)) (T -1016))
-NIL
-(-10 -8 (-15 -2815 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844))))
-((-2119 (((-107) $ $) 7)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-2815 (($ $ (-844)) 13)) (-1584 (((-107) $ $) 6)) (** (($ $ (-844)) 14)) (* (($ $ $) 15)))
-(((-1017) (-1188)) (T -1017))
-((* (*1 *1 *1 *1) (-4 *1 (-1017))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-844)))) (-2815 (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-844)))))
-(-13 (-1005) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-844))) (-15 -2815 ($ $ (-844)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL (|has| |#3| (-1005)))) (-3097 (((-107) $) NIL (|has| |#3| (-123)))) (-4170 (($ (-844)) NIL (|has| |#3| (-963)))) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2948 (($ $ $) NIL (|has| |#3| (-725)))) (-2798 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-1851 (((-107) $ (-703)) NIL)) (-2399 (((-703)) NIL (|has| |#3| (-338)))) (-2360 (((-517) $) NIL (|has| |#3| (-777)))) (-2445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1005)))) (-3390 (((-517) $) NIL (-12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005)))) ((|#3| $) NIL (|has| |#3| (-1005)))) (-2207 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-963)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-963)))) (((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 $) (-1157 $)) NIL (|has| |#3| (-963))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-963)))) (-2560 (((-3 $ "failed") $) NIL (|has| |#3| (-963)))) (-2202 (($) NIL (|has| |#3| (-338)))) (-2759 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#3| $ (-517)) 12)) (-2988 (((-107) $) NIL (|has| |#3| (-777)))) (-1534 (((-583 |#3|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL (|has| |#3| (-963)))) (-1952 (((-107) $) NIL (|has| |#3| (-777)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1903 (((-583 |#3|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2746 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#3| |#3|) $) NIL)) (-3072 (((-844) $) NIL (|has| |#3| (-338)))) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#3| (-1005)))) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-2812 (($ (-844)) NIL (|has| |#3| (-338)))) (-4125 (((-1023) $) NIL (|has| |#3| (-1005)))) (-2429 ((|#3| $) NIL (|has| (-517) (-779)))) (-2846 (($ $ |#3|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-2891 (((-583 |#3|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3746 ((|#3| $ $) NIL (|has| |#3| (-963)))) (-3909 (($ (-1157 |#3|)) NIL)) (-1537 (((-125)) NIL (|has| |#3| (-333)))) (-2060 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-963))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)))) (-4137 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#3| (-1005))))) (-2462 (($ $) NIL)) (-2271 (((-1157 |#3|) $) NIL) (($ (-517)) NIL (-3747 (-12 (|has| |#3| (-954 (-517))) (|has| |#3| (-1005))) (|has| |#3| (-963)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-954 (-377 (-517)))) (|has| |#3| (-1005)))) (($ |#3|) NIL (|has| |#3| (-1005))) (((-787) $) NIL (|has| |#3| (-557 (-787))))) (-4099 (((-703)) NIL (|has| |#3| (-963)))) (-3602 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4192)))) (-2376 (($ $) NIL (|has| |#3| (-777)))) (-2815 (($ $ (-703)) NIL (|has| |#3| (-963))) (($ $ (-844)) NIL (|has| |#3| (-963)))) (-3610 (($) NIL (|has| |#3| (-123)) CONST)) (-3619 (($) NIL (|has| |#3| (-963)) CONST)) (-3342 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-963)))) (($ $ (-1076)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1076))) (|has| |#3| (-963)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-963))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)))) (-1642 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1618 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1584 (((-107) $ $) NIL (|has| |#3| (-1005)))) (-1630 (((-107) $ $) NIL (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1608 (((-107) $ $) 17 (-3747 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1704 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1692 (($ $ $) NIL (|has| |#3| (-963))) (($ $) NIL (|has| |#3| (-963)))) (-1678 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-963))) (($ $ (-844)) NIL (|has| |#3| (-963)))) (* (($ $ $) NIL (|has| |#3| (-963))) (($ (-517) $) NIL (|has| |#3| (-963))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-844) $) NIL (|has| |#3| (-25)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1018 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1018))
+((-2105 (((-107) $ $) 7)) (-2798 (((-107) $) 32)) (-2243 ((|#2| $) 27)) (-3844 (((-107) $) 33)) (-1507 ((|#1| $) 28)) (-3347 (((-107) $) 35)) (-2469 (((-107) $) 37)) (-1294 (((-107) $) 34)) (-3232 (((-1060) $) 9)) (-3744 (((-107) $) 31)) (-2258 ((|#3| $) 26)) (-4130 (((-1024) $) 10)) (-2965 (((-107) $) 30)) (-3202 ((|#4| $) 25)) (-3756 ((|#5| $) 24)) (-3817 (((-107) $ $) 38)) (-2612 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3964 (((-583 $) $) 29)) (-3367 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2262 (((-787) $) 11)) (-3311 (($ $) 16)) (-3301 (($ $) 17)) (-4112 (((-107) $) 36)) (-1572 (((-107) $ $) 6)) (-3573 (((-517) $) 15)))
+(((-1009 |#1| |#2| |#3| |#4| |#5|) (-1189) (-1006) (-1006) (-1006) (-1006) (-1006)) (T -1009))
+((-3817 (*1 *2 *1 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3964 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *2 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *2 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *2 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3301 (*1 *1 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3311 (*1 *1 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-517)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))))
+(-13 (-1006) (-10 -8 (-15 -3817 ((-107) $ $)) (-15 -2469 ((-107) $)) (-15 -4112 ((-107) $)) (-15 -3347 ((-107) $)) (-15 -1294 ((-107) $)) (-15 -3844 ((-107) $)) (-15 -2798 ((-107) $)) (-15 -3744 ((-107) $)) (-15 -2965 ((-107) $)) (-15 -3964 ((-583 $) $)) (-15 -1507 (|t#1| $)) (-15 -2243 (|t#2| $)) (-15 -2258 (|t#3| $)) (-15 -3202 (|t#4| $)) (-15 -3756 (|t#5| $)) (-15 -3367 ($ (-583 $))) (-15 -3367 ($ |t#1|)) (-15 -3367 ($ |t#2|)) (-15 -3367 ($ |t#3|)) (-15 -3367 ($ |t#4|)) (-15 -3367 ($ |t#5|)) (-15 -3301 ($ $)) (-15 -3311 ($ $)) (-15 -3573 ((-517) $)) (-15 -2612 ($ $ (-517))) (-15 -2612 ($ $ (-583 (-517))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-2798 (((-107) $) NIL)) (-2243 (((-1077) $) NIL)) (-3844 (((-107) $) NIL)) (-1507 (((-1060) $) NIL)) (-3347 (((-107) $) NIL)) (-2469 (((-107) $) NIL)) (-1294 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-3744 (((-107) $) NIL)) (-2258 (((-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2965 (((-107) $) NIL)) (-3202 (((-199) $) NIL)) (-3756 (((-787) $) NIL)) (-3817 (((-107) $ $) NIL)) (-2612 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3964 (((-583 $) $) NIL)) (-3367 (($ (-583 $)) NIL) (($ (-1060)) NIL) (($ (-1077)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2262 (((-787) $) NIL)) (-3311 (($ $) NIL)) (-3301 (($ $) NIL)) (-4112 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-517) $) NIL)))
+(((-1010) (-1009 (-1060) (-1077) (-517) (-199) (-787))) (T -1010))
+NIL
+(-1009 (-1060) (-1077) (-517) (-199) (-787))
+((-2105 (((-107) $ $) NIL)) (-2798 (((-107) $) 38)) (-2243 ((|#2| $) 42)) (-3844 (((-107) $) 37)) (-1507 ((|#1| $) 41)) (-3347 (((-107) $) 35)) (-2469 (((-107) $) 14)) (-1294 (((-107) $) 36)) (-3232 (((-1060) $) NIL)) (-3744 (((-107) $) 39)) (-2258 ((|#3| $) 44)) (-4130 (((-1024) $) NIL)) (-2965 (((-107) $) 40)) (-3202 ((|#4| $) 43)) (-3756 ((|#5| $) 45)) (-3817 (((-107) $ $) 34)) (-2612 (($ $ (-517)) 56) (($ $ (-583 (-517))) 58)) (-3964 (((-583 $) $) 22)) (-3367 (($ (-583 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2262 (((-787) $) 23)) (-3311 (($ $) 21)) (-3301 (($ $) 52)) (-4112 (((-107) $) 18)) (-1572 (((-107) $ $) 33)) (-3573 (((-517) $) 54)))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-1009 |#1| |#2| |#3| |#4| |#5|) (-1006) (-1006) (-1006) (-1006) (-1006)) (T -1011))
+NIL
+(-1009 |#1| |#2| |#3| |#4| |#5|)
+((-1885 (((-1163) $) 23)) (-2693 (($ (-1077) (-404) |#2|) 11)) (-2262 (((-787) $) 16)))
+(((-1012 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2693 ($ (-1077) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1012))
+((-2693 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1012 *5 *4)) (-4 *4 (-400 *5)))))
+(-13 (-365) (-10 -8 (-15 -2693 ($ (-1077) (-404) |#2|))))
+((-1788 (((-107) |#5| |#5|) 38)) (-3752 (((-107) |#5| |#5|) 52)) (-3331 (((-107) |#5| (-583 |#5|)) 75) (((-107) |#5| |#5|) 61)) (-1361 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-2457 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 63)) (-3455 (((-1163)) 33)) (-1533 (((-1163) (-1060) (-1060) (-1060)) 29)) (-3812 (((-583 |#5|) (-583 |#5|)) 82)) (-3825 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) 80)) (-1950 (((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 102)) (-1719 (((-107) |#5| |#5|) 47)) (-2451 (((-3 (-107) "failed") |#5| |#5|) 71)) (-1526 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3818 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-1579 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3673 (((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 98)) (-1908 (((-583 |#5|) (-583 |#5|)) 43)))
+(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1013))
+((-3673 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-1950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1013 *5 *6 *7 *8 *3)))) (-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-2451 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3818 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1361 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1719 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-1788 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3455 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-1533 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-4043 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|) 95)) (-2873 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|) 71)) (-1709 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 89)) (-3194 (((-583 |#5|) |#4| |#5|) 110)) (-1696 (((-583 |#5|) |#4| |#5|) 117)) (-3954 (((-583 |#5|) |#4| |#5|) 118)) (-2988 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 96)) (-2838 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 116)) (-2135 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1948 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107)) 83) (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1778 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 78)) (-2558 (((-1163)) 35)) (-1367 (((-1163)) 25)) (-3944 (((-1163) (-1060) (-1060) (-1060)) 31)) (-3404 (((-1163) (-1060) (-1060) (-1060)) 20)))
+(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2873 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -1778 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1709 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -2135 ((-107) |#4| |#5|)) (-15 -2988 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3194 ((-583 |#5|) |#4| |#5|)) (-15 -2838 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1696 ((-583 |#5|) |#4| |#5|)) (-15 -2135 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3954 ((-583 |#5|) |#4| |#5|)) (-15 -4043 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1014))
+((-4043 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3954 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2838 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3194 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2988 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1709 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1778 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1948 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9)))) (-5 *1 (-1014 *6 *7 *4 *8 *9)))) (-1948 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2873 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3944 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1367 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3404 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2873 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -1778 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1709 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -2135 ((-107) |#4| |#5|)) (-15 -2988 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3194 ((-583 |#5|) |#4| |#5|)) (-15 -2838 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1696 ((-583 |#5|) |#4| |#5|)) (-15 -2135 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3954 ((-583 |#5|) |#4| |#5|)) (-15 -4043 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|)))
+((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195)))))
+(((-1015 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -1015))
+NIL
+(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T))
+((-3206 (((-583 (-517)) (-517) (-517) (-517)) 22)) (-4103 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1506 (((-583 (-517)) (-517) (-517) (-517)) 18)) (-2281 (((-517) (-517) (-517)) 9)) (-3288 (((-1158 (-517)) (-583 (-517)) (-1158 (-517)) (-517)) 45) (((-1158 (-517)) (-1158 (-517)) (-1158 (-517)) (-517)) 40)) (-1390 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 27)) (-1973 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 44)) (-3653 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 32)) (-2185 (((-583 (-623 (-517))) (-583 (-517))) 34)) (-2651 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 47)) (-1643 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 55)))
+(((-1016) (-10 -7 (-15 -1643 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2651 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2185 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3653 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -1973 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -1390 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3288 ((-1158 (-517)) (-1158 (-517)) (-1158 (-517)) (-517))) (-15 -3288 ((-1158 (-517)) (-583 (-517)) (-1158 (-517)) (-517))) (-15 -2281 ((-517) (-517) (-517))) (-15 -1506 ((-583 (-517)) (-517) (-517) (-517))) (-15 -4103 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3206 ((-583 (-517)) (-517) (-517) (-517))))) (T -1016))
+((-3206 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))) (-4103 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))) (-1506 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))) (-2281 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1016)))) (-3288 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1016)))) (-3288 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-517)) (-5 *1 (-1016)))) (-1390 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1016)))) (-1973 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1016)))) (-3653 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1016)))) (-2651 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1016)))) (-1643 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016)))))
+(-10 -7 (-15 -1643 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2651 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2185 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3653 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -1973 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -1390 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3288 ((-1158 (-517)) (-1158 (-517)) (-1158 (-517)) (-517))) (-15 -3288 ((-1158 (-517)) (-583 (-517)) (-1158 (-517)) (-517))) (-15 -2281 ((-517) (-517) (-517))) (-15 -1506 ((-583 (-517)) (-517) (-517) (-517))) (-15 -4103 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3206 ((-583 (-517)) (-517) (-517) (-517))))
+((-2806 (($ $ (-845)) 12)) (** (($ $ (-845)) 10)))
+(((-1017 |#1|) (-10 -8 (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) (-1018)) (T -1017))
+NIL
+(-10 -8 (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845))))
+((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 14)) (* (($ $ $) 15)))
+(((-1018) (-1189)) (T -1018))
+((* (*1 *1 *1 *1) (-4 *1 (-1018))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845)))))
+(-13 (-1006) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-845))) (-15 -2806 ($ $ (-845)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL (|has| |#3| (-1006)))) (-1992 (((-107) $) NIL (|has| |#3| (-123)))) (-3622 (($ (-845)) NIL (|has| |#3| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#3| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#3| (-338)))) (-3502 (((-517) $) NIL (|has| |#3| (-777)))) (-2436 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) ((|#3| $) NIL (|has| |#3| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) NIL (|has| |#3| (-964))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-964)))) (-3550 (((-3 $ "failed") $) NIL (|has| |#3| (-964)))) (-2192 (($) NIL (|has| |#3| (-338)))) (-2750 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#3| $ (-517)) 12)) (-2671 (((-107) $) NIL (|has| |#3| (-777)))) (-1525 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#3| (-964)))) (-2321 (((-107) $) NIL (|has| |#3| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-3687 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2737 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#3| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#3| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#3| (-338)))) (-4130 (((-1024) $) NIL (|has| |#3| (-1006)))) (-2420 ((|#3| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#3|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2862 (((-583 |#3|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3912 ((|#3| $ $) NIL (|has| |#3| (-964)))) (-3935 (($ (-1158 |#3|)) NIL)) (-1470 (((-125)) NIL (|has| |#3| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964)))) (-4140 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#3|) $) NIL) (($ (-517)) NIL (-3786 (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (|has| |#3| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) (($ |#3|) NIL (|has| |#3| (-1006))) (((-787) $) NIL (|has| |#3| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#3| (-964)))) (-1272 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#3| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (-3663 (($) NIL (|has| |#3| (-123)) CONST)) (-3675 (($) NIL (|has| |#3| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL (|has| |#3| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1596 (((-107) $ $) 17 (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1692 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1680 (($ $ $) NIL (|has| |#3| (-964))) (($ $) NIL (|has| |#3| (-964)))) (-1666 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (* (($ $ $) NIL (|has| |#3| (-964))) (($ (-517) $) NIL (|has| |#3| (-964))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-845) $) NIL (|has| |#3| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1019 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1019))
NIL
(-212 |#1| |#3|)
-((-3055 (((-583 (-1130 |#2| |#1|)) (-1130 |#2| |#1|) (-1130 |#2| |#1|)) 37)) (-1904 (((-517) (-1130 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-1252 (((-517) (-1130 |#2| |#1|)) 54)) (-2504 (((-583 (-1130 |#2| |#1|)) (-1130 |#2| |#1|) (-1130 |#2| |#1|)) 45)) (-1861 (((-517) (-1130 |#2| |#1|) (-1130 |#2| |#1|)) 56 (|has| |#1| (-421)))) (-1865 (((-583 |#1|) (-1130 |#2| |#1|) (-1130 |#2| |#1|)) 48)) (-1433 (((-517) (-1130 |#2| |#1|) (-1130 |#2| |#1|)) 53)))
-(((-1019 |#1| |#2|) (-10 -7 (-15 -3055 ((-583 (-1130 |#2| |#1|)) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -2504 ((-583 (-1130 |#2| |#1|)) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1865 ((-583 |#1|) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1433 ((-517) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1252 ((-517) (-1130 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -1861 ((-517) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1904 ((-517) (-1130 |#2| |#1|)))) |%noBranch|)) (-752) (-1076)) (T -1019))
-((-1904 (*1 *2 *3) (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))) (-1861 (*1 *2 *3 *3) (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))) (-1252 (*1 *2 *3) (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))) (-1433 (*1 *2 *3 *3) (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))) (-1865 (*1 *2 *3 *3) (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *4 *5)))) (-2504 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-583 (-1130 *5 *4))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-1130 *5 *4)))) (-3055 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-583 (-1130 *5 *4))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-1130 *5 *4)))))
-(-10 -7 (-15 -3055 ((-583 (-1130 |#2| |#1|)) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -2504 ((-583 (-1130 |#2| |#1|)) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1865 ((-583 |#1|) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1433 ((-517) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1252 ((-517) (-1130 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -1861 ((-517) (-1130 |#2| |#1|) (-1130 |#2| |#1|))) (-15 -1904 ((-517) (-1130 |#2| |#1|)))) |%noBranch|))
-((-2360 (((-3 (-517) "failed") |#2| (-1076) |#2| (-1059)) 16) (((-3 (-517) "failed") |#2| (-1076) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
-(((-1020 |#1| |#2|) (-10 -7 (-15 -2360 ((-3 (-517) "failed") |#2|)) (-15 -2360 ((-3 (-517) "failed") |#2| (-1076) (-772 |#2|))) (-15 -2360 ((-3 (-517) "failed") |#2| (-1076) |#2| (-1059)))) (-13 (-509) (-779) (-954 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1097) (-400 |#1|))) (T -1020))
-((-2360 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-1059)) (-4 *6 (-13 (-509) (-779) (-954 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1020 *6 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6))))) (-2360 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-954 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1020 *6 *3)))) (-2360 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-954 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1020 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))))
-(-10 -7 (-15 -2360 ((-3 (-517) "failed") |#2|)) (-15 -2360 ((-3 (-517) "failed") |#2| (-1076) (-772 |#2|))) (-15 -2360 ((-3 (-517) "failed") |#2| (-1076) |#2| (-1059))))
-((-2360 (((-3 (-517) "failed") (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|)) (-1059)) 34) (((-3 (-517) "failed") (-377 (-875 |#1|)) (-1076) (-772 (-377 (-875 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-875 |#1|))) 12)))
-(((-1021 |#1|) (-10 -7 (-15 -2360 ((-3 (-517) "failed") (-377 (-875 |#1|)))) (-15 -2360 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1076) (-772 (-377 (-875 |#1|))))) (-15 -2360 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|)) (-1059)))) (-421)) (T -1021))
-((-2360 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-1076)) (-5 *5 (-1059)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1021 *6)))) (-2360 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-772 (-377 (-875 *6)))) (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1021 *6)))) (-2360 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1021 *4)))))
-(-10 -7 (-15 -2360 ((-3 (-517) "failed") (-377 (-875 |#1|)))) (-15 -2360 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1076) (-772 (-377 (-875 |#1|))))) (-15 -2360 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1076) (-377 (-875 |#1|)) (-1059))))
-((-3725 (((-286 (-517)) (-47)) 11)))
-(((-1022) (-10 -7 (-15 -3725 ((-286 (-517)) (-47))))) (T -1022))
-((-3725 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1022)))))
-(-10 -7 (-15 -3725 ((-286 (-517)) (-47))))
-((-2119 (((-107) $ $) NIL)) (-3623 (($ $) 41)) (-3097 (((-107) $) 65)) (-2294 (($ $ $) 48)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 84)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-1876 (($ $ $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $ $ $) 74)) (-1224 (($ $) NIL)) (-4018 (((-388 $) $) NIL)) (-3820 (((-107) $ $) NIL)) (-2360 (((-517) $) NIL)) (-2142 (($ $ $) 71)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL)) (-3390 (((-517) $) NIL)) (-2379 (($ $ $) 59)) (-2207 (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-2560 (((-3 $ "failed") $) NIL)) (-2518 (((-3 (-377 (-517)) "failed") $) NIL)) (-3000 (((-107) $) NIL)) (-1843 (((-377 (-517)) $) NIL)) (-2202 (($) 81) (($ $) 82)) (-2354 (($ $ $) 58)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL)) (-1259 (((-107) $) NIL)) (-3631 (($ $ $ $) NIL)) (-3248 (($ $ $) 79)) (-2988 (((-107) $) NIL)) (-2144 (($ $ $) NIL)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1376 (((-107) $) 66)) (-2686 (((-107) $) 64)) (-2479 (($ $) 42)) (-2243 (((-3 $ "failed") $) NIL)) (-1952 (((-107) $) 75)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2767 (($ $ $ $) 72)) (-3458 (($ $ $) 68) (($) 39)) (-4084 (($ $ $) 67) (($) 38)) (-2638 (($ $) NIL)) (-3682 (($ $) 70)) (-2332 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1662 (((-1059) $) NIL)) (-2949 (($ $ $) NIL)) (-2587 (($) NIL T CONST)) (-4006 (($ $) 50)) (-4125 (((-1023) $) NIL) (($ $) 69)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL)) (-2370 (($ $ $) 62) (($ (-583 $)) NIL)) (-1691 (($ $) NIL)) (-3868 (((-388 $) $) NIL)) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL)) (-2329 (((-3 $ "failed") $ $) NIL)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1766 (((-107) $) NIL)) (-3600 (((-703) $) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 61)) (-2060 (($ $ (-703)) NIL) (($ $) NIL)) (-2917 (($ $) 51)) (-2462 (($ $) NIL)) (-3359 (((-517) $) 32) (((-493) $) NIL) (((-815 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2271 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-4099 (((-703)) NIL)) (-3969 (((-107) $ $) NIL)) (-1917 (($ $ $) NIL)) (-3985 (($) 37)) (-2074 (((-107) $ $) NIL)) (-3696 (($ $ $ $) 73)) (-2376 (($ $) 63)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3817 (($ $ $) 44)) (-3610 (($) 35 T CONST)) (-3916 (($ $ $) 47)) (-3619 (($) 36 T CONST)) (-4032 (((-1059) $) 21) (((-1059) $ (-107)) 23) (((-1162) (-754) $) 24) (((-1162) (-754) $ (-107)) 25)) (-3927 (($ $) 45)) (-3342 (($ $ (-703)) NIL) (($ $) NIL)) (-3902 (($ $ $) 46)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 40)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 49)) (-3805 (($ $ $) 43)) (-1692 (($ $) 52) (($ $ $) 54)) (-1678 (($ $ $) 53)) (** (($ $ (-844)) NIL) (($ $ (-703)) 57)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
-(((-1023) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4179) (-6 -4184) (-6 -4180) (-15 -4084 ($)) (-15 -3458 ($)) (-15 -2479 ($ $)) (-15 -3623 ($ $)) (-15 -3805 ($ $ $)) (-15 -3817 ($ $ $)) (-15 -2294 ($ $ $)) (-15 -3927 ($ $)) (-15 -3902 ($ $ $)) (-15 -3916 ($ $ $))))) (T -1023))
-((-3817 (*1 *1 *1 *1) (-5 *1 (-1023))) (-3805 (*1 *1 *1 *1) (-5 *1 (-1023))) (-3623 (*1 *1 *1) (-5 *1 (-1023))) (-4084 (*1 *1) (-5 *1 (-1023))) (-3458 (*1 *1) (-5 *1 (-1023))) (-2479 (*1 *1 *1) (-5 *1 (-1023))) (-2294 (*1 *1 *1 *1) (-5 *1 (-1023))) (-3927 (*1 *1 *1) (-5 *1 (-1023))) (-3902 (*1 *1 *1 *1) (-5 *1 (-1023))) (-3916 (*1 *1 *1 *1) (-5 *1 (-1023))))
-(-13 (-502) (-598) (-760) (-10 -8 (-6 -4179) (-6 -4184) (-6 -4180) (-15 -4084 ($)) (-15 -3458 ($)) (-15 -2479 ($ $)) (-15 -3623 ($ $)) (-15 -3805 ($ $ $)) (-15 -3817 ($ $ $)) (-15 -2294 ($ $ $)) (-15 -3927 ($ $)) (-15 -3902 ($ $ $)) (-15 -3916 ($ $ $))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-2553 ((|#1| $) 44)) (-1851 (((-107) $ (-703)) 8)) (-1393 (($) 7 T CONST)) (-2704 ((|#1| |#1| $) 46)) (-3394 ((|#1| $) 45)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1803 ((|#1| $) 39)) (-3241 (($ |#1| $) 40)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-4113 ((|#1| $) 41)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-3145 (((-703) $) 43)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) 42)) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1024 |#1|) (-1188) (-1111)) (T -1024))
-((-2704 (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1111)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1111)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1111)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4192) (-15 -2704 (|t#1| |t#1| $)) (-15 -3394 (|t#1| $)) (-15 -2553 (|t#1| $)) (-15 -3145 ((-703) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-2009 ((|#3| $) 76)) (-3228 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3390 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-2207 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL) (((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 $) (-1157 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-2060 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-1813 ((|#3| $) 78)) (-3520 ((|#4| $) 32)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-844)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
-(((-1025 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1813 (|#3| |#1|)) (-15 -2009 (|#3| |#1|)) (-15 -3520 (|#4| |#1|)) (-15 -2207 ((-623 |#3|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -3390 (|#3| |#1|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -2271 (|#1| |#3|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2271 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -2271 ((-787) |#1|))) (-1026 |#2| |#3| |#4| |#5|) (-703) (-963) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1025))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1813 (|#3| |#1|)) (-15 -2009 (|#3| |#1|)) (-15 -3520 (|#4| |#1|)) (-15 -2207 ((-623 |#3|) (-623 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 |#3|)) (|:| |vec| (-1157 |#3|))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 |#1|) (-1157 |#1|))) (-15 -2207 ((-623 (-517)) (-623 |#1|))) (-15 -3390 (|#3| |#1|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -2271 (|#1| |#3|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-517) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2060 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2271 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2009 ((|#2| $) 72)) (-3933 (((-107) $) 112)) (-2798 (((-3 $ "failed") $ $) 19)) (-1223 (((-107) $) 110)) (-1851 (((-107) $ (-703)) 102)) (-2351 (($ |#2|) 75)) (-1393 (($) 17 T CONST)) (-1382 (($ $) 129 (|has| |#2| (-278)))) (-3476 ((|#3| $ (-517)) 124)) (-3228 (((-3 (-517) "failed") $) 86 (|has| |#2| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-954 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3390 (((-517) $) 87 (|has| |#2| (-954 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-954 (-377 (-517))))) ((|#2| $) 80)) (-2207 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-2560 (((-3 $ "failed") $) 34)) (-3737 (((-703) $) 130 (|has| |#2| (-509)))) (-2566 ((|#2| $ (-517) (-517)) 122)) (-1534 (((-583 |#2|) $) 95 (|has| $ (-6 -4192)))) (-1376 (((-107) $) 31)) (-2720 (((-703) $) 131 (|has| |#2| (-509)))) (-2620 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1421 (((-703) $) 118)) (-1435 (((-703) $) 119)) (-2497 (((-107) $ (-703)) 103)) (-3809 ((|#2| $) 67 (|has| |#2| (-6 (-4194 "*"))))) (-1683 (((-517) $) 114)) (-3400 (((-517) $) 116)) (-1903 (((-583 |#2|) $) 94 (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-1207 (((-517) $) 115)) (-3797 (((-517) $) 117)) (-2371 (($ (-583 (-583 |#2|))) 109)) (-2746 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3704 (((-583 (-583 |#2|)) $) 120)) (-1320 (((-107) $ (-703)) 104)) (-1662 (((-1059) $) 9)) (-3856 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-4125 (((-1023) $) 10)) (-2329 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-3644 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) 108)) (-2394 (((-107) $) 105)) (-2452 (($) 106)) (-2609 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-2060 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1076)) (-583 (-703))) 44 (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) 43 (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) 42 (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) 41 (|has| |#2| (-823 (-1076)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-1813 ((|#2| $) 71)) (-2528 (($ (-583 |#2|)) 74)) (-1832 (((-107) $) 111)) (-3520 ((|#3| $) 73)) (-2854 ((|#2| $) 68 (|has| |#2| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4192))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 107)) (-3259 ((|#4| $ (-517)) 125)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-954 (-377 (-517))))) (($ |#2|) 82)) (-4099 (((-703)) 29)) (-3602 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4192)))) (-2909 (((-107) $) 113)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1076)) (-583 (-703))) 48 (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) 47 (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) 46 (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) 45 (|has| |#2| (-823 (-1076)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3535 (((-703) $) 101 (|has| $ (-6 -4192)))))
-(((-1026 |#1| |#2| |#3| |#4|) (-1188) (-703) (-963) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1026))
-((-2351 (*1 *1 *2) (-12 (-4 *2 (-963)) (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-963)) (-4 *1 (-1026 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-963)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-963)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963)))) (-3856 (*1 *1 *1) (|partial| -12 (-4 *1 (-1026 *2 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1026 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
-(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |%noBranch|) (-15 -2351 ($ |t#2|)) (-15 -2528 ($ (-583 |t#2|))) (-15 -3520 (|t#3| $)) (-15 -2009 (|t#2| $)) (-15 -1813 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4194 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2854 (|t#2| $)) (-15 -3809 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -3856 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4194 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3747 (|has| |#2| (-156)) (|has| |#2| (-6 (-4194 "*")))) ((-659) . T) ((-823 (-1076)) |has| |#2| (-823 (-1076))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-954 (-377 (-517))) |has| |#2| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#2| (-954 (-517))) ((-954 |#2|) . T) ((-969 |#2|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1111) . T))
-((-2282 ((|#4| |#4|) 68)) (-3272 ((|#4| |#4|) 63)) (-3881 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|))) |#4| |#3|) 76)) (-3381 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-3260 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
-(((-1027 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 (|#4| |#4|)) (-15 -3260 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2282 (|#4| |#4|)) (-15 -3381 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3881 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1027))
-((-3881 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4)))) (-5 *1 (-1027 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3381 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3260 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -3272 (|#4| |#4|)) (-15 -3260 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2282 (|#4| |#4|)) (-15 -3381 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3881 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1492 (-583 |#3|))) |#4| |#3|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 17)) (-2097 (((-583 |#2|) $) 159)) (-1440 (((-1072 $) $ |#2|) 53) (((-1072 |#1|) $) 42)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 109 (|has| |#1| (-509)))) (-3062 (($ $) 111 (|has| |#1| (-509)))) (-2190 (((-107) $) 113 (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) 156) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3390 ((|#1| $) 154) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) ((|#2| $) NIL)) (-2157 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-2373 (($ $) 197)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) 81)) (-2683 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-489 |#2|) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1376 (((-107) $) 19)) (-3783 (((-703) $) 26)) (-2086 (($ (-1072 |#1|) |#2|) 47) (($ (-1072 $) |#2|) 63)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) 31)) (-2078 (($ |#1| (-489 |#2|)) 70) (($ $ |#2| (-703)) 51) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ |#2|) NIL)) (-3492 (((-489 |#2|) $) 186) (((-703) $ |#2|) 187) (((-583 (-703)) $ (-583 |#2|)) 188)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) 121)) (-2297 (((-3 |#2| "failed") $) 161)) (-2335 (($ $) 196)) (-2347 ((|#1| $) 36)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| |#2|) (|:| -2121 (-703))) "failed") $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) 32)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 139 (|has| |#1| (-421)))) (-2370 (($ (-583 $)) 144 (|has| |#1| (-421))) (($ $ $) 131 (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#1| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2329 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-509)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-583 |#2|) (-583 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-583 |#2|) (-583 $)) 176)) (-1220 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2060 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3647 (((-489 |#2|) $) 182) (((-703) $ |#2|) 178) (((-583 (-703)) $ (-583 |#2|)) 180)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3119 ((|#1| $) 127 (|has| |#1| (-421))) (($ $ |#2|) 130 (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2271 (((-787) $) 150) (($ (-517)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-1998 (((-583 |#1|) $) 153)) (-1689 ((|#1| $ (-489 |#2|)) 72) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) 78)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) 116 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 101) (($ $ (-703)) 103)) (-3610 (($) 12 T CONST)) (-3619 (($) 14 T CONST)) (-3342 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 96)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) 125 (|has| |#1| (-333)))) (-1692 (($ $) 84) (($ $ $) 94)) (-1678 (($ $ $) 48)) (** (($ $ (-844)) 102) (($ $ (-703)) 99)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 87) (($ $ $) 64) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-1028 |#1| |#2|) (-872 |#1| (-489 |#2|) |#2|) (-963) (-779)) (T -1028))
-NIL
-(-872 |#1| (-489 |#2|) |#2|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 |#2|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1648 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1624 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 114 (|has| |#1| (-37 (-377 (-517)))))) (-1670 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2914 (((-875 |#1|) $ (-703)) NIL) (((-875 |#1|) $ (-703) (-703)) NIL)) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3982 (((-107) $) NIL)) (-2078 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 58) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1226 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-2356 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-3689 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-2671 (($ $ (-703)) 15)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3870 (($ $) 110 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (($ $ |#2| $) 96) (($ $ (-583 |#2|) (-583 $)) 89) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2060 (($ $ |#2|) 99) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3647 (((-489 |#2|) $) NIL)) (-2993 (((-1 (-1057 |#3|) |#3|) (-583 |#2|) (-583 (-1057 |#3|))) 79)) (-1682 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 17)) (-2271 (((-787) $) 180) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 65) (($ |#3|) 63)) (-1689 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-1722 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2824 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 18 T CONST)) (-3619 (($) 10 T CONST)) (-3342 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) 182 (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 61)) (** (($ $ (-844)) NIL) (($ $ (-703)) 70) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 102 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 60) (($ $ (-377 (-517))) 107 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 105 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1029 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -1689 (|#3| $ (-703))) (-15 -2271 ($ |#2|)) (-15 -2271 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2993 ((-1 (-1057 |#3|) |#3|) (-583 |#2|) (-583 (-1057 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $ |#2| |#1|)) (-15 -3689 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-963) (-779) (-872 |#1| (-489 |#2|) |#2|)) (T -1029))
-((-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-872 *4 (-489 *5) *5)) (-5 *1 (-1029 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-779)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *2 (-779)) (-5 *1 (-1029 *3 *2 *4)) (-4 *4 (-872 *3 (-489 *2) *2)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *4 (-779)) (-5 *1 (-1029 *3 *4 *2)) (-4 *2 (-872 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-779)) (-5 *1 (-1029 *3 *4 *2)) (-4 *2 (-872 *3 (-489 *4) *4)))) (-2993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1057 *7))) (-4 *6 (-779)) (-4 *7 (-872 *5 (-489 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1057 *7) *7)) (-5 *1 (-1029 *5 *6 *7)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-4 *2 (-779)) (-5 *1 (-1029 *3 *2 *4)) (-4 *4 (-872 *3 (-489 *2) *2)))) (-3689 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1029 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-963)) (-4 *3 (-779)) (-5 *1 (-1029 *4 *3 *5)) (-4 *5 (-872 *4 (-489 *3) *3)))))
-(-13 (-673 |#1| |#2|) (-10 -8 (-15 -1689 (|#3| $ (-703))) (-15 -2271 ($ |#2|)) (-15 -2271 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2993 ((-1 (-1057 |#3|) |#3|) (-583 |#2|) (-583 (-1057 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $ |#2| |#1|)) (-15 -3689 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2119 (((-107) $ $) 7)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) 85)) (-2265 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2097 (((-583 |#3|) $) 33)) (-2687 (((-107) $) 26)) (-3389 (((-107) $) 17 (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) 101) (((-107) $) 97)) (-3939 ((|#4| |#4| $) 92)) (-1224 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| $) 126)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) 27)) (-1851 (((-107) $ (-703)) 44)) (-2325 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 79)) (-1393 (($) 45 T CONST)) (-3338 (((-107) $) 22 (|has| |#1| (-509)))) (-1605 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2893 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2501 (((-107) $) 25 (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2567 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 36)) (-3390 (($ (-583 |#4|)) 35)) (-2439 (((-3 $ "failed") $) 82)) (-3777 ((|#4| |#4| $) 89)) (-2455 (($ $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-2639 ((|#4| |#4| $) 87)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) 105)) (-2127 (((-107) |#4| $) 136)) (-2957 (((-107) |#4| $) 133)) (-1401 (((-107) |#4| $) 137) (((-107) $) 134)) (-1534 (((-583 |#4|) $) 52 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) 104) (((-107) $) 103)) (-3024 ((|#3| $) 34)) (-2497 (((-107) $ (-703)) 43)) (-1903 (((-583 |#4|) $) 53 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 47)) (-2241 (((-583 |#3|) $) 32)) (-2621 (((-107) |#3| $) 31)) (-1320 (((-107) $ (-703)) 42)) (-1662 (((-1059) $) 9)) (-2496 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2350 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| |#4| $) 127)) (-1446 (((-3 |#4| "failed") $) 83)) (-2305 (((-583 $) |#4| $) 129)) (-3364 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2259 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-1493 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3568 (((-583 |#4|) $) 107)) (-1732 (((-107) |#4| $) 99) (((-107) $) 95)) (-3998 ((|#4| |#4| $) 90)) (-2958 (((-107) $ $) 110)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) 100) (((-107) $) 96)) (-3252 ((|#4| |#4| $) 91)) (-4125 (((-1023) $) 10)) (-2429 (((-3 |#4| "failed") $) 84)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3439 (((-3 $ "failed") $ |#4|) 78)) (-2671 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3644 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) 38)) (-2394 (((-107) $) 41)) (-2452 (($) 40)) (-3647 (((-703) $) 106)) (-4137 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4192)))) (-2462 (($ $) 39)) (-3359 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 60)) (-4028 (($ $ |#3|) 28)) (-1409 (($ $ |#3|) 30)) (-1888 (($ $) 88)) (-4159 (($ $ |#3|) 29)) (-2271 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3057 (((-703) $) 76 (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1856 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3602 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) 81)) (-3302 (((-107) |#4| $) 135)) (-1999 (((-107) |#3| $) 80)) (-1584 (((-107) $ $) 6)) (-3535 (((-703) $) 46 (|has| $ (-6 -4192)))))
-(((-1030 |#1| |#2| |#3| |#4|) (-1188) (-421) (-725) (-779) (-977 |t#1| |t#2| |t#3|)) (T -1030))
-NIL
-(-13 (-1014 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-895 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1014 |#1| |#2| |#3| |#4|) . T) ((-1105 |#1| |#2| |#3| |#4|) . T) ((-1111) . T))
-((-1516 (((-583 |#2|) |#1|) 12)) (-2113 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-2138 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-1923 ((|#2| |#1|) 42)) (-1458 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2892 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-3412 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1538 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-1482 ((|#2| |#2| |#2| |#2|) 39)) (-2388 ((|#2| |#2| |#2|) 38)) (-1788 ((|#2| |#2| |#2| |#2| |#2|) 40)))
-(((-1031 |#1| |#2|) (-10 -7 (-15 -1516 ((-583 |#2|) |#1|)) (-15 -1923 (|#2| |#1|)) (-15 -1458 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2892 ((-583 |#2|) |#1|)) (-15 -2138 ((-583 |#2|) |#1|)) (-15 -3412 ((-583 |#2|) |#1|)) (-15 -2113 ((-583 |#2|) |#1|)) (-15 -2892 ((-583 |#2|) |#2| |#2|)) (-15 -2138 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3412 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2113 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2388 (|#2| |#2| |#2|)) (-15 -1482 (|#2| |#2| |#2| |#2|)) (-15 -1788 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1538 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1133 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1031))
-((-1538 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))) (-1788 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))) (-1482 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))) (-2388 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))) (-2113 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))) (-3412 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))) (-2138 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))) (-2892 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))) (-2113 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4)))) (-2138 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4)))) (-2892 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1031 *3 *5)) (-4 *3 (-1133 *5)))) (-1923 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -1516 ((-583 |#2|) |#1|)) (-15 -1923 (|#2| |#1|)) (-15 -1458 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2892 ((-583 |#2|) |#1|)) (-15 -2138 ((-583 |#2|) |#1|)) (-15 -3412 ((-583 |#2|) |#1|)) (-15 -2113 ((-583 |#2|) |#1|)) (-15 -2892 ((-583 |#2|) |#2| |#2|)) (-15 -2138 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3412 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2113 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2388 (|#2| |#2| |#2|)) (-15 -1482 (|#2| |#2| |#2| |#2|)) (-15 -1788 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1538 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2500 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|))))) 95) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1076))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|)))) 92) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))) (-583 (-1076))) 90) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|)))) 76) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))) (-1076)) 77) (((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|))) 71) (((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)) (-1076)) 60)) (-3402 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1076))) 88) (((-583 (-286 |#1|)) (-377 (-875 |#1|)) (-1076)) 43)) (-2960 (((-1066 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-875 |#1|)) (-1076)) 98) (((-1066 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-875 |#1|))) (-1076)) 97)))
-(((-1032 |#1|) (-10 -7 (-15 -2500 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)) (-1076))) (-15 -2500 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)))) (-15 -2500 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))) (-1076))) (-15 -2500 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1076)))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -3402 ((-583 (-286 |#1|)) (-377 (-875 |#1|)) (-1076))) (-15 -3402 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -2960 ((-1066 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-875 |#1|))) (-1076))) (-15 -2960 ((-1066 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-875 |#1|)) (-1076)))) (-13 (-278) (-779) (-134))) (T -1032))
-((-2960 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1066 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)))) (-2960 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1066 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1032 *5)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1032 *5)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-875 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1032 *4)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-875 *5))))) (-5 *4 (-583 (-1076))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-875 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1032 *4)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-875 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)))))
-(-10 -7 (-15 -2500 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)) (-1076))) (-15 -2500 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)))) (-15 -2500 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))) (-1076))) (-15 -2500 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1076)))) (-15 -2500 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -3402 ((-583 (-286 |#1|)) (-377 (-875 |#1|)) (-1076))) (-15 -3402 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -2960 ((-1066 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-875 |#1|))) (-1076))) (-15 -2960 ((-1066 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-875 |#1|)) (-1076))))
-((-2647 (((-377 (-1072 (-286 |#1|))) (-1157 (-286 |#1|)) (-377 (-1072 (-286 |#1|))) (-517)) 27)) (-3642 (((-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|)))) 39)))
-(((-1033 |#1|) (-10 -7 (-15 -3642 ((-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))))) (-15 -2647 ((-377 (-1072 (-286 |#1|))) (-1157 (-286 |#1|)) (-377 (-1072 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1033))
-((-2647 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1072 (-286 *5)))) (-5 *3 (-1157 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1033 *5)))) (-3642 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1072 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1033 *3)))))
-(-10 -7 (-15 -3642 ((-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))) (-377 (-1072 (-286 |#1|))))) (-15 -2647 ((-377 (-1072 (-286 |#1|))) (-1157 (-286 |#1|)) (-377 (-1072 (-286 |#1|))) (-517))))
-((-1516 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1076))) 217) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1076)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1076)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
-(((-1034 |#1|) (-10 -7 (-15 -1516 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1516 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1516 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1076))) (-15 -1516 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1076))) (-15 -1516 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1076))))) (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (T -1034))
-((-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1076))) (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1034 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-286 *5)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-265 (-286 *5))))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1034 *4)) (-5 *3 (-265 (-286 *4))))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1034 *4)) (-5 *3 (-286 *4)))))
-(-10 -7 (-15 -1516 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1516 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1516 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1076))) (-15 -1516 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1076))) (-15 -1516 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1076)))))
-((-2545 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-3532 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
-(((-1035 |#1| |#2|) (-10 -7 (-15 -3532 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2545 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -3532 (|#2| |#2|)) (-15 -2545 (|#2| |#2|))) |%noBranch|)) (-1111) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4192) (-6 -4193)))) (T -1035))
-((-2545 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1111)) (-5 *1 (-1035 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4192) (-6 -4193)))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1111)) (-5 *1 (-1035 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4192) (-6 -4193)))))) (-2545 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-1035 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4192) (-6 -4193)))))) (-3532 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-1035 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4192) (-6 -4193)))))))
-(-10 -7 (-15 -3532 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2545 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -3532 (|#2| |#2|)) (-15 -2545 (|#2| |#2|))) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-3918 (((-1065 3 |#1|) $) 106)) (-2582 (((-107) $) 72)) (-3432 (($ $ (-583 (-866 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-866 |#1|))) 74) (((-583 (-866 |#1|)) $) 73)) (-1942 (((-107) $) 41)) (-3416 (($ $ (-866 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-866 |#1|)) 47) (((-866 |#1|) $) 45)) (-3972 (((-2 (|:| -1715 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 104)) (-1975 (((-703) $) 26)) (-2894 (((-703) $) 25)) (-1792 (($ $ (-703) (-866 |#1|)) 39)) (-3687 (((-107) $) 82)) (-1506 (($ $ (-583 (-583 (-866 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-866 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-866 |#1|)))) 86) (($ (-583 (-583 (-866 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-866 |#1|))) $) 84)) (-2662 (($ (-583 $)) 28) (($ $ $) 29)) (-3162 (((-583 (-155)) $) 102)) (-2784 (((-583 (-866 |#1|)) $) 97)) (-3105 (((-583 (-583 (-155))) $) 101)) (-4002 (((-583 (-583 (-583 (-866 |#1|)))) $) NIL)) (-3279 (((-583 (-583 (-583 (-703)))) $) 99)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-4091 (((-703) $ (-583 (-866 |#1|))) 37)) (-1371 (((-107) $) 54)) (-1651 (($ $ (-583 (-866 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-866 |#1|))) 57) (((-583 (-866 |#1|)) $) 55)) (-2563 (($) 23) (($ (-1065 3 |#1|)) 24)) (-2462 (($ $) 35)) (-1731 (((-583 $) $) 34)) (-3827 (($ (-583 $)) 31)) (-3626 (((-583 $) $) 33)) (-2271 (((-787) $) 110)) (-1289 (((-107) $) 64)) (-3039 (($ $ (-583 (-866 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-866 |#1|))) 67) (((-583 (-866 |#1|)) $) 65)) (-2169 (($ $) 105)) (-1584 (((-107) $ $) NIL)))
-(((-1036 |#1|) (-1037 |#1|) (-963)) (T -1036))
-NIL
-(-1037 |#1|)
-((-2119 (((-107) $ $) 7)) (-3918 (((-1065 3 |#1|) $) 13)) (-2582 (((-107) $) 29)) (-3432 (($ $ (-583 (-866 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-866 |#1|))) 31) (((-583 (-866 |#1|)) $) 30)) (-1942 (((-107) $) 44)) (-3416 (($ $ (-866 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-866 |#1|)) 46) (((-866 |#1|) $) 45)) (-3972 (((-2 (|:| -1715 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-1975 (((-703) $) 58)) (-2894 (((-703) $) 59)) (-1792 (($ $ (-703) (-866 |#1|)) 50)) (-3687 (((-107) $) 21)) (-1506 (($ $ (-583 (-583 (-866 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-866 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-866 |#1|)))) 24) (($ (-583 (-583 (-866 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-866 |#1|))) $) 22)) (-2662 (($ (-583 $)) 57) (($ $ $) 56)) (-3162 (((-583 (-155)) $) 16)) (-2784 (((-583 (-866 |#1|)) $) 20)) (-3105 (((-583 (-583 (-155))) $) 17)) (-4002 (((-583 (-583 (-583 (-866 |#1|)))) $) 18)) (-3279 (((-583 (-583 (-583 (-703)))) $) 19)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-4091 (((-703) $ (-583 (-866 |#1|))) 51)) (-1371 (((-107) $) 39)) (-1651 (($ $ (-583 (-866 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-866 |#1|))) 41) (((-583 (-866 |#1|)) $) 40)) (-2563 (($) 61) (($ (-1065 3 |#1|)) 60)) (-2462 (($ $) 52)) (-1731 (((-583 $) $) 53)) (-3827 (($ (-583 $)) 55)) (-3626 (((-583 $) $) 54)) (-2271 (((-787) $) 11)) (-1289 (((-107) $) 34)) (-3039 (($ $ (-583 (-866 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-866 |#1|))) 36) (((-583 (-866 |#1|)) $) 35)) (-2169 (($ $) 14)) (-1584 (((-107) $ $) 6)))
-(((-1037 |#1|) (-1188) (-963)) (T -1037))
-((-2271 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-787)))) (-2563 (*1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-1065 3 *3)) (-4 *3 (-963)) (-4 *1 (-1037 *3)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-703)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-703)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-2662 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3626 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)))) (-1731 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963)))) (-4091 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-866 *4))) (-4 *1 (-1037 *4)) (-4 *4 (-963)) (-5 *2 (-703)))) (-1792 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-866 *4)) (-4 *1 (-1037 *4)) (-4 *4 (-963)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-963)) (-4 *1 (-1037 *3)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-866 *3)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))) (-1651 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-1651 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-963)) (-4 *1 (-1037 *3)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3))))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-963)) (-4 *1 (-1037 *3)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3))))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-963)) (-4 *1 (-1037 *3)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3))))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))) (-1506 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-866 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1037 *5)) (-4 *5 (-963)))) (-1506 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1037 *5)) (-4 *5 (-963)))) (-1506 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107)) (-4 *1 (-1037 *4)) (-4 *4 (-963)))) (-1506 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1037 *4)) (-4 *4 (-963)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 *3)))) (-4 *3 (-963)) (-4 *1 (-1037 *3)))) (-1506 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107)) (-4 *4 (-963)) (-4 *1 (-1037 *4)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-583 (-866 *3)))))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3))))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-583 (-583 (-866 *3))))))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-583 (-155)))))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-155))))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1715 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-2169 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-1065 3 *3)))))
-(-13 (-1005) (-10 -8 (-15 -2563 ($)) (-15 -2563 ($ (-1065 3 |t#1|))) (-15 -2894 ((-703) $)) (-15 -1975 ((-703) $)) (-15 -2662 ($ (-583 $))) (-15 -2662 ($ $ $)) (-15 -3827 ($ (-583 $))) (-15 -3626 ((-583 $) $)) (-15 -1731 ((-583 $) $)) (-15 -2462 ($ $)) (-15 -4091 ((-703) $ (-583 (-866 |t#1|)))) (-15 -1792 ($ $ (-703) (-866 |t#1|))) (-15 -3416 ($ $ (-866 |t#1|))) (-15 -3416 ($ $ (-583 |t#1|))) (-15 -3416 ($ $ (-703))) (-15 -3416 ($ (-866 |t#1|))) (-15 -3416 ((-866 |t#1|) $)) (-15 -1942 ((-107) $)) (-15 -1651 ($ $ (-583 (-866 |t#1|)))) (-15 -1651 ($ $ (-583 (-583 |t#1|)))) (-15 -1651 ($ (-583 (-866 |t#1|)))) (-15 -1651 ((-583 (-866 |t#1|)) $)) (-15 -1371 ((-107) $)) (-15 -3039 ($ $ (-583 (-866 |t#1|)))) (-15 -3039 ($ $ (-583 (-583 |t#1|)))) (-15 -3039 ($ (-583 (-866 |t#1|)))) (-15 -3039 ((-583 (-866 |t#1|)) $)) (-15 -1289 ((-107) $)) (-15 -3432 ($ $ (-583 (-866 |t#1|)))) (-15 -3432 ($ $ (-583 (-583 |t#1|)))) (-15 -3432 ($ (-583 (-866 |t#1|)))) (-15 -3432 ((-583 (-866 |t#1|)) $)) (-15 -2582 ((-107) $)) (-15 -1506 ($ $ (-583 (-583 (-866 |t#1|))) (-583 (-155)) (-155))) (-15 -1506 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -1506 ($ $ (-583 (-583 (-866 |t#1|))) (-107) (-107))) (-15 -1506 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -1506 ($ (-583 (-583 (-866 |t#1|))))) (-15 -1506 ($ (-583 (-583 (-866 |t#1|))) (-107) (-107))) (-15 -1506 ((-583 (-583 (-866 |t#1|))) $)) (-15 -3687 ((-107) $)) (-15 -2784 ((-583 (-866 |t#1|)) $)) (-15 -3279 ((-583 (-583 (-583 (-703)))) $)) (-15 -4002 ((-583 (-583 (-583 (-866 |t#1|)))) $)) (-15 -3105 ((-583 (-583 (-155))) $)) (-15 -3162 ((-583 (-155)) $)) (-15 -3972 ((-2 (|:| -1715 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -2169 ($ $)) (-15 -3918 ((-1065 3 |t#1|) $)) (-15 -2271 ((-787) $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2645 (((-583 (-1081)) (-1059)) 8)))
-(((-1038) (-10 -7 (-15 -2645 ((-583 (-1081)) (-1059))))) (T -1038))
-((-2645 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-583 (-1081))) (-5 *1 (-1038)))))
-(-10 -7 (-15 -2645 ((-583 (-1081)) (-1059))))
-((-3588 (((-1162) (-583 (-787))) 23) (((-1162) (-787)) 22)) (-2214 (((-1162) (-583 (-787))) 21) (((-1162) (-787)) 20)) (-1898 (((-1162) (-583 (-787))) 19) (((-1162) (-787)) 11) (((-1162) (-1059) (-787)) 17)))
-(((-1039) (-10 -7 (-15 -1898 ((-1162) (-1059) (-787))) (-15 -1898 ((-1162) (-787))) (-15 -2214 ((-1162) (-787))) (-15 -3588 ((-1162) (-787))) (-15 -1898 ((-1162) (-583 (-787)))) (-15 -2214 ((-1162) (-583 (-787)))) (-15 -3588 ((-1162) (-583 (-787)))))) (T -1039))
-((-3588 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1162)) (-5 *1 (-1039)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1162)) (-5 *1 (-1039)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1162)) (-5 *1 (-1039)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039)))) (-1898 (*1 *2 *3 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039)))))
-(-10 -7 (-15 -1898 ((-1162) (-1059) (-787))) (-15 -1898 ((-1162) (-787))) (-15 -2214 ((-1162) (-787))) (-15 -3588 ((-1162) (-787))) (-15 -1898 ((-1162) (-583 (-787)))) (-15 -2214 ((-1162) (-583 (-787)))) (-15 -3588 ((-1162) (-583 (-787)))))
-((-3008 (($ $ $) 10)) (-2842 (($ $) 9)) (-2661 (($ $ $) 13)) (-1298 (($ $ $) 15)) (-1235 (($ $ $) 12)) (-1807 (($ $ $) 14)) (-2887 (($ $) 17)) (-2021 (($ $) 16)) (-2376 (($ $) 6)) (-3700 (($ $ $) 11) (($ $) 7)) (-2902 (($ $ $) 8)))
-(((-1040) (-1188)) (T -1040))
-((-2887 (*1 *1 *1) (-4 *1 (-1040))) (-2021 (*1 *1 *1) (-4 *1 (-1040))) (-1298 (*1 *1 *1 *1) (-4 *1 (-1040))) (-1807 (*1 *1 *1 *1) (-4 *1 (-1040))) (-2661 (*1 *1 *1 *1) (-4 *1 (-1040))) (-1235 (*1 *1 *1 *1) (-4 *1 (-1040))) (-3700 (*1 *1 *1 *1) (-4 *1 (-1040))) (-3008 (*1 *1 *1 *1) (-4 *1 (-1040))) (-2842 (*1 *1 *1) (-4 *1 (-1040))) (-2902 (*1 *1 *1 *1) (-4 *1 (-1040))) (-3700 (*1 *1 *1) (-4 *1 (-1040))) (-2376 (*1 *1 *1) (-4 *1 (-1040))))
-(-13 (-10 -8 (-15 -2376 ($ $)) (-15 -3700 ($ $)) (-15 -2902 ($ $ $)) (-15 -2842 ($ $)) (-15 -3008 ($ $ $)) (-15 -3700 ($ $ $)) (-15 -1235 ($ $ $)) (-15 -2661 ($ $ $)) (-15 -1807 ($ $ $)) (-15 -1298 ($ $ $)) (-15 -2021 ($ $)) (-15 -2887 ($ $))))
-((-2119 (((-107) $ $) 41)) (-3121 ((|#1| $) 15)) (-2527 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-1569 (((-107) $) 17)) (-2634 (($ $ |#1|) 28)) (-4016 (($ $ (-107)) 30)) (-2177 (($ $) 31)) (-1429 (($ $ |#2|) 29)) (-1662 (((-1059) $) NIL)) (-2188 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-4125 (((-1023) $) NIL)) (-2394 (((-107) $) 14)) (-2452 (($) 10)) (-2462 (($ $) 27)) (-2288 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3834 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3834 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-2391 ((|#2| $) 16)) (-2271 (((-787) $) 50)) (-1584 (((-107) $ $) 39)))
-(((-1041 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -2452 ($)) (-15 -2394 ((-107) $)) (-15 -3121 (|#1| $)) (-15 -2391 (|#2| $)) (-15 -1569 ((-107) $)) (-15 -2288 ($ |#1| |#2| (-107))) (-15 -2288 ($ |#1| |#2|)) (-15 -2288 ($ (-2 (|:| |val| |#1|) (|:| -3834 |#2|)))) (-15 -2288 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3834 |#2|))))) (-15 -2288 ((-583 $) |#1| (-583 |#2|))) (-15 -2462 ($ $)) (-15 -2634 ($ $ |#1|)) (-15 -1429 ($ $ |#2|)) (-15 -4016 ($ $ (-107))) (-15 -2177 ($ $)) (-15 -2188 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2527 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1005) (-33)) (-13 (-1005) (-33))) (T -1041))
-((-2452 (*1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))))) (-3121 (*1 *2 *1) (-12 (-4 *2 (-13 (-1005) (-33))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-13 (-1005) (-33))))) (-2391 (*1 *2 *1) (-12 (-4 *2 (-13 (-1005) (-33))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-13 (-1005) (-33))))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2288 (*1 *1 *2 *3) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3834 *4))) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1041 *3 *4)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3834 *5)))) (-4 *4 (-13 (-1005) (-33))) (-4 *5 (-13 (-1005) (-33))) (-5 *2 (-583 (-1041 *4 *5))) (-5 *1 (-1041 *4 *5)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1005) (-33))) (-5 *2 (-583 (-1041 *3 *5))) (-5 *1 (-1041 *3 *5)) (-4 *3 (-13 (-1005) (-33))))) (-2462 (*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2634 (*1 *1 *1 *2) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-1429 (*1 *1 *1 *2) (-12 (-5 *1 (-1041 *3 *2)) (-4 *3 (-13 (-1005) (-33))) (-4 *2 (-13 (-1005) (-33))))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2188 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1005) (-33))) (-4 *6 (-13 (-1005) (-33))) (-5 *2 (-107)) (-5 *1 (-1041 *5 *6)))) (-2527 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1005) (-33))) (-5 *2 (-107)) (-5 *1 (-1041 *4 *5)) (-4 *4 (-13 (-1005) (-33))))))
-(-13 (-1005) (-10 -8 (-15 -2452 ($)) (-15 -2394 ((-107) $)) (-15 -3121 (|#1| $)) (-15 -2391 (|#2| $)) (-15 -1569 ((-107) $)) (-15 -2288 ($ |#1| |#2| (-107))) (-15 -2288 ($ |#1| |#2|)) (-15 -2288 ($ (-2 (|:| |val| |#1|) (|:| -3834 |#2|)))) (-15 -2288 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3834 |#2|))))) (-15 -2288 ((-583 $) |#1| (-583 |#2|))) (-15 -2462 ($ $)) (-15 -2634 ($ $ |#1|)) (-15 -1429 ($ $ |#2|)) (-15 -4016 ($ $ (-107))) (-15 -2177 ($ $)) (-15 -2188 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2527 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
-((-2119 (((-107) $ $) NIL (|has| (-1041 |#1| |#2|) (-1005)))) (-3121 (((-1041 |#1| |#2|) $) 25)) (-3907 (($ $) 76)) (-1319 (((-107) (-1041 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 85)) (-3235 (($ $ $ (-583 (-1041 |#1| |#2|))) 90) (($ $ $ (-583 (-1041 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 91)) (-1851 (((-107) $ (-703)) NIL)) (-1189 (((-1041 |#1| |#2|) $ (-1041 |#1| |#2|)) 43 (|has| $ (-6 -4193)))) (-2445 (((-1041 |#1| |#2|) $ "value" (-1041 |#1| |#2|)) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-2472 (((-583 (-2 (|:| |val| |#1|) (|:| -3834 |#2|))) $) 80)) (-2457 (($ (-1041 |#1| |#2|) $) 39)) (-1423 (($ (-1041 |#1| |#2|) $) 31)) (-1534 (((-583 (-1041 |#1| |#2|)) $) NIL (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 51)) (-3855 (((-107) (-1041 |#1| |#2|) $) 82)) (-2441 (((-107) $ $) NIL (|has| (-1041 |#1| |#2|) (-1005)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 (-1041 |#1| |#2|)) $) 55 (|has| $ (-6 -4192)))) (-3925 (((-107) (-1041 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-1041 |#1| |#2|) (-1005))))) (-2746 (($ (-1 (-1041 |#1| |#2|) (-1041 |#1| |#2|)) $) 47 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-1041 |#1| |#2|) (-1041 |#1| |#2|)) $) 46)) (-1320 (((-107) $ (-703)) NIL)) (-1939 (((-583 (-1041 |#1| |#2|)) $) 53)) (-3017 (((-107) $) 42)) (-1662 (((-1059) $) NIL (|has| (-1041 |#1| |#2|) (-1005)))) (-4125 (((-1023) $) NIL (|has| (-1041 |#1| |#2|) (-1005)))) (-3083 (((-3 $ "failed") $) 75)) (-3644 (((-107) (-1 (-107) (-1041 |#1| |#2|)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-1041 |#1| |#2|)))) NIL (-12 (|has| (-1041 |#1| |#2|) (-280 (-1041 |#1| |#2|))) (|has| (-1041 |#1| |#2|) (-1005)))) (($ $ (-265 (-1041 |#1| |#2|))) NIL (-12 (|has| (-1041 |#1| |#2|) (-280 (-1041 |#1| |#2|))) (|has| (-1041 |#1| |#2|) (-1005)))) (($ $ (-1041 |#1| |#2|) (-1041 |#1| |#2|)) NIL (-12 (|has| (-1041 |#1| |#2|) (-280 (-1041 |#1| |#2|))) (|has| (-1041 |#1| |#2|) (-1005)))) (($ $ (-583 (-1041 |#1| |#2|)) (-583 (-1041 |#1| |#2|))) NIL (-12 (|has| (-1041 |#1| |#2|) (-280 (-1041 |#1| |#2|))) (|has| (-1041 |#1| |#2|) (-1005))))) (-2727 (((-107) $ $) 50)) (-2394 (((-107) $) 22)) (-2452 (($) 24)) (-2609 (((-1041 |#1| |#2|) $ "value") NIL)) (-1844 (((-517) $ $) NIL)) (-3028 (((-107) $) 44)) (-4137 (((-703) (-1 (-107) (-1041 |#1| |#2|)) $) NIL (|has| $ (-6 -4192))) (((-703) (-1041 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-1041 |#1| |#2|) (-1005))))) (-2462 (($ $) 49)) (-2288 (($ (-1041 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1041 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-1924 (((-583 |#2|) $) 81)) (-2271 (((-787) $) 73 (|has| (-1041 |#1| |#2|) (-557 (-787))))) (-2199 (((-583 $) $) 28)) (-2836 (((-107) $ $) NIL (|has| (-1041 |#1| |#2|) (-1005)))) (-3602 (((-107) (-1 (-107) (-1041 |#1| |#2|)) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 64 (|has| (-1041 |#1| |#2|) (-1005)))) (-3535 (((-703) $) 58 (|has| $ (-6 -4192)))))
-(((-1042 |#1| |#2|) (-13 (-928 (-1041 |#1| |#2|)) (-10 -8 (-6 -4193) (-6 -4192) (-15 -3083 ((-3 $ "failed") $)) (-15 -3907 ($ $)) (-15 -2288 ($ (-1041 |#1| |#2|))) (-15 -2288 ($ |#1| |#2| (-583 $))) (-15 -2288 ($ |#1| |#2| (-583 (-1041 |#1| |#2|)))) (-15 -2288 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1924 ((-583 |#2|) $)) (-15 -2472 ((-583 (-2 (|:| |val| |#1|) (|:| -3834 |#2|))) $)) (-15 -3855 ((-107) (-1041 |#1| |#2|) $)) (-15 -1319 ((-107) (-1041 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1423 ($ (-1041 |#1| |#2|) $)) (-15 -2457 ($ (-1041 |#1| |#2|) $)) (-15 -3235 ($ $ $ (-583 (-1041 |#1| |#2|)))) (-15 -3235 ($ $ $ (-583 (-1041 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1005) (-33)) (-13 (-1005) (-33))) (T -1042))
-((-3083 (*1 *1 *1) (|partial| -12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-3907 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1042 *2 *3))) (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1041 *2 *3))) (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33))) (-5 *1 (-1042 *2 *3)))) (-2288 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1005) (-33))) (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33))))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4)))) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))))) (-3855 (*1 *2 *3 *1) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-1005) (-33))) (-4 *5 (-13 (-1005) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *4 *5)))) (-1319 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1041 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1005) (-33))) (-4 *6 (-13 (-1005) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *5 *6)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))) (-3235 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1041 *3 *4))) (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))) (-3235 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1041 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1005) (-33))) (-4 *5 (-13 (-1005) (-33))) (-5 *1 (-1042 *4 *5)))))
-(-13 (-928 (-1041 |#1| |#2|)) (-10 -8 (-6 -4193) (-6 -4192) (-15 -3083 ((-3 $ "failed") $)) (-15 -3907 ($ $)) (-15 -2288 ($ (-1041 |#1| |#2|))) (-15 -2288 ($ |#1| |#2| (-583 $))) (-15 -2288 ($ |#1| |#2| (-583 (-1041 |#1| |#2|)))) (-15 -2288 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1924 ((-583 |#2|) $)) (-15 -2472 ((-583 (-2 (|:| |val| |#1|) (|:| -3834 |#2|))) $)) (-15 -3855 ((-107) (-1041 |#1| |#2|) $)) (-15 -1319 ((-107) (-1041 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1423 ($ (-1041 |#1| |#2|) $)) (-15 -2457 ($ (-1041 |#1| |#2|) $)) (-15 -3235 ($ $ $ (-583 (-1041 |#1| |#2|)))) (-15 -3235 ($ $ $ (-583 (-1041 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1293 (($ $) NIL)) (-2009 ((|#2| $) NIL)) (-3933 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2315 (($ (-623 |#2|)) 45)) (-1223 (((-107) $) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2351 (($ |#2|) 9)) (-1393 (($) NIL T CONST)) (-1382 (($ $) 58 (|has| |#2| (-278)))) (-3476 (((-214 |#1| |#2|) $ (-517)) 31)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) ((|#2| $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) 72)) (-3737 (((-703) $) 60 (|has| |#2| (-509)))) (-2566 ((|#2| $ (-517) (-517)) NIL)) (-1534 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-1376 (((-107) $) NIL)) (-2720 (((-703) $) 62 (|has| |#2| (-509)))) (-2620 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1421 (((-703) $) NIL)) (-1435 (((-703) $) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3809 ((|#2| $) 56 (|has| |#2| (-6 (-4194 "*"))))) (-1683 (((-517) $) NIL)) (-3400 (((-517) $) NIL)) (-1903 (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1207 (((-517) $) NIL)) (-3797 (((-517) $) NIL)) (-2371 (($ (-583 (-583 |#2|))) 26)) (-2746 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3704 (((-583 (-583 |#2|)) $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-3856 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-4125 (((-1023) $) NIL)) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3644 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-2060 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1813 ((|#2| $) NIL)) (-2528 (($ (-583 |#2|)) 40)) (-1832 (((-107) $) NIL)) (-3520 (((-214 |#1| |#2|) $) NIL)) (-2854 ((|#2| $) 54 (|has| |#2| (-6 (-4194 "*"))))) (-4137 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2462 (($ $) NIL)) (-3359 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-3259 (((-214 |#1| |#2|) $ (-517)) 33)) (-2271 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-954 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-4099 (((-703)) 17)) (-3602 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2909 (((-107) $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 11 T CONST)) (-3619 (($) 14 T CONST)) (-3342 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1043 |#1| |#2|) (-13 (-1026 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1293 ($ $)) (-15 -2315 ($ (-623 |#2|))) (-15 -2271 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4194 "*"))) (-6 -4181) |%noBranch|) (IF (|has| |#2| (-6 (-4194 "*"))) (IF (|has| |#2| (-6 -4189)) (-6 -4189) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-703) (-963)) (T -1043))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1043 *3 *4)) (-14 *3 (-703)) (-4 *4 (-963)))) (-1293 (*1 *1 *1) (-12 (-5 *1 (-1043 *2 *3)) (-14 *2 (-703)) (-4 *3 (-963)))) (-2315 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-963)) (-5 *1 (-1043 *3 *4)) (-14 *3 (-703)))))
-(-13 (-1026 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1293 ($ $)) (-15 -2315 ($ (-623 |#2|))) (-15 -2271 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4194 "*"))) (-6 -4181) |%noBranch|) (IF (|has| |#2| (-6 (-4194 "*"))) (IF (|has| |#2| (-6 -4189)) (-6 -4189) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
-((-2594 (($ $) 19)) (-1464 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-2571 (((-107) $ $) 24)) (-3675 (($ $) 17)) (-2609 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1124 (-517))) NIL) (($ $ $) 29)) (-2271 (($ (-131)) 27) (((-787) $) NIL)))
-(((-1044 |#1|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -2609 (|#1| |#1| |#1|)) (-15 -1464 (|#1| |#1| (-128))) (-15 -1464 (|#1| |#1| (-131))) (-15 -2271 (|#1| (-131))) (-15 -2571 ((-107) |#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -3675 (|#1| |#1|)) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -2609 ((-131) |#1| (-517))) (-15 -2609 ((-131) |#1| (-517) (-131)))) (-1045)) (T -1044))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -2609 (|#1| |#1| |#1|)) (-15 -1464 (|#1| |#1| (-128))) (-15 -1464 (|#1| |#1| (-131))) (-15 -2271 (|#1| (-131))) (-15 -2571 ((-107) |#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -3675 (|#1| |#1|)) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -2609 ((-131) |#1| (-517))) (-15 -2609 ((-131) |#1| (-517) (-131))))
-((-2119 (((-107) $ $) 19 (|has| (-131) (-1005)))) (-3508 (($ $) 120)) (-2594 (($ $) 121)) (-1464 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2551 (((-107) $ $) 118)) (-3141 (((-107) $ $ (-517)) 117)) (-1378 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2166 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-1420 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4193))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-1851 (((-107) $ (-703)) 8)) (-2445 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4193))) (((-131) $ (-1124 (-517)) (-131)) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2907 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-2549 (($ $) 90 (|has| $ (-6 -4193)))) (-1908 (($ $) 100)) (-3232 (($ $ (-1124 (-517)) $) 114)) (-2455 (($ $) 78 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ (-131) $) 77 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4192)))) (-1522 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4192))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4192)))) (-2759 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4193)))) (-2566 (((-131) $ (-517)) 51)) (-2571 (((-107) $ $) 119)) (-1212 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1005))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1005))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1534 (((-583 (-131)) $) 30 (|has| $ (-6 -4192)))) (-3213 (($ (-703) (-131)) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 87 (|has| (-131) (-779)))) (-2662 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-1903 (((-583 (-131)) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 86 (|has| (-131) (-779)))) (-1450 (((-107) $ $ (-131)) 115)) (-1937 (((-703) $ $ (-131)) 116)) (-2746 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-2838 (($ $) 122)) (-3675 (($ $) 123)) (-1320 (((-107) $ (-703)) 10)) (-2920 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-1662 (((-1059) $) 22 (|has| (-131) (-1005)))) (-1747 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| (-131) (-1005)))) (-2429 (((-131) $) 42 (|has| (-517) (-779)))) (-1528 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2846 (($ $ (-131)) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-2891 (((-583 (-131)) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1124 (-517))) 63) (($ $ $) 102)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-4137 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4192))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 91 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2288 (($ (-583 (-131))) 70)) (-4110 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (($ (-131)) 111) (((-787) $) 18 (|has| (-131) (-557 (-787))))) (-3602 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1618 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1584 (((-107) $ $) 20 (|has| (-131) (-1005)))) (-1630 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1608 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1045) (-1188)) (T -1045))
-((-3675 (*1 *1 *1) (-4 *1 (-1045))) (-2838 (*1 *1 *1) (-4 *1 (-1045))) (-2594 (*1 *1 *1) (-4 *1 (-1045))) (-3508 (*1 *1 *1) (-4 *1 (-1045))) (-2571 (*1 *2 *1 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-107)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-107)))) (-3141 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1045)) (-5 *3 (-517)) (-5 *2 (-107)))) (-1937 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1045)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1450 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1045)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3232 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1124 (-517))))) (-1212 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-517)))) (-1212 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1045)))) (-1378 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1045)))) (-1378 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1045)))) (-1464 (*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-131)))) (-1464 (*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-128)))) (-2920 (*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-131)))) (-2920 (*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-128)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-131)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-128)))) (-2609 (*1 *1 *1 *1) (-4 *1 (-1045))))
-(-13 (-19 (-131)) (-10 -8 (-15 -3675 ($ $)) (-15 -2838 ($ $)) (-15 -2594 ($ $)) (-15 -3508 ($ $)) (-15 -2571 ((-107) $ $)) (-15 -2551 ((-107) $ $)) (-15 -3141 ((-107) $ $ (-517))) (-15 -1937 ((-703) $ $ (-131))) (-15 -1450 ((-107) $ $ (-131))) (-15 -3232 ($ $ (-1124 (-517)) $)) (-15 -1212 ((-517) $ $ (-517))) (-15 -1212 ((-517) (-128) $ (-517))) (-15 -2271 ($ (-131))) (-15 -1378 ((-583 $) $ (-131))) (-15 -1378 ((-583 $) $ (-128))) (-15 -1464 ($ $ (-131))) (-15 -1464 ($ $ (-128))) (-15 -2920 ($ $ (-131))) (-15 -2920 ($ $ (-128))) (-15 -2907 ($ $ (-131))) (-15 -2907 ($ $ (-128))) (-15 -2609 ($ $ $))))
-(((-33) . T) ((-97) -3747 (|has| (-131) (-1005)) (|has| (-131) (-779))) ((-557 (-787)) -3747 (|has| (-131) (-1005)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))) ((-588 #0#) . T) ((-19 #0#) . T) ((-779) |has| (-131) (-779)) ((-1005) -3747 (|has| (-131) (-1005)) (|has| (-131) (-779))) ((-1111) . T))
-((-1244 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-703)) 94)) (-2956 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703)) 53)) (-2618 (((-1162) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-703)) 85)) (-2840 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-3164 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-2352 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3359 (((-1059) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) 80)) (-2278 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|) 52)) (-1779 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
-(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1779 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2840 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2278 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -1244 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-703))) (-15 -3359 ((-1059) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -2618 ((-1162) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-703)))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|) (-1014 |#1| |#2| |#3| |#4|)) (T -1046))
-((-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9)))) (-5 *4 (-703)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1162)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1014 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1059)) (-5 *1 (-1046 *4 *5 *6 *7 *8)))) (-1244 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3834 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3834 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1014 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1046 *7 *8 *9 *10 *11)))) (-2352 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-2352 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-3164 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3)))) (-3164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-1046 *7 *8 *9 *3 *4)) (-4 *4 (-1014 *7 *8 *9 *3)))) (-2956 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3)))) (-2278 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1779 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2840 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2278 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -2956 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5| (-703))) (-15 -3164 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) |#4| |#5|)) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2352 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -1244 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))))) (-703))) (-15 -3359 ((-1059) (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|)))) (-15 -2618 ((-1162) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3834 |#5|))) (-703))))
-((-2119 (((-107) $ $) NIL)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2265 (((-583 $) (-583 |#4|)) 110) (((-583 $) (-583 |#4|) (-107)) 111) (((-583 $) (-583 |#4|) (-107) (-107)) 109) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 112)) (-2097 (((-583 |#3|) $) NIL)) (-2687 (((-107) $) NIL)) (-3389 (((-107) $) NIL (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3939 ((|#4| |#4| $) NIL)) (-1224 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| $) 84)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2325 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 62)) (-1393 (($) NIL T CONST)) (-3338 (((-107) $) 26 (|has| |#1| (-509)))) (-1605 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2893 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2501 (((-107) $) NIL (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2567 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3390 (($ (-583 |#4|)) NIL)) (-2439 (((-3 $ "failed") $) 39)) (-3777 ((|#4| |#4| $) 65)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-2639 ((|#4| |#4| $) NIL)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) NIL)) (-2127 (((-107) |#4| $) NIL)) (-2957 (((-107) |#4| $) NIL)) (-1401 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3360 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 124)) (-1534 (((-583 |#4|) $) 16 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3024 ((|#3| $) 33)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#4|) $) 17 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-2746 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 21)) (-2241 (((-583 |#3|) $) NIL)) (-2621 (((-107) |#3| $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-2496 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-2350 (((-583 (-2 (|:| |val| |#4|) (|:| -3834 $))) |#4| |#4| $) 103)) (-1446 (((-3 |#4| "failed") $) 37)) (-2305 (((-583 $) |#4| $) 88)) (-3364 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3605 (((-583 (-2 (|:| |val| (-107)) (|:| -3834 $))) |#4| $) 98) (((-107) |#4| $) 53)) (-2259 (((-583 $) |#4| $) 107) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 108) (((-583 $) |#4| (-583 $)) NIL)) (-1815 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 119)) (-1493 (($ |#4| $) 75) (($ (-583 |#4|) $) 76) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 74)) (-3568 (((-583 |#4|) $) NIL)) (-1732 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3998 ((|#4| |#4| $) NIL)) (-2958 (((-107) $ $) NIL)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-3 |#4| "failed") $) 35)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3439 (((-3 $ "failed") $ |#4|) 48)) (-2671 (($ $ |#4|) NIL) (((-583 $) |#4| $) 90) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 86)) (-3644 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 15)) (-2452 (($) 13)) (-3647 (((-703) $) NIL)) (-4137 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) 12)) (-3359 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 20)) (-4028 (($ $ |#3|) 42)) (-1409 (($ $ |#3|) 44)) (-1888 (($ $) NIL)) (-4159 (($ $ |#3|) NIL)) (-2271 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3057 (((-703) $) NIL (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1856 (((-583 $) |#4| $) 54) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3602 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) NIL)) (-3302 (((-107) |#4| $) NIL)) (-1999 (((-107) |#3| $) 61)) (-1584 (((-107) $ $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1047 |#1| |#2| |#3| |#4|) (-13 (-1014 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1493 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -1815 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3360 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-977 |#1| |#2| |#3|)) (T -1047))
-((-1493 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1047 *5 *6 *7 *3))) (-5 *1 (-1047 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-2265 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-2265 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-1815 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-3360 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1047 *5 *6 *7 *8))))) (-5 *1 (-1047 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(-13 (-1014 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1493 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2265 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -1815 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3360 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2553 ((|#1| $) 34)) (-2865 (($ (-583 |#1|)) 39)) (-1851 (((-107) $ (-703)) NIL)) (-1393 (($) NIL T CONST)) (-2704 ((|#1| |#1| $) 36)) (-3394 ((|#1| $) 32)) (-1534 (((-583 |#1|) $) 18 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 22)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1803 ((|#1| $) 35)) (-3241 (($ |#1| $) 37)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-4113 ((|#1| $) 33)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 31)) (-2452 (($) 38)) (-3145 (((-703) $) 29)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 27)) (-2271 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-3181 (($ (-583 |#1|)) NIL)) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 17 (|has| |#1| (-1005)))) (-3535 (((-703) $) 30 (|has| $ (-6 -4192)))))
-(((-1048 |#1|) (-13 (-1024 |#1|) (-10 -8 (-15 -2865 ($ (-583 |#1|))))) (-1111)) (T -1048))
-((-2865 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1048 *3)))))
-(-13 (-1024 |#1|) (-10 -8 (-15 -2865 ($ (-583 |#1|)))))
-((-2445 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1124 (-517)) |#2|) 44) ((|#2| $ (-517) |#2|) 41)) (-3013 (((-107) $) 12)) (-2746 (($ (-1 |#2| |#2|) $) 39)) (-2429 ((|#2| $) NIL) (($ $ (-703)) 17)) (-2846 (($ $ |#2|) 40)) (-4033 (((-107) $) 11)) (-2609 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1124 (-517))) 31) ((|#2| $ (-517)) 23) ((|#2| $ (-517) |#2|) NIL)) (-1753 (($ $ $) 47) (($ $ |#2|) NIL)) (-4110 (($ $ $) 33) (($ |#2| $) NIL) (($ (-583 $)) 36) (($ $ |#2|) NIL)))
-(((-1049 |#1| |#2|) (-10 -8 (-15 -3013 ((-107) |#1|)) (-15 -4033 ((-107) |#1|)) (-15 -2445 (|#2| |#1| (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517))) (-15 -2846 (|#1| |#1| |#2|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -4110 (|#1| (-583 |#1|))) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -2445 (|#2| |#1| (-1124 (-517)) |#2|)) (-15 -2445 (|#2| |#1| "last" |#2|)) (-15 -2445 (|#1| |#1| "rest" |#1|)) (-15 -2445 (|#2| |#1| "first" |#2|)) (-15 -1753 (|#1| |#1| |#2|)) (-15 -1753 (|#1| |#1| |#1|)) (-15 -2609 (|#2| |#1| "last")) (-15 -2609 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "first")) (-15 -2429 (|#2| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#1|)) (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -2609 (|#2| |#1| "value")) (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|))) (-1050 |#2|) (-1111)) (T -1049))
-NIL
-(-10 -8 (-15 -3013 ((-107) |#1|)) (-15 -4033 ((-107) |#1|)) (-15 -2445 (|#2| |#1| (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517) |#2|)) (-15 -2609 (|#2| |#1| (-517))) (-15 -2846 (|#1| |#1| |#2|)) (-15 -4110 (|#1| |#1| |#2|)) (-15 -4110 (|#1| (-583 |#1|))) (-15 -2609 (|#1| |#1| (-1124 (-517)))) (-15 -2445 (|#2| |#1| (-1124 (-517)) |#2|)) (-15 -2445 (|#2| |#1| "last" |#2|)) (-15 -2445 (|#1| |#1| "rest" |#1|)) (-15 -2445 (|#2| |#1| "first" |#2|)) (-15 -1753 (|#1| |#1| |#2|)) (-15 -1753 (|#1| |#1| |#1|)) (-15 -2609 (|#2| |#1| "last")) (-15 -2609 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "first")) (-15 -2429 (|#2| |#1|)) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#1|)) (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -2609 (|#2| |#1| "value")) (-15 -2746 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-2586 ((|#1| $) 65)) (-1541 (($ $) 67)) (-2034 (((-1162) $ (-517) (-517)) 97 (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) 52 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-1702 (($ $ $) 56 (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) 54 (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) 58 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4193))) (($ $ "rest" $) 55 (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 117 (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4192)))) (-2576 ((|#1| $) 66)) (-1393 (($) 7 T CONST)) (-2439 (($ $) 73) (($ $ (-703)) 71)) (-2455 (($ $) 99 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4192))) (($ |#1| $) 100 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2759 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 87)) (-3013 (((-107) $) 83)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-3213 (($ (-703) |#1|) 108)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 95 (|has| (-517) (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 94 (|has| (-517) (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1446 ((|#1| $) 70) (($ $ (-703)) 68)) (-1747 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-2817 (((-583 (-517)) $) 92)) (-3130 (((-107) (-517) $) 91)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 76) (($ $ (-703)) 74)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2846 (($ $ |#1|) 96 (|has| $ (-6 -4193)))) (-4033 (((-107) $) 84)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 90)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1124 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-1844 (((-517) $ $) 44)) (-3728 (($ $ (-1124 (-517))) 114) (($ $ (-517)) 113)) (-3028 (((-107) $) 46)) (-3498 (($ $) 62)) (-3020 (($ $) 59 (|has| $ (-6 -4193)))) (-2453 (((-703) $) 63)) (-2231 (($ $) 64)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-3359 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 107)) (-1753 (($ $ $) 61 (|has| $ (-6 -4193))) (($ $ |#1|) 60 (|has| $ (-6 -4193)))) (-4110 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1050 |#1|) (-1188) (-1111)) (T -1050))
-((-4033 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))))
-(-13 (-1145 |t#1|) (-588 |t#1|) (-10 -8 (-15 -4033 ((-107) $)) (-15 -3013 ((-107) $))))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-928 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1111) . T) ((-1145 |#1|) . T))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#2| $ |#1| |#2|) NIL)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1882 (((-583 |#1|) $) NIL)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2817 (((-583 |#1|) $) NIL)) (-3130 (((-107) |#1| $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1051 |#1| |#2| |#3|) (-1088 |#1| |#2|) (-1005) (-1005) |#2|) (T -1051))
-NIL
-(-1088 |#1| |#2|)
-((-2119 (((-107) $ $) 7)) (-2243 (((-3 $ "failed") $) 13)) (-1662 (((-1059) $) 9)) (-2587 (($) 14 T CONST)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11)) (-1584 (((-107) $ $) 6)))
-(((-1052) (-1188)) (T -1052))
-((-2587 (*1 *1) (-4 *1 (-1052))) (-2243 (*1 *1 *1) (|partial| -4 *1 (-1052))))
-(-13 (-1005) (-10 -8 (-15 -2587 ($) -1385) (-15 -2243 ((-3 $ "failed") $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1005) . T))
-((-2106 (((-1057 |#1|) (-1057 |#1|)) 17)) (-3079 (((-1057 |#1|) (-1057 |#1|)) 13)) (-2304 (((-1057 |#1|) (-1057 |#1|) (-517) (-517)) 20)) (-3234 (((-1057 |#1|) (-1057 |#1|)) 15)))
-(((-1053 |#1|) (-10 -7 (-15 -3079 ((-1057 |#1|) (-1057 |#1|))) (-15 -3234 ((-1057 |#1|) (-1057 |#1|))) (-15 -2106 ((-1057 |#1|) (-1057 |#1|))) (-15 -2304 ((-1057 |#1|) (-1057 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1053))
-((-2304 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1053 *4)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1053 *3)))) (-3234 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1053 *3)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1053 *3)))))
-(-10 -7 (-15 -3079 ((-1057 |#1|) (-1057 |#1|))) (-15 -3234 ((-1057 |#1|) (-1057 |#1|))) (-15 -2106 ((-1057 |#1|) (-1057 |#1|))) (-15 -2304 ((-1057 |#1|) (-1057 |#1|) (-517) (-517))))
-((-4110 (((-1057 |#1|) (-1057 (-1057 |#1|))) 15)))
-(((-1054 |#1|) (-10 -7 (-15 -4110 ((-1057 |#1|) (-1057 (-1057 |#1|))))) (-1111)) (T -1054))
-((-4110 (*1 *2 *3) (-12 (-5 *3 (-1057 (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1054 *4)) (-4 *4 (-1111)))))
-(-10 -7 (-15 -4110 ((-1057 |#1|) (-1057 (-1057 |#1|)))))
-((-1532 (((-1057 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1057 |#1|)) 25)) (-1522 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1057 |#1|)) 26)) (-3310 (((-1057 |#2|) (-1 |#2| |#1|) (-1057 |#1|)) 16)))
-(((-1055 |#1| |#2|) (-10 -7 (-15 -3310 ((-1057 |#2|) (-1 |#2| |#1|) (-1057 |#1|))) (-15 -1532 ((-1057 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1057 |#1|))) (-15 -1522 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1057 |#1|)))) (-1111) (-1111)) (T -1055))
-((-1522 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1057 *5)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-1055 *5 *2)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1057 *6)) (-4 *6 (-1111)) (-4 *3 (-1111)) (-5 *2 (-1057 *3)) (-5 *1 (-1055 *6 *3)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1057 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1057 *6)) (-5 *1 (-1055 *5 *6)))))
-(-10 -7 (-15 -3310 ((-1057 |#2|) (-1 |#2| |#1|) (-1057 |#1|))) (-15 -1532 ((-1057 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1057 |#1|))) (-15 -1522 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1057 |#1|))))
-((-3310 (((-1057 |#3|) (-1 |#3| |#1| |#2|) (-1057 |#1|) (-1057 |#2|)) 21)))
-(((-1056 |#1| |#2| |#3|) (-10 -7 (-15 -3310 ((-1057 |#3|) (-1 |#3| |#1| |#2|) (-1057 |#1|) (-1057 |#2|)))) (-1111) (-1111) (-1111)) (T -1056))
-((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1057 *6)) (-5 *5 (-1057 *7)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-1057 *8)) (-5 *1 (-1056 *6 *7 *8)))))
-(-10 -7 (-15 -3310 ((-1057 |#3|) (-1 |#3| |#1| |#2|) (-1057 |#1|) (-1057 |#2|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) NIL)) (-2586 ((|#1| $) NIL)) (-1541 (($ $) 49)) (-2034 (((-1162) $ (-517) (-517)) 74 (|has| $ (-6 -4193)))) (-2966 (($ $ (-517)) 108 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-1545 (((-787) $) 38 (|has| |#1| (-1005)))) (-1775 (((-107)) 39 (|has| |#1| (-1005)))) (-1189 ((|#1| $ |#1|) NIL (|has| $ (-6 -4193)))) (-1702 (($ $ $) 96 (|has| $ (-6 -4193))) (($ $ (-517) $) 118)) (-2005 ((|#1| $ |#1|) 105 (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) 100 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4193))) (($ $ "rest" $) 104 (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 87 (|has| $ (-6 -4193))) ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 56)) (-2576 ((|#1| $) NIL)) (-1393 (($) NIL T CONST)) (-3472 (($ $) 14)) (-2439 (($ $) 29) (($ $ (-703)) 86)) (-2432 (((-107) (-583 |#1|) $) 113 (|has| |#1| (-1005)))) (-3540 (($ (-583 |#1|)) 110)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) 55)) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-3013 (((-107) $) NIL)) (-1534 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2264 (((-1162) (-517) $) 117 (|has| |#1| (-1005)))) (-3502 (((-703) $) 115)) (-3657 (((-583 $) $) NIL)) (-2441 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1320 (((-107) $ (-703)) NIL)) (-1939 (((-583 |#1|) $) NIL)) (-3017 (((-107) $) NIL)) (-3844 (($ $) 88)) (-3686 (((-107) $) 13)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1446 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1747 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) 72)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2266 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-1741 ((|#1| $) 10)) (-2429 ((|#1| $) 28) (($ $ (-703)) 47)) (-1767 (((-2 (|:| |cycle?| (-107)) (|:| -4026 (-703)) (|:| |period| (-703))) (-703) $) 25)) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2306 (($ (-1 (-107) |#1|) $) 122)) (-2316 (($ (-1 (-107) |#1|) $) 123)) (-2846 (($ $ |#1|) 66 (|has| $ (-6 -4193)))) (-2671 (($ $ (-517)) 32)) (-4033 (((-107) $) 70)) (-4150 (((-107) $) 12)) (-1929 (((-107) $) 114)) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 20)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) 15)) (-2452 (($) 41)) (-2609 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1124 (-517))) NIL) ((|#1| $ (-517)) 52) ((|#1| $ (-517) |#1|) NIL)) (-1844 (((-517) $ $) 46)) (-3728 (($ $ (-1124 (-517))) NIL) (($ $ (-517)) NIL)) (-2269 (($ (-1 $)) 45)) (-3028 (((-107) $) 67)) (-3498 (($ $) 68)) (-3020 (($ $) 97 (|has| $ (-6 -4193)))) (-2453 (((-703) $) NIL)) (-2231 (($ $) NIL)) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 42)) (-3359 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 51)) (-2995 (($ |#1| $) 95)) (-1753 (($ $ $) 98 (|has| $ (-6 -4193))) (($ $ |#1|) 99 (|has| $ (-6 -4193)))) (-4110 (($ $ $) 76) (($ |#1| $) 43) (($ (-583 $)) 81) (($ $ |#1|) 75)) (-3624 (($ $) 48)) (-2271 (($ (-583 |#1|)) 109) (((-787) $) 40 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) NIL)) (-2836 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 112 (|has| |#1| (-1005)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1057 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4193) (-15 -2271 ($ (-583 |#1|))) (-15 -3540 ($ (-583 |#1|))) (IF (|has| |#1| (-1005)) (-15 -2432 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -1767 ((-2 (|:| |cycle?| (-107)) (|:| -4026 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2269 ($ (-1 $))) (-15 -2995 ($ |#1| $)) (IF (|has| |#1| (-1005)) (PROGN (-15 -2264 ((-1162) (-517) $)) (-15 -1545 ((-787) $)) (-15 -1775 ((-107)))) |%noBranch|) (-15 -1702 ($ $ (-517) $)) (-15 -2266 ($ (-1 |#1|))) (-15 -2266 ($ (-1 |#1| |#1|) |#1|)) (-15 -2306 ($ (-1 (-107) |#1|) $)) (-15 -2316 ($ (-1 (-107) |#1|) $)))) (-1111)) (T -1057))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))) (-2432 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1005)) (-4 *4 (-1111)) (-5 *2 (-107)) (-5 *1 (-1057 *4)))) (-1767 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -4026 (-703)) (|:| |period| (-703)))) (-5 *1 (-1057 *4)) (-4 *4 (-1111)) (-5 *3 (-703)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1 (-1057 *3))) (-5 *1 (-1057 *3)) (-4 *3 (-1111)))) (-2995 (*1 *1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1111)))) (-2264 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-1057 *4)) (-4 *4 (-1005)) (-4 *4 (-1111)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1057 *3)) (-4 *3 (-1005)) (-4 *3 (-1111)))) (-1775 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1057 *3)) (-4 *3 (-1005)) (-4 *3 (-1111)))) (-1702 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1057 *3)) (-4 *3 (-1111)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))) (-2266 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))) (-2306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))) (-2316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))))
-(-13 (-610 |#1|) (-10 -8 (-6 -4193) (-15 -2271 ($ (-583 |#1|))) (-15 -3540 ($ (-583 |#1|))) (IF (|has| |#1| (-1005)) (-15 -2432 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -1767 ((-2 (|:| |cycle?| (-107)) (|:| -4026 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2269 ($ (-1 $))) (-15 -2995 ($ |#1| $)) (IF (|has| |#1| (-1005)) (PROGN (-15 -2264 ((-1162) (-517) $)) (-15 -1545 ((-787) $)) (-15 -1775 ((-107)))) |%noBranch|) (-15 -1702 ($ $ (-517) $)) (-15 -2266 ($ (-1 |#1|))) (-15 -2266 ($ (-1 |#1| |#1|) |#1|)) (-15 -2306 ($ (-1 (-107) |#1|) $)) (-15 -2316 ($ (-1 (-107) |#1|) $))))
-((-2119 (((-107) $ $) 19)) (-3508 (($ $) 120)) (-2594 (($ $) 121)) (-1464 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2551 (((-107) $ $) 118)) (-3141 (((-107) $ $ (-517)) 117)) (-1515 (($ (-517)) 127)) (-1378 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2166 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-1420 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4193))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-1851 (((-107) $ (-703)) 8)) (-2445 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4193))) (((-131) $ (-1124 (-517)) (-131)) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2907 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-2549 (($ $) 90 (|has| $ (-6 -4193)))) (-1908 (($ $) 100)) (-3232 (($ $ (-1124 (-517)) $) 114)) (-2455 (($ $) 78 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ (-131) $) 77 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4192)))) (-1522 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4192))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4192)))) (-2759 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4193)))) (-2566 (((-131) $ (-517)) 51)) (-2571 (((-107) $ $) 119)) (-1212 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1005))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1005))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1534 (((-583 (-131)) $) 30 (|has| $ (-6 -4192)))) (-3213 (($ (-703) (-131)) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 87 (|has| (-131) (-779)))) (-2662 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-1903 (((-583 (-131)) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 86 (|has| (-131) (-779)))) (-1450 (((-107) $ $ (-131)) 115)) (-1937 (((-703) $ $ (-131)) 116)) (-2746 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-2838 (($ $) 122)) (-3675 (($ $) 123)) (-1320 (((-107) $ (-703)) 10)) (-2920 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-1662 (((-1059) $) 22)) (-1747 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21)) (-2429 (((-131) $) 42 (|has| (-517) (-779)))) (-1528 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2846 (($ $ (-131)) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-2891 (((-583 (-131)) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1124 (-517))) 63) (($ $ $) 102)) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-4137 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4192))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 91 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2288 (($ (-583 (-131))) 70)) (-4110 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (($ (-131)) 111) (((-787) $) 18)) (-3602 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4192)))) (-4032 (((-1059) $) 131) (((-1059) $ (-107)) 130) (((-1162) (-754) $) 129) (((-1162) (-754) $ (-107)) 128)) (-1642 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1618 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1584 (((-107) $ $) 20)) (-1630 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1608 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1058) (-1188)) (T -1058))
-((-1515 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1058)))))
-(-13 (-1045) (-1005) (-760) (-10 -8 (-15 -1515 ($ (-517)))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))) ((-588 #0#) . T) ((-19 #0#) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1005) . T) ((-1045) . T) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3508 (($ $) NIL)) (-2594 (($ $) NIL)) (-1464 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2551 (((-107) $ $) NIL)) (-3141 (((-107) $ $ (-517)) NIL)) (-1515 (($ (-517)) 7)) (-1378 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2166 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-1420 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| (-131) (-779))))) (-2163 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4193))) (((-131) $ (-1124 (-517)) (-131)) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2907 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-3232 (($ $ (-1124 (-517)) $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1423 (($ (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4192))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4192)))) (-2759 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4193)))) (-2566 (((-131) $ (-517)) NIL)) (-2571 (((-107) $ $) NIL)) (-1212 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1005))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1005))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1534 (((-583 (-131)) $) NIL (|has| $ (-6 -4192)))) (-3213 (($ (-703) (-131)) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| (-131) (-779)))) (-2662 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-1903 (((-583 (-131)) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| (-131) (-779)))) (-1450 (((-107) $ $ (-131)) NIL)) (-1937 (((-703) $ $ (-131)) NIL)) (-2746 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-2838 (($ $) NIL)) (-3675 (($ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-2920 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1662 (((-1059) $) NIL)) (-1747 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-131) $) NIL (|has| (-517) (-779)))) (-1528 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2846 (($ $ (-131)) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-2891 (((-583 (-131)) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1124 (-517))) NIL) (($ $ $) NIL)) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-4137 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-131) (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2288 (($ (-583 (-131))) NIL)) (-4110 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (($ (-131)) NIL) (((-787) $) NIL)) (-3602 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4192)))) (-4032 (((-1059) $) 18) (((-1059) $ (-107)) 20) (((-1162) (-754) $) 21) (((-1162) (-754) $ (-107)) 22)) (-1642 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1618 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1608 (((-107) $ $) NIL (|has| (-131) (-779)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1059) (-1058)) (T -1059))
-NIL
-(-1058)
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)) (|has| |#1| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL)) (-2034 (((-1162) $ (-1059) (-1059)) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-1059) |#1|) NIL)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#1| "failed") (-1059) $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#1| "failed") (-1059) $) NIL)) (-1423 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-1059) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-1059)) NIL)) (-1534 (((-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-1059) $) NIL (|has| (-1059) (-779)))) (-1903 (((-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-1059) $) NIL (|has| (-1059) (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)) (|has| |#1| (-1005))))) (-1882 (((-583 (-1059)) $) NIL)) (-3577 (((-107) (-1059) $) NIL)) (-1803 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL)) (-2817 (((-583 (-1059)) $) NIL)) (-3130 (((-107) (-1059) $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)) (|has| |#1| (-1005))))) (-2429 ((|#1| $) NIL (|has| (-1059) (-779)))) (-1528 (((-3 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) "failed") (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL (-12 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-280 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-1059)) NIL) ((|#1| $ (-1059) |#1|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-557 (-787))) (|has| |#1| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 (-1059)) (|:| -1859 |#1|)) (-1005)) (|has| |#1| (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1060 |#1|) (-13 (-1088 (-1059) |#1|) (-10 -7 (-6 -4192))) (-1005)) (T -1060))
-NIL
-(-13 (-1088 (-1059) |#1|) (-10 -7 (-6 -4192)))
-((-2579 (((-1057 |#1|) (-1057 |#1|)) 77)) (-2560 (((-3 (-1057 |#1|) "failed") (-1057 |#1|)) 37)) (-3064 (((-1057 |#1|) (-377 (-517)) (-1057 |#1|)) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1995 (((-1057 |#1|) |#1| (-1057 |#1|)) 121 (|has| |#1| (-333)))) (-2480 (((-1057 |#1|) (-1057 |#1|)) 90)) (-1976 (((-1057 (-517)) (-517)) 57)) (-4162 (((-1057 |#1|) (-1057 (-1057 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-2118 (((-1057 |#1|) (-517) (-517) (-1057 |#1|)) 95)) (-2425 (((-1057 |#1|) |#1| (-517)) 45)) (-1791 (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 60)) (-3884 (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 119 (|has| |#1| (-333)))) (-3706 (((-1057 |#1|) |#1| (-1 (-1057 |#1|))) 107 (|has| |#1| (-37 (-377 (-517)))))) (-2983 (((-1057 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1057 |#1|))) 120 (|has| |#1| (-333)))) (-1455 (((-1057 |#1|) (-1057 |#1|)) 89)) (-3495 (((-1057 |#1|) (-1057 |#1|)) 76)) (-3317 (((-1057 |#1|) (-517) (-517) (-1057 |#1|)) 96)) (-2356 (((-1057 |#1|) |#1| (-1057 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-2979 (((-1057 (-517)) (-517)) 56)) (-2658 (((-1057 |#1|) |#1|) 59)) (-1191 (((-1057 |#1|) (-1057 |#1|) (-517) (-517)) 92)) (-3417 (((-1057 |#1|) (-1 |#1| (-517)) (-1057 |#1|)) 66)) (-2329 (((-3 (-1057 |#1|) "failed") (-1057 |#1|) (-1057 |#1|)) 35)) (-2786 (((-1057 |#1|) (-1057 |#1|)) 91)) (-3524 (((-1057 |#1|) (-1057 |#1|) |#1|) 71)) (-3711 (((-1057 |#1|) (-1057 |#1|)) 62)) (-1997 (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 72)) (-2271 (((-1057 |#1|) |#1|) 67)) (-3962 (((-1057 |#1|) (-1057 (-1057 |#1|))) 82)) (-1704 (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 36)) (-1692 (((-1057 |#1|) (-1057 |#1|)) 21) (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 23)) (-1678 (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 17)) (* (((-1057 |#1|) (-1057 |#1|) |#1|) 29) (((-1057 |#1|) |#1| (-1057 |#1|)) 26) (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 27)))
-(((-1061 |#1|) (-10 -7 (-15 -1678 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1692 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1692 ((-1057 |#1|) (-1057 |#1|))) (-15 * ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 * ((-1057 |#1|) |#1| (-1057 |#1|))) (-15 * ((-1057 |#1|) (-1057 |#1|) |#1|)) (-15 -2329 ((-3 (-1057 |#1|) "failed") (-1057 |#1|) (-1057 |#1|))) (-15 -1704 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -2560 ((-3 (-1057 |#1|) "failed") (-1057 |#1|))) (-15 -2425 ((-1057 |#1|) |#1| (-517))) (-15 -2979 ((-1057 (-517)) (-517))) (-15 -1976 ((-1057 (-517)) (-517))) (-15 -2658 ((-1057 |#1|) |#1|)) (-15 -1791 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -3711 ((-1057 |#1|) (-1057 |#1|))) (-15 -3417 ((-1057 |#1|) (-1 |#1| (-517)) (-1057 |#1|))) (-15 -2271 ((-1057 |#1|) |#1|)) (-15 -3524 ((-1057 |#1|) (-1057 |#1|) |#1|)) (-15 -1997 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -3495 ((-1057 |#1|) (-1057 |#1|))) (-15 -2579 ((-1057 |#1|) (-1057 |#1|))) (-15 -3962 ((-1057 |#1|) (-1057 (-1057 |#1|)))) (-15 -1455 ((-1057 |#1|) (-1057 |#1|))) (-15 -2480 ((-1057 |#1|) (-1057 |#1|))) (-15 -2786 ((-1057 |#1|) (-1057 |#1|))) (-15 -1191 ((-1057 |#1|) (-1057 |#1|) (-517) (-517))) (-15 -2118 ((-1057 |#1|) (-517) (-517) (-1057 |#1|))) (-15 -3317 ((-1057 |#1|) (-517) (-517) (-1057 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ((-1057 |#1|) |#1| (-1057 |#1|))) (-15 -3706 ((-1057 |#1|) |#1| (-1 (-1057 |#1|)))) (-15 -4162 ((-1057 |#1|) (-1057 (-1057 |#1|)))) (-15 -3064 ((-1057 |#1|) (-377 (-517)) (-1057 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3884 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -2983 ((-1057 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1057 |#1|)))) (-15 -1995 ((-1057 |#1|) |#1| (-1057 |#1|)))) |%noBranch|)) (-963)) (T -1061))
-((-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-333)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-2983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1057 *4))) (-4 *4 (-333)) (-4 *4 (-963)) (-5 *2 (-1057 *4)) (-5 *1 (-1061 *4)))) (-3884 (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-333)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-3064 (*1 *2 *3 *2) (-12 (-5 *2 (-1057 *4)) (-4 *4 (-37 *3)) (-4 *4 (-963)) (-5 *3 (-377 (-517))) (-5 *1 (-1061 *4)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-1057 (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-963)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1057 *3))) (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)))) (-2356 (*1 *2 *3 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-3317 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-963)) (-5 *1 (-1061 *4)))) (-2118 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-963)) (-5 *1 (-1061 *4)))) (-1191 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-963)) (-5 *1 (-1061 *4)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1455 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1057 (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-963)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-2271 (*1 *2 *3) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-963)))) (-3417 (*1 *2 *3 *2) (-12 (-5 *2 (-1057 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-963)) (-5 *1 (-1061 *4)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-2658 (*1 *2 *3) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-963)))) (-1976 (*1 *2 *3) (-12 (-5 *2 (-1057 (-517))) (-5 *1 (-1061 *4)) (-4 *4 (-963)) (-5 *3 (-517)))) (-2979 (*1 *2 *3) (-12 (-5 *2 (-1057 (-517))) (-5 *1 (-1061 *4)) (-4 *4 (-963)) (-5 *3 (-517)))) (-2425 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-963)))) (-2560 (*1 *2 *2) (|partial| -12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1704 (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-2329 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))) (-1678 (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))))
-(-10 -7 (-15 -1678 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1692 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1692 ((-1057 |#1|) (-1057 |#1|))) (-15 * ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 * ((-1057 |#1|) |#1| (-1057 |#1|))) (-15 * ((-1057 |#1|) (-1057 |#1|) |#1|)) (-15 -2329 ((-3 (-1057 |#1|) "failed") (-1057 |#1|) (-1057 |#1|))) (-15 -1704 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -2560 ((-3 (-1057 |#1|) "failed") (-1057 |#1|))) (-15 -2425 ((-1057 |#1|) |#1| (-517))) (-15 -2979 ((-1057 (-517)) (-517))) (-15 -1976 ((-1057 (-517)) (-517))) (-15 -2658 ((-1057 |#1|) |#1|)) (-15 -1791 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -3711 ((-1057 |#1|) (-1057 |#1|))) (-15 -3417 ((-1057 |#1|) (-1 |#1| (-517)) (-1057 |#1|))) (-15 -2271 ((-1057 |#1|) |#1|)) (-15 -3524 ((-1057 |#1|) (-1057 |#1|) |#1|)) (-15 -1997 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -3495 ((-1057 |#1|) (-1057 |#1|))) (-15 -2579 ((-1057 |#1|) (-1057 |#1|))) (-15 -3962 ((-1057 |#1|) (-1057 (-1057 |#1|)))) (-15 -1455 ((-1057 |#1|) (-1057 |#1|))) (-15 -2480 ((-1057 |#1|) (-1057 |#1|))) (-15 -2786 ((-1057 |#1|) (-1057 |#1|))) (-15 -1191 ((-1057 |#1|) (-1057 |#1|) (-517) (-517))) (-15 -2118 ((-1057 |#1|) (-517) (-517) (-1057 |#1|))) (-15 -3317 ((-1057 |#1|) (-517) (-517) (-1057 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ((-1057 |#1|) |#1| (-1057 |#1|))) (-15 -3706 ((-1057 |#1|) |#1| (-1 (-1057 |#1|)))) (-15 -4162 ((-1057 |#1|) (-1057 (-1057 |#1|)))) (-15 -3064 ((-1057 |#1|) (-377 (-517)) (-1057 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3884 ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -2983 ((-1057 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1057 |#1|)))) (-15 -1995 ((-1057 |#1|) |#1| (-1057 |#1|)))) |%noBranch|))
-((-1648 (((-1057 |#1|) (-1057 |#1|)) 57)) (-1494 (((-1057 |#1|) (-1057 |#1|)) 39)) (-1624 (((-1057 |#1|) (-1057 |#1|)) 53)) (-1471 (((-1057 |#1|) (-1057 |#1|)) 35)) (-1670 (((-1057 |#1|) (-1057 |#1|)) 60)) (-1520 (((-1057 |#1|) (-1057 |#1|)) 42)) (-1226 (((-1057 |#1|) (-1057 |#1|)) 31)) (-3870 (((-1057 |#1|) (-1057 |#1|)) 27)) (-1682 (((-1057 |#1|) (-1057 |#1|)) 61)) (-1533 (((-1057 |#1|) (-1057 |#1|)) 43)) (-1660 (((-1057 |#1|) (-1057 |#1|)) 58)) (-1507 (((-1057 |#1|) (-1057 |#1|)) 40)) (-1635 (((-1057 |#1|) (-1057 |#1|)) 55)) (-1483 (((-1057 |#1|) (-1057 |#1|)) 37)) (-1722 (((-1057 |#1|) (-1057 |#1|)) 65)) (-1576 (((-1057 |#1|) (-1057 |#1|)) 47)) (-1697 (((-1057 |#1|) (-1057 |#1|)) 63)) (-1548 (((-1057 |#1|) (-1057 |#1|)) 45)) (-3489 (((-1057 |#1|) (-1057 |#1|)) 68)) (-1600 (((-1057 |#1|) (-1057 |#1|)) 50)) (-2824 (((-1057 |#1|) (-1057 |#1|)) 69)) (-1613 (((-1057 |#1|) (-1057 |#1|)) 51)) (-1735 (((-1057 |#1|) (-1057 |#1|)) 67)) (-1589 (((-1057 |#1|) (-1057 |#1|)) 49)) (-1709 (((-1057 |#1|) (-1057 |#1|)) 66)) (-1562 (((-1057 |#1|) (-1057 |#1|)) 48)) (** (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 33)))
-(((-1062 |#1|) (-10 -7 (-15 -3870 ((-1057 |#1|) (-1057 |#1|))) (-15 -1226 ((-1057 |#1|) (-1057 |#1|))) (-15 ** ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1471 ((-1057 |#1|) (-1057 |#1|))) (-15 -1483 ((-1057 |#1|) (-1057 |#1|))) (-15 -1494 ((-1057 |#1|) (-1057 |#1|))) (-15 -1507 ((-1057 |#1|) (-1057 |#1|))) (-15 -1520 ((-1057 |#1|) (-1057 |#1|))) (-15 -1533 ((-1057 |#1|) (-1057 |#1|))) (-15 -1548 ((-1057 |#1|) (-1057 |#1|))) (-15 -1562 ((-1057 |#1|) (-1057 |#1|))) (-15 -1576 ((-1057 |#1|) (-1057 |#1|))) (-15 -1589 ((-1057 |#1|) (-1057 |#1|))) (-15 -1600 ((-1057 |#1|) (-1057 |#1|))) (-15 -1613 ((-1057 |#1|) (-1057 |#1|))) (-15 -1624 ((-1057 |#1|) (-1057 |#1|))) (-15 -1635 ((-1057 |#1|) (-1057 |#1|))) (-15 -1648 ((-1057 |#1|) (-1057 |#1|))) (-15 -1660 ((-1057 |#1|) (-1057 |#1|))) (-15 -1670 ((-1057 |#1|) (-1057 |#1|))) (-15 -1682 ((-1057 |#1|) (-1057 |#1|))) (-15 -1697 ((-1057 |#1|) (-1057 |#1|))) (-15 -1709 ((-1057 |#1|) (-1057 |#1|))) (-15 -1722 ((-1057 |#1|) (-1057 |#1|))) (-15 -1735 ((-1057 |#1|) (-1057 |#1|))) (-15 -3489 ((-1057 |#1|) (-1057 |#1|))) (-15 -2824 ((-1057 |#1|) (-1057 |#1|)))) (-37 (-377 (-517)))) (T -1062))
-((-2824 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1600 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1226 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))))
-(-10 -7 (-15 -3870 ((-1057 |#1|) (-1057 |#1|))) (-15 -1226 ((-1057 |#1|) (-1057 |#1|))) (-15 ** ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1471 ((-1057 |#1|) (-1057 |#1|))) (-15 -1483 ((-1057 |#1|) (-1057 |#1|))) (-15 -1494 ((-1057 |#1|) (-1057 |#1|))) (-15 -1507 ((-1057 |#1|) (-1057 |#1|))) (-15 -1520 ((-1057 |#1|) (-1057 |#1|))) (-15 -1533 ((-1057 |#1|) (-1057 |#1|))) (-15 -1548 ((-1057 |#1|) (-1057 |#1|))) (-15 -1562 ((-1057 |#1|) (-1057 |#1|))) (-15 -1576 ((-1057 |#1|) (-1057 |#1|))) (-15 -1589 ((-1057 |#1|) (-1057 |#1|))) (-15 -1600 ((-1057 |#1|) (-1057 |#1|))) (-15 -1613 ((-1057 |#1|) (-1057 |#1|))) (-15 -1624 ((-1057 |#1|) (-1057 |#1|))) (-15 -1635 ((-1057 |#1|) (-1057 |#1|))) (-15 -1648 ((-1057 |#1|) (-1057 |#1|))) (-15 -1660 ((-1057 |#1|) (-1057 |#1|))) (-15 -1670 ((-1057 |#1|) (-1057 |#1|))) (-15 -1682 ((-1057 |#1|) (-1057 |#1|))) (-15 -1697 ((-1057 |#1|) (-1057 |#1|))) (-15 -1709 ((-1057 |#1|) (-1057 |#1|))) (-15 -1722 ((-1057 |#1|) (-1057 |#1|))) (-15 -1735 ((-1057 |#1|) (-1057 |#1|))) (-15 -3489 ((-1057 |#1|) (-1057 |#1|))) (-15 -2824 ((-1057 |#1|) (-1057 |#1|))))
-((-1648 (((-1057 |#1|) (-1057 |#1|)) 100)) (-1494 (((-1057 |#1|) (-1057 |#1|)) 64)) (-3926 (((-2 (|:| -1624 (-1057 |#1|)) (|:| -1635 (-1057 |#1|))) (-1057 |#1|)) 96)) (-1624 (((-1057 |#1|) (-1057 |#1|)) 97)) (-1684 (((-2 (|:| -1471 (-1057 |#1|)) (|:| -1483 (-1057 |#1|))) (-1057 |#1|)) 53)) (-1471 (((-1057 |#1|) (-1057 |#1|)) 54)) (-1670 (((-1057 |#1|) (-1057 |#1|)) 102)) (-1520 (((-1057 |#1|) (-1057 |#1|)) 71)) (-1226 (((-1057 |#1|) (-1057 |#1|)) 39)) (-3870 (((-1057 |#1|) (-1057 |#1|)) 36)) (-1682 (((-1057 |#1|) (-1057 |#1|)) 103)) (-1533 (((-1057 |#1|) (-1057 |#1|)) 72)) (-1660 (((-1057 |#1|) (-1057 |#1|)) 101)) (-1507 (((-1057 |#1|) (-1057 |#1|)) 67)) (-1635 (((-1057 |#1|) (-1057 |#1|)) 98)) (-1483 (((-1057 |#1|) (-1057 |#1|)) 55)) (-1722 (((-1057 |#1|) (-1057 |#1|)) 111)) (-1576 (((-1057 |#1|) (-1057 |#1|)) 86)) (-1697 (((-1057 |#1|) (-1057 |#1|)) 105)) (-1548 (((-1057 |#1|) (-1057 |#1|)) 82)) (-3489 (((-1057 |#1|) (-1057 |#1|)) 115)) (-1600 (((-1057 |#1|) (-1057 |#1|)) 90)) (-2824 (((-1057 |#1|) (-1057 |#1|)) 117)) (-1613 (((-1057 |#1|) (-1057 |#1|)) 92)) (-1735 (((-1057 |#1|) (-1057 |#1|)) 113)) (-1589 (((-1057 |#1|) (-1057 |#1|)) 88)) (-1709 (((-1057 |#1|) (-1057 |#1|)) 107)) (-1562 (((-1057 |#1|) (-1057 |#1|)) 84)) (** (((-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) 40)))
-(((-1063 |#1|) (-10 -7 (-15 -3870 ((-1057 |#1|) (-1057 |#1|))) (-15 -1226 ((-1057 |#1|) (-1057 |#1|))) (-15 ** ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1684 ((-2 (|:| -1471 (-1057 |#1|)) (|:| -1483 (-1057 |#1|))) (-1057 |#1|))) (-15 -1471 ((-1057 |#1|) (-1057 |#1|))) (-15 -1483 ((-1057 |#1|) (-1057 |#1|))) (-15 -1494 ((-1057 |#1|) (-1057 |#1|))) (-15 -1507 ((-1057 |#1|) (-1057 |#1|))) (-15 -1520 ((-1057 |#1|) (-1057 |#1|))) (-15 -1533 ((-1057 |#1|) (-1057 |#1|))) (-15 -1548 ((-1057 |#1|) (-1057 |#1|))) (-15 -1562 ((-1057 |#1|) (-1057 |#1|))) (-15 -1576 ((-1057 |#1|) (-1057 |#1|))) (-15 -1589 ((-1057 |#1|) (-1057 |#1|))) (-15 -1600 ((-1057 |#1|) (-1057 |#1|))) (-15 -1613 ((-1057 |#1|) (-1057 |#1|))) (-15 -3926 ((-2 (|:| -1624 (-1057 |#1|)) (|:| -1635 (-1057 |#1|))) (-1057 |#1|))) (-15 -1624 ((-1057 |#1|) (-1057 |#1|))) (-15 -1635 ((-1057 |#1|) (-1057 |#1|))) (-15 -1648 ((-1057 |#1|) (-1057 |#1|))) (-15 -1660 ((-1057 |#1|) (-1057 |#1|))) (-15 -1670 ((-1057 |#1|) (-1057 |#1|))) (-15 -1682 ((-1057 |#1|) (-1057 |#1|))) (-15 -1697 ((-1057 |#1|) (-1057 |#1|))) (-15 -1709 ((-1057 |#1|) (-1057 |#1|))) (-15 -1722 ((-1057 |#1|) (-1057 |#1|))) (-15 -1735 ((-1057 |#1|) (-1057 |#1|))) (-15 -3489 ((-1057 |#1|) (-1057 |#1|))) (-15 -2824 ((-1057 |#1|) (-1057 |#1|)))) (-37 (-377 (-517)))) (T -1063))
-((-2824 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3926 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1624 (-1057 *4)) (|:| -1635 (-1057 *4)))) (-5 *1 (-1063 *4)) (-5 *3 (-1057 *4)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1600 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1471 (-1057 *4)) (|:| -1483 (-1057 *4)))) (-5 *1 (-1063 *4)) (-5 *3 (-1057 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1226 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))))
-(-10 -7 (-15 -3870 ((-1057 |#1|) (-1057 |#1|))) (-15 -1226 ((-1057 |#1|) (-1057 |#1|))) (-15 ** ((-1057 |#1|) (-1057 |#1|) (-1057 |#1|))) (-15 -1684 ((-2 (|:| -1471 (-1057 |#1|)) (|:| -1483 (-1057 |#1|))) (-1057 |#1|))) (-15 -1471 ((-1057 |#1|) (-1057 |#1|))) (-15 -1483 ((-1057 |#1|) (-1057 |#1|))) (-15 -1494 ((-1057 |#1|) (-1057 |#1|))) (-15 -1507 ((-1057 |#1|) (-1057 |#1|))) (-15 -1520 ((-1057 |#1|) (-1057 |#1|))) (-15 -1533 ((-1057 |#1|) (-1057 |#1|))) (-15 -1548 ((-1057 |#1|) (-1057 |#1|))) (-15 -1562 ((-1057 |#1|) (-1057 |#1|))) (-15 -1576 ((-1057 |#1|) (-1057 |#1|))) (-15 -1589 ((-1057 |#1|) (-1057 |#1|))) (-15 -1600 ((-1057 |#1|) (-1057 |#1|))) (-15 -1613 ((-1057 |#1|) (-1057 |#1|))) (-15 -3926 ((-2 (|:| -1624 (-1057 |#1|)) (|:| -1635 (-1057 |#1|))) (-1057 |#1|))) (-15 -1624 ((-1057 |#1|) (-1057 |#1|))) (-15 -1635 ((-1057 |#1|) (-1057 |#1|))) (-15 -1648 ((-1057 |#1|) (-1057 |#1|))) (-15 -1660 ((-1057 |#1|) (-1057 |#1|))) (-15 -1670 ((-1057 |#1|) (-1057 |#1|))) (-15 -1682 ((-1057 |#1|) (-1057 |#1|))) (-15 -1697 ((-1057 |#1|) (-1057 |#1|))) (-15 -1709 ((-1057 |#1|) (-1057 |#1|))) (-15 -1722 ((-1057 |#1|) (-1057 |#1|))) (-15 -1735 ((-1057 |#1|) (-1057 |#1|))) (-15 -3489 ((-1057 |#1|) (-1057 |#1|))) (-15 -2824 ((-1057 |#1|) (-1057 |#1|))))
-((-1604 (((-880 |#2|) |#2| |#2|) 36)) (-2683 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
-(((-1064 |#1| |#2|) (-10 -7 (-15 -1604 ((-880 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -2683 (|#2| |#2| |#1|)) |%noBranch|)) (-509) (-1133 |#1|)) (T -1064))
-((-2683 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1064 *3 *2)) (-4 *2 (-1133 *3)))) (-1604 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-880 *3)) (-5 *1 (-1064 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -1604 ((-880 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -2683 (|#2| |#2| |#1|)) |%noBranch|))
-((-2119 (((-107) $ $) NIL)) (-1329 (($ $ (-583 (-703))) 67)) (-3918 (($) 26)) (-2916 (($ $) 42)) (-1340 (((-583 $) $) 51)) (-3273 (((-107) $) 16)) (-3948 (((-583 (-866 |#2|)) $) 74)) (-3215 (($ $) 68)) (-2592 (((-703) $) 37)) (-3213 (($) 25)) (-3046 (($ $ (-583 (-703)) (-866 |#2|)) 60) (($ $ (-583 (-703)) (-703)) 61) (($ $ (-703) (-866 |#2|)) 63)) (-2662 (($ $ $) 48) (($ (-583 $)) 50)) (-3280 (((-703) $) 75)) (-3017 (((-107) $) 15)) (-1662 (((-1059) $) NIL)) (-3116 (((-107) $) 18)) (-4125 (((-1023) $) NIL)) (-1972 (((-155) $) 73)) (-3963 (((-866 |#2|) $) 69)) (-1394 (((-703) $) 70)) (-1347 (((-107) $) 72)) (-3968 (($ $ (-583 (-703)) (-155)) 66)) (-1656 (($ $) 43)) (-2271 (((-787) $) 85)) (-1463 (($ $ (-583 (-703)) (-107)) 65)) (-2199 (((-583 $) $) 11)) (-1351 (($ $ (-703)) 36)) (-1439 (($ $) 32)) (-4156 (($ $ $ (-866 |#2|) (-703)) 56)) (-2279 (($ $ (-866 |#2|)) 55)) (-4004 (($ $ (-583 (-703)) (-866 |#2|)) 54) (($ $ (-583 (-703)) (-703)) 58) (((-703) $ (-866 |#2|)) 59)) (-1584 (((-107) $ $) 79)))
-(((-1065 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -3017 ((-107) $)) (-15 -3273 ((-107) $)) (-15 -3116 ((-107) $)) (-15 -3213 ($)) (-15 -3918 ($)) (-15 -1439 ($ $)) (-15 -1351 ($ $ (-703))) (-15 -2199 ((-583 $) $)) (-15 -2592 ((-703) $)) (-15 -2916 ($ $)) (-15 -1656 ($ $)) (-15 -2662 ($ $ $)) (-15 -2662 ($ (-583 $))) (-15 -1340 ((-583 $) $)) (-15 -4004 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -2279 ($ $ (-866 |#2|))) (-15 -4156 ($ $ $ (-866 |#2|) (-703))) (-15 -3046 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -4004 ($ $ (-583 (-703)) (-703))) (-15 -3046 ($ $ (-583 (-703)) (-703))) (-15 -4004 ((-703) $ (-866 |#2|))) (-15 -3046 ($ $ (-703) (-866 |#2|))) (-15 -1463 ($ $ (-583 (-703)) (-107))) (-15 -3968 ($ $ (-583 (-703)) (-155))) (-15 -1329 ($ $ (-583 (-703)))) (-15 -3963 ((-866 |#2|) $)) (-15 -1394 ((-703) $)) (-15 -1347 ((-107) $)) (-15 -1972 ((-155) $)) (-15 -3280 ((-703) $)) (-15 -3215 ($ $)) (-15 -3948 ((-583 (-866 |#2|)) $)))) (-844) (-963)) (T -1065))
-((-3017 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-3213 (*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-3918 (*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-583 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-2916 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-1656 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-583 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-583 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-4004 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-963)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-866 *4)) (-4 *4 (-963)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)))) (-4156 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-866 *5)) (-5 *3 (-703)) (-4 *5 (-963)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-963)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))) (-4004 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)) (-4 *5 (-963)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)) (-4 *5 (-963)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-963)) (-5 *2 (-703)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-866 *5)) (-4 *5 (-963)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))) (-1463 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)) (-4 *5 (-963)))) (-3968 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)) (-4 *5 (-963)))) (-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-866 *4)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))) (-3215 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-583 (-866 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844)) (-4 *4 (-963)))))
-(-13 (-1005) (-10 -8 (-15 -3017 ((-107) $)) (-15 -3273 ((-107) $)) (-15 -3116 ((-107) $)) (-15 -3213 ($)) (-15 -3918 ($)) (-15 -1439 ($ $)) (-15 -1351 ($ $ (-703))) (-15 -2199 ((-583 $) $)) (-15 -2592 ((-703) $)) (-15 -2916 ($ $)) (-15 -1656 ($ $)) (-15 -2662 ($ $ $)) (-15 -2662 ($ (-583 $))) (-15 -1340 ((-583 $) $)) (-15 -4004 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -2279 ($ $ (-866 |#2|))) (-15 -4156 ($ $ $ (-866 |#2|) (-703))) (-15 -3046 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -4004 ($ $ (-583 (-703)) (-703))) (-15 -3046 ($ $ (-583 (-703)) (-703))) (-15 -4004 ((-703) $ (-866 |#2|))) (-15 -3046 ($ $ (-703) (-866 |#2|))) (-15 -1463 ($ $ (-583 (-703)) (-107))) (-15 -3968 ($ $ (-583 (-703)) (-155))) (-15 -1329 ($ $ (-583 (-703)))) (-15 -3963 ((-866 |#2|) $)) (-15 -1394 ((-703) $)) (-15 -1347 ((-107) $)) (-15 -1972 ((-155) $)) (-15 -3280 ((-703) $)) (-15 -3215 ($ $)) (-15 -3948 ((-583 (-866 |#2|)) $))))
-((-2119 (((-107) $ $) NIL)) (-2515 ((|#2| $) 11)) (-2508 ((|#1| $) 10)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2288 (($ |#1| |#2|) 9)) (-2271 (((-787) $) 16)) (-1584 (((-107) $ $) NIL)))
-(((-1066 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -2288 ($ |#1| |#2|)) (-15 -2508 (|#1| $)) (-15 -2515 (|#2| $)))) (-1005) (-1005)) (T -1066))
-((-2288 (*1 *1 *2 *3) (-12 (-5 *1 (-1066 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-2508 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1005)))) (-2515 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-1066 *3 *2)) (-4 *3 (-1005)))))
-(-13 (-1005) (-10 -8 (-15 -2288 ($ |#1| |#2|)) (-15 -2508 (|#1| $)) (-15 -2515 (|#2| $))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-1074 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 11)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3062 (($ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2190 (((-107) $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2853 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-1928 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1664 (((-1074 |#1| |#2| |#3|) $) 36)) (-2722 (((-3 (-1074 |#1| |#2| |#3|) "failed") $) 29)) (-2145 (((-1074 |#1| |#2| |#3|) $) 30)) (-1648 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-2360 (((-517) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3433 (($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-1074 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1076) "failed") $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-1076))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333))))) (-3390 (((-1074 |#1| |#2| |#3|) $) 131) (((-1076) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-1076))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333))))) (-1336 (($ $) 34) (($ (-517) $) 35)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-1074 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 (-1074 |#1| |#2| |#3|))) (|:| |vec| (-1157 (-1074 |#1| |#2| |#3|)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-2560 (((-3 $ "failed") $) 48)) (-4077 (((-377 (-875 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-2202 (($) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-2988 (((-107) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-1880 (((-107) $) 25)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-809 (-517))) (|has| |#1| (-333)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-809 (-349))) (|has| |#1| (-333))))) (-1395 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL (|has| |#1| (-333)))) (-3826 (((-1074 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2243 (((-3 $ "failed") $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-333))))) (-1952 (((-107) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2401 (($ $ (-844)) NIL)) (-3138 (($ (-1 |#1| (-517)) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-517)) 18) (($ $ (-991) (-517)) NIL) (($ $ (-583 (-991)) (-583 (-517))) NIL)) (-3458 (($ $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4084 (($ $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1226 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2154 (($ (-517) (-1074 |#1| |#2| |#3|)) 33)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2356 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2587 (($) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-333))) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2041 (($ $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2961 (((-1074 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-517)) 145)) (-2329 (((-3 $ "failed") $ $) 49 (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1076) (-1074 |#1| |#2| |#3|)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-478 (-1076) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1076)) (-583 (-1074 |#1| |#2| |#3|))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-478 (-1076) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1074 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-280 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1074 |#1| |#2| |#3|))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-280 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-280 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1074 |#1| |#2| |#3|)) (-583 (-1074 |#1| |#2| |#3|))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-280 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1017))) (($ $ (-1074 |#1| |#2| |#3|)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-258 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1153 |#2|)) 51) (($ $ (-703)) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076) (-703)) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-583 (-1076))) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))) (-2484 (($ $) NIL (|has| |#1| (-333)))) (-2098 (((-1074 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-3647 (((-517) $) 37)) (-1682 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3359 (((-493) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-939)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-939)) (|has| |#1| (-333)))) (((-815 (-349)) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1074 |#1| |#2| |#3|)) 27) (($ (-1153 |#2|)) 23) (($ (-1076)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-1076))) (|has| |#1| (-333)))) (($ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-1689 ((|#1| $ (-517)) 68)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 12)) (-3599 (((-1074 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1722 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1697 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2376 (($ $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 20 T CONST)) (-3619 (($) 16 T CONST)) (-3342 (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076) (-703)) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-583 (-1076))) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))) (-1642 (((-107) $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1618 (((-107) $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1608 (((-107) $ $) NIL (-3747 (-12 (|has| (-1074 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 21)) (** (($ $ (-844)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1074 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1074 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1067 |#1| |#2| |#3|) (-13 (-1119 |#1| (-1074 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -1067))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1119 |#1| (-1074 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-3454 ((|#2| |#2| (-998 |#2|)) 26) ((|#2| |#2| (-1076)) 28)))
-(((-1068 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2| (-1076))) (-15 -3454 (|#2| |#2| (-998 |#2|)))) (-13 (-509) (-779) (-954 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1097))) (T -1068))
-((-3454 (*1 *2 *2 *3) (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1097))) (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1068 *4 *2)))) (-3454 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1068 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1097))))))
-(-10 -7 (-15 -3454 (|#2| |#2| (-1076))) (-15 -3454 (|#2| |#2| (-998 |#2|))))
-((-3454 (((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-998 (-377 (-875 |#1|)))) 30) (((-377 (-875 |#1|)) (-875 |#1|) (-998 (-875 |#1|))) 44) (((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-1076)) 32) (((-377 (-875 |#1|)) (-875 |#1|) (-1076)) 36)))
-(((-1069 |#1|) (-10 -7 (-15 -3454 ((-377 (-875 |#1|)) (-875 |#1|) (-1076))) (-15 -3454 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-1076))) (-15 -3454 ((-377 (-875 |#1|)) (-875 |#1|) (-998 (-875 |#1|)))) (-15 -3454 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-998 (-377 (-875 |#1|)))))) (-13 (-509) (-779) (-954 (-517)))) (T -1069))
-((-3454 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1069 *5)))) (-3454 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-875 *5))) (-5 *3 (-875 *5)) (-4 *5 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1069 *5)))) (-3454 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-3 (-377 (-875 *5)) (-286 *5))) (-5 *1 (-1069 *5)) (-5 *3 (-377 (-875 *5))))) (-3454 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-377 (-875 *5))) (-5 *1 (-1069 *5)) (-5 *3 (-875 *5)))))
-(-10 -7 (-15 -3454 ((-377 (-875 |#1|)) (-875 |#1|) (-1076))) (-15 -3454 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-1076))) (-15 -3454 ((-377 (-875 |#1|)) (-875 |#1|) (-998 (-875 |#1|)))) (-15 -3454 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-998 (-377 (-875 |#1|))))))
-((-3310 (((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|)) 13)))
-(((-1070 |#1| |#2|) (-10 -7 (-15 -3310 ((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|)))) (-963) (-963)) (T -1070))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-1072 *6)) (-5 *1 (-1070 *5 *6)))))
-(-10 -7 (-15 -3310 ((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|))))
-((-4018 (((-388 (-1072 (-377 |#4|))) (-1072 (-377 |#4|))) 50)) (-3868 (((-388 (-1072 (-377 |#4|))) (-1072 (-377 |#4|))) 51)))
-(((-1071 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-388 (-1072 (-377 |#4|))) (-1072 (-377 |#4|)))) (-15 -4018 ((-388 (-1072 (-377 |#4|))) (-1072 (-377 |#4|))))) (-725) (-779) (-421) (-872 |#3| |#1| |#2|)) (T -1071))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1072 (-377 *7)))) (-5 *1 (-1071 *4 *5 *6 *7)) (-5 *3 (-1072 (-377 *7))))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1072 (-377 *7)))) (-5 *1 (-1071 *4 *5 *6 *7)) (-5 *3 (-1072 (-377 *7))))))
-(-10 -7 (-15 -3868 ((-388 (-1072 (-377 |#4|))) (-1072 (-377 |#4|)))) (-15 -4018 ((-388 (-1072 (-377 |#4|))) (-1072 (-377 |#4|)))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 30)) (-1896 (((-1157 |#1|) $ (-703)) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3751 (($ (-1072 |#1|)) NIL)) (-1440 (((-1072 $) $ (-991)) 59) (((-1072 |#1|) $) 48)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) 133 (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-991))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-4104 (($ $ $) 127 (|has| |#1| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) 72 (|has| |#1| (-832)))) (-1224 (($ $) NIL (|has| |#1| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 92 (|has| |#1| (-832)))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3404 (($ $ (-703)) 42)) (-3195 (($ $ (-703)) 43)) (-1340 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-991) "failed") $) NIL)) (-3390 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-991) $) NIL)) (-2157 (($ $ $ (-991)) NIL (|has| |#1| (-156))) ((|#1| $ $) 129 (|has| |#1| (-156)))) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) 57)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-3719 (($ $ $) 105)) (-3405 (($ $ $) NIL (|has| |#1| (-509)))) (-3590 (((-2 (|:| -1582 |#1|) (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2683 (($ $) 134 (|has| |#1| (-421))) (($ $ (-991)) NIL (|has| |#1| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-703) $) 46)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-991) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-991) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1988 (((-787) $ (-787)) 118)) (-1395 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1376 (((-107) $) 32)) (-3783 (((-703) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-1072 |#1|) (-991)) 50) (($ (-1072 $) (-991)) 66)) (-2401 (($ $ (-703)) 34)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) 64) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-991)) NIL) (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 122)) (-3492 (((-703) $) NIL) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2935 (($ (-1 (-703) (-703)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2688 (((-1072 |#1|) $) NIL)) (-2297 (((-3 (-991) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) 53)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1662 (((-1059) $) NIL)) (-2542 (((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703)) 41)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-991)) (|:| -2121 (-703))) "failed") $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2587 (($) NIL (|has| |#1| (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) 33)) (-2321 ((|#1| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 80 (|has| |#1| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 136 (|has| |#1| (-421)))) (-3320 (($ $ (-703) |#1| $) 100)) (-2276 (((-388 (-1072 $)) (-1072 $)) 78 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 77 (|has| |#1| (-832)))) (-3868 (((-388 $) $) 85 (|has| |#1| (-832)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-991) |#1|) NIL) (($ $ (-583 (-991)) (-583 |#1|)) NIL) (($ $ (-991) $) NIL) (($ $ (-583 (-991)) (-583 $)) NIL)) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1193 (((-3 $ "failed") $ (-703)) 37)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 139 (|has| |#1| (-333)))) (-1220 (($ $ (-991)) NIL (|has| |#1| (-156))) ((|#1| $) 125 (|has| |#1| (-156)))) (-2060 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3647 (((-703) $) 55) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-991) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-991) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-991) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) 131 (|has| |#1| (-421))) (($ $ (-991)) NIL (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-3827 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2271 (((-787) $) 119) (($ (-517)) NIL) (($ |#1|) 54) (($ (-991)) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 15) (($ $ (-703)) 16)) (-3610 (($) 17 T CONST)) (-3619 (($) 18 T CONST)) (-3342 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) 97)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1704 (($ $ |#1|) 140 (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 67)) (** (($ $ (-844)) 14) (($ $ (-703)) 12)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
-(((-1072 |#1|) (-13 (-1133 |#1|) (-10 -8 (-15 -1988 ((-787) $ (-787))) (-15 -3320 ($ $ (-703) |#1| $)))) (-963)) (T -1072))
-((-1988 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1072 *3)) (-4 *3 (-963)))) (-3320 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1072 *3)) (-4 *3 (-963)))))
-(-13 (-1133 |#1|) (-10 -8 (-15 -1988 ((-787) $ (-787))) (-15 -3320 ($ $ (-703) |#1| $))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 11)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-1067 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1074 |#1| |#2| |#3|) "failed") $) 35)) (-3390 (((-1067 |#1| |#2| |#3|) $) NIL) (((-1074 |#1| |#2| |#3|) $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2495 (((-377 (-517)) $) 55)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2165 (($ (-377 (-517)) (-1067 |#1| |#2| |#3|)) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-377 (-517))) 19) (($ $ (-991) (-377 (-517))) NIL) (($ $ (-583 (-991)) (-583 (-377 (-517)))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1561 (((-1067 |#1| |#2| |#3|) $) 40)) (-2245 (((-3 (-1067 |#1| |#2| |#3|) "failed") $) NIL)) (-2154 (((-1067 |#1| |#2| |#3|) $) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2356 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) NIL)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1153 |#2|)) 37)) (-3647 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1067 |#1| |#2| |#3|)) 29) (($ (-1074 |#1| |#2| |#3|)) 30) (($ (-1153 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 12)) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 21 T CONST)) (-3619 (($) 16 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 23)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1073 |#1| |#2| |#3|) (-13 (-1140 |#1| (-1067 |#1| |#2| |#3|)) (-954 (-1074 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -1073))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1140 |#1| (-1067 |#1| |#2| |#3|)) (-954 (-1074 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 125)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 116)) (-2172 (((-1130 |#2| |#1|) $ (-703)) 63)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-703)) 79) (($ $ (-703) (-703)) 76)) (-1928 (((-1057 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 102)) (-1648 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1624 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-1057 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 115) (($ (-1057 |#1|)) 110)) (-1670 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) 23)) (-1706 (($ $) 26)) (-2914 (((-875 |#1|) $ (-703)) 75) (((-875 |#1|) $ (-703) (-703)) 77)) (-1880 (((-107) $) 120)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-703) $) 122) (((-703) $ (-703)) 124)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) NIL)) (-3138 (($ (-1 |#1| (-517)) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) 13) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1226 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-2356 (($ $) 129 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-2671 (($ $ (-703)) 15)) (-2329 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-3870 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2609 ((|#1| $ (-703)) 119) (($ $ $) 128 (|has| (-703) (-1017)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1153 |#2|)) 29)) (-3647 (((-703) $) NIL)) (-1682 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) 201) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 126 (|has| |#1| (-156))) (($ (-1130 |#2| |#1|)) 51) (($ (-1153 |#2|)) 32)) (-1998 (((-1057 |#1|) $) 98)) (-1689 ((|#1| $ (-703)) 118)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 54)) (-1722 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 17 T CONST)) (-3619 (($) 19 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) 194)) (-1678 (($ $ $) 31)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 198 (|has| |#1| (-333))) (($ $ $) 134 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 137 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1074 |#1| |#2| |#3|) (-13 (-1148 |#1|) (-10 -8 (-15 -2271 ($ (-1130 |#2| |#1|))) (-15 -2172 ((-1130 |#2| |#1|) $ (-703))) (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -1074))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1130 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1076)) (-14 *5 *3) (-5 *1 (-1074 *3 *4 *5)))) (-2172 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1130 *5 *4)) (-5 *1 (-1074 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1076)) (-14 *6 *4))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1148 |#1|) (-10 -8 (-15 -2271 ($ (-1130 |#2| |#1|))) (-15 -2172 ((-1130 |#2| |#1|) $ (-703))) (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-2271 (((-787) $) 22) (($ (-1076)) 24)) (-3747 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3736 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-3298 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-3286 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-3274 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-3266 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3221 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
-(((-1075) (-13 (-557 (-787)) (-10 -8 (-15 -2271 ($ (-1076))) (-15 -3298 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3274 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3286 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3266 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3747 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3221 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3736 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3736 ($ $))))) (T -1075))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1075)))) (-3298 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3274 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3286 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3266 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3747 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3221 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075)))) (-5 *1 (-1075)))) (-3736 (*1 *1 *1) (-5 *1 (-1075))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2271 ($ (-1076))) (-15 -3298 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3274 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3286 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3266 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3747 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3221 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3736 ($ (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3736 ($ $))))
-((-2119 (((-107) $ $) NIL)) (-1765 (($ $ (-583 (-787))) 58)) (-2442 (($ $ (-583 (-787))) 56)) (-1515 (((-1059) $) 82)) (-3693 (((-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-4163 (((-107) $) 21)) (-2843 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-1393 (($) 123 T CONST)) (-3217 (((-1162)) 104)) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 65) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 71)) (-3213 (($) 93) (($ $) 99)) (-2989 (($ $) 81)) (-3458 (($ $ $) NIL)) (-4084 (($ $ $) NIL)) (-2324 (((-583 $) $) 105)) (-1662 (((-1059) $) 88)) (-4125 (((-1023) $) NIL)) (-2609 (($ $ (-583 (-787))) 57)) (-3359 (((-493) $) 45) (((-1076) $) 46) (((-815 (-517)) $) 75) (((-815 (-349)) $) 73)) (-2271 (((-787) $) 52) (($ (-1059)) 47)) (-3837 (($ $ (-583 (-787))) 59)) (-4032 (((-1059) $) 33) (((-1059) $ (-107)) 34) (((-1162) (-754) $) 35) (((-1162) (-754) $ (-107)) 36)) (-1642 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1584 (((-107) $ $) 48)) (-1630 (((-107) $ $) NIL)) (-1608 (((-107) $ $) 49)))
-(((-1076) (-13 (-779) (-558 (-493)) (-760) (-558 (-1076)) (-558 (-815 (-517))) (-558 (-815 (-349))) (-809 (-517)) (-809 (-349)) (-10 -8 (-15 -3213 ($)) (-15 -3213 ($ $)) (-15 -3217 ((-1162))) (-15 -2271 ($ (-1059))) (-15 -2989 ($ $)) (-15 -4163 ((-107) $)) (-15 -3693 ((-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2843 ($ $ (-583 (-583 (-787))))) (-15 -2843 ($ $ (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -2442 ($ $ (-583 (-787)))) (-15 -1765 ($ $ (-583 (-787)))) (-15 -3837 ($ $ (-583 (-787)))) (-15 -2609 ($ $ (-583 (-787)))) (-15 -1515 ((-1059) $)) (-15 -2324 ((-583 $) $)) (-15 -1393 ($) -1385)))) (T -1076))
-((-3213 (*1 *1) (-5 *1 (-1076))) (-3213 (*1 *1 *1) (-5 *1 (-1076))) (-3217 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1076)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1076)))) (-2989 (*1 *1 *1) (-5 *1 (-1076))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1076)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1076)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1076)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1076)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1076)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1076)))) (-1393 (*1 *1) (-5 *1 (-1076))))
-(-13 (-779) (-558 (-493)) (-760) (-558 (-1076)) (-558 (-815 (-517))) (-558 (-815 (-349))) (-809 (-517)) (-809 (-349)) (-10 -8 (-15 -3213 ($)) (-15 -3213 ($ $)) (-15 -3217 ((-1162))) (-15 -2271 ($ (-1059))) (-15 -2989 ($ $)) (-15 -4163 ((-107) $)) (-15 -3693 ((-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2843 ($ $ (-583 (-583 (-787))))) (-15 -2843 ($ $ (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -2442 ($ $ (-583 (-787)))) (-15 -1765 ($ $ (-583 (-787)))) (-15 -3837 ($ $ (-583 (-787)))) (-15 -2609 ($ $ (-583 (-787)))) (-15 -1515 ((-1059) $)) (-15 -2324 ((-583 $) $)) (-15 -1393 ($) -1385)))
-((-4153 (((-1157 |#1|) |#1| (-844)) 16) (((-1157 |#1|) (-583 |#1|)) 20)))
-(((-1077 |#1|) (-10 -7 (-15 -4153 ((-1157 |#1|) (-583 |#1|))) (-15 -4153 ((-1157 |#1|) |#1| (-844)))) (-963)) (T -1077))
-((-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-1157 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-963)) (-5 *2 (-1157 *4)) (-5 *1 (-1077 *4)))))
-(-10 -7 (-15 -4153 ((-1157 |#1|) (-583 |#1|))) (-15 -4153 ((-1157 |#1|) |#1| (-844))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| |#1| (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-954 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3390 (((-517) $) NIL (|has| |#1| (-954 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-954 (-377 (-517))))) ((|#1| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-421)))) (-3014 (($ $ |#1| (-890) $) NIL)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-890)) NIL)) (-3492 (((-890) $) NIL)) (-2935 (($ (-1 (-890) (-890)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#1| $) NIL)) (-3320 (($ $ (-890) |#1| $) NIL (-12 (|has| (-890) (-123)) (|has| |#1| (-509))))) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3647 (((-890) $) NIL)) (-3119 ((|#1| $) NIL (|has| |#1| (-421)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3747 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-954 (-377 (-517))))))) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ (-890)) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 9 T CONST)) (-3619 (($) 14 T CONST)) (-1584 (((-107) $ $) 16)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 19)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1078 |#1|) (-13 (-296 |#1| (-890)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-890) (-123)) (-15 -3320 ($ $ (-890) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4190)) (-6 -4190) |%noBranch|))) (-963)) (T -1078))
-((-3320 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-890)) (-4 *2 (-123)) (-5 *1 (-1078 *3)) (-4 *3 (-509)) (-4 *3 (-963)))))
-(-13 (-296 |#1| (-890)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-890) (-123)) (-15 -3320 ($ $ (-890) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4190)) (-6 -4190) |%noBranch|)))
-((-1748 (((-1080) (-1076) $) 24)) (-1785 (($) 28)) (-3068 (((-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-1076) $) 21)) (-2529 (((-1162) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void")) $) 40) (((-1162) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) 41) (((-1162) (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) 42)) (-2023 (((-1162) (-1076)) 57)) (-2685 (((-1162) (-1076) $) 54) (((-1162) (-1076)) 55) (((-1162)) 56)) (-2578 (((-1162) (-1076)) 36)) (-2866 (((-1076)) 35)) (-2452 (($) 33)) (-3874 (((-407) (-1076) (-407) (-1076) $) 44) (((-407) (-583 (-1076)) (-407) (-1076) $) 48) (((-407) (-1076) (-407)) 45) (((-407) (-1076) (-407) (-1076)) 49)) (-1282 (((-1076)) 34)) (-2271 (((-787) $) 27)) (-1918 (((-1162)) 29) (((-1162) (-1076)) 32)) (-1519 (((-583 (-1076)) (-1076) $) 23)) (-3281 (((-1162) (-1076) (-583 (-1076)) $) 37) (((-1162) (-1076) (-583 (-1076))) 38) (((-1162) (-583 (-1076))) 39)))
-(((-1079) (-13 (-557 (-787)) (-10 -8 (-15 -1785 ($)) (-15 -1918 ((-1162))) (-15 -1918 ((-1162) (-1076))) (-15 -3874 ((-407) (-1076) (-407) (-1076) $)) (-15 -3874 ((-407) (-583 (-1076)) (-407) (-1076) $)) (-15 -3874 ((-407) (-1076) (-407))) (-15 -3874 ((-407) (-1076) (-407) (-1076))) (-15 -2578 ((-1162) (-1076))) (-15 -1282 ((-1076))) (-15 -2866 ((-1076))) (-15 -3281 ((-1162) (-1076) (-583 (-1076)) $)) (-15 -3281 ((-1162) (-1076) (-583 (-1076)))) (-15 -3281 ((-1162) (-583 (-1076)))) (-15 -2529 ((-1162) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void")) $)) (-15 -2529 ((-1162) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void")))) (-15 -2529 ((-1162) (-3 (|:| |fst| (-404)) (|:| -2044 "void")))) (-15 -2685 ((-1162) (-1076) $)) (-15 -2685 ((-1162) (-1076))) (-15 -2685 ((-1162))) (-15 -2023 ((-1162) (-1076))) (-15 -2452 ($)) (-15 -3068 ((-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-1076) $)) (-15 -1519 ((-583 (-1076)) (-1076) $)) (-15 -1748 ((-1080) (-1076) $))))) (T -1079))
-((-1785 (*1 *1) (-5 *1 (-1079))) (-1918 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1079)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-3874 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1079)))) (-3874 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1076))) (-5 *4 (-1076)) (-5 *1 (-1079)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1079)))) (-3874 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1079)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-1282 (*1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1079)))) (-2866 (*1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1079)))) (-3281 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2529 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1076)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2685 (*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2685 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))) (-2452 (*1 *1) (-5 *1 (-1079))) (-3068 (*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *1 (-1079)))) (-1519 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1079)) (-5 *3 (-1076)))) (-1748 (*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-1080)) (-5 *1 (-1079)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -1785 ($)) (-15 -1918 ((-1162))) (-15 -1918 ((-1162) (-1076))) (-15 -3874 ((-407) (-1076) (-407) (-1076) $)) (-15 -3874 ((-407) (-583 (-1076)) (-407) (-1076) $)) (-15 -3874 ((-407) (-1076) (-407))) (-15 -3874 ((-407) (-1076) (-407) (-1076))) (-15 -2578 ((-1162) (-1076))) (-15 -1282 ((-1076))) (-15 -2866 ((-1076))) (-15 -3281 ((-1162) (-1076) (-583 (-1076)) $)) (-15 -3281 ((-1162) (-1076) (-583 (-1076)))) (-15 -3281 ((-1162) (-583 (-1076)))) (-15 -2529 ((-1162) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void")) $)) (-15 -2529 ((-1162) (-1076) (-3 (|:| |fst| (-404)) (|:| -2044 "void")))) (-15 -2529 ((-1162) (-3 (|:| |fst| (-404)) (|:| -2044 "void")))) (-15 -2685 ((-1162) (-1076) $)) (-15 -2685 ((-1162) (-1076))) (-15 -2685 ((-1162))) (-15 -2023 ((-1162) (-1076))) (-15 -2452 ($)) (-15 -3068 ((-3 (|:| |fst| (-404)) (|:| -2044 "void")) (-1076) $)) (-15 -1519 ((-583 (-1076)) (-1076) $)) (-15 -1748 ((-1080) (-1076) $))))
-((-3294 (((-583 (-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517))))))))) $) 57)) (-2631 (((-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517)))))))) (-404) $) 40)) (-1845 (($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-407))))) 15)) (-2023 (((-1162) $) 65)) (-2970 (((-583 (-1076)) $) 20)) (-2676 (((-1009) $) 53)) (-1542 (((-407) (-1076) $) 27)) (-2677 (((-583 (-1076)) $) 30)) (-2452 (($) 17)) (-3874 (((-407) (-583 (-1076)) (-407) $) 25) (((-407) (-1076) (-407) $) 24)) (-2271 (((-787) $) 9) (((-1085 (-1076) (-407)) $) 11)))
-(((-1080) (-13 (-557 (-787)) (-10 -8 (-15 -2271 ((-1085 (-1076) (-407)) $)) (-15 -2452 ($)) (-15 -3874 ((-407) (-583 (-1076)) (-407) $)) (-15 -3874 ((-407) (-1076) (-407) $)) (-15 -1542 ((-407) (-1076) $)) (-15 -2970 ((-583 (-1076)) $)) (-15 -2631 ((-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517)))))))) (-404) $)) (-15 -2677 ((-583 (-1076)) $)) (-15 -3294 ((-583 (-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517))))))))) $)) (-15 -2676 ((-1009) $)) (-15 -2023 ((-1162) $)) (-15 -1845 ($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-407))))))))) (T -1080))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-1085 (-1076) (-407))) (-5 *1 (-1080)))) (-2452 (*1 *1) (-5 *1 (-1080))) (-3874 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1076))) (-5 *1 (-1080)))) (-3874 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1080)))) (-1542 (*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-407)) (-5 *1 (-1080)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1080)))) (-2631 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517))))))))) (-5 *1 (-1080)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1080)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517)))))))))) (-5 *1 (-1080)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1080)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1080)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-407))))) (-5 *1 (-1080)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2271 ((-1085 (-1076) (-407)) $)) (-15 -2452 ($)) (-15 -3874 ((-407) (-583 (-1076)) (-407) $)) (-15 -3874 ((-407) (-1076) (-407) $)) (-15 -1542 ((-407) (-1076) $)) (-15 -2970 ((-583 (-1076)) $)) (-15 -2631 ((-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517)))))))) (-404) $)) (-15 -2677 ((-583 (-1076)) $)) (-15 -3294 ((-583 (-583 (-3 (|:| -2989 (-1076)) (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517))))))))) $)) (-15 -2676 ((-1009) $)) (-15 -2023 ((-1162) $)) (-15 -1845 ($ (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-407))))))))
-((-1242 (((-107) $) 43)) (-1820 (((-3 (-517) (-199) (-1076) (-1059) $) $) 51)) (-3049 (((-583 $) $) 54)) (-3359 (((-1009) $) 19) (($ (-1009)) 20)) (-2271 (((-787) $) NIL) (($ (-517)) 22) (((-517) $) 24) (($ (-199)) 26) (((-199) $) 28) (($ (-1076)) 30) (((-1076) $) 32) (($ (-1059)) 34) (((-1059) $) 36)) (-2275 (((-107) $ (|[\|\|]| (-517))) 9) (((-107) $ (|[\|\|]| (-199))) 12) (((-107) $ (|[\|\|]| (-1076))) 18) (((-107) $ (|[\|\|]| (-1059))) 15)) (-1619 (($ (-1076) (-583 $)) 40) (($ $ (-583 $)) 41)) (-2491 (((-517) $) 23) (((-199) $) 27) (((-1076) $) 31) (((-1059) $) 35)))
-(((-1081) (-13 (-1152) (-557 (-787)) (-10 -8 (-15 -3359 ((-1009) $)) (-15 -3359 ($ (-1009))) (-15 -2271 ($ (-517))) (-15 -2271 ((-517) $)) (-15 -2491 ((-517) $)) (-15 -2271 ($ (-199))) (-15 -2271 ((-199) $)) (-15 -2491 ((-199) $)) (-15 -2271 ($ (-1076))) (-15 -2271 ((-1076) $)) (-15 -2491 ((-1076) $)) (-15 -2271 ($ (-1059))) (-15 -2271 ((-1059) $)) (-15 -2491 ((-1059) $)) (-15 -1619 ($ (-1076) (-583 $))) (-15 -1619 ($ $ (-583 $))) (-15 -1242 ((-107) $)) (-15 -1820 ((-3 (-517) (-199) (-1076) (-1059) $) $)) (-15 -3049 ((-583 $) $)) (-15 -2275 ((-107) $ (|[\|\|]| (-517)))) (-15 -2275 ((-107) $ (|[\|\|]| (-199)))) (-15 -2275 ((-107) $ (|[\|\|]| (-1076)))) (-15 -2275 ((-107) $ (|[\|\|]| (-1059))))))) (T -1081))
-((-3359 (*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1081)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-1081)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1081)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1081)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1081)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1081)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1081)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1081)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1081)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1081)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1081)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1081)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1081)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1081)))) (-1619 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-1081))) (-5 *1 (-1081)))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1081))) (-5 *1 (-1081)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1081)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1076) (-1059) (-1081))) (-5 *1 (-1081)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-583 (-1081))) (-5 *1 (-1081)))) (-2275 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1081)))) (-2275 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1081)))) (-2275 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1076))) (-5 *2 (-107)) (-5 *1 (-1081)))) (-2275 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-107)) (-5 *1 (-1081)))))
-(-13 (-1152) (-557 (-787)) (-10 -8 (-15 -3359 ((-1009) $)) (-15 -3359 ($ (-1009))) (-15 -2271 ($ (-517))) (-15 -2271 ((-517) $)) (-15 -2491 ((-517) $)) (-15 -2271 ($ (-199))) (-15 -2271 ((-199) $)) (-15 -2491 ((-199) $)) (-15 -2271 ($ (-1076))) (-15 -2271 ((-1076) $)) (-15 -2491 ((-1076) $)) (-15 -2271 ($ (-1059))) (-15 -2271 ((-1059) $)) (-15 -2491 ((-1059) $)) (-15 -1619 ($ (-1076) (-583 $))) (-15 -1619 ($ $ (-583 $))) (-15 -1242 ((-107) $)) (-15 -1820 ((-3 (-517) (-199) (-1076) (-1059) $) $)) (-15 -3049 ((-583 $) $)) (-15 -2275 ((-107) $ (|[\|\|]| (-517)))) (-15 -2275 ((-107) $ (|[\|\|]| (-199)))) (-15 -2275 ((-107) $ (|[\|\|]| (-1076)))) (-15 -2275 ((-107) $ (|[\|\|]| (-1059))))))
-((-1465 (((-583 (-583 (-875 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1076))) 55)) (-1516 (((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|)))) 67) (((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|))) 63) (((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))) (-1076)) 68) (((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1076)) 62) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|))))) 92) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|)))) 91) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1076))) 93) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))) (-583 (-1076))) 90)))
-(((-1082 |#1|) (-10 -7 (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1076)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1076))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))) (-1076))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))))) (-15 -1465 ((-583 (-583 (-875 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1076))))) (-509)) (T -1082))
-((-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-875 *5)))) (-5 *1 (-1082 *5)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4))))) (-5 *1 (-1082 *4)) (-5 *3 (-265 (-377 (-875 *4)))))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4))))) (-5 *1 (-1082 *4)) (-5 *3 (-377 (-875 *4))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1082 *5)) (-5 *3 (-265 (-377 (-875 *5)))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-1076)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1082 *5)) (-5 *3 (-377 (-875 *5))))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-1082 *4)) (-5 *3 (-583 (-265 (-377 (-875 *4))))))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-875 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-1082 *4)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1076))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-1082 *5)) (-5 *3 (-583 (-265 (-377 (-875 *5))))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-1082 *5)))))
-(-10 -7 (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1076)))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))))) (-15 -1516 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1076))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))) (-1076))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)))) (-15 -1516 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))))) (-15 -1465 ((-583 (-583 (-875 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1076)))))
-((-1927 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-2649 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-2825 (((-1084 (-583 |#1|)) (-583 |#1|)) 34)) (-2531 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-1348 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-3937 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-2595 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-3856 (((-583 |#1|) (-583 |#1|)) 31)) (-1797 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-2990 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-4152 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-3043 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-3709 (((-583 (-583 |#1|)) (-1084 (-583 |#1|))) 41)))
-(((-1083 |#1|) (-10 -7 (-15 -4152 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2990 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1797 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1927 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3043 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3709 ((-583 (-583 |#1|)) (-1084 (-583 |#1|)))) (-15 -2649 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2825 ((-1084 (-583 |#1|)) (-583 |#1|))) (-15 -2595 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -2531 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3856 ((-583 |#1|) (-583 |#1|))) (-15 -3937 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1348 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1083))
-((-1348 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1083 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3937 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1083 *6)) (-5 *4 (-583 *5)))) (-3856 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1083 *3)))) (-2531 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1083 *4)) (-5 *3 (-583 *4)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1083 *3)))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1084 (-583 *4))) (-5 *1 (-1083 *4)) (-5 *3 (-583 *4)))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1083 *4)) (-5 *3 (-583 (-583 *4))))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1084 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1083 *4)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1083 *4)) (-4 *4 (-779)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1083 *4)))) (-1797 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1083 *4)))) (-2990 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1083 *5)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1083 *6)) (-5 *5 (-583 *4)))))
-(-10 -7 (-15 -4152 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2990 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1797 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1927 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3043 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3709 ((-583 (-583 |#1|)) (-1084 (-583 |#1|)))) (-15 -2649 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2825 ((-1084 (-583 |#1|)) (-583 |#1|))) (-15 -2595 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -2531 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3856 ((-583 |#1|) (-583 |#1|))) (-15 -3937 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1348 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
-((-3193 (($ (-583 (-583 |#1|))) 9)) (-3704 (((-583 (-583 |#1|)) $) 10)) (-2271 (((-787) $) 25)))
-(((-1084 |#1|) (-10 -8 (-15 -3193 ($ (-583 (-583 |#1|)))) (-15 -3704 ((-583 (-583 |#1|)) $)) (-15 -2271 ((-787) $))) (-1005)) (T -1084))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1084 *3)) (-4 *3 (-1005)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1084 *3)) (-4 *3 (-1005)))) (-3193 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-1084 *3)))))
-(-10 -8 (-15 -3193 ($ (-583 (-583 |#1|)))) (-15 -3704 ((-583 (-583 |#1|)) $)) (-15 -2271 ((-787) $)))
-((-2119 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3203 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2034 (((-1162) $ |#1| |#1|) NIL (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#2| $ |#1| |#2|) NIL)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) NIL)) (-1393 (($) NIL T CONST)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) NIL)) (-3271 ((|#1| $) NIL (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-583 |#2|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-1989 ((|#1| $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-1882 (((-583 |#1|) $) NIL)) (-3577 (((-107) |#1| $) NIL)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-2817 (((-583 |#1|) $) NIL)) (-3130 (((-107) |#1| $) NIL)) (-4125 (((-1023) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-2429 ((|#2| $) NIL (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL)) (-2846 (($ $ |#2|) NIL (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2176 (($) NIL) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) NIL (-12 (|has| $ (-6 -4192)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-2271 (((-787) $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) NIL)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) NIL (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) NIL (-3747 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| |#2| (-1005))))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1085 |#1| |#2|) (-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192))) (-1005) (-1005)) (T -1085))
-NIL
-(-13 (-1088 |#1| |#2|) (-10 -7 (-6 -4192)))
-((-2611 ((|#1| (-583 |#1|)) 32)) (-1437 ((|#1| |#1| (-517)) 18)) (-1738 (((-1072 |#1|) |#1| (-844)) 15)))
-(((-1086 |#1|) (-10 -7 (-15 -2611 (|#1| (-583 |#1|))) (-15 -1738 ((-1072 |#1|) |#1| (-844))) (-15 -1437 (|#1| |#1| (-517)))) (-333)) (T -1086))
-((-1437 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1086 *2)) (-4 *2 (-333)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-1072 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-333)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1086 *2)) (-4 *2 (-333)))))
-(-10 -7 (-15 -2611 (|#1| (-583 |#1|))) (-15 -1738 ((-1072 |#1|) |#1| (-844))) (-15 -1437 (|#1| |#1| (-517))))
-((-3203 (($) 10) (($ (-583 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)))) 14)) (-2457 (($ (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1534 (((-583 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-2746 (($ (-1 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3310 (($ (-1 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1803 (((-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) $) 53)) (-3241 (($ (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) $) 16)) (-2817 (((-583 |#2|) $) 19)) (-3130 (((-107) |#2| $) 58)) (-1528 (((-3 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) "failed") (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) 57)) (-4113 (((-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) $) 62)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 66)) (-2891 (((-583 |#3|) $) 43)) (-2609 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) NIL) (((-703) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 67)) (-2271 (((-787) $) 27)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1584 (((-107) $ $) 48)))
-(((-1087 |#1| |#2| |#3|) (-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3310 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3203 (|#1| (-583 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))))) (-15 -3203 (|#1|)) (-15 -3310 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2746 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4137 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1534 ((-583 |#3|) |#1|)) (-15 -4137 ((-703) |#3| |#1|)) (-15 -2609 (|#3| |#1| |#2| |#3|)) (-15 -2609 (|#3| |#1| |#2|)) (-15 -2891 ((-583 |#3|) |#1|)) (-15 -3130 ((-107) |#2| |#1|)) (-15 -2817 ((-583 |#2|) |#1|)) (-15 -2457 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2457 (|#1| (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -2457 (|#1| (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -1528 ((-3 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) "failed") (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -1803 ((-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -3241 (|#1| (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -4113 ((-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -4137 ((-703) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -1534 ((-583 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -4137 ((-703) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -3644 ((-107) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -3602 ((-107) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -2746 (|#1| (-1 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -3310 (|#1| (-1 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|))) (-1088 |#2| |#3|) (-1005) (-1005)) (T -1087))
-NIL
-(-10 -8 (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3310 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3203 (|#1| (-583 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))))) (-15 -3203 (|#1|)) (-15 -3310 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2746 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3602 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3644 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4137 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1534 ((-583 |#3|) |#1|)) (-15 -4137 ((-703) |#3| |#1|)) (-15 -2609 (|#3| |#1| |#2| |#3|)) (-15 -2609 (|#3| |#1| |#2|)) (-15 -2891 ((-583 |#3|) |#1|)) (-15 -3130 ((-107) |#2| |#1|)) (-15 -2817 ((-583 |#2|) |#1|)) (-15 -2457 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2457 (|#1| (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -2457 (|#1| (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -1528 ((-3 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) "failed") (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -1803 ((-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -3241 (|#1| (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -4113 ((-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -4137 ((-703) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) |#1|)) (-15 -1534 ((-583 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -4137 ((-703) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -3644 ((-107) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -3602 ((-107) (-1 (-107) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -2746 (|#1| (-1 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)) (-15 -3310 (|#1| (-1 (-2 (|:| -2585 |#2|) (|:| -1859 |#3|)) (-2 (|:| -2585 |#2|) (|:| -1859 |#3|))) |#1|)))
-((-2119 (((-107) $ $) 19 (-3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-3203 (($) 72) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 71)) (-2034 (((-1162) $ |#1| |#1|) 99 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#2| $ |#1| |#2|) 73)) (-3690 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 45 (|has| $ (-6 -4192)))) (-2325 (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 55 (|has| $ (-6 -4192)))) (-3564 (((-3 |#2| "failed") |#1| $) 61)) (-1393 (($) 7 T CONST)) (-2455 (($ $) 58 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192))))) (-2457 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 47 (|has| $ (-6 -4192))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 46 (|has| $ (-6 -4192))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 54 (|has| $ (-6 -4192)))) (-1522 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 56 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 53 (|has| $ (-6 -4192))) (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 52 (|has| $ (-6 -4192)))) (-2759 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4193)))) (-2566 ((|#2| $ |#1|) 88)) (-1534 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 30 (|has| $ (-6 -4192))) (((-583 |#2|) $) 79 (|has| $ (-6 -4192)))) (-2497 (((-107) $ (-703)) 9)) (-3271 ((|#1| $) 96 (|has| |#1| (-779)))) (-1903 (((-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 29 (|has| $ (-6 -4192))) (((-583 |#2|) $) 80 (|has| $ (-6 -4192)))) (-3925 (((-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192))))) (-1989 ((|#1| $) 95 (|has| |#1| (-779)))) (-2746 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 34 (|has| $ (-6 -4193))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4193)))) (-3310 (($ (-1 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1320 (((-107) $ (-703)) 10)) (-1662 (((-1059) $) 22 (-3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-1882 (((-583 |#1|) $) 63)) (-3577 (((-107) |#1| $) 64)) (-1803 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 39)) (-3241 (($ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 40)) (-2817 (((-583 |#1|) $) 93)) (-3130 (((-107) |#1| $) 92)) (-4125 (((-1023) $) 21 (-3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-2429 ((|#2| $) 97 (|has| |#1| (-779)))) (-1528 (((-3 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) "failed") (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 51)) (-2846 (($ $ |#2|) 98 (|has| $ (-6 -4193)))) (-4113 (((-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 41)) (-3644 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 32 (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))))) 26 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-265 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 25 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) 24 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 23 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4192)) (|has| |#2| (-1005))))) (-2891 (((-583 |#2|) $) 91)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2176 (($) 49) (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 48)) (-4137 (((-703) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 31 (|has| $ (-6 -4192))) (((-703) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| $ (-6 -4192)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4192)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 59 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))))) (-2288 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 50)) (-2271 (((-787) $) 18 (-3747 (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787)))))) (-3181 (($ (-583 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) 42)) (-3602 (((-107) (-1 (-107) (-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) $) 33 (|has| $ (-6 -4192))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (-3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1088 |#1| |#2|) (-1188) (-1005) (-1005)) (T -1088))
-((-2445 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-3203 (*1 *1) (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3203 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2585 *3) (|:| -1859 *4)))) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *1 (-1088 *3 *4)))) (-3310 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1088 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))))
-(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2445 (|t#2| $ |t#1| |t#2|)) (-15 -3203 ($)) (-15 -3203 ($ (-583 (-2 (|:| -2585 |t#1|) (|:| -1859 |t#2|))))) (-15 -3310 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2585 |#1|) (|:| -1859 |#2|))) . T) ((-97) -3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-557 (-787)) -3747 (|has| |#2| (-1005)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-456 #0#) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-280 (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)))) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1005))) ((-554 |#1| |#2|) . T) ((-1005) -3747 (|has| |#2| (-1005)) (|has| (-2 (|:| -2585 |#1|) (|:| -1859 |#2|)) (-1005))) ((-1111) . T))
-((-1306 (((-107)) 24)) (-3795 (((-1162) (-1059)) 26)) (-2062 (((-107)) 36)) (-3984 (((-1162)) 34)) (-1985 (((-1162) (-1059) (-1059)) 25)) (-2850 (((-107)) 37)) (-3241 (((-1162) |#1| |#2|) 44)) (-3054 (((-1162)) 20)) (-2513 (((-3 |#2| "failed") |#1|) 42)) (-2781 (((-1162)) 35)))
-(((-1089 |#1| |#2|) (-10 -7 (-15 -3054 ((-1162))) (-15 -1985 ((-1162) (-1059) (-1059))) (-15 -3795 ((-1162) (-1059))) (-15 -3984 ((-1162))) (-15 -2781 ((-1162))) (-15 -1306 ((-107))) (-15 -2062 ((-107))) (-15 -2850 ((-107))) (-15 -2513 ((-3 |#2| "failed") |#1|)) (-15 -3241 ((-1162) |#1| |#2|))) (-1005) (-1005)) (T -1089))
-((-3241 (*1 *2 *3 *4) (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-2513 (*1 *2 *3) (|partial| -12 (-4 *2 (-1005)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1005)))) (-2850 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-2062 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-1306 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-2781 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3984 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1089 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)))) (-1985 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1089 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)))) (-3054 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))))
-(-10 -7 (-15 -3054 ((-1162))) (-15 -1985 ((-1162) (-1059) (-1059))) (-15 -3795 ((-1162) (-1059))) (-15 -3984 ((-1162))) (-15 -2781 ((-1162))) (-15 -1306 ((-107))) (-15 -2062 ((-107))) (-15 -2850 ((-107))) (-15 -2513 ((-3 |#2| "failed") |#1|)) (-15 -3241 ((-1162) |#1| |#2|)))
-((-1343 (((-1059) (-1059)) 18)) (-1955 (((-51) (-1059)) 21)))
-(((-1090) (-10 -7 (-15 -1955 ((-51) (-1059))) (-15 -1343 ((-1059) (-1059))))) (T -1090))
-((-1343 (*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1090)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-51)) (-5 *1 (-1090)))))
-(-10 -7 (-15 -1955 ((-51) (-1059))) (-15 -1343 ((-1059) (-1059))))
-((-2271 (((-1092) |#1|) 11)))
-(((-1091 |#1|) (-10 -7 (-15 -2271 ((-1092) |#1|))) (-1005)) (T -1091))
-((-2271 (*1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *1 (-1091 *3)) (-4 *3 (-1005)))))
-(-10 -7 (-15 -2271 ((-1092) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-2878 (((-583 (-1059)) $) 33)) (-2438 (((-583 (-1059)) $ (-583 (-1059))) 36)) (-4061 (((-583 (-1059)) $ (-583 (-1059))) 35)) (-1963 (((-583 (-1059)) $ (-583 (-1059))) 37)) (-1477 (((-583 (-1059)) $) 32)) (-3213 (($) 22)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3452 (((-583 (-1059)) $) 34)) (-1757 (((-1162) $ (-517)) 29) (((-1162) $) 30)) (-3359 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2271 (((-787) $) 39) (($ (-787)) 24)) (-1584 (((-107) $ $) NIL)))
-(((-1092) (-13 (-1005) (-10 -8 (-15 -2271 ($ (-787))) (-15 -3359 ($ (-787) (-517))) (-15 -3359 ($ (-787) (-517) (-787))) (-15 -1757 ((-1162) $ (-517))) (-15 -1757 ((-1162) $)) (-15 -3452 ((-583 (-1059)) $)) (-15 -2878 ((-583 (-1059)) $)) (-15 -3213 ($)) (-15 -1477 ((-583 (-1059)) $)) (-15 -1963 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -2438 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -4061 ((-583 (-1059)) $ (-583 (-1059))))))) (T -1092))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1092)))) (-3359 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1092)))) (-3359 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1092)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-1092)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1092)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))) (-3213 (*1 *1) (-5 *1 (-1092))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))) (-1963 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))) (-2438 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))) (-4061 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
-(-13 (-1005) (-10 -8 (-15 -2271 ($ (-787))) (-15 -3359 ($ (-787) (-517))) (-15 -3359 ($ (-787) (-517) (-787))) (-15 -1757 ((-1162) $ (-517))) (-15 -1757 ((-1162) $)) (-15 -3452 ((-583 (-1059)) $)) (-15 -2878 ((-583 (-1059)) $)) (-15 -3213 ($)) (-15 -1477 ((-583 (-1059)) $)) (-15 -1963 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -2438 ((-583 (-1059)) $ (-583 (-1059)))) (-15 -4061 ((-583 (-1059)) $ (-583 (-1059))))))
-((-2119 (((-107) $ $) NIL)) (-2684 (((-1059) $ (-1059)) 15) (((-1059) $) 14)) (-2225 (((-1059) $ (-1059)) 13)) (-3506 (($ $ (-1059)) NIL)) (-2635 (((-3 (-1059) "failed") $) 11)) (-2339 (((-1059) $) 8)) (-1540 (((-3 (-1059) "failed") $) 12)) (-2045 (((-1059) $) 9)) (-3676 (($ (-358)) NIL) (($ (-358) (-1059)) NIL)) (-2989 (((-358) $) NIL)) (-1662 (((-1059) $) NIL)) (-2964 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3914 (((-107) $) 17)) (-2271 (((-787) $) NIL)) (-2307 (($ $) NIL)) (-1584 (((-107) $ $) NIL)))
-(((-1093) (-13 (-334 (-358) (-1059)) (-10 -8 (-15 -2684 ((-1059) $ (-1059))) (-15 -2684 ((-1059) $)) (-15 -2339 ((-1059) $)) (-15 -2635 ((-3 (-1059) "failed") $)) (-15 -1540 ((-3 (-1059) "failed") $)) (-15 -3914 ((-107) $))))) (T -1093))
-((-2684 (*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1093)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1093)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1093)))) (-2635 (*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1093)))) (-1540 (*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1093)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1093)))))
-(-13 (-334 (-358) (-1059)) (-10 -8 (-15 -2684 ((-1059) $ (-1059))) (-15 -2684 ((-1059) $)) (-15 -2339 ((-1059) $)) (-15 -2635 ((-3 (-1059) "failed") $)) (-15 -1540 ((-3 (-1059) "failed") $)) (-15 -3914 ((-107) $))))
-((-2360 (((-3 (-517) "failed") |#1|) 19)) (-2779 (((-3 (-517) "failed") |#1|) 13)) (-2673 (((-517) (-1059)) 28)))
-(((-1094 |#1|) (-10 -7 (-15 -2360 ((-3 (-517) "failed") |#1|)) (-15 -2779 ((-3 (-517) "failed") |#1|)) (-15 -2673 ((-517) (-1059)))) (-963)) (T -1094))
-((-2673 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-517)) (-5 *1 (-1094 *4)) (-4 *4 (-963)))) (-2779 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1094 *3)) (-4 *3 (-963)))) (-2360 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1094 *3)) (-4 *3 (-963)))))
-(-10 -7 (-15 -2360 ((-3 (-517) "failed") |#1|)) (-15 -2779 ((-3 (-517) "failed") |#1|)) (-15 -2673 ((-517) (-1059))))
-((-2910 (((-1036 (-199))) 8)))
-(((-1095) (-10 -7 (-15 -2910 ((-1036 (-199)))))) (T -1095))
-((-2910 (*1 *2) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-1095)))))
-(-10 -7 (-15 -2910 ((-1036 (-199)))))
-((-2116 (($) 11)) (-1722 (($ $) 35)) (-1697 (($ $) 33)) (-1548 (($ $) 25)) (-3489 (($ $) 17)) (-2824 (($ $) 15)) (-1735 (($ $) 19)) (-1589 (($ $) 30)) (-1709 (($ $) 34)) (-1562 (($ $) 29)))
-(((-1096 |#1|) (-10 -8 (-15 -2116 (|#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1589 (|#1| |#1|)) (-15 -1562 (|#1| |#1|))) (-1097)) (T -1096))
-NIL
-(-10 -8 (-15 -2116 (|#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1589 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)))
-((-1648 (($ $) 26)) (-1494 (($ $) 11)) (-1624 (($ $) 27)) (-1471 (($ $) 10)) (-1670 (($ $) 28)) (-1520 (($ $) 9)) (-2116 (($) 16)) (-1226 (($ $) 19)) (-3870 (($ $) 18)) (-1682 (($ $) 29)) (-1533 (($ $) 8)) (-1660 (($ $) 30)) (-1507 (($ $) 7)) (-1635 (($ $) 31)) (-1483 (($ $) 6)) (-1722 (($ $) 20)) (-1576 (($ $) 32)) (-1697 (($ $) 21)) (-1548 (($ $) 33)) (-3489 (($ $) 22)) (-1600 (($ $) 34)) (-2824 (($ $) 23)) (-1613 (($ $) 35)) (-1735 (($ $) 24)) (-1589 (($ $) 36)) (-1709 (($ $) 25)) (-1562 (($ $) 37)) (** (($ $ $) 17)))
-(((-1097) (-1188)) (T -1097))
-((-2116 (*1 *1) (-4 *1 (-1097))))
-(-13 (-1100) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2116 ($))))
-(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1100) . T))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3121 ((|#1| $) 17)) (-1237 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-1851 (((-107) $ (-703)) 47)) (-1189 ((|#1| $ |#1|) 14 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 13 (|has| $ (-6 -4193)))) (-1393 (($) NIL T CONST)) (-1534 (((-583 |#1|) $) 51 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 42)) (-2441 (((-107) $ $) 33 (|has| |#1| (-1005)))) (-2497 (((-107) $ (-703)) 40)) (-1903 (((-583 |#1|) $) 52 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 50 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2746 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 22)) (-1320 (((-107) $ (-703)) 39)) (-1939 (((-583 |#1|) $) 37)) (-3017 (((-107) $) 36)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3644 (((-107) (-1 (-107) |#1|) $) 49 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 74)) (-2394 (((-107) $) 9)) (-2452 (($) 10)) (-2609 ((|#1| $ "value") NIL)) (-1844 (((-517) $ $) 32)) (-2506 (((-583 $) $) 58)) (-3873 (((-107) $ $) 76)) (-1229 (((-583 $) $) 71)) (-1246 (($ $) 72)) (-3028 (((-107) $) 55)) (-4137 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4192))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2462 (($ $) 57)) (-2271 (((-787) $) 60 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 12)) (-2836 (((-107) $ $) 29 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 28 (|has| |#1| (-1005)))) (-3535 (((-703) $) 38 (|has| $ (-6 -4192)))))
-(((-1098 |#1|) (-13 (-928 |#1|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -1237 ($ |#1| (-583 $))) (-15 -1237 ($ (-583 |#1|))) (-15 -1237 ($ |#1|)) (-15 -3028 ((-107) $)) (-15 -1246 ($ $)) (-15 -1229 ((-583 $) $)) (-15 -3873 ((-107) $ $)) (-15 -2506 ((-583 $) $)))) (-1005)) (T -1098))
-((-3028 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))) (-1237 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1098 *2))) (-5 *1 (-1098 *2)) (-4 *2 (-1005)))) (-1237 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-1098 *3)))) (-1237 (*1 *1 *2) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1005)))) (-1246 (*1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1005)))) (-1229 (*1 *2 *1) (-12 (-5 *2 (-583 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))) (-3873 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-583 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))))
-(-13 (-928 |#1|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -1237 ($ |#1| (-583 $))) (-15 -1237 ($ (-583 |#1|))) (-15 -1237 ($ |#1|)) (-15 -3028 ((-107) $)) (-15 -1246 ($ $)) (-15 -1229 ((-583 $) $)) (-15 -3873 ((-107) $ $)) (-15 -2506 ((-583 $) $))))
-((-1494 (($ $) 15)) (-1520 (($ $) 12)) (-1533 (($ $) 10)) (-1507 (($ $) 17)))
-(((-1099 |#1|) (-10 -8 (-15 -1507 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -1494 (|#1| |#1|))) (-1100)) (T -1099))
-NIL
-(-10 -8 (-15 -1507 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -1494 (|#1| |#1|)))
-((-1494 (($ $) 11)) (-1471 (($ $) 10)) (-1520 (($ $) 9)) (-1533 (($ $) 8)) (-1507 (($ $) 7)) (-1483 (($ $) 6)))
-(((-1100) (-1188)) (T -1100))
-((-1494 (*1 *1 *1) (-4 *1 (-1100))) (-1471 (*1 *1 *1) (-4 *1 (-1100))) (-1520 (*1 *1 *1) (-4 *1 (-1100))) (-1533 (*1 *1 *1) (-4 *1 (-1100))) (-1507 (*1 *1 *1) (-4 *1 (-1100))) (-1483 (*1 *1 *1) (-4 *1 (-1100))))
-(-13 (-10 -8 (-15 -1483 ($ $)) (-15 -1507 ($ $)) (-15 -1533 ($ $)) (-15 -1520 ($ $)) (-15 -1471 ($ $)) (-15 -1494 ($ $))))
-((-1930 ((|#2| |#2|) 85)) (-4073 (((-107) |#2|) 25)) (-3894 ((|#2| |#2|) 29)) (-3906 ((|#2| |#2|) 31)) (-1248 ((|#2| |#2| (-1076)) 79) ((|#2| |#2|) 80)) (-3363 (((-153 |#2|) |#2|) 27)) (-3539 ((|#2| |#2| (-1076)) 81) ((|#2| |#2|) 82)))
-(((-1101 |#1| |#2|) (-10 -7 (-15 -1248 (|#2| |#2|)) (-15 -1248 (|#2| |#2| (-1076))) (-15 -3539 (|#2| |#2|)) (-15 -3539 (|#2| |#2| (-1076))) (-15 -1930 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -4073 ((-107) |#2|)) (-15 -3363 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-954 (-517)) (-579 (-517))) (-13 (-27) (-1097) (-400 |#1|))) (T -1101))
-((-3363 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1101 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1101 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *4))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))) (-1930 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))) (-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))) (-3539 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))) (-1248 (*1 *2 *2 *3) (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))) (-1248 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517)))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))))
-(-10 -7 (-15 -1248 (|#2| |#2|)) (-15 -1248 (|#2| |#2| (-1076))) (-15 -3539 (|#2| |#2|)) (-15 -3539 (|#2| |#2| (-1076))) (-15 -1930 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -4073 ((-107) |#2|)) (-15 -3363 ((-153 |#2|) |#2|)))
-((-3595 ((|#4| |#4| |#1|) 27)) (-2873 ((|#4| |#4| |#1|) 28)))
-(((-1102 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3595 (|#4| |#4| |#1|)) (-15 -2873 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1102))
-((-2873 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3595 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -3595 (|#4| |#4| |#1|)) (-15 -2873 (|#4| |#4| |#1|)))
-((-3875 ((|#2| |#2|) 132)) (-2175 ((|#2| |#2|) 129)) (-2923 ((|#2| |#2|) 120)) (-2206 ((|#2| |#2|) 117)) (-3446 ((|#2| |#2|) 125)) (-3994 ((|#2| |#2|) 113)) (-2898 ((|#2| |#2|) 42)) (-3324 ((|#2| |#2|) 93)) (-3725 ((|#2| |#2|) 73)) (-1279 ((|#2| |#2|) 127)) (-3466 ((|#2| |#2|) 115)) (-2423 ((|#2| |#2|) 137)) (-1518 ((|#2| |#2|) 135)) (-3088 ((|#2| |#2|) 136)) (-3080 ((|#2| |#2|) 134)) (-1752 ((|#2| |#2|) 146)) (-2454 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-815 |#1|))) (|has| |#2| (-809 |#1|)) (|has| |#1| (-558 (-815 |#1|))) (|has| |#1| (-809 |#1|))))) (-2153 ((|#2| |#2|) 74)) (-3023 ((|#2| |#2|) 138)) (-2296 ((|#2| |#2|) 139)) (-1451 ((|#2| |#2|) 126)) (-1787 ((|#2| |#2|) 114)) (-2239 ((|#2| |#2|) 133)) (-1620 ((|#2| |#2|) 131)) (-3733 ((|#2| |#2|) 121)) (-3430 ((|#2| |#2|) 119)) (-3550 ((|#2| |#2|) 123)) (-3379 ((|#2| |#2|) 111)))
-(((-1103 |#1| |#2|) (-10 -7 (-15 -2296 (|#2| |#2|)) (-15 -3725 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -3324 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -2423 (|#2| |#2|)) (IF (|has| |#1| (-809 |#1|)) (IF (|has| |#1| (-558 (-815 |#1|))) (IF (|has| |#2| (-558 (-815 |#1|))) (IF (|has| |#2| (-809 |#1|)) (-15 -2454 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1097))) (T -1103))
-((-2454 (*1 *2 *2) (-12 (-4 *3 (-558 (-815 *3))) (-4 *3 (-809 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-558 (-815 *3))) (-4 *2 (-809 *3)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2423 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3088 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-1518 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3733 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3324 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-400 *3) (-1097))))))
-(-10 -7 (-15 -2296 (|#2| |#2|)) (-15 -3725 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -3324 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -2423 (|#2| |#2|)) (IF (|has| |#1| (-809 |#1|)) (IF (|has| |#1| (-558 (-815 |#1|))) (IF (|has| |#2| (-558 (-815 |#1|))) (IF (|has| |#2| (-809 |#1|)) (-15 -2454 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3801 (((-107) |#5| $) 60) (((-107) $) 102)) (-3939 ((|#5| |#5| $) 75)) (-2325 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2230 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 73)) (-3228 (((-3 $ "failed") (-583 |#5|)) 126)) (-2439 (((-3 $ "failed") $) 112)) (-3777 ((|#5| |#5| $) 94)) (-3244 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 31)) (-2639 ((|#5| |#5| $) 98)) (-1522 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 69)) (-4130 (((-2 (|:| -1724 (-583 |#5|)) (|:| -3676 (-583 |#5|))) $) 55)) (-1253 (((-107) |#5| $) 58) (((-107) $) 103)) (-3024 ((|#4| $) 108)) (-1446 (((-3 |#5| "failed") $) 110)) (-3568 (((-583 |#5|) $) 49)) (-1732 (((-107) |#5| $) 67) (((-107) $) 107)) (-3998 ((|#5| |#5| $) 81)) (-2958 (((-107) $ $) 27)) (-1944 (((-107) |#5| $) 63) (((-107) $) 105)) (-3252 ((|#5| |#5| $) 78)) (-2429 (((-3 |#5| "failed") $) 109)) (-2671 (($ $ |#5|) 127)) (-3647 (((-703) $) 52)) (-2288 (($ (-583 |#5|)) 124)) (-4028 (($ $ |#4|) 122)) (-1409 (($ $ |#4|) 121)) (-1888 (($ $) 120)) (-2271 (((-787) $) NIL) (((-583 |#5|) $) 113)) (-3057 (((-703) $) 130)) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 45)) (-4135 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 100)) (-3943 (((-583 |#4|) $) 115)) (-1999 (((-107) |#4| $) 118)) (-1584 (((-107) $ $) 19)))
-(((-1104 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3057 ((-703) |#1|)) (-15 -2671 (|#1| |#1| |#5|)) (-15 -2325 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1999 ((-107) |#4| |#1|)) (-15 -3943 ((-583 |#4|) |#1|)) (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -1446 ((-3 |#5| "failed") |#1|)) (-15 -2429 ((-3 |#5| "failed") |#1|)) (-15 -2639 (|#5| |#5| |#1|)) (-15 -1888 (|#1| |#1|)) (-15 -3777 (|#5| |#5| |#1|)) (-15 -3998 (|#5| |#5| |#1|)) (-15 -3252 (|#5| |#5| |#1|)) (-15 -3939 (|#5| |#5| |#1|)) (-15 -2230 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1522 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1732 ((-107) |#1|)) (-15 -1944 ((-107) |#1|)) (-15 -3801 ((-107) |#1|)) (-15 -4135 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1732 ((-107) |#5| |#1|)) (-15 -1944 ((-107) |#5| |#1|)) (-15 -3801 ((-107) |#5| |#1|)) (-15 -3244 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1253 ((-107) |#1|)) (-15 -1253 ((-107) |#5| |#1|)) (-15 -4130 ((-2 (|:| -1724 (-583 |#5|)) (|:| -3676 (-583 |#5|))) |#1|)) (-15 -3647 ((-703) |#1|)) (-15 -3568 ((-583 |#5|) |#1|)) (-15 -2646 ((-3 (-2 (|:| |bas| |#1|) (|:| -2553 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -2646 ((-3 (-2 (|:| |bas| |#1|) (|:| -2553 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -2958 ((-107) |#1| |#1|)) (-15 -4028 (|#1| |#1| |#4|)) (-15 -1409 (|#1| |#1| |#4|)) (-15 -3024 (|#4| |#1|)) (-15 -3228 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2271 ((-583 |#5|) |#1|)) (-15 -2288 (|#1| (-583 |#5|))) (-15 -1522 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1522 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2325 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1522 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|))) (-1105 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-977 |#2| |#3| |#4|)) (T -1104))
-NIL
-(-10 -8 (-15 -3057 ((-703) |#1|)) (-15 -2671 (|#1| |#1| |#5|)) (-15 -2325 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1999 ((-107) |#4| |#1|)) (-15 -3943 ((-583 |#4|) |#1|)) (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -1446 ((-3 |#5| "failed") |#1|)) (-15 -2429 ((-3 |#5| "failed") |#1|)) (-15 -2639 (|#5| |#5| |#1|)) (-15 -1888 (|#1| |#1|)) (-15 -3777 (|#5| |#5| |#1|)) (-15 -3998 (|#5| |#5| |#1|)) (-15 -3252 (|#5| |#5| |#1|)) (-15 -3939 (|#5| |#5| |#1|)) (-15 -2230 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1522 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1732 ((-107) |#1|)) (-15 -1944 ((-107) |#1|)) (-15 -3801 ((-107) |#1|)) (-15 -4135 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1732 ((-107) |#5| |#1|)) (-15 -1944 ((-107) |#5| |#1|)) (-15 -3801 ((-107) |#5| |#1|)) (-15 -3244 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1253 ((-107) |#1|)) (-15 -1253 ((-107) |#5| |#1|)) (-15 -4130 ((-2 (|:| -1724 (-583 |#5|)) (|:| -3676 (-583 |#5|))) |#1|)) (-15 -3647 ((-703) |#1|)) (-15 -3568 ((-583 |#5|) |#1|)) (-15 -2646 ((-3 (-2 (|:| |bas| |#1|) (|:| -2553 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -2646 ((-3 (-2 (|:| |bas| |#1|) (|:| -2553 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -2958 ((-107) |#1| |#1|)) (-15 -4028 (|#1| |#1| |#4|)) (-15 -1409 (|#1| |#1| |#4|)) (-15 -3024 (|#4| |#1|)) (-15 -3228 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2271 ((-583 |#5|) |#1|)) (-15 -2288 (|#1| (-583 |#5|))) (-15 -1522 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1522 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2325 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1522 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2271 ((-787) |#1|)) (-15 -1584 ((-107) |#1| |#1|)))
-((-2119 (((-107) $ $) 7)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) 85)) (-2265 (((-583 $) (-583 |#4|)) 86)) (-2097 (((-583 |#3|) $) 33)) (-2687 (((-107) $) 26)) (-3389 (((-107) $) 17 (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) 101) (((-107) $) 97)) (-3939 ((|#4| |#4| $) 92)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) 27)) (-1851 (((-107) $ (-703)) 44)) (-2325 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) 79)) (-1393 (($) 45 T CONST)) (-3338 (((-107) $) 22 (|has| |#1| (-509)))) (-1605 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2893 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2501 (((-107) $) 25 (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2567 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) 36)) (-3390 (($ (-583 |#4|)) 35)) (-2439 (((-3 $ "failed") $) 82)) (-3777 ((|#4| |#4| $) 89)) (-2455 (($ $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-2639 ((|#4| |#4| $) 87)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) 105)) (-1534 (((-583 |#4|) $) 52 (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) 104) (((-107) $) 103)) (-3024 ((|#3| $) 34)) (-2497 (((-107) $ (-703)) 43)) (-1903 (((-583 |#4|) $) 53 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) 47)) (-2241 (((-583 |#3|) $) 32)) (-2621 (((-107) |#3| $) 31)) (-1320 (((-107) $ (-703)) 42)) (-1662 (((-1059) $) 9)) (-1446 (((-3 |#4| "failed") $) 83)) (-3568 (((-583 |#4|) $) 107)) (-1732 (((-107) |#4| $) 99) (((-107) $) 95)) (-3998 ((|#4| |#4| $) 90)) (-2958 (((-107) $ $) 110)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) 100) (((-107) $) 96)) (-3252 ((|#4| |#4| $) 91)) (-4125 (((-1023) $) 10)) (-2429 (((-3 |#4| "failed") $) 84)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3439 (((-3 $ "failed") $ |#4|) 78)) (-2671 (($ $ |#4|) 77)) (-3644 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) 38)) (-2394 (((-107) $) 41)) (-2452 (($) 40)) (-3647 (((-703) $) 106)) (-4137 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -4192)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4192)))) (-2462 (($ $) 39)) (-3359 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) 60)) (-4028 (($ $ |#3|) 28)) (-1409 (($ $ |#3|) 30)) (-1888 (($ $) 88)) (-4159 (($ $ |#3|) 29)) (-2271 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3057 (((-703) $) 76 (|has| |#3| (-338)))) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3602 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) 81)) (-1999 (((-107) |#3| $) 80)) (-1584 (((-107) $ $) 6)) (-3535 (((-703) $) 46 (|has| $ (-6 -4192)))))
-(((-1105 |#1| |#2| |#3| |#4|) (-1188) (-509) (-725) (-779) (-977 |t#1| |t#2| |t#3|)) (T -1105))
-((-2958 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2553 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1105 *5 *6 *7 *8)))) (-2646 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2553 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1105 *6 *7 *8 *9)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-703)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -1724 (-583 *6)) (|:| -3676 (-583 *6)))))) (-1253 (*1 *2 *3 *1) (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-1253 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-3244 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1105 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-107)))) (-3801 (*1 *2 *3 *1) (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-1944 (*1 *2 *3 *1) (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-1732 (*1 *2 *3 *1) (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-4135 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1105 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))) (-1522 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1105 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-977 *5 *6 *7)))) (-2230 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1105 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)))) (-3939 (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-3252 (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-3998 (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-3777 (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-1888 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-977 *2 *3 *4)))) (-2639 (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1105 *4 *5 *6 *7)))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1724 *1) (|:| -3676 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1105 *4 *5 *6 *7)))) (-2429 (*1 *2 *1) (|partial| -12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-1446 (*1 *2 *1) (|partial| -12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-2439 (*1 *1 *1) (|partial| -12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-977 *2 *3 *4)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1999 (*1 *2 *3 *1) (-12 (-4 *1 (-1105 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-107)))) (-2325 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1105 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-977 *4 *5 *3)))) (-3439 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
-(-13 (-895 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4192) (-6 -4193) (-15 -2958 ((-107) $ $)) (-15 -2646 ((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2646 ((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3568 ((-583 |t#4|) $)) (-15 -3647 ((-703) $)) (-15 -4130 ((-2 (|:| -1724 (-583 |t#4|)) (|:| -3676 (-583 |t#4|))) $)) (-15 -1253 ((-107) |t#4| $)) (-15 -1253 ((-107) $)) (-15 -3244 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -3801 ((-107) |t#4| $)) (-15 -1944 ((-107) |t#4| $)) (-15 -1732 ((-107) |t#4| $)) (-15 -4135 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -3801 ((-107) $)) (-15 -1944 ((-107) $)) (-15 -1732 ((-107) $)) (-15 -1522 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2230 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3939 (|t#4| |t#4| $)) (-15 -3252 (|t#4| |t#4| $)) (-15 -3998 (|t#4| |t#4| $)) (-15 -3777 (|t#4| |t#4| $)) (-15 -1888 ($ $)) (-15 -2639 (|t#4| |t#4| $)) (-15 -2265 ((-583 $) (-583 |t#4|))) (-15 -2828 ((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |t#4|)))) (-583 |t#4|))) (-15 -2429 ((-3 |t#4| "failed") $)) (-15 -1446 ((-3 |t#4| "failed") $)) (-15 -2439 ((-3 $ "failed") $)) (-15 -3943 ((-583 |t#3|) $)) (-15 -1999 ((-107) |t#3| $)) (-15 -2325 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3439 ((-3 $ "failed") $ |t#4|)) (-15 -2671 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -3057 ((-703) $)) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))) ((-895 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1111) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-1076)) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2914 (((-875 |#1|) $ (-703)) 17) (((-875 |#1|) $ (-703) (-703)) NIL)) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-703) $ (-1076)) NIL) (((-703) $ (-1076) (-703)) NIL)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3982 (((-107) $) NIL)) (-2078 (($ $ (-583 (-1076)) (-583 (-489 (-1076)))) NIL) (($ $ (-1076) (-489 (-1076))) NIL) (($ |#1| (-489 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-2356 (($ $ (-1076)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-3689 (($ (-1 $) (-1076) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2671 (($ $ (-703)) NIL)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3524 (($ $ (-1076) $) NIL) (($ $ (-583 (-1076)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2060 (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-3647 (((-489 (-1076)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1076)) NIL) (($ (-875 |#1|)) NIL)) (-1689 ((|#1| $ (-489 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (((-875 |#1|) $ (-703)) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) NIL T CONST)) (-3342 (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1106 |#1|) (-13 (-673 |#1| (-1076)) (-10 -8 (-15 -1689 ((-875 |#1|) $ (-703))) (-15 -2271 ($ (-1076))) (-15 -2271 ($ (-875 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $ (-1076) |#1|)) (-15 -3689 ($ (-1 $) (-1076) |#1|))) |%noBranch|))) (-963)) (T -1106))
-((-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-875 *4)) (-5 *1 (-1106 *4)) (-4 *4 (-963)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1106 *3)) (-4 *3 (-963)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-963)) (-5 *1 (-1106 *3)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *1 (-1106 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)))) (-3689 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1106 *4))) (-5 *3 (-1076)) (-5 *1 (-1106 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-963)))))
-(-13 (-673 |#1| (-1076)) (-10 -8 (-15 -1689 ((-875 |#1|) $ (-703))) (-15 -2271 ($ (-1076))) (-15 -2271 ($ (-875 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $ (-1076) |#1|)) (-15 -3689 ($ (-1 $) (-1076) |#1|))) |%noBranch|)))
-((-4037 (($ |#1| (-583 (-583 (-866 (-199)))) (-107)) 16)) (-1782 (((-107) $ (-107)) 15)) (-1570 (((-107) $) 14)) (-2934 (((-583 (-583 (-866 (-199)))) $) 10)) (-2534 ((|#1| $) 8)) (-2120 (((-107) $) 12)))
-(((-1107 |#1|) (-10 -8 (-15 -2534 (|#1| $)) (-15 -2934 ((-583 (-583 (-866 (-199)))) $)) (-15 -2120 ((-107) $)) (-15 -1570 ((-107) $)) (-15 -1782 ((-107) $ (-107))) (-15 -4037 ($ |#1| (-583 (-583 (-866 (-199)))) (-107)))) (-893)) (T -1107))
-((-4037 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-107)) (-5 *1 (-1107 *2)) (-4 *2 (-893)))) (-1782 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1107 *3)) (-4 *3 (-893)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1107 *3)) (-4 *3 (-893)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1107 *3)) (-4 *3 (-893)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-1107 *3)) (-4 *3 (-893)))) (-2534 (*1 *2 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-893)))))
-(-10 -8 (-15 -2534 (|#1| $)) (-15 -2934 ((-583 (-583 (-866 (-199)))) $)) (-15 -2120 ((-107) $)) (-15 -1570 ((-107) $)) (-15 -1782 ((-107) $ (-107))) (-15 -4037 ($ |#1| (-583 (-583 (-866 (-199)))) (-107))))
-((-4170 (((-866 (-199)) (-866 (-199))) 25)) (-3416 (((-866 (-199)) (-199) (-199) (-199) (-199)) 10)) (-3879 (((-583 (-866 (-199))) (-866 (-199)) (-866 (-199)) (-866 (-199)) (-199) (-583 (-583 (-199)))) 37)) (-3746 (((-199) (-866 (-199)) (-866 (-199))) 21)) (-2326 (((-866 (-199)) (-866 (-199)) (-866 (-199))) 22)) (-3603 (((-583 (-583 (-199))) (-517)) 31)) (-1692 (((-866 (-199)) (-866 (-199)) (-866 (-199))) 20)) (-1678 (((-866 (-199)) (-866 (-199)) (-866 (-199))) 19)) (* (((-866 (-199)) (-199) (-866 (-199))) 18)))
-(((-1108) (-10 -7 (-15 -3416 ((-866 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-866 (-199)) (-199) (-866 (-199)))) (-15 -1678 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -1692 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -3746 ((-199) (-866 (-199)) (-866 (-199)))) (-15 -2326 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -4170 ((-866 (-199)) (-866 (-199)))) (-15 -3603 ((-583 (-583 (-199))) (-517))) (-15 -3879 ((-583 (-866 (-199))) (-866 (-199)) (-866 (-199)) (-866 (-199)) (-199) (-583 (-583 (-199))))))) (T -1108))
-((-3879 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-866 *4))) (-5 *1 (-1108)) (-5 *3 (-866 *4)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1108)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)))) (-2326 (*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)))) (-3746 (*1 *2 *3 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-1108)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)))) (-1678 (*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-866 (-199))) (-5 *3 (-199)) (-5 *1 (-1108)))) (-3416 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)) (-5 *3 (-199)))))
-(-10 -7 (-15 -3416 ((-866 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-866 (-199)) (-199) (-866 (-199)))) (-15 -1678 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -1692 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -3746 ((-199) (-866 (-199)) (-866 (-199)))) (-15 -2326 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -4170 ((-866 (-199)) (-866 (-199)))) (-15 -3603 ((-583 (-583 (-199))) (-517))) (-15 -3879 ((-583 (-866 (-199))) (-866 (-199)) (-866 (-199)) (-866 (-199)) (-199) (-583 (-583 (-199))))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2325 ((|#1| $ (-703)) 13)) (-3682 (((-703) $) 12)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2271 (((-880 |#1|) $) 10) (($ (-880 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1584 (((-107) $ $) 16 (|has| |#1| (-1005)))))
-(((-1109 |#1|) (-13 (-557 (-880 |#1|)) (-10 -8 (-15 -2271 ($ (-880 |#1|))) (-15 -2325 (|#1| $ (-703))) (-15 -3682 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|))) (-1111)) (T -1109))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-1111)) (-5 *1 (-1109 *3)))) (-2325 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1109 *2)) (-4 *2 (-1111)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1109 *3)) (-4 *3 (-1111)))))
-(-13 (-557 (-880 |#1|)) (-10 -8 (-15 -2271 ($ (-880 |#1|))) (-15 -2325 (|#1| $ (-703))) (-15 -3682 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|)))
-((-2433 (((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)) (-517)) 79)) (-1245 (((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|))) 73)) (-1838 (((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|))) 58)))
-(((-1110 |#1|) (-10 -7 (-15 -1245 ((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)))) (-15 -1838 ((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)))) (-15 -2433 ((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)) (-517)))) (-319)) (T -1110))
-((-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1072 (-1072 *5)))) (-5 *1 (-1110 *5)) (-5 *3 (-1072 (-1072 *5))))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1072 (-1072 *4)))) (-5 *1 (-1110 *4)) (-5 *3 (-1072 (-1072 *4))))) (-1245 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1072 (-1072 *4)))) (-5 *1 (-1110 *4)) (-5 *3 (-1072 (-1072 *4))))))
-(-10 -7 (-15 -1245 ((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)))) (-15 -1838 ((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)))) (-15 -2433 ((-388 (-1072 (-1072 |#1|))) (-1072 (-1072 |#1|)) (-517))))
-NIL
-(((-1111) (-1188)) (T -1111))
-NIL
-(-13 (-10 -7 (-6 -2181)))
-((-4129 (((-107)) 15)) (-2678 (((-1162) (-583 |#1|) (-583 |#1|)) 19) (((-1162) (-583 |#1|)) 20)) (-2497 (((-107) |#1| |#1|) 31 (|has| |#1| (-779)))) (-1320 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 27) (((-3 (-107) "failed") |#1| |#1|) 25)) (-3483 ((|#1| (-583 |#1|)) 32 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 28)) (-2331 (((-2 (|:| -4068 (-583 |#1|)) (|:| -2998 (-583 |#1|)))) 17)))
-(((-1112 |#1|) (-10 -7 (-15 -2678 ((-1162) (-583 |#1|))) (-15 -2678 ((-1162) (-583 |#1|) (-583 |#1|))) (-15 -2331 ((-2 (|:| -4068 (-583 |#1|)) (|:| -2998 (-583 |#1|))))) (-15 -1320 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1320 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -3483 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -4129 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -3483 (|#1| (-583 |#1|))) (-15 -2497 ((-107) |#1| |#1|))) |%noBranch|)) (-1005)) (T -1112))
-((-2497 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1112 *3)) (-4 *3 (-779)) (-4 *3 (-1005)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-779)) (-5 *1 (-1112 *2)))) (-4129 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1112 *3)) (-4 *3 (-1005)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1112 *2)) (-4 *2 (-1005)))) (-1320 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1005)) (-5 *2 (-107)) (-5 *1 (-1112 *3)))) (-1320 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1112 *3)) (-4 *3 (-1005)))) (-2331 (*1 *2) (-12 (-5 *2 (-2 (|:| -4068 (-583 *3)) (|:| -2998 (-583 *3)))) (-5 *1 (-1112 *3)) (-4 *3 (-1005)))) (-2678 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1005)) (-5 *2 (-1162)) (-5 *1 (-1112 *4)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1005)) (-5 *2 (-1162)) (-5 *1 (-1112 *4)))))
-(-10 -7 (-15 -2678 ((-1162) (-583 |#1|))) (-15 -2678 ((-1162) (-583 |#1|) (-583 |#1|))) (-15 -2331 ((-2 (|:| -4068 (-583 |#1|)) (|:| -2998 (-583 |#1|))))) (-15 -1320 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1320 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -3483 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -4129 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -3483 (|#1| (-583 |#1|))) (-15 -2497 ((-107) |#1| |#1|))) |%noBranch|))
-((-2150 (((-1162) (-583 (-1076)) (-583 (-1076))) 12) (((-1162) (-583 (-1076))) 10)) (-4045 (((-1162)) 13)) (-2751 (((-2 (|:| -2998 (-583 (-1076))) (|:| -4068 (-583 (-1076))))) 17)))
-(((-1113) (-10 -7 (-15 -2150 ((-1162) (-583 (-1076)))) (-15 -2150 ((-1162) (-583 (-1076)) (-583 (-1076)))) (-15 -2751 ((-2 (|:| -2998 (-583 (-1076))) (|:| -4068 (-583 (-1076)))))) (-15 -4045 ((-1162))))) (T -1113))
-((-4045 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1113)))) (-2751 (*1 *2) (-12 (-5 *2 (-2 (|:| -2998 (-583 (-1076))) (|:| -4068 (-583 (-1076))))) (-5 *1 (-1113)))) (-2150 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1162)) (-5 *1 (-1113)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1162)) (-5 *1 (-1113)))))
-(-10 -7 (-15 -2150 ((-1162) (-583 (-1076)))) (-15 -2150 ((-1162) (-583 (-1076)) (-583 (-1076)))) (-15 -2751 ((-2 (|:| -2998 (-583 (-1076))) (|:| -4068 (-583 (-1076)))))) (-15 -4045 ((-1162))))
-((-1224 (($ $) 16)) (-1259 (((-107) $) 23)))
-(((-1114 |#1|) (-10 -8 (-15 -1224 (|#1| |#1|)) (-15 -1259 ((-107) |#1|))) (-1115)) (T -1114))
-NIL
-(-10 -8 (-15 -1224 (|#1| |#1|)) (-15 -1259 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 51)) (-4018 (((-388 $) $) 52)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1259 (((-107) $) 53)) (-1376 (((-107) $) 31)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3868 (((-388 $) $) 50)) (-2329 (((-3 $ "failed") $ $) 42)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-1115) (-1188)) (T -1115))
-((-1259 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-107)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1115)))) (-1224 (*1 *1 *1) (-4 *1 (-1115))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1115)))))
-(-13 (-421) (-10 -8 (-15 -1259 ((-107) $)) (-15 -4018 ((-388 $) $)) (-15 -1224 ($ $)) (-15 -3868 ((-388 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-3310 (((-1121 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1121 |#1| |#3| |#5|)) 23)))
-(((-1116 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3310 ((-1121 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1121 |#1| |#3| |#5|)))) (-963) (-963) (-1076) (-1076) |#1| |#2|) (T -1116))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1076)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1121 *6 *8 *10)) (-5 *1 (-1116 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1076)))))
-(-10 -7 (-15 -3310 ((-1121 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1121 |#1| |#3| |#5|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 (-991)) $) 74)) (-3752 (((-1076) $) 103)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2853 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-1928 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1648 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 162 (|has| |#1| (-333)))) (-4018 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3880 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1624 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1670 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) 17 T CONST)) (-2379 (($ $ $) 157 (|has| |#1| (-333)))) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-4077 (((-377 (-875 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-1259 (((-107) $) 164 (|has| |#1| (-333)))) (-1880 (((-107) $) 73)) (-2116 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) 101)) (-3138 (($ (-1 |#1| (-517)) $) 173)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3982 (((-107) $) 62)) (-2078 (($ |#1| (-517)) 61) (($ $ (-991) (-517)) 76) (($ $ (-583 (-991)) (-583 (-517))) 75)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-1226 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-2332 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1662 (((-1059) $) 9)) (-2300 (($ $) 165 (|has| |#1| (-333)))) (-2356 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 169 (-3747 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1097)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 150 (|has| |#1| (-333)))) (-2370 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3868 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 158 (|has| |#1| (-333)))) (-2671 (($ $ (-517)) 95)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3870 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3600 (((-703) $) 154 (|has| |#1| (-333)))) (-2609 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 155 (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1076) (-703)) 88 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076))) 87 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1076)) 86 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3647 (((-517) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1689 ((|#1| $ (-517)) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-3569 ((|#1| $) 102)) (-1722 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1697 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1076) (-703)) 92 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076))) 91 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1076)) 90 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1117 |#1|) (-1188) (-963)) (T -1117))
-((-3433 (*1 *1 *2) (-12 (-5 *2 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1117 *3)))) (-3138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1117 *3)) (-4 *3 (-963)))) (-4077 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1117 *4)) (-4 *4 (-963)) (-4 *4 (-509)) (-5 *2 (-377 (-875 *4))))) (-4077 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1117 *4)) (-4 *4 (-963)) (-4 *4 (-509)) (-5 *2 (-377 (-875 *4))))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517)))))) (-2356 (*1 *1 *1 *2) (-3747 (-12 (-5 *2 (-1076)) (-4 *1 (-1117 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1097)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1076)) (-4 *1 (-1117 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -2097 ((-583 *2) *3))) (|has| *3 (-15 -2356 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1135 |t#1| (-517)) (-10 -8 (-15 -3433 ($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3138 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -4077 ((-377 (-875 |t#1|)) $ (-517))) (-15 -4077 ((-377 (-875 |t#1|)) $ (-517) (-517)))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $)) (IF (|has| |t#1| (-15 -2356 (|t#1| |t#1| (-1076)))) (IF (|has| |t#1| (-15 -2097 ((-583 (-1076)) |t#1|))) (-15 -2356 ($ $ (-1076))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1097)) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-29 (-517))) (-15 -2356 ($ $ (-1076))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-920)) (-6 (-1097))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1017)) ((-262) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1076)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))) ((-892 |#1| #0# (-991)) . T) ((-843) |has| |#1| (-333)) ((-920) |has| |#1| (-37 (-377 (-517)))) ((-969 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1100) |has| |#1| (-37 (-377 (-517)))) ((-1115) |has| |#1| (-333)) ((-1135 |#1| #0#) . T))
-((-3097 (((-107) $) 12)) (-3228 (((-3 |#3| "failed") $) 17) (((-3 (-1076) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3390 ((|#3| $) 14) (((-1076) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
-(((-1118 |#1| |#2| |#3|) (-10 -8 (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-1076) |#1|)) (-15 -3228 ((-3 (-1076) "failed") |#1|)) (-15 -3390 (|#3| |#1|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -3097 ((-107) |#1|))) (-1119 |#2| |#3|) (-963) (-1148 |#2|)) (T -1118))
-NIL
-(-10 -8 (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3390 ((-1076) |#1|)) (-15 -3228 ((-3 (-1076) "failed") |#1|)) (-15 -3390 (|#3| |#1|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -3097 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1363 ((|#2| $) 231 (-3993 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2097 (((-583 (-991)) $) 74)) (-3752 (((-1076) $) 103)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2853 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-1928 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1664 ((|#2| $) 267)) (-2722 (((-3 |#2| "failed") $) 263)) (-2145 ((|#2| $) 264)) (-1648 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) 19)) (-3327 (((-388 (-1072 $)) (-1072 $)) 240 (-3993 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-1224 (($ $) 162 (|has| |#1| (-333)))) (-4018 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3880 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 237 (-3993 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3820 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1624 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2360 (((-517) $) 249 (-3993 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3433 (($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1670 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-3993 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-3993 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-3 (-1076) "failed") $) 242 (-3993 (|has| |#2| (-954 (-1076))) (|has| |#1| (-333))))) (-3390 ((|#2| $) 269) (((-517) $) 260 (-3993 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-3993 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-1076) $) 243 (-3993 (|has| |#2| (-954 (-1076))) (|has| |#1| (-333))))) (-1336 (($ $) 266) (($ (-517) $) 265)) (-2379 (($ $ $) 157 (|has| |#1| (-333)))) (-2373 (($ $) 60)) (-2207 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 219 (-3993 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-3993 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-2560 (((-3 $ "failed") $) 34)) (-4077 (((-377 (-875 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2202 (($) 233 (-3993 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-1259 (((-107) $) 164 (|has| |#1| (-333)))) (-2988 (((-107) $) 247 (-3993 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-1880 (((-107) $) 73)) (-2116 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 225 (-3993 (|has| |#2| (-809 (-349))) (|has| |#1| (-333)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 224 (-3993 (|has| |#2| (-809 (-517))) (|has| |#1| (-333))))) (-1395 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1376 (((-107) $) 31)) (-1862 (($ $) 229 (|has| |#1| (-333)))) (-3826 ((|#2| $) 227 (|has| |#1| (-333)))) (-2092 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2243 (((-3 $ "failed") $) 261 (-3993 (|has| |#2| (-1052)) (|has| |#1| (-333))))) (-1952 (((-107) $) 248 (-3993 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2401 (($ $ (-844)) 101)) (-3138 (($ (-1 |#1| (-517)) $) 173)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3982 (((-107) $) 62)) (-2078 (($ |#1| (-517)) 61) (($ $ (-991) (-517)) 76) (($ $ (-583 (-991)) (-583 (-517))) 75)) (-3458 (($ $ $) 251 (-3993 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4084 (($ $ $) 252 (-3993 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3310 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1226 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-2332 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-2154 (($ (-517) |#2|) 268)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 165 (|has| |#1| (-333)))) (-2356 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 169 (-3747 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1097)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2587 (($) 262 (-3993 (|has| |#2| (-1052)) (|has| |#1| (-333))) CONST)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 150 (|has| |#1| (-333)))) (-2370 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-2041 (($ $) 232 (-3993 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2961 ((|#2| $) 235 (-3993 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2276 (((-388 (-1072 $)) (-1072 $)) 238 (-3993 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3442 (((-388 (-1072 $)) (-1072 $)) 239 (-3993 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3868 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 158 (|has| |#1| (-333)))) (-2671 (($ $ (-517)) 95)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3870 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1076) |#2|) 212 (-3993 (|has| |#2| (-478 (-1076) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1076)) (-583 |#2|)) 211 (-3993 (|has| |#2| (-478 (-1076) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-3993 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-3993 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-3993 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-3993 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3600 (((-703) $) 154 (|has| |#1| (-333)))) (-2609 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1017))) (($ $ |#2|) 206 (-3993 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 155 (|has| |#1| (-333)))) (-2060 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3747 (-3993 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3747 (-3993 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) 89 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1076) (-703)) 88 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1076))) 87 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1076)) 86 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-2484 (($ $) 230 (|has| |#1| (-333)))) (-2098 ((|#2| $) 228 (|has| |#1| (-333)))) (-3647 (((-517) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3359 (((-199) $) 246 (-3993 (|has| |#2| (-939)) (|has| |#1| (-333)))) (((-349) $) 245 (-3993 (|has| |#2| (-939)) (|has| |#1| (-333)))) (((-493) $) 244 (-3993 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-815 (-349)) $) 223 (-3993 (|has| |#2| (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) 222 (-3993 (|has| |#2| (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 236 (-3993 (-3993 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#1| (-333))))) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1076)) 241 (-3993 (|has| |#2| (-954 (-1076))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1689 ((|#1| $ (-517)) 59)) (-3974 (((-3 $ "failed") $) 48 (-3747 (-3993 (-3747 (|has| |#2| (-132)) (-3993 (|has| $ (-132)) (|has| |#2| (-832)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-4099 (((-703)) 29)) (-3569 ((|#1| $) 102)) (-3599 ((|#2| $) 234 (-3993 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1722 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1697 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2376 (($ $) 250 (-3993 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3747 (-3993 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3747 (-3993 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) 93 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1076) (-703)) 92 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1076))) 91 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1076)) 90 (-3747 (-3993 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1642 (((-107) $ $) 254 (-3993 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1618 (((-107) $ $) 255 (-3993 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 253 (-3993 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1608 (((-107) $ $) 256 (-3993 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1119 |#1| |#2|) (-1188) (-963) (-1148 |t#1|)) (T -1119))
-((-3647 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1148 *3)) (-5 *2 (-517)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-1119 *3 *2)) (-4 *2 (-1148 *3)))) (-2154 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-963)) (-4 *1 (-1119 *4 *3)) (-4 *3 (-1148 *4)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1148 *3)))) (-1336 (*1 *1 *1) (-12 (-4 *1 (-1119 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1148 *2)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1119 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1148 *3)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1148 *3)))) (-2722 (*1 *2 *1) (|partial| -12 (-4 *1 (-1119 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1148 *3)))))
-(-13 (-1117 |t#1|) (-954 |t#2|) (-10 -8 (-15 -2154 ($ (-517) |t#2|)) (-15 -3647 ((-517) $)) (-15 -1664 (|t#2| $)) (-15 -1336 ($ $)) (-15 -1336 ($ (-517) $)) (-15 -2271 ($ |t#2|)) (-15 -2145 (|t#2| $)) (-15 -2722 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-911 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3747 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3747 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-939))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-939))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3747 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1017)) ((-262) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1076) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1076) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3747 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-823 (-1076)) -3747 (-12 (|has| |#1| (-333)) (|has| |#2| (-823 (-1076)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))) ((-809 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-517)))) ((-807 |#2|) |has| |#1| (-333)) ((-832) -12 (|has| |#1| (-333)) (|has| |#2| (-832))) ((-892 |#1| #0# (-991)) . T) ((-843) |has| |#1| (-333)) ((-911 |#2|) |has| |#1| (-333)) ((-920) |has| |#1| (-37 (-377 (-517)))) ((-939) -12 (|has| |#1| (-333)) (|has| |#2| (-939))) ((-954 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-954 (-517)))) ((-954 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-954 (-517)))) ((-954 (-1076)) -12 (|has| |#1| (-333)) (|has| |#2| (-954 (-1076)))) ((-954 |#2|) . T) ((-969 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-333)) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) -12 (|has| |#1| (-333)) (|has| |#2| (-1052))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1100) |has| |#1| (-37 (-377 (-517)))) ((-1111) |has| |#1| (-333)) ((-1115) |has| |#1| (-333)) ((-1117 |#1|) . T) ((-1135 |#1| #0#) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 70)) (-1363 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 88)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-1928 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-1664 ((|#2| $) 11)) (-2722 (((-3 |#2| "failed") $) 30)) (-2145 ((|#2| $) 31)) (-1648 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-2360 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3433 (($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1670 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-3 (-1076) "failed") $) NIL (-12 (|has| |#2| (-954 (-1076))) (|has| |#1| (-333))))) (-3390 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-954 (-517))) (|has| |#1| (-333)))) (((-1076) $) NIL (-12 (|has| |#2| (-954 (-1076))) (|has| |#1| (-333))))) (-1336 (($ $) 61) (($ (-517) $) 24)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2207 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-2560 (((-3 $ "failed") $) 77)) (-4077 (((-377 (-875 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-2202 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-2988 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-1880 (((-107) $) 64)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#2| (-809 (-349))) (|has| |#1| (-333)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#2| (-809 (-517))) (|has| |#1| (-333))))) (-1395 (((-517) $) 93) (((-517) $ (-517)) 95)) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL (|has| |#1| (-333)))) (-3826 ((|#2| $) 151 (|has| |#1| (-333)))) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2243 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1052)) (|has| |#1| (-333))))) (-1952 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2401 (($ $ (-844)) 136)) (-3138 (($ (-1 |#1| (-517)) $) 132)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-517)) 19) (($ $ (-991) (-517)) NIL) (($ $ (-583 (-991)) (-583 (-517))) NIL)) (-3458 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4084 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3310 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1226 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2154 (($ (-517) |#2|) 10)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 145 (|has| |#1| (-333)))) (-2356 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 219 (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097)))))) (-2587 (($) NIL (-12 (|has| |#2| (-1052)) (|has| |#1| (-333))) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2041 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2961 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-517)) 126)) (-2329 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1076) |#2|) NIL (-12 (|has| |#2| (-478 (-1076) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1076)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1076) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1017))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3747 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3747 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076) (-703)) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-583 (-1076))) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076)) 140 (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))) (-2484 (($ $) NIL (|has| |#1| (-333)))) (-2098 ((|#2| $) 152 (|has| |#1| (-333)))) (-3647 (((-517) $) 12)) (-1682 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3359 (((-199) $) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-815 (-349)) $) NIL (-12 (|has| |#2| (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) NIL (-12 (|has| |#2| (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3624 (($ $) 124)) (-2271 (((-787) $) 243) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1076)) NIL (-12 (|has| |#2| (-954 (-1076))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1689 ((|#1| $ (-517)) 74)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-4099 (((-703)) 142)) (-3569 ((|#1| $) 90)) (-3599 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1722 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2376 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 13 T CONST)) (-3619 (($) 17 T CONST)) (-3342 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3747 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3747 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076) (-703)) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-583 (-1076))) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#2| (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))) (-1642 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1618 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1584 (((-107) $ $) 63)) (-1630 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1608 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1692 (($ $) 213) (($ $ $) 68)) (-1678 (($ $ $) 66)) (** (($ $ (-844)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1120 |#1| |#2|) (-1119 |#1| |#2|) (-963) (-1148 |#1|)) (T -1120))
-NIL
-(-1119 |#1| |#2|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1363 (((-1149 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 10)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3062 (($ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2190 (((-107) $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2853 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-1928 (((-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1664 (((-1149 |#1| |#2| |#3|) $) NIL)) (-2722 (((-3 (-1149 |#1| |#2| |#3|) "failed") $) NIL)) (-2145 (((-1149 |#1| |#2| |#3|) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2360 (((-517) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3433 (($ (-1057 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-1149 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-1076))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333))))) (-3390 (((-1149 |#1| |#2| |#3|) $) NIL) (((-1076) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-1076))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333))))) (-1336 (($ $) NIL) (($ (-517) $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-1149 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 (-1149 |#1| |#2| |#3|))) (|:| |vec| (-1157 (-1149 |#1| |#2| |#3|)))) (-623 $) (-1157 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-2560 (((-3 $ "failed") $) NIL)) (-4077 (((-377 (-875 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-2202 (($) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-2988 (((-107) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3544 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-809 (-517))) (|has| |#1| (-333)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-809 (-349))) (|has| |#1| (-333))))) (-1395 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-1376 (((-107) $) NIL)) (-1862 (($ $) NIL (|has| |#1| (-333)))) (-3826 (((-1149 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2243 (((-3 $ "failed") $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-333))))) (-1952 (((-107) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2401 (($ $ (-844)) NIL)) (-3138 (($ (-1 |#1| (-517)) $) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-517)) 17) (($ $ (-991) (-517)) NIL) (($ $ (-583 (-991)) (-583 (-517))) NIL)) (-3458 (($ $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4084 (($ $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2154 (($ (-517) (-1149 |#1| |#2| |#3|)) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2356 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2587 (($) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-333))) CONST)) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2041 (($ $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2961 (((-1149 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-517)) NIL)) (-2329 (((-3 $ "failed") $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1076) (-1149 |#1| |#2| |#3|)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-478 (-1076) (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1076)) (-583 (-1149 |#1| |#2| |#3|))) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-478 (-1076) (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1149 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-280 (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1149 |#1| |#2| |#3|))) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-280 (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-280 (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1149 |#1| |#2| |#3|)) (-583 (-1149 |#1| |#2| |#3|))) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-280 (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1017))) (($ $ (-1149 |#1| |#2| |#3|)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-258 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-1 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1153 |#2|)) 24) (($ $ (-703)) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076) (-703)) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-583 (-1076))) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))) (-2484 (($ $) NIL (|has| |#1| (-333)))) (-2098 (((-1149 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3647 (((-517) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3359 (((-493) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-939)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-939)) (|has| |#1| (-333)))) (((-815 (-349)) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1149 |#1| |#2| |#3|)) NIL) (($ (-1153 |#2|)) 22) (($ (-1076)) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-1076))) (|has| |#1| (-333)))) (($ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-954 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-1689 ((|#1| $ (-517)) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 11)) (-3599 (((-1149 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2376 (($ $) NIL (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 19 T CONST)) (-3619 (($) 15 T CONST)) (-3342 (($ $ (-1 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076) (-703)) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-583 (-1076))) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076)))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-823 (-1076))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1076))))))) (-1642 (((-107) $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1618 (((-107) $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1608 (((-107) $ $) NIL (-3747 (-12 (|has| (-1149 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1149 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1149 |#1| |#2| |#3|) (-1149 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 20)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1149 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1149 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1121 |#1| |#2| |#3|) (-13 (-1119 |#1| (-1149 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -1121))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1119 |#1| (-1149 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-4123 (((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107)) 10)) (-2711 (((-388 |#1|) |#1|) 21)) (-3868 (((-388 |#1|) |#1|) 20)))
-(((-1122 |#1|) (-10 -7 (-15 -3868 ((-388 |#1|) |#1|)) (-15 -2711 ((-388 |#1|) |#1|)) (-15 -4123 ((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107)))) (-1133 (-517))) (T -1122))
-((-4123 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517))))))) (-5 *1 (-1122 *3)) (-4 *3 (-1133 (-517))))) (-2711 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1133 (-517))))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1133 (-517))))))
-(-10 -7 (-15 -3868 ((-388 |#1|) |#1|)) (-15 -2711 ((-388 |#1|) |#1|)) (-15 -4123 ((-2 (|:| |contp| (-517)) (|:| -1510 (-583 (-2 (|:| |irr| |#1|) (|:| -1992 (-517)))))) |#1| (-107))))
-((-3310 (((-1057 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 23 (|has| |#1| (-777))) (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 17)))
-(((-1123 |#1| |#2|) (-10 -7 (-15 -3310 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (IF (|has| |#1| (-777)) (-15 -3310 ((-1057 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) |%noBranch|)) (-1111) (-1111)) (T -1123))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-777)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1057 *6)) (-5 *1 (-1123 *5 *6)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1124 *6)) (-5 *1 (-1123 *5 *6)))))
-(-10 -7 (-15 -3310 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (IF (|has| |#1| (-777)) (-15 -3310 ((-1057 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) |%noBranch|))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-2211 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3310 (((-1057 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-4068 ((|#1| $) 14)) (-2158 ((|#1| $) 10)) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-2168 (((-517) $) 18)) (-2998 ((|#1| $) 17)) (-2174 ((|#1| $) 11)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-3976 (((-107) $) 16)) (-2296 (((-1057 |#1|) $) 38 (|has| |#1| (-777))) (((-1057 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3359 (($ |#1|) 25)) (-2271 (($ (-1000 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1005)))) (-1606 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1327 (($ $ (-517)) 13)) (-1584 (((-107) $ $) 27 (|has| |#1| (-1005)))))
-(((-1124 |#1|) (-13 (-999 |#1|) (-10 -8 (-15 -1606 ($ |#1|)) (-15 -2211 ($ |#1|)) (-15 -2271 ($ (-1000 |#1|))) (-15 -3976 ((-107) $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1001 |#1| (-1057 |#1|))) |%noBranch|))) (-1111)) (T -1124))
-((-1606 (*1 *1 *2) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1111)))) (-2211 (*1 *1 *2) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1111)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1111)) (-5 *1 (-1124 *3)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1124 *3)) (-4 *3 (-1111)))))
-(-13 (-999 |#1|) (-10 -8 (-15 -1606 ($ |#1|)) (-15 -2211 ($ |#1|)) (-15 -2271 ($ (-1000 |#1|))) (-15 -3976 ((-107) $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1001 |#1| (-1057 |#1|))) |%noBranch|)))
-((-3310 (((-1130 |#3| |#4|) (-1 |#4| |#2|) (-1130 |#1| |#2|)) 15)))
-(((-1125 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 ((-1130 |#3| |#4|) (-1 |#4| |#2|) (-1130 |#1| |#2|)))) (-1076) (-963) (-1076) (-963)) (T -1125))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1130 *5 *6)) (-14 *5 (-1076)) (-4 *6 (-963)) (-4 *8 (-963)) (-5 *2 (-1130 *7 *8)) (-5 *1 (-1125 *5 *6 *7 *8)) (-14 *7 (-1076)))))
-(-10 -7 (-15 -3310 ((-1130 |#3| |#4|) (-1 |#4| |#2|) (-1130 |#1| |#2|))))
-((-4038 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2015 ((|#1| |#3|) 13)) (-3552 ((|#3| |#3|) 19)))
-(((-1126 |#1| |#2| |#3|) (-10 -7 (-15 -2015 (|#1| |#3|)) (-15 -3552 (|#3| |#3|)) (-15 -4038 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-911 |#1|) (-1133 |#2|)) (T -1126))
-((-4038 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-911 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1126 *4 *5 *3)) (-4 *3 (-1133 *5)))) (-3552 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-911 *3)) (-5 *1 (-1126 *3 *4 *2)) (-4 *2 (-1133 *4)))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-1126 *2 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -2015 (|#1| |#3|)) (-15 -3552 (|#3| |#3|)) (-15 -4038 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3570 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-3857 (((-3 |#2| "failed") |#2| (-703)) 30)) (-1219 (((-3 (-2 (|:| -3288 |#2|) (|:| -3300 |#2|)) "failed") |#2|) 43)) (-2380 (((-583 |#2|) |#2|) 45)) (-1780 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1127 |#1| |#2|) (-10 -7 (-15 -3857 ((-3 |#2| "failed") |#2| (-703))) (-15 -3570 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -1780 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1219 ((-3 (-2 (|:| -3288 |#2|) (|:| -3300 |#2|)) "failed") |#2|)) (-15 -2380 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1133 |#1|)) (T -1127))
-((-2380 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1127 *4 *3)) (-4 *3 (-1133 *4)))) (-1219 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3288 *3) (|:| -3300 *3))) (-5 *1 (-1127 *4 *3)) (-4 *3 (-1133 *4)))) (-1780 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1133 *3)))) (-3570 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1127 *4 *2)) (-4 *2 (-1133 *4)))) (-3857 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1127 *4 *2)) (-4 *2 (-1133 *4)))))
-(-10 -7 (-15 -3857 ((-3 |#2| "failed") |#2| (-703))) (-15 -3570 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -1780 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1219 ((-3 (-2 (|:| -3288 |#2|) (|:| -3300 |#2|)) "failed") |#2|)) (-15 -2380 ((-583 |#2|) |#2|)))
-((-1658 (((-3 (-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1128 |#1| |#2|) (-10 -7 (-15 -1658 ((-3 (-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) "failed") |#2| |#2|))) (-509) (-1133 |#1|)) (T -1128))
-((-1658 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-1128 *4 *3)) (-4 *3 (-1133 *4)))))
-(-10 -7 (-15 -1658 ((-3 (-2 (|:| -3371 |#2|) (|:| -2946 |#2|)) "failed") |#2| |#2|)))
-((-2381 ((|#2| |#2| |#2|) 19)) (-1802 ((|#2| |#2| |#2|) 30)) (-2405 ((|#2| |#2| |#2| (-703) (-703)) 36)))
-(((-1129 |#1| |#2|) (-10 -7 (-15 -2381 (|#2| |#2| |#2|)) (-15 -1802 (|#2| |#2| |#2|)) (-15 -2405 (|#2| |#2| |#2| (-703) (-703)))) (-963) (-1133 |#1|)) (T -1129))
-((-2405 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-963)) (-5 *1 (-1129 *4 *2)) (-4 *2 (-1133 *4)))) (-1802 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1133 *3)))) (-2381 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1133 *3)))))
-(-10 -7 (-15 -2381 (|#2| |#2| |#2|)) (-15 -1802 (|#2| |#2| |#2|)) (-15 -2405 (|#2| |#2| |#2| (-703) (-703))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-1896 (((-1157 |#2|) $ (-703)) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3751 (($ (-1072 |#2|)) NIL)) (-1440 (((-1072 $) $ (-991)) NIL) (((-1072 |#2|) $) NIL)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-3062 (($ $) NIL (|has| |#2| (-509)))) (-2190 (((-107) $) NIL (|has| |#2| (-509)))) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-991))) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-4104 (($ $ $) NIL (|has| |#2| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-1224 (($ $) NIL (|has| |#2| (-421)))) (-4018 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3820 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3404 (($ $ (-703)) NIL)) (-3195 (($ $ (-703)) NIL)) (-1340 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-954 (-517)))) (((-3 (-991) "failed") $) NIL)) (-3390 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-954 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-954 (-517)))) (((-991) $) NIL)) (-2157 (($ $ $ (-991)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2379 (($ $ $) NIL (|has| |#2| (-333)))) (-2373 (($ $) NIL)) (-2207 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#2|)) (|:| |vec| (-1157 |#2|))) (-623 $) (-1157 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#2| (-333)))) (-3719 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#2| (-509)))) (-3590 (((-2 (|:| -1582 |#2|) (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2683 (($ $) NIL (|has| |#2| (-421))) (($ $ (-991)) NIL (|has| |#2| (-421)))) (-2359 (((-583 $) $) NIL)) (-1259 (((-107) $) NIL (|has| |#2| (-832)))) (-3014 (($ $ |#2| (-703) $) NIL)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-991) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-991) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1395 (((-703) $ $) NIL (|has| |#2| (-509)))) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-2243 (((-3 $ "failed") $) NIL (|has| |#2| (-1052)))) (-2086 (($ (-1072 |#2|) (-991)) NIL) (($ (-1072 $) (-991)) NIL)) (-2401 (($ $ (-703)) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2078 (($ |#2| (-703)) 17) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-991)) NIL) (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL)) (-3492 (((-703) $) NIL) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3458 (($ $ $) NIL (|has| |#2| (-779)))) (-4084 (($ $ $) NIL (|has| |#2| (-779)))) (-2935 (($ (-1 (-703) (-703)) $) NIL)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2688 (((-1072 |#2|) $) NIL)) (-2297 (((-3 (-991) "failed") $) NIL)) (-2335 (($ $) NIL)) (-2347 ((|#2| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1662 (((-1059) $) NIL)) (-2542 (((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703)) NIL)) (-2745 (((-3 (-583 $) "failed") $) NIL)) (-1653 (((-3 (-583 $) "failed") $) NIL)) (-2670 (((-3 (-2 (|:| |var| (-991)) (|:| -2121 (-703))) "failed") $) NIL)) (-2356 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2587 (($) NIL (|has| |#2| (-1052)) CONST)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 ((|#2| $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#2| (-421)))) (-2370 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3320 (($ $ (-703) |#2| $) NIL)) (-2276 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) NIL (|has| |#2| (-832)))) (-3868 (((-388 $) $) NIL (|has| |#2| (-832)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#2| (-333)))) (-2329 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3524 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-991) |#2|) NIL) (($ $ (-583 (-991)) (-583 |#2|)) NIL) (($ $ (-991) $) NIL) (($ $ (-583 (-991)) (-583 $)) NIL)) (-3600 (((-703) $) NIL (|has| |#2| (-333)))) (-2609 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-1193 (((-3 $ "failed") $ (-703)) NIL)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#2| (-333)))) (-1220 (($ $ (-991)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-2060 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3647 (((-703) $) NIL) (((-703) $ (-991)) NIL) (((-583 (-703)) $ (-583 (-991))) NIL)) (-3359 (((-815 (-349)) $) NIL (-12 (|has| (-991) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-991) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-991) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3119 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-991)) NIL (|has| |#2| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-3827 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2271 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-991)) NIL) (($ (-1153 |#1|)) 19) (($ (-377 (-517))) NIL (-3747 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-954 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-703)) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3974 (((-3 $ "failed") $) NIL (-3747 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2074 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-3619 (($) 14 T CONST)) (-3342 (($ $ (-991)) NIL) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1076)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1076) (-703)) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) NIL (|has| |#2| (-823 (-1076)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1642 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1584 (((-107) $ $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1704 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1130 |#1| |#2|) (-13 (-1133 |#2|) (-10 -8 (-15 -2271 ($ (-1153 |#1|))) (-15 -3320 ($ $ (-703) |#2| $)))) (-1076) (-963)) (T -1130))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-14 *3 (-1076)) (-5 *1 (-1130 *3 *4)) (-4 *4 (-963)))) (-3320 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1130 *4 *3)) (-14 *4 (-1076)) (-4 *3 (-963)))))
-(-13 (-1133 |#2|) (-10 -8 (-15 -2271 ($ (-1153 |#1|))) (-15 -3320 ($ $ (-703) |#2| $))))
-((-3310 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-1131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-1133 |#1|) (-963) (-1133 |#3|)) (T -1131))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1133 *6)) (-5 *1 (-1131 *5 *4 *6 *2)) (-4 *4 (-1133 *5)))))
-(-10 -7 (-15 -3310 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1896 (((-1157 |#2|) $ (-703)) 113)) (-2097 (((-583 (-991)) $) 15)) (-3751 (($ (-1072 |#2|)) 66)) (-1302 (((-703) $) NIL) (((-703) $ (-583 (-991))) 18)) (-3327 (((-388 (-1072 $)) (-1072 $)) 184)) (-1224 (($ $) 174)) (-4018 (((-388 $) $) 172)) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 81)) (-3404 (($ $ (-703)) 70)) (-3195 (($ $ (-703)) 72)) (-1340 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3228 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-991) "failed") $) NIL)) (-3390 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-991) $) NIL)) (-3405 (($ $ $) 150)) (-3590 (((-2 (|:| -1582 |#2|) (|:| -3371 $) (|:| -2946 $)) $ $) 152)) (-1395 (((-703) $ $) 169)) (-2243 (((-3 $ "failed") $) 122)) (-2078 (($ |#2| (-703)) NIL) (($ $ (-991) (-703)) 46) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3492 (((-703) $) NIL) (((-703) $ (-991)) 41) (((-583 (-703)) $ (-583 (-991))) 42)) (-2688 (((-1072 |#2|) $) 58)) (-2297 (((-3 (-991) "failed") $) 39)) (-2542 (((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703)) 69)) (-2356 (($ $) 195)) (-2587 (($) 118)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 181)) (-2276 (((-388 (-1072 $)) (-1072 $)) 87)) (-3442 (((-388 (-1072 $)) (-1072 $)) 85)) (-3868 (((-388 $) $) 105)) (-3524 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-991) |#2|) 31) (($ $ (-583 (-991)) (-583 |#2|)) 28) (($ $ (-991) $) 25) (($ $ (-583 (-991)) (-583 $)) 23)) (-3600 (((-703) $) 187)) (-2609 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 186) (((-377 $) $ (-377 $)) 168)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 190)) (-2060 (($ $ (-991)) 139) (($ $ (-583 (-991))) NIL) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1076)) NIL) (($ $ (-583 (-1076))) NIL) (($ $ (-1076) (-703)) NIL) (($ $ (-583 (-1076)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3647 (((-703) $) NIL) (((-703) $ (-991)) 16) (((-583 (-703)) $ (-583 (-991))) 20)) (-3119 ((|#2| $) NIL) (($ $ (-991)) 124)) (-3827 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-991)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
-(((-1132 |#1| |#2|) (-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -1224 (|#1| |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -2609 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3600 ((-703) |#1|)) (-15 -3853 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2609 (|#2| (-377 |#1|) |#2|)) (-15 -1340 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3590 ((-2 (|:| -1582 |#2|) (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -3827 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3827 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1395 ((-703) |#1| |#1|)) (-15 -2609 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3195 (|#1| |#1| (-703))) (-15 -3404 (|#1| |#1| (-703))) (-15 -2542 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| (-703))) (-15 -3751 (|#1| (-1072 |#2|))) (-15 -2688 ((-1072 |#2|) |#1|)) (-15 -1896 ((-1157 |#2|) |#1| (-703))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2609 (|#1| |#1| |#1|)) (-15 -2609 (|#2| |#1| |#2|)) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3327 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -3442 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2276 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -3119 (|#1| |#1| (-991))) (-15 -2097 ((-583 (-991)) |#1|)) (-15 -1302 ((-703) |#1| (-583 (-991)))) (-15 -1302 ((-703) |#1|)) (-15 -2078 (|#1| |#1| (-583 (-991)) (-583 (-703)))) (-15 -2078 (|#1| |#1| (-991) (-703))) (-15 -3492 ((-583 (-703)) |#1| (-583 (-991)))) (-15 -3492 ((-703) |#1| (-991))) (-15 -2297 ((-3 (-991) "failed") |#1|)) (-15 -3647 ((-583 (-703)) |#1| (-583 (-991)))) (-15 -3647 ((-703) |#1| (-991))) (-15 -3390 ((-991) |#1|)) (-15 -3228 ((-3 (-991) "failed") |#1|)) (-15 -2271 (|#1| (-991))) (-15 -3524 (|#1| |#1| (-583 (-991)) (-583 |#1|))) (-15 -3524 (|#1| |#1| (-991) |#1|)) (-15 -3524 (|#1| |#1| (-583 (-991)) (-583 |#2|))) (-15 -3524 (|#1| |#1| (-991) |#2|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3647 ((-703) |#1|)) (-15 -2078 (|#1| |#2| (-703))) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3492 ((-703) |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2060 (|#1| |#1| (-583 (-991)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-991) (-703))) (-15 -2060 (|#1| |#1| (-583 (-991)))) (-15 -2060 (|#1| |#1| (-991))) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|))) (-1133 |#2|) (-963)) (T -1132))
-NIL
-(-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -1943 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4018 ((-388 |#1|) |#1|)) (-15 -1224 (|#1| |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2587 (|#1|)) (-15 -2243 ((-3 |#1| "failed") |#1|)) (-15 -2609 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3600 ((-703) |#1|)) (-15 -3853 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2609 (|#2| (-377 |#1|) |#2|)) (-15 -1340 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3590 ((-2 (|:| -1582 |#2|) (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -3827 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3827 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1395 ((-703) |#1| |#1|)) (-15 -2609 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3195 (|#1| |#1| (-703))) (-15 -3404 (|#1| |#1| (-703))) (-15 -2542 ((-2 (|:| -3371 |#1|) (|:| -2946 |#1|)) |#1| (-703))) (-15 -3751 (|#1| (-1072 |#2|))) (-15 -2688 ((-1072 |#2|) |#1|)) (-15 -1896 ((-1157 |#2|) |#1| (-703))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-1076) (-703))) (-15 -2060 (|#1| |#1| (-583 (-1076)))) (-15 -2060 (|#1| |#1| (-1076))) (-15 -2060 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-703))) (-15 -2609 (|#1| |#1| |#1|)) (-15 -2609 (|#2| |#1| |#2|)) (-15 -3868 ((-388 |#1|) |#1|)) (-15 -3327 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -3442 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2276 ((-388 (-1072 |#1|)) (-1072 |#1|))) (-15 -2019 ((-3 (-583 (-1072 |#1|)) "failed") (-583 (-1072 |#1|)) (-1072 |#1|))) (-15 -3119 (|#1| |#1| (-991))) (-15 -2097 ((-583 (-991)) |#1|)) (-15 -1302 ((-703) |#1| (-583 (-991)))) (-15 -1302 ((-703) |#1|)) (-15 -2078 (|#1| |#1| (-583 (-991)) (-583 (-703)))) (-15 -2078 (|#1| |#1| (-991) (-703))) (-15 -3492 ((-583 (-703)) |#1| (-583 (-991)))) (-15 -3492 ((-703) |#1| (-991))) (-15 -2297 ((-3 (-991) "failed") |#1|)) (-15 -3647 ((-583 (-703)) |#1| (-583 (-991)))) (-15 -3647 ((-703) |#1| (-991))) (-15 -3390 ((-991) |#1|)) (-15 -3228 ((-3 (-991) "failed") |#1|)) (-15 -2271 (|#1| (-991))) (-15 -3524 (|#1| |#1| (-583 (-991)) (-583 |#1|))) (-15 -3524 (|#1| |#1| (-991) |#1|)) (-15 -3524 (|#1| |#1| (-583 (-991)) (-583 |#2|))) (-15 -3524 (|#1| |#1| (-991) |#2|)) (-15 -3524 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3524 (|#1| |#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| (-265 |#1|))) (-15 -3524 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3647 ((-703) |#1|)) (-15 -2078 (|#1| |#2| (-703))) (-15 -3390 ((-517) |#1|)) (-15 -3228 ((-3 (-517) "failed") |#1|)) (-15 -3390 ((-377 (-517)) |#1|)) (-15 -3228 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2271 (|#1| |#2|)) (-15 -3228 ((-3 |#2| "failed") |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3492 ((-703) |#1|)) (-15 -3119 (|#2| |#1|)) (-15 -2060 (|#1| |#1| (-583 (-991)) (-583 (-703)))) (-15 -2060 (|#1| |#1| (-991) (-703))) (-15 -2060 (|#1| |#1| (-583 (-991)))) (-15 -2060 (|#1| |#1| (-991))) (-15 -2271 (|#1| (-517))) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-1896 (((-1157 |#1|) $ (-703)) 238)) (-2097 (((-583 (-991)) $) 110)) (-3751 (($ (-1072 |#1|)) 236)) (-1440 (((-1072 $) $ (-991)) 125) (((-1072 |#1|) $) 124)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-3062 (($ $) 88 (|has| |#1| (-509)))) (-2190 (((-107) $) 90 (|has| |#1| (-509)))) (-1302 (((-703) $) 112) (((-703) $ (-583 (-991))) 111)) (-2798 (((-3 $ "failed") $ $) 19)) (-4104 (($ $ $) 223 (|has| |#1| (-509)))) (-3327 (((-388 (-1072 $)) (-1072 $)) 100 (|has| |#1| (-832)))) (-1224 (($ $) 98 (|has| |#1| (-421)))) (-4018 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2019 (((-3 (-583 (-1072 $)) "failed") (-583 (-1072 $)) (-1072 $)) 103 (|has| |#1| (-832)))) (-3820 (((-107) $ $) 208 (|has| |#1| (-333)))) (-3404 (($ $ (-703)) 231)) (-3195 (($ $ (-703)) 230)) (-1340 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-954 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-954 (-517)))) (((-3 (-991) "failed") $) 136)) (-3390 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-954 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-954 (-517)))) (((-991) $) 135)) (-2157 (($ $ $ (-991)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2379 (($ $ $) 212 (|has| |#1| (-333)))) (-2373 (($ $) 154)) (-2207 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 (-517))) (|:| |vec| (-1157 (-517)))) (-623 $) (-1157 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3016 (-623 |#1|)) (|:| |vec| (-1157 |#1|))) (-623 $) (-1157 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 211 (|has| |#1| (-333)))) (-3719 (($ $ $) 229)) (-3405 (($ $ $) 220 (|has| |#1| (-509)))) (-3590 (((-2 (|:| -1582 |#1|) (|:| -3371 $) (|:| -2946 $)) $ $) 219 (|has| |#1| (-509)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-2683 (($ $) 176 (|has| |#1| (-421))) (($ $ (-991)) 105 (|has| |#1| (-421)))) (-2359 (((-583 $) $) 109)) (-1259 (((-107) $) 96 (|has| |#1| (-832)))) (-3014 (($ $ |#1| (-703) $) 172)) (-3544 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| (-991) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| (-991) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1395 (((-703) $ $) 224 (|has| |#1| (-509)))) (-1376 (((-107) $) 31)) (-3783 (((-703) $) 169)) (-2243 (((-3 $ "failed") $) 204 (|has| |#1| (-1052)))) (-2086 (($ (-1072 |#1|) (-991)) 117) (($ (-1072 $) (-991)) 116)) (-2401 (($ $ (-703)) 235)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-3794 (((-583 $) $) 126)) (-3982 (((-107) $) 152)) (-2078 (($ |#1| (-703)) 153) (($ $ (-991) (-703)) 119) (($ $ (-583 (-991)) (-583 (-703))) 118)) (-3291 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $ (-991)) 120) (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 233)) (-3492 (((-703) $) 170) (((-703) $ (-991)) 122) (((-583 (-703)) $ (-583 (-991))) 121)) (-3458 (($ $ $) 79 (|has| |#1| (-779)))) (-4084 (($ $ $) 78 (|has| |#1| (-779)))) (-2935 (($ (-1 (-703) (-703)) $) 171)) (-3310 (($ (-1 |#1| |#1|) $) 151)) (-2688 (((-1072 |#1|) $) 237)) (-2297 (((-3 (-991) "failed") $) 123)) (-2335 (($ $) 149)) (-2347 ((|#1| $) 148)) (-2332 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1662 (((-1059) $) 9)) (-2542 (((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703)) 232)) (-2745 (((-3 (-583 $) "failed") $) 114)) (-1653 (((-3 (-583 $) "failed") $) 115)) (-2670 (((-3 (-2 (|:| |var| (-991)) (|:| -2121 (-703))) "failed") $) 113)) (-2356 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2587 (($) 203 (|has| |#1| (-1052)) CONST)) (-4125 (((-1023) $) 10)) (-2310 (((-107) $) 166)) (-2321 ((|#1| $) 167)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 95 (|has| |#1| (-421)))) (-2370 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2276 (((-388 (-1072 $)) (-1072 $)) 102 (|has| |#1| (-832)))) (-3442 (((-388 (-1072 $)) (-1072 $)) 101 (|has| |#1| (-832)))) (-3868 (((-388 $) $) 99 (|has| |#1| (-832)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 213 (|has| |#1| (-333)))) (-2329 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-3524 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-991) |#1|) 141) (($ $ (-583 (-991)) (-583 |#1|)) 140) (($ $ (-991) $) 139) (($ $ (-583 (-991)) (-583 $)) 138)) (-3600 (((-703) $) 209 (|has| |#1| (-333)))) (-2609 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-1193 (((-3 $ "failed") $ (-703)) 234)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 210 (|has| |#1| (-333)))) (-1220 (($ $ (-991)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-2060 (($ $ (-991)) 42) (($ $ (-583 (-991))) 41) (($ $ (-991) (-703)) 40) (($ $ (-583 (-991)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1076)) 250 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 249 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 248 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 247 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3647 (((-703) $) 150) (((-703) $ (-991)) 130) (((-583 (-703)) $ (-583 (-991))) 129)) (-3359 (((-815 (-349)) $) 82 (-12 (|has| (-991) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| (-991) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| (-991) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3119 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-991)) 106 (|has| |#1| (-421)))) (-1818 (((-3 (-1157 $) "failed") (-623 $)) 104 (-3993 (|has| $ (-132)) (|has| |#1| (-832))))) (-3827 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-991)) 137) (($ (-377 (-517))) 72 (-3747 (|has| |#1| (-954 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1998 (((-583 |#1|) $) 168)) (-1689 ((|#1| $ (-703)) 155) (($ $ (-991) (-703)) 128) (($ $ (-583 (-991)) (-583 (-703))) 127)) (-3974 (((-3 $ "failed") $) 73 (-3747 (-3993 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-4099 (((-703)) 29)) (-2863 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2074 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-991)) 38) (($ $ (-583 (-991))) 37) (($ $ (-991) (-703)) 36) (($ $ (-583 (-991)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1076)) 246 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076))) 245 (|has| |#1| (-823 (-1076)))) (($ $ (-1076) (-703)) 244 (|has| |#1| (-823 (-1076)))) (($ $ (-583 (-1076)) (-583 (-703))) 243 (|has| |#1| (-823 (-1076)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1642 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 6)) (-1630 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1704 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1133 |#1|) (-1188) (-963)) (T -1133))
-((-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1133 *4)) (-4 *4 (-963)) (-5 *2 (-1157 *4)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-963)) (-5 *2 (-1072 *3)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-963)) (-4 *1 (-1133 *3)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))) (-1193 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))) (-3291 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-1133 *3)))) (-2542 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-1133 *4)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))) (-3719 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)))) (-2060 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))) (-1220 (*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-156)))) (-2157 (*1 *2 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-156)))) (-2609 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-963)) (-4 *3 (-509)))) (-1395 (*1 *2 *1 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-963)) (-4 *3 (-509)) (-5 *2 (-703)))) (-4104 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-509)))) (-3827 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-509)))) (-3827 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-963)) (-4 *3 (-509)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-509)))) (-3590 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1582 *3) (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-1133 *3)))) (-1340 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1133 *3)))) (-2609 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517)))))))
-(-13 (-872 |t#1| (-703) (-991)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -1896 ((-1157 |t#1|) $ (-703))) (-15 -2688 ((-1072 |t#1|) $)) (-15 -3751 ($ (-1072 |t#1|))) (-15 -2401 ($ $ (-703))) (-15 -1193 ((-3 $ "failed") $ (-703))) (-15 -3291 ((-2 (|:| -3371 $) (|:| -2946 $)) $ $)) (-15 -2542 ((-2 (|:| -3371 $) (|:| -2946 $)) $ (-703))) (-15 -3404 ($ $ (-703))) (-15 -3195 ($ $ (-703))) (-15 -3719 ($ $ $)) (-15 -2060 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -1220 (|t#1| $)) (-15 -2157 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -2609 ((-377 $) (-377 $) (-377 $))) (-15 -1395 ((-703) $ $)) (-15 -4104 ($ $ $)) (-15 -3827 ((-3 $ "failed") $ $)) (-15 -3827 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -3405 ($ $ $)) (-15 -3590 ((-2 (|:| -1582 |t#1|) (|:| -3371 $) (|:| -2946 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (-15 -1340 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4188) (-15 -2609 (|t#1| (-377 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -2356 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-991) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| (-991) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| (-991) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| #0#) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3747 (|has| |#1| (-832)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 #2=(-991) |#1|) . T) ((-478 #2# $) . T) ((-478 $ $) . T) ((-509) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 #2#) . T) ((-823 (-1076)) |has| |#1| (-823 (-1076))) ((-809 (-349)) -12 (|has| (-991) (-809 (-349))) (|has| |#1| (-809 (-349)))) ((-809 (-517)) -12 (|has| (-991) (-809 (-517))) (|has| |#1| (-809 (-517)))) ((-872 |#1| #0# #2#) . T) ((-832) |has| |#1| (-832)) ((-843) |has| |#1| (-333)) ((-954 (-377 (-517))) |has| |#1| (-954 (-377 (-517)))) ((-954 (-517)) |has| |#1| (-954 (-517))) ((-954 #2#) . T) ((-954 |#1|) . T) ((-969 #1#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1052) |has| |#1| (-1052)) ((-1115) |has| |#1| (-832)))
-((-2097 (((-583 (-991)) $) 28)) (-2373 (($ $) 25)) (-2078 (($ |#2| |#3|) NIL) (($ $ (-991) |#3|) 22) (($ $ (-583 (-991)) (-583 |#3|)) 20)) (-2335 (($ $) 14)) (-2347 ((|#2| $) 12)) (-3647 ((|#3| $) 10)))
-(((-1134 |#1| |#2| |#3|) (-10 -8 (-15 -2097 ((-583 (-991)) |#1|)) (-15 -2078 (|#1| |#1| (-583 (-991)) (-583 |#3|))) (-15 -2078 (|#1| |#1| (-991) |#3|)) (-15 -2373 (|#1| |#1|)) (-15 -2078 (|#1| |#2| |#3|)) (-15 -3647 (|#3| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2347 (|#2| |#1|))) (-1135 |#2| |#3|) (-963) (-724)) (T -1134))
-NIL
-(-10 -8 (-15 -2097 ((-583 (-991)) |#1|)) (-15 -2078 (|#1| |#1| (-583 (-991)) (-583 |#3|))) (-15 -2078 (|#1| |#1| (-991) |#3|)) (-15 -2373 (|#1| |#1|)) (-15 -2078 (|#1| |#2| |#3|)) (-15 -3647 (|#3| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2347 (|#2| |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 (-991)) $) 74)) (-3752 (((-1076) $) 103)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2853 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-1928 (((-1057 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-1880 (((-107) $) 73)) (-1395 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1376 (((-107) $) 31)) (-2401 (($ $ (-844)) 101)) (-3982 (((-107) $) 62)) (-2078 (($ |#1| |#2|) 61) (($ $ (-991) |#2|) 76) (($ $ (-583 (-991)) (-583 |#2|)) 75)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2671 (($ $ |#2|) 95)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3524 (((-1057 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2609 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1017)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1076) (-703)) 88 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1076))) 87 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1076)) 86 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3647 ((|#2| $) 64)) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1689 ((|#1| $ |#2|) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-3569 ((|#1| $) 102)) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2204 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1076) (-703)) 92 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1076))) 91 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1076)) 90 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1135 |#1| |#2|) (-1188) (-963) (-724)) (T -1135))
-((-1928 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-5 *2 (-1057 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2609 (*1 *2 *1 *3) (-12 (-4 *1 (-1135 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (-5 *2 (-1076)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1135 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-1395 (*1 *2 *1 *2) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-2853 (*1 *1 *1 *2) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-2853 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-2204 (*1 *2 *1 *3) (-12 (-4 *1 (-1135 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2271 (*2 (-1076)))) (-4 *2 (-963)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))) (-3524 (*1 *2 *1 *3) (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1057 *3)))))
-(-13 (-892 |t#1| |t#2| (-991)) (-10 -8 (-15 -1928 ((-1057 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2609 (|t#1| $ |t#2|)) (-15 -3752 ((-1076) $)) (-15 -3569 (|t#1| $)) (-15 -2401 ($ $ (-844))) (-15 -1395 (|t#2| $)) (-15 -1395 (|t#2| $ |t#2|)) (-15 -2853 ($ $ |t#2|)) (-15 -2853 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2271 (|t#1| (-1076)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2204 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2671 ($ $ |t#2|)) (IF (|has| |t#2| (-1017)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-823 (-1076))) (-6 (-823 (-1076))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3524 ((-1057 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1017)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-823 (-1076)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-823 (-1076)))) ((-892 |#1| |#2| (-991)) . T) ((-969 #0#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-1224 ((|#2| |#2|) 12)) (-4018 (((-388 |#2|) |#2|) 14)) (-3383 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
-(((-1136 |#1| |#2|) (-10 -7 (-15 -4018 ((-388 |#2|) |#2|)) (-15 -1224 (|#2| |#2|)) (-15 -3383 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1133 |#1|) (-509) (-10 -8 (-15 -2370 ($ $ $))))) (T -1136))
-((-3383 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1133 *3) (-509) (-10 -8 (-15 -2370 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1136 *3 *4)))) (-1224 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-13 (-1133 *3) (-509) (-10 -8 (-15 -2370 ($ $ $))))))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-13 (-1133 *4) (-509) (-10 -8 (-15 -2370 ($ $ $))))))))
-(-10 -7 (-15 -4018 ((-388 |#2|) |#2|)) (-15 -1224 (|#2| |#2|)) (-15 -3383 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
-((-3310 (((-1142 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1142 |#1| |#3| |#5|)) 23)))
-(((-1137 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3310 ((-1142 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1142 |#1| |#3| |#5|)))) (-963) (-963) (-1076) (-1076) |#1| |#2|) (T -1137))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1142 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1076)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1142 *6 *8 *10)) (-5 *1 (-1137 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1076)))))
-(-10 -7 (-15 -3310 ((-1142 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1142 |#1| |#3| |#5|))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 (-991)) $) 74)) (-3752 (((-1076) $) 103)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1648 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 162 (|has| |#1| (-333)))) (-4018 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3880 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1624 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1670 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) 17 T CONST)) (-2379 (($ $ $) 157 (|has| |#1| (-333)))) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-1259 (((-107) $) 164 (|has| |#1| (-333)))) (-1880 (((-107) $) 73)) (-2116 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) 101) (($ $ (-377 (-517))) 171)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3982 (((-107) $) 62)) (-2078 (($ |#1| (-377 (-517))) 61) (($ $ (-991) (-377 (-517))) 76) (($ $ (-583 (-991)) (-583 (-377 (-517)))) 75)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-1226 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-2332 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1662 (((-1059) $) 9)) (-2300 (($ $) 165 (|has| |#1| (-333)))) (-2356 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 169 (-3747 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1097)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 150 (|has| |#1| (-333)))) (-2370 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3868 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 158 (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) 95)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3870 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) 154 (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 155 (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076) (-703)) 88 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1076))) 87 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076)) 86 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3647 (((-377 (-517)) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-3569 ((|#1| $) 102)) (-1722 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1697 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076) (-703)) 92 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1076))) 91 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076)) 90 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1138 |#1|) (-1188) (-963)) (T -1138))
-((-3433 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-963)) (-4 *1 (-1138 *4)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1138 *3)) (-4 *3 (-963)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517)))))) (-2356 (*1 *1 *1 *2) (-3747 (-12 (-5 *2 (-1076)) (-4 *1 (-1138 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1097)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1076)) (-4 *1 (-1138 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -2097 ((-583 *2) *3))) (|has| *3 (-15 -2356 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1135 |t#1| (-377 (-517))) (-10 -8 (-15 -3433 ($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -2401 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $)) (IF (|has| |t#1| (-15 -2356 (|t#1| |t#1| (-1076)))) (IF (|has| |t#1| (-15 -2097 ((-583 (-1076)) |t#1|))) (-15 -2356 ($ $ (-1076))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1097)) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-29 (-517))) (-15 -2356 ($ $ (-1076))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-920)) (-6 (-1097))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1017)) ((-262) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))) ((-892 |#1| #0# (-991)) . T) ((-843) |has| |#1| (-333)) ((-920) |has| |#1| (-37 (-377 (-517)))) ((-969 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1100) |has| |#1| (-37 (-377 (-517)))) ((-1115) |has| |#1| (-333)) ((-1135 |#1| #0#) . T))
-((-3097 (((-107) $) 12)) (-3228 (((-3 |#3| "failed") $) 17)) (-3390 ((|#3| $) 14)))
-(((-1139 |#1| |#2| |#3|) (-10 -8 (-15 -3390 (|#3| |#1|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -3097 ((-107) |#1|))) (-1140 |#2| |#3|) (-963) (-1117 |#2|)) (T -1139))
-NIL
-(-10 -8 (-15 -3390 (|#3| |#1|)) (-15 -3228 ((-3 |#3| "failed") |#1|)) (-15 -3097 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 (-991)) $) 74)) (-3752 (((-1076) $) 103)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1648 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 162 (|has| |#1| (-333)))) (-4018 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3880 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1624 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1670 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#2| "failed") $) 183)) (-3390 ((|#2| $) 182)) (-2379 (($ $ $) 157 (|has| |#1| (-333)))) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-2495 (((-377 (-517)) $) 180)) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-2165 (($ (-377 (-517)) |#2|) 181)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-1259 (((-107) $) 164 (|has| |#1| (-333)))) (-1880 (((-107) $) 73)) (-2116 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) 101) (($ $ (-377 (-517))) 171)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3982 (((-107) $) 62)) (-2078 (($ |#1| (-377 (-517))) 61) (($ $ (-991) (-377 (-517))) 76) (($ $ (-583 (-991)) (-583 (-377 (-517)))) 75)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-1226 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-2332 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1561 ((|#2| $) 179)) (-2245 (((-3 |#2| "failed") $) 177)) (-2154 ((|#2| $) 178)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 165 (|has| |#1| (-333)))) (-2356 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 169 (-3747 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1097)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 150 (|has| |#1| (-333)))) (-2370 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3868 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 158 (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) 95)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3870 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) 154 (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 155 (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076) (-703)) 88 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1076))) 87 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076)) 86 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3647 (((-377 (-517)) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-3569 ((|#1| $) 102)) (-1722 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1697 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076) (-703)) 92 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1076))) 91 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1076)) 90 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1140 |#1| |#2|) (-1188) (-963) (-1117 |t#1|)) (T -1140))
-((-3647 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1117 *3)) (-5 *2 (-377 (-517))))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-1140 *3 *2)) (-4 *2 (-1117 *3)))) (-2165 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-963)) (-4 *1 (-1140 *4 *3)) (-4 *3 (-1117 *4)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1117 *3)) (-5 *2 (-377 (-517))))) (-1561 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1117 *3)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1117 *3)))) (-2245 (*1 *2 *1) (|partial| -12 (-4 *1 (-1140 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1117 *3)))))
-(-13 (-1138 |t#1|) (-954 |t#2|) (-10 -8 (-15 -2165 ($ (-377 (-517)) |t#2|)) (-15 -2495 ((-377 (-517)) $)) (-15 -1561 (|t#2| $)) (-15 -3647 ((-377 (-517)) $)) (-15 -2271 ($ |t#2|)) (-15 -2154 (|t#2| $)) (-15 -2245 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1017)) ((-262) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1076)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076)))) ((-892 |#1| #0# (-991)) . T) ((-843) |has| |#1| (-333)) ((-920) |has| |#1| (-37 (-377 (-517)))) ((-954 |#2|) . T) ((-969 #1#) -3747 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1100) |has| |#1| (-37 (-377 (-517)))) ((-1115) |has| |#1| (-333)) ((-1135 |#1| #0#) . T) ((-1138 |#1|) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 96)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1648 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1670 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL)) (-3390 ((|#2| $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) 79)) (-2495 (((-377 (-517)) $) 12)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2165 (($ (-377 (-517)) |#2|) 10)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-1880 (((-107) $) 68)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) 120) (($ $ (-377 (-517))) 118)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-377 (-517))) 31) (($ $ (-991) (-377 (-517))) NIL) (($ $ (-583 (-991)) (-583 (-377 (-517)))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) 115)) (-1226 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1561 ((|#2| $) 11)) (-2245 (((-3 |#2| "failed") $) 41)) (-2154 ((|#2| $) 42)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) 93 (|has| |#1| (-333)))) (-2356 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 140 (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097)))))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) 112)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3647 (((-377 (-517)) $) 16)) (-1682 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 110)) (-2271 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) 99)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) 117)) (-3569 ((|#1| $) 98)) (-1722 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 21 T CONST)) (-3619 (($) 17 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1584 (((-107) $ $) 66)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1692 (($ $) 131) (($ $ $) 72)) (-1678 (($ $ $) 70)) (** (($ $ (-844)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1141 |#1| |#2|) (-1140 |#1| |#2|) (-963) (-1117 |#1|)) (T -1141))
-NIL
-(-1140 |#1| |#2|)
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 11)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) NIL (|has| |#1| (-509)))) (-2853 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1928 (((-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $) NIL (|has| |#1| (-333)))) (-4018 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3820 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-703) (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-1121 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1149 |#1| |#2| |#3|) "failed") $) 22)) (-3390 (((-1121 |#1| |#2| |#3|) $) NIL) (((-1149 |#1| |#2| |#3|) $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-333)))) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2495 (((-377 (-517)) $) 57)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2165 (($ (-377 (-517)) (-1121 |#1| |#2| |#3|)) NIL)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1259 (((-107) $) NIL (|has| |#1| (-333)))) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1376 (((-107) $) NIL)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-377 (-517))) 29) (($ $ (-991) (-377 (-517))) NIL) (($ $ (-583 (-991)) (-583 (-377 (-517)))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-2332 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1561 (((-1121 |#1| |#2| |#3|) $) 60)) (-2245 (((-3 (-1121 |#1| |#2| |#3|) "failed") $) NIL)) (-2154 (((-1121 |#1| |#2| |#3|) $) NIL)) (-1662 (((-1059) $) NIL)) (-2300 (($ $) NIL (|has| |#1| (-333)))) (-2356 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) NIL (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) NIL (|has| |#1| (-333)))) (-2370 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3868 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3572 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) NIL (|has| |#1| (-333)))) (-2671 (($ $ (-377 (-517))) NIL)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3006 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3600 (((-703) $) NIL (|has| |#1| (-333)))) (-2609 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1017)))) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) NIL (|has| |#1| (-333)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1153 |#2|)) 37)) (-3647 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) NIL)) (-2271 (((-787) $) 88) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1121 |#1| |#2| |#3|)) 16) (($ (-1149 |#1| |#2| |#3|)) 17) (($ (-1153 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1689 ((|#1| $ (-377 (-517))) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 12)) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3610 (($) 31 T CONST)) (-3619 (($) 26 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 33)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1142 |#1| |#2| |#3|) (-13 (-1140 |#1| (-1121 |#1| |#2| |#3|)) (-954 (-1149 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -1142))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1142 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1140 |#1| (-1121 |#1| |#2| |#3|)) (-954 (-1149 |#1| |#2| |#3|)) (-10 -8 (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 32)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL)) (-3062 (($ $) NIL)) (-2190 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 (-517) "failed") $) NIL (|has| (-1142 |#2| |#3| |#4|) (-954 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1142 |#2| |#3| |#4|) (-954 (-377 (-517))))) (((-3 (-1142 |#2| |#3| |#4|) "failed") $) 20)) (-3390 (((-517) $) NIL (|has| (-1142 |#2| |#3| |#4|) (-954 (-517)))) (((-377 (-517)) $) NIL (|has| (-1142 |#2| |#3| |#4|) (-954 (-377 (-517))))) (((-1142 |#2| |#3| |#4|) $) NIL)) (-2373 (($ $) 33)) (-2560 (((-3 $ "failed") $) 25)) (-2683 (($ $) NIL (|has| (-1142 |#2| |#3| |#4|) (-421)))) (-3014 (($ $ (-1142 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) 11)) (-3982 (((-107) $) NIL)) (-2078 (($ (-1142 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-3492 (((-289 |#2| |#3| |#4|) $) NIL)) (-2935 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-3310 (($ (-1 (-1142 |#2| |#3| |#4|) (-1142 |#2| |#3| |#4|)) $) NIL)) (-2450 (((-3 (-772 |#2|) "failed") $) 73)) (-2335 (($ $) NIL)) (-2347 (((-1142 |#2| |#3| |#4|) $) 18)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2310 (((-107) $) NIL)) (-2321 (((-1142 |#2| |#3| |#4|) $) NIL)) (-2329 (((-3 $ "failed") $ (-1142 |#2| |#3| |#4|)) NIL (|has| (-1142 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-3304 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1142 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1059))) "failed") $) 56)) (-3647 (((-289 |#2| |#3| |#4|) $) 14)) (-3119 (((-1142 |#2| |#3| |#4|) $) NIL (|has| (-1142 |#2| |#3| |#4|) (-421)))) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1142 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3747 (|has| (-1142 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1142 |#2| |#3| |#4|) (-954 (-377 (-517))))))) (-1998 (((-583 (-1142 |#2| |#3| |#4|)) $) NIL)) (-1689 (((-1142 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-3974 (((-3 $ "failed") $) NIL (|has| (-1142 |#2| |#3| |#4|) (-132)))) (-4099 (((-703)) NIL)) (-2863 (($ $ $ (-703)) NIL (|has| (-1142 |#2| |#3| |#4|) (-156)))) (-2074 (((-107) $ $) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 61 T CONST)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ (-1142 |#2| |#3| |#4|)) NIL (|has| (-1142 |#2| |#3| |#4|) (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1142 |#2| |#3| |#4|)) NIL) (($ (-1142 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1142 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1142 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
-(((-1143 |#1| |#2| |#3| |#4|) (-13 (-296 (-1142 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -2450 ((-3 (-772 |#2|) "failed") $)) (-15 -3304 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1142 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1059))) "failed") $)))) (-13 (-779) (-954 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1097) (-400 |#1|)) (-1076) |#2|) (T -1143))
-((-2450 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1097) (-400 *3))) (-14 *5 (-1076)) (-14 *6 *4))) (-3304 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1142 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1059)))) (-5 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1097) (-400 *3))) (-14 *5 (-1076)) (-14 *6 *4))))
-(-13 (-296 (-1142 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -2450 ((-3 (-772 |#2|) "failed") $)) (-15 -3304 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1142 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1059))) "failed") $))))
-((-3121 ((|#2| $) 29)) (-2586 ((|#2| $) 18)) (-1541 (($ $) 36)) (-2966 (($ $ (-517)) 64)) (-1851 (((-107) $ (-703)) 33)) (-1189 ((|#2| $ |#2|) 61)) (-2005 ((|#2| $ |#2|) 59)) (-2445 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3929 (($ $ (-583 $)) 60)) (-2576 ((|#2| $) 17)) (-2439 (($ $) NIL) (($ $ (-703)) 42)) (-3657 (((-583 $) $) 26)) (-2441 (((-107) $ $) 50)) (-2497 (((-107) $ (-703)) 32)) (-1320 (((-107) $ (-703)) 31)) (-3017 (((-107) $) 28)) (-1446 ((|#2| $) 24) (($ $ (-703)) 46)) (-2609 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3028 (((-107) $) 22)) (-3498 (($ $) 39)) (-3020 (($ $) 65)) (-2453 (((-703) $) 41)) (-2231 (($ $) 40)) (-4110 (($ $ $) 58) (($ |#2| $) NIL)) (-2199 (((-583 $) $) 27)) (-1584 (((-107) $ $) 48)) (-3535 (((-703) $) 35)))
-(((-1144 |#1| |#2|) (-10 -8 (-15 -2966 (|#1| |#1| (-517))) (-15 -2445 (|#2| |#1| "last" |#2|)) (-15 -2005 (|#2| |#1| |#2|)) (-15 -2445 (|#1| |#1| "rest" |#1|)) (-15 -2445 (|#2| |#1| "first" |#2|)) (-15 -3020 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -2453 ((-703) |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2586 (|#2| |#1|)) (-15 -2576 (|#2| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1446 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "last")) (-15 -1446 (|#2| |#1|)) (-15 -2439 (|#1| |#1| (-703))) (-15 -2609 (|#1| |#1| "rest")) (-15 -2439 (|#1| |#1|)) (-15 -2609 (|#2| |#1| "first")) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#1|)) (-15 -1189 (|#2| |#1| |#2|)) (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -3929 (|#1| |#1| (-583 |#1|))) (-15 -2441 ((-107) |#1| |#1|)) (-15 -3028 ((-107) |#1|)) (-15 -2609 (|#2| |#1| "value")) (-15 -3121 (|#2| |#1|)) (-15 -3017 ((-107) |#1|)) (-15 -3657 ((-583 |#1|) |#1|)) (-15 -2199 ((-583 |#1|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703)))) (-1145 |#2|) (-1111)) (T -1144))
-NIL
-(-10 -8 (-15 -2966 (|#1| |#1| (-517))) (-15 -2445 (|#2| |#1| "last" |#2|)) (-15 -2005 (|#2| |#1| |#2|)) (-15 -2445 (|#1| |#1| "rest" |#1|)) (-15 -2445 (|#2| |#1| "first" |#2|)) (-15 -3020 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -2453 ((-703) |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2586 (|#2| |#1|)) (-15 -2576 (|#2| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1446 (|#1| |#1| (-703))) (-15 -2609 (|#2| |#1| "last")) (-15 -1446 (|#2| |#1|)) (-15 -2439 (|#1| |#1| (-703))) (-15 -2609 (|#1| |#1| "rest")) (-15 -2439 (|#1| |#1|)) (-15 -2609 (|#2| |#1| "first")) (-15 -4110 (|#1| |#2| |#1|)) (-15 -4110 (|#1| |#1| |#1|)) (-15 -1189 (|#2| |#1| |#2|)) (-15 -2445 (|#2| |#1| "value" |#2|)) (-15 -3929 (|#1| |#1| (-583 |#1|))) (-15 -2441 ((-107) |#1| |#1|)) (-15 -3028 ((-107) |#1|)) (-15 -2609 (|#2| |#1| "value")) (-15 -3121 (|#2| |#1|)) (-15 -3017 ((-107) |#1|)) (-15 -3657 ((-583 |#1|) |#1|)) (-15 -2199 ((-583 |#1|) |#1|)) (-15 -1584 ((-107) |#1| |#1|)) (-15 -3535 ((-703) |#1|)) (-15 -1851 ((-107) |#1| (-703))) (-15 -2497 ((-107) |#1| (-703))) (-15 -1320 ((-107) |#1| (-703))))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3121 ((|#1| $) 48)) (-2586 ((|#1| $) 65)) (-1541 (($ $) 67)) (-2966 (($ $ (-517)) 52 (|has| $ (-6 -4193)))) (-1851 (((-107) $ (-703)) 8)) (-1189 ((|#1| $ |#1|) 39 (|has| $ (-6 -4193)))) (-1702 (($ $ $) 56 (|has| $ (-6 -4193)))) (-2005 ((|#1| $ |#1|) 54 (|has| $ (-6 -4193)))) (-2255 ((|#1| $ |#1|) 58 (|has| $ (-6 -4193)))) (-2445 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4193))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4193))) (($ $ "rest" $) 55 (|has| $ (-6 -4193))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4193)))) (-3929 (($ $ (-583 $)) 41 (|has| $ (-6 -4193)))) (-2576 ((|#1| $) 66)) (-1393 (($) 7 T CONST)) (-2439 (($ $) 73) (($ $ (-703)) 71)) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-3657 (((-583 $) $) 50)) (-2441 (((-107) $ $) 42 (|has| |#1| (-1005)))) (-2497 (((-107) $ (-703)) 9)) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35)) (-1320 (((-107) $ (-703)) 10)) (-1939 (((-583 |#1|) $) 45)) (-3017 (((-107) $) 49)) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1446 ((|#1| $) 70) (($ $ (-703)) 68)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 76) (($ $ (-703)) 74)) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1844 (((-517) $ $) 44)) (-3028 (((-107) $) 46)) (-3498 (($ $) 62)) (-3020 (($ $) 59 (|has| $ (-6 -4193)))) (-2453 (((-703) $) 63)) (-2231 (($ $) 64)) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-2462 (($ $) 13)) (-1753 (($ $ $) 61 (|has| $ (-6 -4193))) (($ $ |#1|) 60 (|has| $ (-6 -4193)))) (-4110 (($ $ $) 78) (($ |#1| $) 77)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2199 (((-583 $) $) 51)) (-2836 (((-107) $ $) 43 (|has| |#1| (-1005)))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1145 |#1|) (-1188) (-1111)) (T -1145))
-((-4110 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-4110 (*1 *1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1145 *3)) (-4 *3 (-1111)))) (-2439 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1145 *3)) (-4 *3 (-1111)))) (-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1145 *3)) (-4 *3 (-1111)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2609 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-1446 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1145 *3)) (-4 *3 (-1111)))) (-1541 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2231 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))) (-3498 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-1753 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-1753 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-3020 (*1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2255 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2445 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-1702 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2445 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4193)) (-4 *1 (-1145 *3)) (-4 *3 (-1111)))) (-2005 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2445 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))) (-2966 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4193)) (-4 *1 (-1145 *3)) (-4 *3 (-1111)))))
-(-13 (-928 |t#1|) (-10 -8 (-15 -4110 ($ $ $)) (-15 -4110 ($ |t#1| $)) (-15 -2429 (|t#1| $)) (-15 -2609 (|t#1| $ "first")) (-15 -2429 ($ $ (-703))) (-15 -2439 ($ $)) (-15 -2609 ($ $ "rest")) (-15 -2439 ($ $ (-703))) (-15 -1446 (|t#1| $)) (-15 -2609 (|t#1| $ "last")) (-15 -1446 ($ $ (-703))) (-15 -1541 ($ $)) (-15 -2576 (|t#1| $)) (-15 -2586 (|t#1| $)) (-15 -2231 ($ $)) (-15 -2453 ((-703) $)) (-15 -3498 ($ $)) (IF (|has| $ (-6 -4193)) (PROGN (-15 -1753 ($ $ $)) (-15 -1753 ($ $ |t#1|)) (-15 -3020 ($ $)) (-15 -2255 (|t#1| $ |t#1|)) (-15 -2445 (|t#1| $ "first" |t#1|)) (-15 -1702 ($ $ $)) (-15 -2445 ($ $ "rest" $)) (-15 -2005 (|t#1| $ |t#1|)) (-15 -2445 (|t#1| $ "last" |t#1|)) (-15 -2966 ($ $ (-517)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1005)) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-928 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1111) . T))
-((-3310 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1146 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| (-1 |#2| |#1|) |#3|))) (-963) (-963) (-1148 |#1|) (-1148 |#2|)) (T -1146))
-((-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6 *4 *2)) (-4 *4 (-1148 *5)))))
-(-10 -7 (-15 -3310 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3097 (((-107) $) 15)) (-1648 (($ $) 91)) (-1494 (($ $) 67)) (-1624 (($ $) 87)) (-1471 (($ $) 63)) (-1670 (($ $) 95)) (-1520 (($ $) 71)) (-1226 (($ $) 61)) (-3870 (($ $) 59)) (-1682 (($ $) 97)) (-1533 (($ $) 73)) (-1660 (($ $) 93)) (-1507 (($ $) 69)) (-1635 (($ $) 89)) (-1483 (($ $) 65)) (-2271 (((-787) $) 47) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1722 (($ $) 103)) (-1576 (($ $) 79)) (-1697 (($ $) 99)) (-1548 (($ $) 75)) (-3489 (($ $) 107)) (-1600 (($ $) 83)) (-2824 (($ $) 109)) (-1613 (($ $) 85)) (-1735 (($ $) 105)) (-1589 (($ $) 81)) (-1709 (($ $) 101)) (-1562 (($ $) 77)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-377 (-517))) 57)))
-(((-1147 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1494 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -1507 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1589 (|#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1226 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -3097 ((-107) |#1|)) (-15 -2271 ((-787) |#1|))) (-1148 |#2|) (-963)) (T -1147))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1494 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -1507 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1589 (|#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -2824 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1226 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2271 (|#1| |#2|)) (-15 -2271 (|#1| |#1|)) (-15 -2271 (|#1| (-377 (-517)))) (-15 -2271 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -3097 ((-107) |#1|)) (-15 -2271 ((-787) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2097 (((-583 (-991)) $) 74)) (-3752 (((-1076) $) 103)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-3062 (($ $) 52 (|has| |#1| (-509)))) (-2190 (((-107) $) 54 (|has| |#1| (-509)))) (-2853 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-1928 (((-1057 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1648 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) 19)) (-3880 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1624 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-1057 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1057 |#1|)) 153)) (-1670 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) 17 T CONST)) (-2373 (($ $) 60)) (-2560 (((-3 $ "failed") $) 34)) (-1706 (($ $) 152)) (-2914 (((-875 |#1|) $ (-703)) 150) (((-875 |#1|) $ (-703) (-703)) 149)) (-1880 (((-107) $) 73)) (-2116 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-703) $) 100) (((-703) $ (-703)) 99)) (-1376 (((-107) $) 31)) (-2092 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2401 (($ $ (-844)) 101)) (-3138 (($ (-1 |#1| (-517)) $) 151)) (-3982 (((-107) $) 62)) (-2078 (($ |#1| (-703)) 61) (($ $ (-991) (-703)) 76) (($ $ (-583 (-991)) (-583 (-703))) 75)) (-3310 (($ (-1 |#1| |#1|) $) 63)) (-1226 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) 65)) (-2347 ((|#1| $) 66)) (-1662 (((-1059) $) 9)) (-2356 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 146 (-3747 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1097)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4125 (((-1023) $) 10)) (-2671 (($ $ (-703)) 95)) (-2329 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3870 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3524 (((-1057 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2609 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1017)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1076) (-703)) 88 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1076))) 87 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1076)) 86 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-3647 (((-703) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 72)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1998 (((-1057 |#1|) $) 154)) (-1689 ((|#1| $ (-703)) 59)) (-3974 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-4099 (((-703)) 29)) (-3569 ((|#1| $) 102)) (-1722 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1697 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1076) (-703)) 92 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1076))) 91 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1076)) 90 (-12 (|has| |#1| (-823 (-1076))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1148 |#1|) (-1188) (-963)) (T -1148))
-((-3433 (*1 *1 *2) (-12 (-5 *2 (-1057 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1148 *3)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-963)) (-5 *2 (-1057 *3)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-4 *1 (-1148 *3)))) (-1706 (*1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-963)))) (-3138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1148 *3)) (-4 *3 (-963)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1148 *4)) (-4 *4 (-963)) (-5 *2 (-875 *4)))) (-2914 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1148 *4)) (-4 *4 (-963)) (-5 *2 (-875 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-963)) (-4 *2 (-333)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517)))))) (-2356 (*1 *1 *1 *2) (-3747 (-12 (-5 *2 (-1076)) (-4 *1 (-1148 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1097)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1076)) (-4 *1 (-1148 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -2097 ((-583 *2) *3))) (|has| *3 (-15 -2356 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1135 |t#1| (-703)) (-10 -8 (-15 -3433 ($ (-1057 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -1998 ((-1057 |t#1|) $)) (-15 -3433 ($ (-1057 |t#1|))) (-15 -1706 ($ $)) (-15 -3138 ($ (-1 |t#1| (-517)) $)) (-15 -2914 ((-875 |t#1|) $ (-703))) (-15 -2914 ((-875 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -2356 ($ $)) (IF (|has| |t#1| (-15 -2356 (|t#1| |t#1| (-1076)))) (IF (|has| |t#1| (-15 -2097 ((-583 (-1076)) |t#1|))) (-15 -2356 ($ $ (-1076))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1097)) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-29 (-517))) (-15 -2356 ($ $ (-1076))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-920)) (-6 (-1097))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1017)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-823 (-1076)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076)))) ((-892 |#1| #0# (-991)) . T) ((-920) |has| |#1| (-37 (-377 (-517)))) ((-969 #1#) |has| |#1| (-37 (-377 (-517)))) ((-969 |#1|) . T) ((-969 $) -3747 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1100) |has| |#1| (-37 (-377 (-517)))) ((-1135 |#1| #0#) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2097 (((-583 (-991)) $) NIL)) (-3752 (((-1076) $) 87)) (-2172 (((-1130 |#2| |#1|) $ (-703)) 73)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-3062 (($ $) NIL (|has| |#1| (-509)))) (-2190 (((-107) $) 136 (|has| |#1| (-509)))) (-2853 (($ $ (-703)) 121) (($ $ (-703) (-703)) 123)) (-1928 (((-1057 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1648 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1494 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2798 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3433 (($ (-1057 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1057 |#1|)) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1520 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1393 (($) NIL T CONST)) (-2579 (($ $) 127)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-1706 (($ $) 134)) (-2914 (((-875 |#1|) $ (-703)) 63) (((-875 |#1|) $ (-703) (-703)) 65)) (-1880 (((-107) $) NIL)) (-2116 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1395 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-1376 (((-107) $) NIL)) (-2480 (($ $) 111)) (-2092 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2118 (($ (-517) (-517) $) 129)) (-2401 (($ $ (-844)) 133)) (-3138 (($ (-1 |#1| (-517)) $) 105)) (-3982 (((-107) $) NIL)) (-2078 (($ |#1| (-703)) 15) (($ $ (-991) (-703)) NIL) (($ $ (-583 (-991)) (-583 (-703))) NIL)) (-3310 (($ (-1 |#1| |#1|) $) 93)) (-1226 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2335 (($ $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-1455 (($ $) 109)) (-3495 (($ $) 107)) (-3317 (($ (-517) (-517) $) 131)) (-2356 (($ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1076)) 150 (-3747 (-12 (|has| |#1| (-15 -2356 (|#1| |#1| (-1076)))) (|has| |#1| (-15 -2097 ((-583 (-1076)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1097))))) (($ $ (-1153 |#2|)) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4125 (((-1023) $) NIL)) (-1191 (($ $ (-517) (-517)) 115)) (-2671 (($ $ (-703)) 117)) (-2329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3870 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2786 (($ $) 113)) (-3524 (((-1057 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2609 ((|#1| $ (-703)) 90) (($ $ $) 125 (|has| (-703) (-1017)))) (-2060 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) 102 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1153 |#2|)) 98)) (-3647 (((-703) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1507 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1635 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1483 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3624 (($ $) 119)) (-2271 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 142 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1130 |#2| |#1|)) 80) (($ (-1153 |#2|)) 20)) (-1998 (((-1057 |#1|) $) NIL)) (-1689 ((|#1| $ (-703)) 89)) (-3974 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-4099 (((-703)) NIL)) (-3569 ((|#1| $) 88)) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1576 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2074 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1697 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1548 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3489 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1600 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 ((|#1| $ (-703)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2271 (|#1| (-1076))))))) (-2824 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1613 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1589 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1709 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 17 T CONST)) (-3619 (($) 13 T CONST)) (-3342 (($ $ (-583 (-1076)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-583 (-1076))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-1076)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1076))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1584 (((-107) $ $) NIL)) (-1704 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) 101)) (-1678 (($ $ $) 18)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 139 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1149 |#1| |#2| |#3|) (-13 (-1148 |#1|) (-10 -8 (-15 -2271 ($ (-1130 |#2| |#1|))) (-15 -2172 ((-1130 |#2| |#1|) $ (-703))) (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (-15 -3495 ($ $)) (-15 -1455 ($ $)) (-15 -2480 ($ $)) (-15 -2786 ($ $)) (-15 -1191 ($ $ (-517) (-517))) (-15 -2579 ($ $)) (-15 -2118 ($ (-517) (-517) $)) (-15 -3317 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|))) (-963) (-1076) |#1|) (T -1149))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-1130 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1076)) (-14 *5 *3) (-5 *1 (-1149 *3 *4 *5)))) (-2172 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1130 *5 *4)) (-5 *1 (-1149 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1076)) (-14 *6 *4))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3495 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076)) (-14 *4 *2))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076)) (-14 *4 *2))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076)) (-14 *4 *2))) (-2786 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076)) (-14 *4 *2))) (-1191 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1076)) (-14 *5 *3))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076)) (-14 *4 *2))) (-2118 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1076)) (-14 *5 *3))) (-3317 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1076)) (-14 *5 *3))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(-13 (-1148 |#1|) (-10 -8 (-15 -2271 ($ (-1130 |#2| |#1|))) (-15 -2172 ((-1130 |#2| |#1|) $ (-703))) (-15 -2271 ($ (-1153 |#2|))) (-15 -2060 ($ $ (-1153 |#2|))) (-15 -3495 ($ $)) (-15 -1455 ($ $)) (-15 -2480 ($ $)) (-15 -2786 ($ $)) (-15 -1191 ($ $ (-517) (-517))) (-15 -2579 ($ $)) (-15 -2118 ($ (-517) (-517) $)) (-15 -3317 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2356 ($ $ (-1153 |#2|))) |%noBranch|)))
-((-3330 (((-1 (-1057 |#1|) (-583 (-1057 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-2210 (((-1 (-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4147 (((-1 (-1057 |#1|) (-1057 |#1|)) (-1 |#2| |#2|)) 13)) (-3667 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3755 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3209 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-3479 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-3344 ((|#2| |#2| |#2|) 43)))
-(((-1150 |#1| |#2|) (-10 -7 (-15 -4147 ((-1 (-1057 |#1|) (-1057 |#1|)) (-1 |#2| |#2|))) (-15 -2210 ((-1 (-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3330 ((-1 (-1057 |#1|) (-583 (-1057 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3344 (|#2| |#2| |#2|)) (-15 -3755 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3667 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3209 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3479 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1148 |#1|)) (T -1150))
-((-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1148 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1150 *5 *6)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1148 *5)) (-5 *1 (-1150 *5 *2)))) (-3667 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-1150 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-1150 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3344 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1148 *3)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1057 *4) (-583 (-1057 *4)))) (-5 *1 (-1150 *4 *5)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1057 *4) (-1057 *4) (-1057 *4))) (-5 *1 (-1150 *4 *5)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1057 *4) (-1057 *4))) (-5 *1 (-1150 *4 *5)))))
-(-10 -7 (-15 -4147 ((-1 (-1057 |#1|) (-1057 |#1|)) (-1 |#2| |#2|))) (-15 -2210 ((-1 (-1057 |#1|) (-1057 |#1|) (-1057 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3330 ((-1 (-1057 |#1|) (-583 (-1057 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3344 (|#2| |#2| |#2|)) (-15 -3755 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3667 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3209 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3479 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
-((-3920 ((|#2| |#4| (-703)) 30)) (-3793 ((|#4| |#2|) 25)) (-1278 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-2082 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
-(((-1151 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3793 (|#4| |#2|)) (-15 -3920 (|#2| |#4| (-703))) (-15 -2082 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -1278 (|#4| (-377 |#2|))) |%noBranch|)) (-963) (-1133 |#1|) (-593 |#2|) (-1148 |#1|)) (T -1151))
-((-1278 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-509)) (-4 *4 (-963)) (-4 *2 (-1148 *4)) (-5 *1 (-1151 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-1133 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1151 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1148 *4)))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-963)) (-4 *2 (-1133 *5)) (-5 *1 (-1151 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1148 *5)))) (-3793 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-1133 *4)) (-4 *2 (-1148 *4)) (-5 *1 (-1151 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(-10 -7 (-15 -3793 (|#4| |#2|)) (-15 -3920 (|#2| |#4| (-703))) (-15 -2082 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -1278 (|#4| (-377 |#2|))) |%noBranch|))
-NIL
-(((-1152) (-1188)) (T -1152))
-NIL
-(-13 (-10 -7 (-6 -2181)))
-((-2119 (((-107) $ $) NIL)) (-3752 (((-1076)) 12)) (-1662 (((-1059) $) 17)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 11) (((-1076) $) 8)) (-1584 (((-107) $ $) 14)))
-(((-1153 |#1|) (-13 (-1005) (-557 (-1076)) (-10 -8 (-15 -2271 ((-1076) $)) (-15 -3752 ((-1076))))) (-1076)) (T -1153))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1153 *3)) (-14 *3 *2))) (-3752 (*1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1153 *3)) (-14 *3 *2))))
-(-13 (-1005) (-557 (-1076)) (-10 -8 (-15 -2271 ((-1076) $)) (-15 -3752 ((-1076)))))
-((-3877 (($ (-703)) 16)) (-2690 (((-623 |#2|) $ $) 37)) (-1241 ((|#2| $) 46)) (-3682 ((|#2| $) 45)) (-3746 ((|#2| $ $) 33)) (-2326 (($ $ $) 42)) (-1692 (($ $) 20) (($ $ $) 26)) (-1678 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
-(((-1154 |#1| |#2|) (-10 -8 (-15 -1241 (|#2| |#1|)) (-15 -3682 (|#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2690 ((-623 |#2|) |#1| |#1|)) (-15 -3746 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -3877 (|#1| (-703))) (-15 -1678 (|#1| |#1| |#1|))) (-1155 |#2|) (-1111)) (T -1154))
-NIL
-(-10 -8 (-15 -1241 (|#2| |#1|)) (-15 -3682 (|#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2690 ((-623 |#2|) |#1| |#1|)) (-15 -3746 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -3877 (|#1| (-703))) (-15 -1678 (|#1| |#1| |#1|)))
-((-2119 (((-107) $ $) 19 (|has| |#1| (-1005)))) (-3877 (($ (-703)) 112 (|has| |#1| (-23)))) (-2034 (((-1162) $ (-517) (-517)) 40 (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4193))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4193))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) 8)) (-2445 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) 58 (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4192)))) (-1393 (($) 7 T CONST)) (-2549 (($ $) 90 (|has| $ (-6 -4193)))) (-1908 (($ $) 100)) (-2455 (($ $) 78 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) 51)) (-1212 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) 30 (|has| $ (-6 -4192)))) (-2690 (((-623 |#1|) $ $) 105 (|has| |#1| (-963)))) (-3213 (($ (-703) |#1|) 69)) (-2497 (((-107) $ (-703)) 9)) (-3271 (((-517) $) 43 (|has| (-517) (-779)))) (-3458 (($ $ $) 87 (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1989 (((-517) $) 44 (|has| (-517) (-779)))) (-4084 (($ $ $) 86 (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1241 ((|#1| $) 102 (-12 (|has| |#1| (-963)) (|has| |#1| (-920))))) (-1320 (((-107) $ (-703)) 10)) (-3682 ((|#1| $) 103 (-12 (|has| |#1| (-963)) (|has| |#1| (-920))))) (-1662 (((-1059) $) 22 (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2817 (((-583 (-517)) $) 46)) (-3130 (((-107) (-517) $) 47)) (-4125 (((-1023) $) 21 (|has| |#1| (-1005)))) (-2429 ((|#1| $) 42 (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2846 (($ $ |#1|) 41 (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) 14)) (-3712 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) 48)) (-2394 (((-107) $) 11)) (-2452 (($) 12)) (-2609 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1124 (-517))) 63)) (-3746 ((|#1| $ $) 106 (|has| |#1| (-963)))) (-3728 (($ $ (-517)) 62) (($ $ (-1124 (-517))) 61)) (-2326 (($ $ $) 104 (|has| |#1| (-963)))) (-4137 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4192))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -4192))))) (-1901 (($ $ $ (-517)) 91 (|has| $ (-6 -4193)))) (-2462 (($ $) 13)) (-3359 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 70)) (-4110 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2271 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1618 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1584 (((-107) $ $) 20 (|has| |#1| (-1005)))) (-1630 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1608 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1692 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1678 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3535 (((-703) $) 6 (|has| $ (-6 -4192)))))
-(((-1155 |#1|) (-1188) (-1111)) (T -1155))
-((-1678 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-25)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1155 *3)) (-4 *3 (-23)) (-4 *3 (-1111)))) (-1692 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-21)))) (-1692 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1155 *3)) (-4 *3 (-1111)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-659)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-963)))) (-2690 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1111)) (-4 *3 (-963)) (-5 *2 (-623 *3)))) (-2326 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-963)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-920)) (-4 *2 (-963)))) (-1241 (*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-920)) (-4 *2 (-963)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1678 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3877 ($ (-703))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1692 ($ $)) (-15 -1692 ($ $ $)) (-15 * ($ (-517) $))) |%noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-15 -3746 (|t#1| $ $)) (-15 -2690 ((-623 |t#1|) $ $)) (-15 -2326 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-920)) (IF (|has| |t#1| (-963)) (PROGN (-15 -3682 (|t#1| $)) (-15 -1241 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-97) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-557 (-787)) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1005) -3747 (|has| |#1| (-1005)) (|has| |#1| (-779))) ((-1111) . T))
-((-1532 (((-1157 |#2|) (-1 |#2| |#1| |#2|) (-1157 |#1|) |#2|) 13)) (-1522 ((|#2| (-1 |#2| |#1| |#2|) (-1157 |#1|) |#2|) 15)) (-3310 (((-3 (-1157 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1157 |#1|)) 28) (((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)) 18)))
-(((-1156 |#1| |#2|) (-10 -7 (-15 -1532 ((-1157 |#2|) (-1 |#2| |#1| |#2|) (-1157 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-1157 |#1|) |#2|)) (-15 -3310 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -3310 ((-3 (-1157 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1157 |#1|)))) (-1111) (-1111)) (T -1156))
-((-3310 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1157 *6)) (-5 *1 (-1156 *5 *6)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1157 *6)) (-5 *1 (-1156 *5 *6)))) (-1522 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-1156 *5 *2)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1157 *6)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-5 *2 (-1157 *5)) (-5 *1 (-1156 *6 *5)))))
-(-10 -7 (-15 -1532 ((-1157 |#2|) (-1 |#2| |#1| |#2|) (-1157 |#1|) |#2|)) (-15 -1522 (|#2| (-1 |#2| |#1| |#2|) (-1157 |#1|) |#2|)) (-15 -3310 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -3310 ((-3 (-1157 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1157 |#1|))))
-((-2119 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-3877 (($ (-703)) NIL (|has| |#1| (-23)))) (-2048 (($ (-583 |#1|)) 9)) (-2034 (((-1162) $ (-517) (-517)) NIL (|has| $ (-6 -4193)))) (-2166 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-1420 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4193))) (($ $) NIL (-12 (|has| $ (-6 -4193)) (|has| |#1| (-779))))) (-2163 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-1851 (((-107) $ (-703)) NIL)) (-2445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193))) ((|#1| $ (-1124 (-517)) |#1|) NIL (|has| $ (-6 -4193)))) (-2325 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1393 (($) NIL T CONST)) (-2549 (($ $) NIL (|has| $ (-6 -4193)))) (-1908 (($ $) NIL)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1522 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4192))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4192)))) (-2759 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4193)))) (-2566 ((|#1| $ (-517)) NIL)) (-1212 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1005))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1005)))) (-1534 (((-583 |#1|) $) 15 (|has| $ (-6 -4192)))) (-2690 (((-623 |#1|) $ $) NIL (|has| |#1| (-963)))) (-3213 (($ (-703) |#1|) NIL)) (-2497 (((-107) $ (-703)) NIL)) (-3271 (((-517) $) NIL (|has| (-517) (-779)))) (-3458 (($ $ $) NIL (|has| |#1| (-779)))) (-2662 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-1903 (((-583 |#1|) $) NIL (|has| $ (-6 -4192)))) (-3925 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1989 (((-517) $) NIL (|has| (-517) (-779)))) (-4084 (($ $ $) NIL (|has| |#1| (-779)))) (-2746 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1241 ((|#1| $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-963))))) (-1320 (((-107) $ (-703)) NIL)) (-3682 ((|#1| $) NIL (-12 (|has| |#1| (-920)) (|has| |#1| (-963))))) (-1662 (((-1059) $) NIL (|has| |#1| (-1005)))) (-1747 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2817 (((-583 (-517)) $) NIL)) (-3130 (((-107) (-517) $) NIL)) (-4125 (((-1023) $) NIL (|has| |#1| (-1005)))) (-2429 ((|#1| $) NIL (|has| (-517) (-779)))) (-1528 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2846 (($ $ |#1|) NIL (|has| $ (-6 -4193)))) (-3644 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1005))))) (-2727 (((-107) $ $) NIL)) (-3712 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-2891 (((-583 |#1|) $) NIL)) (-2394 (((-107) $) NIL)) (-2452 (($) NIL)) (-2609 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-3746 ((|#1| $ $) NIL (|has| |#1| (-963)))) (-3728 (($ $ (-517)) NIL) (($ $ (-1124 (-517))) NIL)) (-2326 (($ $ $) NIL (|has| |#1| (-963)))) (-4137 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#1| (-1005))))) (-1901 (($ $ $ (-517)) NIL (|has| $ (-6 -4193)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2288 (($ (-583 |#1|)) 8)) (-4110 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2271 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3602 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4192)))) (-1642 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1584 (((-107) $ $) NIL (|has| |#1| (-1005)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1608 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1678 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1157 |#1|) (-13 (-1155 |#1|) (-10 -8 (-15 -2048 ($ (-583 |#1|))))) (-1111)) (T -1157))
-((-2048 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1157 *3)))))
-(-13 (-1155 |#1|) (-10 -8 (-15 -2048 ($ (-583 |#1|)))))
-((-2119 (((-107) $ $) NIL)) (-1672 (((-1059) $ (-1059)) 87) (((-1059) $ (-1059) (-1059)) 85) (((-1059) $ (-1059) (-583 (-1059))) 84)) (-2952 (($) 56)) (-2535 (((-1162) $ (-437) (-844)) 42)) (-2473 (((-1162) $ (-844) (-1059)) 70) (((-1162) $ (-844) (-797)) 71)) (-3191 (((-1162) $ (-844) (-349) (-349)) 45)) (-3094 (((-1162) $ (-1059)) 66)) (-1986 (((-1162) $ (-844) (-1059)) 75)) (-3934 (((-1162) $ (-844) (-349) (-349)) 46)) (-3451 (((-1162) $ (-844) (-844)) 43)) (-1649 (((-1162) $) 67)) (-2076 (((-1162) $ (-844) (-1059)) 74)) (-4059 (((-1162) $ (-437) (-844)) 30)) (-1715 (((-1162) $ (-844) (-1059)) 73)) (-2596 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-4167 (((-1162) $ (-703) (-703)) 40)) (-3101 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-1662 (((-1059) $) NIL)) (-2585 (((-517) $) 37)) (-4125 (((-1023) $) NIL)) (-3802 (((-1157 (-3 (-437) "undefined")) $) 36)) (-1330 (((-1157 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1715 (-517)) (|:| -3904 (-517)) (|:| |spline| (-517)) (|:| -3843 (-517)) (|:| |axesColor| (-797)) (|:| -2473 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-3025 (((-1162) $ (-844) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-3953 (((-583 (-866 (-199))) $) NIL)) (-1969 (((-437) $ (-844)) 32)) (-3836 (((-1162) $ (-703) (-703) (-844) (-844)) 39)) (-3063 (((-1162) $ (-1059)) 76)) (-3904 (((-1162) $ (-844) (-1059)) 72)) (-2271 (((-787) $) 82)) (-1724 (((-1162) $) 77)) (-3843 (((-1162) $ (-844) (-1059)) 68) (((-1162) $ (-844) (-797)) 69)) (-1584 (((-107) $ $) NIL)))
-(((-1158) (-13 (-1005) (-10 -8 (-15 -3953 ((-583 (-866 (-199))) $)) (-15 -2952 ($)) (-15 -3101 ($ $)) (-15 -2596 ((-583 (-236)) $)) (-15 -2596 ($ $ (-583 (-236)))) (-15 -3101 ($ (-437) (-583 (-236)))) (-15 -3025 ((-1162) $ (-844) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -1330 ((-1157 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1715 (-517)) (|:| -3904 (-517)) (|:| |spline| (-517)) (|:| -3843 (-517)) (|:| |axesColor| (-797)) (|:| -2473 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -3802 ((-1157 (-3 (-437) "undefined")) $)) (-15 -3094 ((-1162) $ (-1059))) (-15 -4059 ((-1162) $ (-437) (-844))) (-15 -1969 ((-437) $ (-844))) (-15 -3843 ((-1162) $ (-844) (-1059))) (-15 -3843 ((-1162) $ (-844) (-797))) (-15 -2473 ((-1162) $ (-844) (-1059))) (-15 -2473 ((-1162) $ (-844) (-797))) (-15 -1715 ((-1162) $ (-844) (-1059))) (-15 -2076 ((-1162) $ (-844) (-1059))) (-15 -3904 ((-1162) $ (-844) (-1059))) (-15 -3063 ((-1162) $ (-1059))) (-15 -1724 ((-1162) $)) (-15 -3836 ((-1162) $ (-703) (-703) (-844) (-844))) (-15 -3934 ((-1162) $ (-844) (-349) (-349))) (-15 -3191 ((-1162) $ (-844) (-349) (-349))) (-15 -1986 ((-1162) $ (-844) (-1059))) (-15 -4167 ((-1162) $ (-703) (-703))) (-15 -2535 ((-1162) $ (-437) (-844))) (-15 -3451 ((-1162) $ (-844) (-844))) (-15 -1672 ((-1059) $ (-1059))) (-15 -1672 ((-1059) $ (-1059) (-1059))) (-15 -1672 ((-1059) $ (-1059) (-583 (-1059)))) (-15 -1649 ((-1162) $)) (-15 -2585 ((-517) $)) (-15 -2271 ((-787) $))))) (T -1158))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-583 (-866 (-199)))) (-5 *1 (-1158)))) (-2952 (*1 *1) (-5 *1 (-1158))) (-3101 (*1 *1 *1) (-5 *1 (-1158))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158)))) (-3101 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1158)))) (-3025 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-844)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-1157 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1715 (-517)) (|:| -3904 (-517)) (|:| |spline| (-517)) (|:| -3843 (-517)) (|:| |axesColor| (-797)) (|:| -2473 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1158)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-1157 (-3 (-437) "undefined"))) (-5 *1 (-1158)))) (-3094 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-4059 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-1969 (*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-437)) (-5 *1 (-1158)))) (-3843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-2473 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-2473 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-1715 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-2076 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3904 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3063 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3836 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3934 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3191 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-1986 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-4167 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-2535 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-3451 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158)))) (-1672 (*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1158)))) (-1672 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1158)))) (-1672 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1158)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1158)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1158)))))
-(-13 (-1005) (-10 -8 (-15 -3953 ((-583 (-866 (-199))) $)) (-15 -2952 ($)) (-15 -3101 ($ $)) (-15 -2596 ((-583 (-236)) $)) (-15 -2596 ($ $ (-583 (-236)))) (-15 -3101 ($ (-437) (-583 (-236)))) (-15 -3025 ((-1162) $ (-844) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -1330 ((-1157 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1715 (-517)) (|:| -3904 (-517)) (|:| |spline| (-517)) (|:| -3843 (-517)) (|:| |axesColor| (-797)) (|:| -2473 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -3802 ((-1157 (-3 (-437) "undefined")) $)) (-15 -3094 ((-1162) $ (-1059))) (-15 -4059 ((-1162) $ (-437) (-844))) (-15 -1969 ((-437) $ (-844))) (-15 -3843 ((-1162) $ (-844) (-1059))) (-15 -3843 ((-1162) $ (-844) (-797))) (-15 -2473 ((-1162) $ (-844) (-1059))) (-15 -2473 ((-1162) $ (-844) (-797))) (-15 -1715 ((-1162) $ (-844) (-1059))) (-15 -2076 ((-1162) $ (-844) (-1059))) (-15 -3904 ((-1162) $ (-844) (-1059))) (-15 -3063 ((-1162) $ (-1059))) (-15 -1724 ((-1162) $)) (-15 -3836 ((-1162) $ (-703) (-703) (-844) (-844))) (-15 -3934 ((-1162) $ (-844) (-349) (-349))) (-15 -3191 ((-1162) $ (-844) (-349) (-349))) (-15 -1986 ((-1162) $ (-844) (-1059))) (-15 -4167 ((-1162) $ (-703) (-703))) (-15 -2535 ((-1162) $ (-437) (-844))) (-15 -3451 ((-1162) $ (-844) (-844))) (-15 -1672 ((-1059) $ (-1059))) (-15 -1672 ((-1059) $ (-1059) (-1059))) (-15 -1672 ((-1059) $ (-1059) (-583 (-1059)))) (-15 -1649 ((-1162) $)) (-15 -2585 ((-517) $)) (-15 -2271 ((-787) $))))
-((-2119 (((-107) $ $) NIL)) (-2540 (((-1162) $ (-349)) 138) (((-1162) $ (-349) (-349) (-349)) 139)) (-1672 (((-1059) $ (-1059)) 146) (((-1059) $ (-1059) (-1059)) 144) (((-1059) $ (-1059) (-583 (-1059))) 143)) (-3656 (($) 49)) (-2103 (((-1162) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1162) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1162) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1162) $ (-349) (-349)) 116) (((-1162) $ (-349) (-349) (-349)) 123)) (-3721 (((-349)) 96) (((-349) (-349)) 97)) (-4001 (((-349)) 91) (((-349) (-349)) 93)) (-4047 (((-349)) 94) (((-349) (-349)) 95)) (-3702 (((-349)) 100) (((-349) (-349)) 101)) (-1612 (((-349)) 98) (((-349) (-349)) 99)) (-3191 (((-1162) $ (-349) (-349)) 140)) (-3094 (((-1162) $ (-1059)) 124)) (-3918 (((-1036 (-199)) $) 50) (($ $ (-1036 (-199))) 51)) (-1380 (((-1162) $ (-1059)) 152)) (-3735 (((-1162) $ (-1059)) 153)) (-3484 (((-1162) $ (-349) (-349)) 122) (((-1162) $ (-517) (-517)) 137)) (-3451 (((-1162) $ (-844) (-844)) 130)) (-1649 (((-1162) $) 110)) (-2830 (((-1162) $ (-1059)) 151)) (-1441 (((-1162) $ (-1059)) 107)) (-2596 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-4167 (((-1162) $ (-703) (-703)) 129)) (-1792 (((-1162) $ (-703) (-866 (-199))) 158)) (-1754 (($ $) 56) (($ (-1036 (-199)) (-1059)) 57) (($ (-1036 (-199)) (-583 (-236))) 58)) (-3888 (((-1162) $ (-349) (-349) (-349)) 104)) (-1662 (((-1059) $) NIL)) (-2585 (((-517) $) 102)) (-3876 (((-1162) $ (-349)) 141)) (-2881 (((-1162) $ (-349)) 156)) (-4125 (((-1023) $) NIL)) (-2752 (((-1162) $ (-349)) 155)) (-2134 (((-1162) $ (-1059)) 109)) (-3836 (((-1162) $ (-703) (-703) (-844) (-844)) 128)) (-1201 (((-1162) $ (-1059)) 106)) (-3063 (((-1162) $ (-1059)) 108)) (-1821 (((-1162) $ (-142) (-142)) 127)) (-2271 (((-787) $) 135)) (-1724 (((-1162) $) 111)) (-3744 (((-1162) $ (-1059)) 154)) (-3843 (((-1162) $ (-1059)) 105)) (-1584 (((-107) $ $) NIL)))
-(((-1159) (-13 (-1005) (-10 -8 (-15 -4001 ((-349))) (-15 -4001 ((-349) (-349))) (-15 -4047 ((-349))) (-15 -4047 ((-349) (-349))) (-15 -3721 ((-349))) (-15 -3721 ((-349) (-349))) (-15 -1612 ((-349))) (-15 -1612 ((-349) (-349))) (-15 -3702 ((-349))) (-15 -3702 ((-349) (-349))) (-15 -3656 ($)) (-15 -1754 ($ $)) (-15 -1754 ($ (-1036 (-199)) (-1059))) (-15 -1754 ($ (-1036 (-199)) (-583 (-236)))) (-15 -3918 ((-1036 (-199)) $)) (-15 -3918 ($ $ (-1036 (-199)))) (-15 -1792 ((-1162) $ (-703) (-866 (-199)))) (-15 -2596 ((-583 (-236)) $)) (-15 -2596 ($ $ (-583 (-236)))) (-15 -4167 ((-1162) $ (-703) (-703))) (-15 -3451 ((-1162) $ (-844) (-844))) (-15 -3094 ((-1162) $ (-1059))) (-15 -3836 ((-1162) $ (-703) (-703) (-844) (-844))) (-15 -2103 ((-1162) $ (-349) (-349) (-349) (-349) (-349))) (-15 -2103 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -2103 ((-1162) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -2103 ((-1162) $ (-517) (-517) (-349) (-349) (-349))) (-15 -2103 ((-1162) $ (-349) (-349))) (-15 -2103 ((-1162) $ (-349) (-349) (-349))) (-15 -3063 ((-1162) $ (-1059))) (-15 -3843 ((-1162) $ (-1059))) (-15 -1201 ((-1162) $ (-1059))) (-15 -1441 ((-1162) $ (-1059))) (-15 -2134 ((-1162) $ (-1059))) (-15 -3484 ((-1162) $ (-349) (-349))) (-15 -3484 ((-1162) $ (-517) (-517))) (-15 -2540 ((-1162) $ (-349))) (-15 -2540 ((-1162) $ (-349) (-349) (-349))) (-15 -3191 ((-1162) $ (-349) (-349))) (-15 -2830 ((-1162) $ (-1059))) (-15 -2752 ((-1162) $ (-349))) (-15 -2881 ((-1162) $ (-349))) (-15 -1380 ((-1162) $ (-1059))) (-15 -3735 ((-1162) $ (-1059))) (-15 -3744 ((-1162) $ (-1059))) (-15 -3888 ((-1162) $ (-349) (-349) (-349))) (-15 -3876 ((-1162) $ (-349))) (-15 -1649 ((-1162) $)) (-15 -1821 ((-1162) $ (-142) (-142))) (-15 -1672 ((-1059) $ (-1059))) (-15 -1672 ((-1059) $ (-1059) (-1059))) (-15 -1672 ((-1059) $ (-1059) (-583 (-1059)))) (-15 -1724 ((-1162) $)) (-15 -2585 ((-517) $))))) (T -1159))
-((-4001 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-4047 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-4047 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-3721 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-1612 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-3702 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))) (-3656 (*1 *1) (-5 *1 (-1159))) (-1754 (*1 *1 *1) (-5 *1 (-1159))) (-1754 (*1 *1 *2 *3) (-12 (-5 *2 (-1036 (-199))) (-5 *3 (-1059)) (-5 *1 (-1159)))) (-1754 (*1 *1 *2 *3) (-12 (-5 *2 (-1036 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1159)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-1159)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-1159)))) (-1792 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-866 (-199))) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) (-4167 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3451 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3094 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3836 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2103 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1159)))) (-2103 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2103 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2103 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2103 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3063 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3843 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-1201 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-1441 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2134 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3484 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3484 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2540 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2540 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3191 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2830 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2881 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-1380 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3735 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3744 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3888 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1159)))) (-1821 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1162)) (-5 *1 (-1159)))) (-1672 (*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1159)))) (-1672 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1159)))) (-1672 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1159)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1159)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1159)))))
-(-13 (-1005) (-10 -8 (-15 -4001 ((-349))) (-15 -4001 ((-349) (-349))) (-15 -4047 ((-349))) (-15 -4047 ((-349) (-349))) (-15 -3721 ((-349))) (-15 -3721 ((-349) (-349))) (-15 -1612 ((-349))) (-15 -1612 ((-349) (-349))) (-15 -3702 ((-349))) (-15 -3702 ((-349) (-349))) (-15 -3656 ($)) (-15 -1754 ($ $)) (-15 -1754 ($ (-1036 (-199)) (-1059))) (-15 -1754 ($ (-1036 (-199)) (-583 (-236)))) (-15 -3918 ((-1036 (-199)) $)) (-15 -3918 ($ $ (-1036 (-199)))) (-15 -1792 ((-1162) $ (-703) (-866 (-199)))) (-15 -2596 ((-583 (-236)) $)) (-15 -2596 ($ $ (-583 (-236)))) (-15 -4167 ((-1162) $ (-703) (-703))) (-15 -3451 ((-1162) $ (-844) (-844))) (-15 -3094 ((-1162) $ (-1059))) (-15 -3836 ((-1162) $ (-703) (-703) (-844) (-844))) (-15 -2103 ((-1162) $ (-349) (-349) (-349) (-349) (-349))) (-15 -2103 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -2103 ((-1162) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -2103 ((-1162) $ (-517) (-517) (-349) (-349) (-349))) (-15 -2103 ((-1162) $ (-349) (-349))) (-15 -2103 ((-1162) $ (-349) (-349) (-349))) (-15 -3063 ((-1162) $ (-1059))) (-15 -3843 ((-1162) $ (-1059))) (-15 -1201 ((-1162) $ (-1059))) (-15 -1441 ((-1162) $ (-1059))) (-15 -2134 ((-1162) $ (-1059))) (-15 -3484 ((-1162) $ (-349) (-349))) (-15 -3484 ((-1162) $ (-517) (-517))) (-15 -2540 ((-1162) $ (-349))) (-15 -2540 ((-1162) $ (-349) (-349) (-349))) (-15 -3191 ((-1162) $ (-349) (-349))) (-15 -2830 ((-1162) $ (-1059))) (-15 -2752 ((-1162) $ (-349))) (-15 -2881 ((-1162) $ (-349))) (-15 -1380 ((-1162) $ (-1059))) (-15 -3735 ((-1162) $ (-1059))) (-15 -3744 ((-1162) $ (-1059))) (-15 -3888 ((-1162) $ (-349) (-349) (-349))) (-15 -3876 ((-1162) $ (-349))) (-15 -1649 ((-1162) $)) (-15 -1821 ((-1162) $ (-142) (-142))) (-15 -1672 ((-1059) $ (-1059))) (-15 -1672 ((-1059) $ (-1059) (-1059))) (-15 -1672 ((-1059) $ (-1059) (-583 (-1059)))) (-15 -1724 ((-1162) $)) (-15 -2585 ((-517) $))))
-((-2575 (((-583 (-1059)) (-583 (-1059))) 94) (((-583 (-1059))) 89)) (-1866 (((-583 (-1059))) 87)) (-2343 (((-583 (-844)) (-583 (-844))) 62) (((-583 (-844))) 59)) (-3340 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-2847 (((-1162)) 64)) (-2364 (((-844) (-844)) 80) (((-844)) 79)) (-2945 (((-844) (-844)) 78) (((-844)) 77)) (-3485 (((-797) (-797)) 74) (((-797)) 73)) (-1935 (((-199)) 84) (((-199) (-349)) 86)) (-3011 (((-844)) 81) (((-844) (-844)) 82)) (-1790 (((-844) (-844)) 76) (((-844)) 75)) (-1897 (((-797) (-797)) 68) (((-797)) 66)) (-3434 (((-797) (-797)) 70) (((-797)) 69)) (-1580 (((-797) (-797)) 72) (((-797)) 71)))
-(((-1160) (-10 -7 (-15 -1897 ((-797))) (-15 -1897 ((-797) (-797))) (-15 -3434 ((-797))) (-15 -3434 ((-797) (-797))) (-15 -1580 ((-797))) (-15 -1580 ((-797) (-797))) (-15 -3485 ((-797))) (-15 -3485 ((-797) (-797))) (-15 -1790 ((-844))) (-15 -1790 ((-844) (-844))) (-15 -3340 ((-583 (-703)))) (-15 -3340 ((-583 (-703)) (-583 (-703)))) (-15 -2343 ((-583 (-844)))) (-15 -2343 ((-583 (-844)) (-583 (-844)))) (-15 -2847 ((-1162))) (-15 -2575 ((-583 (-1059)))) (-15 -2575 ((-583 (-1059)) (-583 (-1059)))) (-15 -1866 ((-583 (-1059)))) (-15 -2945 ((-844))) (-15 -2364 ((-844))) (-15 -2945 ((-844) (-844))) (-15 -2364 ((-844) (-844))) (-15 -3011 ((-844) (-844))) (-15 -3011 ((-844))) (-15 -1935 ((-199) (-349))) (-15 -1935 ((-199))))) (T -1160))
-((-1935 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1160)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1160)))) (-3011 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-2364 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-2945 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-1866 (*1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1160)))) (-2575 (*1 *2 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1160)))) (-2575 (*1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1160)))) (-2847 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1160)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1160)))) (-2343 (*1 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1160)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1160)))) (-3340 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1160)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-1790 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-3485 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-1580 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-3434 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))) (-1897 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))))
-(-10 -7 (-15 -1897 ((-797))) (-15 -1897 ((-797) (-797))) (-15 -3434 ((-797))) (-15 -3434 ((-797) (-797))) (-15 -1580 ((-797))) (-15 -1580 ((-797) (-797))) (-15 -3485 ((-797))) (-15 -3485 ((-797) (-797))) (-15 -1790 ((-844))) (-15 -1790 ((-844) (-844))) (-15 -3340 ((-583 (-703)))) (-15 -3340 ((-583 (-703)) (-583 (-703)))) (-15 -2343 ((-583 (-844)))) (-15 -2343 ((-583 (-844)) (-583 (-844)))) (-15 -2847 ((-1162))) (-15 -2575 ((-583 (-1059)))) (-15 -2575 ((-583 (-1059)) (-583 (-1059)))) (-15 -1866 ((-583 (-1059)))) (-15 -2945 ((-844))) (-15 -2364 ((-844))) (-15 -2945 ((-844) (-844))) (-15 -2364 ((-844) (-844))) (-15 -3011 ((-844) (-844))) (-15 -3011 ((-844))) (-15 -1935 ((-199) (-349))) (-15 -1935 ((-199))))
-((-1777 (((-437) (-583 (-583 (-866 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-866 (-199))))) 16) (((-437) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236))) 15)) (-2675 (((-1158) (-583 (-583 (-866 (-199)))) (-583 (-236))) 23) (((-1158) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236))) 22)) (-2271 (((-1158) (-437)) 34)))
-(((-1161) (-10 -7 (-15 -1777 ((-437) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -1777 ((-437) (-583 (-583 (-866 (-199)))))) (-15 -1777 ((-437) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -2675 ((-1158) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -2675 ((-1158) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -2271 ((-1158) (-437))))) (T -1161))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1158)) (-5 *1 (-1161)))) (-2675 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-1161)))) (-2675 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-1161)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1161)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-437)) (-5 *1 (-1161)))) (-1777 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1161)))))
-(-10 -7 (-15 -1777 ((-437) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -1777 ((-437) (-583 (-583 (-866 (-199)))))) (-15 -1777 ((-437) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -2675 ((-1158) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -2675 ((-1158) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -2271 ((-1158) (-437))))
-((-2044 (($) 7)) (-2271 (((-787) $) 10)))
-(((-1162) (-10 -8 (-15 -2044 ($)) (-15 -2271 ((-787) $)))) (T -1162))
-((-2271 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1162)))) (-2044 (*1 *1) (-5 *1 (-1162))))
-(-10 -8 (-15 -2044 ($)) (-15 -2271 ((-787) $)))
-((-1704 (($ $ |#2|) 10)))
-(((-1163 |#1| |#2|) (-10 -8 (-15 -1704 (|#1| |#1| |#2|))) (-1164 |#2|) (-333)) (T -1163))
-NIL
-(-10 -8 (-15 -1704 (|#1| |#1| |#2|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-1537 (((-125)) 28)) (-2271 (((-787) $) 11)) (-3610 (($) 18 T CONST)) (-1584 (((-107) $ $) 6)) (-1704 (($ $ |#1|) 29)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1164 |#1|) (-1188) (-333)) (T -1164))
-((-1704 (*1 *1 *1 *2) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-333)))) (-1537 (*1 *2) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
-(-13 (-650 |t#1|) (-10 -8 (-15 -1704 ($ $ |t#1|)) (-15 -1537 ((-125)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-969 |#1|) . T) ((-1005) . T))
-((-3392 (((-583 (-1106 |#1|)) (-1076) (-1106 |#1|)) 78)) (-2858 (((-1057 (-1057 (-875 |#1|))) (-1076) (-1057 (-875 |#1|))) 57)) (-3864 (((-1 (-1057 (-1106 |#1|)) (-1057 (-1106 |#1|))) (-703) (-1106 |#1|) (-1057 (-1106 |#1|))) 68)) (-1456 (((-1 (-1057 (-875 |#1|)) (-1057 (-875 |#1|))) (-703)) 59)) (-1231 (((-1 (-1072 (-875 |#1|)) (-875 |#1|)) (-1076)) 27)) (-1760 (((-1 (-1057 (-875 |#1|)) (-1057 (-875 |#1|))) (-703)) 58)))
-(((-1165 |#1|) (-10 -7 (-15 -1456 ((-1 (-1057 (-875 |#1|)) (-1057 (-875 |#1|))) (-703))) (-15 -1760 ((-1 (-1057 (-875 |#1|)) (-1057 (-875 |#1|))) (-703))) (-15 -2858 ((-1057 (-1057 (-875 |#1|))) (-1076) (-1057 (-875 |#1|)))) (-15 -1231 ((-1 (-1072 (-875 |#1|)) (-875 |#1|)) (-1076))) (-15 -3392 ((-583 (-1106 |#1|)) (-1076) (-1106 |#1|))) (-15 -3864 ((-1 (-1057 (-1106 |#1|)) (-1057 (-1106 |#1|))) (-703) (-1106 |#1|) (-1057 (-1106 |#1|))))) (-333)) (T -1165))
-((-3864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1106 *6)) (-5 *2 (-1 (-1057 *4) (-1057 *4))) (-5 *1 (-1165 *6)) (-5 *5 (-1057 *4)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-4 *5 (-333)) (-5 *2 (-583 (-1106 *5))) (-5 *1 (-1165 *5)) (-5 *4 (-1106 *5)))) (-1231 (*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1 (-1072 (-875 *4)) (-875 *4))) (-5 *1 (-1165 *4)) (-4 *4 (-333)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-1076)) (-4 *5 (-333)) (-5 *2 (-1057 (-1057 (-875 *5)))) (-5 *1 (-1165 *5)) (-5 *4 (-1057 (-875 *5))))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1057 (-875 *4)) (-1057 (-875 *4)))) (-5 *1 (-1165 *4)) (-4 *4 (-333)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1057 (-875 *4)) (-1057 (-875 *4)))) (-5 *1 (-1165 *4)) (-4 *4 (-333)))))
-(-10 -7 (-15 -1456 ((-1 (-1057 (-875 |#1|)) (-1057 (-875 |#1|))) (-703))) (-15 -1760 ((-1 (-1057 (-875 |#1|)) (-1057 (-875 |#1|))) (-703))) (-15 -2858 ((-1057 (-1057 (-875 |#1|))) (-1076) (-1057 (-875 |#1|)))) (-15 -1231 ((-1 (-1072 (-875 |#1|)) (-875 |#1|)) (-1076))) (-15 -3392 ((-583 (-1106 |#1|)) (-1076) (-1106 |#1|))) (-15 -3864 ((-1 (-1057 (-1106 |#1|)) (-1057 (-1106 |#1|))) (-703) (-1106 |#1|) (-1057 (-1106 |#1|)))))
-((-3086 (((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-3847 (((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
-(((-1166 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3847 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -3086 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1133 |#1|) (-1133 |#2|) (-379 |#2| |#3|)) (T -1166))
-((-3086 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 *3)) (-5 *2 (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1166 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-3847 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 *4)) (-5 *2 (-2 (|:| -1492 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
-(-10 -7 (-15 -3847 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -3086 ((-2 (|:| -1492 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 42)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) NIL)) (-1376 (((-107) $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2271 (((-787) $) 63) (($ (-517)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-156)))) (-4099 (((-703)) NIL)) (-2290 (((-1162) (-703)) 16)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 27 T CONST)) (-3619 (($) 66 T CONST)) (-1584 (((-107) $ $) 68)) (-1704 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1692 (($ $) 70) (($ $ $) NIL)) (-1678 (($ $ $) 46)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-1167 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-963) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2271 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1704 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2271 ($ |#4|)) (-15 -2290 ((-1162) (-703))))) (-963) (-779) (-725) (-872 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1167))
-((-2271 (*1 *2 *1) (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-1167 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1704 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-963)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1167 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-872 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2271 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1167 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-872 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-963)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1162)) (-5 *1 (-1167 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-872 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(-13 (-963) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2271 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1704 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2271 ($ |#4|)) (-15 -2290 ((-1162) (-703)))))
-((-2119 (((-107) $ $) NIL)) (-2828 (((-583 (-2 (|:| -1724 $) (|:| -3676 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2265 (((-583 $) (-583 |#4|)) 88)) (-2097 (((-583 |#3|) $) NIL)) (-2687 (((-107) $) NIL)) (-3389 (((-107) $) NIL (|has| |#1| (-509)))) (-3801 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3939 ((|#4| |#4| $) NIL)) (-2163 (((-2 (|:| |under| $) (|:| -2961 $) (|:| |upper| $)) $ |#3|) NIL)) (-1851 (((-107) $ (-703)) NIL)) (-2325 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1393 (($) NIL T CONST)) (-3338 (((-107) $) NIL (|has| |#1| (-509)))) (-1605 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2893 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2501 (((-107) $) NIL (|has| |#1| (-509)))) (-2230 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 28)) (-2567 (((-583 |#4|) (-583 |#4|) $) 25 (|has| |#1| (-509)))) (-2821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3228 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3390 (($ (-583 |#4|)) NIL)) (-2439 (((-3 $ "failed") $) 70)) (-3777 ((|#4| |#4| $) 75)) (-2455 (($ $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2946 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3244 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-2639 ((|#4| |#4| $) NIL)) (-1522 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4192))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4192))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -1724 (-583 |#4|)) (|:| -3676 (-583 |#4|))) $) NIL)) (-1534 (((-583 |#4|) $) NIL (|has| $ (-6 -4192)))) (-1253 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3024 ((|#3| $) 76)) (-2497 (((-107) $ (-703)) NIL)) (-1903 (((-583 |#4|) $) 29 (|has| $ (-6 -4192)))) (-3925 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005))))) (-1833 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-583 |#4|)) 35)) (-2746 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4193)))) (-3310 (($ (-1 |#4| |#4|) $) NIL)) (-2241 (((-583 |#3|) $) NIL)) (-2621 (((-107) |#3| $) NIL)) (-1320 (((-107) $ (-703)) NIL)) (-1662 (((-1059) $) NIL)) (-1446 (((-3 |#4| "failed") $) NIL)) (-3568 (((-583 |#4|) $) 50)) (-1732 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3998 ((|#4| |#4| $) 74)) (-2958 (((-107) $ $) 85)) (-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1944 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-4125 (((-1023) $) NIL)) (-2429 (((-3 |#4| "failed") $) 69)) (-1528 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3439 (((-3 $ "failed") $ |#4|) NIL)) (-2671 (($ $ |#4|) NIL)) (-3644 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3524 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1005))))) (-2727 (((-107) $ $) NIL)) (-2394 (((-107) $) 67)) (-2452 (($) 42)) (-3647 (((-703) $) NIL)) (-4137 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4192)) (|has| |#4| (-1005)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-2462 (($ $) NIL)) (-3359 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2288 (($ (-583 |#4|)) NIL)) (-4028 (($ $ |#3|) NIL)) (-1409 (($ $ |#3|) NIL)) (-1888 (($ $) NIL)) (-4159 (($ $ |#3|) NIL)) (-2271 (((-787) $) NIL) (((-583 |#4|) $) 57)) (-3057 (((-703) $) NIL (|has| |#3| (-338)))) (-1354 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-583 |#4|)) 41)) (-1743 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-583 $) (-583 |#4|)) 66)) (-2646 (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2553 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4135 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3602 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4192)))) (-3943 (((-583 |#3|) $) NIL)) (-1999 (((-107) |#3| $) NIL)) (-1584 (((-107) $ $) NIL)) (-3535 (((-703) $) NIL (|has| $ (-6 -4192)))))
-(((-1168 |#1| |#2| |#3| |#4|) (-13 (-1105 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1833 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1833 ((-3 $ "failed") (-583 |#4|))) (-15 -1354 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1354 ((-3 $ "failed") (-583 |#4|))) (-15 -1743 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1743 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-977 |#1| |#2| |#3|)) (T -1168))
-((-1833 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1168 *5 *6 *7 *8)))) (-1833 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1168 *3 *4 *5 *6)))) (-1354 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1168 *5 *6 *7 *8)))) (-1354 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1168 *3 *4 *5 *6)))) (-1743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1168 *6 *7 *8 *9))) (-5 *1 (-1168 *6 *7 *8 *9)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1168 *4 *5 *6 *7))) (-5 *1 (-1168 *4 *5 *6 *7)))))
-(-13 (-1105 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1833 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1833 ((-3 $ "failed") (-583 |#4|))) (-15 -1354 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1354 ((-3 $ "failed") (-583 |#4|))) (-15 -1743 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1743 ((-583 $) (-583 |#4|)))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2798 (((-3 $ "failed") $ $) 19)) (-1393 (($) 17 T CONST)) (-2560 (((-3 $ "failed") $) 34)) (-1376 (((-107) $) 31)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1169 |#1|) (-1188) (-963)) (T -1169))
-((-2271 (*1 *1 *2) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-963)))))
-(-13 (-963) (-106 |t#1| |t#1|) (-10 -8 (-15 -2271 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-969 |#1|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 45)) (-3038 (($ $ (-703)) 39)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1504 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-1393 (($) NIL T CONST)) (-4097 (($ $ $) 62) (($ $ (-751 |#1|)) 49) (($ $ |#1|) 53)) (-3228 (((-3 (-751 |#1|) "failed") $) NIL)) (-3390 (((-751 |#1|) $) NIL)) (-2373 (($ $) 32)) (-2560 (((-3 $ "failed") $) NIL)) (-2419 (((-107) $) NIL)) (-4136 (($ $) NIL)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2425 (($ (-751 |#1|) |#2|) 31)) (-1591 (($ $) 33)) (-3691 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-3668 (((-751 |#1|) $) NIL)) (-3557 (((-751 |#1|) $) 34)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-1674 (($ $ $) 61) (($ $ (-751 |#1|)) 51) (($ $ |#1|) 55)) (-2124 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2335 (((-751 |#1|) $) 28)) (-2347 ((|#2| $) 30)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3647 (((-703) $) 36)) (-3591 (((-107) $) 40)) (-1385 ((|#2| $) NIL)) (-2271 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-751 |#1|)) NIL)) (-1582 ((|#2| $ $) 64) ((|#2| $ (-751 |#1|)) NIL)) (-4099 (((-703)) NIL)) (-2815 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3610 (($) 12 T CONST)) (-3619 (($) 14 T CONST)) (-1452 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1584 (((-107) $ $) 38)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1170 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1176 |#1| |#2|)) (-779) (-963)) (T -1170))
-NIL
-(-13 (-352 |#2| (-751 |#1|)) (-1176 |#1| |#2|))
-((-1226 ((|#3| |#3| (-703)) 23)) (-3870 ((|#3| |#3| (-703)) 28)) (-2624 ((|#3| |#3| |#3| (-703)) 29)))
-(((-1171 |#1| |#2| |#3|) (-10 -7 (-15 -3870 (|#3| |#3| (-703))) (-15 -1226 (|#3| |#3| (-703))) (-15 -2624 (|#3| |#3| |#3| (-703)))) (-13 (-963) (-650 (-377 (-517)))) (-779) (-1176 |#2| |#1|)) (T -1171))
-((-2624 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-963) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1171 *4 *5 *2)) (-4 *2 (-1176 *5 *4)))) (-1226 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-963) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1171 *4 *5 *2)) (-4 *2 (-1176 *5 *4)))) (-3870 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-963) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1171 *4 *5 *2)) (-4 *2 (-1176 *5 *4)))))
-(-10 -7 (-15 -3870 (|#3| |#3| (-703))) (-15 -1226 (|#3| |#3| (-703))) (-15 -2624 (|#3| |#3| |#3| (-703))))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3367 (((-583 |#1|) $) 40)) (-2798 (((-3 $ "failed") $ $) 19)) (-1504 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-1393 (($) 17 T CONST)) (-4097 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3228 (((-3 (-751 |#1|) "failed") $) 64)) (-3390 (((-751 |#1|) $) 63)) (-2560 (((-3 $ "failed") $) 34)) (-2419 (((-107) $) 45)) (-4136 (($ $) 44)) (-1376 (((-107) $) 31)) (-3982 (((-107) $) 50)) (-2425 (($ (-751 |#1|) |#2|) 51)) (-1591 (($ $) 49)) (-3691 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-3668 (((-751 |#1|) $) 61)) (-3310 (($ (-1 |#2| |#2|) $) 41)) (-1674 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-3591 (((-107) $) 47)) (-1385 ((|#2| $) 46)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1582 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1172 |#1| |#2|) (-1188) (-779) (-963)) (T -1172))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-779)) (-4 *2 (-963)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-751 *3)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1172 *4 *2)) (-4 *4 (-779)) (-4 *2 (-963)))) (-1582 (*1 *2 *1 *1) (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-779)) (-4 *2 (-963)))) (-1674 (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-1674 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))) (-1674 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))) (-4097 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-2425 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1172 *4 *3)) (-4 *3 (-963)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-107)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-2271 (*1 *1 *2) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-107)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-779)) (-4 *2 (-963)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-107)))) (-4136 (*1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))) (-1504 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)) (-4 *3 (-156)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-4 *4 (-156)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-583 *3)))))
-(-13 (-963) (-1169 |t#2|) (-954 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3668 ((-751 |t#1|) $)) (-15 -3691 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1582 (|t#2| $ (-751 |t#1|))) (-15 -1582 (|t#2| $ $)) (-15 -1674 ($ $ |t#1|)) (-15 -1674 ($ $ (-751 |t#1|))) (-15 -1674 ($ $ $)) (-15 -4097 ($ $ |t#1|)) (-15 -4097 ($ $ (-751 |t#1|))) (-15 -4097 ($ $ $)) (-15 -2425 ($ (-751 |t#1|) |t#2|)) (-15 -3982 ((-107) $)) (-15 -1591 ($ $)) (-15 -2271 ($ |t#1|)) (-15 -3591 ((-107) $)) (-15 -1385 (|t#2| $)) (-15 -2419 ((-107) $)) (-15 -4136 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -1504 ($ $ $)) (-15 -1504 ($ $ (-703)))) |%noBranch|) (-15 -3310 ($ (-1 |t#2| |t#2|) $)) (-15 -3367 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4185)) (-6 -4185) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-954 (-751 |#1|)) . T) ((-969 |#2|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1169 |#2|) . T))
-((-2928 (((-107) $) 14)) (-1999 (((-107) $) 13)) (-3629 (($ $) 18) (($ $ (-703)) 19)))
-(((-1173 |#1| |#2|) (-10 -8 (-15 -3629 (|#1| |#1| (-703))) (-15 -3629 (|#1| |#1|)) (-15 -2928 ((-107) |#1|)) (-15 -1999 ((-107) |#1|))) (-1174 |#2|) (-333)) (T -1173))
-NIL
-(-10 -8 (-15 -3629 (|#1| |#1| (-703))) (-15 -3629 (|#1| |#1|)) (-15 -2928 ((-107) |#1|)) (-15 -1999 ((-107) |#1|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-2559 (((-2 (|:| -1485 $) (|:| -4179 $) (|:| |associate| $)) $) 41)) (-3062 (($ $) 40)) (-2190 (((-107) $) 38)) (-2928 (((-107) $) 94)) (-1305 (((-703)) 90)) (-2798 (((-3 $ "failed") $ $) 19)) (-1224 (($ $) 73)) (-4018 (((-388 $) $) 72)) (-3820 (((-107) $ $) 59)) (-1393 (($) 17 T CONST)) (-3228 (((-3 |#1| "failed") $) 101)) (-3390 ((|#1| $) 100)) (-2379 (($ $ $) 55)) (-2560 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-1762 (((-2 (|:| -1582 (-583 $)) (|:| -1318 $)) (-583 $)) 51)) (-2855 (($ $ (-703)) 87 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1259 (((-107) $) 71)) (-1395 (((-765 (-844)) $) 84 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1376 (((-107) $) 31)) (-3037 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2332 (($ $ $) 46) (($ (-583 $)) 45)) (-1662 (((-1059) $) 9)) (-2300 (($ $) 70)) (-1603 (((-107) $) 93)) (-4125 (((-1023) $) 10)) (-1943 (((-1072 $) (-1072 $) (-1072 $)) 44)) (-2370 (($ $ $) 48) (($ (-583 $)) 47)) (-3868 (((-388 $) $) 74)) (-2402 (((-765 (-844))) 91)) (-3572 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1318 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2329 (((-3 $ "failed") $ $) 42)) (-3006 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3600 (((-703) $) 58)) (-3853 (((-2 (|:| -3371 $) (|:| -2946 $)) $ $) 57)) (-2192 (((-3 (-703) "failed") $ $) 85 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1537 (((-125)) 99)) (-3647 (((-765 (-844)) $) 92)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-3974 (((-3 $ "failed") $) 83 (-3747 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-4099 (((-703)) 29)) (-2074 (((-107) $ $) 39)) (-1999 (((-107) $) 95)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-3629 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1584 (((-107) $ $) 6)) (-1704 (($ $ $) 64) (($ $ |#1|) 98)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1174 |#1|) (-1188) (-333)) (T -1174))
-((-1999 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844))))) (-2402 (*1 *2) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844))))) (-1305 (*1 *2) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-3629 (*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
-(-13 (-333) (-954 |t#1|) (-1164 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |%noBranch|) (-15 -1999 ((-107) $)) (-15 -2928 ((-107) $)) (-15 -1603 ((-107) $)) (-15 -3647 ((-765 (-844)) $)) (-15 -2402 ((-765 (-844)))) (-15 -1305 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -3629 ($ $)) (-15 -3629 ($ $ (-703)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3747 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3747 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-954 |#1|) . T) ((-969 #0#) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1115) . T) ((-1164 |#1|) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 85)) (-3038 (($ $ (-703)) 88)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1504 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-1393 (($) NIL T CONST)) (-4097 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-3228 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-816 |#1|) "failed") $) NIL)) (-3390 (((-751 |#1|) $) NIL) (((-816 |#1|) $) NIL)) (-2373 (($ $) 87)) (-2560 (((-3 $ "failed") $) NIL)) (-2419 (((-107) $) 76)) (-4136 (($ $) 80)) (-3196 (($ $ $ (-703)) 89)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2425 (($ (-751 |#1|) |#2|) NIL) (($ (-816 |#1|) |#2|) 26)) (-1591 (($ $) 102)) (-3691 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3668 (((-751 |#1|) $) NIL)) (-3557 (((-751 |#1|) $) NIL)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-1674 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1226 (($ $ (-703)) 96 (|has| |#2| (-650 (-377 (-517)))))) (-2124 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2335 (((-816 |#1|) $) 70)) (-2347 ((|#2| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3870 (($ $ (-703)) 93 (|has| |#2| (-650 (-377 (-517)))))) (-3647 (((-703) $) 86)) (-3591 (((-107) $) 71)) (-1385 ((|#2| $) 75)) (-2271 (((-787) $) 57) (($ (-517)) NIL) (($ |#2|) 51) (($ (-751 |#1|)) NIL) (($ |#1|) 59) (($ (-816 |#1|)) NIL) (($ (-601 |#1| |#2|)) 43) (((-1170 |#1| |#2|) $) 64) (((-1179 |#1| |#2|) $) 69)) (-1998 (((-583 |#2|) $) NIL)) (-1689 ((|#2| $ (-816 |#1|)) NIL)) (-1582 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-4099 (((-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 21 T CONST)) (-3619 (($) 25 T CONST)) (-1452 (((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1254 (((-3 (-601 |#1| |#2|) "failed") $) 101)) (-1584 (((-107) $ $) 65)) (-1692 (($ $) 95) (($ $ $) 94)) (-1678 (($ $ $) 20)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-816 |#1|)) NIL)))
-(((-1175 |#1| |#2|) (-13 (-1176 |#1| |#2|) (-352 |#2| (-816 |#1|)) (-10 -8 (-15 -2271 ($ (-601 |#1| |#2|))) (-15 -2271 ((-1170 |#1| |#2|) $)) (-15 -2271 ((-1179 |#1| |#2|) $)) (-15 -1254 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3196 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3870 ($ $ (-703))) (-15 -1226 ($ $ (-703)))) |%noBranch|))) (-779) (-156)) (T -1175))
-((-2271 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1175 *3 *4)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1254 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3196 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1226 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(-13 (-1176 |#1| |#2|) (-352 |#2| (-816 |#1|)) (-10 -8 (-15 -2271 ($ (-601 |#1| |#2|))) (-15 -2271 ((-1170 |#1| |#2|) $)) (-15 -2271 ((-1179 |#1| |#2|) $)) (-15 -1254 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3196 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3870 ($ $ (-703))) (-15 -1226 ($ $ (-703)))) |%noBranch|)))
-((-2119 (((-107) $ $) 7)) (-3097 (((-107) $) 16)) (-3367 (((-583 |#1|) $) 40)) (-3038 (($ $ (-703)) 73)) (-2798 (((-3 $ "failed") $ $) 19)) (-1504 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-1393 (($) 17 T CONST)) (-4097 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3228 (((-3 (-751 |#1|) "failed") $) 64)) (-3390 (((-751 |#1|) $) 63)) (-2560 (((-3 $ "failed") $) 34)) (-2419 (((-107) $) 45)) (-4136 (($ $) 44)) (-1376 (((-107) $) 31)) (-3982 (((-107) $) 50)) (-2425 (($ (-751 |#1|) |#2|) 51)) (-1591 (($ $) 49)) (-3691 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-3668 (((-751 |#1|) $) 61)) (-3557 (((-751 |#1|) $) 75)) (-3310 (($ (-1 |#2| |#2|) $) 41)) (-1674 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-1662 (((-1059) $) 9)) (-4125 (((-1023) $) 10)) (-3647 (((-703) $) 74)) (-3591 (((-107) $) 47)) (-1385 ((|#2| $) 46)) (-2271 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1582 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-4099 (((-703)) 29)) (-2815 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3610 (($) 18 T CONST)) (-3619 (($) 30 T CONST)) (-1584 (((-107) $ $) 6)) (-1692 (($ $) 22) (($ $ $) 21)) (-1678 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1176 |#1| |#2|) (-1188) (-779) (-963)) (T -1176))
-((-3557 (*1 *2 *1) (-12 (-4 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-751 *3)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *2 (-703)))) (-3038 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))))
-(-13 (-1172 |t#1| |t#2|) (-10 -8 (-15 -3557 ((-751 |t#1|) $)) (-15 -3647 ((-703) $)) (-15 -3038 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-954 (-751 |#1|)) . T) ((-969 |#2|) . T) ((-963) . T) ((-970) . T) ((-1017) . T) ((-1005) . T) ((-1169 |#2|) . T) ((-1172 |#1| |#2|) . T))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3367 (((-583 (-1076)) $) NIL)) (-3102 (($ (-1170 (-1076) |#1|)) NIL)) (-3038 (($ $ (-703)) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1504 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-1393 (($) NIL T CONST)) (-4097 (($ $ (-1076)) NIL) (($ $ (-751 (-1076))) NIL) (($ $ $) NIL)) (-3228 (((-3 (-751 (-1076)) "failed") $) NIL)) (-3390 (((-751 (-1076)) $) NIL)) (-2560 (((-3 $ "failed") $) NIL)) (-2419 (((-107) $) NIL)) (-4136 (($ $) NIL)) (-1376 (((-107) $) NIL)) (-3982 (((-107) $) NIL)) (-2425 (($ (-751 (-1076)) |#1|) NIL)) (-1591 (($ $) NIL)) (-3691 (((-2 (|:| |k| (-751 (-1076))) (|:| |c| |#1|)) $) NIL)) (-3668 (((-751 (-1076)) $) NIL)) (-3557 (((-751 (-1076)) $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-1674 (($ $ (-1076)) NIL) (($ $ (-751 (-1076))) NIL) (($ $ $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2296 (((-1170 (-1076) |#1|) $) NIL)) (-3647 (((-703) $) NIL)) (-3591 (((-107) $) NIL)) (-1385 ((|#1| $) NIL)) (-2271 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1076))) NIL) (($ (-1076)) NIL)) (-1582 ((|#1| $ (-751 (-1076))) NIL) ((|#1| $ $) NIL)) (-4099 (((-703)) NIL)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) NIL T CONST)) (-1800 (((-583 (-2 (|:| |k| (-1076)) (|:| |c| $))) $) NIL)) (-3619 (($) NIL T CONST)) (-1584 (((-107) $ $) NIL)) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1076) $) NIL)))
-(((-1177 |#1|) (-13 (-1176 (-1076) |#1|) (-10 -8 (-15 -2296 ((-1170 (-1076) |#1|) $)) (-15 -3102 ($ (-1170 (-1076) |#1|))) (-15 -1800 ((-583 (-2 (|:| |k| (-1076)) (|:| |c| $))) $)))) (-963)) (T -1177))
-((-2296 (*1 *2 *1) (-12 (-5 *2 (-1170 (-1076) *3)) (-5 *1 (-1177 *3)) (-4 *3 (-963)))) (-3102 (*1 *1 *2) (-12 (-5 *2 (-1170 (-1076) *3)) (-4 *3 (-963)) (-5 *1 (-1177 *3)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1076)) (|:| |c| (-1177 *3))))) (-5 *1 (-1177 *3)) (-4 *3 (-963)))))
-(-13 (-1176 (-1076) |#1|) (-10 -8 (-15 -2296 ((-1170 (-1076) |#1|) $)) (-15 -3102 ($ (-1170 (-1076) |#1|))) (-15 -1800 ((-583 (-2 (|:| |k| (-1076)) (|:| |c| $))) $))))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1393 (($) NIL T CONST)) (-3228 (((-3 |#2| "failed") $) NIL)) (-3390 ((|#2| $) NIL)) (-2373 (($ $) NIL)) (-2560 (((-3 $ "failed") $) 35)) (-2419 (((-107) $) 30)) (-4136 (($ $) 31)) (-1376 (((-107) $) NIL)) (-3783 (((-703) $) NIL)) (-3794 (((-583 $) $) NIL)) (-3982 (((-107) $) NIL)) (-2425 (($ |#2| |#1|) NIL)) (-3668 ((|#2| $) 19)) (-3557 ((|#2| $) 16)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2124 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2335 ((|#2| $) NIL)) (-2347 ((|#1| $) NIL)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-3591 (((-107) $) 27)) (-1385 ((|#1| $) 28)) (-2271 (((-787) $) 54) (($ (-517)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-1998 (((-583 |#1|) $) NIL)) (-1689 ((|#1| $ |#2|) NIL)) (-1582 ((|#1| $ |#2|) 24)) (-4099 (((-703)) 14)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 25 T CONST)) (-3619 (($) 11 T CONST)) (-1452 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1584 (((-107) $ $) 26)) (-1704 (($ $ |#1|) 56 (|has| |#1| (-333)))) (-1692 (($ $) NIL) (($ $ $) NIL)) (-1678 (($ $ $) 43)) (** (($ $ (-844)) NIL) (($ $ (-703)) 45)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3535 (((-703) $) 15)))
-(((-1178 |#1| |#2|) (-13 (-963) (-1169 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3535 ((-703) $)) (-15 -2271 ($ |#2|)) (-15 -3557 (|#2| $)) (-15 -3668 (|#2| $)) (-15 -2373 ($ $)) (-15 -1582 (|#1| $ |#2|)) (-15 -3591 ((-107) $)) (-15 -1385 (|#1| $)) (-15 -2419 ((-107) $)) (-15 -4136 ($ $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1704 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4185)) (-6 -4185) |%noBranch|) (IF (|has| |#1| (-6 -4189)) (-6 -4189) |%noBranch|) (IF (|has| |#1| (-6 -4190)) (-6 -4190) |%noBranch|))) (-963) (-775)) (T -1178))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-963)) (-4 *3 (-775)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-963)) (-4 *3 (-775)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-1178 *3 *4)) (-4 *4 (-775)))) (-2271 (*1 *1 *2) (-12 (-5 *1 (-1178 *3 *2)) (-4 *3 (-963)) (-4 *2 (-775)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-963)) (-4 *4 (-775)))) (-3557 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-963)))) (-3668 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-963)))) (-1582 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-775)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-963)) (-4 *4 (-775)))) (-1385 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-775)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-963)) (-4 *4 (-775)))) (-4136 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-963)) (-4 *3 (-775)))) (-1704 (*1 *1 *1 *2) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-333)) (-4 *2 (-963)) (-4 *3 (-775)))))
-(-13 (-963) (-1169 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3535 ((-703) $)) (-15 -2271 ($ |#2|)) (-15 -3557 (|#2| $)) (-15 -3668 (|#2| $)) (-15 -2373 ($ $)) (-15 -1582 (|#1| $ |#2|)) (-15 -3591 ((-107) $)) (-15 -1385 (|#1| $)) (-15 -2419 ((-107) $)) (-15 -4136 ($ $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1704 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4185)) (-6 -4185) |%noBranch|) (IF (|has| |#1| (-6 -4189)) (-6 -4189) |%noBranch|) (IF (|has| |#1| (-6 -4190)) (-6 -4190) |%noBranch|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) NIL)) (-3367 (((-583 |#1|) $) 120)) (-3102 (($ (-1170 |#1| |#2|)) 44)) (-3038 (($ $ (-703)) 32)) (-2798 (((-3 $ "failed") $ $) NIL)) (-1504 (($ $ $) 48 (|has| |#2| (-156))) (($ $ (-703)) 46 (|has| |#2| (-156)))) (-1393 (($) NIL T CONST)) (-4097 (($ $ |#1|) 102) (($ $ (-751 |#1|)) 103) (($ $ $) 25)) (-3228 (((-3 (-751 |#1|) "failed") $) NIL)) (-3390 (((-751 |#1|) $) NIL)) (-2560 (((-3 $ "failed") $) 110)) (-2419 (((-107) $) 105)) (-4136 (($ $) 106)) (-1376 (((-107) $) NIL)) (-3982 (((-107) $) NIL)) (-2425 (($ (-751 |#1|) |#2|) 19)) (-1591 (($ $) NIL)) (-3691 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3668 (((-751 |#1|) $) 111)) (-3557 (((-751 |#1|) $) 114)) (-3310 (($ (-1 |#2| |#2|) $) 119)) (-1674 (($ $ |#1|) 100) (($ $ (-751 |#1|)) 101) (($ $ $) 56)) (-1662 (((-1059) $) NIL)) (-4125 (((-1023) $) NIL)) (-2296 (((-1170 |#1| |#2|) $) 84)) (-3647 (((-703) $) 117)) (-3591 (((-107) $) 70)) (-1385 ((|#2| $) 28)) (-2271 (((-787) $) 63) (($ (-517)) 77) (($ |#2|) 74) (($ (-751 |#1|)) 17) (($ |#1|) 73)) (-1582 ((|#2| $ (-751 |#1|)) 104) ((|#2| $ $) 27)) (-4099 (((-703)) 108)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 14 T CONST)) (-1800 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3619 (($) 29 T CONST)) (-1584 (((-107) $ $) 13)) (-1692 (($ $) 88) (($ $ $) 91)) (-1678 (($ $ $) 55)) (** (($ $ (-844)) NIL) (($ $ (-703)) 49)) (* (($ (-844) $) NIL) (($ (-703) $) 47) (($ (-517) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1179 |#1| |#2|) (-13 (-1176 |#1| |#2|) (-10 -8 (-15 -2296 ((-1170 |#1| |#2|) $)) (-15 -3102 ($ (-1170 |#1| |#2|))) (-15 -1800 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-963)) (T -1179))
-((-2296 (*1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))) (-3102 (*1 *1 *2) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)) (-5 *1 (-1179 *3 *4)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1179 *3 *4))))) (-5 *1 (-1179 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))))
-(-13 (-1176 |#1| |#2|) (-10 -8 (-15 -2296 ((-1170 |#1| |#2|) $)) (-15 -3102 ($ (-1170 |#1| |#2|))) (-15 -1800 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2011 (((-583 (-1057 |#1|)) (-1 (-583 (-1057 |#1|)) (-583 (-1057 |#1|))) (-517)) 15) (((-1057 |#1|) (-1 (-1057 |#1|) (-1057 |#1|))) 11)))
-(((-1180 |#1|) (-10 -7 (-15 -2011 ((-1057 |#1|) (-1 (-1057 |#1|) (-1057 |#1|)))) (-15 -2011 ((-583 (-1057 |#1|)) (-1 (-583 (-1057 |#1|)) (-583 (-1057 |#1|))) (-517)))) (-1111)) (T -1180))
-((-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1057 *5)) (-583 (-1057 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1057 *5))) (-5 *1 (-1180 *5)) (-4 *5 (-1111)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1 (-1057 *4) (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1111)))))
-(-10 -7 (-15 -2011 ((-1057 |#1|) (-1 (-1057 |#1|) (-1057 |#1|)))) (-15 -2011 ((-583 (-1057 |#1|)) (-1 (-583 (-1057 |#1|)) (-583 (-1057 |#1|))) (-517))))
-((-2094 (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|))) 146) (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107)) 145) (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107)) 144) (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107) (-107)) 143) (((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-960 |#1| |#2|)) 128)) (-3422 (((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|))) 71) (((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)) (-107)) 70) (((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)) (-107) (-107)) 69)) (-4018 (((-583 (-1047 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-960 |#1| |#2|)) 60)) (-1588 (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|))) 113) (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107)) 112) (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107)) 111) (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107) (-107)) 110) (((-583 (-583 (-941 (-377 |#1|)))) (-960 |#1| |#2|)) 105)) (-3935 (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|))) 118) (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107)) 117) (((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107)) 116) (((-583 (-583 (-941 (-377 |#1|)))) (-960 |#1| |#2|)) 115)) (-3359 (((-583 (-712 |#1| (-789 |#3|))) (-1047 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 97) (((-1072 (-941 (-377 |#1|))) (-1072 |#1|)) 88) (((-875 (-941 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 95) (((-875 (-941 (-377 |#1|))) (-875 |#1|)) 93) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 33)))
-(((-1181 |#1| |#2| |#3|) (-10 -7 (-15 -3422 ((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)) (-107) (-107))) (-15 -3422 ((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)) (-107))) (-15 -3422 ((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-960 |#1| |#2|))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-960 |#1| |#2|))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-960 |#1| |#2|))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -4018 ((-583 (-1047 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-960 |#1| |#2|))) (-15 -3359 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3359 ((-875 (-941 (-377 |#1|))) (-875 |#1|))) (-15 -3359 ((-875 (-941 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3359 ((-1072 (-941 (-377 |#1|))) (-1072 |#1|))) (-15 -3359 ((-583 (-712 |#1| (-789 |#3|))) (-1047 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-939)) (-583 (-1076)) (-583 (-1076))) (T -1181))
-((-3359 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1072 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-1072 (-941 (-377 *4)))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *6 (-583 (-1076))) (-5 *2 (-875 (-941 (-377 *4)))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-875 (-941 (-377 *4)))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *5 (-583 (-1076))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076))))) (-4018 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *5 (-583 (-1076))) (-5 *2 (-583 (-1047 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076))))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *4))))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-3935 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *5 (-583 (-1076))) (-5 *2 (-583 (-583 (-941 (-377 *4))))) (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076))))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *4))))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-1588 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-1588 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *5 (-583 (-1076))) (-5 *2 (-583 (-583 (-941 (-377 *4))))) (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076))))) (-2094 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *4)) (|:| -3784 (-583 (-875 *4)))))) (-5 *1 (-1181 *4 *5 *6)) (-5 *3 (-583 (-875 *4))) (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5)))))) (-5 *1 (-1181 *5 *6 *7)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-2094 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5)))))) (-5 *1 (-1181 *5 *6 *7)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-2094 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5)))))) (-5 *1 (-1181 *5 *6 *7)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *5 (-583 (-1076))) (-5 *2 (-583 (-2 (|:| -3666 (-1072 *4)) (|:| -3784 (-583 (-875 *4)))))) (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076))))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-960 *4 *5))) (-5 *1 (-1181 *4 *5 *6)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))) (-3422 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939))) (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-1181 *5 *6 *7)) (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076))))))
-(-10 -7 (-15 -3422 ((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)) (-107) (-107))) (-15 -3422 ((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)) (-107))) (-15 -3422 ((-583 (-960 |#1| |#2|)) (-583 (-875 |#1|)))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-960 |#1| |#2|))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -2094 ((-583 (-2 (|:| -3666 (-1072 |#1|)) (|:| -3784 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-960 |#1| |#2|))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -1588 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-960 |#1| |#2|))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -3935 ((-583 (-583 (-941 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -4018 ((-583 (-1047 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-960 |#1| |#2|))) (-15 -3359 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3359 ((-875 (-941 (-377 |#1|))) (-875 |#1|))) (-15 -3359 ((-875 (-941 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3359 ((-1072 (-941 (-377 |#1|))) (-1072 |#1|))) (-15 -3359 ((-583 (-712 |#1| (-789 |#3|))) (-1047 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
-((-3314 (((-3 (-1157 (-377 (-517))) "failed") (-1157 |#1|) |#1|) 17)) (-1438 (((-107) (-1157 |#1|)) 11)) (-3230 (((-3 (-1157 (-517)) "failed") (-1157 |#1|)) 14)))
-(((-1182 |#1|) (-10 -7 (-15 -1438 ((-107) (-1157 |#1|))) (-15 -3230 ((-3 (-1157 (-517)) "failed") (-1157 |#1|))) (-15 -3314 ((-3 (-1157 (-377 (-517))) "failed") (-1157 |#1|) |#1|))) (-579 (-517))) (T -1182))
-((-3314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1157 (-377 (-517)))) (-5 *1 (-1182 *4)))) (-3230 (*1 *2 *3) (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1157 (-517))) (-5 *1 (-1182 *4)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1182 *4)))))
-(-10 -7 (-15 -1438 ((-107) (-1157 |#1|))) (-15 -3230 ((-3 (-1157 (-517)) "failed") (-1157 |#1|))) (-15 -3314 ((-3 (-1157 (-377 (-517))) "failed") (-1157 |#1|) |#1|)))
-((-2119 (((-107) $ $) NIL)) (-3097 (((-107) $) 11)) (-2798 (((-3 $ "failed") $ $) NIL)) (-2399 (((-703)) 8)) (-1393 (($) NIL T CONST)) (-2560 (((-3 $ "failed") $) 43)) (-2202 (($) 36)) (-1376 (((-107) $) NIL)) (-2243 (((-3 $ "failed") $) 29)) (-3072 (((-844) $) 15)) (-1662 (((-1059) $) NIL)) (-2587 (($) 25 T CONST)) (-2812 (($ (-844)) 37)) (-4125 (((-1023) $) NIL)) (-3359 (((-517) $) 13)) (-2271 (((-787) $) 22) (($ (-517)) 19)) (-4099 (((-703)) 9)) (-2815 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3610 (($) 23 T CONST)) (-3619 (($) 24 T CONST)) (-1584 (((-107) $ $) 27)) (-1692 (($ $) 38) (($ $ $) 35)) (-1678 (($ $ $) 26)) (** (($ $ (-844)) NIL) (($ $ (-703)) 40)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
-(((-1183 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1052)) (-844)) (T -1183))
-NIL
-(-13 (-156) (-338) (-558 (-517)) (-1052))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-1188 3127276 3127281 3127286 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3127261 3127266 3127271 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3127246 3127251 3127256 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3127231 3127236 3127241 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3127216 3127221 3127226 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1183 3126346 3127091 3127168 "ZMOD" 3127173 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1182 3125456 3125620 3125829 "ZLINDEP" 3126178 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1181 3114860 3116605 3118557 "ZDSOLVE" 3123605 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1180 3114106 3114247 3114436 "YSTREAM" 3114706 NIL YSTREAM (NIL T) -7 NIL NIL) (-1179 3111874 3113411 3113614 "XRPOLY" 3113949 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1178 3108336 3109665 3110247 "XPR" 3111338 NIL XPR (NIL T T) -8 NIL NIL) (-1177 3106050 3107671 3107874 "XPOLY" 3108167 NIL XPOLY (NIL T) -8 NIL NIL) (-1176 3103863 3105241 3105296 "XPOLYC" 3105581 NIL XPOLYC (NIL T T) -9 NIL 3105694) (-1175 3100235 3102380 3102768 "XPBWPOLY" 3103521 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1174 3096162 3098475 3098518 "XF" 3099139 NIL XF (NIL T) -9 NIL 3099538) (-1173 3095783 3095871 3096040 "XF-" 3096045 NIL XF- (NIL T T) -8 NIL NIL) (-1172 3091162 3092461 3092516 "XFALG" 3094664 NIL XFALG (NIL T T) -9 NIL 3095451) (-1171 3090299 3090403 3090607 "XEXPPKG" 3091054 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1170 3088397 3090150 3090245 "XDPOLY" 3090250 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1169 3087275 3087885 3087928 "XALG" 3087990 NIL XALG (NIL T) -9 NIL 3088109) (-1168 3080751 3085259 3085752 "WUTSET" 3086867 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1167 3078563 3079370 3079721 "WP" 3080533 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1166 3077449 3077647 3077942 "WFFINTBS" 3078360 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1165 3075353 3075780 3076242 "WEIER" 3077021 NIL WEIER (NIL T) -7 NIL NIL) (-1164 3074501 3074925 3074968 "VSPACE" 3075104 NIL VSPACE (NIL T) -9 NIL 3075178) (-1163 3074339 3074366 3074457 "VSPACE-" 3074462 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1162 3074085 3074128 3074199 "VOID" 3074290 T VOID (NIL) -8 NIL NIL) (-1161 3072221 3072580 3072986 "VIEW" 3073701 T VIEW (NIL) -7 NIL NIL) (-1160 3068646 3069284 3070021 "VIEWDEF" 3071506 T VIEWDEF (NIL) -7 NIL NIL) (-1159 3057985 3060194 3062367 "VIEW3D" 3066495 T VIEW3D (NIL) -8 NIL NIL) (-1158 3050267 3051896 3053475 "VIEW2D" 3056428 T VIEW2D (NIL) -8 NIL NIL) (-1157 3045676 3050037 3050129 "VECTOR" 3050210 NIL VECTOR (NIL T) -8 NIL NIL) (-1156 3044253 3044512 3044830 "VECTOR2" 3045406 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1155 3037792 3042044 3042088 "VECTCAT" 3043076 NIL VECTCAT (NIL T) -9 NIL 3043660) (-1154 3036806 3037060 3037450 "VECTCAT-" 3037455 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1153 3036287 3036457 3036577 "VARIABLE" 3036721 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1152 3036219 3036224 3036255 "UTYPE" 3036260 T UTYPE (NIL) -9 NIL NIL) (-1151 3035054 3035208 3035469 "UTSODETL" 3036045 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1150 3032494 3032954 3033478 "UTSODE" 3034595 NIL UTSODE (NIL T T) -7 NIL NIL) (-1149 3024341 3030134 3030622 "UTS" 3032063 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1148 3015689 3021051 3021094 "UTSCAT" 3022195 NIL UTSCAT (NIL T) -9 NIL 3022952) (-1147 3013045 3013760 3014748 "UTSCAT-" 3014753 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1146 3012676 3012719 3012850 "UTS2" 3012996 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1145 3006951 3009516 3009560 "URAGG" 3011630 NIL URAGG (NIL T) -9 NIL 3012352) (-1144 3003890 3004753 3005876 "URAGG-" 3005881 NIL URAGG- (NIL T T) -8 NIL NIL) (-1143 2999576 3002507 3002978 "UPXSSING" 3003554 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1142 2991470 2998697 2998977 "UPXS" 2999353 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1141 2984502 2991375 2991446 "UPXSCONS" 2991451 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1140 2974794 2981621 2981683 "UPXSCCA" 2982332 NIL UPXSCCA (NIL T T) -9 NIL 2982573) (-1139 2974433 2974518 2974691 "UPXSCCA-" 2974696 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1138 2964647 2971247 2971290 "UPXSCAT" 2971933 NIL UPXSCAT (NIL T) -9 NIL 2972541) (-1137 2964081 2964160 2964337 "UPXS2" 2964562 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1136 2962735 2962988 2963339 "UPSQFREE" 2963824 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1135 2956630 2959682 2959737 "UPSCAT" 2960886 NIL UPSCAT (NIL T T) -9 NIL 2961659) (-1134 2955844 2956048 2956371 "UPSCAT-" 2956376 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1133 2941976 2949973 2950016 "UPOLYC" 2952094 NIL UPOLYC (NIL T) -9 NIL 2953314) (-1132 2933369 2935773 2938898 "UPOLYC-" 2938903 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1131 2933000 2933043 2933174 "UPOLYC2" 2933320 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1130 2924459 2932569 2932706 "UP" 2932910 NIL UP (NIL NIL T) -8 NIL NIL) (-1129 2923802 2923909 2924072 "UPMP" 2924348 NIL UPMP (NIL T T) -7 NIL NIL) (-1128 2923355 2923436 2923575 "UPDIVP" 2923715 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1127 2921923 2922172 2922488 "UPDECOMP" 2923104 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1126 2921158 2921270 2921455 "UPCDEN" 2921807 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1125 2920681 2920750 2920897 "UP2" 2921083 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1124 2919200 2919887 2920163 "UNISEG" 2920440 NIL UNISEG (NIL T) -8 NIL NIL) (-1123 2918415 2918542 2918747 "UNISEG2" 2919043 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1122 2917475 2917655 2917881 "UNIFACT" 2918231 NIL UNIFACT (NIL T) -7 NIL NIL) (-1121 2901374 2916656 2916906 "ULS" 2917282 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1120 2889342 2901279 2901350 "ULSCONS" 2901355 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1119 2872095 2884105 2884167 "ULSCCAT" 2884879 NIL ULSCCAT (NIL T T) -9 NIL 2885175) (-1118 2871146 2871391 2871778 "ULSCCAT-" 2871783 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1117 2861139 2867653 2867696 "ULSCAT" 2868552 NIL ULSCAT (NIL T) -9 NIL 2869282) (-1116 2860573 2860652 2860829 "ULS2" 2861054 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1115 2858970 2859937 2859968 "UFD" 2860180 T UFD (NIL) -9 NIL 2860294) (-1114 2858764 2858810 2858905 "UFD-" 2858910 NIL UFD- (NIL T) -8 NIL NIL) (-1113 2857846 2858029 2858245 "UDVO" 2858570 T UDVO (NIL) -7 NIL NIL) (-1112 2855662 2856071 2856542 "UDPO" 2857410 NIL UDPO (NIL T) -7 NIL NIL) (-1111 2855594 2855599 2855630 "TYPE" 2855635 T TYPE (NIL) -9 NIL NIL) (-1110 2854565 2854767 2855007 "TWOFACT" 2855388 NIL TWOFACT (NIL T) -7 NIL NIL) (-1109 2853503 2853840 2854103 "TUPLE" 2854337 NIL TUPLE (NIL T) -8 NIL NIL) (-1108 2851194 2851713 2852252 "TUBETOOL" 2852986 T TUBETOOL (NIL) -7 NIL NIL) (-1107 2850043 2850248 2850489 "TUBE" 2850987 NIL TUBE (NIL T) -8 NIL NIL) (-1106 2844767 2849021 2849303 "TS" 2849795 NIL TS (NIL T) -8 NIL NIL) (-1105 2833470 2837562 2837659 "TSETCAT" 2842893 NIL TSETCAT (NIL T T T T) -9 NIL 2844424) (-1104 2828205 2829803 2831693 "TSETCAT-" 2831698 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1103 2822468 2823314 2824256 "TRMANIP" 2827341 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1102 2821909 2821972 2822135 "TRIMAT" 2822400 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1101 2819715 2819952 2820315 "TRIGMNIP" 2821658 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1100 2819234 2819347 2819378 "TRIGCAT" 2819591 T TRIGCAT (NIL) -9 NIL NIL) (-1099 2818903 2818982 2819123 "TRIGCAT-" 2819128 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1098 2815802 2817763 2818043 "TREE" 2818658 NIL TREE (NIL T) -8 NIL NIL) (-1097 2815075 2815603 2815634 "TRANFUN" 2815669 T TRANFUN (NIL) -9 NIL 2815735) (-1096 2814354 2814545 2814825 "TRANFUN-" 2814830 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1095 2814158 2814190 2814251 "TOPSP" 2814315 T TOPSP (NIL) -7 NIL NIL) (-1094 2813510 2813625 2813778 "TOOLSIGN" 2814039 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1093 2812171 2812687 2812926 "TEXTFILE" 2813293 T TEXTFILE (NIL) -8 NIL NIL) (-1092 2810036 2810550 2810988 "TEX" 2811755 T TEX (NIL) -8 NIL NIL) (-1091 2809817 2809848 2809920 "TEX1" 2809999 NIL TEX1 (NIL T) -7 NIL NIL) (-1090 2809465 2809528 2809618 "TEMUTL" 2809749 T TEMUTL (NIL) -7 NIL NIL) (-1089 2807619 2807899 2808224 "TBCMPPK" 2809188 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1088 2799507 2805779 2805836 "TBAGG" 2806236 NIL TBAGG (NIL T T) -9 NIL 2806447) (-1087 2794577 2796065 2797819 "TBAGG-" 2797824 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1086 2793961 2794068 2794213 "TANEXP" 2794466 NIL TANEXP (NIL T) -7 NIL NIL) (-1085 2787462 2793818 2793911 "TABLE" 2793916 NIL TABLE (NIL T T) -8 NIL NIL) (-1084 2786875 2786973 2787111 "TABLEAU" 2787359 NIL TABLEAU (NIL T) -8 NIL NIL) (-1083 2781483 2782703 2783951 "TABLBUMP" 2785661 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1082 2777946 2778641 2779424 "SYSSOLP" 2780734 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1081 2774456 2775035 2775752 "SYNTAX" 2777251 T SYNTAX (NIL) -8 NIL NIL) (-1080 2771590 2772198 2772836 "SYMTAB" 2773840 T SYMTAB (NIL) -8 NIL NIL) (-1079 2766839 2767741 2768724 "SYMS" 2770629 T SYMS (NIL) -8 NIL NIL) (-1078 2764072 2766299 2766528 "SYMPOLY" 2766644 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1077 2763592 2763667 2763789 "SYMFUNC" 2763984 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1076 2759570 2760829 2761651 "SYMBOL" 2762792 T SYMBOL (NIL) -8 NIL NIL) (-1075 2753109 2754798 2756518 "SWITCH" 2757872 T SWITCH (NIL) -8 NIL NIL) (-1074 2746342 2751936 2752238 "SUTS" 2752864 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1073 2738235 2745463 2745743 "SUPXS" 2746119 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1072 2729767 2737856 2737981 "SUP" 2738144 NIL SUP (NIL T) -8 NIL NIL) (-1071 2728926 2729053 2729270 "SUPFRACF" 2729635 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1070 2728551 2728610 2728721 "SUP2" 2728861 NIL SUP2 (NIL T T) -7 NIL NIL) (-1069 2726977 2727249 2727609 "SUMRF" 2728252 NIL SUMRF (NIL T) -7 NIL NIL) (-1068 2726298 2726363 2726560 "SUMFS" 2726899 NIL SUMFS (NIL T T) -7 NIL NIL) (-1067 2710237 2725479 2725729 "SULS" 2726105 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1066 2709559 2709762 2709902 "SUCH" 2710145 NIL SUCH (NIL T T) -8 NIL NIL) (-1065 2703486 2704498 2705456 "SUBSPACE" 2708647 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1064 2702916 2703006 2703170 "SUBRESP" 2703374 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1063 2696285 2697581 2698892 "STTF" 2701652 NIL STTF (NIL T) -7 NIL NIL) (-1062 2690458 2691578 2692725 "STTFNC" 2695185 NIL STTFNC (NIL T) -7 NIL NIL) (-1061 2681809 2683676 2685469 "STTAYLOR" 2688699 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1060 2675053 2681673 2681756 "STRTBL" 2681761 NIL STRTBL (NIL T) -8 NIL NIL) (-1059 2670444 2675008 2675039 "STRING" 2675044 T STRING (NIL) -8 NIL NIL) (-1058 2665332 2669817 2669848 "STRICAT" 2669907 T STRICAT (NIL) -9 NIL 2669969) (-1057 2658048 2662855 2663475 "STREAM" 2664747 NIL STREAM (NIL T) -8 NIL NIL) (-1056 2657558 2657635 2657779 "STREAM3" 2657965 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1055 2656540 2656723 2656958 "STREAM2" 2657371 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1054 2656228 2656280 2656373 "STREAM1" 2656482 NIL STREAM1 (NIL T) -7 NIL NIL) (-1053 2655244 2655425 2655656 "STINPROD" 2656044 NIL STINPROD (NIL T) -7 NIL NIL) (-1052 2654822 2655006 2655037 "STEP" 2655117 T STEP (NIL) -9 NIL 2655195) (-1051 2648365 2654721 2654798 "STBL" 2654803 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1050 2643540 2647587 2647631 "STAGG" 2647784 NIL STAGG (NIL T) -9 NIL 2647873) (-1049 2641242 2641844 2642716 "STAGG-" 2642721 NIL STAGG- (NIL T T) -8 NIL NIL) (-1048 2639437 2641012 2641104 "STACK" 2641185 NIL STACK (NIL T) -8 NIL NIL) (-1047 2632168 2637584 2638039 "SREGSET" 2639067 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1046 2624608 2625976 2627488 "SRDCMPK" 2630774 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1045 2617575 2622048 2622079 "SRAGG" 2623382 T SRAGG (NIL) -9 NIL 2623990) (-1044 2616592 2616847 2617226 "SRAGG-" 2617231 NIL SRAGG- (NIL T) -8 NIL NIL) (-1043 2611041 2615511 2615938 "SQMATRIX" 2616211 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1042 2604793 2607761 2608487 "SPLTREE" 2610387 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1041 2600783 2601449 2602095 "SPLNODE" 2604219 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1040 2599829 2600062 2600093 "SPFCAT" 2600537 T SPFCAT (NIL) -9 NIL NIL) (-1039 2598566 2598776 2599040 "SPECOUT" 2599587 T SPECOUT (NIL) -7 NIL NIL) (-1038 2598327 2598367 2598436 "SPADPRSR" 2598519 T SPADPRSR (NIL) -7 NIL NIL) (-1037 2590349 2592096 2592139 "SPACEC" 2596462 NIL SPACEC (NIL T) -9 NIL 2598278) (-1036 2588521 2590282 2590330 "SPACE3" 2590335 NIL SPACE3 (NIL T) -8 NIL NIL) (-1035 2587273 2587444 2587735 "SORTPAK" 2588326 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1034 2585329 2585632 2586050 "SOLVETRA" 2586937 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1033 2584340 2584562 2584836 "SOLVESER" 2585102 NIL SOLVESER (NIL T) -7 NIL NIL) (-1032 2579560 2580441 2581443 "SOLVERAD" 2583392 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1031 2575375 2575984 2576713 "SOLVEFOR" 2578927 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1030 2569674 2574726 2574823 "SNTSCAT" 2574828 NIL SNTSCAT (NIL T T T T) -9 NIL 2574898) (-1029 2563779 2568005 2568395 "SMTS" 2569364 NIL SMTS (NIL T T T) -8 NIL NIL) (-1028 2558190 2563668 2563744 "SMP" 2563749 NIL SMP (NIL T T) -8 NIL NIL) (-1027 2556349 2556650 2557048 "SMITH" 2557887 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1026 2549313 2553509 2553612 "SMATCAT" 2554952 NIL SMATCAT (NIL NIL T T T) -9 NIL 2555501) (-1025 2546254 2547077 2548254 "SMATCAT-" 2548259 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1024 2543967 2545490 2545534 "SKAGG" 2545795 NIL SKAGG (NIL T) -9 NIL 2545930) (-1023 2540025 2543071 2543349 "SINT" 2543711 T SINT (NIL) -8 NIL NIL) (-1022 2539797 2539835 2539901 "SIMPAN" 2539981 T SIMPAN (NIL) -7 NIL NIL) (-1021 2538635 2538856 2539131 "SIGNRF" 2539556 NIL SIGNRF (NIL T) -7 NIL NIL) (-1020 2537444 2537595 2537885 "SIGNEF" 2538464 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1019 2535134 2535588 2536094 "SHP" 2536985 NIL SHP (NIL T NIL) -7 NIL NIL) (-1018 2528987 2535035 2535111 "SHDP" 2535116 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1017 2528476 2528668 2528699 "SGROUP" 2528851 T SGROUP (NIL) -9 NIL 2528938) (-1016 2528246 2528298 2528402 "SGROUP-" 2528407 NIL SGROUP- (NIL T) -8 NIL NIL) (-1015 2525082 2525779 2526502 "SGCF" 2527545 T SGCF (NIL) -7 NIL NIL) (-1014 2519480 2524532 2524629 "SFRTCAT" 2524634 NIL SFRTCAT (NIL T T T T) -9 NIL 2524672) (-1013 2512940 2513955 2515089 "SFRGCD" 2518463 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1012 2506106 2507177 2508361 "SFQCMPK" 2511873 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1011 2505728 2505817 2505927 "SFORT" 2506047 NIL SFORT (NIL T T) -8 NIL NIL) (-1010 2504873 2505568 2505689 "SEXOF" 2505694 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1009 2504007 2504754 2504822 "SEX" 2504827 T SEX (NIL) -8 NIL NIL) (-1008 2498783 2499472 2499568 "SEXCAT" 2503339 NIL SEXCAT (NIL T T T T T) -9 NIL 2503958) (-1007 2495963 2498717 2498765 "SET" 2498770 NIL SET (NIL T) -8 NIL NIL) (-1006 2494214 2494676 2494981 "SETMN" 2495704 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1005 2493821 2493947 2493978 "SETCAT" 2494095 T SETCAT (NIL) -9 NIL 2494179) (-1004 2493601 2493653 2493752 "SETCAT-" 2493757 NIL SETCAT- (NIL T) -8 NIL NIL) (-1003 2489988 2492062 2492106 "SETAGG" 2492976 NIL SETAGG (NIL T) -9 NIL 2493316) (-1002 2489446 2489562 2489799 "SETAGG-" 2489804 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1001 2488651 2488944 2489006 "SEGXCAT" 2489292 NIL SEGXCAT (NIL T T) -9 NIL 2489411) (-1000 2487709 2488319 2488500 "SEG" 2488505 NIL SEG (NIL T) -8 NIL NIL) (-999 2486626 2486839 2486881 "SEGCAT" 2487454 NIL SEGCAT (NIL T) -9 NIL 2487692) (-998 2485680 2486010 2486208 "SEGBIND" 2486461 NIL SEGBIND (NIL T) -8 NIL NIL) (-997 2485312 2485369 2485478 "SEGBIND2" 2485617 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-996 2484535 2484661 2484863 "SEG2" 2485156 NIL SEG2 (NIL T T) -7 NIL NIL) (-995 2483974 2484472 2484517 "SDVAR" 2484522 NIL SDVAR (NIL T) -8 NIL NIL) (-994 2476280 2483753 2483877 "SDPOL" 2483882 NIL SDPOL (NIL T) -8 NIL NIL) (-993 2474879 2475145 2475462 "SCPKG" 2475995 NIL SCPKG (NIL T) -7 NIL NIL) (-992 2474106 2474239 2474416 "SCACHE" 2474734 NIL SCACHE (NIL T) -7 NIL NIL) (-991 2473549 2473870 2473953 "SAOS" 2474043 T SAOS (NIL) -8 NIL NIL) (-990 2473117 2473152 2473323 "SAERFFC" 2473508 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-989 2467013 2473016 2473094 "SAE" 2473099 NIL SAE (NIL T T NIL) -8 NIL NIL) (-988 2466609 2466644 2466801 "SAEFACT" 2466972 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-987 2464935 2465249 2465648 "RURPK" 2466275 NIL RURPK (NIL T NIL) -7 NIL NIL) (-986 2463588 2463865 2464172 "RULESET" 2464771 NIL RULESET (NIL T T T) -8 NIL NIL) (-985 2460796 2461299 2461760 "RULE" 2463270 NIL RULE (NIL T T T) -8 NIL NIL) (-984 2460438 2460593 2460674 "RULECOLD" 2460748 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-983 2455330 2456124 2457040 "RSETGCD" 2459637 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-982 2444644 2449696 2449791 "RSETCAT" 2453856 NIL RSETCAT (NIL T T T T) -9 NIL 2454953) (-981 2442575 2443114 2443934 "RSETCAT-" 2443939 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-980 2435005 2436380 2437896 "RSDCMPK" 2441174 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-979 2433022 2433463 2433536 "RRCC" 2434612 NIL RRCC (NIL T T) -9 NIL 2434956) (-978 2432376 2432550 2432826 "RRCC-" 2432831 NIL RRCC- (NIL T T T) -8 NIL NIL) (-977 2406742 2416367 2416432 "RPOLCAT" 2426934 NIL RPOLCAT (NIL T T T) -9 NIL 2430092) (-976 2398246 2400584 2403702 "RPOLCAT-" 2403707 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-975 2389312 2396476 2396956 "ROUTINE" 2397786 T ROUTINE (NIL) -8 NIL NIL) (-974 2386017 2388868 2389015 "ROMAN" 2389185 T ROMAN (NIL) -8 NIL NIL) (-973 2384303 2384888 2385145 "ROIRC" 2385823 NIL ROIRC (NIL T T) -8 NIL NIL) (-972 2380707 2383011 2383040 "RNS" 2383336 T RNS (NIL) -9 NIL 2383606) (-971 2379221 2379604 2380135 "RNS-" 2380208 NIL RNS- (NIL T) -8 NIL NIL) (-970 2378646 2379054 2379083 "RNG" 2379088 T RNG (NIL) -9 NIL 2379109) (-969 2378043 2378405 2378446 "RMODULE" 2378506 NIL RMODULE (NIL T) -9 NIL 2378548) (-968 2376895 2376989 2377319 "RMCAT2" 2377944 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-967 2373609 2376078 2376399 "RMATRIX" 2376630 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-966 2366605 2368839 2368952 "RMATCAT" 2372261 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2373243) (-965 2365984 2366131 2366434 "RMATCAT-" 2366439 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-964 2365554 2365629 2365755 "RINTERP" 2365903 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-963 2364604 2365168 2365197 "RING" 2365307 T RING (NIL) -9 NIL 2365401) (-962 2364399 2364443 2364537 "RING-" 2364542 NIL RING- (NIL T) -8 NIL NIL) (-961 2363247 2363484 2363740 "RIDIST" 2364163 T RIDIST (NIL) -7 NIL NIL) (-960 2354569 2362721 2362924 "RGCHAIN" 2363096 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-959 2351574 2352188 2352856 "RF" 2353933 NIL RF (NIL T) -7 NIL NIL) (-958 2351223 2351286 2351387 "RFFACTOR" 2351505 NIL RFFACTOR (NIL T) -7 NIL NIL) (-957 2350951 2350986 2351081 "RFFACT" 2351182 NIL RFFACT (NIL T) -7 NIL NIL) (-956 2349081 2349445 2349825 "RFDIST" 2350591 T RFDIST (NIL) -7 NIL NIL) (-955 2348539 2348631 2348791 "RETSOL" 2348983 NIL RETSOL (NIL T T) -7 NIL NIL) (-954 2348131 2348211 2348253 "RETRACT" 2348443 NIL RETRACT (NIL T) -9 NIL NIL) (-953 2347983 2348008 2348092 "RETRACT-" 2348097 NIL RETRACT- (NIL T T) -8 NIL NIL) (-952 2340841 2347640 2347765 "RESULT" 2347878 T RESULT (NIL) -8 NIL NIL) (-951 2339426 2340115 2340312 "RESRING" 2340744 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-950 2339066 2339115 2339211 "RESLATC" 2339363 NIL RESLATC (NIL T) -7 NIL NIL) (-949 2338775 2338809 2338914 "REPSQ" 2339025 NIL REPSQ (NIL T) -7 NIL NIL) (-948 2336206 2336786 2337386 "REP" 2338195 T REP (NIL) -7 NIL NIL) (-947 2335907 2335941 2336050 "REPDB" 2336165 NIL REPDB (NIL T) -7 NIL NIL) (-946 2329852 2331231 2332451 "REP2" 2334719 NIL REP2 (NIL T) -7 NIL NIL) (-945 2326258 2326939 2327744 "REP1" 2329079 NIL REP1 (NIL T) -7 NIL NIL) (-944 2319004 2324419 2324871 "REGSET" 2325889 NIL REGSET (NIL T T T T) -8 NIL NIL) (-943 2317825 2318160 2318408 "REF" 2318789 NIL REF (NIL T) -8 NIL NIL) (-942 2317206 2317309 2317474 "REDORDER" 2317709 NIL REDORDER (NIL T T) -7 NIL NIL) (-941 2313175 2316440 2316661 "RECLOS" 2317037 NIL RECLOS (NIL T) -8 NIL NIL) (-940 2312232 2312413 2312626 "REALSOLV" 2312982 T REALSOLV (NIL) -7 NIL NIL) (-939 2312079 2312120 2312149 "REAL" 2312154 T REAL (NIL) -9 NIL 2312189) (-938 2308570 2309372 2310254 "REAL0Q" 2311244 NIL REAL0Q (NIL T) -7 NIL NIL) (-937 2304181 2305169 2306228 "REAL0" 2307551 NIL REAL0 (NIL T) -7 NIL NIL) (-936 2303589 2303661 2303866 "RDIV" 2304103 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-935 2302662 2302836 2303047 "RDIST" 2303411 NIL RDIST (NIL T) -7 NIL NIL) (-934 2301266 2301553 2301922 "RDETRS" 2302370 NIL RDETRS (NIL T T) -7 NIL NIL) (-933 2299087 2299541 2300076 "RDETR" 2300808 NIL RDETR (NIL T T) -7 NIL NIL) (-932 2297703 2297981 2298382 "RDEEFS" 2298803 NIL RDEEFS (NIL T T) -7 NIL NIL) (-931 2296203 2296509 2296938 "RDEEF" 2297391 NIL RDEEF (NIL T T) -7 NIL NIL) (-930 2290487 2293419 2293448 "RCFIELD" 2294725 T RCFIELD (NIL) -9 NIL 2295455) (-929 2288556 2289060 2289753 "RCFIELD-" 2289826 NIL RCFIELD- (NIL T) -8 NIL NIL) (-928 2284887 2286672 2286714 "RCAGG" 2287785 NIL RCAGG (NIL T) -9 NIL 2288250) (-927 2284518 2284612 2284772 "RCAGG-" 2284777 NIL RCAGG- (NIL T T) -8 NIL NIL) (-926 2283863 2283974 2284136 "RATRET" 2284402 NIL RATRET (NIL T) -7 NIL NIL) (-925 2283420 2283487 2283606 "RATFACT" 2283791 NIL RATFACT (NIL T) -7 NIL NIL) (-924 2282735 2282855 2283005 "RANDSRC" 2283290 T RANDSRC (NIL) -7 NIL NIL) (-923 2282472 2282516 2282587 "RADUTIL" 2282684 T RADUTIL (NIL) -7 NIL NIL) (-922 2275479 2281215 2281532 "RADIX" 2282187 NIL RADIX (NIL NIL) -8 NIL NIL) (-921 2267049 2275323 2275451 "RADFF" 2275456 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-920 2266700 2266775 2266804 "RADCAT" 2266961 T RADCAT (NIL) -9 NIL NIL) (-919 2266485 2266533 2266630 "RADCAT-" 2266635 NIL RADCAT- (NIL T) -8 NIL NIL) (-918 2264636 2266260 2266349 "QUEUE" 2266429 NIL QUEUE (NIL T) -8 NIL NIL) (-917 2261133 2264573 2264618 "QUAT" 2264623 NIL QUAT (NIL T) -8 NIL NIL) (-916 2260771 2260814 2260941 "QUATCT2" 2261084 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-915 2254564 2257944 2257985 "QUATCAT" 2258764 NIL QUATCAT (NIL T) -9 NIL 2259529) (-914 2250708 2251745 2253132 "QUATCAT-" 2253226 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-913 2248228 2249792 2249834 "QUAGG" 2250209 NIL QUAGG (NIL T) -9 NIL 2250384) (-912 2247153 2247626 2247798 "QFORM" 2248100 NIL QFORM (NIL NIL T) -8 NIL NIL) (-911 2238449 2243707 2243748 "QFCAT" 2244406 NIL QFCAT (NIL T) -9 NIL 2245399) (-910 2234021 2235222 2236813 "QFCAT-" 2236907 NIL QFCAT- (NIL T T) -8 NIL NIL) (-909 2233659 2233702 2233829 "QFCAT2" 2233972 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-908 2233119 2233229 2233359 "QEQUAT" 2233549 T QEQUAT (NIL) -8 NIL NIL) (-907 2226305 2227376 2228558 "QCMPACK" 2232052 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-906 2223881 2224302 2224730 "QALGSET" 2225960 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-905 2223126 2223300 2223532 "QALGSET2" 2223701 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-904 2221817 2222040 2222357 "PWFFINTB" 2222899 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-903 2220005 2220173 2220526 "PUSHVAR" 2221631 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-902 2215922 2216976 2217018 "PTRANFN" 2218902 NIL PTRANFN (NIL T) -9 NIL NIL) (-901 2214334 2214625 2214946 "PTPACK" 2215633 NIL PTPACK (NIL T) -7 NIL NIL) (-900 2213970 2214027 2214134 "PTFUNC2" 2214271 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-899 2208446 2212787 2212828 "PTCAT" 2213196 NIL PTCAT (NIL T) -9 NIL 2213358) (-898 2208104 2208139 2208263 "PSQFR" 2208405 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-897 2206699 2206997 2207331 "PSEUDLIN" 2207802 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-896 2193507 2195871 2198194 "PSETPK" 2204459 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-895 2186593 2189307 2189402 "PSETCAT" 2192383 NIL PSETCAT (NIL T T T T) -9 NIL 2193197) (-894 2184431 2185065 2185884 "PSETCAT-" 2185889 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-893 2183779 2183944 2183973 "PSCURVE" 2184241 T PSCURVE (NIL) -9 NIL 2184408) (-892 2180230 2181756 2181821 "PSCAT" 2182657 NIL PSCAT (NIL T T T) -9 NIL 2182897) (-891 2179294 2179510 2179909 "PSCAT-" 2179914 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-890 2177947 2178579 2178793 "PRTITION" 2179100 T PRTITION (NIL) -8 NIL NIL) (-889 2167045 2169251 2171439 "PRS" 2175809 NIL PRS (NIL T T) -7 NIL NIL) (-888 2164903 2166395 2166436 "PRQAGG" 2166619 NIL PRQAGG (NIL T) -9 NIL 2166721) (-887 2164473 2164575 2164604 "PROPLOG" 2164789 T PROPLOG (NIL) -9 NIL NIL) (-886 2158247 2162639 2163459 "PRODUCT" 2163699 NIL PRODUCT (NIL T T) -8 NIL NIL) (-885 2155523 2157707 2157940 "PR" 2158058 NIL PR (NIL T T) -8 NIL NIL) (-884 2155319 2155351 2155410 "PRINT" 2155484 T PRINT (NIL) -7 NIL NIL) (-883 2154659 2154776 2154928 "PRIMES" 2155199 NIL PRIMES (NIL T) -7 NIL NIL) (-882 2152724 2153125 2153591 "PRIMELT" 2154238 NIL PRIMELT (NIL T) -7 NIL NIL) (-881 2152455 2152503 2152532 "PRIMCAT" 2152655 T PRIMCAT (NIL) -9 NIL NIL) (-880 2148616 2152393 2152438 "PRIMARR" 2152443 NIL PRIMARR (NIL T) -8 NIL NIL) (-879 2147623 2147801 2148029 "PRIMARR2" 2148434 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-878 2147266 2147322 2147433 "PREASSOC" 2147561 NIL PREASSOC (NIL T T) -7 NIL NIL) (-877 2146740 2146873 2146902 "PPCURVE" 2147107 T PPCURVE (NIL) -9 NIL 2147243) (-876 2144099 2144498 2145090 "POLYROOT" 2146321 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-875 2138005 2143705 2143864 "POLY" 2143972 NIL POLY (NIL T) -8 NIL NIL) (-874 2137390 2137448 2137681 "POLYLIFT" 2137941 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-873 2133675 2134124 2134752 "POLYCATQ" 2136935 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-872 2120715 2126112 2126177 "POLYCAT" 2129662 NIL POLYCAT (NIL T T T) -9 NIL 2131589) (-871 2114166 2116027 2118410 "POLYCAT-" 2118415 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-870 2113755 2113823 2113942 "POLY2UP" 2114092 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-869 2113391 2113448 2113555 "POLY2" 2113692 NIL POLY2 (NIL T T) -7 NIL NIL) (-868 2112076 2112315 2112591 "POLUTIL" 2113165 NIL POLUTIL (NIL T T) -7 NIL NIL) (-867 2110438 2110715 2111045 "POLTOPOL" 2111798 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-866 2105961 2110375 2110420 "POINT" 2110425 NIL POINT (NIL T) -8 NIL NIL) (-865 2104148 2104505 2104880 "PNTHEORY" 2105606 T PNTHEORY (NIL) -7 NIL NIL) (-864 2102576 2102873 2103282 "PMTOOLS" 2103846 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-863 2102169 2102247 2102364 "PMSYM" 2102492 NIL PMSYM (NIL T) -7 NIL NIL) (-862 2101679 2101748 2101922 "PMQFCAT" 2102094 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-861 2101034 2101144 2101300 "PMPRED" 2101556 NIL PMPRED (NIL T) -7 NIL NIL) (-860 2100430 2100516 2100677 "PMPREDFS" 2100935 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-859 2099076 2099284 2099668 "PMPLCAT" 2100192 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-858 2098608 2098687 2098839 "PMLSAGG" 2098991 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-857 2098085 2098161 2098341 "PMKERNEL" 2098526 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-856 2097702 2097777 2097890 "PMINS" 2098004 NIL PMINS (NIL T) -7 NIL NIL) (-855 2097132 2097201 2097416 "PMFS" 2097627 NIL PMFS (NIL T T T) -7 NIL NIL) (-854 2096363 2096481 2096685 "PMDOWN" 2097009 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-853 2095526 2095685 2095867 "PMASS" 2096201 T PMASS (NIL) -7 NIL NIL) (-852 2094800 2094911 2095074 "PMASSFS" 2095412 NIL PMASSFS (NIL T T) -7 NIL NIL) (-851 2094455 2094523 2094617 "PLOTTOOL" 2094726 T PLOTTOOL (NIL) -7 NIL NIL) (-850 2089077 2090266 2091414 "PLOT" 2093327 T PLOT (NIL) -8 NIL NIL) (-849 2084891 2085925 2086846 "PLOT3D" 2088176 T PLOT3D (NIL) -8 NIL NIL) (-848 2083803 2083980 2084215 "PLOT1" 2084695 NIL PLOT1 (NIL T) -7 NIL NIL) (-847 2059198 2063869 2068720 "PLEQN" 2079069 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-846 2058516 2058638 2058818 "PINTERP" 2059063 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-845 2058209 2058256 2058359 "PINTERPA" 2058463 NIL PINTERPA (NIL T T) -7 NIL NIL) (-844 2057436 2058003 2058096 "PI" 2058136 T PI (NIL) -8 NIL NIL) (-843 2055827 2056812 2056841 "PID" 2057023 T PID (NIL) -9 NIL 2057157) (-842 2055552 2055589 2055677 "PICOERCE" 2055784 NIL PICOERCE (NIL T) -7 NIL NIL) (-841 2054873 2055011 2055187 "PGROEB" 2055408 NIL PGROEB (NIL T) -7 NIL NIL) (-840 2050460 2051274 2052179 "PGE" 2053988 T PGE (NIL) -7 NIL NIL) (-839 2048584 2048830 2049196 "PGCD" 2050177 NIL PGCD (NIL T T T T) -7 NIL NIL) (-838 2047922 2048025 2048186 "PFRPAC" 2048468 NIL PFRPAC (NIL T) -7 NIL NIL) (-837 2044537 2046470 2046823 "PFR" 2047601 NIL PFR (NIL T) -8 NIL NIL) (-836 2042926 2043170 2043495 "PFOTOOLS" 2044284 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-835 2041459 2041698 2042049 "PFOQ" 2042683 NIL PFOQ (NIL T T T) -7 NIL NIL) (-834 2039936 2040148 2040510 "PFO" 2041243 NIL PFO (NIL T T T T T) -7 NIL NIL) (-833 2036459 2039825 2039894 "PF" 2039899 NIL PF (NIL NIL) -8 NIL NIL) (-832 2033887 2035168 2035197 "PFECAT" 2035782 T PFECAT (NIL) -9 NIL 2036166) (-831 2033332 2033486 2033700 "PFECAT-" 2033705 NIL PFECAT- (NIL T) -8 NIL NIL) (-830 2031936 2032187 2032488 "PFBRU" 2033081 NIL PFBRU (NIL T T) -7 NIL NIL) (-829 2029803 2030154 2030586 "PFBR" 2031587 NIL PFBR (NIL T T T T) -7 NIL NIL) (-828 2025655 2027179 2027855 "PERM" 2029160 NIL PERM (NIL T) -8 NIL NIL) (-827 2020921 2021862 2022732 "PERMGRP" 2024818 NIL PERMGRP (NIL T) -8 NIL NIL) (-826 2018991 2019984 2020026 "PERMCAT" 2020472 NIL PERMCAT (NIL T) -9 NIL 2020777) (-825 2018646 2018687 2018810 "PERMAN" 2018944 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-824 2016086 2018215 2018346 "PENDTREE" 2018548 NIL PENDTREE (NIL T) -8 NIL NIL) (-823 2014158 2014936 2014978 "PDRING" 2015635 NIL PDRING (NIL T) -9 NIL 2015920) (-822 2013261 2013479 2013841 "PDRING-" 2013846 NIL PDRING- (NIL T T) -8 NIL NIL) (-821 2010403 2011153 2011844 "PDEPROB" 2012590 T PDEPROB (NIL) -8 NIL NIL) (-820 2007974 2008470 2009019 "PDEPACK" 2009874 T PDEPACK (NIL) -7 NIL NIL) (-819 2006886 2007076 2007327 "PDECOMP" 2007773 NIL PDECOMP (NIL T T) -7 NIL NIL) (-818 2004497 2005312 2005341 "PDECAT" 2006126 T PDECAT (NIL) -9 NIL 2006837) (-817 2004250 2004283 2004372 "PCOMP" 2004458 NIL PCOMP (NIL T T) -7 NIL NIL) (-816 2002457 2003053 2003349 "PBWLB" 2003980 NIL PBWLB (NIL T) -8 NIL NIL) (-815 1994966 1996534 1997870 "PATTERN" 2001142 NIL PATTERN (NIL T) -8 NIL NIL) (-814 1994598 1994655 1994764 "PATTERN2" 1994903 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-813 1992355 1992743 1993200 "PATTERN1" 1994187 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-812 1989750 1990304 1990785 "PATRES" 1991920 NIL PATRES (NIL T T) -8 NIL NIL) (-811 1989314 1989381 1989513 "PATRES2" 1989677 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-810 1987211 1987611 1988016 "PATMATCH" 1988983 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-809 1986747 1986930 1986972 "PATMAB" 1987079 NIL PATMAB (NIL T) -9 NIL 1987162) (-808 1985292 1985601 1985859 "PATLRES" 1986552 NIL PATLRES (NIL T T T) -8 NIL NIL) (-807 1984837 1984960 1985002 "PATAB" 1985007 NIL PATAB (NIL T) -9 NIL 1985179) (-806 1982318 1982850 1983423 "PARTPERM" 1984284 T PARTPERM (NIL) -7 NIL NIL) (-805 1981939 1982002 1982104 "PARSURF" 1982249 NIL PARSURF (NIL T) -8 NIL NIL) (-804 1981571 1981628 1981737 "PARSU2" 1981876 NIL PARSU2 (NIL T T) -7 NIL NIL) (-803 1981335 1981375 1981442 "PARSER" 1981524 T PARSER (NIL) -7 NIL NIL) (-802 1980956 1981019 1981121 "PARSCURV" 1981266 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1980588 1980645 1980754 "PARSC2" 1980893 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1980227 1980285 1980382 "PARPCURV" 1980524 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1979859 1979916 1980025 "PARPC2" 1980164 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1979379 1979465 1979584 "PAN2EXPR" 1979760 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1978185 1978500 1978728 "PALETTE" 1979171 T PALETTE (NIL) -8 NIL NIL) (-796 1972035 1977444 1977638 "PADICRC" 1978040 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1965243 1971381 1971565 "PADICRAT" 1971883 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963547 1965180 1965225 "PADIC" 1965230 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960751 1962325 1962366 "PADICCT" 1962947 NIL PADICCT (NIL NIL) -9 NIL 1963229) (-792 1959708 1959908 1960176 "PADEPAC" 1960538 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1958920 1959053 1959259 "PADE" 1959570 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1956931 1957763 1958078 "OWP" 1958688 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1956040 1956536 1956708 "OVAR" 1956799 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955304 1955425 1955586 "OUT" 1955899 T OUT (NIL) -7 NIL NIL) (-787 1944350 1946529 1948699 "OUTFORM" 1953154 T OUTFORM (NIL) -8 NIL NIL) (-786 1943758 1944079 1944168 "OSI" 1944281 T OSI (NIL) -8 NIL NIL) (-785 1942503 1942730 1943015 "ORTHPOL" 1943505 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1939874 1942164 1942302 "OREUP" 1942446 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937270 1939567 1939693 "ORESUP" 1939816 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934805 1935305 1935865 "OREPCTO" 1936759 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928714 1930920 1930961 "OREPCAT" 1933282 NIL OREPCAT (NIL T) -9 NIL 1934385) (-780 1925862 1926644 1927701 "OREPCAT-" 1927706 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1925039 1925311 1925340 "ORDSET" 1925649 T ORDSET (NIL) -9 NIL 1925813) (-778 1924558 1924680 1924873 "ORDSET-" 1924878 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1923171 1923972 1924001 "ORDRING" 1924203 T ORDRING (NIL) -9 NIL 1924327) (-776 1922816 1922910 1923054 "ORDRING-" 1923059 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1922191 1922672 1922701 "ORDMON" 1922706 T ORDMON (NIL) -9 NIL 1922727) (-774 1921353 1921500 1921695 "ORDFUNS" 1922040 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1920864 1921223 1921252 "ORDFIN" 1921257 T ORDFIN (NIL) -9 NIL 1921278) (-772 1917376 1919450 1919859 "ORDCOMP" 1920488 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916642 1916769 1916955 "ORDCOMP2" 1917236 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1913150 1914032 1914869 "OPTPROB" 1915825 T OPTPROB (NIL) -8 NIL NIL) (-769 1909992 1910621 1911315 "OPTPACK" 1912476 T OPTPACK (NIL) -7 NIL NIL) (-768 1907717 1908453 1908482 "OPTCAT" 1909297 T OPTCAT (NIL) -9 NIL 1909943) (-767 1907485 1907524 1907590 "OPQUERY" 1907671 T OPQUERY (NIL) -7 NIL NIL) (-766 1904621 1905812 1906312 "OP" 1907017 NIL OP (NIL T) -8 NIL NIL) (-765 1901386 1903418 1903787 "ONECOMP" 1904285 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900691 1900806 1900980 "ONECOMP2" 1901258 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1900110 1900216 1900346 "OMSERVER" 1900581 T OMSERVER (NIL) -7 NIL NIL) (-762 1896998 1899550 1899591 "OMSAGG" 1899652 NIL OMSAGG (NIL T) -9 NIL 1899716) (-761 1895621 1895884 1896166 "OMPKG" 1896736 T OMPKG (NIL) -7 NIL NIL) (-760 1895050 1895153 1895182 "OM" 1895481 T OM (NIL) -9 NIL NIL) (-759 1893589 1894602 1894770 "OMLO" 1894931 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892519 1892666 1892892 "OMEXPR" 1893415 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1891837 1892065 1892201 "OMERR" 1892403 T OMERR (NIL) -8 NIL NIL) (-756 1891015 1891258 1891418 "OMERRK" 1891697 T OMERRK (NIL) -8 NIL NIL) (-755 1890493 1890692 1890800 "OMENC" 1890927 T OMENC (NIL) -8 NIL NIL) (-754 1884388 1885573 1886744 "OMDEV" 1889342 T OMDEV (NIL) -8 NIL NIL) (-753 1883457 1883628 1883822 "OMCONN" 1884214 T OMCONN (NIL) -8 NIL NIL) (-752 1882072 1883058 1883087 "OINTDOM" 1883092 T OINTDOM (NIL) -9 NIL 1883113) (-751 1877834 1879064 1879779 "OFMONOID" 1881389 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877272 1877771 1877816 "ODVAR" 1877821 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874397 1876769 1876954 "ODR" 1877147 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866703 1874176 1874300 "ODPOL" 1874305 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860526 1866575 1866680 "ODP" 1866685 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859292 1859507 1859782 "ODETOOLS" 1860300 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1856261 1856917 1857633 "ODESYS" 1858625 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1851165 1852073 1853096 "ODERTRIC" 1855336 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850591 1850673 1850867 "ODERED" 1851077 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847493 1848041 1848716 "ODERAT" 1850014 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844461 1844925 1845521 "ODEPRRIC" 1847022 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842332 1842899 1843408 "ODEPROB" 1843972 T ODEPROB (NIL) -8 NIL NIL) (-739 1838864 1839347 1839993 "ODEPRIM" 1841811 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1838117 1838219 1838477 "ODEPAL" 1838756 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834319 1835100 1835954 "ODEPACK" 1837283 T ODEPACK (NIL) -7 NIL NIL) (-736 1833356 1833463 1833691 "ODEINT" 1834208 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827457 1828882 1830329 "ODEIFTBL" 1831929 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1822801 1823587 1824545 "ODEEF" 1826616 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1822138 1822227 1822456 "ODECONST" 1822706 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820295 1820928 1820957 "ODECAT" 1821560 T ODECAT (NIL) -9 NIL 1822089) (-731 1817167 1820007 1820126 "OCT" 1820208 NIL OCT (NIL T) -8 NIL NIL) (-730 1816805 1816848 1816975 "OCTCT2" 1817118 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811638 1814076 1814117 "OC" 1815213 NIL OC (NIL T) -9 NIL 1816070) (-728 1808865 1809613 1810603 "OC-" 1810697 NIL OC- (NIL T T) -8 NIL NIL) (-727 1808243 1808685 1808714 "OCAMON" 1808719 T OCAMON (NIL) -9 NIL 1808740) (-726 1807696 1808103 1808132 "OASGP" 1808137 T OASGP (NIL) -9 NIL 1808157) (-725 1806983 1807446 1807475 "OAMONS" 1807515 T OAMONS (NIL) -9 NIL 1807558) (-724 1806423 1806830 1806859 "OAMON" 1806864 T OAMON (NIL) -9 NIL 1806884) (-723 1805727 1806219 1806248 "OAGROUP" 1806253 T OAGROUP (NIL) -9 NIL 1806273) (-722 1805417 1805467 1805555 "NUMTUBE" 1805671 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1798990 1800508 1802044 "NUMQUAD" 1803901 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794746 1795734 1796759 "NUMODE" 1797985 T NUMODE (NIL) -7 NIL NIL) (-719 1792149 1792995 1793024 "NUMINT" 1793941 T NUMINT (NIL) -9 NIL 1794697) (-718 1791097 1791294 1791512 "NUMFMT" 1791951 T NUMFMT (NIL) -7 NIL NIL) (-717 1777479 1780413 1782943 "NUMERIC" 1788606 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1771879 1776931 1777026 "NTSCAT" 1777031 NIL NTSCAT (NIL T T T T) -9 NIL 1777069) (-715 1771073 1771238 1771431 "NTPOLFN" 1771718 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1758929 1767915 1768725 "NSUP" 1770295 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758565 1758622 1758729 "NSUP2" 1758866 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748527 1758344 1758474 "NSMP" 1758479 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1746959 1747260 1747617 "NREP" 1748215 NIL NREP (NIL T) -7 NIL NIL) (-710 1745550 1745802 1746160 "NPCOEF" 1746702 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744616 1744731 1744947 "NORMRETR" 1745431 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742669 1742959 1743366 "NORMPK" 1744324 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742354 1742382 1742506 "NORMMA" 1742635 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1742181 1742311 1742340 "NONE" 1742345 T NONE (NIL) -8 NIL NIL) (-705 1741970 1741999 1742068 "NONE1" 1742145 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741455 1741517 1741702 "NODE1" 1741902 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739748 1740618 1740873 "NNI" 1741220 T NNI (NIL) -8 NIL NIL) (-702 1738168 1738481 1738845 "NLINSOL" 1739416 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734336 1735303 1736225 "NIPROB" 1737266 T NIPROB (NIL) -8 NIL NIL) (-700 1733093 1733327 1733629 "NFINTBAS" 1734098 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1731801 1732032 1732313 "NCODIV" 1732861 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731563 1731600 1731675 "NCNTFRAC" 1731758 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1729743 1730107 1730527 "NCEP" 1731188 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728654 1729393 1729422 "NASRING" 1729532 T NASRING (NIL) -9 NIL 1729606) (-695 1728449 1728493 1728587 "NASRING-" 1728592 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727602 1728101 1728130 "NARNG" 1728247 T NARNG (NIL) -9 NIL 1728338) (-693 1727294 1727361 1727495 "NARNG-" 1727500 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1726173 1726380 1726615 "NAGSP" 1727079 T NAGSP (NIL) -7 NIL NIL) (-691 1717597 1719243 1720878 "NAGS" 1724558 T NAGS (NIL) -7 NIL NIL) (-690 1716161 1716465 1716792 "NAGF07" 1717290 T NAGF07 (NIL) -7 NIL NIL) (-689 1710743 1712023 1713319 "NAGF04" 1714885 T NAGF04 (NIL) -7 NIL NIL) (-688 1703775 1705373 1706990 "NAGF02" 1709146 T NAGF02 (NIL) -7 NIL NIL) (-687 1699039 1700129 1701236 "NAGF01" 1702688 T NAGF01 (NIL) -7 NIL NIL) (-686 1692699 1694257 1695834 "NAGE04" 1697482 T NAGE04 (NIL) -7 NIL NIL) (-685 1683940 1686043 1688155 "NAGE02" 1690607 T NAGE02 (NIL) -7 NIL NIL) (-684 1679933 1680870 1681824 "NAGE01" 1683006 T NAGE01 (NIL) -7 NIL NIL) (-683 1677740 1678271 1678826 "NAGD03" 1679398 T NAGD03 (NIL) -7 NIL NIL) (-682 1669526 1671445 1673390 "NAGD02" 1675815 T NAGD02 (NIL) -7 NIL NIL) (-681 1663385 1664798 1666226 "NAGD01" 1668118 T NAGD01 (NIL) -7 NIL NIL) (-680 1659642 1660452 1661277 "NAGC06" 1662580 T NAGC06 (NIL) -7 NIL NIL) (-679 1658119 1658448 1658801 "NAGC05" 1659309 T NAGC05 (NIL) -7 NIL NIL) (-678 1657503 1657620 1657762 "NAGC02" 1657997 T NAGC02 (NIL) -7 NIL NIL) (-677 1656564 1657121 1657162 "NAALG" 1657241 NIL NAALG (NIL T) -9 NIL 1657302) (-676 1656399 1656428 1656518 "NAALG-" 1656523 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650349 1651457 1652644 "MULTSQFR" 1655295 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649668 1649743 1649927 "MULTFACT" 1650261 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1642861 1646772 1646825 "MTSCAT" 1647885 NIL MTSCAT (NIL T T) -9 NIL 1648399) (-672 1642573 1642627 1642719 "MTHING" 1642801 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642365 1642398 1642458 "MSYSCMD" 1642533 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638477 1641120 1641440 "MSET" 1642078 NIL MSET (NIL T) -8 NIL NIL) (-669 1635572 1638038 1638080 "MSETAGG" 1638085 NIL MSETAGG (NIL T) -9 NIL 1638119) (-668 1631428 1632970 1633711 "MRING" 1634875 NIL MRING (NIL T T) -8 NIL NIL) (-667 1630998 1631065 1631194 "MRF2" 1631355 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630616 1630651 1630795 "MRATFAC" 1630957 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1628228 1628523 1628954 "MPRFF" 1630321 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1622248 1628083 1628179 "MPOLY" 1628184 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621738 1621773 1621981 "MPCPF" 1622207 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1621254 1621297 1621480 "MPC3" 1621689 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620455 1620536 1620755 "MPC2" 1621169 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618756 1619093 1619483 "MONOTOOL" 1620115 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1617880 1618215 1618244 "MONOID" 1618521 T MONOID (NIL) -9 NIL 1618693) (-658 1617258 1617421 1617664 "MONOID-" 1617669 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1608238 1614224 1614284 "MONOGEN" 1614958 NIL MONOGEN (NIL T T) -9 NIL 1615414) (-656 1605456 1606191 1607191 "MONOGEN-" 1607310 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604315 1604735 1604764 "MONADWU" 1605156 T MONADWU (NIL) -9 NIL 1605394) (-654 1603687 1603846 1604094 "MONADWU-" 1604099 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1603072 1603290 1603319 "MONAD" 1603526 T MONAD (NIL) -9 NIL 1603638) (-652 1602757 1602835 1602967 "MONAD-" 1602972 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1601008 1601670 1601949 "MOEBIUS" 1602510 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600401 1600779 1600820 "MODULE" 1600825 NIL MODULE (NIL T) -9 NIL 1600851) (-649 1599969 1600065 1600255 "MODULE-" 1600260 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597640 1598335 1598661 "MODRING" 1599794 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594596 1595761 1596278 "MODOP" 1597172 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592783 1593235 1593576 "MODMONOM" 1594395 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582501 1590987 1591409 "MODMON" 1592411 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579627 1581345 1581621 "MODFIELD" 1582376 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1579153 1579196 1579375 "MMAP" 1579578 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577389 1578166 1578207 "MLO" 1578624 NIL MLO (NIL T) -9 NIL 1578865) (-641 1574756 1575271 1575873 "MLIFT" 1576870 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1574147 1574231 1574385 "MKUCFUNC" 1574667 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573746 1573816 1573939 "MKRECORD" 1574070 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572794 1572955 1573183 "MKFUNC" 1573557 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1572182 1572286 1572442 "MKFLCFN" 1572677 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571608 1571975 1572064 "MKCHSET" 1572126 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1570885 1570987 1571172 "MKBCFUNC" 1571501 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567569 1570439 1570575 "MINT" 1570769 T MINT (NIL) -8 NIL NIL) (-633 1566381 1566624 1566901 "MHROWRED" 1567324 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561652 1564826 1565250 "MFLOAT" 1565977 T MFLOAT (NIL) -8 NIL NIL) (-631 1561009 1561085 1561256 "MFINFACT" 1561564 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557324 1558172 1559056 "MESH" 1560145 T MESH (NIL) -7 NIL NIL) (-629 1555714 1556026 1556379 "MDDFACT" 1557011 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552556 1554873 1554915 "MDAGG" 1555170 NIL MDAGG (NIL T) -9 NIL 1555313) (-627 1542254 1551849 1552056 "MCMPLX" 1552369 T MCMPLX (NIL) -8 NIL NIL) (-626 1541395 1541541 1541741 "MCDEN" 1542103 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539285 1539555 1539935 "MCALCFN" 1541125 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1536907 1537430 1537991 "MATSTOR" 1538756 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1532915 1536282 1536529 "MATRIX" 1536692 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528685 1529388 1530124 "MATLIN" 1532272 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1518882 1522020 1522097 "MATCAT" 1526935 NIL MATCAT (NIL T T T) -9 NIL 1528352) (-620 1515247 1516260 1517615 "MATCAT-" 1517620 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1513849 1514002 1514333 "MATCAT2" 1515082 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1511961 1512285 1512669 "MAPPKG3" 1513524 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1510942 1511115 1511337 "MAPPKG2" 1511785 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509441 1509725 1510052 "MAPPKG1" 1510648 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1509052 1509110 1509233 "MAPHACK3" 1509377 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508644 1508705 1508819 "MAPHACK2" 1508984 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1508082 1508185 1508327 "MAPHACK1" 1508535 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1506190 1506784 1507087 "MAGMA" 1507811 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502664 1504434 1504894 "M3D" 1505763 NIL M3D (NIL T) -8 NIL NIL) (-610 1496819 1501034 1501076 "LZSTAGG" 1501858 NIL LZSTAGG (NIL T) -9 NIL 1502153) (-609 1492792 1493950 1495407 "LZSTAGG-" 1495412 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1489908 1490685 1491171 "LWORD" 1492338 NIL LWORD (NIL T) -8 NIL NIL) (-607 1483068 1489679 1489813 "LSQM" 1489818 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482292 1482431 1482659 "LSPP" 1482923 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1480104 1480405 1480861 "LSMP" 1481981 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1476883 1477557 1478287 "LSMP1" 1479406 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1470809 1476051 1476093 "LSAGG" 1476155 NIL LSAGG (NIL T) -9 NIL 1476233) (-602 1467504 1468428 1469641 "LSAGG-" 1469646 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1465130 1466648 1466897 "LPOLY" 1467299 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464712 1464797 1464920 "LPEFRAC" 1465039 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1463059 1463806 1464059 "LO" 1464544 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462712 1462824 1462853 "LOGIC" 1462964 T LOGIC (NIL) -9 NIL 1463044) (-597 1462574 1462597 1462668 "LOGIC-" 1462673 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1461767 1461907 1462100 "LODOOPS" 1462430 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1459185 1461684 1461749 "LODO" 1461754 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1457731 1457966 1458317 "LODOF" 1458932 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1454150 1456586 1456627 "LODOCAT" 1457059 NIL LODOCAT (NIL T) -9 NIL 1457270) (-592 1453884 1453942 1454068 "LODOCAT-" 1454073 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1451198 1453725 1453843 "LODO2" 1453848 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448627 1451135 1451180 "LODO1" 1451185 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447490 1447655 1447966 "LODEEF" 1448450 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1442776 1445620 1445662 "LNAGG" 1446609 NIL LNAGG (NIL T) -9 NIL 1447053) (-587 1441923 1442137 1442479 "LNAGG-" 1442484 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1438088 1438850 1439488 "LMOPS" 1441339 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437485 1437847 1437888 "LMODULE" 1437948 NIL LMODULE (NIL T) -9 NIL 1437990) (-584 1434731 1437130 1437253 "LMDICT" 1437395 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1427958 1433677 1433975 "LIST" 1434466 NIL LIST (NIL T) -8 NIL NIL) (-582 1427483 1427557 1427696 "LIST3" 1427878 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426490 1426668 1426896 "LIST2" 1427301 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424624 1424936 1425335 "LIST2MAP" 1426137 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423336 1424016 1424057 "LINEXP" 1424310 NIL LINEXP (NIL T) -9 NIL 1424458) (-578 1421983 1422243 1422540 "LINDEP" 1423088 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1418750 1419469 1420246 "LIMITRF" 1421238 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1417030 1417325 1417740 "LIMITPS" 1418445 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411485 1416541 1416769 "LIE" 1416851 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410535 1410978 1411019 "LIECAT" 1411159 NIL LIECAT (NIL T) -9 NIL 1411310) (-573 1410376 1410403 1410491 "LIECAT-" 1410496 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1402988 1409825 1409990 "LIB" 1410231 T LIB (NIL) -8 NIL NIL) (-571 1398625 1399506 1400441 "LGROBP" 1402105 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396495 1396768 1397129 "LF" 1398347 NIL LF (NIL T T) -7 NIL NIL) (-569 1395335 1396026 1396055 "LFCAT" 1396262 T LFCAT (NIL) -9 NIL 1396401) (-568 1392247 1392873 1393559 "LEXTRIPK" 1394701 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1388953 1389817 1390320 "LEXP" 1391827 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387351 1387664 1388065 "LEADCDET" 1388635 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386547 1386621 1386848 "LAZM3PK" 1387272 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381463 1384626 1385163 "LAUPOL" 1386060 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1381030 1381074 1381241 "LAPLACE" 1381413 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1378958 1380131 1380382 "LA" 1380863 NIL LA (NIL T T T) -8 NIL NIL) (-561 1378020 1378614 1378655 "LALG" 1378716 NIL LALG (NIL T) -9 NIL 1378774) (-560 1377735 1377794 1377929 "LALG-" 1377934 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376645 1376832 1377129 "KOVACIC" 1377535 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376479 1376503 1376545 "KONVERT" 1376607 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376313 1376337 1376379 "KOERCE" 1376441 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1374047 1374807 1375200 "KERNEL" 1375952 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373549 1373630 1373760 "KERNEL2" 1373961 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367400 1372088 1372143 "KDAGG" 1372520 NIL KDAGG (NIL T T) -9 NIL 1372726) (-553 1366929 1367053 1367258 "KDAGG-" 1367263 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1360104 1366590 1366745 "KAFILE" 1366807 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354559 1359615 1359843 "JORDAN" 1359925 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350858 1352764 1352819 "IXAGG" 1353748 NIL IXAGG (NIL T T) -9 NIL 1354207) (-549 1349777 1350083 1350502 "IXAGG-" 1350507 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345362 1349699 1349758 "IVECTOR" 1349763 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1344128 1344365 1344631 "ITUPLE" 1345129 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342564 1342741 1343047 "ITRIGMNP" 1343950 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341309 1341513 1341796 "ITFUN3" 1342340 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1340941 1340998 1341107 "ITFUN2" 1341246 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338743 1339814 1340111 "ITAYLOR" 1340676 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327734 1332929 1334088 "ISUPS" 1337616 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326838 1326978 1327214 "ISUMP" 1327581 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1322102 1326639 1326718 "ISTRING" 1326791 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321315 1321396 1321611 "IRURPK" 1322016 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1320251 1320452 1320692 "IRSN" 1321095 T IRSN (NIL) -7 NIL NIL) (-537 1318286 1318641 1319076 "IRRF2F" 1319889 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1318033 1318071 1318147 "IRREDFFX" 1318242 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316648 1316907 1317206 "IROOT" 1317766 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313286 1314337 1315027 "IR" 1315990 NIL IR (NIL T) -8 NIL NIL) (-533 1310899 1311394 1311960 "IR2" 1312764 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1309975 1310088 1310308 "IR2F" 1310782 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309766 1309800 1309860 "IPRNTPK" 1309935 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306320 1309655 1309724 "IPF" 1309729 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304637 1306245 1306302 "IPADIC" 1306307 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1304136 1304194 1304383 "INVLAPLA" 1304573 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293785 1296138 1298524 "INTTR" 1301800 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1290133 1290874 1291737 "INTTOOLS" 1292971 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289719 1289810 1289927 "INTSLPE" 1290036 T INTSLPE (NIL) -7 NIL NIL) (-524 1287669 1289642 1289701 "INTRVL" 1289706 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285276 1285788 1286362 "INTRF" 1287154 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284691 1284788 1284929 "INTRET" 1285174 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282693 1283082 1283551 "INTRAT" 1284299 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1279926 1280509 1281134 "INTPM" 1282178 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276635 1277234 1277978 "INTPAF" 1279312 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1271886 1272830 1273863 "INTPACK" 1275622 T INTPACK (NIL) -7 NIL NIL) (-517 1268740 1271615 1271742 "INT" 1271779 T INT (NIL) -8 NIL NIL) (-516 1267992 1268144 1268352 "INTHERTR" 1268582 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267431 1267511 1267699 "INTHERAL" 1267906 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265277 1265720 1266177 "INTHEORY" 1266994 T INTHEORY (NIL) -7 NIL NIL) (-513 1256600 1258220 1259998 "INTG0" 1263629 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1237173 1241963 1246773 "INTFTBL" 1251810 T INTFTBL (NIL) -8 NIL NIL) (-511 1236422 1236560 1236733 "INTFACT" 1237032 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1233813 1234259 1234822 "INTEF" 1235976 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232274 1233023 1233052 "INTDOM" 1233353 T INTDOM (NIL) -9 NIL 1233560) (-508 1231643 1231817 1232059 "INTDOM-" 1232064 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1228135 1230067 1230122 "INTCAT" 1230921 NIL INTCAT (NIL T) -9 NIL 1231240) (-506 1227608 1227710 1227838 "INTBIT" 1228027 T INTBIT (NIL) -7 NIL NIL) (-505 1226283 1226437 1226750 "INTALG" 1227453 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225740 1225830 1226000 "INTAF" 1226187 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1219194 1225550 1225690 "INTABL" 1225695 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1214144 1216873 1216902 "INS" 1217870 T INS (NIL) -9 NIL 1218551) (-501 1211384 1212155 1213129 "INS-" 1213202 NIL INS- (NIL T) -8 NIL NIL) (-500 1210163 1210390 1210687 "INPSIGN" 1211137 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209281 1209398 1209595 "INPRODPF" 1210043 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1208175 1208292 1208529 "INPRODFF" 1209161 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1207175 1207327 1207587 "INNMFACT" 1208011 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206372 1206469 1206657 "INMODGCD" 1207074 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1204881 1205125 1205449 "INFSP" 1206117 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1204065 1204182 1204365 "INFPROD0" 1204761 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1201075 1202234 1202725 "INFORM" 1203582 T INFORM (NIL) -8 NIL NIL) (-492 1200685 1200745 1200843 "INFORM1" 1201010 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1200208 1200297 1200411 "INFINITY" 1200591 T INFINITY (NIL) -7 NIL NIL) (-490 1198826 1199074 1199395 "INEP" 1199956 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1198102 1198723 1198788 "INDE" 1198793 NIL INDE (NIL T) -8 NIL NIL) (-488 1197666 1197734 1197851 "INCRMAPS" 1198029 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1192977 1193902 1194846 "INBFF" 1196754 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189472 1192822 1192925 "IMATRIX" 1192930 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1188184 1188307 1188622 "IMATQF" 1189328 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186404 1186631 1186968 "IMATLIN" 1187940 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1181030 1186328 1186386 "ILIST" 1186391 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1178983 1180890 1181003 "IIARRAY2" 1181008 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174351 1178894 1178958 "IFF" 1178963 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169394 1173643 1173831 "IFARRAY" 1174208 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168601 1169298 1169371 "IFAMON" 1169376 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1168184 1168249 1168304 "IEVALAB" 1168511 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1167859 1167927 1168087 "IEVALAB-" 1168092 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167517 1167773 1167836 "IDPO" 1167841 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1166794 1167406 1167481 "IDPOAMS" 1167486 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1166128 1166683 1166758 "IDPOAM" 1166763 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1165213 1165463 1165517 "IDPC" 1165930 NIL IDPC (NIL T T) -9 NIL 1166079) (-472 1164709 1165105 1165178 "IDPAM" 1165183 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1164112 1164601 1164674 "IDPAG" 1164679 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160367 1161215 1162110 "IDECOMP" 1163269 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1153241 1154290 1155337 "IDEAL" 1159403 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152405 1152517 1152716 "ICDEN" 1153125 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151504 1151885 1152032 "ICARD" 1152278 T ICARD (NIL) -8 NIL NIL) (-466 1149576 1149889 1150292 "IBPTOOLS" 1151181 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1145190 1149196 1149309 "IBITS" 1149495 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1141913 1142489 1143184 "IBATOOL" 1144607 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139693 1140154 1140687 "IBACHIN" 1141448 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137570 1139539 1139642 "IARRAY2" 1139647 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133723 1137496 1137553 "IARRAY1" 1137558 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127662 1132141 1132619 "IAN" 1133265 T IAN (NIL) -8 NIL NIL) (-459 1127173 1127230 1127403 "IALGFACT" 1127599 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126700 1126813 1126842 "HYPCAT" 1127049 T HYPCAT (NIL) -9 NIL NIL) (-457 1126238 1126355 1126541 "HYPCAT-" 1126546 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1122917 1124248 1124290 "HOAGG" 1125271 NIL HOAGG (NIL T) -9 NIL 1125950) (-455 1121511 1121910 1122436 "HOAGG-" 1122441 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115342 1120952 1121118 "HEXADEC" 1121365 T HEXADEC (NIL) -8 NIL NIL) (-453 1114090 1114312 1114575 "HEUGCD" 1115119 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1113193 1113927 1114057 "HELLFDIV" 1114062 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111421 1112970 1113058 "HEAP" 1113137 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105288 1111336 1111398 "HDP" 1111403 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1099000 1104925 1105076 "HDMP" 1105189 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098325 1098464 1098628 "HB" 1098856 T HB (NIL) -7 NIL NIL) (-447 1091822 1098171 1098275 "HASHTBL" 1098280 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089575 1091450 1091629 "HACKPI" 1091663 T HACKPI (NIL) -8 NIL NIL) (-445 1085271 1089429 1089541 "GTSET" 1089546 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1078797 1085149 1085247 "GSTBL" 1085252 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1071033 1077833 1078097 "GSERIES" 1078588 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1070055 1070508 1070537 "GROUP" 1070798 T GROUP (NIL) -9 NIL 1070957) (-441 1069171 1069394 1069738 "GROUP-" 1069743 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067540 1067859 1068246 "GROEBSOL" 1068848 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066480 1066742 1066794 "GRMOD" 1067323 NIL GRMOD (NIL T T) -9 NIL 1067491) (-438 1066248 1066284 1066412 "GRMOD-" 1066417 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061576 1062602 1063602 "GRIMAGE" 1065268 T GRIMAGE (NIL) -8 NIL NIL) (-436 1060043 1060303 1060627 "GRDEF" 1061272 T GRDEF (NIL) -7 NIL NIL) (-435 1059487 1059603 1059744 "GRAY" 1059922 T GRAY (NIL) -7 NIL NIL) (-434 1058720 1059100 1059152 "GRALG" 1059305 NIL GRALG (NIL T T) -9 NIL 1059397) (-433 1058381 1058454 1058617 "GRALG-" 1058622 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1055189 1057970 1058146 "GPOLSET" 1058288 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054545 1054602 1054859 "GOSPER" 1055126 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050304 1050983 1051509 "GMODPOL" 1054244 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049309 1049493 1049731 "GHENSEL" 1050116 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043375 1044218 1045244 "GENUPS" 1048393 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1043072 1043123 1043212 "GENUFACT" 1043318 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042484 1042561 1042726 "GENPGCD" 1042990 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1041958 1041993 1042206 "GENMFACT" 1042443 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040526 1040781 1041088 "GENEEZ" 1041701 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034400 1040139 1040300 "GDMP" 1040449 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1023782 1028171 1029277 "GCNAALG" 1033383 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1022203 1023075 1023104 "GCDDOM" 1023359 T GCDDOM (NIL) -9 NIL 1023516) (-420 1021673 1021800 1022015 "GCDDOM-" 1022020 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020345 1020530 1020834 "GB" 1021452 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1008965 1011291 1013683 "GBINTERN" 1018036 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1006802 1007094 1007515 "GBF" 1008640 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005583 1005748 1006015 "GBEUCLID" 1006618 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1004932 1005057 1005206 "GAUSSFAC" 1005454 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003309 1003611 1003924 "GALUTIL" 1004651 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001626 1001900 1002223 "GALPOLYU" 1003036 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 999015 999305 999710 "GALFACTU" 1001323 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 990821 992320 993928 "GALFACT" 997447 NIL GALFACT (NIL T) -7 NIL NIL) (-410 988208 988866 988895 "FVFUN" 990051 T FVFUN (NIL) -9 NIL 990771) (-409 987473 987655 987684 "FVC" 987975 T FVC (NIL) -9 NIL 988158) (-408 987115 987270 987351 "FUNCTION" 987425 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 984785 985336 985825 "FT" 986646 T FT (NIL) -8 NIL NIL) (-406 983603 984086 984289 "FTEM" 984602 T FTEM (NIL) -8 NIL NIL) (-405 981868 982156 982558 "FSUPFACT" 983295 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 980265 980554 980886 "FST" 981556 T FST (NIL) -8 NIL NIL) (-403 979440 979546 979740 "FSRED" 980147 NIL FSRED (NIL T T) -7 NIL NIL) (-402 978119 978374 978728 "FSPRMELT" 979155 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 975204 975642 976141 "FSPECF" 977682 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957577 966134 966175 "FS" 970013 NIL FS (NIL T) -9 NIL 972295) (-399 946227 949217 953273 "FS-" 953570 NIL FS- (NIL T T) -8 NIL NIL) (-398 945743 945797 945973 "FSINT" 946168 NIL FSINT (NIL T T) -7 NIL NIL) (-397 944024 944736 945039 "FSERIES" 945522 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 943042 943158 943388 "FSCINT" 943904 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939276 941986 942028 "FSAGG" 942398 NIL FSAGG (NIL T) -9 NIL 942657) (-394 937038 937639 938435 "FSAGG-" 938530 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 936080 936223 936450 "FSAGG2" 936891 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 933739 934018 934571 "FS2UPS" 935798 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933325 933368 933521 "FS2" 933690 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 932185 932356 932664 "FS2EXPXP" 933150 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931611 931726 931878 "FRUTIL" 932065 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 923032 927110 928466 "FR" 930287 NIL FR (NIL T) -8 NIL NIL) (-387 918108 920751 920792 "FRNAALG" 922188 NIL FRNAALG (NIL T) -9 NIL 922795) (-386 913787 914857 916132 "FRNAALG-" 916882 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913425 913468 913595 "FRNAAF2" 913738 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 911790 912282 912576 "FRMOD" 913238 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909513 910181 910497 "FRIDEAL" 911581 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 908712 908799 909086 "FRIDEAL2" 909420 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 907969 908377 908419 "FRETRCT" 908424 NIL FRETRCT (NIL T) -9 NIL 908595) (-380 907081 907312 907663 "FRETRCT-" 907668 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904290 905510 905570 "FRAMALG" 906452 NIL FRAMALG (NIL T T) -9 NIL 906744) (-378 902423 902879 903509 "FRAMALG-" 903732 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896325 901898 902174 "FRAC" 902179 NIL FRAC (NIL T) -8 NIL NIL) (-376 895961 896018 896125 "FRAC2" 896262 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895597 895654 895761 "FR2" 895898 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890270 893183 893212 "FPS" 894331 T FPS (NIL) -9 NIL 894887) (-373 889719 889828 889992 "FPS-" 890138 NIL FPS- (NIL T) -8 NIL NIL) (-372 887167 888864 888893 "FPC" 889118 T FPC (NIL) -9 NIL 889260) (-371 886960 887000 887097 "FPC-" 887102 NIL FPC- (NIL T) -8 NIL NIL) (-370 885838 886448 886490 "FPATMAB" 886495 NIL FPATMAB (NIL T) -9 NIL 886647) (-369 883538 884014 884440 "FPARFRAC" 885475 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 878933 879430 880112 "FORTRAN" 882970 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876649 877149 877688 "FORT" 878414 T FORT (NIL) -7 NIL NIL) (-366 874324 874886 874915 "FORTFN" 875975 T FORTFN (NIL) -9 NIL 876599) (-365 874087 874137 874166 "FORTCAT" 874225 T FORTCAT (NIL) -9 NIL 874287) (-364 872147 872630 873029 "FORMULA" 873708 T FORMULA (NIL) -8 NIL NIL) (-363 871935 871965 872034 "FORMULA1" 872111 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871458 871510 871683 "FORDER" 871877 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870554 870718 870911 "FOP" 871285 T FOP (NIL) -7 NIL NIL) (-360 869162 869834 870008 "FNLA" 870436 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 867830 868219 868248 "FNCAT" 868820 T FNCAT (NIL) -9 NIL 869113) (-358 867396 867789 867817 "FNAME" 867822 T FNAME (NIL) -8 NIL NIL) (-357 866055 867028 867057 "FMTC" 867062 T FMTC (NIL) -9 NIL 867097) (-356 862373 863580 864208 "FMONOID" 865460 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861593 862116 862264 "FM" 862269 NIL FM (NIL T T) -8 NIL NIL) (-354 859016 859662 859691 "FMFUN" 860835 T FMFUN (NIL) -9 NIL 861543) (-353 858284 858465 858494 "FMC" 858784 T FMC (NIL) -9 NIL 858966) (-352 855513 856347 856401 "FMCAT" 857583 NIL FMCAT (NIL T T) -9 NIL 858077) (-351 854408 855281 855380 "FM1" 855458 NIL FM1 (NIL T T) -8 NIL NIL) (-350 852182 852598 853092 "FLOATRP" 853959 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845668 849838 850468 "FLOAT" 851572 T FLOAT (NIL) -8 NIL NIL) (-348 843106 843606 844184 "FLOATCP" 845135 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 841894 842742 842783 "FLINEXP" 842788 NIL FLINEXP (NIL T) -9 NIL 842881) (-346 841049 841284 841611 "FLINEXP-" 841616 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 840125 840269 840493 "FLASORT" 840901 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837343 838185 838238 "FLALG" 839465 NIL FLALG (NIL T T) -9 NIL 839932) (-343 831127 834829 834871 "FLAGG" 836133 NIL FLAGG (NIL T) -9 NIL 836785) (-342 829853 830192 830682 "FLAGG-" 830687 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 828895 829038 829265 "FLAGG2" 829706 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 825867 826885 826945 "FINRALG" 828073 NIL FINRALG (NIL T T) -9 NIL 828581) (-339 825027 825256 825595 "FINRALG-" 825600 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824433 824646 824675 "FINITE" 824871 T FINITE (NIL) -9 NIL 824978) (-337 816892 819053 819094 "FINAALG" 822761 NIL FINAALG (NIL T) -9 NIL 824214) (-336 812233 813274 814418 "FINAALG-" 815797 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811628 811988 812091 "FILE" 812163 NIL FILE (NIL T) -8 NIL NIL) (-334 810312 810624 810679 "FILECAT" 811363 NIL FILECAT (NIL T T) -9 NIL 811579) (-333 808174 809730 809759 "FIELD" 809799 T FIELD (NIL) -9 NIL 809879) (-332 806794 807179 807690 "FIELD-" 807695 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804609 805431 805777 "FGROUP" 806481 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803699 803863 804083 "FGLMICPK" 804441 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799501 803624 803681 "FFX" 803686 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 799102 799163 799298 "FFSLPE" 799434 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 795097 795874 796670 "FFPOLY" 798338 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794601 794637 794846 "FFPOLY2" 795055 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790423 794520 794583 "FFP" 794588 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785791 790334 790398 "FF" 790403 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 780887 785134 785324 "FFNBX" 785645 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775797 780022 780280 "FFNBP" 780741 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770400 775081 775292 "FFNB" 775630 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 769232 769430 769745 "FFINTBAS" 770197 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765455 767695 767724 "FFIELDC" 768344 T FFIELDC (NIL) -9 NIL 768720) (-318 764118 764488 764985 "FFIELDC-" 764990 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763688 763733 763857 "FFHOM" 764060 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761386 761870 762387 "FFF" 763203 NIL FFF (NIL T) -7 NIL NIL) (-315 756974 761128 761229 "FFCGX" 761329 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752576 756706 756813 "FFCGP" 756917 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747729 752303 752411 "FFCG" 752512 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729674 738797 738884 "FFCAT" 744049 NIL FFCAT (NIL T T T) -9 NIL 745536) (-311 724872 725919 727233 "FFCAT-" 728463 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724283 724326 724561 "FFCAT2" 724823 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713483 717273 718490 "FEXPR" 723138 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712482 712917 712959 "FEVALAB" 713043 NIL FEVALAB (NIL T) -9 NIL 713304) (-307 711641 711851 712189 "FEVALAB-" 712194 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 710234 711024 711227 "FDIV" 711540 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707300 708015 708131 "FDIVCAT" 709699 NIL FDIVCAT (NIL T T T T) -9 NIL 710136) (-304 707062 707089 707259 "FDIVCAT-" 707264 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706282 706369 706646 "FDIV2" 706969 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704975 705232 705519 "FCPAK1" 706015 T FCPAK1 (NIL) -7 NIL NIL) (-301 704103 704475 704616 "FCOMP" 704866 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687743 691155 694715 "FC" 700563 T FC (NIL) -8 NIL NIL) (-299 680338 684384 684425 "FAXF" 686227 NIL FAXF (NIL T) -9 NIL 686918) (-298 677617 678272 679097 "FAXF-" 679562 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672717 676993 677169 "FARRAY" 677474 NIL FARRAY (NIL T) -8 NIL NIL) (-296 668107 670178 670231 "FAMR" 671243 NIL FAMR (NIL T T) -9 NIL 671703) (-295 666998 667300 667734 "FAMR-" 667739 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 666194 666920 666973 "FAMONOID" 666978 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 664026 664710 664764 "FAMONC" 665705 NIL FAMONC (NIL T T) -9 NIL 666090) (-292 662718 663780 663917 "FAGROUP" 663922 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660521 660840 661242 "FACUTIL" 662399 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659620 659805 660027 "FACTFUNC" 660331 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651943 658871 659083 "EXPUPXS" 659476 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649426 649966 650552 "EXPRTUBE" 651377 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645620 646212 646949 "EXPRODE" 648765 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630782 644279 644705 "EXPR" 645226 NIL EXPR (NIL T) -8 NIL NIL) (-285 625210 625797 626609 "EXPR2UPS" 630080 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624846 624903 625010 "EXPR2" 625147 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 616200 623983 624278 "EXPEXPAN" 624684 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 616027 616157 616186 "EXIT" 616191 T EXIT (NIL) -8 NIL NIL) (-281 615654 615716 615829 "EVALCYC" 615959 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 615194 615312 615354 "EVALAB" 615524 NIL EVALAB (NIL T) -9 NIL 615628) (-279 614675 614797 615018 "EVALAB-" 615023 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 612137 613449 613478 "EUCDOM" 614033 T EUCDOM (NIL) -9 NIL 614383) (-277 610542 610984 611574 "EUCDOM-" 611579 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 598120 600868 603608 "ESTOOLS" 607822 T ESTOOLS (NIL) -7 NIL NIL) (-275 597756 597813 597920 "ESTOOLS2" 598057 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597507 597549 597629 "ESTOOLS1" 597708 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591444 593168 593197 "ES" 595961 T ES (NIL) -9 NIL 597367) (-272 586392 587678 589495 "ES-" 589659 NIL ES- (NIL T) -8 NIL NIL) (-271 582767 583527 584307 "ESCONT" 585632 T ESCONT (NIL) -7 NIL NIL) (-270 582512 582544 582626 "ESCONT1" 582729 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 582187 582237 582337 "ES2" 582456 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581817 581875 581984 "ES1" 582123 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581033 581162 581338 "ERROR" 581661 T ERROR (NIL) -7 NIL NIL) (-266 574536 580892 580983 "EQTBL" 580988 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 566973 569854 571301 "EQ" 573122 NIL -3221 (NIL T) -8 NIL NIL) (-264 566605 566662 566771 "EQ2" 566910 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561897 562943 564036 "EP" 565544 NIL EP (NIL T) -7 NIL NIL) (-262 561056 561620 561649 "ENTIRER" 561654 T ENTIRER (NIL) -9 NIL 561699) (-261 557512 559011 559381 "EMR" 560855 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556655 556840 556895 "ELTAGG" 557275 NIL ELTAGG (NIL T T) -9 NIL 557486) (-259 556374 556436 556577 "ELTAGG-" 556582 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 556162 556191 556246 "ELTAB" 556330 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555288 555434 555633 "ELFUTS" 556013 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 555029 555085 555114 "ELEMFUN" 555219 T ELEMFUN (NIL) -9 NIL NIL) (-255 554899 554920 554988 "ELEMFUN-" 554993 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549790 552999 553041 "ELAGG" 553981 NIL ELAGG (NIL T) -9 NIL 554444) (-253 548075 548509 549172 "ELAGG-" 549177 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 540943 542742 543569 "EFUPXS" 547351 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534393 536194 537004 "EFULS" 540219 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531824 532182 532660 "EFSTRUC" 534025 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520896 522461 524021 "EF" 530339 NIL EF (NIL T T) -7 NIL NIL) (-248 519997 520381 520530 "EAB" 520767 T EAB (NIL) -8 NIL NIL) (-247 519210 519956 519984 "E04UCFA" 519989 T E04UCFA (NIL) -8 NIL NIL) (-246 518423 519169 519197 "E04NAFA" 519202 T E04NAFA (NIL) -8 NIL NIL) (-245 517636 518382 518410 "E04MBFA" 518415 T E04MBFA (NIL) -8 NIL NIL) (-244 516849 517595 517623 "E04JAFA" 517628 T E04JAFA (NIL) -8 NIL NIL) (-243 516064 516808 516836 "E04GCFA" 516841 T E04GCFA (NIL) -8 NIL NIL) (-242 515279 516023 516051 "E04FDFA" 516056 T E04FDFA (NIL) -8 NIL NIL) (-241 514492 515238 515266 "E04DGFA" 515271 T E04DGFA (NIL) -8 NIL NIL) (-240 508677 510022 511384 "E04AGNT" 513150 T E04AGNT (NIL) -7 NIL NIL) (-239 507403 507883 507924 "DVARCAT" 508399 NIL DVARCAT (NIL T) -9 NIL 508597) (-238 506607 506819 507133 "DVARCAT-" 507138 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499469 506409 506536 "DSMP" 506541 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494279 495414 496482 "DROPT" 498421 T DROPT (NIL) -8 NIL NIL) (-235 493944 494003 494101 "DROPT1" 494214 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 489059 490185 491322 "DROPT0" 492827 T DROPT0 (NIL) -7 NIL NIL) (-233 487404 487729 488115 "DRAWPT" 488693 T DRAWPT (NIL) -7 NIL NIL) (-232 482079 482978 484033 "DRAW" 486402 NIL DRAW (NIL T) -7 NIL NIL) (-231 481720 481771 481887 "DRAWHACK" 482022 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480451 480720 481011 "DRAWCX" 481449 T DRAWCX (NIL) -7 NIL NIL) (-229 479969 480037 480187 "DRAWCURV" 480377 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470441 472399 474514 "DRAWCFUN" 477874 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467254 469136 469178 "DQAGG" 469807 NIL DQAGG (NIL T) -9 NIL 470080) (-226 455760 462498 462581 "DPOLCAT" 464419 NIL DPOLCAT (NIL T T T T) -9 NIL 464963) (-225 450600 451946 453903 "DPOLCAT-" 453908 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444684 450462 450559 "DPMO" 450564 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438671 444465 444631 "DPMM" 444636 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438304 438380 438478 "DOMAIN" 438593 T DOMAIN (NIL) -8 NIL NIL) (-221 432016 437941 438092 "DMP" 438205 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 431616 431672 431816 "DLP" 431954 NIL DLP (NIL T) -7 NIL NIL) (-219 425260 430717 430944 "DLIST" 431421 NIL DLIST (NIL T) -8 NIL NIL) (-218 422106 424115 424157 "DLAGG" 424707 NIL DLAGG (NIL T) -9 NIL 424936) (-217 420815 421507 421536 "DIVRING" 421686 T DIVRING (NIL) -9 NIL 421794) (-216 419803 420056 420449 "DIVRING-" 420454 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 417905 418262 418668 "DISPLAY" 419417 T DISPLAY (NIL) -7 NIL NIL) (-214 411794 417819 417882 "DIRPROD" 417887 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 410642 410845 411110 "DIRPROD2" 411587 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400272 406277 406331 "DIRPCAT" 406739 NIL DIRPCAT (NIL NIL T) -9 NIL 407566) (-211 397598 398240 399121 "DIRPCAT-" 399458 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 396885 397045 397231 "DIOSP" 397432 T DIOSP (NIL) -7 NIL NIL) (-209 393587 395797 395839 "DIOPS" 396273 NIL DIOPS (NIL T) -9 NIL 396502) (-208 393136 393250 393441 "DIOPS-" 393446 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 392007 392645 392674 "DIFRING" 392861 T DIFRING (NIL) -9 NIL 392970) (-206 391653 391730 391882 "DIFRING-" 391887 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389442 390724 390765 "DIFEXT" 391124 NIL DIFEXT (NIL T) -9 NIL 391417) (-204 387728 388156 388821 "DIFEXT-" 388826 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 385050 387260 387302 "DIAGG" 387307 NIL DIAGG (NIL T) -9 NIL 387327) (-202 384434 384591 384843 "DIAGG-" 384848 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 379899 383393 383670 "DHMATRIX" 384203 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375511 376420 377430 "DFSFUN" 378909 T DFSFUN (NIL) -7 NIL NIL) (-199 370297 374225 374590 "DFLOAT" 375166 T DFLOAT (NIL) -8 NIL NIL) (-198 368530 368811 369206 "DFINTTLS" 370005 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 365563 366565 366963 "DERHAM" 368197 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363412 365338 365427 "DEQUEUE" 365507 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 362630 362763 362958 "DEGRED" 363274 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359046 359787 360635 "DEFINTRF" 361862 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 356585 357052 357648 "DEFINTEF" 358567 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350416 356026 356192 "DECIMAL" 356439 T DECIMAL (NIL) -8 NIL NIL) (-191 347928 348386 348892 "DDFACT" 349960 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 347524 347567 347718 "DBLRESP" 347879 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345234 345568 345937 "DBASE" 347282 NIL DBASE (NIL T) -8 NIL NIL) (-188 344369 345193 345221 "D03FAFA" 345226 T D03FAFA (NIL) -8 NIL NIL) (-187 343505 344328 344356 "D03EEFA" 344361 T D03EEFA (NIL) -8 NIL NIL) (-186 341455 341921 342410 "D03AGNT" 343036 T D03AGNT (NIL) -7 NIL NIL) (-185 340773 341414 341442 "D02EJFA" 341447 T D02EJFA (NIL) -8 NIL NIL) (-184 340091 340732 340760 "D02CJFA" 340765 T D02CJFA (NIL) -8 NIL NIL) (-183 339409 340050 340078 "D02BHFA" 340083 T D02BHFA (NIL) -8 NIL NIL) (-182 338727 339368 339396 "D02BBFA" 339401 T D02BBFA (NIL) -8 NIL NIL) (-181 331925 333513 335119 "D02AGNT" 337141 T D02AGNT (NIL) -7 NIL NIL) (-180 329694 330216 330762 "D01WGTS" 331399 T D01WGTS (NIL) -7 NIL NIL) (-179 328797 329653 329681 "D01TRNS" 329686 T D01TRNS (NIL) -8 NIL NIL) (-178 327900 328756 328784 "D01GBFA" 328789 T D01GBFA (NIL) -8 NIL NIL) (-177 327003 327859 327887 "D01FCFA" 327892 T D01FCFA (NIL) -8 NIL NIL) (-176 326106 326962 326990 "D01ASFA" 326995 T D01ASFA (NIL) -8 NIL NIL) (-175 325209 326065 326093 "D01AQFA" 326098 T D01AQFA (NIL) -8 NIL NIL) (-174 324312 325168 325196 "D01APFA" 325201 T D01APFA (NIL) -8 NIL NIL) (-173 323415 324271 324299 "D01ANFA" 324304 T D01ANFA (NIL) -8 NIL NIL) (-172 322518 323374 323402 "D01AMFA" 323407 T D01AMFA (NIL) -8 NIL NIL) (-171 321621 322477 322505 "D01ALFA" 322510 T D01ALFA (NIL) -8 NIL NIL) (-170 320724 321580 321608 "D01AKFA" 321613 T D01AKFA (NIL) -8 NIL NIL) (-169 319827 320683 320711 "D01AJFA" 320716 T D01AJFA (NIL) -8 NIL NIL) (-168 313131 314680 316239 "D01AGNT" 318288 T D01AGNT (NIL) -7 NIL NIL) (-167 312468 312596 312748 "CYCLOTOM" 312999 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309203 309916 310643 "CYCLES" 311761 T CYCLES (NIL) -7 NIL NIL) (-165 308515 308649 308820 "CVMP" 309064 NIL CVMP (NIL T) -7 NIL NIL) (-164 306297 306554 306929 "CTRIGMNP" 308243 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 305671 305770 305923 "CSTTOOLS" 306194 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 301470 302127 302885 "CRFP" 304983 NIL CRFP (NIL T T) -7 NIL NIL) (-161 300517 300702 300930 "CRAPACK" 301274 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 299901 300002 300206 "CPMATCH" 300393 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 299626 299654 299760 "CPIMA" 299867 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 295990 296662 297380 "COORDSYS" 298961 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 291851 293993 294485 "CONTFRAC" 295530 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291004 291568 291597 "COMRING" 291602 T COMRING (NIL) -9 NIL 291653) (-155 290085 290362 290546 "COMPPROP" 290840 T COMPPROP (NIL) -8 NIL NIL) (-154 289746 289781 289909 "COMPLPAT" 290044 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 279727 289555 289664 "COMPLEX" 289669 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279363 279420 279527 "COMPLEX2" 279664 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279081 279116 279214 "COMPFACT" 279322 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263415 273709 273750 "COMPCAT" 274752 NIL COMPCAT (NIL T) -9 NIL 276145) (-149 252930 255854 259481 "COMPCAT-" 259837 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 252661 252689 252791 "COMMUPC" 252896 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252456 252489 252548 "COMMONOP" 252622 T COMMONOP (NIL) -7 NIL NIL) (-146 252039 252207 252294 "COMM" 252389 T COMM (NIL) -8 NIL NIL) (-145 251293 251485 251514 "COMBOPC" 251850 T COMBOPC (NIL) -9 NIL 252023) (-144 250189 250399 250641 "COMBINAT" 251083 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246395 246966 247604 "COMBF" 249613 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245181 245511 245746 "COLOR" 246180 T COLOR (NIL) -8 NIL NIL) (-141 244821 244868 244993 "CMPLXRT" 245128 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240323 241351 242431 "CLIP" 243761 T CLIP (NIL) -7 NIL NIL) (-139 238661 239431 239669 "CLIF" 240151 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 234883 236807 236849 "CLAGG" 237778 NIL CLAGG (NIL T) -9 NIL 238314) (-137 233305 233762 234345 "CLAGG-" 234350 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 232849 232934 233074 "CINTSLPE" 233214 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230350 230821 231369 "CHVAR" 232377 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 229572 230136 230165 "CHARZ" 230170 T CHARZ (NIL) -9 NIL 230184) (-133 229326 229366 229444 "CHARPOL" 229526 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 228432 229029 229058 "CHARNZ" 229105 T CHARNZ (NIL) -9 NIL 229160) (-131 226455 227122 227457 "CHAR" 228117 T CHAR (NIL) -8 NIL NIL) (-130 226180 226241 226270 "CFCAT" 226381 T CFCAT (NIL) -9 NIL NIL) (-129 225425 225536 225718 "CDEN" 226064 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 221417 224578 224858 "CCLASS" 225165 T CCLASS (NIL) -8 NIL NIL) (-127 216470 217446 218199 "CARTEN" 220720 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 215578 215726 215947 "CARTEN2" 216317 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 213875 214730 214986 "CARD" 215342 T CARD (NIL) -8 NIL NIL) (-124 213247 213575 213604 "CACHSET" 213736 T CACHSET (NIL) -9 NIL 213813) (-123 212743 213039 213068 "CABMON" 213118 T CABMON (NIL) -9 NIL 213174) (-122 210300 212435 212542 "BTREE" 212669 NIL BTREE (NIL T) -8 NIL NIL) (-121 207798 209948 210070 "BTOURN" 210210 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205216 207269 207311 "BTCAT" 207379 NIL BTCAT (NIL T) -9 NIL 207456) (-119 204883 204963 205112 "BTCAT-" 205117 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200103 203974 204003 "BTAGG" 204259 T BTAGG (NIL) -9 NIL 204438) (-117 199526 199670 199900 "BTAGG-" 199905 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 196570 198804 199019 "BSTREE" 199343 NIL BSTREE (NIL T) -8 NIL NIL) (-115 195708 195834 196018 "BRILL" 196426 NIL BRILL (NIL T) -7 NIL NIL) (-114 192409 194436 194478 "BRAGG" 195127 NIL BRAGG (NIL T) -9 NIL 195384) (-113 190938 191344 191899 "BRAGG-" 191904 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184146 190284 190468 "BPADICRT" 190786 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 182450 184083 184128 "BPADIC" 184133 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182150 182180 182293 "BOUNDZRO" 182414 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 177665 178756 179623 "BOP" 181303 T BOP (NIL) -8 NIL NIL) (-108 175286 175730 176250 "BOP1" 177178 NIL BOP1 (NIL T) -7 NIL NIL) (-107 173639 174329 174623 "BOOLEAN" 175012 T BOOLEAN (NIL) -8 NIL NIL) (-106 173005 173383 173436 "BMODULE" 173441 NIL BMODULE (NIL T T) -9 NIL 173505) (-105 168815 172803 172876 "BITS" 172952 T BITS (NIL) -8 NIL NIL) (-104 167912 168347 168499 "BINFILE" 168683 T BINFILE (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-2975 (((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 37)) (-3780 (((-517) (-1131 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2989 (((-517) (-1131 |#2| |#1|)) 54)) (-4125 (((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 45)) (-2417 (((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 56 (|has| |#1| (-421)))) (-3993 (((-583 |#1|) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 48)) (-4076 (((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 53)))
+(((-1020 |#1| |#2|) (-10 -7 (-15 -2975 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4125 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3993 ((-583 |#1|) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4076 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -2989 ((-517) (-1131 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2417 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3780 ((-517) (-1131 |#2| |#1|)))) |%noBranch|)) (-752) (-1077)) (T -1020))
+((-3780 (*1 *2 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-2417 (*1 *2 *3 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-4076 (*1 *2 *3 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-3993 (*1 *2 *3 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 *4)) (-5 *1 (-1020 *4 *5)))) (-4125 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4))) (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4)))) (-2975 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4))) (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4)))))
+(-10 -7 (-15 -2975 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4125 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3993 ((-583 |#1|) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4076 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -2989 ((-517) (-1131 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2417 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3780 ((-517) (-1131 |#2| |#1|)))) |%noBranch|))
+((-3502 (((-3 (-517) "failed") |#2| (-1077) |#2| (-1060)) 16) (((-3 (-517) "failed") |#2| (-1077) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
+(((-1021 |#1| |#2|) (-10 -7 (-15 -3502 ((-3 (-517) "failed") |#2|)) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) (-772 |#2|))) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) |#2| (-1060)))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1098) (-400 |#1|))) (T -1021))
+((-3502 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-1060)) (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1021 *6 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))))) (-3502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1021 *6 *3)))) (-3502 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1021 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))))
+(-10 -7 (-15 -3502 ((-3 (-517) "failed") |#2|)) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) (-772 |#2|))) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) |#2| (-1060))))
+((-3502 (((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)) (-1060)) 34) (((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-772 (-377 (-876 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-876 |#1|))) 12)))
+(((-1022 |#1|) (-10 -7 (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-772 (-377 (-876 |#1|))))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)) (-1060)))) (-421)) (T -1022))
+((-3502 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-1077)) (-5 *5 (-1060)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *6)))) (-3502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 (-377 (-876 *6)))) (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *6)))) (-3502 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *4)))))
+(-10 -7 (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-772 (-377 (-876 |#1|))))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)) (-1060))))
+((-2130 (((-286 (-517)) (-47)) 11)))
+(((-1023) (-10 -7 (-15 -2130 ((-286 (-517)) (-47))))) (T -1023))
+((-2130 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1023)))))
+(-10 -7 (-15 -2130 ((-286 (-517)) (-47))))
+((-2105 (((-107) $ $) NIL)) (-3670 (($ $) 41)) (-1992 (((-107) $) 65)) (-2284 (($ $ $) 48)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 84)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) 74)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) 71)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL)) (-3402 (((-517) $) NIL)) (-2383 (($ $ $) 59)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3550 (((-3 $ "failed") $) NIL)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($) 81) (($ $) 82)) (-2356 (($ $ $) 58)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) 79)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) 66)) (-3448 (((-107) $) 64)) (-2479 (($ $) 42)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) 75)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) 72)) (-3480 (($ $ $) 68) (($) 39)) (-4095 (($ $ $) 67) (($) 38)) (-2628 (($ $) NIL)) (-3728 (($ $) 70)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) 50)) (-4130 (((-1024) $) NIL) (($ $) 69)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) 62) (($ (-583 $)) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 61)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2909 (($ $) 51)) (-2453 (($ $) NIL)) (-3367 (((-517) $) 32) (((-493) $) NIL) (((-816 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2262 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) 37)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) 73)) (-2829 (($ $) 63)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3849 (($ $ $) 44)) (-3663 (($) 35 T CONST)) (-3940 (($ $ $) 47)) (-3675 (($) 36 T CONST)) (-2514 (((-1060) $) 21) (((-1060) $ (-107)) 23) (((-1163) (-754) $) 24) (((-1163) (-754) $ (-107)) 25)) (-3950 (($ $) 45)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-3927 (($ $ $) 46)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 49)) (-3838 (($ $ $) 43)) (-1680 (($ $) 52) (($ $ $) 54)) (-1666 (($ $ $) 53)) (** (($ $ (-845)) NIL) (($ $ (-703)) 57)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
+(((-1024) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -4095 ($)) (-15 -3480 ($)) (-15 -2479 ($ $)) (-15 -3670 ($ $)) (-15 -3838 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -3950 ($ $)) (-15 -3927 ($ $ $)) (-15 -3940 ($ $ $))))) (T -1024))
+((-3849 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3838 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3670 (*1 *1 *1) (-5 *1 (-1024))) (-4095 (*1 *1) (-5 *1 (-1024))) (-3480 (*1 *1) (-5 *1 (-1024))) (-2479 (*1 *1 *1) (-5 *1 (-1024))) (-2284 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3950 (*1 *1 *1) (-5 *1 (-1024))) (-3927 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3940 (*1 *1 *1 *1) (-5 *1 (-1024))))
+(-13 (-502) (-598) (-760) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -4095 ($)) (-15 -3480 ($)) (-15 -2479 ($ $)) (-15 -3670 ($ $)) (-15 -3838 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -3950 ($ $)) (-15 -3927 ($ $ $)) (-15 -3940 ($ $ $))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-2544 ((|#1| $) 44)) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2098 ((|#1| |#1| $) 46)) (-3409 ((|#1| $) 45)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3137 (((-703) $) 43)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1025 |#1|) (-1189) (-1112)) (T -1025))
+((-2098 (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4195) (-15 -2098 (|t#1| |t#1| $)) (-15 -3409 (|t#1| $)) (-15 -2544 (|t#1| $)) (-15 -3137 ((-703) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-1991 ((|#3| $) 76)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-2042 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-1455 ((|#3| $) 78)) (-1298 ((|#4| $) 32)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-845)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
+(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1455 (|#3| |#1|)) (-15 -1991 (|#3| |#1|)) (-15 -1298 (|#4| |#1|)) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -2262 ((-787) |#1|))) (-1027 |#2| |#3| |#4| |#5|) (-703) (-964) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1026))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1455 (|#3| |#1|)) (-15 -1991 (|#3| |#1|)) (-15 -1298 (|#4| |#1|)) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1991 ((|#2| $) 72)) (-1912 (((-107) $) 112)) (-1783 (((-3 $ "failed") $ $) 19)) (-1256 (((-107) $) 110)) (-3443 (((-107) $ (-703)) 102)) (-1634 (($ |#2|) 75)) (-3038 (($) 17 T CONST)) (-1197 (($ $) 129 (|has| |#2| (-278)))) (-1397 ((|#3| $ (-517)) 124)) (-3220 (((-3 (-517) "failed") $) 86 (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3402 (((-517) $) 87 (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) 80)) (-2947 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-703) $) 130 (|has| |#2| (-509)))) (-2557 ((|#2| $ (-517) (-517)) 122)) (-1525 (((-583 |#2|) $) 95 (|has| $ (-6 -4195)))) (-1690 (((-107) $) 31)) (-3850 (((-703) $) 131 (|has| |#2| (-509)))) (-1671 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1409 (((-703) $) 118)) (-1422 (((-703) $) 119)) (-2266 (((-107) $ (-703)) 103)) (-1779 ((|#2| $) 67 (|has| |#2| (-6 (-4197 "*"))))) (-2560 (((-517) $) 114)) (-2970 (((-517) $) 116)) (-3687 (((-583 |#2|) $) 94 (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 115)) (-1718 (((-517) $) 117)) (-2362 (($ (-583 (-583 |#2|))) 109)) (-2737 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3468 (((-583 (-583 |#2|)) $) 120)) (-2328 (((-107) $ (-703)) 104)) (-3232 (((-1060) $) 9)) (-2137 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-3843 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 108)) (-1754 (((-107) $) 105)) (-2679 (($) 106)) (-2612 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-2042 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1077)) (-583 (-703))) 44 (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) 43 (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) 42 (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) 41 (|has| |#2| (-824 (-1077)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-1455 ((|#2| $) 71)) (-4025 (($ (-583 |#2|)) 74)) (-1974 (((-107) $) 111)) (-1298 ((|#3| $) 73)) (-2533 ((|#2| $) 68 (|has| |#2| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4195))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 107)) (-2295 ((|#4| $ (-517)) 125)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) 82)) (-1818 (((-703)) 29)) (-1272 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4195)))) (-3007 (((-107) $) 113)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1077)) (-583 (-703))) 48 (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) 47 (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) 46 (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) 45 (|has| |#2| (-824 (-1077)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3573 (((-703) $) 101 (|has| $ (-6 -4195)))))
+(((-1027 |#1| |#2| |#3| |#4|) (-1189) (-703) (-964) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1027))
+((-1634 (*1 *1 *2) (-12 (-4 *2 (-964)) (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-964)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-964)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-964)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1027 *3 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-2137 (*1 *1 *1) (|partial| -12 (-4 *1 (-1027 *2 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
+(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-967 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |%noBranch|) (-15 -1634 ($ |t#2|)) (-15 -4025 ($ (-583 |t#2|))) (-15 -1298 (|t#3| $)) (-15 -1991 (|t#2| $)) (-15 -1455 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4197 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2533 (|t#2| $)) (-15 -1779 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -2137 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4197 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-6 (-4197 "*")))) ((-659) . T) ((-824 (-1077)) |has| |#2| (-824 (-1077))) ((-967 |#1| |#1| |#2| |#3| |#4|) . T) ((-955 (-377 (-517))) |has| |#2| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#2| (-955 (-517))) ((-955 |#2|) . T) ((-970 |#2|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1112) . T))
+((-2112 ((|#4| |#4|) 68)) (-1686 ((|#4| |#4|) 63)) (-2084 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|) 76)) (-2520 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-2448 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
+(((-1028 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1686 (|#4| |#4|)) (-15 -2448 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2112 (|#4| |#4|)) (-15 -2520 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2084 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1028))
+((-2084 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-1028 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -1686 (|#4| |#4|)) (-15 -2448 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2112 (|#4| |#4|)) (-15 -2520 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2084 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 17)) (-2080 (((-583 |#2|) $) 159)) (-1428 (((-1073 $) $ |#2|) 53) (((-1073 |#1|) $) 42)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 109 (|has| |#1| (-509)))) (-2491 (($ $) 111 (|has| |#1| (-509)))) (-2025 (((-107) $) 113 (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 156) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3402 ((|#1| $) 154) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) ((|#2| $) NIL)) (-2133 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-2364 (($ $) 197)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 81)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 |#2|) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) 19)) (-2516 (((-703) $) 26)) (-2069 (($ (-1073 |#1|) |#2|) 47) (($ (-1073 $) |#2|) 63)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) 31)) (-2059 (($ |#1| (-489 |#2|)) 70) (($ $ |#2| (-703)) 51) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-3942 (((-489 |#2|) $) 186) (((-703) $ |#2|) 187) (((-583 (-703)) $ (-583 |#2|)) 188)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 121)) (-1958 (((-3 |#2| "failed") $) 161)) (-2325 (($ $) 196)) (-2336 ((|#1| $) 36)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 32)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 139 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 144 (|has| |#1| (-421))) (($ $ $) 131 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-583 |#2|) (-583 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-583 |#2|) (-583 $)) 176)) (-3115 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2042 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1191 (((-489 |#2|) $) 182) (((-703) $ |#2|) 178) (((-583 (-703)) $ (-583 |#2|)) 180)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#1| $) 127 (|has| |#1| (-421))) (($ $ |#2|) 130 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 150) (($ (-517)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3186 (((-583 |#1|) $) 153)) (-1939 ((|#1| $ (-489 |#2|)) 72) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 78)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) 116 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 101) (($ $ (-703)) 103)) (-3663 (($) 12 T CONST)) (-3675 (($) 14 T CONST)) (-3348 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 96)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 125 (|has| |#1| (-333)))) (-1680 (($ $) 84) (($ $ $) 94)) (-1666 (($ $ $) 48)) (** (($ $ (-845)) 102) (($ $ (-703)) 99)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 87) (($ $ $) 64) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1029 |#1| |#2|) (-873 |#1| (-489 |#2|) |#2|) (-964) (-779)) (T -1029))
+NIL
+(-873 |#1| (-489 |#2|) |#2|)
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1636 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 114 (|has| |#1| (-37 (-377 (-517)))))) (-1659 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2905 (((-876 |#1|) $ (-703)) NIL) (((-876 |#1|) $ (-703) (-703)) NIL)) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3022 (((-107) $) NIL)) (-2059 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 58) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2497 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3175 (($ $ (-703)) 15)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3898 (($ $) 110 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (($ $ |#2| $) 96) (($ $ (-583 |#2|) (-583 $)) 89) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2042 (($ $ |#2|) 99) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1191 (((-489 |#2|) $) NIL)) (-1926 (((-1 (-1058 |#3|) |#3|) (-583 |#2|) (-583 (-1058 |#3|))) 79)) (-1670 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 17)) (-2262 (((-787) $) 180) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 65) (($ |#3|) 63)) (-1939 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-1706 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 18 T CONST)) (-3675 (($) 10 T CONST)) (-3348 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) 182 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 61)) (** (($ $ (-845)) NIL) (($ $ (-703)) 70) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 102 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 60) (($ $ (-377 (-517))) 107 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 105 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1030 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -1939 (|#3| $ (-703))) (-15 -2262 ($ |#2|)) (-15 -2262 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1926 ((-1 (-1058 |#3|) |#3|) (-583 |#2|) (-583 (-1058 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ |#2| |#1|)) (-15 -2497 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-964) (-779) (-873 |#1| (-489 |#2|) |#2|)) (T -1030))
+((-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-873 *4 (-489 *5) *5)) (-5 *1 (-1030 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-779)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *2 (-779)) (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-873 *3 (-489 *2) *2)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2)) (-4 *2 (-873 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2)) (-4 *2 (-873 *3 (-489 *4) *4)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1058 *7))) (-4 *6 (-779)) (-4 *7 (-873 *5 (-489 *6) *6)) (-4 *5 (-964)) (-5 *2 (-1 (-1058 *7) *7)) (-5 *1 (-1030 *5 *6 *7)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-4 *2 (-779)) (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-873 *3 (-489 *2) *2)))) (-2497 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1030 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)) (-4 *3 (-779)) (-5 *1 (-1030 *4 *3 *5)) (-4 *5 (-873 *4 (-489 *3) *3)))))
+(-13 (-673 |#1| |#2|) (-10 -8 (-15 -1939 (|#3| $ (-703))) (-15 -2262 ($ |#2|)) (-15 -2262 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1926 ((-1 (-1058 |#3|) |#3|) (-583 |#2|) (-583 (-1058 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ |#2| |#1|)) (-15 -2497 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195)))))
+(((-1031 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -1031))
+NIL
+(-13 (-1015 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-896 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1015 |#1| |#2| |#3| |#4|) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T))
+((-1993 (((-583 |#2|) |#1|) 12)) (-2359 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-3426 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-3454 ((|#2| |#1|) 42)) (-3707 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2883 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-3034 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1549 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-1763 ((|#2| |#2| |#2| |#2|) 39)) (-2946 ((|#2| |#2| |#2|) 38)) (-3173 ((|#2| |#2| |#2| |#2| |#2|) 40)))
+(((-1032 |#1| |#2|) (-10 -7 (-15 -1993 ((-583 |#2|) |#1|)) (-15 -3454 (|#2| |#1|)) (-15 -3707 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2883 ((-583 |#2|) |#1|)) (-15 -3426 ((-583 |#2|) |#1|)) (-15 -3034 ((-583 |#2|) |#1|)) (-15 -2359 ((-583 |#2|) |#1|)) (-15 -2883 ((-583 |#2|) |#2| |#2|)) (-15 -3426 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3034 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2359 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2946 (|#2| |#2| |#2|)) (-15 -1763 (|#2| |#2| |#2| |#2|)) (-15 -3173 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1549 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1134 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1032))
+((-1549 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-3173 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-1763 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-2946 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-2359 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-3034 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-3426 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1032 *3 *5)) (-4 *3 (-1134 *5)))) (-3454 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -1993 ((-583 |#2|) |#1|)) (-15 -3454 (|#2| |#1|)) (-15 -3707 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2883 ((-583 |#2|) |#1|)) (-15 -3426 ((-583 |#2|) |#1|)) (-15 -3034 ((-583 |#2|) |#1|)) (-15 -2359 ((-583 |#2|) |#1|)) (-15 -2883 ((-583 |#2|) |#2| |#2|)) (-15 -3426 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3034 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2359 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2946 (|#2| |#2| |#2|)) (-15 -1763 (|#2| |#2| |#2| |#2|)) (-15 -3173 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1549 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3649 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|))))) 95) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|)))) 92) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 90) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|)))) 76) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))) (-1077)) 77) (((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|))) 71) (((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)) (-1077)) 60)) (-3215 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 88) (((-583 (-286 |#1|)) (-377 (-876 |#1|)) (-1077)) 43)) (-2599 (((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-876 |#1|)) (-1077)) 98) (((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077)) 97)))
+(((-1033 |#1|) (-10 -7 (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -3215 ((-583 (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3215 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-876 |#1|)) (-1077)))) (-13 (-278) (-779) (-134))) (T -1033))
+((-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1033 *5)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-876 *5))))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-876 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-876 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5)))))
+(-10 -7 (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -3215 ((-583 (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3215 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-876 |#1|)) (-1077))))
+((-3365 (((-377 (-1073 (-286 |#1|))) (-1158 (-286 |#1|)) (-377 (-1073 (-286 |#1|))) (-517)) 27)) (-1922 (((-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|)))) 39)))
+(((-1034 |#1|) (-10 -7 (-15 -1922 ((-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))))) (-15 -3365 ((-377 (-1073 (-286 |#1|))) (-1158 (-286 |#1|)) (-377 (-1073 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1034))
+((-3365 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1073 (-286 *5)))) (-5 *3 (-1158 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1034 *5)))) (-1922 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1073 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1034 *3)))))
+(-10 -7 (-15 -1922 ((-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))))) (-15 -3365 ((-377 (-1073 (-286 |#1|))) (-1158 (-286 |#1|)) (-377 (-1073 (-286 |#1|))) (-517))))
+((-1993 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1077))) 217) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1077)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1077)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
+(((-1035 |#1|) (-10 -7 (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1077))) (-15 -1993 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1077))))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (T -1035))
+((-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1035 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-286 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-265 (-286 *5))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-265 (-286 *4))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-286 *4)))))
+(-10 -7 (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1077))) (-15 -1993 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1077)))))
+((-2253 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-3244 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
+(((-1036 |#1| |#2|) (-10 -7 (-15 -3244 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2253 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -3244 (|#2| |#2|)) (-15 -2253 (|#2| |#2|))) |%noBranch|)) (-1112) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4195) (-6 -4196)))) (T -1036))
+((-2253 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196)))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196)))))) (-2253 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196)))))) (-3244 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196)))))))
+(-10 -7 (-15 -3244 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2253 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -3244 (|#2| |#2|)) (-15 -2253 (|#2| |#2|))) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-1247 (((-1066 3 |#1|) $) 106)) (-2331 (((-107) $) 72)) (-3711 (($ $ (-583 (-867 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-867 |#1|))) 74) (((-583 (-867 |#1|)) $) 73)) (-3688 (((-107) $) 41)) (-3432 (($ $ (-867 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-867 |#1|)) 47) (((-867 |#1|) $) 45)) (-3991 (((-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 104)) (-2155 (((-703) $) 26)) (-3128 (((-703) $) 25)) (-2473 (($ $ (-703) (-867 |#1|)) 39)) (-2290 (((-107) $) 82)) (-2122 (($ $ (-583 (-583 (-867 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-867 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-867 |#1|)))) 86) (($ (-583 (-583 (-867 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-867 |#1|))) $) 84)) (-3824 (($ (-583 $)) 28) (($ $ $) 29)) (-2145 (((-583 (-155)) $) 102)) (-2775 (((-583 (-867 |#1|)) $) 97)) (-2503 (((-583 (-583 (-155))) $) 101)) (-2183 (((-583 (-583 (-583 (-867 |#1|)))) $) NIL)) (-4165 (((-583 (-583 (-583 (-703)))) $) 99)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2327 (((-703) $ (-583 (-867 |#1|))) 37)) (-2386 (((-107) $) 54)) (-1290 (($ $ (-583 (-867 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-867 |#1|))) 57) (((-583 (-867 |#1|)) $) 55)) (-3689 (($) 23) (($ (-1066 3 |#1|)) 24)) (-2453 (($ $) 35)) (-1400 (((-583 $) $) 34)) (-4150 (($ (-583 $)) 31)) (-3757 (((-583 $) $) 33)) (-2262 (((-787) $) 110)) (-1433 (((-107) $) 64)) (-1967 (($ $ (-583 (-867 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-867 |#1|))) 67) (((-583 (-867 |#1|)) $) 65)) (-1457 (($ $) 105)) (-1572 (((-107) $ $) NIL)))
+(((-1037 |#1|) (-1038 |#1|) (-964)) (T -1037))
+NIL
+(-1038 |#1|)
+((-2105 (((-107) $ $) 7)) (-1247 (((-1066 3 |#1|) $) 13)) (-2331 (((-107) $) 29)) (-3711 (($ $ (-583 (-867 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-867 |#1|))) 31) (((-583 (-867 |#1|)) $) 30)) (-3688 (((-107) $) 44)) (-3432 (($ $ (-867 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-867 |#1|)) 46) (((-867 |#1|) $) 45)) (-3991 (((-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-2155 (((-703) $) 58)) (-3128 (((-703) $) 59)) (-2473 (($ $ (-703) (-867 |#1|)) 50)) (-2290 (((-107) $) 21)) (-2122 (($ $ (-583 (-583 (-867 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-867 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-867 |#1|)))) 24) (($ (-583 (-583 (-867 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-867 |#1|))) $) 22)) (-3824 (($ (-583 $)) 57) (($ $ $) 56)) (-2145 (((-583 (-155)) $) 16)) (-2775 (((-583 (-867 |#1|)) $) 20)) (-2503 (((-583 (-583 (-155))) $) 17)) (-2183 (((-583 (-583 (-583 (-867 |#1|)))) $) 18)) (-4165 (((-583 (-583 (-583 (-703)))) $) 19)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2327 (((-703) $ (-583 (-867 |#1|))) 51)) (-2386 (((-107) $) 39)) (-1290 (($ $ (-583 (-867 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-867 |#1|))) 41) (((-583 (-867 |#1|)) $) 40)) (-3689 (($) 61) (($ (-1066 3 |#1|)) 60)) (-2453 (($ $) 52)) (-1400 (((-583 $) $) 53)) (-4150 (($ (-583 $)) 55)) (-3757 (((-583 $) $) 54)) (-2262 (((-787) $) 11)) (-1433 (((-107) $) 34)) (-1967 (($ $ (-583 (-867 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-867 |#1|))) 36) (((-583 (-867 |#1|)) $) 35)) (-1457 (($ $) 14)) (-1572 (((-107) $ $) 6)))
+(((-1038 |#1|) (-1189) (-964)) (T -1038))
+((-2262 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-787)))) (-3689 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1066 3 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)))) (-2453 (*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-2327 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-867 *4))) (-4 *1 (-1038 *4)) (-4 *4 (-964)) (-5 *2 (-703)))) (-2473 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-867 *4)) (-4 *1 (-1038 *4)) (-4 *4 (-964)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-867 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-1290 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1290 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1290 (*1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-1967 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1967 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-2122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-867 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964)))) (-2122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964)))) (-2122 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) (-4 *1 (-1038 *4)) (-4 *4 (-964)))) (-2122 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1038 *4)) (-4 *4 (-964)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 *3)))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-2122 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) (-4 *4 (-964)) (-4 *1 (-1038 *4)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-867 *3)))))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-583 (-867 *3))))))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-155)))))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-155))))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-1247 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-1066 3 *3)))))
+(-13 (-1006) (-10 -8 (-15 -3689 ($)) (-15 -3689 ($ (-1066 3 |t#1|))) (-15 -3128 ((-703) $)) (-15 -2155 ((-703) $)) (-15 -3824 ($ (-583 $))) (-15 -3824 ($ $ $)) (-15 -4150 ($ (-583 $))) (-15 -3757 ((-583 $) $)) (-15 -1400 ((-583 $) $)) (-15 -2453 ($ $)) (-15 -2327 ((-703) $ (-583 (-867 |t#1|)))) (-15 -2473 ($ $ (-703) (-867 |t#1|))) (-15 -3432 ($ $ (-867 |t#1|))) (-15 -3432 ($ $ (-583 |t#1|))) (-15 -3432 ($ $ (-703))) (-15 -3432 ($ (-867 |t#1|))) (-15 -3432 ((-867 |t#1|) $)) (-15 -3688 ((-107) $)) (-15 -1290 ($ $ (-583 (-867 |t#1|)))) (-15 -1290 ($ $ (-583 (-583 |t#1|)))) (-15 -1290 ($ (-583 (-867 |t#1|)))) (-15 -1290 ((-583 (-867 |t#1|)) $)) (-15 -2386 ((-107) $)) (-15 -1967 ($ $ (-583 (-867 |t#1|)))) (-15 -1967 ($ $ (-583 (-583 |t#1|)))) (-15 -1967 ($ (-583 (-867 |t#1|)))) (-15 -1967 ((-583 (-867 |t#1|)) $)) (-15 -1433 ((-107) $)) (-15 -3711 ($ $ (-583 (-867 |t#1|)))) (-15 -3711 ($ $ (-583 (-583 |t#1|)))) (-15 -3711 ($ (-583 (-867 |t#1|)))) (-15 -3711 ((-583 (-867 |t#1|)) $)) (-15 -2331 ((-107) $)) (-15 -2122 ($ $ (-583 (-583 (-867 |t#1|))) (-583 (-155)) (-155))) (-15 -2122 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -2122 ($ $ (-583 (-583 (-867 |t#1|))) (-107) (-107))) (-15 -2122 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -2122 ($ (-583 (-583 (-867 |t#1|))))) (-15 -2122 ($ (-583 (-583 (-867 |t#1|))) (-107) (-107))) (-15 -2122 ((-583 (-583 (-867 |t#1|))) $)) (-15 -2290 ((-107) $)) (-15 -2775 ((-583 (-867 |t#1|)) $)) (-15 -4165 ((-583 (-583 (-583 (-703)))) $)) (-15 -2183 ((-583 (-583 (-583 (-867 |t#1|)))) $)) (-15 -2503 ((-583 (-583 (-155))) $)) (-15 -2145 ((-583 (-155)) $)) (-15 -3991 ((-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -1457 ($ $)) (-15 -1247 ((-1066 3 |t#1|) $)) (-15 -2262 ((-787) $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-2637 (((-583 (-1082)) (-1060)) 8)))
+(((-1039) (-10 -7 (-15 -2637 ((-583 (-1082)) (-1060))))) (T -1039))
+((-2637 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-1039)))))
+(-10 -7 (-15 -2637 ((-583 (-1082)) (-1060))))
+((-1623 (((-1163) (-583 (-787))) 23) (((-1163) (-787)) 22)) (-2957 (((-1163) (-583 (-787))) 21) (((-1163) (-787)) 20)) (-1885 (((-1163) (-583 (-787))) 19) (((-1163) (-787)) 11) (((-1163) (-1060) (-787)) 17)))
+(((-1040) (-10 -7 (-15 -1885 ((-1163) (-1060) (-787))) (-15 -1885 ((-1163) (-787))) (-15 -2957 ((-1163) (-787))) (-15 -1623 ((-1163) (-787))) (-15 -1885 ((-1163) (-583 (-787)))) (-15 -2957 ((-1163) (-583 (-787)))) (-15 -1623 ((-1163) (-583 (-787)))))) (T -1040))
+((-1623 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))))
+(-10 -7 (-15 -1885 ((-1163) (-1060) (-787))) (-15 -1885 ((-1163) (-787))) (-15 -2957 ((-1163) (-787))) (-15 -1623 ((-1163) (-787))) (-15 -1885 ((-1163) (-583 (-787)))) (-15 -2957 ((-1163) (-583 (-787)))) (-15 -1623 ((-1163) (-583 (-787)))))
+((-2922 (($ $ $) 10)) (-2581 (($ $) 9)) (-3746 (($ $ $) 13)) (-3518 (($ $ $) 15)) (-2672 (($ $ $) 12)) (-2747 (($ $ $) 14)) (-4113 (($ $) 17)) (-4084 (($ $) 16)) (-2829 (($ $) 6)) (-4097 (($ $ $) 11) (($ $) 7)) (-3466 (($ $ $) 8)))
+(((-1041) (-1189)) (T -1041))
+((-4113 (*1 *1 *1) (-4 *1 (-1041))) (-4084 (*1 *1 *1) (-4 *1 (-1041))) (-3518 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2747 (*1 *1 *1 *1) (-4 *1 (-1041))) (-3746 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2672 (*1 *1 *1 *1) (-4 *1 (-1041))) (-4097 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2922 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2581 (*1 *1 *1) (-4 *1 (-1041))) (-3466 (*1 *1 *1 *1) (-4 *1 (-1041))) (-4097 (*1 *1 *1) (-4 *1 (-1041))) (-2829 (*1 *1 *1) (-4 *1 (-1041))))
+(-13 (-10 -8 (-15 -2829 ($ $)) (-15 -4097 ($ $)) (-15 -3466 ($ $ $)) (-15 -2581 ($ $)) (-15 -2922 ($ $ $)) (-15 -4097 ($ $ $)) (-15 -2672 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -2747 ($ $ $)) (-15 -3518 ($ $ $)) (-15 -4084 ($ $)) (-15 -4113 ($ $))))
+((-2105 (((-107) $ $) 41)) (-3112 ((|#1| $) 15)) (-3957 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-1558 (((-107) $) 17)) (-3726 (($ $ |#1|) 28)) (-4149 (($ $ (-107)) 30)) (-3909 (($ $) 31)) (-2743 (($ $ |#2|) 29)) (-3232 (((-1060) $) NIL)) (-3346 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-4130 (((-1024) $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 10)) (-2453 (($ $) 27)) (-2279 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-2382 ((|#2| $) 16)) (-2262 (((-787) $) 50)) (-1572 (((-107) $ $) 39)))
+(((-1042 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2679 ($)) (-15 -1754 ((-107) $)) (-15 -3112 (|#1| $)) (-15 -2382 (|#2| $)) (-15 -1558 ((-107) $)) (-15 -2279 ($ |#1| |#2| (-107))) (-15 -2279 ($ |#1| |#2|)) (-15 -2279 ($ (-2 (|:| |val| |#1|) (|:| -3864 |#2|)))) (-15 -2279 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))))) (-15 -2279 ((-583 $) |#1| (-583 |#2|))) (-15 -2453 ($ $)) (-15 -3726 ($ $ |#1|)) (-15 -2743 ($ $ |#2|)) (-15 -4149 ($ $ (-107))) (-15 -3909 ($ $)) (-15 -3346 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -3957 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1006) (-33)) (-13 (-1006) (-33))) (T -1042))
+((-2679 (*1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-3112 (*1 *2 *1) (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *2 *3)) (-4 *3 (-13 (-1006) (-33))))) (-2382 (*1 *2 *1) (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-13 (-1006) (-33))))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3864 *4))) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1042 *3 *4)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3864 *5)))) (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-583 (-1042 *4 *5))) (-5 *1 (-1042 *4 *5)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-583 (-1042 *3 *5))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-13 (-1006) (-33))))) (-2453 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-3726 (*1 *1 *1 *2) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2743 (*1 *1 *1 *2) (-12 (-5 *1 (-1042 *3 *2)) (-4 *3 (-13 (-1006) (-33))) (-4 *2 (-13 (-1006) (-33))))) (-4149 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-3346 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *5 *6)))) (-3957 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33))))))
+(-13 (-1006) (-10 -8 (-15 -2679 ($)) (-15 -1754 ((-107) $)) (-15 -3112 (|#1| $)) (-15 -2382 (|#2| $)) (-15 -1558 ((-107) $)) (-15 -2279 ($ |#1| |#2| (-107))) (-15 -2279 ($ |#1| |#2|)) (-15 -2279 ($ (-2 (|:| |val| |#1|) (|:| -3864 |#2|)))) (-15 -2279 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))))) (-15 -2279 ((-583 $) |#1| (-583 |#2|))) (-15 -2453 ($ $)) (-15 -3726 ($ $ |#1|)) (-15 -2743 ($ $ |#2|)) (-15 -4149 ($ $ (-107))) (-15 -3909 ($ $)) (-15 -3346 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -3957 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
+((-2105 (((-107) $ $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-3112 (((-1042 |#1| |#2|) $) 25)) (-1190 (($ $) 76)) (-3263 (((-107) (-1042 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 85)) (-1646 (($ $ $ (-583 (-1042 |#1| |#2|))) 90) (($ $ $ (-583 (-1042 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 91)) (-3443 (((-107) $ (-703)) NIL)) (-2226 (((-1042 |#1| |#2|) $ (-1042 |#1| |#2|)) 43 (|has| $ (-6 -4196)))) (-2436 (((-1042 |#1| |#2|) $ "value" (-1042 |#1| |#2|)) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-2462 (((-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) $) 80)) (-1749 (($ (-1042 |#1| |#2|) $) 39)) (-1423 (($ (-1042 |#1| |#2|) $) 31)) (-1525 (((-583 (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 51)) (-2088 (((-107) (-1042 |#1| |#2|) $) 82)) (-1700 (((-107) $ $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 (-1042 |#1| |#2|)) $) 55 (|has| $ (-6 -4195)))) (-1949 (((-107) (-1042 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-1042 |#1| |#2|) (-1006))))) (-2737 (($ (-1 (-1042 |#1| |#2|) (-1042 |#1| |#2|)) $) 47 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-1042 |#1| |#2|) (-1042 |#1| |#2|)) $) 46)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 (-1042 |#1| |#2|)) $) 53)) (-3834 (((-107) $) 42)) (-3232 (((-1060) $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-4130 (((-1024) $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-3182 (((-3 $ "failed") $) 75)) (-3843 (((-107) (-1 (-107) (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-1042 |#1| |#2|)))) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006)))) (($ $ (-265 (-1042 |#1| |#2|))) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006)))) (($ $ (-1042 |#1| |#2|) (-1042 |#1| |#2|)) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006)))) (($ $ (-583 (-1042 |#1| |#2|)) (-583 (-1042 |#1| |#2|))) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006))))) (-1770 (((-107) $ $) 50)) (-1754 (((-107) $) 22)) (-2679 (($) 24)) (-2612 (((-1042 |#1| |#2|) $ "value") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) 44)) (-4140 (((-703) (-1 (-107) (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195))) (((-703) (-1042 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-1042 |#1| |#2|) (-1006))))) (-2453 (($ $) 49)) (-2279 (($ (-1042 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1042 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-1910 (((-583 |#2|) $) 81)) (-2262 (((-787) $) 73 (|has| (-1042 |#1| |#2|) (-557 (-787))))) (-3234 (((-583 $) $) 28)) (-3224 (((-107) $ $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-1272 (((-107) (-1 (-107) (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 64 (|has| (-1042 |#1| |#2|) (-1006)))) (-3573 (((-703) $) 58 (|has| $ (-6 -4195)))))
+(((-1043 |#1| |#2|) (-13 (-929 (-1042 |#1| |#2|)) (-10 -8 (-6 -4196) (-6 -4195) (-15 -3182 ((-3 $ "failed") $)) (-15 -1190 ($ $)) (-15 -2279 ($ (-1042 |#1| |#2|))) (-15 -2279 ($ |#1| |#2| (-583 $))) (-15 -2279 ($ |#1| |#2| (-583 (-1042 |#1| |#2|)))) (-15 -2279 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1910 ((-583 |#2|) $)) (-15 -2462 ((-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) $)) (-15 -2088 ((-107) (-1042 |#1| |#2|) $)) (-15 -3263 ((-107) (-1042 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1423 ($ (-1042 |#1| |#2|) $)) (-15 -1749 ($ (-1042 |#1| |#2|) $)) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)))) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1006) (-33)) (-13 (-1006) (-33))) (T -1043))
+((-3182 (*1 *1 *1) (|partial| -12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-1190 (*1 *1 *1) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1043 *2 *3))) (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1042 *2 *3))) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))) (-5 *1 (-1043 *2 *3)))) (-2279 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1006) (-33))) (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-2088 (*1 *2 *3 *1) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1043 *4 *5)))) (-3263 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1042 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1043 *5 *6)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-1646 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1042 *3 *4))) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-1646 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1042 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) (-5 *1 (-1043 *4 *5)))))
+(-13 (-929 (-1042 |#1| |#2|)) (-10 -8 (-6 -4196) (-6 -4195) (-15 -3182 ((-3 $ "failed") $)) (-15 -1190 ($ $)) (-15 -2279 ($ (-1042 |#1| |#2|))) (-15 -2279 ($ |#1| |#2| (-583 $))) (-15 -2279 ($ |#1| |#2| (-583 (-1042 |#1| |#2|)))) (-15 -2279 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1910 ((-583 |#2|) $)) (-15 -2462 ((-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) $)) (-15 -2088 ((-107) (-1042 |#1| |#2|) $)) (-15 -3263 ((-107) (-1042 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1423 ($ (-1042 |#1| |#2|) $)) (-15 -1749 ($ (-1042 |#1| |#2|) $)) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)))) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1911 (($ $) NIL)) (-1991 ((|#2| $) NIL)) (-1912 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1882 (($ (-623 |#2|)) 45)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-1634 (($ |#2|) 9)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 58 (|has| |#2| (-278)))) (-1397 (((-214 |#1| |#2|) $ (-517)) 31)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 72)) (-3778 (((-703) $) 60 (|has| |#2| (-509)))) (-2557 ((|#2| $ (-517) (-517)) NIL)) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL)) (-3850 (((-703) $) 62 (|has| |#2| (-509)))) (-1671 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1409 (((-703) $) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#2| $) 56 (|has| |#2| (-6 (-4197 "*"))))) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#2|))) 26)) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-583 (-583 |#2|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2137 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-2042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1455 ((|#2| $) NIL)) (-4025 (($ (-583 |#2|)) 40)) (-1974 (((-107) $) NIL)) (-1298 (((-214 |#1| |#2|) $) NIL)) (-2533 ((|#2| $) 54 (|has| |#2| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-2295 (((-214 |#1| |#2|) $ (-517)) 33)) (-2262 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-1818 (((-703)) 17)) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 11 T CONST)) (-3675 (($) 14 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1044 |#1| |#2|) (-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1911 ($ $)) (-15 -1882 ($ (-623 |#2|))) (-15 -2262 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4197 "*"))) (-6 -4184) |%noBranch|) (IF (|has| |#2| (-6 (-4197 "*"))) (IF (|has| |#2| (-6 -4192)) (-6 -4192) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-703) (-964)) (T -1044))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1044 *3 *4)) (-14 *3 (-703)) (-4 *4 (-964)))) (-1911 (*1 *1 *1) (-12 (-5 *1 (-1044 *2 *3)) (-14 *2 (-703)) (-4 *3 (-964)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-964)) (-5 *1 (-1044 *3 *4)) (-14 *3 (-703)))))
+(-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1911 ($ $)) (-15 -1882 ($ (-623 |#2|))) (-15 -2262 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4197 "*"))) (-6 -4184) |%noBranch|) (IF (|has| |#2| (-6 (-4197 "*"))) (IF (|has| |#2| (-6 -4192)) (-6 -4192) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
+((-2811 (($ $) 19)) (-3199 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-2562 (((-107) $ $) 24)) (-3577 (($ $) 17)) (-2612 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1125 (-517))) NIL) (($ $ $) 29)) (-2262 (($ (-131)) 27) (((-787) $) NIL)))
+(((-1045 |#1|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1| (-128))) (-15 -3199 (|#1| |#1| (-131))) (-15 -2262 (|#1| (-131))) (-15 -2562 ((-107) |#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2612 ((-131) |#1| (-517))) (-15 -2612 ((-131) |#1| (-517) (-131)))) (-1046)) (T -1045))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1| (-128))) (-15 -3199 (|#1| |#1| (-131))) (-15 -2262 (|#1| (-131))) (-15 -2562 ((-107) |#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2612 ((-131) |#1| (-517))) (-15 -2612 ((-131) |#1| (-517) (-131))))
+((-2105 (((-107) $ $) 19 (|has| (-131) (-1006)))) (-3169 (($ $) 120)) (-2811 (($ $) 121)) (-3199 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) 118)) (-3133 (((-107) $ $ (-517)) 117)) (-1975 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2899 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-3225 (($ $ (-1125 (-517)) $) 114)) (-2446 (($ $) 78 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-131) $) 77 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) 51)) (-2562 (((-107) $ $) 119)) (-1210 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1006))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1525 (((-583 (-131)) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) 115)) (-1924 (((-703) $ $ (-131)) 116)) (-2737 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3410 (($ $) 122)) (-3577 (($ $) 123)) (-2328 (((-107) $ (-703)) 10)) (-2912 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3232 (((-1060) $) 22 (|has| (-131) (-1006)))) (-1734 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| (-131) (-1006)))) (-2420 (((-131) $) 42 (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2837 (($ $ (-131)) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1125 (-517))) 63) (($ $ $) 102)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4195))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) 70)) (-4117 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (($ (-131)) 111) (((-787) $) 18 (|has| (-131) (-557 (-787))))) (-1272 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1606 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 20 (|has| (-131) (-1006)))) (-1618 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1596 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1046) (-1189)) (T -1046))
+((-3577 (*1 *1 *1) (-4 *1 (-1046))) (-3410 (*1 *1 *1) (-4 *1 (-1046))) (-2811 (*1 *1 *1) (-4 *1 (-1046))) (-3169 (*1 *1 *1) (-4 *1 (-1046))) (-2562 (*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107)))) (-3133 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-517)) (-5 *2 (-107)))) (-1924 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1436 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3225 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-1125 (-517))))) (-1210 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)))) (-1210 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1046)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1046)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1046)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) (-2899 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))) (-2899 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) (-2612 (*1 *1 *1 *1) (-4 *1 (-1046))))
+(-13 (-19 (-131)) (-10 -8 (-15 -3577 ($ $)) (-15 -3410 ($ $)) (-15 -2811 ($ $)) (-15 -3169 ($ $)) (-15 -2562 ((-107) $ $)) (-15 -2542 ((-107) $ $)) (-15 -3133 ((-107) $ $ (-517))) (-15 -1924 ((-703) $ $ (-131))) (-15 -1436 ((-107) $ $ (-131))) (-15 -3225 ($ $ (-1125 (-517)) $)) (-15 -1210 ((-517) $ $ (-517))) (-15 -1210 ((-517) (-128) $ (-517))) (-15 -2262 ($ (-131))) (-15 -1975 ((-583 $) $ (-131))) (-15 -1975 ((-583 $) $ (-128))) (-15 -3199 ($ $ (-131))) (-15 -3199 ($ $ (-128))) (-15 -2912 ($ $ (-131))) (-15 -2912 ($ $ (-128))) (-15 -2899 ($ $ (-131))) (-15 -2899 ($ $ (-128))) (-15 -2612 ($ $ $))))
+(((-33) . T) ((-97) -3786 (|has| (-131) (-1006)) (|has| (-131) (-779))) ((-557 (-787)) -3786 (|has| (-131) (-1006)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-588 #0#) . T) ((-19 #0#) . T) ((-779) |has| (-131) (-779)) ((-1006) -3786 (|has| (-131) (-1006)) (|has| (-131) (-779))) ((-1112) . T))
+((-3068 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703)) 94)) (-2172 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 53)) (-2606 (((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)) 85)) (-3532 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2329 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-1784 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3367 (((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 80)) (-2458 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 52)) (-1331 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-1015 |#1| |#2| |#3| |#4|)) (T -1047))
+((-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1015 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060)) (-5 *1 (-1047 *4 *5 *6 *7 *8)))) (-3068 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1015 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1047 *7 *8 *9 *10 *11)))) (-1784 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))) (-2329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3)))) (-2329 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *7 *8 *9 *3 *4)) (-4 *4 (-1015 *7 *8 *9 *3)))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))) (-2172 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3)))) (-2458 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703))))
+((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) 110) (((-583 $) (-583 |#4|) (-107)) 111) (((-583 $) (-583 |#4|) (-107) (-107)) 109) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 112)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 84)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 62)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) 26 (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 39)) (-2195 ((|#4| |#4| $) 65)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-3901 (((-107) |#4| $) NIL)) (-1426 (((-107) |#4| $) NIL)) (-3403 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4145 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 124)) (-1525 (((-583 |#4|) $) 16 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 17 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 103)) (-1447 (((-3 |#4| "failed") $) 37)) (-1243 (((-583 $) |#4| $) 88)) (-3398 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 98) (((-107) |#4| $) 53)) (-2187 (((-583 $) |#4| $) 107) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 108) (((-583 $) |#4| (-583 $)) NIL)) (-3334 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 119)) (-2642 (($ |#4| $) 75) (($ (-583 |#4|) $) 76) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 74)) (-3846 (((-583 |#4|) $) NIL)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 35)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) 48)) (-3175 (($ $ |#4|) NIL) (((-583 $) |#4| $) 90) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 86)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 13)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 12)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-2316 (($ $ |#3|) 44)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2709 (((-583 $) |#4| $) 54) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-2525 (((-107) |#4| $) NIL)) (-3275 (((-107) |#3| $) 61)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1015 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -1048))
+((-2642 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3334 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-4145 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-1015 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2544 ((|#1| $) 34)) (-2857 (($ (-583 |#1|)) 39)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2098 ((|#1| |#1| $) 36)) (-3409 ((|#1| $) 32)) (-1525 (((-583 |#1|) $) 18 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 22)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 35)) (-3439 (($ |#1| $) 37)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1551 ((|#1| $) 33)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 31)) (-2679 (($) 38)) (-3137 (((-703) $) 29)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 27)) (-2262 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 17 (|has| |#1| (-1006)))) (-3573 (((-703) $) 30 (|has| $ (-6 -4195)))))
+(((-1049 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -2857 ($ (-583 |#1|))))) (-1112)) (T -1049))
+((-2857 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1049 *3)))))
+(-13 (-1025 |#1|) (-10 -8 (-15 -2857 ($ (-583 |#1|)))))
+((-2436 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1125 (-517)) |#2|) 44) ((|#2| $ (-517) |#2|) 41)) (-1655 (((-107) $) 12)) (-2737 (($ (-1 |#2| |#2|) $) 39)) (-2420 ((|#2| $) NIL) (($ $ (-703)) 17)) (-2837 (($ $ |#2|) 40)) (-2611 (((-107) $) 11)) (-2612 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1125 (-517))) 31) ((|#2| $ (-517)) 23) ((|#2| $ (-517) |#2|) NIL)) (-3495 (($ $ $) 47) (($ $ |#2|) NIL)) (-4117 (($ $ $) 33) (($ |#2| $) NIL) (($ (-583 $)) 36) (($ $ |#2|) NIL)))
+(((-1050 |#1| |#2|) (-10 -8 (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| "last")) (-15 -2612 (|#1| |#1| "rest")) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2612 (|#2| |#1| "value")) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|))) (-1051 |#2|) (-1112)) (T -1050))
+NIL
+(-10 -8 (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| "last")) (-15 -2612 (|#1| |#1| "rest")) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2612 (|#2| |#1| "value")) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-3351 (((-1163) $ (-517) (-517)) 97 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 117 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4195)))) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-2446 (($ $) 99 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4195))) (($ |#1| $) 100 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2750 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) 108)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 95 (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 94 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-1734 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1449 (((-583 (-517)) $) 92)) (-3413 (((-107) (-517) $) 91)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2837 (($ $ |#1|) 96 (|has| $ (-6 -4196)))) (-2611 (((-107) $) 84)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 90)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1125 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3868 (((-517) $ $) 44)) (-3779 (($ $ (-1125 (-517))) 114) (($ $ (-517)) 113)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 107)) (-3495 (($ $ $) 61 (|has| $ (-6 -4196))) (($ $ |#1|) 60 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1051 |#1|) (-1189) (-1112)) (T -1051))
+((-2611 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))))
+(-13 (-1146 |t#1|) (-588 |t#1|) (-10 -8 (-15 -2611 ((-107) $)) (-15 -1655 ((-107) $))))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T) ((-1146 |#1|) . T))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1052 |#1| |#2| |#3|) (-1089 |#1| |#2|) (-1006) (-1006) |#2|) (T -1052))
+NIL
+(-1089 |#1| |#2|)
+((-2105 (((-107) $ $) 7)) (-1639 (((-3 $ "failed") $) 13)) (-3232 (((-1060) $) 9)) (-2578 (($) 14 T CONST)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)))
+(((-1053) (-1189)) (T -1053))
+((-2578 (*1 *1) (-4 *1 (-1053))) (-1639 (*1 *1 *1) (|partial| -4 *1 (-1053))))
+(-13 (-1006) (-10 -8 (-15 -2578 ($) -1373) (-15 -1639 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1006) . T))
+((-3693 (((-1058 |#1|) (-1058 |#1|)) 17)) (-2658 (((-1058 |#1|) (-1058 |#1|)) 13)) (-2787 (((-1058 |#1|) (-1058 |#1|) (-517) (-517)) 20)) (-1520 (((-1058 |#1|) (-1058 |#1|)) 15)))
+(((-1054 |#1|) (-10 -7 (-15 -2658 ((-1058 |#1|) (-1058 |#1|))) (-15 -1520 ((-1058 |#1|) (-1058 |#1|))) (-15 -3693 ((-1058 |#1|) (-1058 |#1|))) (-15 -2787 ((-1058 |#1|) (-1058 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1054))
+((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1054 *4)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1054 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1054 *3)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1054 *3)))))
+(-10 -7 (-15 -2658 ((-1058 |#1|) (-1058 |#1|))) (-15 -1520 ((-1058 |#1|) (-1058 |#1|))) (-15 -3693 ((-1058 |#1|) (-1058 |#1|))) (-15 -2787 ((-1058 |#1|) (-1058 |#1|) (-517) (-517))))
+((-4117 (((-1058 |#1|) (-1058 (-1058 |#1|))) 15)))
+(((-1055 |#1|) (-10 -7 (-15 -4117 ((-1058 |#1|) (-1058 (-1058 |#1|))))) (-1112)) (T -1055))
+((-4117 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-1112)))))
+(-10 -7 (-15 -4117 ((-1058 |#1|) (-1058 (-1058 |#1|)))))
+((-1250 (((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)) 25)) (-1510 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)) 26)) (-3312 (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 16)))
+(((-1056 |#1| |#2|) (-10 -7 (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (-15 -1250 ((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|))) (-15 -1510 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)))) (-1112) (-1112)) (T -1056))
+((-1510 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1058 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-1056 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1058 *6)) (-4 *6 (-1112)) (-4 *3 (-1112)) (-5 *2 (-1058 *3)) (-5 *1 (-1056 *6 *3)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1058 *6)) (-5 *1 (-1056 *5 *6)))))
+(-10 -7 (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (-15 -1250 ((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|))) (-15 -1510 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|))))
+((-3312 (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)) 21)))
+(((-1057 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)))) (-1112) (-1112) (-1112)) (T -1057))
+((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-1058 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) (-5 *1 (-1057 *6 *7 *8)))))
+(-10 -7 (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) 49)) (-3351 (((-1163) $ (-517) (-517)) 74 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 108 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-3932 (((-787) $) 38 (|has| |#1| (-1006)))) (-3831 (((-107)) 39 (|has| |#1| (-1006)))) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) 96 (|has| $ (-6 -4196))) (($ $ (-517) $) 118)) (-1825 ((|#1| $ |#1|) 105 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 100 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4196))) (($ $ "rest" $) 104 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 87 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 56)) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2314 (($ $) 14)) (-2429 (($ $) 29) (($ $ (-703)) 86)) (-2673 (((-107) (-583 |#1|) $) 113 (|has| |#1| (-1006)))) (-2597 (($ (-583 |#1|)) 110)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) 55)) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2256 (((-1163) (-517) $) 117 (|has| |#1| (-1006)))) (-1813 (((-703) $) 115)) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3619 (($ $) 88)) (-2217 (((-107) $) 13)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) 72)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2257 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-1839 ((|#1| $) 10)) (-2420 ((|#1| $) 28) (($ $ (-703)) 47)) (-2397 (((-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))) (-703) $) 25)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2297 (($ (-1 (-107) |#1|) $) 122)) (-2307 (($ (-1 (-107) |#1|) $) 123)) (-2837 (($ $ |#1|) 66 (|has| $ (-6 -4196)))) (-3175 (($ $ (-517)) 32)) (-2611 (((-107) $) 70)) (-3500 (((-107) $) 12)) (-3847 (((-107) $) 114)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 20)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 41)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) 52) ((|#1| $ (-517) |#1|) NIL)) (-3868 (((-517) $ $) 46)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3406 (($ (-1 $)) 45)) (-1414 (((-107) $) 67)) (-2074 (($ $) 68)) (-4155 (($ $) 97 (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 42)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 51)) (-2987 (($ |#1| $) 95)) (-3495 (($ $ $) 98 (|has| $ (-6 -4196))) (($ $ |#1|) 99 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 76) (($ |#1| $) 43) (($ (-583 $)) 81) (($ $ |#1|) 75)) (-2384 (($ $) 48)) (-2262 (($ (-583 |#1|)) 109) (((-787) $) 40 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 112 (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1058 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4196) (-15 -2262 ($ (-583 |#1|))) (-15 -2597 ($ (-583 |#1|))) (IF (|has| |#1| (-1006)) (-15 -2673 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -2397 ((-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3406 ($ (-1 $))) (-15 -2987 ($ |#1| $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2256 ((-1163) (-517) $)) (-15 -3932 ((-787) $)) (-15 -3831 ((-107)))) |%noBranch|) (-15 -1223 ($ $ (-517) $)) (-15 -2257 ($ (-1 |#1|))) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)))) (-1112)) (T -1058))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2673 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-4 *4 (-1112)) (-5 *2 (-107)) (-5 *1 (-1058 *4)))) (-2397 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703)))) (-5 *1 (-1058 *4)) (-4 *4 (-1112)) (-5 *3 (-703)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1 (-1058 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-1112)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1112)))) (-2256 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1058 *4)) (-4 *4 (-1006)) (-4 *4 (-1112)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1058 *3)) (-4 *3 (-1006)) (-4 *3 (-1112)))) (-3831 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1058 *3)) (-4 *3 (-1006)) (-4 *3 (-1112)))) (-1223 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1058 *3)) (-4 *3 (-1112)))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2297 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))))
+(-13 (-610 |#1|) (-10 -8 (-6 -4196) (-15 -2262 ($ (-583 |#1|))) (-15 -2597 ($ (-583 |#1|))) (IF (|has| |#1| (-1006)) (-15 -2673 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -2397 ((-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3406 ($ (-1 $))) (-15 -2987 ($ |#1| $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2256 ((-1163) (-517) $)) (-15 -3932 ((-787) $)) (-15 -3831 ((-107)))) |%noBranch|) (-15 -1223 ($ $ (-517) $)) (-15 -2257 ($ (-1 |#1|))) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $))))
+((-2105 (((-107) $ $) 19)) (-3169 (($ $) 120)) (-2811 (($ $) 121)) (-3199 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) 118)) (-3133 (((-107) $ $ (-517)) 117)) (-1507 (($ (-517)) 127)) (-1975 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2899 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-3225 (($ $ (-1125 (-517)) $) 114)) (-2446 (($ $) 78 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-131) $) 77 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) 51)) (-2562 (((-107) $ $) 119)) (-1210 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1006))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1525 (((-583 (-131)) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) 115)) (-1924 (((-703) $ $ (-131)) 116)) (-2737 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3410 (($ $) 122)) (-3577 (($ $) 123)) (-2328 (((-107) $ (-703)) 10)) (-2912 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3232 (((-1060) $) 22)) (-1734 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21)) (-2420 (((-131) $) 42 (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2837 (($ $ (-131)) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1125 (-517))) 63) (($ $ $) 102)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4195))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) 70)) (-4117 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (($ (-131)) 111) (((-787) $) 18)) (-1272 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4195)))) (-2514 (((-1060) $) 131) (((-1060) $ (-107)) 130) (((-1163) (-754) $) 129) (((-1163) (-754) $ (-107)) 128)) (-1630 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1606 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1596 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1059) (-1189)) (T -1059))
+((-1507 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1059)))))
+(-13 (-1046) (-1006) (-760) (-10 -8 (-15 -1507 ($ (-517)))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-588 #0#) . T) ((-19 #0#) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1006) . T) ((-1046) . T) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-3169 (($ $) NIL)) (-2811 (($ $) NIL)) (-3199 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) NIL)) (-3133 (((-107) $ $ (-517)) NIL)) (-1507 (($ (-517)) 7)) (-1975 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-131) (-779))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2899 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3225 (($ $ (-1125 (-517)) $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1423 (($ (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) NIL)) (-2562 (((-107) $ $) NIL)) (-1210 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1006))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1525 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) NIL)) (-1924 (((-703) $ $ (-131)) NIL)) (-2737 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3410 (($ $) NIL)) (-3577 (($ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-2912 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3232 (((-1060) $) NIL)) (-1734 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-131) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2837 (($ $ (-131)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1125 (-517))) NIL) (($ $ $) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) NIL)) (-4117 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (($ (-131)) NIL) (((-787) $) NIL)) (-1272 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2514 (((-1060) $) 18) (((-1060) $ (-107)) 20) (((-1163) (-754) $) 21) (((-1163) (-754) $ (-107)) 22)) (-1630 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-131) (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1060) (-1059)) (T -1060))
+NIL
+(-1059)
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-3351 (((-1163) $ (-1060) (-1060)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-1060) |#1|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#1| "failed") (-1060) $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#1| "failed") (-1060) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-1060) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-1060)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1060) $) NIL (|has| (-1060) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-1060) $) NIL (|has| (-1060) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-1869 (((-583 (-1060)) $) NIL)) (-2409 (((-107) (-1060) $) NIL)) (-2015 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-1449 (((-583 (-1060)) $) NIL)) (-3413 (((-107) (-1060) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-2420 ((|#1| $) NIL (|has| (-1060) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) "failed") (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-1060)) NIL) ((|#1| $ (-1060) |#1|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-557 (-787))) (|has| |#1| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1061 |#1|) (-13 (-1089 (-1060) |#1|) (-10 -7 (-6 -4195))) (-1006)) (T -1061))
+NIL
+(-13 (-1089 (-1060) |#1|) (-10 -7 (-6 -4195)))
+((-2285 (((-1058 |#1|) (-1058 |#1|)) 77)) (-3550 (((-3 (-1058 |#1|) "failed") (-1058 |#1|)) 37)) (-1476 (((-1058 |#1|) (-377 (-517)) (-1058 |#1|)) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (((-1058 |#1|) |#1| (-1058 |#1|)) 121 (|has| |#1| (-333)))) (-3157 (((-1058 |#1|) (-1058 |#1|)) 90)) (-1387 (((-1058 (-517)) (-517)) 57)) (-2118 (((-1058 |#1|) (-1058 (-1058 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-1499 (((-1058 |#1|) (-517) (-517) (-1058 |#1|)) 95)) (-2416 (((-1058 |#1|) |#1| (-517)) 45)) (-1474 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 60)) (-2248 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 119 (|has| |#1| (-333)))) (-3671 (((-1058 |#1|) |#1| (-1 (-1058 |#1|))) 107 (|has| |#1| (-37 (-377 (-517)))))) (-3823 (((-1058 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1058 |#1|))) 120 (|has| |#1| (-333)))) (-1505 (((-1058 |#1|) (-1058 |#1|)) 89)) (-3266 (((-1058 |#1|) (-1058 |#1|)) 76)) (-3922 (((-1058 |#1|) (-517) (-517) (-1058 |#1|)) 96)) (-3296 (((-1058 |#1|) |#1| (-1058 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-2269 (((-1058 (-517)) (-517)) 56)) (-3462 (((-1058 |#1|) |#1|) 59)) (-2427 (((-1058 |#1|) (-1058 |#1|) (-517) (-517)) 92)) (-2044 (((-1058 |#1|) (-1 |#1| (-517)) (-1058 |#1|)) 66)) (-2333 (((-3 (-1058 |#1|) "failed") (-1058 |#1|) (-1058 |#1|)) 35)) (-3140 (((-1058 |#1|) (-1058 |#1|)) 91)) (-3552 (((-1058 |#1|) (-1058 |#1|) |#1|) 71)) (-3189 (((-1058 |#1|) (-1058 |#1|)) 62)) (-4077 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 72)) (-2262 (((-1058 |#1|) |#1|) 67)) (-2598 (((-1058 |#1|) (-1058 (-1058 |#1|))) 82)) (-1692 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 36)) (-1680 (((-1058 |#1|) (-1058 |#1|)) 21) (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 23)) (-1666 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 17)) (* (((-1058 |#1|) (-1058 |#1|) |#1|) 29) (((-1058 |#1|) |#1| (-1058 |#1|)) 26) (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 27)))
+(((-1062 |#1|) (-10 -7 (-15 -1666 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -2333 ((-3 (-1058 |#1|) "failed") (-1058 |#1|) (-1058 |#1|))) (-15 -1692 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3550 ((-3 (-1058 |#1|) "failed") (-1058 |#1|))) (-15 -2416 ((-1058 |#1|) |#1| (-517))) (-15 -2269 ((-1058 (-517)) (-517))) (-15 -1387 ((-1058 (-517)) (-517))) (-15 -3462 ((-1058 |#1|) |#1|)) (-15 -1474 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3189 ((-1058 |#1|) (-1058 |#1|))) (-15 -2044 ((-1058 |#1|) (-1 |#1| (-517)) (-1058 |#1|))) (-15 -2262 ((-1058 |#1|) |#1|)) (-15 -3552 ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -4077 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3266 ((-1058 |#1|) (-1058 |#1|))) (-15 -2285 ((-1058 |#1|) (-1058 |#1|))) (-15 -2598 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1505 ((-1058 |#1|) (-1058 |#1|))) (-15 -3157 ((-1058 |#1|) (-1058 |#1|))) (-15 -3140 ((-1058 |#1|) (-1058 |#1|))) (-15 -2427 ((-1058 |#1|) (-1058 |#1|) (-517) (-517))) (-15 -1499 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (-15 -3922 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 -3671 ((-1058 |#1|) |#1| (-1 (-1058 |#1|)))) (-15 -2118 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1476 ((-1058 |#1|) (-377 (-517)) (-1058 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2248 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3823 ((-1058 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1058 |#1|)))) (-15 -1762 ((-1058 |#1|) |#1| (-1058 |#1|)))) |%noBranch|)) (-964)) (T -1062))
+((-1762 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1058 *4))) (-4 *4 (-333)) (-4 *4 (-964)) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)))) (-2248 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1476 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *4)) (-4 *4 (-37 *3)) (-4 *4 (-964)) (-5 *3 (-377 (-517))) (-5 *1 (-1062 *4)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1058 *3))) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)))) (-3296 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3922 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-1499 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-2427 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-964)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-4077 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) (-2044 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) (-1387 (*1 *2 *3) (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964)) (-5 *3 (-517)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964)) (-5 *3 (-517)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) (-3550 (*1 *2 *2) (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-2333 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1680 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1666 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))))
+(-10 -7 (-15 -1666 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -2333 ((-3 (-1058 |#1|) "failed") (-1058 |#1|) (-1058 |#1|))) (-15 -1692 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3550 ((-3 (-1058 |#1|) "failed") (-1058 |#1|))) (-15 -2416 ((-1058 |#1|) |#1| (-517))) (-15 -2269 ((-1058 (-517)) (-517))) (-15 -1387 ((-1058 (-517)) (-517))) (-15 -3462 ((-1058 |#1|) |#1|)) (-15 -1474 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3189 ((-1058 |#1|) (-1058 |#1|))) (-15 -2044 ((-1058 |#1|) (-1 |#1| (-517)) (-1058 |#1|))) (-15 -2262 ((-1058 |#1|) |#1|)) (-15 -3552 ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -4077 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3266 ((-1058 |#1|) (-1058 |#1|))) (-15 -2285 ((-1058 |#1|) (-1058 |#1|))) (-15 -2598 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1505 ((-1058 |#1|) (-1058 |#1|))) (-15 -3157 ((-1058 |#1|) (-1058 |#1|))) (-15 -3140 ((-1058 |#1|) (-1058 |#1|))) (-15 -2427 ((-1058 |#1|) (-1058 |#1|) (-517) (-517))) (-15 -1499 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (-15 -3922 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 -3671 ((-1058 |#1|) |#1| (-1 (-1058 |#1|)))) (-15 -2118 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1476 ((-1058 |#1|) (-377 (-517)) (-1058 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2248 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3823 ((-1058 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1058 |#1|)))) (-15 -1762 ((-1058 |#1|) |#1| (-1058 |#1|)))) |%noBranch|))
+((-1636 (((-1058 |#1|) (-1058 |#1|)) 57)) (-1482 (((-1058 |#1|) (-1058 |#1|)) 39)) (-1612 (((-1058 |#1|) (-1058 |#1|)) 53)) (-1459 (((-1058 |#1|) (-1058 |#1|)) 35)) (-1659 (((-1058 |#1|) (-1058 |#1|)) 60)) (-1508 (((-1058 |#1|) (-1058 |#1|)) 42)) (-1232 (((-1058 |#1|) (-1058 |#1|)) 31)) (-3898 (((-1058 |#1|) (-1058 |#1|)) 27)) (-1670 (((-1058 |#1|) (-1058 |#1|)) 61)) (-1521 (((-1058 |#1|) (-1058 |#1|)) 43)) (-1647 (((-1058 |#1|) (-1058 |#1|)) 58)) (-1495 (((-1058 |#1|) (-1058 |#1|)) 40)) (-1622 (((-1058 |#1|) (-1058 |#1|)) 55)) (-1471 (((-1058 |#1|) (-1058 |#1|)) 37)) (-1706 (((-1058 |#1|) (-1058 |#1|)) 65)) (-1564 (((-1058 |#1|) (-1058 |#1|)) 47)) (-1685 (((-1058 |#1|) (-1058 |#1|)) 63)) (-1536 (((-1058 |#1|) (-1058 |#1|)) 45)) (-3517 (((-1058 |#1|) (-1058 |#1|)) 68)) (-1588 (((-1058 |#1|) (-1058 |#1|)) 50)) (-2815 (((-1058 |#1|) (-1058 |#1|)) 69)) (-1601 (((-1058 |#1|) (-1058 |#1|)) 51)) (-1722 (((-1058 |#1|) (-1058 |#1|)) 67)) (-1577 (((-1058 |#1|) (-1058 |#1|)) 49)) (-1698 (((-1058 |#1|) (-1058 |#1|)) 66)) (-1550 (((-1058 |#1|) (-1058 |#1|)) 48)) (** (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 33)))
+(((-1063 |#1|) (-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|)))) (-37 (-377 (-517)))) (T -1063))
+((-2815 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1232 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))))
+(-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|))))
+((-1636 (((-1058 |#1|) (-1058 |#1|)) 100)) (-1482 (((-1058 |#1|) (-1058 |#1|)) 64)) (-2041 (((-2 (|:| -1612 (-1058 |#1|)) (|:| -1622 (-1058 |#1|))) (-1058 |#1|)) 96)) (-1612 (((-1058 |#1|) (-1058 |#1|)) 97)) (-2683 (((-2 (|:| -1459 (-1058 |#1|)) (|:| -1471 (-1058 |#1|))) (-1058 |#1|)) 53)) (-1459 (((-1058 |#1|) (-1058 |#1|)) 54)) (-1659 (((-1058 |#1|) (-1058 |#1|)) 102)) (-1508 (((-1058 |#1|) (-1058 |#1|)) 71)) (-1232 (((-1058 |#1|) (-1058 |#1|)) 39)) (-3898 (((-1058 |#1|) (-1058 |#1|)) 36)) (-1670 (((-1058 |#1|) (-1058 |#1|)) 103)) (-1521 (((-1058 |#1|) (-1058 |#1|)) 72)) (-1647 (((-1058 |#1|) (-1058 |#1|)) 101)) (-1495 (((-1058 |#1|) (-1058 |#1|)) 67)) (-1622 (((-1058 |#1|) (-1058 |#1|)) 98)) (-1471 (((-1058 |#1|) (-1058 |#1|)) 55)) (-1706 (((-1058 |#1|) (-1058 |#1|)) 111)) (-1564 (((-1058 |#1|) (-1058 |#1|)) 86)) (-1685 (((-1058 |#1|) (-1058 |#1|)) 105)) (-1536 (((-1058 |#1|) (-1058 |#1|)) 82)) (-3517 (((-1058 |#1|) (-1058 |#1|)) 115)) (-1588 (((-1058 |#1|) (-1058 |#1|)) 90)) (-2815 (((-1058 |#1|) (-1058 |#1|)) 117)) (-1601 (((-1058 |#1|) (-1058 |#1|)) 92)) (-1722 (((-1058 |#1|) (-1058 |#1|)) 113)) (-1577 (((-1058 |#1|) (-1058 |#1|)) 88)) (-1698 (((-1058 |#1|) (-1058 |#1|)) 107)) (-1550 (((-1058 |#1|) (-1058 |#1|)) 84)) (** (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 40)))
+(((-1064 |#1|) (-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -2683 ((-2 (|:| -1459 (-1058 |#1|)) (|:| -1471 (-1058 |#1|))) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -2041 ((-2 (|:| -1612 (-1058 |#1|)) (|:| -1622 (-1058 |#1|))) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|)))) (-37 (-377 (-517)))) (T -1064))
+((-2815 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1612 (-1058 *4)) (|:| -1622 (-1058 *4)))) (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1459 (-1058 *4)) (|:| -1471 (-1058 *4)))) (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1232 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))))
+(-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -2683 ((-2 (|:| -1459 (-1058 |#1|)) (|:| -1471 (-1058 |#1|))) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -2041 ((-2 (|:| -1612 (-1058 |#1|)) (|:| -1622 (-1058 |#1|))) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|))))
+((-1405 (((-881 |#2|) |#2| |#2|) 36)) (-4172 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
+(((-1065 |#1| |#2|) (-10 -7 (-15 -1405 ((-881 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -4172 (|#2| |#2| |#1|)) |%noBranch|)) (-509) (-1134 |#1|)) (T -1065))
+((-4172 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1065 *3 *2)) (-4 *2 (-1134 *3)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-881 *3)) (-5 *1 (-1065 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -1405 ((-881 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -4172 (|#2| |#2| |#1|)) |%noBranch|))
+((-2105 (((-107) $ $) NIL)) (-3547 (($ $ (-583 (-703))) 67)) (-1247 (($) 26)) (-3412 (($ $) 42)) (-1421 (((-583 $) $) 51)) (-1819 (((-107) $) 16)) (-2888 (((-583 (-867 |#2|)) $) 74)) (-4166 (($ $) 68)) (-1884 (((-703) $) 37)) (-3204 (($) 25)) (-3262 (($ $ (-583 (-703)) (-867 |#2|)) 60) (($ $ (-583 (-703)) (-703)) 61) (($ $ (-703) (-867 |#2|)) 63)) (-3824 (($ $ $) 48) (($ (-583 $)) 50)) (-3280 (((-703) $) 75)) (-3834 (((-107) $) 15)) (-3232 (((-1060) $) NIL)) (-3890 (((-107) $) 18)) (-4130 (((-1024) $) NIL)) (-2982 (((-155) $) 73)) (-2733 (((-867 |#2|) $) 69)) (-3165 (((-703) $) 70)) (-3888 (((-107) $) 72)) (-1498 (($ $ (-583 (-703)) (-155)) 66)) (-1909 (($ $) 43)) (-2262 (((-787) $) 85)) (-4134 (($ $ (-583 (-703)) (-107)) 65)) (-3234 (((-583 $) $) 11)) (-1192 (($ $ (-703)) 36)) (-1465 (($ $) 32)) (-2884 (($ $ $ (-867 |#2|) (-703)) 56)) (-2509 (($ $ (-867 |#2|)) 55)) (-2360 (($ $ (-583 (-703)) (-867 |#2|)) 54) (($ $ (-583 (-703)) (-703)) 58) (((-703) $ (-867 |#2|)) 59)) (-1572 (((-107) $ $) 79)))
+(((-1066 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3834 ((-107) $)) (-15 -1819 ((-107) $)) (-15 -3890 ((-107) $)) (-15 -3204 ($)) (-15 -1247 ($)) (-15 -1465 ($ $)) (-15 -1192 ($ $ (-703))) (-15 -3234 ((-583 $) $)) (-15 -1884 ((-703) $)) (-15 -3412 ($ $)) (-15 -1909 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ (-583 $))) (-15 -1421 ((-583 $) $)) (-15 -2360 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2509 ($ $ (-867 |#2|))) (-15 -2884 ($ $ $ (-867 |#2|) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2360 ($ $ (-583 (-703)) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-703))) (-15 -2360 ((-703) $ (-867 |#2|))) (-15 -3262 ($ $ (-703) (-867 |#2|))) (-15 -4134 ($ $ (-583 (-703)) (-107))) (-15 -1498 ($ $ (-583 (-703)) (-155))) (-15 -3547 ($ $ (-583 (-703)))) (-15 -2733 ((-867 |#2|) $)) (-15 -3165 ((-703) $)) (-15 -3888 ((-107) $)) (-15 -2982 ((-155) $)) (-15 -3280 ((-703) $)) (-15 -4166 ($ $)) (-15 -2888 ((-583 (-867 |#2|)) $)))) (-845) (-964)) (T -1066))
+((-3834 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3204 (*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1247 (*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1465 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1192 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1909 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-3824 (*1 *1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-2360 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-2509 (*1 *1 *1 *2) (-12 (-5 *2 (-867 *4)) (-4 *4 (-964)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)))) (-2884 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-867 *5)) (-5 *3 (-703)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-2360 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-2360 (*1 *2 *1 *3) (-12 (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *2 (-703)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-4134 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-1498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-3547 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-867 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-4166 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-583 (-867 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))))
+(-13 (-1006) (-10 -8 (-15 -3834 ((-107) $)) (-15 -1819 ((-107) $)) (-15 -3890 ((-107) $)) (-15 -3204 ($)) (-15 -1247 ($)) (-15 -1465 ($ $)) (-15 -1192 ($ $ (-703))) (-15 -3234 ((-583 $) $)) (-15 -1884 ((-703) $)) (-15 -3412 ($ $)) (-15 -1909 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ (-583 $))) (-15 -1421 ((-583 $) $)) (-15 -2360 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2509 ($ $ (-867 |#2|))) (-15 -2884 ($ $ $ (-867 |#2|) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2360 ($ $ (-583 (-703)) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-703))) (-15 -2360 ((-703) $ (-867 |#2|))) (-15 -3262 ($ $ (-703) (-867 |#2|))) (-15 -4134 ($ $ (-583 (-703)) (-107))) (-15 -1498 ($ $ (-583 (-703)) (-155))) (-15 -3547 ($ $ (-583 (-703)))) (-15 -2733 ((-867 |#2|) $)) (-15 -3165 ((-703) $)) (-15 -3888 ((-107) $)) (-15 -2982 ((-155) $)) (-15 -3280 ((-703) $)) (-15 -4166 ($ $)) (-15 -2888 ((-583 (-867 |#2|)) $))))
+((-2105 (((-107) $ $) NIL)) (-2506 ((|#2| $) 11)) (-2499 ((|#1| $) 10)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2279 (($ |#1| |#2|) 9)) (-2262 (((-787) $) 16)) (-1572 (((-107) $ $) NIL)))
+(((-1067 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2279 ($ |#1| |#2|)) (-15 -2499 (|#1| $)) (-15 -2506 (|#2| $)))) (-1006) (-1006)) (T -1067))
+((-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2499 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1006)))) (-2506 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *3 *2)) (-4 *3 (-1006)))))
+(-13 (-1006) (-10 -8 (-15 -2279 ($ |#1| |#2|)) (-15 -2499 (|#1| $)) (-15 -2506 (|#2| $))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-1075 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2491 (($ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2025 (((-107) $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2147 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3416 (((-1075 |#1| |#2| |#3|) $) 36)) (-3666 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 29)) (-2131 (((-1075 |#1| |#2| |#3|) $) 30)) (-1636 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1077) "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-3402 (((-1075 |#1| |#2| |#3|) $) 131) (((-1077) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-2419 (($ $) 34) (($ (-517) $) 35)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-1075 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-1075 |#1| |#2| |#3|))) (|:| |vec| (-1158 (-1075 |#1| |#2| |#3|)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) 48)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-2192 (($) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-2671 (((-107) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) 25)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-810 (-517))) (|has| |#1| (-333)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-810 (-349))) (|has| |#1| (-333))))) (-3250 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL (|has| |#1| (-333)))) (-3858 (((-1075 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) NIL)) (-2603 (($ (-1 |#1| (-517)) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-517)) 18) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3480 (($ $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4095 (($ $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1232 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2140 (($ (-517) (-1075 |#1| |#2| |#3|)) 33)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2590 (($ $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2713 (((-1075 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 145)) (-2333 (((-3 $ "failed") $ $) 49 (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) (-1075 |#1| |#2| |#3|)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-478 (-1077) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-1075 |#1| |#2| |#3|))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-478 (-1077) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1075 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1075 |#1| |#2| |#3|))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1075 |#1| |#2| |#3|)) (-583 (-1075 |#1| |#2| |#3|))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1018))) (($ $ (-1075 |#1| |#2| |#3|)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-258 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1154 |#2|)) 51) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1463 (($ $) NIL (|has| |#1| (-333)))) (-2082 (((-1075 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-1191 (((-517) $) 37)) (-1670 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-493) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-816 (-349)) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1075 |#1| |#2| |#3|)) 27) (($ (-1154 |#2|)) 23) (($ (-1077)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (($ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-1939 ((|#1| $ (-517)) 68)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 12)) (-3126 (((-1075 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1706 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1685 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 20 T CONST)) (-3675 (($) 16 T CONST)) (-3348 (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1630 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1596 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 21)) (** (($ $ (-845)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1075 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1075 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1068 |#1| |#2| |#3|) (-13 (-1120 |#1| (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1068))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1120 |#1| (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-3476 ((|#2| |#2| (-999 |#2|)) 26) ((|#2| |#2| (-1077)) 28)))
+(((-1069 |#1| |#2|) (-10 -7 (-15 -3476 (|#2| |#2| (-1077))) (-15 -3476 (|#2| |#2| (-999 |#2|)))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1098))) (T -1069))
+((-3476 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098))) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1069 *4 *2)))) (-3476 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1069 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098))))))
+(-10 -7 (-15 -3476 (|#2| |#2| (-1077))) (-15 -3476 (|#2| |#2| (-999 |#2|))))
+((-3476 (((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-999 (-377 (-876 |#1|)))) 30) (((-377 (-876 |#1|)) (-876 |#1|) (-999 (-876 |#1|))) 44) (((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-1077)) 32) (((-377 (-876 |#1|)) (-876 |#1|) (-1077)) 36)))
+(((-1070 |#1|) (-10 -7 (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-1077))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-999 (-876 |#1|)))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-999 (-377 (-876 |#1|)))))) (-13 (-509) (-779) (-955 (-517)))) (T -1070))
+((-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1070 *5)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-876 *5))) (-5 *3 (-876 *5)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1070 *5)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-3 (-377 (-876 *5)) (-286 *5))) (-5 *1 (-1070 *5)) (-5 *3 (-377 (-876 *5))))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-377 (-876 *5))) (-5 *1 (-1070 *5)) (-5 *3 (-876 *5)))))
+(-10 -7 (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-1077))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-999 (-876 |#1|)))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-999 (-377 (-876 |#1|))))))
+((-3312 (((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 13)))
+(((-1071 |#1| |#2|) (-10 -7 (-15 -3312 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)))) (-964) (-964)) (T -1071))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-1073 *6)) (-5 *1 (-1071 *5 *6)))))
+(-10 -7 (-15 -3312 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))))
+((-3306 (((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))) 50)) (-3896 (((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))) 51)))
+(((-1072 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|)))) (-15 -3306 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))))) (-725) (-779) (-421) (-873 |#3| |#1| |#2|)) (T -1072))
+((-3306 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7))))))
+(-10 -7 (-15 -3896 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|)))) (-15 -3306 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|)))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 30)) (-1335 (((-1158 |#1|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#1|)) NIL)) (-1428 (((-1073 $) $ (-992)) 59) (((-1073 |#1|) $) 48)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) 133 (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) 127 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) 72 (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 92 (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1401 (($ $ (-703)) 42)) (-1861 (($ $ (-703)) 43)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-992) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $ $) 129 (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 57)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (($ $ $) 105)) (-1554 (($ $ $) NIL (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4172 (($ $) 134 (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-703) $) 46)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-2449 (((-787) $ (-787)) 118)) (-3250 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1690 (((-107) $) 32)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) 50) (($ (-1073 $) (-992)) 66)) (-2113 (($ $ (-703)) 34)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 64) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 122)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3634 (((-1073 |#1|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) 53)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) 41)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 33)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 80 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 136 (|has| |#1| (-421)))) (-2555 (($ $ (-703) |#1| $) 100)) (-3835 (((-388 (-1073 $)) (-1073 $)) 78 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 77 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 85 (|has| |#1| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#1|) NIL) (($ $ (-583 (-992)) (-583 |#1|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) 37)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 139 (|has| |#1| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $) 125 (|has| |#1| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1191 (((-703) $) 55) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 131 (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2262 (((-787) $) 119) (($ (-517)) NIL) (($ |#1|) 54) (($ (-992)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 15) (($ $ (-703)) 16)) (-3663 (($) 17 T CONST)) (-3675 (($) 18 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 97)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 140 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 67)) (** (($ $ (-845)) 14) (($ $ (-703)) 12)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
+(((-1073 |#1|) (-13 (-1134 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))) (-15 -2555 ($ $ (-703) |#1| $)))) (-964)) (T -1073))
+((-2449 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1073 *3)) (-4 *3 (-964)))) (-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1073 *3)) (-4 *3 (-964)))))
+(-13 (-1134 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))) (-15 -2555 ($ $ (-703) |#1| $))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 35)) (-3402 (((-1068 |#1| |#2| |#3|) $) NIL) (((-1075 |#1| |#2| |#3|) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2120 (((-377 (-517)) $) 55)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) (-1068 |#1| |#2| |#3|)) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) 19) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3002 (((-1068 |#1| |#2| |#3|) $) 40)) (-1875 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) NIL)) (-2140 (((-1068 |#1| |#2| |#3|) $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1154 |#2|)) 37)) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1068 |#1| |#2| |#3|)) 29) (($ (-1075 |#1| |#2| |#3|)) 30) (($ (-1154 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 12)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 21 T CONST)) (-3675 (($) 16 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 23)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1074 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1068 |#1| |#2| |#3|)) (-955 (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1074))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1141 |#1| (-1068 |#1| |#2| |#3|)) (-955 (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 125)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 116)) (-1764 (((-1131 |#2| |#1|) $ (-703)) 63)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-703)) 79) (($ $ (-703) (-703)) 76)) (-3747 (((-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 102)) (-1636 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 115) (($ (-1058 |#1|)) 110)) (-1659 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) 23)) (-2804 (($ $) 26)) (-2905 (((-876 |#1|) $ (-703)) 75) (((-876 |#1|) $ (-703) (-703)) 77)) (-3690 (((-107) $) 120)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $) 122) (((-703) $ (-703)) 124)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL)) (-2603 (($ (-1 |#1| (-517)) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 13) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $) 129 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-3175 (($ $ (-703)) 15)) (-2333 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-3898 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2612 ((|#1| $ (-703)) 119) (($ $ $) 128 (|has| (-703) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1154 |#2|)) 29)) (-1191 (((-703) $) NIL)) (-1670 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 201) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 126 (|has| |#1| (-156))) (($ (-1131 |#2| |#1|)) 51) (($ (-1154 |#2|)) 32)) (-3186 (((-1058 |#1|) $) 98)) (-1939 ((|#1| $ (-703)) 118)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 54)) (-1706 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 17 T CONST)) (-3675 (($) 19 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 194)) (-1666 (($ $ $) 31)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 198 (|has| |#1| (-333))) (($ $ $) 134 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 137 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1075 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1075))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-1075 *3 *4 *5)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1075 *4 *5 *6)) (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-2262 (((-787) $) 22) (($ (-1077)) 24)) (-3786 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3776 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-3299 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-3286 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-3273 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-3264 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3213 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
+(((-1076) (-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3299 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3273 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3286 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3264 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3786 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3213 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ $))))) (T -1076))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1076)))) (-3299 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3273 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3286 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3264 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3786 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3213 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3776 (*1 *1 *1) (-5 *1 (-1076))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3299 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3273 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3286 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3264 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3786 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3213 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ $))))
+((-2105 (((-107) $ $) NIL)) (-2210 (($ $ (-583 (-787))) 58)) (-1835 (($ $ (-583 (-787))) 56)) (-1507 (((-1060) $) 82)) (-3738 (((-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-2174 (((-107) $) 21)) (-2834 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-3038 (($) 123 T CONST)) (-3294 (((-1163)) 104)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 65) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 71)) (-3204 (($) 93) (($ $) 99)) (-2981 (($ $) 81)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2315 (((-583 $) $) 105)) (-3232 (((-1060) $) 88)) (-4130 (((-1024) $) NIL)) (-2612 (($ $ (-583 (-787))) 57)) (-3367 (((-493) $) 45) (((-1077) $) 46) (((-816 (-517)) $) 75) (((-816 (-349)) $) 73)) (-2262 (((-787) $) 52) (($ (-1060)) 47)) (-4032 (($ $ (-583 (-787))) 59)) (-2514 (((-1060) $) 33) (((-1060) $ (-107)) 34) (((-1163) (-754) $) 35) (((-1163) (-754) $ (-107)) 36)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 48)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 49)))
+(((-1077) (-13 (-779) (-558 (-493)) (-760) (-558 (-1077)) (-558 (-816 (-517))) (-558 (-816 (-349))) (-810 (-517)) (-810 (-349)) (-10 -8 (-15 -3204 ($)) (-15 -3204 ($ $)) (-15 -3294 ((-1163))) (-15 -2262 ($ (-1060))) (-15 -2981 ($ $)) (-15 -2174 ((-107) $)) (-15 -3738 ((-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2834 ($ $ (-583 (-583 (-787))))) (-15 -2834 ($ $ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -1835 ($ $ (-583 (-787)))) (-15 -2210 ($ $ (-583 (-787)))) (-15 -4032 ($ $ (-583 (-787)))) (-15 -2612 ($ $ (-583 (-787)))) (-15 -1507 ((-1060) $)) (-15 -2315 ((-583 $) $)) (-15 -3038 ($) -1373)))) (T -1077))
+((-3204 (*1 *1) (-5 *1 (-1077))) (-3204 (*1 *1 *1) (-5 *1 (-1077))) (-3294 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1077)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1077)))) (-2981 (*1 *1 *1) (-5 *1 (-1077))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1077)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1077)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1077)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1077)))) (-1835 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1077)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1077)))) (-3038 (*1 *1) (-5 *1 (-1077))))
+(-13 (-779) (-558 (-493)) (-760) (-558 (-1077)) (-558 (-816 (-517))) (-558 (-816 (-349))) (-810 (-517)) (-810 (-349)) (-10 -8 (-15 -3204 ($)) (-15 -3204 ($ $)) (-15 -3294 ((-1163))) (-15 -2262 ($ (-1060))) (-15 -2981 ($ $)) (-15 -2174 ((-107) $)) (-15 -3738 ((-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2834 ($ $ (-583 (-583 (-787))))) (-15 -2834 ($ $ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -1835 ($ $ (-583 (-787)))) (-15 -2210 ($ $ (-583 (-787)))) (-15 -4032 ($ $ (-583 (-787)))) (-15 -2612 ($ $ (-583 (-787)))) (-15 -1507 ((-1060) $)) (-15 -2315 ((-583 $) $)) (-15 -3038 ($) -1373)))
+((-2607 (((-1158 |#1|) |#1| (-845)) 16) (((-1158 |#1|) (-583 |#1|)) 20)))
+(((-1078 |#1|) (-10 -7 (-15 -2607 ((-1158 |#1|) (-583 |#1|))) (-15 -2607 ((-1158 |#1|) |#1| (-845)))) (-964)) (T -1078))
+((-2607 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-1158 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-964)) (-5 *2 (-1158 *4)) (-5 *1 (-1078 *4)))))
+(-10 -7 (-15 -2607 ((-1158 |#1|) (-583 |#1|))) (-15 -2607 ((-1158 |#1|) |#1| (-845))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1760 (($ $ |#1| (-891) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-891)) NIL)) (-3942 (((-891) $) NIL)) (-1542 (($ (-1 (-891) (-891)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2555 (($ $ (-891) |#1| $) NIL (-12 (|has| (-891) (-123)) (|has| |#1| (-509))))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1191 (((-891) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-891)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 9 T CONST)) (-3675 (($) 14 T CONST)) (-1572 (((-107) $ $) 16)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 19)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1079 |#1|) (-13 (-296 |#1| (-891)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-891) (-123)) (-15 -2555 ($ $ (-891) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) (-964)) (T -1079))
+((-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-891)) (-4 *2 (-123)) (-5 *1 (-1079 *3)) (-4 *3 (-509)) (-4 *3 (-964)))))
+(-13 (-296 |#1| (-891)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-891) (-123)) (-15 -2555 ($ $ (-891) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|)))
+((-1213 (((-1081) (-1077) $) 24)) (-2781 (($) 28)) (-1995 (((-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-1077) $) 21)) (-4083 (((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) $) 40) (((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) 41) (((-1163) (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) 42)) (-1307 (((-1163) (-1077)) 57)) (-3349 (((-1163) (-1077) $) 54) (((-1163) (-1077)) 55) (((-1163)) 56)) (-3033 (((-1163) (-1077)) 36)) (-3701 (((-1077)) 35)) (-2679 (($) 33)) (-3903 (((-407) (-1077) (-407) (-1077) $) 44) (((-407) (-583 (-1077)) (-407) (-1077) $) 48) (((-407) (-1077) (-407)) 45) (((-407) (-1077) (-407) (-1077)) 49)) (-3659 (((-1077)) 34)) (-2262 (((-787) $) 27)) (-1614 (((-1163)) 29) (((-1163) (-1077)) 32)) (-1672 (((-583 (-1077)) (-1077) $) 23)) (-1258 (((-1163) (-1077) (-583 (-1077)) $) 37) (((-1163) (-1077) (-583 (-1077))) 38) (((-1163) (-583 (-1077))) 39)))
+(((-1080) (-13 (-557 (-787)) (-10 -8 (-15 -2781 ($)) (-15 -1614 ((-1163))) (-15 -1614 ((-1163) (-1077))) (-15 -3903 ((-407) (-1077) (-407) (-1077) $)) (-15 -3903 ((-407) (-583 (-1077)) (-407) (-1077) $)) (-15 -3903 ((-407) (-1077) (-407))) (-15 -3903 ((-407) (-1077) (-407) (-1077))) (-15 -3033 ((-1163) (-1077))) (-15 -3659 ((-1077))) (-15 -3701 ((-1077))) (-15 -1258 ((-1163) (-1077) (-583 (-1077)) $)) (-15 -1258 ((-1163) (-1077) (-583 (-1077)))) (-15 -1258 ((-1163) (-583 (-1077)))) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -4083 ((-1163) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -3349 ((-1163) (-1077) $)) (-15 -3349 ((-1163) (-1077))) (-15 -3349 ((-1163))) (-15 -1307 ((-1163) (-1077))) (-15 -2679 ($)) (-15 -1995 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-1077) $)) (-15 -1672 ((-583 (-1077)) (-1077) $)) (-15 -1213 ((-1081) (-1077) $))))) (T -1080))
+((-2781 (*1 *1) (-5 *1 (-1080))) (-1614 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *4 (-1077)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3659 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080)))) (-3701 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080)))) (-1258 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1258 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1258 (*1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-4083 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1077)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3349 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3349 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-2679 (*1 *1) (-5 *1 (-1080))) (-1995 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *1 (-1080)))) (-1672 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1080)) (-5 *3 (-1077)))) (-1213 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1081)) (-5 *1 (-1080)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2781 ($)) (-15 -1614 ((-1163))) (-15 -1614 ((-1163) (-1077))) (-15 -3903 ((-407) (-1077) (-407) (-1077) $)) (-15 -3903 ((-407) (-583 (-1077)) (-407) (-1077) $)) (-15 -3903 ((-407) (-1077) (-407))) (-15 -3903 ((-407) (-1077) (-407) (-1077))) (-15 -3033 ((-1163) (-1077))) (-15 -3659 ((-1077))) (-15 -3701 ((-1077))) (-15 -1258 ((-1163) (-1077) (-583 (-1077)) $)) (-15 -1258 ((-1163) (-1077) (-583 (-1077)))) (-15 -1258 ((-1163) (-583 (-1077)))) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -4083 ((-1163) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -3349 ((-1163) (-1077) $)) (-15 -3349 ((-1163) (-1077))) (-15 -3349 ((-1163))) (-15 -1307 ((-1163) (-1077))) (-15 -2679 ($)) (-15 -1995 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-1077) $)) (-15 -1672 ((-583 (-1077)) (-1077) $)) (-15 -1213 ((-1081) (-1077) $))))
+((-3760 (((-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) $) 57)) (-2246 (((-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))) (-404) $) 40)) (-1832 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))) 15)) (-1307 (((-1163) $) 65)) (-2337 (((-583 (-1077)) $) 20)) (-1593 (((-1010) $) 53)) (-1897 (((-407) (-1077) $) 27)) (-1702 (((-583 (-1077)) $) 30)) (-2679 (($) 17)) (-3903 (((-407) (-583 (-1077)) (-407) $) 25) (((-407) (-1077) (-407) $) 24)) (-2262 (((-787) $) 9) (((-1086 (-1077) (-407)) $) 11)))
+(((-1081) (-13 (-557 (-787)) (-10 -8 (-15 -2262 ((-1086 (-1077) (-407)) $)) (-15 -2679 ($)) (-15 -3903 ((-407) (-583 (-1077)) (-407) $)) (-15 -3903 ((-407) (-1077) (-407) $)) (-15 -1897 ((-407) (-1077) $)) (-15 -2337 ((-583 (-1077)) $)) (-15 -2246 ((-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))) (-404) $)) (-15 -1702 ((-583 (-1077)) $)) (-15 -3760 ((-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) $)) (-15 -1593 ((-1010) $)) (-15 -1307 ((-1163) $)) (-15 -1832 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))))))) (T -1081))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-1086 (-1077) (-407))) (-5 *1 (-1081)))) (-2679 (*1 *1) (-5 *1 (-1081))) (-3903 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *1 (-1081)))) (-3903 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1081)))) (-1897 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-407)) (-5 *1 (-1081)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081)))) (-2246 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) (-5 *1 (-1081)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))))) (-5 *1 (-1081)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1081)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1081)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))) (-5 *1 (-1081)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2262 ((-1086 (-1077) (-407)) $)) (-15 -2679 ($)) (-15 -3903 ((-407) (-583 (-1077)) (-407) $)) (-15 -3903 ((-407) (-1077) (-407) $)) (-15 -1897 ((-407) (-1077) $)) (-15 -2337 ((-583 (-1077)) $)) (-15 -2246 ((-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))) (-404) $)) (-15 -1702 ((-583 (-1077)) $)) (-15 -3760 ((-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) $)) (-15 -1593 ((-1010) $)) (-15 -1307 ((-1163) $)) (-15 -1832 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))))))
+((-3247 (((-107) $) 43)) (-1759 (((-3 (-517) (-199) (-1077) (-1060) $) $) 51)) (-3486 (((-583 $) $) 56)) (-3367 (((-1010) $) 19) (($ (-1010)) 20)) (-1381 (((-107) $) 53)) (-2262 (((-787) $) NIL) (($ (-517)) 22) (((-517) $) 24) (($ (-199)) 26) (((-199) $) 28) (($ (-1077)) 30) (((-1077) $) 32) (($ (-1060)) 34) (((-1060) $) 36)) (-2276 (((-107) $ (|[\|\|]| (-517))) 9) (((-107) $ (|[\|\|]| (-199))) 12) (((-107) $ (|[\|\|]| (-1077))) 18) (((-107) $ (|[\|\|]| (-1060))) 15)) (-1740 (($ (-1077) (-583 $)) 40) (($ $ (-583 $)) 41)) (-2482 (((-517) $) 23) (((-199) $) 27) (((-1077) $) 31) (((-1060) $) 35)))
+(((-1082) (-13 (-1153) (-557 (-787)) (-10 -8 (-15 -3367 ((-1010) $)) (-15 -3367 ($ (-1010))) (-15 -2262 ($ (-517))) (-15 -2262 ((-517) $)) (-15 -2482 ((-517) $)) (-15 -2262 ($ (-199))) (-15 -2262 ((-199) $)) (-15 -2482 ((-199) $)) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2482 ((-1077) $)) (-15 -2262 ($ (-1060))) (-15 -2262 ((-1060) $)) (-15 -2482 ((-1060) $)) (-15 -1740 ($ (-1077) (-583 $))) (-15 -1740 ($ $ (-583 $))) (-15 -3247 ((-107) $)) (-15 -1759 ((-3 (-517) (-199) (-1077) (-1060) $) $)) (-15 -3486 ((-583 $) $)) (-15 -1381 ((-107) $)) (-15 -2276 ((-107) $ (|[\|\|]| (-517)))) (-15 -2276 ((-107) $ (|[\|\|]| (-199)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1077)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1060))))))) (T -1082))
+((-3367 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1082)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) (-1740 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-1082))) (-5 *1 (-1082)))) (-1740 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1077) (-1060) (-1082))) (-5 *1 (-1082)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-107)) (-5 *1 (-1082)))))
+(-13 (-1153) (-557 (-787)) (-10 -8 (-15 -3367 ((-1010) $)) (-15 -3367 ($ (-1010))) (-15 -2262 ($ (-517))) (-15 -2262 ((-517) $)) (-15 -2482 ((-517) $)) (-15 -2262 ($ (-199))) (-15 -2262 ((-199) $)) (-15 -2482 ((-199) $)) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2482 ((-1077) $)) (-15 -2262 ($ (-1060))) (-15 -2262 ((-1060) $)) (-15 -2482 ((-1060) $)) (-15 -1740 ($ (-1077) (-583 $))) (-15 -1740 ($ $ (-583 $))) (-15 -3247 ((-107) $)) (-15 -1759 ((-3 (-517) (-199) (-1077) (-1060) $) $)) (-15 -3486 ((-583 $) $)) (-15 -1381 ((-107) $)) (-15 -2276 ((-107) $ (|[\|\|]| (-517)))) (-15 -2276 ((-107) $ (|[\|\|]| (-199)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1077)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1060))))))
+((-3269 (((-583 (-583 (-876 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 55)) (-1993 (((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|)))) 67) (((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|))) 63) (((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077)) 68) (((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077)) 62) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|))))) 92) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|)))) 91) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077))) 93) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 90)))
+(((-1083 |#1|) (-10 -7 (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))))) (-15 -3269 ((-583 (-583 (-876 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))))) (-509)) (T -1083))
+((-3269 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-876 *5)))) (-5 *1 (-1083 *5)))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4))))) (-5 *1 (-1083 *4)) (-5 *3 (-265 (-377 (-876 *4)))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4))))) (-5 *1 (-1083 *4)) (-5 *3 (-377 (-876 *4))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5)) (-5 *3 (-265 (-377 (-876 *5)))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5)) (-5 *3 (-377 (-876 *5))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-1083 *4)) (-5 *3 (-583 (-265 (-377 (-876 *4))))))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-876 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-1083 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-1083 *5)) (-5 *3 (-583 (-265 (-377 (-876 *5))))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-1083 *5)))))
+(-10 -7 (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))))) (-15 -3269 ((-583 (-583 (-876 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))))
+((-2602 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-3350 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-4139 (((-1085 (-583 |#1|)) (-583 |#1|)) 34)) (-3238 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-1336 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-2319 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-4007 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-2137 (((-583 |#1|) (-583 |#1|)) 31)) (-2991 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-2810 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-3654 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-4104 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-2937 (((-583 (-583 |#1|)) (-1085 (-583 |#1|))) 41)))
+(((-1084 |#1|) (-10 -7 (-15 -3654 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2810 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2991 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2602 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -4104 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2937 ((-583 (-583 |#1|)) (-1085 (-583 |#1|)))) (-15 -3350 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -4139 ((-1085 (-583 |#1|)) (-583 |#1|))) (-15 -4007 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3238 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2137 ((-583 |#1|) (-583 |#1|))) (-15 -2319 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1084))
+((-1336 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-2319 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1084 *6)) (-5 *4 (-583 *5)))) (-2137 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1084 *3)))) (-3238 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)) (-5 *3 (-583 *4)))) (-4007 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1084 *3)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1085 (-583 *4))) (-5 *1 (-1084 *4)) (-5 *3 (-583 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 *4))))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1085 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)) (-4 *4 (-779)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1084 *4)))) (-2991 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1084 *4)))) (-2810 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1084 *5)))) (-3654 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1084 *6)) (-5 *5 (-583 *4)))))
+(-10 -7 (-15 -3654 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2810 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2991 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2602 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -4104 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2937 ((-583 (-583 |#1|)) (-1085 (-583 |#1|)))) (-15 -3350 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -4139 ((-1085 (-583 |#1|)) (-583 |#1|))) (-15 -4007 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3238 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2137 ((-583 |#1|) (-583 |#1|))) (-15 -2319 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
+((-1628 (($ (-583 (-583 |#1|))) 9)) (-3468 (((-583 (-583 |#1|)) $) 10)) (-2262 (((-787) $) 25)))
+(((-1085 |#1|) (-10 -8 (-15 -1628 ($ (-583 (-583 |#1|)))) (-15 -3468 ((-583 (-583 |#1|)) $)) (-15 -2262 ((-787) $))) (-1006)) (T -1085))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1085 *3)) (-4 *3 (-1006)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1085 *3)) (-4 *3 (-1006)))) (-1628 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-1085 *3)))))
+(-10 -8 (-15 -1628 ($ (-583 (-583 |#1|)))) (-15 -3468 ((-583 (-583 |#1|)) $)) (-15 -2262 ((-787) $)))
+((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1086 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006)) (T -1086))
+NIL
+(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195)))
+((-1494 ((|#1| (-583 |#1|)) 32)) (-3085 ((|#1| |#1| (-517)) 18)) (-3414 (((-1073 |#1|) |#1| (-845)) 15)))
+(((-1087 |#1|) (-10 -7 (-15 -1494 (|#1| (-583 |#1|))) (-15 -3414 ((-1073 |#1|) |#1| (-845))) (-15 -3085 (|#1| |#1| (-517)))) (-333)) (T -1087))
+((-3085 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1087 *2)) (-4 *2 (-333)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-1073 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-333)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1087 *2)) (-4 *2 (-333)))))
+(-10 -7 (-15 -1494 (|#1| (-583 |#1|))) (-15 -3414 ((-1073 |#1|) |#1| (-845))) (-15 -3085 (|#1| |#1| (-517))))
+((-3195 (($) 10) (($ (-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)))) 14)) (-1749 (($ (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-2737 (($ (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3312 (($ (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2015 (((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 53)) (-3439 (($ (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 16)) (-1449 (((-583 |#2|) $) 19)) (-3413 (((-107) |#2| $) 58)) (-1985 (((-3 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) "failed") (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 57)) (-1551 (((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 62)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 66)) (-2862 (((-583 |#3|) $) 43)) (-2612 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-703) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 67)) (-2262 (((-787) $) 27)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1572 (((-107) $ $) 48)))
+(((-1088 |#1| |#2| |#3|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3195 (|#1| (-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))))) (-15 -3195 (|#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1525 ((-583 |#3|) |#1|)) (-15 -4140 ((-703) |#3| |#1|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -3413 ((-107) |#2| |#1|)) (-15 -1449 ((-583 |#2|) |#1|)) (-15 -1749 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1749 (|#1| (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1749 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1985 ((-3 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) "failed") (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2015 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -3439 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1551 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -4140 ((-703) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1525 ((-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -4140 ((-703) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3843 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1272 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2737 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3312 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|))) (-1089 |#2| |#3|) (-1006) (-1006)) (T -1088))
+NIL
+(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3195 (|#1| (-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))))) (-15 -3195 (|#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1525 ((-583 |#3|) |#1|)) (-15 -4140 ((-703) |#3| |#1|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -3413 ((-107) |#2| |#1|)) (-15 -1449 ((-583 |#2|) |#1|)) (-15 -1749 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1749 (|#1| (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1749 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1985 ((-3 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) "failed") (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2015 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -3439 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1551 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -4140 ((-703) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1525 ((-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -4140 ((-703) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3843 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1272 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2737 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3312 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)))
+((-2105 (((-107) $ $) 19 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-3195 (($) 72) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 71)) (-3351 (((-1163) $ |#1| |#1|) 99 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#2| $ |#1| |#2|) 73)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 55 (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 61)) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 46 (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 54 (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 56 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 53 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 52 (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 88)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 30 (|has| $ (-6 -4195))) (((-583 |#2|) $) 79 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3531 ((|#1| $) 96 (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 29 (|has| $ (-6 -4195))) (((-583 |#2|) $) 80 (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-1969 ((|#1| $) 95 (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 34 (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1869 (((-583 |#1|) $) 63)) (-2409 (((-107) |#1| $) 64)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 39)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 40)) (-1449 (((-583 |#1|) $) 93)) (-3413 (((-107) |#1| $) 92)) (-4130 (((-1024) $) 21 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2420 ((|#2| $) 97 (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 51)) (-2837 (($ $ |#2|) 98 (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 41)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 32 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 26 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 25 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 24 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 23 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) 91)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3808 (($) 49) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 48)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 31 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4195)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 50)) (-2262 (((-787) $) 18 (-3786 (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 42)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 33 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1089 |#1| |#2|) (-1189) (-1006) (-1006)) (T -1089))
+((-2436 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3195 (*1 *1) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 *3) (|:| -1846 *4)))) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *1 (-1089 *3 *4)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1089 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))))
+(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -3195 ($)) (-15 -3195 ($ (-583 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|))))) (-15 -3312 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-97) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-456 #0#) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-554 |#1| |#2|) . T) ((-1006) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-1112) . T))
+((-2024 (((-107)) 24)) (-2661 (((-1163) (-1060)) 26)) (-2181 (((-107)) 36)) (-1408 (((-1163)) 34)) (-2047 (((-1163) (-1060) (-1060)) 25)) (-3159 (((-107)) 37)) (-3439 (((-1163) |#1| |#2|) 44)) (-2852 (((-1163)) 20)) (-4144 (((-3 |#2| "failed") |#1|) 42)) (-2608 (((-1163)) 35)))
+(((-1090 |#1| |#2|) (-10 -7 (-15 -2852 ((-1163))) (-15 -2047 ((-1163) (-1060) (-1060))) (-15 -2661 ((-1163) (-1060))) (-15 -1408 ((-1163))) (-15 -2608 ((-1163))) (-15 -2024 ((-107))) (-15 -2181 ((-107))) (-15 -3159 ((-107))) (-15 -4144 ((-3 |#2| "failed") |#1|)) (-15 -3439 ((-1163) |#1| |#2|))) (-1006) (-1006)) (T -1090))
+((-3439 (*1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-4144 (*1 *2 *3) (|partial| -12 (-4 *2 (-1006)) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1006)))) (-3159 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2181 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2024 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2608 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-1408 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)))) (-2047 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)))) (-2852 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))))
+(-10 -7 (-15 -2852 ((-1163))) (-15 -2047 ((-1163) (-1060) (-1060))) (-15 -2661 ((-1163) (-1060))) (-15 -1408 ((-1163))) (-15 -2608 ((-1163))) (-15 -2024 ((-107))) (-15 -2181 ((-107))) (-15 -3159 ((-107))) (-15 -4144 ((-3 |#2| "failed") |#1|)) (-15 -3439 ((-1163) |#1| |#2|)))
+((-1721 (((-1060) (-1060)) 18)) (-1403 (((-51) (-1060)) 21)))
+(((-1091) (-10 -7 (-15 -1403 ((-51) (-1060))) (-15 -1721 ((-1060) (-1060))))) (T -1091))
+((-1721 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1091)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-1091)))))
+(-10 -7 (-15 -1403 ((-51) (-1060))) (-15 -1721 ((-1060) (-1060))))
+((-2262 (((-1093) |#1|) 11)))
+(((-1092 |#1|) (-10 -7 (-15 -2262 ((-1093) |#1|))) (-1006)) (T -1092))
+((-2262 (*1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *1 (-1092 *3)) (-4 *3 (-1006)))))
+(-10 -7 (-15 -2262 ((-1093) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-2870 (((-583 (-1060)) $) 33)) (-1437 (((-583 (-1060)) $ (-583 (-1060))) 36)) (-3999 (((-583 (-1060)) $ (-583 (-1060))) 35)) (-4128 (((-583 (-1060)) $ (-583 (-1060))) 37)) (-2969 (((-583 (-1060)) $) 32)) (-3204 (($) 22)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3504 (((-583 (-1060)) $) 34)) (-1744 (((-1163) $ (-517)) 29) (((-1163) $) 30)) (-3367 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2262 (((-787) $) 39) (($ (-787)) 24)) (-1572 (((-107) $ $) NIL)))
+(((-1093) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -3367 ($ (-787) (-517) (-787))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -2870 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1437 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060))))))) (T -1093))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1093)))) (-3367 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093)))) (-3367 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1093)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1093)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-3204 (*1 *1) (-5 *1 (-1093))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-4128 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-1437 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-3999 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
+(-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -3367 ($ (-787) (-517) (-787))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -2870 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1437 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060))))))
+((-2105 (((-107) $ $) NIL)) (-1308 (((-1060) $ (-1060)) 15) (((-1060) $) 14)) (-3188 (((-1060) $ (-1060)) 13)) (-3010 (($ $ (-1060)) NIL)) (-3805 (((-3 (-1060) "failed") $) 11)) (-1624 (((-1060) $) 8)) (-1774 (((-3 (-1060) "failed") $) 12)) (-2872 (((-1060) $) 9)) (-3723 (($ (-358)) NIL) (($ (-358) (-1060)) NIL)) (-2981 (((-358) $) NIL)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3372 (((-107) $) 17)) (-2262 (((-787) $) NIL)) (-3604 (($ $) NIL)) (-1572 (((-107) $ $) NIL)))
+(((-1094) (-13 (-334 (-358) (-1060)) (-10 -8 (-15 -1308 ((-1060) $ (-1060))) (-15 -1308 ((-1060) $)) (-15 -1624 ((-1060) $)) (-15 -3805 ((-3 (-1060) "failed") $)) (-15 -1774 ((-3 (-1060) "failed") $)) (-15 -3372 ((-107) $))))) (T -1094))
+((-1308 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-3805 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-1774 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1094)))))
+(-13 (-334 (-358) (-1060)) (-10 -8 (-15 -1308 ((-1060) $ (-1060))) (-15 -1308 ((-1060) $)) (-15 -1624 ((-1060) $)) (-15 -3805 ((-3 (-1060) "failed") $)) (-15 -1774 ((-3 (-1060) "failed") $)) (-15 -3372 ((-107) $))))
+((-3502 (((-3 (-517) "failed") |#1|) 19)) (-4123 (((-3 (-517) "failed") |#1|) 13)) (-2472 (((-517) (-1060)) 28)))
+(((-1095 |#1|) (-10 -7 (-15 -3502 ((-3 (-517) "failed") |#1|)) (-15 -4123 ((-3 (-517) "failed") |#1|)) (-15 -2472 ((-517) (-1060)))) (-964)) (T -1095))
+((-2472 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-1095 *4)) (-4 *4 (-964)))) (-4123 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964)))) (-3502 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964)))))
+(-10 -7 (-15 -3502 ((-3 (-517) "failed") |#1|)) (-15 -4123 ((-3 (-517) "failed") |#1|)) (-15 -2472 ((-517) (-1060))))
+((-3172 (((-1037 (-199))) 8)))
+(((-1096) (-10 -7 (-15 -3172 ((-1037 (-199)))))) (T -1096))
+((-3172 (*1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1096)))))
+(-10 -7 (-15 -3172 ((-1037 (-199)))))
+((-2102 (($) 11)) (-1706 (($ $) 35)) (-1685 (($ $) 33)) (-1536 (($ $) 25)) (-3517 (($ $) 17)) (-2815 (($ $) 15)) (-1722 (($ $) 19)) (-1577 (($ $) 30)) (-1698 (($ $) 34)) (-1550 (($ $) 29)))
+(((-1097 |#1|) (-10 -8 (-15 -2102 (|#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1550 (|#1| |#1|))) (-1098)) (T -1097))
+NIL
+(-10 -8 (-15 -2102 (|#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)))
+((-1636 (($ $) 26)) (-1482 (($ $) 11)) (-1612 (($ $) 27)) (-1459 (($ $) 10)) (-1659 (($ $) 28)) (-1508 (($ $) 9)) (-2102 (($) 16)) (-1232 (($ $) 19)) (-3898 (($ $) 18)) (-1670 (($ $) 29)) (-1521 (($ $) 8)) (-1647 (($ $) 30)) (-1495 (($ $) 7)) (-1622 (($ $) 31)) (-1471 (($ $) 6)) (-1706 (($ $) 20)) (-1564 (($ $) 32)) (-1685 (($ $) 21)) (-1536 (($ $) 33)) (-3517 (($ $) 22)) (-1588 (($ $) 34)) (-2815 (($ $) 23)) (-1601 (($ $) 35)) (-1722 (($ $) 24)) (-1577 (($ $) 36)) (-1698 (($ $) 25)) (-1550 (($ $) 37)) (** (($ $ $) 17)))
+(((-1098) (-1189)) (T -1098))
+((-2102 (*1 *1) (-4 *1 (-1098))))
+(-13 (-1101) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2102 ($))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1101) . T))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 17)) (-1233 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-3443 (((-107) $ (-703)) 47)) (-2226 ((|#1| $ |#1|) 14 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 13 (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-1525 (((-583 |#1|) $) 51 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 42)) (-1700 (((-107) $ $) 33 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 40)) (-3687 (((-583 |#1|) $) 52 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 50 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 22)) (-2328 (((-107) $ (-703)) 39)) (-1925 (((-583 |#1|) $) 37)) (-3834 (((-107) $) 36)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 49 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 74)) (-1754 (((-107) $) 9)) (-2679 (($) 10)) (-2612 ((|#1| $ "value") NIL)) (-3868 (((-517) $ $) 32)) (-2613 (((-583 $) $) 58)) (-2101 (((-107) $ $) 76)) (-2368 (((-583 $) $) 71)) (-2808 (($ $) 72)) (-1414 (((-107) $) 55)) (-4140 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4195))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 57)) (-2262 (((-787) $) 60 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 12)) (-3224 (((-107) $ $) 29 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 28 (|has| |#1| (-1006)))) (-3573 (((-703) $) 38 (|has| $ (-6 -4195)))))
+(((-1099 |#1|) (-13 (-929 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1233 ($ |#1| (-583 $))) (-15 -1233 ($ (-583 |#1|))) (-15 -1233 ($ |#1|)) (-15 -1414 ((-107) $)) (-15 -2808 ($ $)) (-15 -2368 ((-583 $) $)) (-15 -2101 ((-107) $ $)) (-15 -2613 ((-583 $) $)))) (-1006)) (T -1099))
+((-1414 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))) (-1233 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1099 *2))) (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) (-1233 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-1099 *3)))) (-1233 (*1 *1 *2) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) (-2808 (*1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))) (-2101 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))))
+(-13 (-929 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1233 ($ |#1| (-583 $))) (-15 -1233 ($ (-583 |#1|))) (-15 -1233 ($ |#1|)) (-15 -1414 ((-107) $)) (-15 -2808 ($ $)) (-15 -2368 ((-583 $) $)) (-15 -2101 ((-107) $ $)) (-15 -2613 ((-583 $) $))))
+((-1482 (($ $) 15)) (-1508 (($ $) 12)) (-1521 (($ $) 10)) (-1495 (($ $) 17)))
+(((-1100 |#1|) (-10 -8 (-15 -1495 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1482 (|#1| |#1|))) (-1101)) (T -1100))
+NIL
+(-10 -8 (-15 -1495 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)))
+((-1482 (($ $) 11)) (-1459 (($ $) 10)) (-1508 (($ $) 9)) (-1521 (($ $) 8)) (-1495 (($ $) 7)) (-1471 (($ $) 6)))
+(((-1101) (-1189)) (T -1101))
+((-1482 (*1 *1 *1) (-4 *1 (-1101))) (-1459 (*1 *1 *1) (-4 *1 (-1101))) (-1508 (*1 *1 *1) (-4 *1 (-1101))) (-1521 (*1 *1 *1) (-4 *1 (-1101))) (-1495 (*1 *1 *1) (-4 *1 (-1101))) (-1471 (*1 *1 *1) (-4 *1 (-1101))))
+(-13 (-10 -8 (-15 -1471 ($ $)) (-15 -1495 ($ $)) (-15 -1521 ($ $)) (-15 -1508 ($ $)) (-15 -1459 ($ $)) (-15 -1482 ($ $))))
+((-3955 ((|#2| |#2|) 85)) (-3511 (((-107) |#2|) 25)) (-3919 ((|#2| |#2|) 29)) (-3931 ((|#2| |#2|) 31)) (-1789 ((|#2| |#2| (-1077)) 79) ((|#2| |#2|) 80)) (-3295 (((-153 |#2|) |#2|) 27)) (-3646 ((|#2| |#2| (-1077)) 81) ((|#2| |#2|) 82)))
+(((-1102 |#1| |#2|) (-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3955 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3295 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -1102))
+((-3295 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1102 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1102 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-1789 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))))
+(-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3955 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3295 ((-153 |#2|) |#2|)))
+((-1220 ((|#4| |#4| |#1|) 27)) (-2764 ((|#4| |#4| |#1|) 28)))
+(((-1103 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1220 (|#4| |#4| |#1|)) (-15 -2764 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1103))
+((-2764 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1220 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -1220 (|#4| |#4| |#1|)) (-15 -2764 (|#4| |#4| |#1|)))
+((-3887 ((|#2| |#2|) 132)) (-1987 ((|#2| |#2|) 129)) (-2687 ((|#2| |#2|) 120)) (-2821 ((|#2| |#2|) 117)) (-3304 ((|#2| |#2|) 125)) (-3621 ((|#2| |#2|) 113)) (-1766 ((|#2| |#2|) 42)) (-2979 ((|#2| |#2|) 93)) (-2130 ((|#2| |#2|) 73)) (-3393 ((|#2| |#2|) 127)) (-3145 ((|#2| |#2|) 115)) (-1431 ((|#2| |#2|) 137)) (-2369 ((|#2| |#2|) 135)) (-2554 ((|#2| |#2|) 136)) (-2794 ((|#2| |#2|) 134)) (-3431 ((|#2| |#2|) 146)) (-2935 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-816 |#1|))) (|has| |#2| (-810 |#1|)) (|has| |#1| (-558 (-816 |#1|))) (|has| |#1| (-810 |#1|))))) (-3122 ((|#2| |#2|) 74)) (-2662 ((|#2| |#2|) 138)) (-2287 ((|#2| |#2|) 139)) (-4107 ((|#2| |#2|) 126)) (-3067 ((|#2| |#2|) 114)) (-2460 ((|#2| |#2|) 133)) (-3929 ((|#2| |#2|) 131)) (-2372 ((|#2| |#2|) 121)) (-1767 ((|#2| |#2|) 119)) (-1820 ((|#2| |#2|) 123)) (-2335 ((|#2| |#2|) 111)))
+(((-1104 |#1| |#2|) (-10 -7 (-15 -2287 (|#2| |#2|)) (-15 -2130 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (IF (|has| |#1| (-810 |#1|)) (IF (|has| |#1| (-558 (-816 |#1|))) (IF (|has| |#2| (-558 (-816 |#1|))) (IF (|has| |#2| (-810 |#1|)) (-15 -2935 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1098))) (T -1104))
+((-2935 (*1 *2 *2) (-12 (-4 *3 (-558 (-816 *3))) (-4 *3 (-810 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-558 (-816 *3))) (-4 *2 (-810 *3)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1987 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2372 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2130 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))))
+(-10 -7 (-15 -2287 (|#2| |#2|)) (-15 -2130 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (IF (|has| |#1| (-810 |#1|)) (IF (|has| |#1| (-558 (-816 |#1|))) (IF (|has| |#2| (-558 (-816 |#1|))) (IF (|has| |#2| (-810 |#1|)) (-15 -2935 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3240 (((-107) |#5| $) 60) (((-107) $) 102)) (-3710 ((|#5| |#5| $) 75)) (-2317 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2622 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 73)) (-3220 (((-3 $ "failed") (-583 |#5|)) 126)) (-2429 (((-3 $ "failed") $) 112)) (-2195 ((|#5| |#5| $) 94)) (-3639 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 31)) (-4142 ((|#5| |#5| $) 98)) (-1510 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 69)) (-1954 (((-2 (|:| -1712 (-583 |#5|)) (|:| -3723 (-583 |#5|))) $) 55)) (-3142 (((-107) |#5| $) 58) (((-107) $) 103)) (-2772 ((|#4| $) 108)) (-1447 (((-3 |#5| "failed") $) 110)) (-3846 (((-583 |#5|) $) 49)) (-1568 (((-107) |#5| $) 67) (((-107) $) 107)) (-2930 ((|#5| |#5| $) 81)) (-1579 (((-107) $ $) 27)) (-2788 (((-107) |#5| $) 63) (((-107) $) 105)) (-3877 ((|#5| |#5| $) 78)) (-2420 (((-3 |#5| "failed") $) 109)) (-3175 (($ $ |#5|) 127)) (-1191 (((-703) $) 52)) (-2279 (($ (-583 |#5|)) 124)) (-3231 (($ $ |#4|) 122)) (-2316 (($ $ |#4|) 121)) (-4158 (($ $) 120)) (-2262 (((-787) $) NIL) (((-583 |#5|) $) 113)) (-3192 (((-703) $) 130)) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 45)) (-1217 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 100)) (-4070 (((-583 |#4|) $) 115)) (-3275 (((-107) |#4| $) 118)) (-1572 (((-107) $ $) 19)))
+(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3192 ((-703) |#1|)) (-15 -3175 (|#1| |#1| |#5|)) (-15 -2317 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3275 ((-107) |#4| |#1|)) (-15 -4070 ((-583 |#4|) |#1|)) (-15 -2429 ((-3 |#1| "failed") |#1|)) (-15 -1447 ((-3 |#5| "failed") |#1|)) (-15 -2420 ((-3 |#5| "failed") |#1|)) (-15 -4142 (|#5| |#5| |#1|)) (-15 -4158 (|#1| |#1|)) (-15 -2195 (|#5| |#5| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -3877 (|#5| |#5| |#1|)) (-15 -3710 (|#5| |#5| |#1|)) (-15 -2622 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1510 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1568 ((-107) |#1|)) (-15 -2788 ((-107) |#1|)) (-15 -3240 ((-107) |#1|)) (-15 -1217 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1568 ((-107) |#5| |#1|)) (-15 -2788 ((-107) |#5| |#1|)) (-15 -3240 ((-107) |#5| |#1|)) (-15 -3639 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -3142 ((-107) |#1|)) (-15 -3142 ((-107) |#5| |#1|)) (-15 -1954 ((-2 (|:| -1712 (-583 |#5|)) (|:| -3723 (-583 |#5|))) |#1|)) (-15 -1191 ((-703) |#1|)) (-15 -3846 ((-583 |#5|) |#1|)) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -1579 ((-107) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -2772 (|#4| |#1|)) (-15 -3220 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2262 ((-583 |#5|) |#1|)) (-15 -2279 (|#1| (-583 |#5|))) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2317 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-1106 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-978 |#2| |#3| |#4|)) (T -1105))
+NIL
+(-10 -8 (-15 -3192 ((-703) |#1|)) (-15 -3175 (|#1| |#1| |#5|)) (-15 -2317 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3275 ((-107) |#4| |#1|)) (-15 -4070 ((-583 |#4|) |#1|)) (-15 -2429 ((-3 |#1| "failed") |#1|)) (-15 -1447 ((-3 |#5| "failed") |#1|)) (-15 -2420 ((-3 |#5| "failed") |#1|)) (-15 -4142 (|#5| |#5| |#1|)) (-15 -4158 (|#1| |#1|)) (-15 -2195 (|#5| |#5| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -3877 (|#5| |#5| |#1|)) (-15 -3710 (|#5| |#5| |#1|)) (-15 -2622 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1510 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1568 ((-107) |#1|)) (-15 -2788 ((-107) |#1|)) (-15 -3240 ((-107) |#1|)) (-15 -1217 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1568 ((-107) |#5| |#1|)) (-15 -2788 ((-107) |#5| |#1|)) (-15 -3240 ((-107) |#5| |#1|)) (-15 -3639 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -3142 ((-107) |#1|)) (-15 -3142 ((-107) |#5| |#1|)) (-15 -1954 ((-2 (|:| -1712 (-583 |#5|)) (|:| -3723 (-583 |#5|))) |#1|)) (-15 -1191 ((-703) |#1|)) (-15 -3846 ((-583 |#5|) |#1|)) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -1579 ((-107) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -2772 (|#4| |#1|)) (-15 -3220 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2262 ((-583 |#5|) |#1|)) (-15 -2279 (|#1| (-583 |#5|))) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2317 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-1447 (((-3 |#4| "failed") $) 83)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195)))))
+(((-1106 |#1| |#2| |#3| |#4|) (-1189) (-509) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -1106))
+((-1579 (*1 *2 *1 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-3026 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1106 *5 *6 *7 *8)))) (-3026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1106 *6 *7 *8 *9)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *6)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-703)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -1712 (-583 *6)) (|:| -3723 (-583 *6)))))) (-3142 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-3639 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1106 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-2788 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-1568 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1106 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-1510 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1106 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-978 *5 *6 *7)))) (-2622 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1106 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)))) (-3710 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3877 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2930 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2195 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-4158 (*1 *1 *1) (-12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4)))) (-4142 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1106 *4 *5 *6 *7)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1712 *1) (|:| -3723 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1106 *4 *5 *6 *7)))) (-2420 (*1 *2 *1) (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-1447 (*1 *2 *1) (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2429 (*1 *1 *1) (|partial| -12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4)))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3275 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107)))) (-2317 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1106 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-978 *4 *5 *3)))) (-4059 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
+(-13 (-896 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1579 ((-107) $ $)) (-15 -3026 ((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3026 ((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3846 ((-583 |t#4|) $)) (-15 -1191 ((-703) $)) (-15 -1954 ((-2 (|:| -1712 (-583 |t#4|)) (|:| -3723 (-583 |t#4|))) $)) (-15 -3142 ((-107) |t#4| $)) (-15 -3142 ((-107) $)) (-15 -3639 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -3240 ((-107) |t#4| $)) (-15 -2788 ((-107) |t#4| $)) (-15 -1568 ((-107) |t#4| $)) (-15 -1217 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -3240 ((-107) $)) (-15 -2788 ((-107) $)) (-15 -1568 ((-107) $)) (-15 -1510 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2622 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3710 (|t#4| |t#4| $)) (-15 -3877 (|t#4| |t#4| $)) (-15 -2930 (|t#4| |t#4| $)) (-15 -2195 (|t#4| |t#4| $)) (-15 -4158 ($ $)) (-15 -4142 (|t#4| |t#4| $)) (-15 -3246 ((-583 $) (-583 |t#4|))) (-15 -1394 ((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |t#4|)))) (-583 |t#4|))) (-15 -2420 ((-3 |t#4| "failed") $)) (-15 -1447 ((-3 |t#4| "failed") $)) (-15 -2429 ((-3 $ "failed") $)) (-15 -4070 ((-583 |t#3|) $)) (-15 -3275 ((-107) |t#3| $)) (-15 -2317 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4059 ((-3 $ "failed") $ |t#4|)) (-15 -3175 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -3192 ((-703) $)) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1112) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-1077)) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2905 (((-876 |#1|) $ (-703)) 17) (((-876 |#1|) $ (-703) (-703)) NIL)) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $ (-1077)) NIL) (((-703) $ (-1077) (-703)) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3022 (((-107) $) NIL)) (-2059 (($ $ (-583 (-1077)) (-583 (-489 (-1077)))) NIL) (($ $ (-1077) (-489 (-1077))) NIL) (($ |#1| (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $ (-1077)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2497 (($ (-1 $) (-1077) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3175 (($ $ (-703)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (($ $ (-1077) $) NIL) (($ $ (-583 (-1077)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2042 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1191 (((-489 (-1077)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1077)) NIL) (($ (-876 |#1|)) NIL)) (-1939 ((|#1| $ (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (((-876 |#1|) $ (-703)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1107 |#1|) (-13 (-673 |#1| (-1077)) (-10 -8 (-15 -1939 ((-876 |#1|) $ (-703))) (-15 -2262 ($ (-1077))) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ (-1077) |#1|)) (-15 -2497 ($ (-1 $) (-1077) |#1|))) |%noBranch|))) (-964)) (T -1107))
+((-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-876 *4)) (-5 *1 (-1107 *4)) (-4 *4 (-964)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-964)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-1107 *3)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)))) (-2497 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1107 *4))) (-5 *3 (-1077)) (-5 *1 (-1107 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)))))
+(-13 (-673 |#1| (-1077)) (-10 -8 (-15 -1939 ((-876 |#1|) $ (-703))) (-15 -2262 ($ (-1077))) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ (-1077) |#1|)) (-15 -2497 ($ (-1 $) (-1077) |#1|))) |%noBranch|)))
+((-3062 (($ |#1| (-583 (-583 (-867 (-199)))) (-107)) 16)) (-3555 (((-107) $ (-107)) 15)) (-2504 (((-107) $) 14)) (-1429 (((-583 (-583 (-867 (-199)))) $) 10)) (-1592 ((|#1| $) 8)) (-1603 (((-107) $) 12)))
+(((-1108 |#1|) (-10 -8 (-15 -1592 (|#1| $)) (-15 -1429 ((-583 (-583 (-867 (-199)))) $)) (-15 -1603 ((-107) $)) (-15 -2504 ((-107) $)) (-15 -3555 ((-107) $ (-107))) (-15 -3062 ($ |#1| (-583 (-583 (-867 (-199)))) (-107)))) (-894)) (T -1108))
+((-3062 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-107)) (-5 *1 (-1108 *2)) (-4 *2 (-894)))) (-3555 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-1592 (*1 *2 *1) (-12 (-5 *1 (-1108 *2)) (-4 *2 (-894)))))
+(-10 -8 (-15 -1592 (|#1| $)) (-15 -1429 ((-583 (-583 (-867 (-199)))) $)) (-15 -1603 ((-107) $)) (-15 -2504 ((-107) $)) (-15 -3555 ((-107) $ (-107))) (-15 -3062 ($ |#1| (-583 (-583 (-867 (-199)))) (-107))))
+((-3622 (((-867 (-199)) (-867 (-199))) 25)) (-3432 (((-867 (-199)) (-199) (-199) (-199) (-199)) 10)) (-2532 (((-583 (-867 (-199))) (-867 (-199)) (-867 (-199)) (-867 (-199)) (-199) (-583 (-583 (-199)))) 37)) (-3912 (((-199) (-867 (-199)) (-867 (-199))) 21)) (-1305 (((-867 (-199)) (-867 (-199)) (-867 (-199))) 22)) (-1343 (((-583 (-583 (-199))) (-517)) 31)) (-1680 (((-867 (-199)) (-867 (-199)) (-867 (-199))) 20)) (-1666 (((-867 (-199)) (-867 (-199)) (-867 (-199))) 19)) (* (((-867 (-199)) (-199) (-867 (-199))) 18)))
+(((-1109) (-10 -7 (-15 -3432 ((-867 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-867 (-199)) (-199) (-867 (-199)))) (-15 -1666 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -1680 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3912 ((-199) (-867 (-199)) (-867 (-199)))) (-15 -1305 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3622 ((-867 (-199)) (-867 (-199)))) (-15 -1343 ((-583 (-583 (-199))) (-517))) (-15 -2532 ((-583 (-867 (-199))) (-867 (-199)) (-867 (-199)) (-867 (-199)) (-199) (-583 (-583 (-199))))))) (T -1109))
+((-2532 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-867 *4))) (-5 *1 (-1109)) (-5 *3 (-867 *4)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1109)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (-1305 (*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (-3912 (*1 *2 *3 *3) (-12 (-5 *3 (-867 (-199))) (-5 *2 (-199)) (-5 *1 (-1109)))) (-1680 (*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (-1666 (*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-867 (-199))) (-5 *3 (-199)) (-5 *1 (-1109)))) (-3432 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)) (-5 *3 (-199)))))
+(-10 -7 (-15 -3432 ((-867 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-867 (-199)) (-199) (-867 (-199)))) (-15 -1666 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -1680 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3912 ((-199) (-867 (-199)) (-867 (-199)))) (-15 -1305 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3622 ((-867 (-199)) (-867 (-199)))) (-15 -1343 ((-583 (-583 (-199))) (-517))) (-15 -2532 ((-583 (-867 (-199))) (-867 (-199)) (-867 (-199)) (-867 (-199)) (-199) (-583 (-583 (-199))))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2317 ((|#1| $ (-703)) 13)) (-3728 (((-703) $) 12)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2262 (((-881 |#1|) $) 10) (($ (-881 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1572 (((-107) $ $) 16 (|has| |#1| (-1006)))))
+(((-1110 |#1|) (-13 (-557 (-881 |#1|)) (-10 -8 (-15 -2262 ($ (-881 |#1|))) (-15 -2317 (|#1| $ (-703))) (-15 -3728 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1112)) (T -1110))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-1112)) (-5 *1 (-1110 *3)))) (-2317 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1110 *3)) (-4 *3 (-1112)))))
+(-13 (-557 (-881 |#1|)) (-10 -8 (-15 -2262 ($ (-881 |#1|))) (-15 -2317 (|#1| $ (-703))) (-15 -3728 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|)))
+((-2812 (((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)) (-517)) 79)) (-2040 (((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|))) 73)) (-1355 (((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|))) 58)))
+(((-1111 |#1|) (-10 -7 (-15 -2040 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -1355 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -2812 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)) (-517)))) (-319)) (T -1111))
+((-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1073 (-1073 *5)))) (-5 *1 (-1111 *5)) (-5 *3 (-1073 (-1073 *5))))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4))))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4))))))
+(-10 -7 (-15 -2040 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -1355 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -2812 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)) (-517))))
+NIL
+(((-1112) (-1189)) (T -1112))
+NIL
+(-13 (-10 -7 (-6 -2169)))
+((-1824 (((-107)) 15)) (-1814 (((-1163) (-583 |#1|) (-583 |#1|)) 19) (((-1163) (-583 |#1|)) 20)) (-2266 (((-107) |#1| |#1|) 31 (|has| |#1| (-779)))) (-2328 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 27) (((-3 (-107) "failed") |#1| |#1|) 25)) (-2371 ((|#1| (-583 |#1|)) 32 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 28)) (-3300 (((-2 (|:| -3315 (-583 |#1|)) (|:| -2370 (-583 |#1|)))) 17)))
+(((-1113 |#1|) (-10 -7 (-15 -1814 ((-1163) (-583 |#1|))) (-15 -1814 ((-1163) (-583 |#1|) (-583 |#1|))) (-15 -3300 ((-2 (|:| -3315 (-583 |#1|)) (|:| -2370 (-583 |#1|))))) (-15 -2328 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2328 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2371 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1824 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -2371 (|#1| (-583 |#1|))) (-15 -2266 ((-107) |#1| |#1|))) |%noBranch|)) (-1006)) (T -1113))
+((-2266 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-779)) (-4 *3 (-1006)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-779)) (-5 *1 (-1113 *2)))) (-1824 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1113 *2)) (-4 *2 (-1006)))) (-2328 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1006)) (-5 *2 (-107)) (-5 *1 (-1113 *3)))) (-2328 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) (-3300 (*1 *2) (-12 (-5 *2 (-2 (|:| -3315 (-583 *3)) (|:| -2370 (-583 *3)))) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) (-1814 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163)) (-5 *1 (-1113 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163)) (-5 *1 (-1113 *4)))))
+(-10 -7 (-15 -1814 ((-1163) (-583 |#1|))) (-15 -1814 ((-1163) (-583 |#1|) (-583 |#1|))) (-15 -3300 ((-2 (|:| -3315 (-583 |#1|)) (|:| -2370 (-583 |#1|))))) (-15 -2328 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2328 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2371 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1824 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -2371 (|#1| (-583 |#1|))) (-15 -2266 ((-107) |#1| |#1|))) |%noBranch|))
+((-2868 (((-1163) (-583 (-1077)) (-583 (-1077))) 12) (((-1163) (-583 (-1077))) 10)) (-3705 (((-1163)) 13)) (-3305 (((-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077))))) 17)))
+(((-1114) (-10 -7 (-15 -2868 ((-1163) (-583 (-1077)))) (-15 -2868 ((-1163) (-583 (-1077)) (-583 (-1077)))) (-15 -3305 ((-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077)))))) (-15 -3705 ((-1163))))) (T -1114))
+((-3705 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1114)))) (-3305 (*1 *2) (-12 (-5 *2 (-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077))))) (-5 *1 (-1114)))) (-2868 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114)))))
+(-10 -7 (-15 -2868 ((-1163) (-583 (-1077)))) (-15 -2868 ((-1163) (-583 (-1077)) (-583 (-1077)))) (-15 -3305 ((-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077)))))) (-15 -3705 ((-1163))))
+((-1322 (($ $) 16)) (-2022 (((-107) $) 23)))
+(((-1115 |#1|) (-10 -8 (-15 -1322 (|#1| |#1|)) (-15 -2022 ((-107) |#1|))) (-1116)) (T -1115))
+NIL
+(-10 -8 (-15 -1322 (|#1| |#1|)) (-15 -2022 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 51)) (-3306 (((-388 $) $) 52)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-2022 (((-107) $) 53)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 50)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-1116) (-1189)) (T -1116))
+((-2022 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-107)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116)))) (-1322 (*1 *1 *1) (-4 *1 (-1116))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116)))))
+(-13 (-421) (-10 -8 (-15 -2022 ((-107) $)) (-15 -3306 ((-388 $) $)) (-15 -1322 ($ $)) (-15 -3896 ((-388 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-3312 (((-1122 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1122 |#1| |#3| |#5|)) 23)))
+(((-1117 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3312 ((-1122 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1122 |#1| |#3| |#5|)))) (-964) (-964) (-1077) (-1077) |#1| |#2|) (T -1117))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5 *7 *9)) (-4 *5 (-964)) (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1122 *6 *8 *10)) (-5 *1 (-1117 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1077)))))
+(-10 -7 (-15 -3312 ((-1122 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1122 |#1| |#3| |#5|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101)) (-2603 (($ (-1 |#1| (-517)) $) 173)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-517)) 61) (($ $ (-992) (-517)) 76) (($ $ (-583 (-992)) (-583 (-517))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1191 (((-517) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-517)) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1118 |#1|) (-1189) (-964)) (T -1118))
+((-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-964)) (-4 *1 (-1118 *3)))) (-2603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1118 *3)) (-4 *3 (-964)))) (-2586 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509)) (-5 *2 (-377 (-876 *4))))) (-2586 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509)) (-5 *2 (-377 (-876 *4))))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) (-3296 (*1 *1 *1 *2) (-3786 (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964)) (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1136 |t#1| (-517)) (-10 -8 (-15 -3452 ($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -2603 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2586 ((-377 (-876 |t#1|)) $ (-517))) (-15 -2586 ((-377 (-876 |t#1|)) $ (-517) (-517)))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (IF (|has| |t#1| (-15 -3296 (|t#1| |t#1| (-1077)))) (IF (|has| |t#1| (-15 -2080 ((-583 (-1077)) |t#1|))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1098)) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-29 (-517))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-921)) (-6 (-1098))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1116) |has| |#1| (-333)) ((-1136 |#1| #0#) . T))
+((-1992 (((-107) $) 12)) (-3220 (((-3 |#3| "failed") $) 17) (((-3 (-1077) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3402 ((|#3| $) 14) (((-1077) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
+(((-1119 |#1| |#2| |#3|) (-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|))) (-1120 |#2| |#3|) (-964) (-1149 |#2|)) (T -1119))
+NIL
+(-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 ((|#2| $) 231 (-4024 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-3416 ((|#2| $) 267)) (-3666 (((-3 |#2| "failed") $) 263)) (-2131 ((|#2| $) 264)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 240 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 237 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) 249 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-1077) "failed") $) 242 (-4024 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-3402 ((|#2| $) 269) (((-517) $) 260 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-1077) $) 243 (-4024 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-2419 (($ $) 266) (($ (-517) $) 265)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-2947 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 219 (-4024 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-4024 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) 34)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2192 (($) 233 (-4024 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-2671 (((-107) $) 247 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 225 (-4024 (|has| |#2| (-810 (-349))) (|has| |#1| (-333)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 224 (-4024 (|has| |#2| (-810 (-517))) (|has| |#1| (-333))))) (-3250 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1690 (((-107) $) 31)) (-3662 (($ $) 229 (|has| |#1| (-333)))) (-3858 ((|#2| $) 227 (|has| |#1| (-333)))) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) 261 (-4024 (|has| |#2| (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) 248 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) 101)) (-2603 (($ (-1 |#1| (-517)) $) 173)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-517)) 61) (($ $ (-992) (-517)) 76) (($ $ (-583 (-992)) (-583 (-517))) 75)) (-3480 (($ $ $) 251 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4095 (($ $ $) 252 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3312 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-2140 (($ (-517) |#2|) 268)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2578 (($) 262 (-4024 (|has| |#2| (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-2590 (($ $) 232 (-4024 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2713 ((|#2| $) 235 (-4024 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) 238 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) 239 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) |#2|) 212 (-4024 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 |#2|)) 211 (-4024 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1018))) (($ $ |#2|) 206 (-4024 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) 89 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077) (-703)) 88 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1077))) 87 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077)) 86 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1463 (($ $) 230 (|has| |#1| (-333)))) (-2082 ((|#2| $) 228 (|has| |#1| (-333)))) (-1191 (((-517) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-199) $) 246 (-4024 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-349) $) 245 (-4024 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-493) $) 244 (-4024 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-816 (-349)) $) 223 (-4024 (|has| |#2| (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) 222 (-4024 (|has| |#2| (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 236 (-4024 (-4024 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#1| (-333))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1077)) 241 (-4024 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-517)) 59)) (-3385 (((-3 $ "failed") $) 48 (-3786 (-4024 (-3786 (|has| |#2| (-132)) (-4024 (|has| $ (-132)) (|has| |#2| (-833)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-3126 ((|#2| $) 234 (-4024 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) 250 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) 93 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077) (-703)) 92 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1077))) 91 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077)) 90 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1630 (((-107) $ $) 254 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1606 (((-107) $ $) 255 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 253 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1596 (((-107) $ $) 256 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1120 |#1| |#2|) (-1189) (-964) (-1149 |t#1|)) (T -1120))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1149 *3)) (-5 *2 (-517)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-1120 *3 *2)) (-4 *2 (-1149 *3)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-964)) (-4 *1 (-1120 *4 *3)) (-4 *3 (-1149 *4)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))) (-2419 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1149 *2)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1149 *3)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))) (-3666 (*1 *2 *1) (|partial| -12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))))
+(-13 (-1118 |t#1|) (-955 |t#2|) (-10 -8 (-15 -2140 ($ (-517) |t#2|)) (-15 -1191 ((-517) $)) (-15 -3416 (|t#2| $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)) (-15 -2262 ($ |t#2|)) (-15 -2131 (|t#2| $)) (-15 -3666 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-912 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1077) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1077) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-824 (-1077)) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-824 (-1077)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) ((-810 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-517)))) ((-808 |#2|) |has| |#1| (-333)) ((-833) -12 (|has| |#1| (-333)) (|has| |#2| (-833))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-912 |#2|) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-940) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) ((-955 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))) ((-955 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))) ((-955 (-1077)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-1077)))) ((-955 |#2|) . T) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 |#2|) |has| |#1| (-333)) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) -12 (|has| |#1| (-333)) (|has| |#2| (-1053))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1116) |has| |#1| (-333)) ((-1118 |#1|) . T) ((-1136 |#1| #0#) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 70)) (-2964 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 88)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-3416 ((|#2| $) 11)) (-3666 (((-3 |#2| "failed") $) 30)) (-2131 ((|#2| $) 31)) (-1636 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1659 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-1077) "failed") $) NIL (-12 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-3402 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-1077) $) NIL (-12 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-2419 (($ $) 61) (($ (-517) $) 24)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) 77)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-2192 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-2671 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) 64)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#2| (-810 (-349))) (|has| |#1| (-333)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#2| (-810 (-517))) (|has| |#1| (-333))))) (-3250 (((-517) $) 93) (((-517) $ (-517)) 95)) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL (|has| |#1| (-333)))) (-3858 ((|#2| $) 151 (|has| |#1| (-333)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) 136)) (-2603 (($ (-1 |#1| (-517)) $) 132)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-517)) 19) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3480 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4095 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3312 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1232 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2140 (($ (-517) |#2|) 10)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 145 (|has| |#1| (-333)))) (-3296 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 219 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098)))))) (-2578 (($) NIL (-12 (|has| |#2| (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2590 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2713 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 126)) (-2333 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) |#2|) NIL (-12 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1018))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) 140 (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1463 (($ $) NIL (|has| |#1| (-333)))) (-2082 ((|#2| $) 152 (|has| |#1| (-333)))) (-1191 (((-517) $) 12)) (-1670 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-199) $) NIL (-12 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-816 (-349)) $) NIL (-12 (|has| |#2| (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) NIL (-12 (|has| |#2| (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833)) (|has| |#1| (-333))))) (-2384 (($ $) 124)) (-2262 (((-787) $) 243) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1077)) NIL (-12 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-517)) 74)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) 142)) (-3605 ((|#1| $) 90)) (-3126 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1706 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 13 T CONST)) (-3675 (($) 17 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1630 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1606 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 63)) (-1618 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1596 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1680 (($ $) 213) (($ $ $) 68)) (-1666 (($ $ $) 66)) (** (($ $ (-845)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1121 |#1| |#2|) (-1120 |#1| |#2|) (-964) (-1149 |#1|)) (T -1121))
+NIL
+(-1120 |#1| |#2|)
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 10)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2491 (($ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2025 (((-107) $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2147 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3416 (((-1150 |#1| |#2| |#3|) $) NIL)) (-3666 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) NIL)) (-2131 (((-1150 |#1| |#2| |#3|) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-3402 (((-1150 |#1| |#2| |#3|) $) NIL) (((-1077) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-2419 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-1150 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-1150 |#1| |#2| |#3|))) (|:| |vec| (-1158 (-1150 |#1| |#2| |#3|)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) NIL)) (-2586 (((-377 (-876 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-2192 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-2671 (((-107) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-810 (-517))) (|has| |#1| (-333)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-810 (-349))) (|has| |#1| (-333))))) (-3250 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL (|has| |#1| (-333)))) (-3858 (((-1150 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) NIL)) (-2603 (($ (-1 |#1| (-517)) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-517)) 17) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3480 (($ $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4095 (($ $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2140 (($ (-517) (-1150 |#1| |#2| |#3|)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2590 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2713 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-517)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-478 (-1077) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-478 (-1077) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1150 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1150 |#1| |#2| |#3|)) (-583 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1018))) (($ $ (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-258 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1154 |#2|)) 24) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1463 (($ $) NIL (|has| |#1| (-333)))) (-2082 (((-1150 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-1191 (((-517) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-493) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-816 (-349)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1150 |#1| |#2| |#3|)) NIL) (($ (-1154 |#2|)) 22) (($ (-1077)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (($ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-1939 ((|#1| $ (-517)) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 11)) (-3126 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 19 T CONST)) (-3675 (($) 15 T CONST)) (-3348 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1630 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1596 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 20)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1150 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1150 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1122 |#1| |#2| |#3|) (-13 (-1120 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1122))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1120 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-3185 (((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)) 10)) (-2470 (((-388 |#1|) |#1|) 21)) (-3896 (((-388 |#1|) |#1|) 20)))
+(((-1123 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)))) (-1134 (-517))) (T -1123))
+((-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))))
+(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107))))
+((-3312 (((-1058 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 23 (|has| |#1| (-777))) (((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 17)))
+(((-1124 |#1| |#2|) (-10 -7 (-15 -3312 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) |%noBranch|)) (-1112) (-1112)) (T -1124))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-777)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1058 *6)) (-5 *1 (-1124 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1125 *6)) (-5 *1 (-1124 *5 *6)))))
+(-10 -7 (-15 -3312 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) |%noBranch|))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2202 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3312 (((-1058 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3315 ((|#1| $) 14)) (-2144 ((|#1| $) 10)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2154 (((-517) $) 18)) (-2370 ((|#1| $) 17)) (-2163 ((|#1| $) 11)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3545 (((-107) $) 16)) (-2287 (((-1058 |#1|) $) 38 (|has| |#1| (-777))) (((-1058 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3367 (($ |#1|) 25)) (-2262 (($ (-1001 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1006)))) (-1594 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1315 (($ $ (-517)) 13)) (-1572 (((-107) $ $) 27 (|has| |#1| (-1006)))))
+(((-1125 |#1|) (-13 (-1000 |#1|) (-10 -8 (-15 -1594 ($ |#1|)) (-15 -2202 ($ |#1|)) (-15 -2262 ($ (-1001 |#1|))) (-15 -3545 ((-107) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-1058 |#1|))) |%noBranch|))) (-1112)) (T -1125))
+((-1594 (*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112)))) (-2202 (*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1112)) (-5 *1 (-1125 *3)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1125 *3)) (-4 *3 (-1112)))))
+(-13 (-1000 |#1|) (-10 -8 (-15 -1594 ($ |#1|)) (-15 -2202 ($ |#1|)) (-15 -2262 ($ (-1001 |#1|))) (-15 -3545 ((-107) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-1058 |#1|))) |%noBranch|)))
+((-3312 (((-1131 |#3| |#4|) (-1 |#4| |#2|) (-1131 |#1| |#2|)) 15)))
+(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 ((-1131 |#3| |#4|) (-1 |#4| |#2|) (-1131 |#1| |#2|)))) (-1077) (-964) (-1077) (-964)) (T -1126))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1131 *5 *6)) (-14 *5 (-1077)) (-4 *6 (-964)) (-4 *8 (-964)) (-5 *2 (-1131 *7 *8)) (-5 *1 (-1126 *5 *6 *7 *8)) (-14 *7 (-1077)))))
+(-10 -7 (-15 -3312 ((-1131 |#3| |#4|) (-1 |#4| |#2|) (-1131 |#1| |#2|))))
+((-1955 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1703 ((|#1| |#3|) 13)) (-3253 ((|#3| |#3|) 19)))
+(((-1127 |#1| |#2| |#3|) (-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-912 |#1|) (-1134 |#2|)) (T -1127))
+((-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1127 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-3253 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-1127 *3 *4 *2)) (-4 *2 (-1134 *4)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-1127 *2 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3274 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-1898 (((-3 |#2| "failed") |#2| (-703)) 30)) (-3042 (((-3 (-2 (|:| -3287 |#2|) (|:| -3302 |#2|)) "failed") |#2|) 43)) (-1312 (((-583 |#2|) |#2|) 45)) (-3370 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1128 |#1| |#2|) (-10 -7 (-15 -1898 ((-3 |#2| "failed") |#2| (-703))) (-15 -3274 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3370 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3042 ((-3 (-2 (|:| -3287 |#2|) (|:| -3302 |#2|)) "failed") |#2|)) (-15 -1312 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1134 |#1|)) (T -1128))
+((-1312 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-1134 *4)))) (-3042 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-1128 *4 *3)) (-4 *3 (-1134 *4)))) (-3370 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-1134 *3)))) (-3274 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4)))) (-1898 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4)))))
+(-10 -7 (-15 -1898 ((-3 |#2| "failed") |#2| (-703))) (-15 -3274 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3370 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3042 ((-3 (-2 (|:| -3287 |#2|) (|:| -3302 |#2|)) "failed") |#2|)) (-15 -1312 ((-583 |#2|) |#2|)))
+((-3920 (((-3 (-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1129 |#1| |#2|) (-10 -7 (-15 -3920 ((-3 (-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|))) (-509) (-1134 |#1|)) (T -1129))
+((-3920 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-1129 *4 *3)) (-4 *3 (-1134 *4)))))
+(-10 -7 (-15 -3920 ((-3 (-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|)))
+((-1443 ((|#2| |#2| |#2|) 19)) (-2486 ((|#2| |#2| |#2|) 30)) (-2367 ((|#2| |#2| |#2| (-703) (-703)) 36)))
+(((-1130 |#1| |#2|) (-10 -7 (-15 -1443 (|#2| |#2| |#2|)) (-15 -2486 (|#2| |#2| |#2|)) (-15 -2367 (|#2| |#2| |#2| (-703) (-703)))) (-964) (-1134 |#1|)) (T -1130))
+((-2367 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-1130 *4 *2)) (-4 *2 (-1134 *4)))) (-2486 (*1 *2 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3)))) (-1443 (*1 *2 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3)))))
+(-10 -7 (-15 -1443 (|#2| |#2| |#2|)) (-15 -2486 (|#2| |#2| |#2|)) (-15 -2367 (|#2| |#2| |#2| (-703) (-703))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1335 (((-1158 |#2|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#2|)) NIL)) (-1428 (((-1073 $) $ (-992)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) NIL (|has| |#2| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#2| (-333)))) (-1401 (($ $ (-703)) NIL)) (-1861 (($ $ (-703)) NIL)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-992) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2383 (($ $ $) NIL (|has| |#2| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#2| (-333)))) (-2776 (($ $ $) NIL)) (-1554 (($ $ $) NIL (|has| |#2| (-509)))) (-1868 (((-2 (|:| -1570 |#2|) (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-992)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-703) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-3250 (((-703) $ $) NIL (|has| |#2| (-509)))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#2| (-1053)))) (-2069 (($ (-1073 |#2|) (-992)) NIL) (($ (-1073 $) (-992)) NIL)) (-2113 (($ $ (-703)) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-703)) 17) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-3634 (((-1073 |#2|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#2| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2555 (($ $ (-703) |#2| $) NIL)) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#2|) NIL) (($ $ (-583 (-992)) (-583 |#2|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#2| (-333)))) (-2612 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1191 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-992)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2262 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-992)) NIL) (($ (-1154 |#1|)) 19) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) 14 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1131 |#1| |#2|) (-13 (-1134 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))) (-15 -2555 ($ $ (-703) |#2| $)))) (-1077) (-964)) (T -1131))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-1131 *3 *4)) (-4 *4 (-964)))) (-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1131 *4 *3)) (-14 *4 (-1077)) (-4 *3 (-964)))))
+(-13 (-1134 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))) (-15 -2555 ($ $ (-703) |#2| $))))
+((-3312 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-1132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|))) (-964) (-1134 |#1|) (-964) (-1134 |#3|)) (T -1132))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-4 *2 (-1134 *6)) (-5 *1 (-1132 *5 *4 *6 *2)) (-4 *4 (-1134 *5)))))
+(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1335 (((-1158 |#2|) $ (-703)) 113)) (-2080 (((-583 (-992)) $) 15)) (-4170 (($ (-1073 |#2|)) 66)) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) 18)) (-1453 (((-388 (-1073 $)) (-1073 $)) 184)) (-1322 (($ $) 174)) (-3306 (((-388 $) $) 172)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 81)) (-1401 (($ $ (-703)) 70)) (-1861 (($ $ (-703)) 72)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3220 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-992) $) NIL)) (-1554 (($ $ $) 150)) (-1868 (((-2 (|:| -1570 |#2|) (|:| -2773 $) (|:| -3292 $)) $ $) 152)) (-3250 (((-703) $ $) 169)) (-1639 (((-3 $ "failed") $) 122)) (-2059 (($ |#2| (-703)) NIL) (($ $ (-992) (-703)) 46) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) 41) (((-583 (-703)) $ (-583 (-992))) 42)) (-3634 (((-1073 |#2|) $) 58)) (-1958 (((-3 (-992) "failed") $) 39)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) 69)) (-3296 (($ $) 195)) (-2578 (($) 118)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 181)) (-3835 (((-388 (-1073 $)) (-1073 $)) 87)) (-1195 (((-388 (-1073 $)) (-1073 $)) 85)) (-3896 (((-388 $) $) 105)) (-3552 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#2|) 31) (($ $ (-583 (-992)) (-583 |#2|)) 28) (($ $ (-992) $) 25) (($ $ (-583 (-992)) (-583 $)) 23)) (-3388 (((-703) $) 187)) (-2612 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 186) (((-377 $) $ (-377 $)) 168)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 190)) (-2042 (($ $ (-992)) 139) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-1191 (((-703) $) NIL) (((-703) $ (-992)) 16) (((-583 (-703)) $ (-583 (-992))) 20)) (-4094 ((|#2| $) NIL) (($ $ (-992)) 124)) (-4150 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-992)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-1133 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -2612 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -2612 (|#2| (-377 |#1|) |#2|)) (-15 -1421 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1868 ((-2 (|:| -1570 |#2|) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1554 (|#1| |#1| |#1|)) (-15 -4150 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -4150 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3250 ((-703) |#1| |#1|)) (-15 -2612 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1| (-703))) (-15 -1401 (|#1| |#1| (-703))) (-15 -1976 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| (-703))) (-15 -4170 (|#1| (-1073 |#2|))) (-15 -3634 ((-1073 |#2|) |#1|)) (-15 -1335 ((-1158 |#2|) |#1| (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| |#2|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1453 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -4094 (|#1| |#1| (-992))) (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2675 ((-703) |#1| (-583 (-992)))) (-15 -2675 ((-703) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-992) (-703))) (-15 -3942 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -3942 ((-703) |#1| (-992))) (-15 -1958 ((-3 (-992) "failed") |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -1191 ((-703) |#1| (-992))) (-15 -3402 ((-992) |#1|)) (-15 -3220 ((-3 (-992) "failed") |#1|)) (-15 -2262 (|#1| (-992))) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-992) |#1|)) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-992) |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 ((-703) |#1|)) (-15 -2059 (|#1| |#2| (-703))) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3942 ((-703) |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2042 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-992) (-703))) (-15 -2042 (|#1| |#1| (-583 (-992)))) (-15 -2042 (|#1| |#1| (-992))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-1134 |#2|) (-964)) (T -1133))
+NIL
+(-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -2612 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -2612 (|#2| (-377 |#1|) |#2|)) (-15 -1421 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1868 ((-2 (|:| -1570 |#2|) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1554 (|#1| |#1| |#1|)) (-15 -4150 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -4150 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3250 ((-703) |#1| |#1|)) (-15 -2612 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1| (-703))) (-15 -1401 (|#1| |#1| (-703))) (-15 -1976 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| (-703))) (-15 -4170 (|#1| (-1073 |#2|))) (-15 -3634 ((-1073 |#2|) |#1|)) (-15 -1335 ((-1158 |#2|) |#1| (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| |#2|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1453 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -4094 (|#1| |#1| (-992))) (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2675 ((-703) |#1| (-583 (-992)))) (-15 -2675 ((-703) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-992) (-703))) (-15 -3942 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -3942 ((-703) |#1| (-992))) (-15 -1958 ((-3 (-992) "failed") |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -1191 ((-703) |#1| (-992))) (-15 -3402 ((-992) |#1|)) (-15 -3220 ((-3 (-992) "failed") |#1|)) (-15 -2262 (|#1| (-992))) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-992) |#1|)) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-992) |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 ((-703) |#1|)) (-15 -2059 (|#1| |#2| (-703))) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3942 ((-703) |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2042 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-992) (-703))) (-15 -2042 (|#1| |#1| (-583 (-992)))) (-15 -2042 (|#1| |#1| (-992))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1335 (((-1158 |#1|) $ (-703)) 238)) (-2080 (((-583 (-992)) $) 110)) (-4170 (($ (-1073 |#1|)) 236)) (-1428 (((-1073 $) $ (-992)) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 (-992))) 111)) (-1783 (((-3 $ "failed") $ $) 19)) (-4068 (($ $ $) 223 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-1765 (((-107) $ $) 208 (|has| |#1| (-333)))) (-1401 (($ $ (-703)) 231)) (-1861 (($ $ (-703)) 230)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) 136)) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) (((-992) $) 135)) (-2133 (($ $ $ (-992)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2383 (($ $ $) 212 (|has| |#1| (-333)))) (-2364 (($ $) 154)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 211 (|has| |#1| (-333)))) (-2776 (($ $ $) 229)) (-1554 (($ $ $) 220 (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) 219 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ (-992)) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-703) $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ $) 224 (|has| |#1| (-509)))) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-1639 (((-3 $ "failed") $) 204 (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) 117) (($ (-1073 $) (-992)) 116)) (-2113 (($ $ (-703)) 235)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| (-703)) 153) (($ $ (-992) (-703)) 119) (($ $ (-583 (-992)) (-583 (-703))) 118)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) 120) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 233)) (-3942 (((-703) $) 170) (((-703) $ (-992)) 122) (((-583 (-703)) $ (-583 (-992))) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-3634 (((-1073 |#1|) $) 237)) (-1958 (((-3 (-992) "failed") $) 123)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3232 (((-1060) $) 9)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) 232)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) 113)) (-3296 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) 203 (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 213 (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-992) |#1|) 141) (($ $ (-583 (-992)) (-583 |#1|)) 140) (($ $ (-992) $) 139) (($ $ (-583 (-992)) (-583 $)) 138)) (-3388 (((-703) $) 209 (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) 234)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 210 (|has| |#1| (-333)))) (-3115 (($ $ (-992)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-2042 (($ $ (-992)) 42) (($ $ (-583 (-992))) 41) (($ $ (-992) (-703)) 40) (($ $ (-583 (-992)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1077)) 250 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 249 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 248 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 247 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1191 (((-703) $) 150) (((-703) $ (-992)) 130) (((-583 (-703)) $ (-583 (-992))) 129)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-992)) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-4150 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-992)) 137) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ (-703)) 155) (($ $ (-992) (-703)) 128) (($ $ (-583 (-992)) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-992)) 38) (($ $ (-583 (-992))) 37) (($ $ (-992) (-703)) 36) (($ $ (-583 (-992)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1077)) 246 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 245 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 244 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 243 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1134 |#1|) (-1189) (-964)) (T -1134))
+((-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1134 *4)) (-4 *4 (-964)) (-5 *2 (-1158 *4)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-5 *2 (-1073 *3)))) (-4170 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-964)) (-4 *1 (-1134 *3)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-3767 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-2302 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *3)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *4)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-2776 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)))) (-2042 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156)))) (-2133 (*1 *2 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156)))) (-2612 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)) (-5 *2 (-703)))) (-4068 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-4150 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-4150 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)))) (-1554 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-1868 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -1570 *3) (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *3)))) (-1421 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-964)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1134 *3)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))))
+(-13 (-873 |t#1| (-703) (-992)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -1335 ((-1158 |t#1|) $ (-703))) (-15 -3634 ((-1073 |t#1|) $)) (-15 -4170 ($ (-1073 |t#1|))) (-15 -2113 ($ $ (-703))) (-15 -3767 ((-3 $ "failed") $ (-703))) (-15 -2302 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -1976 ((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703))) (-15 -1401 ($ $ (-703))) (-15 -1861 ($ $ (-703))) (-15 -2776 ($ $ $)) (-15 -2042 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3115 (|t#1| $)) (-15 -2133 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -2612 ((-377 $) (-377 $) (-377 $))) (-15 -3250 ((-703) $ $)) (-15 -4068 ($ $ $)) (-15 -4150 ((-3 $ "failed") $ $)) (-15 -4150 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -1554 ($ $ $)) (-15 -1868 ((-2 (|:| -1570 |t#1|) (|:| -2773 $) (|:| -3292 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (-15 -1421 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4191) (-15 -2612 (|t#1| (-377 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -3296 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| #0#) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 #2=(-992) |#1|) . T) ((-478 #2# $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 #2#) . T) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-810 (-349)) -12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349)))) ((-810 (-517)) -12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))) ((-873 |#1| #0# #2#) . T) ((-833) |has| |#1| (-833)) ((-844) |has| |#1| (-333)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 #2#) . T) ((-955 |#1|) . T) ((-970 #1#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-1053)) ((-1116) |has| |#1| (-833)))
+((-2080 (((-583 (-992)) $) 28)) (-2364 (($ $) 25)) (-2059 (($ |#2| |#3|) NIL) (($ $ (-992) |#3|) 22) (($ $ (-583 (-992)) (-583 |#3|)) 20)) (-2325 (($ $) 14)) (-2336 ((|#2| $) 12)) (-1191 ((|#3| $) 10)))
+(((-1135 |#1| |#2| |#3|) (-10 -8 (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 |#3|))) (-15 -2059 (|#1| |#1| (-992) |#3|)) (-15 -2364 (|#1| |#1|)) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1191 (|#3| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2336 (|#2| |#1|))) (-1136 |#2| |#3|) (-964) (-724)) (T -1135))
+NIL
+(-10 -8 (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 |#3|))) (-15 -2059 (|#1| |#1| (-992) |#3|)) (-15 -2364 (|#1| |#1|)) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1191 (|#3| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2336 (|#2| |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3747 (((-1058 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-3690 (((-107) $) 73)) (-3250 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1690 (((-107) $) 31)) (-2113 (($ $ (-845)) 101)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61) (($ $ (-992) |#2|) 76) (($ $ (-583 (-992)) (-583 |#2|)) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3175 (($ $ |#2|) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2612 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1191 ((|#2| $) 64)) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2194 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1136 |#1| |#2|) (-1189) (-964) (-724)) (T -1136))
+((-3747 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-1058 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2612 (*1 *2 *1 *3) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-1077)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-3250 (*1 *2 *1 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-2147 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2262 (*2 (-1077)))) (-4 *2 (-964)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-3552 (*1 *2 *1 *3) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1058 *3)))))
+(-13 (-893 |t#1| |t#2| (-992)) (-10 -8 (-15 -3747 ((-1058 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2612 (|t#1| $ |t#2|)) (-15 -3791 ((-1077) $)) (-15 -3605 (|t#1| $)) (-15 -2113 ($ $ (-845))) (-15 -3250 (|t#2| $)) (-15 -3250 (|t#2| $ |t#2|)) (-15 -2147 ($ $ |t#2|)) (-15 -2147 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2262 (|t#1| (-1077)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2194 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3175 ($ $ |t#2|)) (IF (|has| |t#2| (-1018)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3552 ((-1058 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1018)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| |#2| (-992)) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-1322 ((|#2| |#2|) 12)) (-3306 (((-388 |#2|) |#2|) 14)) (-1528 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
+(((-1137 |#1| |#2|) (-10 -7 (-15 -3306 ((-388 |#2|) |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1528 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1134 |#1|) (-509) (-10 -8 (-15 -2361 ($ $ $))))) (T -1137))
+((-1528 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1137 *3 *4)))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $))))))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-1134 *4) (-509) (-10 -8 (-15 -2361 ($ $ $))))))))
+(-10 -7 (-15 -3306 ((-388 |#2|) |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1528 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
+((-3312 (((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)) 23)))
+(((-1138 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3312 ((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)))) (-964) (-964) (-1077) (-1077) |#1| |#2|) (T -1138))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5 *7 *9)) (-4 *5 (-964)) (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1143 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1077)))))
+(-10 -7 (-15 -3312 ((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101) (($ $ (-377 (-517))) 171)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-377 (-517))) 61) (($ $ (-992) (-377 (-517))) 76) (($ $ (-583 (-992)) (-583 (-377 (-517)))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1139 |#1|) (-1189) (-964)) (T -1139))
+((-3452 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-964)) (-4 *1 (-1139 *4)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1139 *3)) (-4 *3 (-964)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) (-3296 (*1 *1 *1 *2) (-3786 (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964)) (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1136 |t#1| (-377 (-517))) (-10 -8 (-15 -3452 ($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -2113 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (IF (|has| |t#1| (-15 -3296 (|t#1| |t#1| (-1077)))) (IF (|has| |t#1| (-15 -2080 ((-583 (-1077)) |t#1|))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1098)) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-29 (-517))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-921)) (-6 (-1098))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1116) |has| |#1| (-333)) ((-1136 |#1| #0#) . T))
+((-1992 (((-107) $) 12)) (-3220 (((-3 |#3| "failed") $) 17)) (-3402 ((|#3| $) 14)))
+(((-1140 |#1| |#2| |#3|) (-10 -8 (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|))) (-1141 |#2| |#3|) (-964) (-1118 |#2|)) (T -1140))
+NIL
+(-10 -8 (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#2| "failed") $) 183)) (-3402 ((|#2| $) 182)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2120 (((-377 (-517)) $) 180)) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) |#2|) 181)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101) (($ $ (-377 (-517))) 171)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-377 (-517))) 61) (($ $ (-992) (-377 (-517))) 76) (($ $ (-583 (-992)) (-583 (-377 (-517)))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3002 ((|#2| $) 179)) (-1875 (((-3 |#2| "failed") $) 177)) (-2140 ((|#2| $) 178)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1141 |#1| |#2|) (-1189) (-964) (-1118 |t#1|)) (T -1141))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3)) (-5 *2 (-377 (-517))))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-1141 *3 *2)) (-4 *2 (-1118 *3)))) (-2151 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-964)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1118 *4)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3)) (-5 *2 (-377 (-517))))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))) (-1875 (*1 *2 *1) (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))))
+(-13 (-1139 |t#1|) (-955 |t#2|) (-10 -8 (-15 -2151 ($ (-377 (-517)) |t#2|)) (-15 -2120 ((-377 (-517)) $)) (-15 -3002 (|t#2| $)) (-15 -1191 ((-377 (-517)) $)) (-15 -2262 ($ |t#2|)) (-15 -2140 (|t#2| $)) (-15 -1875 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-955 |#2|) . T) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1116) |has| |#1| (-333)) ((-1136 |#1| #0#) . T) ((-1139 |#1|) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 96)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1636 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1659 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL)) (-3402 ((|#2| $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) 79)) (-2120 (((-377 (-517)) $) 12)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) |#2|) 10)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) 68)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 120) (($ $ (-377 (-517))) 118)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) 31) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 115)) (-1232 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3002 ((|#2| $) 11)) (-1875 (((-3 |#2| "failed") $) 41)) (-2140 ((|#2| $) 42)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 93 (|has| |#1| (-333)))) (-3296 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 140 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) 112)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) 16)) (-1670 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 110)) (-2262 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 99)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 117)) (-3605 ((|#1| $) 98)) (-1706 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 21 T CONST)) (-3675 (($) 17 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) 66)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1680 (($ $) 131) (($ $ $) 72)) (-1666 (($ $ $) 70)) (** (($ $ (-845)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1142 |#1| |#2|) (-1141 |#1| |#2|) (-964) (-1118 |#1|)) (T -1142))
+NIL
+(-1141 |#1| |#2|)
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1122 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 22)) (-3402 (((-1122 |#1| |#2| |#3|) $) NIL) (((-1150 |#1| |#2| |#3|) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2120 (((-377 (-517)) $) 57)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) (-1122 |#1| |#2| |#3|)) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) 29) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3002 (((-1122 |#1| |#2| |#3|) $) 60)) (-1875 (((-3 (-1122 |#1| |#2| |#3|) "failed") $) NIL)) (-2140 (((-1122 |#1| |#2| |#3|) $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1154 |#2|)) 37)) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 88) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1122 |#1| |#2| |#3|)) 16) (($ (-1150 |#1| |#2| |#3|)) 17) (($ (-1154 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 12)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 31 T CONST)) (-3675 (($) 26 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 33)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1143 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1122 |#1| |#2| |#3|)) (-955 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1143))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1141 |#1| (-1122 |#1| |#2| |#3|)) (-955 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 32)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-377 (-517))))) (((-3 (-1143 |#2| |#3| |#4|) "failed") $) 20)) (-3402 (((-517) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-517)))) (((-377 (-517)) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-377 (-517))))) (((-1143 |#2| |#3| |#4|) $) NIL)) (-2364 (($ $) 33)) (-3550 (((-3 $ "failed") $) 25)) (-4172 (($ $) NIL (|has| (-1143 |#2| |#3| |#4|) (-421)))) (-1760 (($ $ (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 11)) (-3022 (((-107) $) NIL)) (-2059 (($ (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-3942 (((-289 |#2| |#3| |#4|) $) NIL)) (-1542 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-3312 (($ (-1 (-1143 |#2| |#3| |#4|) (-1143 |#2| |#3| |#4|)) $) NIL)) (-3588 (((-3 (-772 |#2|) "failed") $) 73)) (-2325 (($ $) NIL)) (-2336 (((-1143 |#2| |#3| |#4|) $) 18)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 (((-1143 |#2| |#3| |#4|) $) NIL)) (-2333 (((-3 $ "failed") $ (-1143 |#2| |#3| |#4|)) NIL (|has| (-1143 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-2732 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1060))) "failed") $) 56)) (-1191 (((-289 |#2| |#3| |#4|) $) 14)) (-4094 (((-1143 |#2| |#3| |#4|) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1143 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3786 (|has| (-1143 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1143 |#2| |#3| |#4|) (-955 (-377 (-517))))))) (-3186 (((-583 (-1143 |#2| |#3| |#4|)) $) NIL)) (-1939 (((-1143 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| (-1143 |#2| |#3| |#4|) (-132)))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| (-1143 |#2| |#3| |#4|) (-156)))) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 61 T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ (-1143 |#2| |#3| |#4|)) NIL (|has| (-1143 |#2| |#3| |#4|) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1143 |#2| |#3| |#4|)) NIL) (($ (-1143 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1143 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
+(((-1144 |#1| |#2| |#3| |#4|) (-13 (-296 (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2732 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1060))) "failed") $)))) (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1098) (-400 |#1|)) (-1077) |#2|) (T -1144))
+((-3588 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4))) (-2732 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1060)))) (-5 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4))))
+(-13 (-296 (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2732 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1060))) "failed") $))))
+((-3112 ((|#2| $) 29)) (-2577 ((|#2| $) 18)) (-1529 (($ $) 36)) (-2070 (($ $ (-517)) 64)) (-3443 (((-107) $ (-703)) 33)) (-2226 ((|#2| $ |#2|) 61)) (-1825 ((|#2| $ |#2|) 59)) (-2436 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2638 (($ $ (-583 $)) 60)) (-2567 ((|#2| $) 17)) (-2429 (($ $) NIL) (($ $ (-703)) 42)) (-1823 (((-583 $) $) 26)) (-1700 (((-107) $ $) 50)) (-2266 (((-107) $ (-703)) 32)) (-2328 (((-107) $ (-703)) 31)) (-3834 (((-107) $) 28)) (-1447 ((|#2| $) 24) (($ $ (-703)) 46)) (-2612 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1414 (((-107) $) 22)) (-2074 (($ $) 39)) (-4155 (($ $) 65)) (-2792 (((-703) $) 41)) (-2736 (($ $) 40)) (-4117 (($ $ $) 58) (($ |#2| $) NIL)) (-3234 (((-583 $) $) 27)) (-1572 (((-107) $ $) 48)) (-3573 (((-703) $) 35)))
+(((-1145 |#1| |#2|) (-10 -8 (-15 -2070 (|#1| |#1| (-517))) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -4155 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2612 (|#2| |#1| "first")) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2226 (|#2| |#1| |#2|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2638 (|#1| |#1| (-583 |#1|))) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703)))) (-1146 |#2|) (-1112)) (T -1145))
+NIL
+(-10 -8 (-15 -2070 (|#1| |#1| (-517))) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -4155 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2612 (|#2| |#1| "first")) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2226 (|#2| |#1| |#2|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2638 (|#1| |#1| (-583 |#1|))) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3495 (($ $ $) 61 (|has| $ (-6 -4196))) (($ $ |#1|) 60 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 78) (($ |#1| $) 77)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1146 |#1|) (-1189) (-1112)) (T -1146))
+((-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2420 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-2429 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2736 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-4155 (*1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-1218 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-1223 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-1825 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))))
+(-13 (-929 |t#1|) (-10 -8 (-15 -4117 ($ $ $)) (-15 -4117 ($ |t#1| $)) (-15 -2420 (|t#1| $)) (-15 -2612 (|t#1| $ "first")) (-15 -2420 ($ $ (-703))) (-15 -2429 ($ $)) (-15 -2612 ($ $ "rest")) (-15 -2429 ($ $ (-703))) (-15 -1447 (|t#1| $)) (-15 -2612 (|t#1| $ "last")) (-15 -1447 ($ $ (-703))) (-15 -1529 ($ $)) (-15 -2567 (|t#1| $)) (-15 -2577 (|t#1| $)) (-15 -2736 ($ $)) (-15 -2792 ((-703) $)) (-15 -2074 ($ $)) (IF (|has| $ (-6 -4196)) (PROGN (-15 -3495 ($ $ $)) (-15 -3495 ($ $ |t#1|)) (-15 -4155 ($ $)) (-15 -1218 (|t#1| $ |t#1|)) (-15 -2436 (|t#1| $ "first" |t#1|)) (-15 -1223 ($ $ $)) (-15 -2436 ($ $ "rest" $)) (-15 -1825 (|t#1| $ |t#1|)) (-15 -2436 (|t#1| $ "last" |t#1|)) (-15 -2070 ($ $ (-517)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T))
+((-3312 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|))) (-964) (-964) (-1149 |#1|) (-1149 |#2|)) (T -1147))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-4 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6 *4 *2)) (-4 *4 (-1149 *5)))))
+(-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1992 (((-107) $) 15)) (-1636 (($ $) 91)) (-1482 (($ $) 67)) (-1612 (($ $) 87)) (-1459 (($ $) 63)) (-1659 (($ $) 95)) (-1508 (($ $) 71)) (-1232 (($ $) 61)) (-3898 (($ $) 59)) (-1670 (($ $) 97)) (-1521 (($ $) 73)) (-1647 (($ $) 93)) (-1495 (($ $) 69)) (-1622 (($ $) 89)) (-1471 (($ $) 65)) (-2262 (((-787) $) 47) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1706 (($ $) 103)) (-1564 (($ $) 79)) (-1685 (($ $) 99)) (-1536 (($ $) 75)) (-3517 (($ $) 107)) (-1588 (($ $) 83)) (-2815 (($ $) 109)) (-1601 (($ $) 85)) (-1722 (($ $) 105)) (-1577 (($ $) 81)) (-1698 (($ $) 101)) (-1550 (($ $) 77)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-377 (-517))) 57)))
+(((-1148 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -1992 ((-107) |#1|)) (-15 -2262 ((-787) |#1|))) (-1149 |#2|) (-964)) (T -1148))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -1992 ((-107) |#1|)) (-15 -2262 ((-787) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-3747 (((-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1058 |#1|)) 153)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2804 (($ $) 152)) (-2905 (((-876 |#1|) $ (-703)) 150) (((-876 |#1|) $ (-703) (-703)) 149)) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $) 100) (((-703) $ (-703)) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101)) (-2603 (($ (-1 |#1| (-517)) $) 151)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-703)) 61) (($ $ (-992) (-703)) 76) (($ $ (-583 (-992)) (-583 (-703))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-3296 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 146 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-3175 (($ $ (-703)) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2612 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1191 (((-703) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3186 (((-1058 |#1|) $) 154)) (-1939 ((|#1| $ (-703)) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1149 |#1|) (-1189) (-964)) (T -1149))
+((-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-964)) (-4 *1 (-1149 *3)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-5 *2 (-1058 *3)))) (-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-4 *1 (-1149 *3)))) (-2804 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)))) (-2603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1149 *3)) (-4 *3 (-964)))) (-2905 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964)) (-5 *2 (-876 *4)))) (-2905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964)) (-5 *2 (-876 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) (-3296 (*1 *1 *1 *2) (-3786 (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1136 |t#1| (-703)) (-10 -8 (-15 -3452 ($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -3186 ((-1058 |t#1|) $)) (-15 -3452 ($ (-1058 |t#1|))) (-15 -2804 ($ $)) (-15 -2603 ($ (-1 |t#1| (-517)) $)) (-15 -2905 ((-876 |t#1|) $ (-703))) (-15 -2905 ((-876 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (IF (|has| |t#1| (-15 -3296 (|t#1| |t#1| (-1077)))) (IF (|has| |t#1| (-15 -2080 ((-583 (-1077)) |t#1|))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1098)) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-29 (-517))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-921)) (-6 (-1098))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1018)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1136 |#1| #0#) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 87)) (-1764 (((-1131 |#2| |#1|) $ (-703)) 73)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) 136 (|has| |#1| (-509)))) (-2147 (($ $ (-703)) 121) (($ $ (-703) (-703)) 123)) (-3747 (((-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1058 |#1|)) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2285 (($ $) 127)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2804 (($ $) 134)) (-2905 (((-876 |#1|) $ (-703)) 63) (((-876 |#1|) $ (-703) (-703)) 65)) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-1690 (((-107) $) NIL)) (-3157 (($ $) 111)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1499 (($ (-517) (-517) $) 129)) (-2113 (($ $ (-845)) 133)) (-2603 (($ (-1 |#1| (-517)) $) 105)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 15) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 93)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-1505 (($ $) 109)) (-3266 (($ $) 107)) (-3922 (($ (-517) (-517) $) 131)) (-3296 (($ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 150 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2427 (($ $ (-517) (-517)) 115)) (-3175 (($ $ (-703)) 117)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3140 (($ $) 113)) (-3552 (((-1058 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2612 ((|#1| $ (-703)) 90) (($ $ $) 125 (|has| (-703) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) 102 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1154 |#2|)) 98)) (-1191 (((-703) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 119)) (-2262 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 142 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1131 |#2| |#1|)) 80) (($ (-1154 |#2|)) 20)) (-3186 (((-1058 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) 89)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 88)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-703)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 17 T CONST)) (-3675 (($) 13 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 101)) (-1666 (($ $ $) 18)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 139 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1150 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (-15 -3266 ($ $)) (-15 -1505 ($ $)) (-15 -3157 ($ $)) (-15 -3140 ($ $)) (-15 -2427 ($ $ (-517) (-517))) (-15 -2285 ($ $)) (-15 -1499 ($ (-517) (-517) $)) (-15 -3922 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1150))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-1505 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-2427 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-1499 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3))) (-3922 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
+(-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (-15 -3266 ($ $)) (-15 -1505 ($ $)) (-15 -3157 ($ $)) (-15 -3140 ($ $)) (-15 -2427 ($ $ (-517) (-517))) (-15 -2285 ($ $)) (-15 -1499 ($ (-517) (-517) $)) (-15 -3922 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|)))
+((-1841 (((-1 (-1058 |#1|) (-583 (-1058 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-2704 (((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3251 (((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|)) 13)) (-3089 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3237 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3737 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-1684 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-1473 ((|#2| |#2| |#2|) 43)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -3251 ((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|))) (-15 -2704 ((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1841 ((-1 (-1058 |#1|) (-583 (-1058 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1473 (|#2| |#2| |#2|)) (-15 -3237 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3089 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3737 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -1684 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1149 |#1|)) (T -1151))
+((-1684 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1149 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1151 *5 *6)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1149 *5)) (-5 *1 (-1151 *5 *2)))) (-3089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-1473 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1149 *3)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1149 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-583 (-1058 *4)))) (-5 *1 (-1151 *4 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-1058 *4) (-1058 *4))) (-5 *1 (-1151 *4 *5)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1151 *4 *5)))))
+(-10 -7 (-15 -3251 ((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|))) (-15 -2704 ((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1841 ((-1 (-1058 |#1|) (-583 (-1058 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1473 (|#2| |#2| |#2|)) (-15 -3237 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3089 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3737 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -1684 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
+((-1379 ((|#2| |#4| (-703)) 30)) (-3921 ((|#4| |#2|) 25)) (-3268 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-1935 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
+(((-1152 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 (|#4| |#2|)) (-15 -1379 (|#2| |#4| (-703))) (-15 -1935 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3268 (|#4| (-377 |#2|))) |%noBranch|)) (-964) (-1134 |#1|) (-593 |#2|) (-1149 |#1|)) (T -1152))
+((-3268 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-509)) (-4 *4 (-964)) (-4 *2 (-1149 *4)) (-5 *1 (-1152 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-1935 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *5 (-1134 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1152 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1149 *4)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-1152 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1149 *5)))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *3 (-1134 *4)) (-4 *2 (-1149 *4)) (-5 *1 (-1152 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(-10 -7 (-15 -3921 (|#4| |#2|)) (-15 -1379 (|#2| |#4| (-703))) (-15 -1935 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3268 (|#4| (-377 |#2|))) |%noBranch|))
+NIL
+(((-1153) (-1189)) (T -1153))
+NIL
+(-13 (-10 -7 (-6 -2169)))
+((-2105 (((-107) $ $) NIL)) (-3791 (((-1077)) 12)) (-3232 (((-1060) $) 17)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11) (((-1077) $) 8)) (-1572 (((-107) $ $) 14)))
+(((-1154 |#1|) (-13 (-1006) (-557 (-1077)) (-10 -8 (-15 -2262 ((-1077) $)) (-15 -3791 ((-1077))))) (-1077)) (T -1154))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2))) (-3791 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2))))
+(-13 (-1006) (-557 (-1077)) (-10 -8 (-15 -2262 ((-1077) $)) (-15 -3791 ((-1077)))))
+((-3904 (($ (-703)) 16)) (-2681 (((-623 |#2|) $ $) 37)) (-1492 ((|#2| $) 46)) (-3728 ((|#2| $) 45)) (-3912 ((|#2| $ $) 33)) (-1305 (($ $ $) 42)) (-1680 (($ $) 20) (($ $ $) 26)) (-1666 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
+(((-1155 |#1| |#2|) (-10 -8 (-15 -1492 (|#2| |#1|)) (-15 -3728 (|#2| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -2681 ((-623 |#2|) |#1| |#1|)) (-15 -3912 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -3904 (|#1| (-703))) (-15 -1666 (|#1| |#1| |#1|))) (-1156 |#2|) (-1112)) (T -1155))
+NIL
+(-10 -8 (-15 -1492 (|#2| |#1|)) (-15 -3728 (|#2| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -2681 ((-623 |#2|) |#1| |#1|)) (-15 -3912 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -3904 (|#1| (-703))) (-15 -1666 (|#1| |#1| |#1|)))
+((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3904 (($ (-703)) 112 (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) 105 (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1492 ((|#1| $) 102 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-2328 (((-107) $ (-703)) 10)) (-3728 ((|#1| $) 103 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3912 ((|#1| $ $) 106 (|has| |#1| (-964)))) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-1305 (($ $ $) 104 (|has| |#1| (-964)))) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1680 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1666 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195)))))
+(((-1156 |#1|) (-1189) (-1112)) (T -1156))
+((-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-25)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1156 *3)) (-4 *3 (-23)) (-4 *3 (-1112)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) (-3912 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-964)) (-5 *2 (-623 *3)))) (-1305 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921)) (-4 *2 (-964)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921)) (-4 *2 (-964)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1666 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3904 ($ (-703))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1680 ($ $)) (-15 -1680 ($ $ $)) (-15 * ($ (-517) $))) |%noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-964)) (PROGN (-15 -3912 (|t#1| $ $)) (-15 -2681 ((-623 |t#1|) $ $)) (-15 -1305 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-921)) (IF (|has| |t#1| (-964)) (PROGN (-15 -3728 (|t#1| $)) (-15 -1492 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T))
+((-1250 (((-1158 |#2|) (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|) 13)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|) 15)) (-3312 (((-3 (-1158 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1158 |#1|)) 28) (((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|)) 18)))
+(((-1157 |#1| |#2|) (-10 -7 (-15 -1250 ((-1158 |#2|) (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -3312 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -3312 ((-3 (-1158 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1158 |#1|)))) (-1112) (-1112)) (T -1157))
+((-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1158 *6)) (-5 *1 (-1157 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1158 *6)) (-5 *1 (-1157 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-1157 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1158 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-1158 *5)) (-5 *1 (-1157 *6 *5)))))
+(-10 -7 (-15 -1250 ((-1158 |#2|) (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -3312 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -3312 ((-3 (-1158 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1158 |#1|))))
+((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703)) NIL (|has| |#1| (-23)))) (-2030 (($ (-583 |#1|)) 9)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 15 (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) NIL (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1492 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-2328 (((-107) $ (-703)) NIL)) (-3728 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3912 ((|#1| $ $) NIL (|has| |#1| (-964)))) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1305 (($ $ $) NIL (|has| |#1| (-964)))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 8)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1666 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1158 |#1|) (-13 (-1156 |#1|) (-10 -8 (-15 -2030 ($ (-583 |#1|))))) (-1112)) (T -1158))
+((-2030 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1158 *3)))))
+(-13 (-1156 |#1|) (-10 -8 (-15 -2030 ($ (-583 |#1|)))))
+((-2105 (((-107) $ $) NIL)) (-1660 (((-1060) $ (-1060)) 87) (((-1060) $ (-1060) (-1060)) 85) (((-1060) $ (-1060) (-583 (-1060))) 84)) (-2880 (($) 56)) (-2526 (((-1163) $ (-437) (-845)) 42)) (-2464 (((-1163) $ (-845) (-1060)) 70) (((-1163) $ (-845) (-798)) 71)) (-3183 (((-1163) $ (-845) (-349) (-349)) 45)) (-3086 (((-1163) $ (-1060)) 66)) (-1971 (((-1163) $ (-845) (-1060)) 75)) (-2029 (((-1163) $ (-845) (-349) (-349)) 46)) (-3467 (((-1163) $ (-845) (-845)) 43)) (-1637 (((-1163) $) 67)) (-1302 (((-1163) $ (-845) (-1060)) 74)) (-3871 (((-1163) $ (-437) (-845)) 30)) (-1782 (((-1163) $ (-845) (-1060)) 73)) (-2587 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-3418 (((-1163) $ (-703) (-703)) 40)) (-2216 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-3232 (((-1060) $) NIL)) (-2576 (((-517) $) 37)) (-4130 (((-1024) $) NIL)) (-3356 (((-1158 (-3 (-437) "undefined")) $) 36)) (-1711 (((-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517)))) $) 35)) (-2918 (((-1163) $ (-845) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-798) (-517) (-798) (-517)) 65)) (-1620 (((-583 (-867 (-199))) $) NIL)) (-3714 (((-437) $ (-845)) 32)) (-3876 (((-1163) $ (-703) (-703) (-845) (-845)) 39)) (-2571 (((-1163) $ (-1060)) 76)) (-2850 (((-1163) $ (-845) (-1060)) 72)) (-2262 (((-787) $) 82)) (-1712 (((-1163) $) 77)) (-3541 (((-1163) $ (-845) (-1060)) 68) (((-1163) $ (-845) (-798)) 69)) (-1572 (((-107) $ $) NIL)))
+(((-1159) (-13 (-1006) (-10 -8 (-15 -1620 ((-583 (-867 (-199))) $)) (-15 -2880 ($)) (-15 -2216 ($ $)) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -2216 ($ (-437) (-583 (-236)))) (-15 -2918 ((-1163) $ (-845) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-798) (-517) (-798) (-517))) (-15 -1711 ((-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517)))) $)) (-15 -3356 ((-1158 (-3 (-437) "undefined")) $)) (-15 -3086 ((-1163) $ (-1060))) (-15 -3871 ((-1163) $ (-437) (-845))) (-15 -3714 ((-437) $ (-845))) (-15 -3541 ((-1163) $ (-845) (-1060))) (-15 -3541 ((-1163) $ (-845) (-798))) (-15 -2464 ((-1163) $ (-845) (-1060))) (-15 -2464 ((-1163) $ (-845) (-798))) (-15 -1782 ((-1163) $ (-845) (-1060))) (-15 -1302 ((-1163) $ (-845) (-1060))) (-15 -2850 ((-1163) $ (-845) (-1060))) (-15 -2571 ((-1163) $ (-1060))) (-15 -1712 ((-1163) $)) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -2029 ((-1163) $ (-845) (-349) (-349))) (-15 -3183 ((-1163) $ (-845) (-349) (-349))) (-15 -1971 ((-1163) $ (-845) (-1060))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -2526 ((-1163) $ (-437) (-845))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1637 ((-1163) $)) (-15 -2576 ((-517) $)) (-15 -2262 ((-787) $))))) (T -1159))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-583 (-867 (-199)))) (-5 *1 (-1159)))) (-2880 (*1 *1) (-5 *1 (-1159))) (-2216 (*1 *1 *1) (-5 *1 (-1159))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) (-2587 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1159)))) (-2918 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-845)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517))))) (-5 *1 (-1159)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-1158 (-3 (-437) "undefined"))) (-5 *1 (-1159)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3871 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-5 *2 (-437)) (-5 *1 (-1159)))) (-3541 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3541 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2464 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2464 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1782 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1302 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2571 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2029 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3183 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1971 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3418 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2526 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1660 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159)))) (-1660 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159)))) (-1660 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1159)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1159)))))
+(-13 (-1006) (-10 -8 (-15 -1620 ((-583 (-867 (-199))) $)) (-15 -2880 ($)) (-15 -2216 ($ $)) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -2216 ($ (-437) (-583 (-236)))) (-15 -2918 ((-1163) $ (-845) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-798) (-517) (-798) (-517))) (-15 -1711 ((-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517)))) $)) (-15 -3356 ((-1158 (-3 (-437) "undefined")) $)) (-15 -3086 ((-1163) $ (-1060))) (-15 -3871 ((-1163) $ (-437) (-845))) (-15 -3714 ((-437) $ (-845))) (-15 -3541 ((-1163) $ (-845) (-1060))) (-15 -3541 ((-1163) $ (-845) (-798))) (-15 -2464 ((-1163) $ (-845) (-1060))) (-15 -2464 ((-1163) $ (-845) (-798))) (-15 -1782 ((-1163) $ (-845) (-1060))) (-15 -1302 ((-1163) $ (-845) (-1060))) (-15 -2850 ((-1163) $ (-845) (-1060))) (-15 -2571 ((-1163) $ (-1060))) (-15 -1712 ((-1163) $)) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -2029 ((-1163) $ (-845) (-349) (-349))) (-15 -3183 ((-1163) $ (-845) (-349) (-349))) (-15 -1971 ((-1163) $ (-845) (-1060))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -2526 ((-1163) $ (-437) (-845))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1637 ((-1163) $)) (-15 -2576 ((-517) $)) (-15 -2262 ((-787) $))))
+((-2105 (((-107) $ $) NIL)) (-2954 (((-1163) $ (-349)) 138) (((-1163) $ (-349) (-349) (-349)) 139)) (-1660 (((-1060) $ (-1060)) 146) (((-1060) $ (-1060) (-1060)) 144) (((-1060) $ (-1060) (-583 (-1060))) 143)) (-1714 (($) 49)) (-3427 (((-1163) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1163) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1163) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1163) $ (-349) (-349)) 116) (((-1163) $ (-349) (-349) (-349)) 123)) (-2887 (((-349)) 96) (((-349) (-349)) 97)) (-2078 (((-349)) 91) (((-349) (-349)) 93)) (-3906 (((-349)) 94) (((-349) (-349)) 95)) (-1341 (((-349)) 100) (((-349) (-349)) 101)) (-2346 (((-349)) 98) (((-349) (-349)) 99)) (-3183 (((-1163) $ (-349) (-349)) 140)) (-3086 (((-1163) $ (-1060)) 124)) (-1247 (((-1037 (-199)) $) 50) (($ $ (-1037 (-199))) 51)) (-3938 (((-1163) $ (-1060)) 152)) (-2519 (((-1163) $ (-1060)) 153)) (-1255 (((-1163) $ (-349) (-349)) 122) (((-1163) $ (-517) (-517)) 137)) (-3467 (((-1163) $ (-845) (-845)) 130)) (-1637 (((-1163) $) 110)) (-1707 (((-1163) $ (-1060)) 151)) (-1605 (((-1163) $ (-1060)) 107)) (-2587 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-3418 (((-1163) $ (-703) (-703)) 129)) (-2473 (((-1163) $ (-703) (-867 (-199))) 158)) (-3568 (($ $) 56) (($ (-1037 (-199)) (-1060)) 57) (($ (-1037 (-199)) (-583 (-236))) 58)) (-3254 (((-1163) $ (-349) (-349) (-349)) 104)) (-3232 (((-1060) $) NIL)) (-2576 (((-517) $) 102)) (-3323 (((-1163) $ (-349)) 141)) (-1741 (((-1163) $ (-349)) 156)) (-4130 (((-1024) $) NIL)) (-3734 (((-1163) $ (-349)) 155)) (-3242 (((-1163) $ (-1060)) 109)) (-3876 (((-1163) $ (-703) (-703) (-845) (-845)) 128)) (-2959 (((-1163) $ (-1060)) 106)) (-2571 (((-1163) $ (-1060)) 108)) (-1904 (((-1163) $ (-142) (-142)) 127)) (-2262 (((-787) $) 135)) (-1712 (((-1163) $) 111)) (-3765 (((-1163) $ (-1060)) 154)) (-3541 (((-1163) $ (-1060)) 105)) (-1572 (((-107) $ $) NIL)))
+(((-1160) (-13 (-1006) (-10 -8 (-15 -2078 ((-349))) (-15 -2078 ((-349) (-349))) (-15 -3906 ((-349))) (-15 -3906 ((-349) (-349))) (-15 -2887 ((-349))) (-15 -2887 ((-349) (-349))) (-15 -2346 ((-349))) (-15 -2346 ((-349) (-349))) (-15 -1341 ((-349))) (-15 -1341 ((-349) (-349))) (-15 -1714 ($)) (-15 -3568 ($ $)) (-15 -3568 ($ (-1037 (-199)) (-1060))) (-15 -3568 ($ (-1037 (-199)) (-583 (-236)))) (-15 -1247 ((-1037 (-199)) $)) (-15 -1247 ($ $ (-1037 (-199)))) (-15 -2473 ((-1163) $ (-703) (-867 (-199)))) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -3086 ((-1163) $ (-1060))) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -3427 ((-1163) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3427 ((-1163) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3427 ((-1163) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349) (-349))) (-15 -2571 ((-1163) $ (-1060))) (-15 -3541 ((-1163) $ (-1060))) (-15 -2959 ((-1163) $ (-1060))) (-15 -1605 ((-1163) $ (-1060))) (-15 -3242 ((-1163) $ (-1060))) (-15 -1255 ((-1163) $ (-349) (-349))) (-15 -1255 ((-1163) $ (-517) (-517))) (-15 -2954 ((-1163) $ (-349))) (-15 -2954 ((-1163) $ (-349) (-349) (-349))) (-15 -3183 ((-1163) $ (-349) (-349))) (-15 -1707 ((-1163) $ (-1060))) (-15 -3734 ((-1163) $ (-349))) (-15 -1741 ((-1163) $ (-349))) (-15 -3938 ((-1163) $ (-1060))) (-15 -2519 ((-1163) $ (-1060))) (-15 -3765 ((-1163) $ (-1060))) (-15 -3254 ((-1163) $ (-349) (-349) (-349))) (-15 -3323 ((-1163) $ (-349))) (-15 -1637 ((-1163) $)) (-15 -1904 ((-1163) $ (-142) (-142))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1712 ((-1163) $)) (-15 -2576 ((-517) $))))) (T -1160))
+((-2078 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-3906 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2887 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2346 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-1341 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-1714 (*1 *1) (-5 *1 (-1160))) (-3568 (*1 *1 *1) (-5 *1 (-1160))) (-3568 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1060)) (-5 *1 (-1160)))) (-3568 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1160)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160)))) (-1247 (*1 *1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160)))) (-2473 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160)))) (-2587 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160)))) (-3418 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2571 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3541 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1605 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3242 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1255 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1255 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2954 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3183 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1707 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3734 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3938 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2519 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3254 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3323 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1904 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1660 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160)))) (-1660 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160)))) (-1660 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1160)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1160)))))
+(-13 (-1006) (-10 -8 (-15 -2078 ((-349))) (-15 -2078 ((-349) (-349))) (-15 -3906 ((-349))) (-15 -3906 ((-349) (-349))) (-15 -2887 ((-349))) (-15 -2887 ((-349) (-349))) (-15 -2346 ((-349))) (-15 -2346 ((-349) (-349))) (-15 -1341 ((-349))) (-15 -1341 ((-349) (-349))) (-15 -1714 ($)) (-15 -3568 ($ $)) (-15 -3568 ($ (-1037 (-199)) (-1060))) (-15 -3568 ($ (-1037 (-199)) (-583 (-236)))) (-15 -1247 ((-1037 (-199)) $)) (-15 -1247 ($ $ (-1037 (-199)))) (-15 -2473 ((-1163) $ (-703) (-867 (-199)))) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -3086 ((-1163) $ (-1060))) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -3427 ((-1163) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3427 ((-1163) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3427 ((-1163) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349) (-349))) (-15 -2571 ((-1163) $ (-1060))) (-15 -3541 ((-1163) $ (-1060))) (-15 -2959 ((-1163) $ (-1060))) (-15 -1605 ((-1163) $ (-1060))) (-15 -3242 ((-1163) $ (-1060))) (-15 -1255 ((-1163) $ (-349) (-349))) (-15 -1255 ((-1163) $ (-517) (-517))) (-15 -2954 ((-1163) $ (-349))) (-15 -2954 ((-1163) $ (-349) (-349) (-349))) (-15 -3183 ((-1163) $ (-349) (-349))) (-15 -1707 ((-1163) $ (-1060))) (-15 -3734 ((-1163) $ (-349))) (-15 -1741 ((-1163) $ (-349))) (-15 -3938 ((-1163) $ (-1060))) (-15 -2519 ((-1163) $ (-1060))) (-15 -3765 ((-1163) $ (-1060))) (-15 -3254 ((-1163) $ (-349) (-349) (-349))) (-15 -3323 ((-1163) $ (-349))) (-15 -1637 ((-1163) $)) (-15 -1904 ((-1163) $ (-142) (-142))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1712 ((-1163) $)) (-15 -2576 ((-517) $))))
+((-2430 (((-583 (-1060)) (-583 (-1060))) 94) (((-583 (-1060))) 89)) (-4121 (((-583 (-1060))) 87)) (-2856 (((-583 (-845)) (-583 (-845))) 62) (((-583 (-845))) 59)) (-2973 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-2906 (((-1163)) 64)) (-2089 (((-845) (-845)) 80) (((-845)) 79)) (-1280 (((-845) (-845)) 78) (((-845)) 77)) (-1342 (((-798) (-798)) 74) (((-798)) 73)) (-3309 (((-199)) 84) (((-199) (-349)) 86)) (-1407 (((-845)) 81) (((-845) (-845)) 82)) (-1339 (((-845) (-845)) 76) (((-845)) 75)) (-1468 (((-798) (-798)) 68) (((-798)) 66)) (-3793 (((-798) (-798)) 70) (((-798)) 69)) (-4108 (((-798) (-798)) 72) (((-798)) 71)))
+(((-1161) (-10 -7 (-15 -1468 ((-798))) (-15 -1468 ((-798) (-798))) (-15 -3793 ((-798))) (-15 -3793 ((-798) (-798))) (-15 -4108 ((-798))) (-15 -4108 ((-798) (-798))) (-15 -1342 ((-798))) (-15 -1342 ((-798) (-798))) (-15 -1339 ((-845))) (-15 -1339 ((-845) (-845))) (-15 -2973 ((-583 (-703)))) (-15 -2973 ((-583 (-703)) (-583 (-703)))) (-15 -2856 ((-583 (-845)))) (-15 -2856 ((-583 (-845)) (-583 (-845)))) (-15 -2906 ((-1163))) (-15 -2430 ((-583 (-1060)))) (-15 -2430 ((-583 (-1060)) (-583 (-1060)))) (-15 -4121 ((-583 (-1060)))) (-15 -1280 ((-845))) (-15 -2089 ((-845))) (-15 -1280 ((-845) (-845))) (-15 -2089 ((-845) (-845))) (-15 -1407 ((-845) (-845))) (-15 -1407 ((-845))) (-15 -3309 ((-199) (-349))) (-15 -3309 ((-199))))) (T -1161))
+((-3309 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1161)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1161)))) (-1407 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-2089 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1280 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-4121 (*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) (-2430 (*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) (-2906 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1161)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161)))) (-2856 (*1 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161)))) (-2973 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1339 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-1342 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-4108 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-3793 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-1468 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))))
+(-10 -7 (-15 -1468 ((-798))) (-15 -1468 ((-798) (-798))) (-15 -3793 ((-798))) (-15 -3793 ((-798) (-798))) (-15 -4108 ((-798))) (-15 -4108 ((-798) (-798))) (-15 -1342 ((-798))) (-15 -1342 ((-798) (-798))) (-15 -1339 ((-845))) (-15 -1339 ((-845) (-845))) (-15 -2973 ((-583 (-703)))) (-15 -2973 ((-583 (-703)) (-583 (-703)))) (-15 -2856 ((-583 (-845)))) (-15 -2856 ((-583 (-845)) (-583 (-845)))) (-15 -2906 ((-1163))) (-15 -2430 ((-583 (-1060)))) (-15 -2430 ((-583 (-1060)) (-583 (-1060)))) (-15 -4121 ((-583 (-1060)))) (-15 -1280 ((-845))) (-15 -2089 ((-845))) (-15 -1280 ((-845) (-845))) (-15 -2089 ((-845) (-845))) (-15 -1407 ((-845) (-845))) (-15 -1407 ((-845))) (-15 -3309 ((-199) (-349))) (-15 -3309 ((-199))))
+((-4085 (((-437) (-583 (-583 (-867 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-867 (-199))))) 16) (((-437) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236))) 15)) (-1452 (((-1159) (-583 (-583 (-867 (-199)))) (-583 (-236))) 23) (((-1159) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236))) 22)) (-2262 (((-1159) (-437)) 34)))
+(((-1162) (-10 -7 (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -2262 ((-1159) (-437))))) (T -1162))
+((-2262 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1159)) (-5 *1 (-1162)))) (-1452 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-1162)))) (-1452 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-1162)))) (-4085 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1162)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-437)) (-5 *1 (-1162)))) (-4085 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1162)))))
+(-10 -7 (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -2262 ((-1159) (-437))))
+((-2026 (($) 7)) (-2262 (((-787) $) 10)))
+(((-1163) (-10 -8 (-15 -2026 ($)) (-15 -2262 ((-787) $)))) (T -1163))
+((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1163)))) (-2026 (*1 *1) (-5 *1 (-1163))))
+(-10 -8 (-15 -2026 ($)) (-15 -2262 ((-787) $)))
+((-1692 (($ $ |#2|) 10)))
+(((-1164 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#1| |#2|))) (-1165 |#2|) (-333)) (T -1164))
+NIL
+(-10 -8 (-15 -1692 (|#1| |#1| |#2|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1470 (((-125)) 28)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 29)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1165 |#1|) (-1189) (-333)) (T -1165))
+((-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-333)))) (-1470 (*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
+(-13 (-650 |t#1|) (-10 -8 (-15 -1692 ($ $ |t#1|)) (-15 -1470 ((-125)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-970 |#1|) . T) ((-1006) . T))
+((-1263 (((-583 (-1107 |#1|)) (-1077) (-1107 |#1|)) 78)) (-2985 (((-1058 (-1058 (-876 |#1|))) (-1077) (-1058 (-876 |#1|))) 57)) (-3648 (((-1 (-1058 (-1107 |#1|)) (-1058 (-1107 |#1|))) (-703) (-1107 |#1|) (-1058 (-1107 |#1|))) 68)) (-1644 (((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703)) 59)) (-1960 (((-1 (-1073 (-876 |#1|)) (-876 |#1|)) (-1077)) 27)) (-2864 (((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703)) 58)))
+(((-1166 |#1|) (-10 -7 (-15 -1644 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2864 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2985 ((-1058 (-1058 (-876 |#1|))) (-1077) (-1058 (-876 |#1|)))) (-15 -1960 ((-1 (-1073 (-876 |#1|)) (-876 |#1|)) (-1077))) (-15 -1263 ((-583 (-1107 |#1|)) (-1077) (-1107 |#1|))) (-15 -3648 ((-1 (-1058 (-1107 |#1|)) (-1058 (-1107 |#1|))) (-703) (-1107 |#1|) (-1058 (-1107 |#1|))))) (-333)) (T -1166))
+((-3648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1107 *6)) (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1166 *6)) (-5 *5 (-1058 *4)))) (-1263 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-583 (-1107 *5))) (-5 *1 (-1166 *5)) (-5 *4 (-1107 *5)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1 (-1073 (-876 *4)) (-876 *4))) (-5 *1 (-1166 *4)) (-4 *4 (-333)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-1058 (-1058 (-876 *5)))) (-5 *1 (-1166 *5)) (-5 *4 (-1058 (-876 *5))))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4)))) (-5 *1 (-1166 *4)) (-4 *4 (-333)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4)))) (-5 *1 (-1166 *4)) (-4 *4 (-333)))))
+(-10 -7 (-15 -1644 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2864 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2985 ((-1058 (-1058 (-876 |#1|))) (-1077) (-1058 (-876 |#1|)))) (-15 -1960 ((-1 (-1073 (-876 |#1|)) (-876 |#1|)) (-1077))) (-15 -1263 ((-583 (-1107 |#1|)) (-1077) (-1107 |#1|))) (-15 -3648 ((-1 (-1058 (-1107 |#1|)) (-1058 (-1107 |#1|))) (-703) (-1107 |#1|) (-1058 (-1107 |#1|)))))
+((-1486 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-2734 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
+(((-1167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1134 |#1|) (-1134 |#2|) (-379 |#2| |#3|)) (T -1167))
+((-1486 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1167 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-2734 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 42)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 63) (($ (-517)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-156)))) (-1818 (((-703)) NIL)) (-3018 (((-1163) (-703)) 16)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 27 T CONST)) (-3675 (($) 66 T CONST)) (-1572 (((-107) $ $) 68)) (-1692 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) 70) (($ $ $) NIL)) (-1666 (($ $ $) 46)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-1168 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2262 ($ |#4|)) (-15 -3018 ((-1163) (-703))))) (-964) (-779) (-725) (-873 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1168))
+((-2262 (*1 *2 *1) (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-964)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1168 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-873 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-873 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1163)) (-5 *1 (-1168 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-873 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2262 ($ |#4|)) (-15 -3018 ((-1163) (-703)))))
+((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) 88)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) NIL (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 28)) (-2774 (((-583 |#4|) (-583 |#4|) $) 25 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 70)) (-2195 ((|#4| |#4| $) 75)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-1525 (((-583 |#4|) $) NIL (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 76)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-3804 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-583 |#4|)) 35)) (-2737 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) NIL)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1447 (((-3 |#4| "failed") $) NIL)) (-3846 (((-583 |#4|) $) 50)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) 74)) (-1579 (((-107) $ $) 85)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 69)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) NIL)) (-3175 (($ $ |#4|) NIL)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 67)) (-2679 (($) 42)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) NIL)) (-3231 (($ $ |#3|) NIL)) (-2316 (($ $ |#3|) NIL)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) NIL) (((-583 |#4|) $) 57)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3353 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-583 |#4|)) 41)) (-3800 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-583 $) (-583 |#4|)) 66)) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-3275 (((-107) |#3| $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195)))))
+(((-1169 |#1| |#2| |#3| |#4|) (-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3804 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3804 ((-3 $ "failed") (-583 |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|))) (-15 -3800 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3800 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -1169))
+((-3804 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8)))) (-3804 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1169 *3 *4 *5 *6)))) (-3353 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8)))) (-3353 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1169 *3 *4 *5 *6)))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1169 *6 *7 *8 *9))) (-5 *1 (-1169 *6 *7 *8 *9)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1169 *4 *5 *6 *7))) (-5 *1 (-1169 *4 *5 *6 *7)))))
+(-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3804 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3804 ((-3 $ "failed") (-583 |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|))) (-15 -3800 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3800 ((-583 $) (-583 |#4|)))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1170 |#1|) (-1189) (-964)) (T -1170))
+((-2262 (*1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-964)))))
+(-13 (-964) (-106 |t#1| |t#1|) (-10 -8 (-15 -2262 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 45)) (-1855 (($ $ (-703)) 39)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ $) 62) (($ $ (-751 |#1|)) 49) (($ $ |#1|) 53)) (-3220 (((-3 (-751 |#1|) "failed") $) NIL)) (-3402 (((-751 |#1|) $) NIL)) (-2364 (($ $) 32)) (-3550 (((-3 $ "failed") $) NIL)) (-2843 (((-107) $) NIL)) (-1320 (($ $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 |#1|) |#2|) 31)) (-2833 (($ $) 33)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-4114 (((-751 |#1|) $) NIL)) (-3614 (((-751 |#1|) $) 34)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2388 (($ $ $) 61) (($ $ (-751 |#1|)) 51) (($ $ |#1|) 55)) (-3758 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2325 (((-751 |#1|) $) 28)) (-2336 ((|#2| $) 30)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1191 (((-703) $) 36)) (-1968 (((-107) $) 40)) (-1373 ((|#2| $) NIL)) (-2262 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-751 |#1|)) NIL)) (-1570 ((|#2| $ $) 64) ((|#2| $ (-751 |#1|)) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 12 T CONST)) (-3675 (($) 14 T CONST)) (-1226 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1572 (((-107) $ $) 38)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1171 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1177 |#1| |#2|)) (-779) (-964)) (T -1171))
+NIL
+(-13 (-352 |#2| (-751 |#1|)) (-1177 |#1| |#2|))
+((-1232 ((|#3| |#3| (-703)) 23)) (-3898 ((|#3| |#3| (-703)) 28)) (-2943 ((|#3| |#3| |#3| (-703)) 29)))
+(((-1172 |#1| |#2| |#3|) (-10 -7 (-15 -3898 (|#3| |#3| (-703))) (-15 -1232 (|#3| |#3| (-703))) (-15 -2943 (|#3| |#3| |#3| (-703)))) (-13 (-964) (-650 (-377 (-517)))) (-779) (-1177 |#2| |#1|)) (T -1172))
+((-2943 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))) (-1232 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))) (-3898 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))))
+(-10 -7 (-15 -3898 (|#3| |#3| (-703))) (-15 -1232 (|#3| |#3| (-703))) (-15 -2943 (|#3| |#3| |#3| (-703))))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3375 (((-583 |#1|) $) 40)) (-1783 (((-3 $ "failed") $ $) 19)) (-2517 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3038 (($) 17 T CONST)) (-1586 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3220 (((-3 (-751 |#1|) "failed") $) 64)) (-3402 (((-751 |#1|) $) 63)) (-3550 (((-3 $ "failed") $) 34)) (-2843 (((-107) $) 45)) (-1320 (($ $) 44)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 50)) (-2416 (($ (-751 |#1|) |#2|) 51)) (-2833 (($ $) 49)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-4114 (((-751 |#1|) $) 61)) (-3312 (($ (-1 |#2| |#2|) $) 41)) (-2388 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1968 (((-107) $) 47)) (-1373 ((|#2| $) 46)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1570 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1173 |#1| |#2|) (-1189) (-779) (-964)) (T -1173))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-751 *3)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1570 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1173 *4 *2)) (-4 *4 (-779)) (-4 *2 (-964)))) (-1570 (*1 *2 *1 *1) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) (-2388 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-2388 (*1 *1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-1586 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-1586 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-1586 (*1 *1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1173 *4 *3)) (-4 *3 (-964)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-107)))) (-2833 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2262 (*1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-107)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-107)))) (-1320 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2517 (*1 *1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)) (-4 *3 (-156)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-4 *4 (-156)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-583 *3)))))
+(-13 (-964) (-1170 |t#2|) (-955 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4114 ((-751 |t#1|) $)) (-15 -1488 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1570 (|t#2| $ (-751 |t#1|))) (-15 -1570 (|t#2| $ $)) (-15 -2388 ($ $ |t#1|)) (-15 -2388 ($ $ (-751 |t#1|))) (-15 -2388 ($ $ $)) (-15 -1586 ($ $ |t#1|)) (-15 -1586 ($ $ (-751 |t#1|))) (-15 -1586 ($ $ $)) (-15 -2416 ($ (-751 |t#1|) |t#2|)) (-15 -3022 ((-107) $)) (-15 -2833 ($ $)) (-15 -2262 ($ |t#1|)) (-15 -1968 ((-107) $)) (-15 -1373 (|t#2| $)) (-15 -2843 ((-107) $)) (-15 -1320 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -2517 ($ $ $)) (-15 -2517 ($ $ (-703)))) |%noBranch|) (-15 -3312 ($ (-1 |t#2| |t#2|) $)) (-15 -3375 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4188)) (-6 -4188) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-955 (-751 |#1|)) . T) ((-970 |#2|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1170 |#2|) . T))
+((-2090 (((-107) $) 14)) (-3275 (((-107) $) 13)) (-4115 (($ $) 18) (($ $ (-703)) 19)))
+(((-1174 |#1| |#2|) (-10 -8 (-15 -4115 (|#1| |#1| (-703))) (-15 -4115 (|#1| |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|))) (-1175 |#2|) (-333)) (T -1174))
+NIL
+(-10 -8 (-15 -4115 (|#1| |#1| (-703))) (-15 -4115 (|#1| |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2090 (((-107) $) 94)) (-3578 (((-703)) 90)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 101)) (-3402 ((|#1| $) 100)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2627 (($ $ (-703)) 87 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) 71)) (-3250 (((-765 (-845)) $) 84 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-1333 (((-107) $) 93)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2177 (((-765 (-845))) 91)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-3 (-703) "failed") $ $) 85 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) 99)) (-1191 (((-765 (-845)) $) 92)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-3385 (((-3 $ "failed") $) 83 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-3275 (((-107) $) 95)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-4115 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64) (($ $ |#1|) 98)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1175 |#1|) (-1189) (-333)) (T -1175))
+((-3275 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2090 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845))))) (-2177 (*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845))))) (-3578 (*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
+(-13 (-333) (-955 |t#1|) (-1165 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |%noBranch|) (-15 -3275 ((-107) $)) (-15 -2090 ((-107) $)) (-15 -1333 ((-107) $)) (-15 -1191 ((-765 (-845)) $)) (-15 -2177 ((-765 (-845)))) (-15 -3578 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -4115 ($ $)) (-15 -4115 ($ $ (-703)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T) ((-1165 |#1|) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 85)) (-1855 (($ $ (-703)) 88)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-3220 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-817 |#1|) "failed") $) NIL)) (-3402 (((-751 |#1|) $) NIL) (((-817 |#1|) $) NIL)) (-2364 (($ $) 87)) (-3550 (((-3 $ "failed") $) NIL)) (-2843 (((-107) $) 76)) (-1320 (($ $) 80)) (-1983 (($ $ $ (-703)) 89)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 |#1|) |#2|) NIL) (($ (-817 |#1|) |#2|) 26)) (-2833 (($ $) 102)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4114 (((-751 |#1|) $) NIL)) (-3614 (((-751 |#1|) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2388 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1232 (($ $ (-703)) 96 (|has| |#2| (-650 (-377 (-517)))))) (-3758 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2325 (((-817 |#1|) $) 70)) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3898 (($ $ (-703)) 93 (|has| |#2| (-650 (-377 (-517)))))) (-1191 (((-703) $) 86)) (-1968 (((-107) $) 71)) (-1373 ((|#2| $) 75)) (-2262 (((-787) $) 57) (($ (-517)) NIL) (($ |#2|) 51) (($ (-751 |#1|)) NIL) (($ |#1|) 59) (($ (-817 |#1|)) NIL) (($ (-601 |#1| |#2|)) 43) (((-1171 |#1| |#2|) $) 64) (((-1180 |#1| |#2|) $) 69)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-817 |#1|)) NIL)) (-1570 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 25 T CONST)) (-1226 (((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1391 (((-3 (-601 |#1| |#2|) "failed") $) 101)) (-1572 (((-107) $ $) 65)) (-1680 (($ $) 95) (($ $ $) 94)) (-1666 (($ $ $) 20)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-817 |#1|)) NIL)))
+(((-1176 |#1| |#2|) (-13 (-1177 |#1| |#2|) (-352 |#2| (-817 |#1|)) (-10 -8 (-15 -2262 ($ (-601 |#1| |#2|))) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1180 |#1| |#2|) $)) (-15 -1391 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -1983 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3898 ($ $ (-703))) (-15 -1232 ($ $ (-703)))) |%noBranch|))) (-779) (-156)) (T -1176))
+((-2262 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1176 *3 *4)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1391 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1983 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1232 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(-13 (-1177 |#1| |#2|) (-352 |#2| (-817 |#1|)) (-10 -8 (-15 -2262 ($ (-601 |#1| |#2|))) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1180 |#1| |#2|) $)) (-15 -1391 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -1983 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3898 ($ $ (-703))) (-15 -1232 ($ $ (-703)))) |%noBranch|)))
+((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3375 (((-583 |#1|) $) 40)) (-1855 (($ $ (-703)) 73)) (-1783 (((-3 $ "failed") $ $) 19)) (-2517 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3038 (($) 17 T CONST)) (-1586 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3220 (((-3 (-751 |#1|) "failed") $) 64)) (-3402 (((-751 |#1|) $) 63)) (-3550 (((-3 $ "failed") $) 34)) (-2843 (((-107) $) 45)) (-1320 (($ $) 44)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 50)) (-2416 (($ (-751 |#1|) |#2|) 51)) (-2833 (($ $) 49)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-4114 (((-751 |#1|) $) 61)) (-3614 (((-751 |#1|) $) 75)) (-3312 (($ (-1 |#2| |#2|) $) 41)) (-2388 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 (((-703) $) 74)) (-1968 (((-107) $) 47)) (-1373 ((|#2| $) 46)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1570 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1177 |#1| |#2|) (-1189) (-779) (-964)) (T -1177))
+((-3614 (*1 *2 *1) (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-751 *3)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-703)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))))
+(-13 (-1173 |t#1| |t#2|) (-10 -8 (-15 -3614 ((-751 |t#1|) $)) (-15 -1191 ((-703) $)) (-15 -1855 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-955 (-751 |#1|)) . T) ((-970 |#2|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1170 |#2|) . T) ((-1173 |#1| |#2|) . T))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 (-1077)) $) NIL)) (-2260 (($ (-1171 (-1077) |#1|)) NIL)) (-1855 (($ $ (-703)) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ (-1077)) NIL) (($ $ (-751 (-1077))) NIL) (($ $ $) NIL)) (-3220 (((-3 (-751 (-1077)) "failed") $) NIL)) (-3402 (((-751 (-1077)) $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2843 (((-107) $) NIL)) (-1320 (($ $) NIL)) (-1690 (((-107) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 (-1077)) |#1|) NIL)) (-2833 (($ $) NIL)) (-1488 (((-2 (|:| |k| (-751 (-1077))) (|:| |c| |#1|)) $) NIL)) (-4114 (((-751 (-1077)) $) NIL)) (-3614 (((-751 (-1077)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2388 (($ $ (-1077)) NIL) (($ $ (-751 (-1077))) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2287 (((-1171 (-1077) |#1|) $) NIL)) (-1191 (((-703) $) NIL)) (-1968 (((-107) $) NIL)) (-1373 ((|#1| $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1077))) NIL) (($ (-1077)) NIL)) (-1570 ((|#1| $ (-751 (-1077))) NIL) ((|#1| $ $) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-2342 (((-583 (-2 (|:| |k| (-1077)) (|:| |c| $))) $) NIL)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1077) $) NIL)))
+(((-1178 |#1|) (-13 (-1177 (-1077) |#1|) (-10 -8 (-15 -2287 ((-1171 (-1077) |#1|) $)) (-15 -2260 ($ (-1171 (-1077) |#1|))) (-15 -2342 ((-583 (-2 (|:| |k| (-1077)) (|:| |c| $))) $)))) (-964)) (T -1178))
+((-2287 (*1 *2 *1) (-12 (-5 *2 (-1171 (-1077) *3)) (-5 *1 (-1178 *3)) (-4 *3 (-964)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1171 (-1077) *3)) (-4 *3 (-964)) (-5 *1 (-1178 *3)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1077)) (|:| |c| (-1178 *3))))) (-5 *1 (-1178 *3)) (-4 *3 (-964)))))
+(-13 (-1177 (-1077) |#1|) (-10 -8 (-15 -2287 ((-1171 (-1077) |#1|) $)) (-15 -2260 ($ (-1171 (-1077) |#1|))) (-15 -2342 ((-583 (-2 (|:| |k| (-1077)) (|:| |c| $))) $))))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL)) (-3402 ((|#2| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) 35)) (-2843 (((-107) $) 30)) (-1320 (($ $) 31)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ |#2| |#1|) NIL)) (-4114 ((|#2| $) 19)) (-3614 ((|#2| $) 16)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3758 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2325 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1968 (((-107) $) 27)) (-1373 ((|#1| $) 28)) (-2262 (((-787) $) 54) (($ (-517)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ |#2|) NIL)) (-1570 ((|#1| $ |#2|) 24)) (-1818 (((-703)) 14)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 25 T CONST)) (-3675 (($) 11 T CONST)) (-1226 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1572 (((-107) $ $) 26)) (-1692 (($ $ |#1|) 56 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 43)) (** (($ $ (-845)) NIL) (($ $ (-703)) 45)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3573 (((-703) $) 15)))
+(((-1179 |#1| |#2|) (-13 (-964) (-1170 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3573 ((-703) $)) (-15 -2262 ($ |#2|)) (-15 -3614 (|#2| $)) (-15 -4114 (|#2| $)) (-15 -2364 ($ $)) (-15 -1570 (|#1| $ |#2|)) (-15 -1968 ((-107) $)) (-15 -1373 (|#1| $)) (-15 -2843 ((-107) $)) (-15 -1320 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1692 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|) (IF (|has| |#1| (-6 -4192)) (-6 -4192) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) (-964) (-775)) (T -1179))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-1179 *3 *4)) (-4 *4 (-775)))) (-2262 (*1 *1 *2) (-12 (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)) (-4 *2 (-775)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) (-4 *4 (-775)))) (-3614 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)))) (-4114 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)))) (-1570 (*1 *2 *1 *3) (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) (-4 *4 (-775)))) (-1373 (*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) (-4 *4 (-775)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-333)) (-4 *2 (-964)) (-4 *3 (-775)))))
+(-13 (-964) (-1170 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3573 ((-703) $)) (-15 -2262 ($ |#2|)) (-15 -3614 (|#2| $)) (-15 -4114 (|#2| $)) (-15 -2364 ($ $)) (-15 -1570 (|#1| $ |#2|)) (-15 -1968 ((-107) $)) (-15 -1373 (|#1| $)) (-15 -2843 ((-107) $)) (-15 -1320 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1692 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|) (IF (|has| |#1| (-6 -4192)) (-6 -4192) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 120)) (-2260 (($ (-1171 |#1| |#2|)) 44)) (-1855 (($ $ (-703)) 32)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ $) 48 (|has| |#2| (-156))) (($ $ (-703)) 46 (|has| |#2| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ |#1|) 102) (($ $ (-751 |#1|)) 103) (($ $ $) 25)) (-3220 (((-3 (-751 |#1|) "failed") $) NIL)) (-3402 (((-751 |#1|) $) NIL)) (-3550 (((-3 $ "failed") $) 110)) (-2843 (((-107) $) 105)) (-1320 (($ $) 106)) (-1690 (((-107) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 |#1|) |#2|) 19)) (-2833 (($ $) NIL)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4114 (((-751 |#1|) $) 111)) (-3614 (((-751 |#1|) $) 114)) (-3312 (($ (-1 |#2| |#2|) $) 119)) (-2388 (($ $ |#1|) 100) (($ $ (-751 |#1|)) 101) (($ $ $) 56)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2287 (((-1171 |#1| |#2|) $) 84)) (-1191 (((-703) $) 117)) (-1968 (((-107) $) 70)) (-1373 ((|#2| $) 28)) (-2262 (((-787) $) 63) (($ (-517)) 77) (($ |#2|) 74) (($ (-751 |#1|)) 17) (($ |#1|) 73)) (-1570 ((|#2| $ (-751 |#1|)) 104) ((|#2| $ $) 27)) (-1818 (((-703)) 108)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 14 T CONST)) (-2342 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3675 (($) 29 T CONST)) (-1572 (((-107) $ $) 13)) (-1680 (($ $) 88) (($ $ $) 91)) (-1666 (($ $ $) 55)) (** (($ $ (-845)) NIL) (($ $ (-703)) 49)) (* (($ (-845) $) NIL) (($ (-703) $) 47) (($ (-517) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1180 |#1| |#2|) (-13 (-1177 |#1| |#2|) (-10 -8 (-15 -2287 ((-1171 |#1| |#2|) $)) (-15 -2260 ($ (-1171 |#1| |#2|))) (-15 -2342 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-964)) (T -1180))
+((-2287 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *1 (-1180 *3 *4)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1180 *3 *4))))) (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))))
+(-13 (-1177 |#1| |#2|) (-10 -8 (-15 -2287 ((-1171 |#1| |#2|) $)) (-15 -2260 ($ (-1171 |#1| |#2|))) (-15 -2342 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1318 (((-583 (-1058 |#1|)) (-1 (-583 (-1058 |#1|)) (-583 (-1058 |#1|))) (-517)) 15) (((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|))) 11)))
+(((-1181 |#1|) (-10 -7 (-15 -1318 ((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|)))) (-15 -1318 ((-583 (-1058 |#1|)) (-1 (-583 (-1058 |#1|)) (-583 (-1058 |#1|))) (-517)))) (-1112)) (T -1181))
+((-1318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1058 *5)) (-583 (-1058 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1058 *5))) (-5 *1 (-1181 *5)) (-4 *5 (-1112)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-1 (-1058 *4) (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1112)))))
+(-10 -7 (-15 -1318 ((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|)))) (-15 -1318 ((-583 (-1058 |#1|)) (-1 (-583 (-1058 |#1|)) (-583 (-1058 |#1|))) (-517))))
+((-1317 (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|))) 146) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107)) 145) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)) 144) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107) (-107)) 143) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-961 |#1| |#2|)) 128)) (-2244 (((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|))) 71) (((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107)) 70) (((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107) (-107)) 69)) (-3306 (((-583 (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-961 |#1| |#2|)) 60)) (-3695 (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|))) 113) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107)) 112) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107)) 111) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107) (-107)) 110) (((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|)) 105)) (-2136 (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|))) 118) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107)) 117) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107)) 116) (((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|)) 115)) (-3367 (((-583 (-712 |#1| (-789 |#3|))) (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 97) (((-1073 (-942 (-377 |#1|))) (-1073 |#1|)) 88) (((-876 (-942 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 95) (((-876 (-942 (-377 |#1|))) (-876 |#1|)) 93) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 33)))
+(((-1182 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-961 |#1| |#2|))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -3306 ((-583 (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-961 |#1| |#2|))) (-15 -3367 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-876 |#1|))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3367 ((-1073 (-942 (-377 |#1|))) (-1073 |#1|))) (-15 -3367 ((-583 (-712 |#1| (-789 |#3|))) (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-940)) (-583 (-1077)) (-583 (-1077))) (T -1182))
+((-3367 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-1073 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077))) (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-2136 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-3695 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-3695 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-1317 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) (-5 *1 (-1182 *4 *5 *6)) (-5 *3 (-583 (-876 *4))) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-1317 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-1317 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-1317 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-961 *4 *5))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-2244 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-2244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))))
+(-10 -7 (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-961 |#1| |#2|))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -3306 ((-583 (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-961 |#1| |#2|))) (-15 -3367 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-876 |#1|))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3367 ((-1073 (-942 (-377 |#1|))) (-1073 |#1|))) (-15 -3367 ((-583 (-712 |#1| (-789 |#3|))) (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
+((-2405 (((-3 (-1158 (-377 (-517))) "failed") (-1158 |#1|) |#1|) 17)) (-3201 (((-107) (-1158 |#1|)) 11)) (-2994 (((-3 (-1158 (-517)) "failed") (-1158 |#1|)) 14)))
+(((-1183 |#1|) (-10 -7 (-15 -3201 ((-107) (-1158 |#1|))) (-15 -2994 ((-3 (-1158 (-517)) "failed") (-1158 |#1|))) (-15 -2405 ((-3 (-1158 (-377 (-517))) "failed") (-1158 |#1|) |#1|))) (-579 (-517))) (T -1183))
+((-2405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1158 (-377 (-517)))) (-5 *1 (-1183 *4)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1158 (-517))) (-5 *1 (-1183 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1183 *4)))))
+(-10 -7 (-15 -3201 ((-107) (-1158 |#1|))) (-15 -2994 ((-3 (-1158 (-517)) "failed") (-1158 |#1|))) (-15 -2405 ((-3 (-1158 (-377 (-517))) "failed") (-1158 |#1|) |#1|)))
+((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 11)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703)) 8)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) 43)) (-2192 (($) 36)) (-1690 (((-107) $) NIL)) (-1639 (((-3 $ "failed") $) 29)) (-4161 (((-845) $) 15)) (-3232 (((-1060) $) NIL)) (-2578 (($) 25 T CONST)) (-2803 (($ (-845)) 37)) (-4130 (((-1024) $) NIL)) (-3367 (((-517) $) 13)) (-2262 (((-787) $) 22) (($ (-517)) 19)) (-1818 (((-703)) 9)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 23 T CONST)) (-3675 (($) 24 T CONST)) (-1572 (((-107) $ $) 27)) (-1680 (($ $) 38) (($ $ $) 35)) (-1666 (($ $ $) 26)) (** (($ $ (-845)) NIL) (($ $ (-703)) 40)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
+(((-1184 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1053)) (-845)) (T -1184))
+NIL
+(-13 (-156) (-338) (-558 (-517)) (-1053))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-1189 3128685 3128690 3128695 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3128670 3128675 3128680 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3128655 3128660 3128665 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3128640 3128645 3128650 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3128625 3128630 3128635 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1184 3127755 3128500 3128577 "ZMOD" 3128582 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1183 3126865 3127029 3127238 "ZLINDEP" 3127587 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1182 3116269 3118014 3119966 "ZDSOLVE" 3125014 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1181 3115515 3115656 3115845 "YSTREAM" 3116115 NIL YSTREAM (NIL T) -7 NIL NIL) (-1180 3113283 3114820 3115023 "XRPOLY" 3115358 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1179 3109745 3111074 3111656 "XPR" 3112747 NIL XPR (NIL T T) -8 NIL NIL) (-1178 3107459 3109080 3109283 "XPOLY" 3109576 NIL XPOLY (NIL T) -8 NIL NIL) (-1177 3105272 3106650 3106705 "XPOLYC" 3106990 NIL XPOLYC (NIL T T) -9 NIL 3107103) (-1176 3101644 3103789 3104177 "XPBWPOLY" 3104930 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1175 3097571 3099884 3099927 "XF" 3100548 NIL XF (NIL T) -9 NIL 3100947) (-1174 3097192 3097280 3097449 "XF-" 3097454 NIL XF- (NIL T T) -8 NIL NIL) (-1173 3092571 3093870 3093925 "XFALG" 3096073 NIL XFALG (NIL T T) -9 NIL 3096860) (-1172 3091708 3091812 3092016 "XEXPPKG" 3092463 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1171 3089806 3091559 3091654 "XDPOLY" 3091659 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1170 3088684 3089294 3089337 "XALG" 3089399 NIL XALG (NIL T) -9 NIL 3089518) (-1169 3082160 3086668 3087161 "WUTSET" 3088276 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1168 3079972 3080779 3081130 "WP" 3081942 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1167 3078858 3079056 3079351 "WFFINTBS" 3079769 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1166 3076762 3077189 3077651 "WEIER" 3078430 NIL WEIER (NIL T) -7 NIL NIL) (-1165 3075910 3076334 3076377 "VSPACE" 3076513 NIL VSPACE (NIL T) -9 NIL 3076587) (-1164 3075748 3075775 3075866 "VSPACE-" 3075871 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1163 3075494 3075537 3075608 "VOID" 3075699 T VOID (NIL) -8 NIL NIL) (-1162 3073630 3073989 3074395 "VIEW" 3075110 T VIEW (NIL) -7 NIL NIL) (-1161 3070055 3070693 3071430 "VIEWDEF" 3072915 T VIEWDEF (NIL) -7 NIL NIL) (-1160 3059394 3061603 3063776 "VIEW3D" 3067904 T VIEW3D (NIL) -8 NIL NIL) (-1159 3051676 3053305 3054884 "VIEW2D" 3057837 T VIEW2D (NIL) -8 NIL NIL) (-1158 3047085 3051446 3051538 "VECTOR" 3051619 NIL VECTOR (NIL T) -8 NIL NIL) (-1157 3045662 3045921 3046239 "VECTOR2" 3046815 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1156 3039201 3043453 3043497 "VECTCAT" 3044485 NIL VECTCAT (NIL T) -9 NIL 3045069) (-1155 3038215 3038469 3038859 "VECTCAT-" 3038864 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1154 3037696 3037866 3037986 "VARIABLE" 3038130 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1153 3037628 3037633 3037664 "UTYPE" 3037669 T UTYPE (NIL) -9 NIL NIL) (-1152 3036463 3036617 3036878 "UTSODETL" 3037454 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1151 3033903 3034363 3034887 "UTSODE" 3036004 NIL UTSODE (NIL T T) -7 NIL NIL) (-1150 3025750 3031543 3032031 "UTS" 3033472 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1149 3017098 3022460 3022503 "UTSCAT" 3023604 NIL UTSCAT (NIL T) -9 NIL 3024361) (-1148 3014454 3015169 3016157 "UTSCAT-" 3016162 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1147 3014085 3014128 3014259 "UTS2" 3014405 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1146 3008360 3010925 3010969 "URAGG" 3013039 NIL URAGG (NIL T) -9 NIL 3013761) (-1145 3005299 3006162 3007285 "URAGG-" 3007290 NIL URAGG- (NIL T T) -8 NIL NIL) (-1144 3000985 3003916 3004387 "UPXSSING" 3004963 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1143 2992879 3000106 3000386 "UPXS" 3000762 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1142 2985911 2992784 2992855 "UPXSCONS" 2992860 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1141 2976203 2983030 2983092 "UPXSCCA" 2983741 NIL UPXSCCA (NIL T T) -9 NIL 2983982) (-1140 2975842 2975927 2976100 "UPXSCCA-" 2976105 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1139 2966056 2972656 2972699 "UPXSCAT" 2973342 NIL UPXSCAT (NIL T) -9 NIL 2973950) (-1138 2965490 2965569 2965746 "UPXS2" 2965971 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1137 2964144 2964397 2964748 "UPSQFREE" 2965233 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1136 2958039 2961091 2961146 "UPSCAT" 2962295 NIL UPSCAT (NIL T T) -9 NIL 2963068) (-1135 2957253 2957457 2957780 "UPSCAT-" 2957785 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1134 2943385 2951382 2951425 "UPOLYC" 2953503 NIL UPOLYC (NIL T) -9 NIL 2954723) (-1133 2934778 2937182 2940307 "UPOLYC-" 2940312 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1132 2934409 2934452 2934583 "UPOLYC2" 2934729 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1131 2925868 2933978 2934115 "UP" 2934319 NIL UP (NIL NIL T) -8 NIL NIL) (-1130 2925211 2925318 2925481 "UPMP" 2925757 NIL UPMP (NIL T T) -7 NIL NIL) (-1129 2924764 2924845 2924984 "UPDIVP" 2925124 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1128 2923332 2923581 2923897 "UPDECOMP" 2924513 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1127 2922567 2922679 2922864 "UPCDEN" 2923216 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1126 2922090 2922159 2922306 "UP2" 2922492 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1125 2920607 2921294 2921571 "UNISEG" 2921848 NIL UNISEG (NIL T) -8 NIL NIL) (-1124 2919822 2919949 2920154 "UNISEG2" 2920450 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1123 2918882 2919062 2919288 "UNIFACT" 2919638 NIL UNIFACT (NIL T) -7 NIL NIL) (-1122 2902781 2918063 2918313 "ULS" 2918689 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1121 2890749 2902686 2902757 "ULSCONS" 2902762 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1120 2873502 2885512 2885574 "ULSCCAT" 2886286 NIL ULSCCAT (NIL T T) -9 NIL 2886582) (-1119 2872553 2872798 2873185 "ULSCCAT-" 2873190 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1118 2862546 2869060 2869103 "ULSCAT" 2869959 NIL ULSCAT (NIL T) -9 NIL 2870689) (-1117 2861980 2862059 2862236 "ULS2" 2862461 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1116 2860377 2861344 2861375 "UFD" 2861587 T UFD (NIL) -9 NIL 2861701) (-1115 2860171 2860217 2860312 "UFD-" 2860317 NIL UFD- (NIL T) -8 NIL NIL) (-1114 2859253 2859436 2859652 "UDVO" 2859977 T UDVO (NIL) -7 NIL NIL) (-1113 2857069 2857478 2857949 "UDPO" 2858817 NIL UDPO (NIL T) -7 NIL NIL) (-1112 2857001 2857006 2857037 "TYPE" 2857042 T TYPE (NIL) -9 NIL NIL) (-1111 2855972 2856174 2856414 "TWOFACT" 2856795 NIL TWOFACT (NIL T) -7 NIL NIL) (-1110 2854910 2855247 2855510 "TUPLE" 2855744 NIL TUPLE (NIL T) -8 NIL NIL) (-1109 2852601 2853120 2853659 "TUBETOOL" 2854393 T TUBETOOL (NIL) -7 NIL NIL) (-1108 2851450 2851655 2851896 "TUBE" 2852394 NIL TUBE (NIL T) -8 NIL NIL) (-1107 2846174 2850428 2850710 "TS" 2851202 NIL TS (NIL T) -8 NIL NIL) (-1106 2834877 2838969 2839066 "TSETCAT" 2844300 NIL TSETCAT (NIL T T T T) -9 NIL 2845831) (-1105 2829612 2831210 2833100 "TSETCAT-" 2833105 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1104 2823875 2824721 2825663 "TRMANIP" 2828748 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1103 2823316 2823379 2823542 "TRIMAT" 2823807 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1102 2821122 2821359 2821722 "TRIGMNIP" 2823065 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1101 2820641 2820754 2820785 "TRIGCAT" 2820998 T TRIGCAT (NIL) -9 NIL NIL) (-1100 2820310 2820389 2820530 "TRIGCAT-" 2820535 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1099 2817209 2819170 2819450 "TREE" 2820065 NIL TREE (NIL T) -8 NIL NIL) (-1098 2816482 2817010 2817041 "TRANFUN" 2817076 T TRANFUN (NIL) -9 NIL 2817142) (-1097 2815761 2815952 2816232 "TRANFUN-" 2816237 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1096 2815565 2815597 2815658 "TOPSP" 2815722 T TOPSP (NIL) -7 NIL NIL) (-1095 2814917 2815032 2815185 "TOOLSIGN" 2815446 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1094 2813578 2814094 2814333 "TEXTFILE" 2814700 T TEXTFILE (NIL) -8 NIL NIL) (-1093 2811443 2811957 2812395 "TEX" 2813162 T TEX (NIL) -8 NIL NIL) (-1092 2811224 2811255 2811327 "TEX1" 2811406 NIL TEX1 (NIL T) -7 NIL NIL) (-1091 2810872 2810935 2811025 "TEMUTL" 2811156 T TEMUTL (NIL) -7 NIL NIL) (-1090 2809026 2809306 2809631 "TBCMPPK" 2810595 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1089 2800914 2807186 2807243 "TBAGG" 2807643 NIL TBAGG (NIL T T) -9 NIL 2807854) (-1088 2795984 2797472 2799226 "TBAGG-" 2799231 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1087 2795368 2795475 2795620 "TANEXP" 2795873 NIL TANEXP (NIL T) -7 NIL NIL) (-1086 2788869 2795225 2795318 "TABLE" 2795323 NIL TABLE (NIL T T) -8 NIL NIL) (-1085 2788282 2788380 2788518 "TABLEAU" 2788766 NIL TABLEAU (NIL T) -8 NIL NIL) (-1084 2782890 2784110 2785358 "TABLBUMP" 2787068 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1083 2779353 2780048 2780831 "SYSSOLP" 2782141 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1082 2775737 2776340 2777080 "SYNTAX" 2778635 T SYNTAX (NIL) -8 NIL NIL) (-1081 2772871 2773479 2774117 "SYMTAB" 2775121 T SYMTAB (NIL) -8 NIL NIL) (-1080 2768120 2769022 2770005 "SYMS" 2771910 T SYMS (NIL) -8 NIL NIL) (-1079 2765353 2767580 2767809 "SYMPOLY" 2767925 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1078 2764873 2764948 2765070 "SYMFUNC" 2765265 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1077 2760851 2762110 2762932 "SYMBOL" 2764073 T SYMBOL (NIL) -8 NIL NIL) (-1076 2754390 2756079 2757799 "SWITCH" 2759153 T SWITCH (NIL) -8 NIL NIL) (-1075 2747623 2753217 2753519 "SUTS" 2754145 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1074 2739516 2746744 2747024 "SUPXS" 2747400 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1073 2731048 2739137 2739262 "SUP" 2739425 NIL SUP (NIL T) -8 NIL NIL) (-1072 2730207 2730334 2730551 "SUPFRACF" 2730916 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1071 2729832 2729891 2730002 "SUP2" 2730142 NIL SUP2 (NIL T T) -7 NIL NIL) (-1070 2728258 2728530 2728890 "SUMRF" 2729533 NIL SUMRF (NIL T) -7 NIL NIL) (-1069 2727579 2727644 2727841 "SUMFS" 2728180 NIL SUMFS (NIL T T) -7 NIL NIL) (-1068 2711518 2726760 2727010 "SULS" 2727386 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1067 2710840 2711043 2711183 "SUCH" 2711426 NIL SUCH (NIL T T) -8 NIL NIL) (-1066 2704767 2705779 2706737 "SUBSPACE" 2709928 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1065 2704197 2704287 2704451 "SUBRESP" 2704655 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1064 2697566 2698862 2700173 "STTF" 2702933 NIL STTF (NIL T) -7 NIL NIL) (-1063 2691739 2692859 2694006 "STTFNC" 2696466 NIL STTFNC (NIL T) -7 NIL NIL) (-1062 2683090 2684957 2686750 "STTAYLOR" 2689980 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1061 2676334 2682954 2683037 "STRTBL" 2683042 NIL STRTBL (NIL T) -8 NIL NIL) (-1060 2671725 2676289 2676320 "STRING" 2676325 T STRING (NIL) -8 NIL NIL) (-1059 2666613 2671098 2671129 "STRICAT" 2671188 T STRICAT (NIL) -9 NIL 2671250) (-1058 2659329 2664136 2664756 "STREAM" 2666028 NIL STREAM (NIL T) -8 NIL NIL) (-1057 2658839 2658916 2659060 "STREAM3" 2659246 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1056 2657821 2658004 2658239 "STREAM2" 2658652 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1055 2657509 2657561 2657654 "STREAM1" 2657763 NIL STREAM1 (NIL T) -7 NIL NIL) (-1054 2656525 2656706 2656937 "STINPROD" 2657325 NIL STINPROD (NIL T) -7 NIL NIL) (-1053 2656103 2656287 2656318 "STEP" 2656398 T STEP (NIL) -9 NIL 2656476) (-1052 2649646 2656002 2656079 "STBL" 2656084 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1051 2644821 2648868 2648912 "STAGG" 2649065 NIL STAGG (NIL T) -9 NIL 2649154) (-1050 2642523 2643125 2643997 "STAGG-" 2644002 NIL STAGG- (NIL T T) -8 NIL NIL) (-1049 2640718 2642293 2642385 "STACK" 2642466 NIL STACK (NIL T) -8 NIL NIL) (-1048 2633449 2638865 2639320 "SREGSET" 2640348 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1047 2625889 2627257 2628769 "SRDCMPK" 2632055 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1046 2618856 2623329 2623360 "SRAGG" 2624663 T SRAGG (NIL) -9 NIL 2625271) (-1045 2617873 2618128 2618507 "SRAGG-" 2618512 NIL SRAGG- (NIL T) -8 NIL NIL) (-1044 2612322 2616792 2617219 "SQMATRIX" 2617492 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1043 2606074 2609042 2609768 "SPLTREE" 2611668 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1042 2602064 2602730 2603376 "SPLNODE" 2605500 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1041 2601110 2601343 2601374 "SPFCAT" 2601818 T SPFCAT (NIL) -9 NIL NIL) (-1040 2599847 2600057 2600321 "SPECOUT" 2600868 T SPECOUT (NIL) -7 NIL NIL) (-1039 2599608 2599648 2599717 "SPADPRSR" 2599800 T SPADPRSR (NIL) -7 NIL NIL) (-1038 2591630 2593377 2593420 "SPACEC" 2597743 NIL SPACEC (NIL T) -9 NIL 2599559) (-1037 2589802 2591563 2591611 "SPACE3" 2591616 NIL SPACE3 (NIL T) -8 NIL NIL) (-1036 2588554 2588725 2589016 "SORTPAK" 2589607 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1035 2586610 2586913 2587331 "SOLVETRA" 2588218 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1034 2585621 2585843 2586117 "SOLVESER" 2586383 NIL SOLVESER (NIL T) -7 NIL NIL) (-1033 2580841 2581722 2582724 "SOLVERAD" 2584673 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1032 2576656 2577265 2577994 "SOLVEFOR" 2580208 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1031 2570955 2576007 2576104 "SNTSCAT" 2576109 NIL SNTSCAT (NIL T T T T) -9 NIL 2576179) (-1030 2565060 2569286 2569676 "SMTS" 2570645 NIL SMTS (NIL T T T) -8 NIL NIL) (-1029 2559471 2564949 2565025 "SMP" 2565030 NIL SMP (NIL T T) -8 NIL NIL) (-1028 2557630 2557931 2558329 "SMITH" 2559168 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1027 2550594 2554790 2554893 "SMATCAT" 2556233 NIL SMATCAT (NIL NIL T T T) -9 NIL 2556782) (-1026 2547535 2548358 2549535 "SMATCAT-" 2549540 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1025 2545248 2546771 2546815 "SKAGG" 2547076 NIL SKAGG (NIL T) -9 NIL 2547211) (-1024 2541306 2544352 2544630 "SINT" 2544992 T SINT (NIL) -8 NIL NIL) (-1023 2541078 2541116 2541182 "SIMPAN" 2541262 T SIMPAN (NIL) -7 NIL NIL) (-1022 2539916 2540137 2540412 "SIGNRF" 2540837 NIL SIGNRF (NIL T) -7 NIL NIL) (-1021 2538725 2538876 2539166 "SIGNEF" 2539745 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1020 2536415 2536869 2537375 "SHP" 2538266 NIL SHP (NIL T NIL) -7 NIL NIL) (-1019 2530268 2536316 2536392 "SHDP" 2536397 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1018 2529757 2529949 2529980 "SGROUP" 2530132 T SGROUP (NIL) -9 NIL 2530219) (-1017 2529527 2529579 2529683 "SGROUP-" 2529688 NIL SGROUP- (NIL T) -8 NIL NIL) (-1016 2526363 2527060 2527783 "SGCF" 2528826 T SGCF (NIL) -7 NIL NIL) (-1015 2520761 2525813 2525910 "SFRTCAT" 2525915 NIL SFRTCAT (NIL T T T T) -9 NIL 2525953) (-1014 2514221 2515236 2516370 "SFRGCD" 2519744 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1013 2507387 2508458 2509642 "SFQCMPK" 2513154 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1012 2507009 2507098 2507208 "SFORT" 2507328 NIL SFORT (NIL T T) -8 NIL NIL) (-1011 2506154 2506849 2506970 "SEXOF" 2506975 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1010 2505288 2506035 2506103 "SEX" 2506108 T SEX (NIL) -8 NIL NIL) (-1009 2500064 2500753 2500849 "SEXCAT" 2504620 NIL SEXCAT (NIL T T T T T) -9 NIL 2505239) (-1008 2497244 2499998 2500046 "SET" 2500051 NIL SET (NIL T) -8 NIL NIL) (-1007 2495495 2495957 2496262 "SETMN" 2496985 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1006 2495102 2495228 2495259 "SETCAT" 2495376 T SETCAT (NIL) -9 NIL 2495460) (-1005 2494882 2494934 2495033 "SETCAT-" 2495038 NIL SETCAT- (NIL T) -8 NIL NIL) (-1004 2491269 2493343 2493387 "SETAGG" 2494257 NIL SETAGG (NIL T) -9 NIL 2494597) (-1003 2490727 2490843 2491080 "SETAGG-" 2491085 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1002 2489930 2490223 2490285 "SEGXCAT" 2490571 NIL SEGXCAT (NIL T T) -9 NIL 2490691) (-1001 2488986 2489596 2489778 "SEG" 2489783 NIL SEG (NIL T) -8 NIL NIL) (-1000 2487892 2488105 2488149 "SEGCAT" 2488731 NIL SEGCAT (NIL T) -9 NIL 2488969) (-999 2486946 2487276 2487474 "SEGBIND" 2487727 NIL SEGBIND (NIL T) -8 NIL NIL) (-998 2486578 2486635 2486744 "SEGBIND2" 2486883 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-997 2485801 2485927 2486129 "SEG2" 2486422 NIL SEG2 (NIL T T) -7 NIL NIL) (-996 2485240 2485738 2485783 "SDVAR" 2485788 NIL SDVAR (NIL T) -8 NIL NIL) (-995 2477546 2485019 2485143 "SDPOL" 2485148 NIL SDPOL (NIL T) -8 NIL NIL) (-994 2476145 2476411 2476728 "SCPKG" 2477261 NIL SCPKG (NIL T) -7 NIL NIL) (-993 2475372 2475505 2475682 "SCACHE" 2476000 NIL SCACHE (NIL T) -7 NIL NIL) (-992 2474815 2475136 2475219 "SAOS" 2475309 T SAOS (NIL) -8 NIL NIL) (-991 2474383 2474418 2474589 "SAERFFC" 2474774 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-990 2468279 2474282 2474360 "SAE" 2474365 NIL SAE (NIL T T NIL) -8 NIL NIL) (-989 2467875 2467910 2468067 "SAEFACT" 2468238 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-988 2466201 2466515 2466914 "RURPK" 2467541 NIL RURPK (NIL T NIL) -7 NIL NIL) (-987 2464854 2465131 2465438 "RULESET" 2466037 NIL RULESET (NIL T T T) -8 NIL NIL) (-986 2462062 2462565 2463026 "RULE" 2464536 NIL RULE (NIL T T T) -8 NIL NIL) (-985 2461704 2461859 2461940 "RULECOLD" 2462014 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-984 2456596 2457390 2458306 "RSETGCD" 2460903 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-983 2445910 2450962 2451057 "RSETCAT" 2455122 NIL RSETCAT (NIL T T T T) -9 NIL 2456219) (-982 2443841 2444380 2445200 "RSETCAT-" 2445205 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-981 2436271 2437646 2439162 "RSDCMPK" 2442440 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-980 2434288 2434729 2434802 "RRCC" 2435878 NIL RRCC (NIL T T) -9 NIL 2436222) (-979 2433642 2433816 2434092 "RRCC-" 2434097 NIL RRCC- (NIL T T T) -8 NIL NIL) (-978 2408008 2417633 2417698 "RPOLCAT" 2428200 NIL RPOLCAT (NIL T T T) -9 NIL 2431358) (-977 2399512 2401850 2404968 "RPOLCAT-" 2404973 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-976 2390578 2397742 2398222 "ROUTINE" 2399052 T ROUTINE (NIL) -8 NIL NIL) (-975 2387283 2390134 2390281 "ROMAN" 2390451 T ROMAN (NIL) -8 NIL NIL) (-974 2385569 2386154 2386411 "ROIRC" 2387089 NIL ROIRC (NIL T T) -8 NIL NIL) (-973 2381973 2384277 2384306 "RNS" 2384602 T RNS (NIL) -9 NIL 2384872) (-972 2380487 2380870 2381401 "RNS-" 2381474 NIL RNS- (NIL T) -8 NIL NIL) (-971 2379912 2380320 2380349 "RNG" 2380354 T RNG (NIL) -9 NIL 2380375) (-970 2379309 2379671 2379712 "RMODULE" 2379772 NIL RMODULE (NIL T) -9 NIL 2379814) (-969 2378161 2378255 2378585 "RMCAT2" 2379210 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-968 2374875 2377344 2377665 "RMATRIX" 2377896 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-967 2367871 2370105 2370218 "RMATCAT" 2373527 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2374509) (-966 2367250 2367397 2367700 "RMATCAT-" 2367705 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-965 2366820 2366895 2367021 "RINTERP" 2367169 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-964 2365870 2366434 2366463 "RING" 2366573 T RING (NIL) -9 NIL 2366667) (-963 2365665 2365709 2365803 "RING-" 2365808 NIL RING- (NIL T) -8 NIL NIL) (-962 2364513 2364750 2365006 "RIDIST" 2365429 T RIDIST (NIL) -7 NIL NIL) (-961 2355835 2363987 2364190 "RGCHAIN" 2364362 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-960 2352840 2353454 2354122 "RF" 2355199 NIL RF (NIL T) -7 NIL NIL) (-959 2352489 2352552 2352653 "RFFACTOR" 2352771 NIL RFFACTOR (NIL T) -7 NIL NIL) (-958 2352217 2352252 2352347 "RFFACT" 2352448 NIL RFFACT (NIL T) -7 NIL NIL) (-957 2350347 2350711 2351091 "RFDIST" 2351857 T RFDIST (NIL) -7 NIL NIL) (-956 2349805 2349897 2350057 "RETSOL" 2350249 NIL RETSOL (NIL T T) -7 NIL NIL) (-955 2349397 2349477 2349519 "RETRACT" 2349709 NIL RETRACT (NIL T) -9 NIL NIL) (-954 2349249 2349274 2349358 "RETRACT-" 2349363 NIL RETRACT- (NIL T T) -8 NIL NIL) (-953 2342107 2348906 2349031 "RESULT" 2349144 T RESULT (NIL) -8 NIL NIL) (-952 2340692 2341381 2341578 "RESRING" 2342010 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-951 2340332 2340381 2340477 "RESLATC" 2340629 NIL RESLATC (NIL T) -7 NIL NIL) (-950 2340041 2340075 2340180 "REPSQ" 2340291 NIL REPSQ (NIL T) -7 NIL NIL) (-949 2337472 2338052 2338652 "REP" 2339461 T REP (NIL) -7 NIL NIL) (-948 2337173 2337207 2337316 "REPDB" 2337431 NIL REPDB (NIL T) -7 NIL NIL) (-947 2331118 2332497 2333717 "REP2" 2335985 NIL REP2 (NIL T) -7 NIL NIL) (-946 2327524 2328205 2329010 "REP1" 2330345 NIL REP1 (NIL T) -7 NIL NIL) (-945 2320270 2325685 2326137 "REGSET" 2327155 NIL REGSET (NIL T T T T) -8 NIL NIL) (-944 2319091 2319426 2319674 "REF" 2320055 NIL REF (NIL T) -8 NIL NIL) (-943 2318472 2318575 2318740 "REDORDER" 2318975 NIL REDORDER (NIL T T) -7 NIL NIL) (-942 2314441 2317706 2317927 "RECLOS" 2318303 NIL RECLOS (NIL T) -8 NIL NIL) (-941 2313498 2313679 2313892 "REALSOLV" 2314248 T REALSOLV (NIL) -7 NIL NIL) (-940 2313345 2313386 2313415 "REAL" 2313420 T REAL (NIL) -9 NIL 2313455) (-939 2309836 2310638 2311520 "REAL0Q" 2312510 NIL REAL0Q (NIL T) -7 NIL NIL) (-938 2305447 2306435 2307494 "REAL0" 2308817 NIL REAL0 (NIL T) -7 NIL NIL) (-937 2304855 2304927 2305132 "RDIV" 2305369 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-936 2303928 2304102 2304313 "RDIST" 2304677 NIL RDIST (NIL T) -7 NIL NIL) (-935 2302532 2302819 2303188 "RDETRS" 2303636 NIL RDETRS (NIL T T) -7 NIL NIL) (-934 2300353 2300807 2301342 "RDETR" 2302074 NIL RDETR (NIL T T) -7 NIL NIL) (-933 2298969 2299247 2299648 "RDEEFS" 2300069 NIL RDEEFS (NIL T T) -7 NIL NIL) (-932 2297469 2297775 2298204 "RDEEF" 2298657 NIL RDEEF (NIL T T) -7 NIL NIL) (-931 2291753 2294685 2294714 "RCFIELD" 2295991 T RCFIELD (NIL) -9 NIL 2296721) (-930 2289822 2290326 2291019 "RCFIELD-" 2291092 NIL RCFIELD- (NIL T) -8 NIL NIL) (-929 2286153 2287938 2287980 "RCAGG" 2289051 NIL RCAGG (NIL T) -9 NIL 2289516) (-928 2285784 2285878 2286038 "RCAGG-" 2286043 NIL RCAGG- (NIL T T) -8 NIL NIL) (-927 2285129 2285240 2285402 "RATRET" 2285668 NIL RATRET (NIL T) -7 NIL NIL) (-926 2284686 2284753 2284872 "RATFACT" 2285057 NIL RATFACT (NIL T) -7 NIL NIL) (-925 2284001 2284121 2284271 "RANDSRC" 2284556 T RANDSRC (NIL) -7 NIL NIL) (-924 2283738 2283782 2283853 "RADUTIL" 2283950 T RADUTIL (NIL) -7 NIL NIL) (-923 2276745 2282481 2282798 "RADIX" 2283453 NIL RADIX (NIL NIL) -8 NIL NIL) (-922 2268315 2276589 2276717 "RADFF" 2276722 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-921 2267966 2268041 2268070 "RADCAT" 2268227 T RADCAT (NIL) -9 NIL NIL) (-920 2267751 2267799 2267896 "RADCAT-" 2267901 NIL RADCAT- (NIL T) -8 NIL NIL) (-919 2265902 2267526 2267615 "QUEUE" 2267695 NIL QUEUE (NIL T) -8 NIL NIL) (-918 2262399 2265839 2265884 "QUAT" 2265889 NIL QUAT (NIL T) -8 NIL NIL) (-917 2262037 2262080 2262207 "QUATCT2" 2262350 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-916 2255830 2259210 2259251 "QUATCAT" 2260030 NIL QUATCAT (NIL T) -9 NIL 2260795) (-915 2251974 2253011 2254398 "QUATCAT-" 2254492 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-914 2249494 2251058 2251100 "QUAGG" 2251475 NIL QUAGG (NIL T) -9 NIL 2251650) (-913 2248419 2248892 2249064 "QFORM" 2249366 NIL QFORM (NIL NIL T) -8 NIL NIL) (-912 2239715 2244973 2245014 "QFCAT" 2245672 NIL QFCAT (NIL T) -9 NIL 2246665) (-911 2235287 2236488 2238079 "QFCAT-" 2238173 NIL QFCAT- (NIL T T) -8 NIL NIL) (-910 2234925 2234968 2235095 "QFCAT2" 2235238 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-909 2234385 2234495 2234625 "QEQUAT" 2234815 T QEQUAT (NIL) -8 NIL NIL) (-908 2227571 2228642 2229824 "QCMPACK" 2233318 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-907 2225147 2225568 2225996 "QALGSET" 2227226 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-906 2224392 2224566 2224798 "QALGSET2" 2224967 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-905 2223083 2223306 2223623 "PWFFINTB" 2224165 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-904 2221271 2221439 2221792 "PUSHVAR" 2222897 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-903 2217188 2218242 2218284 "PTRANFN" 2220168 NIL PTRANFN (NIL T) -9 NIL NIL) (-902 2215600 2215891 2216212 "PTPACK" 2216899 NIL PTPACK (NIL T) -7 NIL NIL) (-901 2215236 2215293 2215400 "PTFUNC2" 2215537 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-900 2209712 2214053 2214094 "PTCAT" 2214462 NIL PTCAT (NIL T) -9 NIL 2214624) (-899 2209370 2209405 2209529 "PSQFR" 2209671 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-898 2207965 2208263 2208597 "PSEUDLIN" 2209068 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-897 2194773 2197137 2199460 "PSETPK" 2205725 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-896 2187859 2190573 2190668 "PSETCAT" 2193649 NIL PSETCAT (NIL T T T T) -9 NIL 2194463) (-895 2185697 2186331 2187150 "PSETCAT-" 2187155 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-894 2185045 2185210 2185239 "PSCURVE" 2185507 T PSCURVE (NIL) -9 NIL 2185674) (-893 2181496 2183022 2183087 "PSCAT" 2183923 NIL PSCAT (NIL T T T) -9 NIL 2184163) (-892 2180560 2180776 2181175 "PSCAT-" 2181180 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-891 2179213 2179845 2180059 "PRTITION" 2180366 T PRTITION (NIL) -8 NIL NIL) (-890 2168311 2170517 2172705 "PRS" 2177075 NIL PRS (NIL T T) -7 NIL NIL) (-889 2166169 2167661 2167702 "PRQAGG" 2167885 NIL PRQAGG (NIL T) -9 NIL 2167987) (-888 2165739 2165841 2165870 "PROPLOG" 2166055 T PROPLOG (NIL) -9 NIL NIL) (-887 2159513 2163905 2164725 "PRODUCT" 2164965 NIL PRODUCT (NIL T T) -8 NIL NIL) (-886 2156789 2158973 2159206 "PR" 2159324 NIL PR (NIL T T) -8 NIL NIL) (-885 2156585 2156617 2156676 "PRINT" 2156750 T PRINT (NIL) -7 NIL NIL) (-884 2155925 2156042 2156194 "PRIMES" 2156465 NIL PRIMES (NIL T) -7 NIL NIL) (-883 2153990 2154391 2154857 "PRIMELT" 2155504 NIL PRIMELT (NIL T) -7 NIL NIL) (-882 2153721 2153769 2153798 "PRIMCAT" 2153921 T PRIMCAT (NIL) -9 NIL NIL) (-881 2149882 2153659 2153704 "PRIMARR" 2153709 NIL PRIMARR (NIL T) -8 NIL NIL) (-880 2148889 2149067 2149295 "PRIMARR2" 2149700 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-879 2148532 2148588 2148699 "PREASSOC" 2148827 NIL PREASSOC (NIL T T) -7 NIL NIL) (-878 2148006 2148139 2148168 "PPCURVE" 2148373 T PPCURVE (NIL) -9 NIL 2148509) (-877 2145365 2145764 2146356 "POLYROOT" 2147587 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-876 2139271 2144971 2145130 "POLY" 2145238 NIL POLY (NIL T) -8 NIL NIL) (-875 2138656 2138714 2138947 "POLYLIFT" 2139207 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-874 2134941 2135390 2136018 "POLYCATQ" 2138201 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-873 2121981 2127378 2127443 "POLYCAT" 2130928 NIL POLYCAT (NIL T T T) -9 NIL 2132855) (-872 2115432 2117293 2119676 "POLYCAT-" 2119681 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-871 2115021 2115089 2115208 "POLY2UP" 2115358 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-870 2114657 2114714 2114821 "POLY2" 2114958 NIL POLY2 (NIL T T) -7 NIL NIL) (-869 2113342 2113581 2113857 "POLUTIL" 2114431 NIL POLUTIL (NIL T T) -7 NIL NIL) (-868 2111704 2111981 2112311 "POLTOPOL" 2113064 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-867 2107227 2111641 2111686 "POINT" 2111691 NIL POINT (NIL T) -8 NIL NIL) (-866 2105414 2105771 2106146 "PNTHEORY" 2106872 T PNTHEORY (NIL) -7 NIL NIL) (-865 2103842 2104139 2104548 "PMTOOLS" 2105112 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-864 2103435 2103513 2103630 "PMSYM" 2103758 NIL PMSYM (NIL T) -7 NIL NIL) (-863 2102945 2103014 2103188 "PMQFCAT" 2103360 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-862 2102300 2102410 2102566 "PMPRED" 2102822 NIL PMPRED (NIL T) -7 NIL NIL) (-861 2101696 2101782 2101943 "PMPREDFS" 2102201 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-860 2100342 2100550 2100934 "PMPLCAT" 2101458 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-859 2099874 2099953 2100105 "PMLSAGG" 2100257 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-858 2099351 2099427 2099607 "PMKERNEL" 2099792 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-857 2098968 2099043 2099156 "PMINS" 2099270 NIL PMINS (NIL T) -7 NIL NIL) (-856 2098398 2098467 2098682 "PMFS" 2098893 NIL PMFS (NIL T T T) -7 NIL NIL) (-855 2097629 2097747 2097951 "PMDOWN" 2098275 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-854 2096792 2096951 2097133 "PMASS" 2097467 T PMASS (NIL) -7 NIL NIL) (-853 2096066 2096177 2096340 "PMASSFS" 2096678 NIL PMASSFS (NIL T T) -7 NIL NIL) (-852 2095721 2095789 2095883 "PLOTTOOL" 2095992 T PLOTTOOL (NIL) -7 NIL NIL) (-851 2090343 2091532 2092680 "PLOT" 2094593 T PLOT (NIL) -8 NIL NIL) (-850 2086157 2087191 2088112 "PLOT3D" 2089442 T PLOT3D (NIL) -8 NIL NIL) (-849 2085069 2085246 2085481 "PLOT1" 2085961 NIL PLOT1 (NIL T) -7 NIL NIL) (-848 2060464 2065135 2069986 "PLEQN" 2080335 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-847 2059782 2059904 2060084 "PINTERP" 2060329 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-846 2059475 2059522 2059625 "PINTERPA" 2059729 NIL PINTERPA (NIL T T) -7 NIL NIL) (-845 2058702 2059269 2059362 "PI" 2059402 T PI (NIL) -8 NIL NIL) (-844 2057093 2058078 2058107 "PID" 2058289 T PID (NIL) -9 NIL 2058423) (-843 2056818 2056855 2056943 "PICOERCE" 2057050 NIL PICOERCE (NIL T) -7 NIL NIL) (-842 2056139 2056277 2056453 "PGROEB" 2056674 NIL PGROEB (NIL T) -7 NIL NIL) (-841 2051726 2052540 2053445 "PGE" 2055254 T PGE (NIL) -7 NIL NIL) (-840 2049850 2050096 2050462 "PGCD" 2051443 NIL PGCD (NIL T T T T) -7 NIL NIL) (-839 2049188 2049291 2049452 "PFRPAC" 2049734 NIL PFRPAC (NIL T) -7 NIL NIL) (-838 2045803 2047736 2048089 "PFR" 2048867 NIL PFR (NIL T) -8 NIL NIL) (-837 2044192 2044436 2044761 "PFOTOOLS" 2045550 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-836 2042725 2042964 2043315 "PFOQ" 2043949 NIL PFOQ (NIL T T T) -7 NIL NIL) (-835 2041202 2041414 2041776 "PFO" 2042509 NIL PFO (NIL T T T T T) -7 NIL NIL) (-834 2037725 2041091 2041160 "PF" 2041165 NIL PF (NIL NIL) -8 NIL NIL) (-833 2035153 2036434 2036463 "PFECAT" 2037048 T PFECAT (NIL) -9 NIL 2037432) (-832 2034598 2034752 2034966 "PFECAT-" 2034971 NIL PFECAT- (NIL T) -8 NIL NIL) (-831 2033202 2033453 2033754 "PFBRU" 2034347 NIL PFBRU (NIL T T) -7 NIL NIL) (-830 2031069 2031420 2031852 "PFBR" 2032853 NIL PFBR (NIL T T T T) -7 NIL NIL) (-829 2026921 2028445 2029121 "PERM" 2030426 NIL PERM (NIL T) -8 NIL NIL) (-828 2022187 2023128 2023998 "PERMGRP" 2026084 NIL PERMGRP (NIL T) -8 NIL NIL) (-827 2020257 2021250 2021292 "PERMCAT" 2021738 NIL PERMCAT (NIL T) -9 NIL 2022043) (-826 2019912 2019953 2020076 "PERMAN" 2020210 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-825 2017352 2019481 2019612 "PENDTREE" 2019814 NIL PENDTREE (NIL T) -8 NIL NIL) (-824 2015424 2016202 2016244 "PDRING" 2016901 NIL PDRING (NIL T) -9 NIL 2017186) (-823 2014527 2014745 2015107 "PDRING-" 2015112 NIL PDRING- (NIL T T) -8 NIL NIL) (-822 2011669 2012419 2013110 "PDEPROB" 2013856 T PDEPROB (NIL) -8 NIL NIL) (-821 2009240 2009736 2010285 "PDEPACK" 2011140 T PDEPACK (NIL) -7 NIL NIL) (-820 2008152 2008342 2008593 "PDECOMP" 2009039 NIL PDECOMP (NIL T T) -7 NIL NIL) (-819 2005763 2006578 2006607 "PDECAT" 2007392 T PDECAT (NIL) -9 NIL 2008103) (-818 2005516 2005549 2005638 "PCOMP" 2005724 NIL PCOMP (NIL T T) -7 NIL NIL) (-817 2003723 2004319 2004615 "PBWLB" 2005246 NIL PBWLB (NIL T) -8 NIL NIL) (-816 1996232 1997800 1999136 "PATTERN" 2002408 NIL PATTERN (NIL T) -8 NIL NIL) (-815 1995864 1995921 1996030 "PATTERN2" 1996169 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-814 1993621 1994009 1994466 "PATTERN1" 1995453 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-813 1991016 1991570 1992051 "PATRES" 1993186 NIL PATRES (NIL T T) -8 NIL NIL) (-812 1990580 1990647 1990779 "PATRES2" 1990943 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-811 1988477 1988877 1989282 "PATMATCH" 1990249 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-810 1988013 1988196 1988238 "PATMAB" 1988345 NIL PATMAB (NIL T) -9 NIL 1988428) (-809 1986558 1986867 1987125 "PATLRES" 1987818 NIL PATLRES (NIL T T T) -8 NIL NIL) (-808 1986103 1986226 1986268 "PATAB" 1986273 NIL PATAB (NIL T) -9 NIL 1986445) (-807 1983584 1984116 1984689 "PARTPERM" 1985550 T PARTPERM (NIL) -7 NIL NIL) (-806 1983205 1983268 1983370 "PARSURF" 1983515 NIL PARSURF (NIL T) -8 NIL NIL) (-805 1982837 1982894 1983003 "PARSU2" 1983142 NIL PARSU2 (NIL T T) -7 NIL NIL) (-804 1982601 1982641 1982708 "PARSER" 1982790 T PARSER (NIL) -7 NIL NIL) (-803 1982222 1982285 1982387 "PARSCURV" 1982532 NIL PARSCURV (NIL T) -8 NIL NIL) (-802 1981854 1981911 1982020 "PARSC2" 1982159 NIL PARSC2 (NIL T T) -7 NIL NIL) (-801 1981493 1981551 1981648 "PARPCURV" 1981790 NIL PARPCURV (NIL T) -8 NIL NIL) (-800 1981125 1981182 1981291 "PARPC2" 1981430 NIL PARPC2 (NIL T T) -7 NIL NIL) (-799 1980645 1980731 1980850 "PAN2EXPR" 1981026 T PAN2EXPR (NIL) -7 NIL NIL) (-798 1979451 1979766 1979994 "PALETTE" 1980437 T PALETTE (NIL) -8 NIL NIL) (-797 1977919 1978456 1978816 "PAIR" 1979137 NIL PAIR (NIL T T) -8 NIL NIL) (-796 1971769 1977178 1977372 "PADICRC" 1977774 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1964977 1971115 1971299 "PADICRAT" 1971617 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963281 1964914 1964959 "PADIC" 1964964 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960485 1962059 1962100 "PADICCT" 1962681 NIL PADICCT (NIL NIL) -9 NIL 1962963) (-792 1959442 1959642 1959910 "PADEPAC" 1960272 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1958654 1958787 1958993 "PADE" 1959304 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1956665 1957497 1957812 "OWP" 1958422 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1955774 1956270 1956442 "OVAR" 1956533 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955038 1955159 1955320 "OUT" 1955633 T OUT (NIL) -7 NIL NIL) (-787 1944084 1946263 1948433 "OUTFORM" 1952888 T OUTFORM (NIL) -8 NIL NIL) (-786 1943492 1943813 1943902 "OSI" 1944015 T OSI (NIL) -8 NIL NIL) (-785 1942237 1942464 1942749 "ORTHPOL" 1943239 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1939608 1941898 1942036 "OREUP" 1942180 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937004 1939301 1939427 "ORESUP" 1939550 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934539 1935039 1935599 "OREPCTO" 1936493 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928448 1930654 1930695 "OREPCAT" 1933016 NIL OREPCAT (NIL T) -9 NIL 1934119) (-780 1925596 1926378 1927435 "OREPCAT-" 1927440 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1924773 1925045 1925074 "ORDSET" 1925383 T ORDSET (NIL) -9 NIL 1925547) (-778 1924292 1924414 1924607 "ORDSET-" 1924612 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1922905 1923706 1923735 "ORDRING" 1923937 T ORDRING (NIL) -9 NIL 1924061) (-776 1922550 1922644 1922788 "ORDRING-" 1922793 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1921925 1922406 1922435 "ORDMON" 1922440 T ORDMON (NIL) -9 NIL 1922461) (-774 1921087 1921234 1921429 "ORDFUNS" 1921774 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1920598 1920957 1920986 "ORDFIN" 1920991 T ORDFIN (NIL) -9 NIL 1921012) (-772 1917110 1919184 1919593 "ORDCOMP" 1920222 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916376 1916503 1916689 "ORDCOMP2" 1916970 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1912884 1913766 1914603 "OPTPROB" 1915559 T OPTPROB (NIL) -8 NIL NIL) (-769 1909726 1910355 1911049 "OPTPACK" 1912210 T OPTPACK (NIL) -7 NIL NIL) (-768 1907451 1908187 1908216 "OPTCAT" 1909031 T OPTCAT (NIL) -9 NIL 1909677) (-767 1907219 1907258 1907324 "OPQUERY" 1907405 T OPQUERY (NIL) -7 NIL NIL) (-766 1904355 1905546 1906046 "OP" 1906751 NIL OP (NIL T) -8 NIL NIL) (-765 1901120 1903152 1903521 "ONECOMP" 1904019 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900425 1900540 1900714 "ONECOMP2" 1900992 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1899844 1899950 1900080 "OMSERVER" 1900315 T OMSERVER (NIL) -7 NIL NIL) (-762 1896732 1899284 1899325 "OMSAGG" 1899386 NIL OMSAGG (NIL T) -9 NIL 1899450) (-761 1895355 1895618 1895900 "OMPKG" 1896470 T OMPKG (NIL) -7 NIL NIL) (-760 1894784 1894887 1894916 "OM" 1895215 T OM (NIL) -9 NIL NIL) (-759 1893323 1894336 1894504 "OMLO" 1894665 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892253 1892400 1892626 "OMEXPR" 1893149 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1891571 1891799 1891935 "OMERR" 1892137 T OMERR (NIL) -8 NIL NIL) (-756 1890749 1890992 1891152 "OMERRK" 1891431 T OMERRK (NIL) -8 NIL NIL) (-755 1890227 1890426 1890534 "OMENC" 1890661 T OMENC (NIL) -8 NIL NIL) (-754 1884122 1885307 1886478 "OMDEV" 1889076 T OMDEV (NIL) -8 NIL NIL) (-753 1883191 1883362 1883556 "OMCONN" 1883948 T OMCONN (NIL) -8 NIL NIL) (-752 1881806 1882792 1882821 "OINTDOM" 1882826 T OINTDOM (NIL) -9 NIL 1882847) (-751 1877568 1878798 1879513 "OFMONOID" 1881123 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877006 1877505 1877550 "ODVAR" 1877555 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874131 1876503 1876688 "ODR" 1876881 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866437 1873910 1874034 "ODPOL" 1874039 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860260 1866309 1866414 "ODP" 1866419 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859026 1859241 1859516 "ODETOOLS" 1860034 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1855995 1856651 1857367 "ODESYS" 1858359 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1850899 1851807 1852830 "ODERTRIC" 1855070 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850325 1850407 1850601 "ODERED" 1850811 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847227 1847775 1848450 "ODERAT" 1849748 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844195 1844659 1845255 "ODEPRRIC" 1846756 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842066 1842633 1843142 "ODEPROB" 1843706 T ODEPROB (NIL) -8 NIL NIL) (-739 1838598 1839081 1839727 "ODEPRIM" 1841545 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1837851 1837953 1838211 "ODEPAL" 1838490 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834053 1834834 1835688 "ODEPACK" 1837017 T ODEPACK (NIL) -7 NIL NIL) (-736 1833090 1833197 1833425 "ODEINT" 1833942 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827191 1828616 1830063 "ODEIFTBL" 1831663 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1822535 1823321 1824279 "ODEEF" 1826350 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1821872 1821961 1822190 "ODECONST" 1822440 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820029 1820662 1820691 "ODECAT" 1821294 T ODECAT (NIL) -9 NIL 1821823) (-731 1816901 1819741 1819860 "OCT" 1819942 NIL OCT (NIL T) -8 NIL NIL) (-730 1816539 1816582 1816709 "OCTCT2" 1816852 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811372 1813810 1813851 "OC" 1814947 NIL OC (NIL T) -9 NIL 1815804) (-728 1808599 1809347 1810337 "OC-" 1810431 NIL OC- (NIL T T) -8 NIL NIL) (-727 1807977 1808419 1808448 "OCAMON" 1808453 T OCAMON (NIL) -9 NIL 1808474) (-726 1807430 1807837 1807866 "OASGP" 1807871 T OASGP (NIL) -9 NIL 1807891) (-725 1806717 1807180 1807209 "OAMONS" 1807249 T OAMONS (NIL) -9 NIL 1807292) (-724 1806157 1806564 1806593 "OAMON" 1806598 T OAMON (NIL) -9 NIL 1806618) (-723 1805461 1805953 1805982 "OAGROUP" 1805987 T OAGROUP (NIL) -9 NIL 1806007) (-722 1805151 1805201 1805289 "NUMTUBE" 1805405 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1798724 1800242 1801778 "NUMQUAD" 1803635 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794480 1795468 1796493 "NUMODE" 1797719 T NUMODE (NIL) -7 NIL NIL) (-719 1791883 1792729 1792758 "NUMINT" 1793675 T NUMINT (NIL) -9 NIL 1794431) (-718 1790831 1791028 1791246 "NUMFMT" 1791685 T NUMFMT (NIL) -7 NIL NIL) (-717 1777213 1780147 1782677 "NUMERIC" 1788340 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1771613 1776665 1776760 "NTSCAT" 1776765 NIL NTSCAT (NIL T T T T) -9 NIL 1776803) (-715 1770807 1770972 1771165 "NTPOLFN" 1771452 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1758663 1767649 1768459 "NSUP" 1770029 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758299 1758356 1758463 "NSUP2" 1758600 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748261 1758078 1758208 "NSMP" 1758213 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1746693 1746994 1747351 "NREP" 1747949 NIL NREP (NIL T) -7 NIL NIL) (-710 1745284 1745536 1745894 "NPCOEF" 1746436 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744350 1744465 1744681 "NORMRETR" 1745165 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742403 1742693 1743100 "NORMPK" 1744058 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742088 1742116 1742240 "NORMMA" 1742369 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1741915 1742045 1742074 "NONE" 1742079 T NONE (NIL) -8 NIL NIL) (-705 1741704 1741733 1741802 "NONE1" 1741879 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741189 1741251 1741436 "NODE1" 1741636 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739482 1740352 1740607 "NNI" 1740954 T NNI (NIL) -8 NIL NIL) (-702 1737902 1738215 1738579 "NLINSOL" 1739150 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734070 1735037 1735959 "NIPROB" 1737000 T NIPROB (NIL) -8 NIL NIL) (-700 1732827 1733061 1733363 "NFINTBAS" 1733832 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1731535 1731766 1732047 "NCODIV" 1732595 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731297 1731334 1731409 "NCNTFRAC" 1731492 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1729477 1729841 1730261 "NCEP" 1730922 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728388 1729127 1729156 "NASRING" 1729266 T NASRING (NIL) -9 NIL 1729340) (-695 1728183 1728227 1728321 "NASRING-" 1728326 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727336 1727835 1727864 "NARNG" 1727981 T NARNG (NIL) -9 NIL 1728072) (-693 1727028 1727095 1727229 "NARNG-" 1727234 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1725907 1726114 1726349 "NAGSP" 1726813 T NAGSP (NIL) -7 NIL NIL) (-691 1717331 1718977 1720612 "NAGS" 1724292 T NAGS (NIL) -7 NIL NIL) (-690 1715895 1716199 1716526 "NAGF07" 1717024 T NAGF07 (NIL) -7 NIL NIL) (-689 1710477 1711757 1713053 "NAGF04" 1714619 T NAGF04 (NIL) -7 NIL NIL) (-688 1703509 1705107 1706724 "NAGF02" 1708880 T NAGF02 (NIL) -7 NIL NIL) (-687 1698773 1699863 1700970 "NAGF01" 1702422 T NAGF01 (NIL) -7 NIL NIL) (-686 1692433 1693991 1695568 "NAGE04" 1697216 T NAGE04 (NIL) -7 NIL NIL) (-685 1683674 1685777 1687889 "NAGE02" 1690341 T NAGE02 (NIL) -7 NIL NIL) (-684 1679667 1680604 1681558 "NAGE01" 1682740 T NAGE01 (NIL) -7 NIL NIL) (-683 1677474 1678005 1678560 "NAGD03" 1679132 T NAGD03 (NIL) -7 NIL NIL) (-682 1669260 1671179 1673124 "NAGD02" 1675549 T NAGD02 (NIL) -7 NIL NIL) (-681 1663119 1664532 1665960 "NAGD01" 1667852 T NAGD01 (NIL) -7 NIL NIL) (-680 1659376 1660186 1661011 "NAGC06" 1662314 T NAGC06 (NIL) -7 NIL NIL) (-679 1657853 1658182 1658535 "NAGC05" 1659043 T NAGC05 (NIL) -7 NIL NIL) (-678 1657237 1657354 1657496 "NAGC02" 1657731 T NAGC02 (NIL) -7 NIL NIL) (-677 1656298 1656855 1656896 "NAALG" 1656975 NIL NAALG (NIL T) -9 NIL 1657036) (-676 1656133 1656162 1656252 "NAALG-" 1656257 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650083 1651191 1652378 "MULTSQFR" 1655029 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649402 1649477 1649661 "MULTFACT" 1649995 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1642595 1646506 1646559 "MTSCAT" 1647619 NIL MTSCAT (NIL T T) -9 NIL 1648133) (-672 1642307 1642361 1642453 "MTHING" 1642535 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642099 1642132 1642192 "MSYSCMD" 1642267 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638211 1640854 1641174 "MSET" 1641812 NIL MSET (NIL T) -8 NIL NIL) (-669 1635306 1637772 1637814 "MSETAGG" 1637819 NIL MSETAGG (NIL T) -9 NIL 1637853) (-668 1631162 1632704 1633445 "MRING" 1634609 NIL MRING (NIL T T) -8 NIL NIL) (-667 1630732 1630799 1630928 "MRF2" 1631089 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630350 1630385 1630529 "MRATFAC" 1630691 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1627962 1628257 1628688 "MPRFF" 1630055 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1621982 1627817 1627913 "MPOLY" 1627918 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621472 1621507 1621715 "MPCPF" 1621941 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1620988 1621031 1621214 "MPC3" 1621423 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620189 1620270 1620489 "MPC2" 1620903 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618490 1618827 1619217 "MONOTOOL" 1619849 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1617614 1617949 1617978 "MONOID" 1618255 T MONOID (NIL) -9 NIL 1618427) (-658 1616992 1617155 1617398 "MONOID-" 1617403 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1607972 1613958 1614018 "MONOGEN" 1614692 NIL MONOGEN (NIL T T) -9 NIL 1615148) (-656 1605190 1605925 1606925 "MONOGEN-" 1607044 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604049 1604469 1604498 "MONADWU" 1604890 T MONADWU (NIL) -9 NIL 1605128) (-654 1603421 1603580 1603828 "MONADWU-" 1603833 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1602806 1603024 1603053 "MONAD" 1603260 T MONAD (NIL) -9 NIL 1603372) (-652 1602491 1602569 1602701 "MONAD-" 1602706 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1600742 1601404 1601683 "MOEBIUS" 1602244 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600135 1600513 1600554 "MODULE" 1600559 NIL MODULE (NIL T) -9 NIL 1600585) (-649 1599703 1599799 1599989 "MODULE-" 1599994 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597374 1598069 1598395 "MODRING" 1599528 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594330 1595495 1596012 "MODOP" 1596906 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592517 1592969 1593310 "MODMONOM" 1594129 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582235 1590721 1591143 "MODMON" 1592145 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579361 1581079 1581355 "MODFIELD" 1582110 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1578887 1578930 1579109 "MMAP" 1579312 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577123 1577900 1577941 "MLO" 1578358 NIL MLO (NIL T) -9 NIL 1578599) (-641 1574490 1575005 1575607 "MLIFT" 1576604 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1573881 1573965 1574119 "MKUCFUNC" 1574401 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573480 1573550 1573673 "MKRECORD" 1573804 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572528 1572689 1572917 "MKFUNC" 1573291 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1571916 1572020 1572176 "MKFLCFN" 1572411 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571342 1571709 1571798 "MKCHSET" 1571860 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1570619 1570721 1570906 "MKBCFUNC" 1571235 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567303 1570173 1570309 "MINT" 1570503 T MINT (NIL) -8 NIL NIL) (-633 1566115 1566358 1566635 "MHROWRED" 1567058 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561386 1564560 1564984 "MFLOAT" 1565711 T MFLOAT (NIL) -8 NIL NIL) (-631 1560743 1560819 1560990 "MFINFACT" 1561298 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557058 1557906 1558790 "MESH" 1559879 T MESH (NIL) -7 NIL NIL) (-629 1555448 1555760 1556113 "MDDFACT" 1556745 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552290 1554607 1554649 "MDAGG" 1554904 NIL MDAGG (NIL T) -9 NIL 1555047) (-627 1541988 1551583 1551790 "MCMPLX" 1552103 T MCMPLX (NIL) -8 NIL NIL) (-626 1541129 1541275 1541475 "MCDEN" 1541837 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539019 1539289 1539669 "MCALCFN" 1540859 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1536641 1537164 1537725 "MATSTOR" 1538490 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1532649 1536016 1536263 "MATRIX" 1536426 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528419 1529122 1529858 "MATLIN" 1532006 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1518616 1521754 1521831 "MATCAT" 1526669 NIL MATCAT (NIL T T T) -9 NIL 1528086) (-620 1514981 1515994 1517349 "MATCAT-" 1517354 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1513583 1513736 1514067 "MATCAT2" 1514816 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1511695 1512019 1512403 "MAPPKG3" 1513258 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1510676 1510849 1511071 "MAPPKG2" 1511519 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509175 1509459 1509786 "MAPPKG1" 1510382 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1508786 1508844 1508967 "MAPHACK3" 1509111 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508378 1508439 1508553 "MAPHACK2" 1508718 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1507816 1507919 1508061 "MAPHACK1" 1508269 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1505924 1506518 1506821 "MAGMA" 1507545 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502398 1504168 1504628 "M3D" 1505497 NIL M3D (NIL T) -8 NIL NIL) (-610 1496553 1500768 1500810 "LZSTAGG" 1501592 NIL LZSTAGG (NIL T) -9 NIL 1501887) (-609 1492526 1493684 1495141 "LZSTAGG-" 1495146 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1489642 1490419 1490905 "LWORD" 1492072 NIL LWORD (NIL T) -8 NIL NIL) (-607 1482802 1489413 1489547 "LSQM" 1489552 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482026 1482165 1482393 "LSPP" 1482657 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1479838 1480139 1480595 "LSMP" 1481715 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1476617 1477291 1478021 "LSMP1" 1479140 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1470543 1475785 1475827 "LSAGG" 1475889 NIL LSAGG (NIL T) -9 NIL 1475967) (-602 1467238 1468162 1469375 "LSAGG-" 1469380 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1464864 1466382 1466631 "LPOLY" 1467033 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464446 1464531 1464654 "LPEFRAC" 1464773 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1462793 1463540 1463793 "LO" 1464278 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462446 1462558 1462587 "LOGIC" 1462698 T LOGIC (NIL) -9 NIL 1462778) (-597 1462308 1462331 1462402 "LOGIC-" 1462407 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1461501 1461641 1461834 "LODOOPS" 1462164 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1458919 1461418 1461483 "LODO" 1461488 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1457465 1457700 1458051 "LODOF" 1458666 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1453884 1456320 1456361 "LODOCAT" 1456793 NIL LODOCAT (NIL T) -9 NIL 1457004) (-592 1453618 1453676 1453802 "LODOCAT-" 1453807 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1450932 1453459 1453577 "LODO2" 1453582 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448361 1450869 1450914 "LODO1" 1450919 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447224 1447389 1447700 "LODEEF" 1448184 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1442510 1445354 1445396 "LNAGG" 1446343 NIL LNAGG (NIL T) -9 NIL 1446787) (-587 1441657 1441871 1442213 "LNAGG-" 1442218 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1437822 1438584 1439222 "LMOPS" 1441073 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437219 1437581 1437622 "LMODULE" 1437682 NIL LMODULE (NIL T) -9 NIL 1437724) (-584 1434465 1436864 1436987 "LMDICT" 1437129 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1427692 1433411 1433709 "LIST" 1434200 NIL LIST (NIL T) -8 NIL NIL) (-582 1427217 1427291 1427430 "LIST3" 1427612 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426224 1426402 1426630 "LIST2" 1427035 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424358 1424670 1425069 "LIST2MAP" 1425871 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423070 1423750 1423791 "LINEXP" 1424044 NIL LINEXP (NIL T) -9 NIL 1424192) (-578 1421717 1421977 1422274 "LINDEP" 1422822 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1418484 1419203 1419980 "LIMITRF" 1420972 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1416764 1417059 1417474 "LIMITPS" 1418179 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411219 1416275 1416503 "LIE" 1416585 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410269 1410712 1410753 "LIECAT" 1410893 NIL LIECAT (NIL T) -9 NIL 1411044) (-573 1410110 1410137 1410225 "LIECAT-" 1410230 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1402722 1409559 1409724 "LIB" 1409965 T LIB (NIL) -8 NIL NIL) (-571 1398359 1399240 1400175 "LGROBP" 1401839 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396229 1396502 1396863 "LF" 1398081 NIL LF (NIL T T) -7 NIL NIL) (-569 1395069 1395760 1395789 "LFCAT" 1395996 T LFCAT (NIL) -9 NIL 1396135) (-568 1391981 1392607 1393293 "LEXTRIPK" 1394435 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1388687 1389551 1390054 "LEXP" 1391561 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387085 1387398 1387799 "LEADCDET" 1388369 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386281 1386355 1386582 "LAZM3PK" 1387006 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381197 1384360 1384897 "LAUPOL" 1385794 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1380764 1380808 1380975 "LAPLACE" 1381147 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1378692 1379865 1380116 "LA" 1380597 NIL LA (NIL T T T) -8 NIL NIL) (-561 1377754 1378348 1378389 "LALG" 1378450 NIL LALG (NIL T) -9 NIL 1378508) (-560 1377469 1377528 1377663 "LALG-" 1377668 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376379 1376566 1376863 "KOVACIC" 1377269 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376213 1376237 1376279 "KONVERT" 1376341 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376047 1376071 1376113 "KOERCE" 1376175 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1373781 1374541 1374934 "KERNEL" 1375686 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373283 1373364 1373494 "KERNEL2" 1373695 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367134 1371822 1371877 "KDAGG" 1372254 NIL KDAGG (NIL T T) -9 NIL 1372460) (-553 1366663 1366787 1366992 "KDAGG-" 1366997 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1359838 1366324 1366479 "KAFILE" 1366541 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354293 1359349 1359577 "JORDAN" 1359659 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350592 1352498 1352553 "IXAGG" 1353482 NIL IXAGG (NIL T T) -9 NIL 1353941) (-549 1349511 1349817 1350236 "IXAGG-" 1350241 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345096 1349433 1349492 "IVECTOR" 1349497 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1343862 1344099 1344365 "ITUPLE" 1344863 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342298 1342475 1342781 "ITRIGMNP" 1343684 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341043 1341247 1341530 "ITFUN3" 1342074 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1340675 1340732 1340841 "ITFUN2" 1340980 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338477 1339548 1339845 "ITAYLOR" 1340410 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327468 1332663 1333822 "ISUPS" 1337350 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326572 1326712 1326948 "ISUMP" 1327315 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1321836 1326373 1326452 "ISTRING" 1326525 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321049 1321130 1321345 "IRURPK" 1321750 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1319985 1320186 1320426 "IRSN" 1320829 T IRSN (NIL) -7 NIL NIL) (-537 1318020 1318375 1318810 "IRRF2F" 1319623 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1317767 1317805 1317881 "IRREDFFX" 1317976 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316382 1316641 1316940 "IROOT" 1317500 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313020 1314071 1314761 "IR" 1315724 NIL IR (NIL T) -8 NIL NIL) (-533 1310633 1311128 1311694 "IR2" 1312498 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1309709 1309822 1310042 "IR2F" 1310516 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309500 1309534 1309594 "IPRNTPK" 1309669 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306054 1309389 1309458 "IPF" 1309463 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304371 1305979 1306036 "IPADIC" 1306041 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1303870 1303928 1304117 "INVLAPLA" 1304307 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293519 1295872 1298258 "INTTR" 1301534 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1289867 1290608 1291471 "INTTOOLS" 1292705 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289453 1289544 1289661 "INTSLPE" 1289770 T INTSLPE (NIL) -7 NIL NIL) (-524 1287403 1289376 1289435 "INTRVL" 1289440 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285010 1285522 1286096 "INTRF" 1286888 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284425 1284522 1284663 "INTRET" 1284908 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282427 1282816 1283285 "INTRAT" 1284033 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1279660 1280243 1280868 "INTPM" 1281912 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276369 1276968 1277712 "INTPAF" 1279046 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1271620 1272564 1273597 "INTPACK" 1275356 T INTPACK (NIL) -7 NIL NIL) (-517 1268474 1271349 1271476 "INT" 1271513 T INT (NIL) -8 NIL NIL) (-516 1267726 1267878 1268086 "INTHERTR" 1268316 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267165 1267245 1267433 "INTHERAL" 1267640 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265011 1265454 1265911 "INTHEORY" 1266728 T INTHEORY (NIL) -7 NIL NIL) (-513 1256334 1257954 1259732 "INTG0" 1263363 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1236907 1241697 1246507 "INTFTBL" 1251544 T INTFTBL (NIL) -8 NIL NIL) (-511 1236156 1236294 1236467 "INTFACT" 1236766 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1233547 1233993 1234556 "INTEF" 1235710 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232008 1232757 1232786 "INTDOM" 1233087 T INTDOM (NIL) -9 NIL 1233294) (-508 1231377 1231551 1231793 "INTDOM-" 1231798 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1227869 1229801 1229856 "INTCAT" 1230655 NIL INTCAT (NIL T) -9 NIL 1230974) (-506 1227342 1227444 1227572 "INTBIT" 1227761 T INTBIT (NIL) -7 NIL NIL) (-505 1226017 1226171 1226484 "INTALG" 1227187 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225474 1225564 1225734 "INTAF" 1225921 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1218928 1225284 1225424 "INTABL" 1225429 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1213878 1216607 1216636 "INS" 1217604 T INS (NIL) -9 NIL 1218285) (-501 1211118 1211889 1212863 "INS-" 1212936 NIL INS- (NIL T) -8 NIL NIL) (-500 1209897 1210124 1210421 "INPSIGN" 1210871 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209015 1209132 1209329 "INPRODPF" 1209777 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1207909 1208026 1208263 "INPRODFF" 1208895 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1206909 1207061 1207321 "INNMFACT" 1207745 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206106 1206203 1206391 "INMODGCD" 1206808 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1204615 1204859 1205183 "INFSP" 1205851 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1203799 1203916 1204099 "INFPROD0" 1204495 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1200809 1201968 1202459 "INFORM" 1203316 T INFORM (NIL) -8 NIL NIL) (-492 1200419 1200479 1200577 "INFORM1" 1200744 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1199942 1200031 1200145 "INFINITY" 1200325 T INFINITY (NIL) -7 NIL NIL) (-490 1198560 1198808 1199129 "INEP" 1199690 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1197836 1198457 1198522 "INDE" 1198527 NIL INDE (NIL T) -8 NIL NIL) (-488 1197400 1197468 1197585 "INCRMAPS" 1197763 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1192711 1193636 1194580 "INBFF" 1196488 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189206 1192556 1192659 "IMATRIX" 1192664 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1187918 1188041 1188356 "IMATQF" 1189062 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186138 1186365 1186702 "IMATLIN" 1187674 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1180764 1186062 1186120 "ILIST" 1186125 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1178717 1180624 1180737 "IIARRAY2" 1180742 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174085 1178628 1178692 "IFF" 1178697 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169128 1173377 1173565 "IFARRAY" 1173942 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168335 1169032 1169105 "IFAMON" 1169110 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1167918 1167983 1168038 "IEVALAB" 1168245 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1167593 1167661 1167821 "IEVALAB-" 1167826 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167251 1167507 1167570 "IDPO" 1167575 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1166528 1167140 1167215 "IDPOAMS" 1167220 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1165862 1166417 1166492 "IDPOAM" 1166497 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1164947 1165197 1165251 "IDPC" 1165664 NIL IDPC (NIL T T) -9 NIL 1165813) (-472 1164443 1164839 1164912 "IDPAM" 1164917 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1163846 1164335 1164408 "IDPAG" 1164413 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160101 1160949 1161844 "IDECOMP" 1163003 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1152975 1154024 1155071 "IDEAL" 1159137 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152139 1152251 1152450 "ICDEN" 1152859 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151238 1151619 1151766 "ICARD" 1152012 T ICARD (NIL) -8 NIL NIL) (-466 1149310 1149623 1150026 "IBPTOOLS" 1150915 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1144924 1148930 1149043 "IBITS" 1149229 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1141647 1142223 1142918 "IBATOOL" 1144341 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139427 1139888 1140421 "IBACHIN" 1141182 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137304 1139273 1139376 "IARRAY2" 1139381 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133457 1137230 1137287 "IARRAY1" 1137292 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127396 1131875 1132353 "IAN" 1132999 T IAN (NIL) -8 NIL NIL) (-459 1126907 1126964 1127137 "IALGFACT" 1127333 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126434 1126547 1126576 "HYPCAT" 1126783 T HYPCAT (NIL) -9 NIL NIL) (-457 1125972 1126089 1126275 "HYPCAT-" 1126280 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1122651 1123982 1124024 "HOAGG" 1125005 NIL HOAGG (NIL T) -9 NIL 1125684) (-455 1121245 1121644 1122170 "HOAGG-" 1122175 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115076 1120686 1120852 "HEXADEC" 1121099 T HEXADEC (NIL) -8 NIL NIL) (-453 1113824 1114046 1114309 "HEUGCD" 1114853 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1112927 1113661 1113791 "HELLFDIV" 1113796 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111155 1112704 1112792 "HEAP" 1112871 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105022 1111070 1111132 "HDP" 1111137 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1098734 1104659 1104810 "HDMP" 1104923 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098059 1098198 1098362 "HB" 1098590 T HB (NIL) -7 NIL NIL) (-447 1091556 1097905 1098009 "HASHTBL" 1098014 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089309 1091184 1091363 "HACKPI" 1091397 T HACKPI (NIL) -8 NIL NIL) (-445 1085005 1089163 1089275 "GTSET" 1089280 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1078531 1084883 1084981 "GSTBL" 1084986 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1070767 1077567 1077831 "GSERIES" 1078322 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1069789 1070242 1070271 "GROUP" 1070532 T GROUP (NIL) -9 NIL 1070691) (-441 1068905 1069128 1069472 "GROUP-" 1069477 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067274 1067593 1067980 "GROEBSOL" 1068582 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066214 1066476 1066528 "GRMOD" 1067057 NIL GRMOD (NIL T T) -9 NIL 1067225) (-438 1065982 1066018 1066146 "GRMOD-" 1066151 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061310 1062336 1063336 "GRIMAGE" 1065002 T GRIMAGE (NIL) -8 NIL NIL) (-436 1059777 1060037 1060361 "GRDEF" 1061006 T GRDEF (NIL) -7 NIL NIL) (-435 1059221 1059337 1059478 "GRAY" 1059656 T GRAY (NIL) -7 NIL NIL) (-434 1058454 1058834 1058886 "GRALG" 1059039 NIL GRALG (NIL T T) -9 NIL 1059131) (-433 1058115 1058188 1058351 "GRALG-" 1058356 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1054923 1057704 1057880 "GPOLSET" 1058022 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054279 1054336 1054593 "GOSPER" 1054860 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050038 1050717 1051243 "GMODPOL" 1053978 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049043 1049227 1049465 "GHENSEL" 1049850 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043109 1043952 1044978 "GENUPS" 1048127 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1042806 1042857 1042946 "GENUFACT" 1043052 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042218 1042295 1042460 "GENPGCD" 1042724 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1041692 1041727 1041940 "GENMFACT" 1042177 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040260 1040515 1040822 "GENEEZ" 1041435 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034134 1039873 1040034 "GDMP" 1040183 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1023516 1027905 1029011 "GCNAALG" 1033117 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1021937 1022809 1022838 "GCDDOM" 1023093 T GCDDOM (NIL) -9 NIL 1023250) (-420 1021407 1021534 1021749 "GCDDOM-" 1021754 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020079 1020264 1020568 "GB" 1021186 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1008699 1011025 1013417 "GBINTERN" 1017770 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1006536 1006828 1007249 "GBF" 1008374 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005317 1005482 1005749 "GBEUCLID" 1006352 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1004666 1004791 1004940 "GAUSSFAC" 1005188 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003043 1003345 1003658 "GALUTIL" 1004385 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001360 1001634 1001957 "GALPOLYU" 1002770 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 998749 999039 999444 "GALFACTU" 1001057 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 990555 992054 993662 "GALFACT" 997181 NIL GALFACT (NIL T) -7 NIL NIL) (-410 987942 988600 988629 "FVFUN" 989785 T FVFUN (NIL) -9 NIL 990505) (-409 987207 987389 987418 "FVC" 987709 T FVC (NIL) -9 NIL 987892) (-408 986849 987004 987085 "FUNCTION" 987159 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 984519 985070 985559 "FT" 986380 T FT (NIL) -8 NIL NIL) (-406 983337 983820 984023 "FTEM" 984336 T FTEM (NIL) -8 NIL NIL) (-405 981602 981890 982292 "FSUPFACT" 983029 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 979999 980288 980620 "FST" 981290 T FST (NIL) -8 NIL NIL) (-403 979174 979280 979474 "FSRED" 979881 NIL FSRED (NIL T T) -7 NIL NIL) (-402 977853 978108 978462 "FSPRMELT" 978889 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 974938 975376 975875 "FSPECF" 977416 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957311 965868 965909 "FS" 969747 NIL FS (NIL T) -9 NIL 972029) (-399 945961 948951 953007 "FS-" 953304 NIL FS- (NIL T T) -8 NIL NIL) (-398 945477 945531 945707 "FSINT" 945902 NIL FSINT (NIL T T) -7 NIL NIL) (-397 943758 944470 944773 "FSERIES" 945256 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 942776 942892 943122 "FSCINT" 943638 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939010 941720 941762 "FSAGG" 942132 NIL FSAGG (NIL T) -9 NIL 942391) (-394 936772 937373 938169 "FSAGG-" 938264 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 935814 935957 936184 "FSAGG2" 936625 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 933473 933752 934305 "FS2UPS" 935532 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933059 933102 933255 "FS2" 933424 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 931919 932090 932398 "FS2EXPXP" 932884 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931345 931460 931612 "FRUTIL" 931799 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 922766 926844 928200 "FR" 930021 NIL FR (NIL T) -8 NIL NIL) (-387 917842 920485 920526 "FRNAALG" 921922 NIL FRNAALG (NIL T) -9 NIL 922529) (-386 913521 914591 915866 "FRNAALG-" 916616 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913159 913202 913329 "FRNAAF2" 913472 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 911524 912016 912310 "FRMOD" 912972 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909247 909915 910231 "FRIDEAL" 911315 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 908446 908533 908820 "FRIDEAL2" 909154 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 907703 908111 908153 "FRETRCT" 908158 NIL FRETRCT (NIL T) -9 NIL 908329) (-380 906815 907046 907397 "FRETRCT-" 907402 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904024 905244 905304 "FRAMALG" 906186 NIL FRAMALG (NIL T T) -9 NIL 906478) (-378 902157 902613 903243 "FRAMALG-" 903466 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896059 901632 901908 "FRAC" 901913 NIL FRAC (NIL T) -8 NIL NIL) (-376 895695 895752 895859 "FRAC2" 895996 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895331 895388 895495 "FR2" 895632 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890004 892917 892946 "FPS" 894065 T FPS (NIL) -9 NIL 894621) (-373 889453 889562 889726 "FPS-" 889872 NIL FPS- (NIL T) -8 NIL NIL) (-372 886901 888598 888627 "FPC" 888852 T FPC (NIL) -9 NIL 888994) (-371 886694 886734 886831 "FPC-" 886836 NIL FPC- (NIL T) -8 NIL NIL) (-370 885572 886182 886224 "FPATMAB" 886229 NIL FPATMAB (NIL T) -9 NIL 886381) (-369 883272 883748 884174 "FPARFRAC" 885209 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 878667 879164 879846 "FORTRAN" 882704 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876383 876883 877422 "FORT" 878148 T FORT (NIL) -7 NIL NIL) (-366 874058 874620 874649 "FORTFN" 875709 T FORTFN (NIL) -9 NIL 876333) (-365 873821 873871 873900 "FORTCAT" 873959 T FORTCAT (NIL) -9 NIL 874021) (-364 871881 872364 872763 "FORMULA" 873442 T FORMULA (NIL) -8 NIL NIL) (-363 871669 871699 871768 "FORMULA1" 871845 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871192 871244 871417 "FORDER" 871611 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870288 870452 870645 "FOP" 871019 T FOP (NIL) -7 NIL NIL) (-360 868896 869568 869742 "FNLA" 870170 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 867564 867953 867982 "FNCAT" 868554 T FNCAT (NIL) -9 NIL 868847) (-358 867130 867523 867551 "FNAME" 867556 T FNAME (NIL) -8 NIL NIL) (-357 865789 866762 866791 "FMTC" 866796 T FMTC (NIL) -9 NIL 866831) (-356 862107 863314 863942 "FMONOID" 865194 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861327 861850 861998 "FM" 862003 NIL FM (NIL T T) -8 NIL NIL) (-354 858750 859396 859425 "FMFUN" 860569 T FMFUN (NIL) -9 NIL 861277) (-353 858018 858199 858228 "FMC" 858518 T FMC (NIL) -9 NIL 858700) (-352 855247 856081 856135 "FMCAT" 857317 NIL FMCAT (NIL T T) -9 NIL 857811) (-351 854142 855015 855114 "FM1" 855192 NIL FM1 (NIL T T) -8 NIL NIL) (-350 851916 852332 852826 "FLOATRP" 853693 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845402 849572 850202 "FLOAT" 851306 T FLOAT (NIL) -8 NIL NIL) (-348 842840 843340 843918 "FLOATCP" 844869 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 841628 842476 842517 "FLINEXP" 842522 NIL FLINEXP (NIL T) -9 NIL 842615) (-346 840783 841018 841345 "FLINEXP-" 841350 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 839859 840003 840227 "FLASORT" 840635 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837077 837919 837972 "FLALG" 839199 NIL FLALG (NIL T T) -9 NIL 839666) (-343 830861 834563 834605 "FLAGG" 835867 NIL FLAGG (NIL T) -9 NIL 836519) (-342 829587 829926 830416 "FLAGG-" 830421 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 828629 828772 828999 "FLAGG2" 829440 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 825601 826619 826679 "FINRALG" 827807 NIL FINRALG (NIL T T) -9 NIL 828315) (-339 824761 824990 825329 "FINRALG-" 825334 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824167 824380 824409 "FINITE" 824605 T FINITE (NIL) -9 NIL 824712) (-337 816626 818787 818828 "FINAALG" 822495 NIL FINAALG (NIL T) -9 NIL 823948) (-336 811967 813008 814152 "FINAALG-" 815531 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811362 811722 811825 "FILE" 811897 NIL FILE (NIL T) -8 NIL NIL) (-334 810046 810358 810413 "FILECAT" 811097 NIL FILECAT (NIL T T) -9 NIL 811313) (-333 807908 809464 809493 "FIELD" 809533 T FIELD (NIL) -9 NIL 809613) (-332 806528 806913 807424 "FIELD-" 807429 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804343 805165 805511 "FGROUP" 806215 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803433 803597 803817 "FGLMICPK" 804175 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799235 803358 803415 "FFX" 803420 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 798836 798897 799032 "FFSLPE" 799168 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 794831 795608 796404 "FFPOLY" 798072 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794335 794371 794580 "FFPOLY2" 794789 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790157 794254 794317 "FFP" 794322 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785525 790068 790132 "FF" 790137 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 780621 784868 785058 "FFNBX" 785379 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775531 779756 780014 "FFNBP" 780475 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770134 774815 775026 "FFNB" 775364 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 768966 769164 769479 "FFINTBAS" 769931 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765189 767429 767458 "FFIELDC" 768078 T FFIELDC (NIL) -9 NIL 768454) (-318 763852 764222 764719 "FFIELDC-" 764724 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763422 763467 763591 "FFHOM" 763794 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761120 761604 762121 "FFF" 762937 NIL FFF (NIL T) -7 NIL NIL) (-315 756708 760862 760963 "FFCGX" 761063 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752310 756440 756547 "FFCGP" 756651 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747463 752037 752145 "FFCG" 752246 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729408 738531 738618 "FFCAT" 743783 NIL FFCAT (NIL T T T) -9 NIL 745270) (-311 724606 725653 726967 "FFCAT-" 728197 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724017 724060 724295 "FFCAT2" 724557 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713217 717007 718224 "FEXPR" 722872 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712216 712651 712693 "FEVALAB" 712777 NIL FEVALAB (NIL T) -9 NIL 713038) (-307 711375 711585 711923 "FEVALAB-" 711928 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 709968 710758 710961 "FDIV" 711274 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707034 707749 707865 "FDIVCAT" 709433 NIL FDIVCAT (NIL T T T T) -9 NIL 709870) (-304 706796 706823 706993 "FDIVCAT-" 706998 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706016 706103 706380 "FDIV2" 706703 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704709 704966 705253 "FCPAK1" 705749 T FCPAK1 (NIL) -7 NIL NIL) (-301 703837 704209 704350 "FCOMP" 704600 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687477 690889 694449 "FC" 700297 T FC (NIL) -8 NIL NIL) (-299 680072 684118 684159 "FAXF" 685961 NIL FAXF (NIL T) -9 NIL 686652) (-298 677351 678006 678831 "FAXF-" 679296 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672451 676727 676903 "FARRAY" 677208 NIL FARRAY (NIL T) -8 NIL NIL) (-296 667841 669912 669965 "FAMR" 670977 NIL FAMR (NIL T T) -9 NIL 671437) (-295 666732 667034 667468 "FAMR-" 667473 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 665928 666654 666707 "FAMONOID" 666712 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 663760 664444 664498 "FAMONC" 665439 NIL FAMONC (NIL T T) -9 NIL 665824) (-292 662452 663514 663651 "FAGROUP" 663656 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660255 660574 660976 "FACUTIL" 662133 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659354 659539 659761 "FACTFUNC" 660065 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651677 658605 658817 "EXPUPXS" 659210 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649160 649700 650286 "EXPRTUBE" 651111 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645354 645946 646683 "EXPRODE" 648499 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630516 644013 644439 "EXPR" 644960 NIL EXPR (NIL T) -8 NIL NIL) (-285 624944 625531 626343 "EXPR2UPS" 629814 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624580 624637 624744 "EXPR2" 624881 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 615934 623717 624012 "EXPEXPAN" 624418 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 615761 615891 615920 "EXIT" 615925 T EXIT (NIL) -8 NIL NIL) (-281 615388 615450 615563 "EVALCYC" 615693 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 614928 615046 615088 "EVALAB" 615258 NIL EVALAB (NIL T) -9 NIL 615362) (-279 614409 614531 614752 "EVALAB-" 614757 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 611871 613183 613212 "EUCDOM" 613767 T EUCDOM (NIL) -9 NIL 614117) (-277 610276 610718 611308 "EUCDOM-" 611313 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 597854 600602 603342 "ESTOOLS" 607556 T ESTOOLS (NIL) -7 NIL NIL) (-275 597490 597547 597654 "ESTOOLS2" 597791 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597241 597283 597363 "ESTOOLS1" 597442 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591178 592902 592931 "ES" 595695 T ES (NIL) -9 NIL 597101) (-272 586126 587412 589229 "ES-" 589393 NIL ES- (NIL T) -8 NIL NIL) (-271 582501 583261 584041 "ESCONT" 585366 T ESCONT (NIL) -7 NIL NIL) (-270 582246 582278 582360 "ESCONT1" 582463 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 581921 581971 582071 "ES2" 582190 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581551 581609 581718 "ES1" 581857 NIL ES1 (NIL T T) -7 NIL NIL) (-267 580767 580896 581072 "ERROR" 581395 T ERROR (NIL) -7 NIL NIL) (-266 574270 580626 580717 "EQTBL" 580722 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 566707 569588 571035 "EQ" 572856 NIL -3213 (NIL T) -8 NIL NIL) (-264 566339 566396 566505 "EQ2" 566644 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561631 562677 563770 "EP" 565278 NIL EP (NIL T) -7 NIL NIL) (-262 560790 561354 561383 "ENTIRER" 561388 T ENTIRER (NIL) -9 NIL 561433) (-261 557246 558745 559115 "EMR" 560589 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556389 556574 556629 "ELTAGG" 557009 NIL ELTAGG (NIL T T) -9 NIL 557220) (-259 556108 556170 556311 "ELTAGG-" 556316 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 555896 555925 555980 "ELTAB" 556064 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555022 555168 555367 "ELFUTS" 555747 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 554763 554819 554848 "ELEMFUN" 554953 T ELEMFUN (NIL) -9 NIL NIL) (-255 554633 554654 554722 "ELEMFUN-" 554727 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549524 552733 552775 "ELAGG" 553715 NIL ELAGG (NIL T) -9 NIL 554178) (-253 547809 548243 548906 "ELAGG-" 548911 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 540677 542476 543303 "EFUPXS" 547085 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534127 535928 536738 "EFULS" 539953 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531558 531916 532394 "EFSTRUC" 533759 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520630 522195 523755 "EF" 530073 NIL EF (NIL T T) -7 NIL NIL) (-248 519731 520115 520264 "EAB" 520501 T EAB (NIL) -8 NIL NIL) (-247 518944 519690 519718 "E04UCFA" 519723 T E04UCFA (NIL) -8 NIL NIL) (-246 518157 518903 518931 "E04NAFA" 518936 T E04NAFA (NIL) -8 NIL NIL) (-245 517370 518116 518144 "E04MBFA" 518149 T E04MBFA (NIL) -8 NIL NIL) (-244 516583 517329 517357 "E04JAFA" 517362 T E04JAFA (NIL) -8 NIL NIL) (-243 515798 516542 516570 "E04GCFA" 516575 T E04GCFA (NIL) -8 NIL NIL) (-242 515013 515757 515785 "E04FDFA" 515790 T E04FDFA (NIL) -8 NIL NIL) (-241 514226 514972 515000 "E04DGFA" 515005 T E04DGFA (NIL) -8 NIL NIL) (-240 508411 509756 511118 "E04AGNT" 512884 T E04AGNT (NIL) -7 NIL NIL) (-239 507137 507617 507658 "DVARCAT" 508133 NIL DVARCAT (NIL T) -9 NIL 508331) (-238 506341 506553 506867 "DVARCAT-" 506872 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499203 506143 506270 "DSMP" 506275 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494013 495148 496216 "DROPT" 498155 T DROPT (NIL) -8 NIL NIL) (-235 493678 493737 493835 "DROPT1" 493948 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 488793 489919 491056 "DROPT0" 492561 T DROPT0 (NIL) -7 NIL NIL) (-233 487138 487463 487849 "DRAWPT" 488427 T DRAWPT (NIL) -7 NIL NIL) (-232 481813 482712 483767 "DRAW" 486136 NIL DRAW (NIL T) -7 NIL NIL) (-231 481454 481505 481621 "DRAWHACK" 481756 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480185 480454 480745 "DRAWCX" 481183 T DRAWCX (NIL) -7 NIL NIL) (-229 479703 479771 479921 "DRAWCURV" 480111 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470175 472133 474248 "DRAWCFUN" 477608 T DRAWCFUN (NIL) -7 NIL NIL) (-227 466988 468870 468912 "DQAGG" 469541 NIL DQAGG (NIL T) -9 NIL 469814) (-226 455494 462232 462315 "DPOLCAT" 464153 NIL DPOLCAT (NIL T T T T) -9 NIL 464697) (-225 450334 451680 453637 "DPOLCAT-" 453642 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444418 450196 450293 "DPMO" 450298 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438405 444199 444365 "DPMM" 444370 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438038 438114 438212 "DOMAIN" 438327 T DOMAIN (NIL) -8 NIL NIL) (-221 431750 437675 437826 "DMP" 437939 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 431350 431406 431550 "DLP" 431688 NIL DLP (NIL T) -7 NIL NIL) (-219 424994 430451 430678 "DLIST" 431155 NIL DLIST (NIL T) -8 NIL NIL) (-218 421840 423849 423891 "DLAGG" 424441 NIL DLAGG (NIL T) -9 NIL 424670) (-217 420549 421241 421270 "DIVRING" 421420 T DIVRING (NIL) -9 NIL 421528) (-216 419537 419790 420183 "DIVRING-" 420188 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 417639 417996 418402 "DISPLAY" 419151 T DISPLAY (NIL) -7 NIL NIL) (-214 411528 417553 417616 "DIRPROD" 417621 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 410376 410579 410844 "DIRPROD2" 411321 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400006 406011 406065 "DIRPCAT" 406473 NIL DIRPCAT (NIL NIL T) -9 NIL 407300) (-211 397332 397974 398855 "DIRPCAT-" 399192 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 396619 396779 396965 "DIOSP" 397166 T DIOSP (NIL) -7 NIL NIL) (-209 393321 395531 395573 "DIOPS" 396007 NIL DIOPS (NIL T) -9 NIL 396236) (-208 392870 392984 393175 "DIOPS-" 393180 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 391741 392379 392408 "DIFRING" 392595 T DIFRING (NIL) -9 NIL 392704) (-206 391387 391464 391616 "DIFRING-" 391621 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389176 390458 390499 "DIFEXT" 390858 NIL DIFEXT (NIL T) -9 NIL 391151) (-204 387462 387890 388555 "DIFEXT-" 388560 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 384784 386994 387036 "DIAGG" 387041 NIL DIAGG (NIL T) -9 NIL 387061) (-202 384168 384325 384577 "DIAGG-" 384582 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 379633 383127 383404 "DHMATRIX" 383937 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375245 376154 377164 "DFSFUN" 378643 T DFSFUN (NIL) -7 NIL NIL) (-199 370031 373959 374324 "DFLOAT" 374900 T DFLOAT (NIL) -8 NIL NIL) (-198 368264 368545 368940 "DFINTTLS" 369739 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 365297 366299 366697 "DERHAM" 367931 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363146 365072 365161 "DEQUEUE" 365241 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 362364 362497 362692 "DEGRED" 363008 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 358780 359521 360369 "DEFINTRF" 361596 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 356319 356786 357382 "DEFINTEF" 358301 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350150 355760 355926 "DECIMAL" 356173 T DECIMAL (NIL) -8 NIL NIL) (-191 347662 348120 348626 "DDFACT" 349694 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 347258 347301 347452 "DBLRESP" 347613 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 344968 345302 345671 "DBASE" 347016 NIL DBASE (NIL T) -8 NIL NIL) (-188 344103 344927 344955 "D03FAFA" 344960 T D03FAFA (NIL) -8 NIL NIL) (-187 343239 344062 344090 "D03EEFA" 344095 T D03EEFA (NIL) -8 NIL NIL) (-186 341189 341655 342144 "D03AGNT" 342770 T D03AGNT (NIL) -7 NIL NIL) (-185 340507 341148 341176 "D02EJFA" 341181 T D02EJFA (NIL) -8 NIL NIL) (-184 339825 340466 340494 "D02CJFA" 340499 T D02CJFA (NIL) -8 NIL NIL) (-183 339143 339784 339812 "D02BHFA" 339817 T D02BHFA (NIL) -8 NIL NIL) (-182 338461 339102 339130 "D02BBFA" 339135 T D02BBFA (NIL) -8 NIL NIL) (-181 331659 333247 334853 "D02AGNT" 336875 T D02AGNT (NIL) -7 NIL NIL) (-180 329428 329950 330496 "D01WGTS" 331133 T D01WGTS (NIL) -7 NIL NIL) (-179 328531 329387 329415 "D01TRNS" 329420 T D01TRNS (NIL) -8 NIL NIL) (-178 327634 328490 328518 "D01GBFA" 328523 T D01GBFA (NIL) -8 NIL NIL) (-177 326737 327593 327621 "D01FCFA" 327626 T D01FCFA (NIL) -8 NIL NIL) (-176 325840 326696 326724 "D01ASFA" 326729 T D01ASFA (NIL) -8 NIL NIL) (-175 324943 325799 325827 "D01AQFA" 325832 T D01AQFA (NIL) -8 NIL NIL) (-174 324046 324902 324930 "D01APFA" 324935 T D01APFA (NIL) -8 NIL NIL) (-173 323149 324005 324033 "D01ANFA" 324038 T D01ANFA (NIL) -8 NIL NIL) (-172 322252 323108 323136 "D01AMFA" 323141 T D01AMFA (NIL) -8 NIL NIL) (-171 321355 322211 322239 "D01ALFA" 322244 T D01ALFA (NIL) -8 NIL NIL) (-170 320458 321314 321342 "D01AKFA" 321347 T D01AKFA (NIL) -8 NIL NIL) (-169 319561 320417 320445 "D01AJFA" 320450 T D01AJFA (NIL) -8 NIL NIL) (-168 312865 314414 315973 "D01AGNT" 318022 T D01AGNT (NIL) -7 NIL NIL) (-167 312202 312330 312482 "CYCLOTOM" 312733 T CYCLOTOM (NIL) -7 NIL NIL) (-166 308937 309650 310377 "CYCLES" 311495 T CYCLES (NIL) -7 NIL NIL) (-165 308249 308383 308554 "CVMP" 308798 NIL CVMP (NIL T) -7 NIL NIL) (-164 306031 306288 306663 "CTRIGMNP" 307977 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 305405 305504 305657 "CSTTOOLS" 305928 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 301204 301861 302619 "CRFP" 304717 NIL CRFP (NIL T T) -7 NIL NIL) (-161 300251 300436 300664 "CRAPACK" 301008 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 299635 299736 299940 "CPMATCH" 300127 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 299360 299388 299494 "CPIMA" 299601 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 295724 296396 297114 "COORDSYS" 298695 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 291585 293727 294219 "CONTFRAC" 295264 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 290738 291302 291331 "COMRING" 291336 T COMRING (NIL) -9 NIL 291387) (-155 289819 290096 290280 "COMPPROP" 290574 T COMPPROP (NIL) -8 NIL NIL) (-154 289480 289515 289643 "COMPLPAT" 289778 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 279461 289289 289398 "COMPLEX" 289403 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279097 279154 279261 "COMPLEX2" 279398 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 278815 278850 278948 "COMPFACT" 279056 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263149 273443 273484 "COMPCAT" 274486 NIL COMPCAT (NIL T) -9 NIL 275879) (-149 252664 255588 259215 "COMPCAT-" 259571 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 252395 252423 252525 "COMMUPC" 252630 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252190 252223 252282 "COMMONOP" 252356 T COMMONOP (NIL) -7 NIL NIL) (-146 251773 251941 252028 "COMM" 252123 T COMM (NIL) -8 NIL NIL) (-145 251027 251219 251248 "COMBOPC" 251584 T COMBOPC (NIL) -9 NIL 251757) (-144 249923 250133 250375 "COMBINAT" 250817 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246129 246700 247338 "COMBF" 249347 NIL COMBF (NIL T T) -7 NIL NIL) (-142 244915 245245 245480 "COLOR" 245914 T COLOR (NIL) -8 NIL NIL) (-141 244555 244602 244727 "CMPLXRT" 244862 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240057 241085 242165 "CLIP" 243495 T CLIP (NIL) -7 NIL NIL) (-139 238395 239165 239403 "CLIF" 239885 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 234617 236541 236583 "CLAGG" 237512 NIL CLAGG (NIL T) -9 NIL 238048) (-137 233039 233496 234079 "CLAGG-" 234084 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 232583 232668 232808 "CINTSLPE" 232948 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230084 230555 231103 "CHVAR" 232111 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 229306 229870 229899 "CHARZ" 229904 T CHARZ (NIL) -9 NIL 229918) (-133 229060 229100 229178 "CHARPOL" 229260 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 228166 228763 228792 "CHARNZ" 228839 T CHARNZ (NIL) -9 NIL 228894) (-131 226189 226856 227191 "CHAR" 227851 T CHAR (NIL) -8 NIL NIL) (-130 225914 225975 226004 "CFCAT" 226115 T CFCAT (NIL) -9 NIL NIL) (-129 225159 225270 225452 "CDEN" 225798 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 221151 224312 224592 "CCLASS" 224899 T CCLASS (NIL) -8 NIL NIL) (-127 216204 217180 217933 "CARTEN" 220454 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 215312 215460 215681 "CARTEN2" 216051 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 213609 214464 214720 "CARD" 215076 T CARD (NIL) -8 NIL NIL) (-124 212981 213309 213338 "CACHSET" 213470 T CACHSET (NIL) -9 NIL 213547) (-123 212477 212773 212802 "CABMON" 212852 T CABMON (NIL) -9 NIL 212908) (-122 210034 212169 212276 "BTREE" 212403 NIL BTREE (NIL T) -8 NIL NIL) (-121 207532 209682 209804 "BTOURN" 209944 NIL BTOURN (NIL T) -8 NIL NIL) (-120 204950 207003 207045 "BTCAT" 207113 NIL BTCAT (NIL T) -9 NIL 207190) (-119 204617 204697 204846 "BTCAT-" 204851 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 199837 203708 203737 "BTAGG" 203993 T BTAGG (NIL) -9 NIL 204172) (-117 199260 199404 199634 "BTAGG-" 199639 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 196304 198538 198753 "BSTREE" 199077 NIL BSTREE (NIL T) -8 NIL NIL) (-115 195442 195568 195752 "BRILL" 196160 NIL BRILL (NIL T) -7 NIL NIL) (-114 192143 194170 194212 "BRAGG" 194861 NIL BRAGG (NIL T) -9 NIL 195118) (-113 190672 191078 191633 "BRAGG-" 191638 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 183880 190018 190202 "BPADICRT" 190520 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 182184 183817 183862 "BPADIC" 183867 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 181884 181914 182027 "BOUNDZRO" 182148 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 177399 178490 179357 "BOP" 181037 T BOP (NIL) -8 NIL NIL) (-108 175020 175464 175984 "BOP1" 176912 NIL BOP1 (NIL T) -7 NIL NIL) (-107 173639 174350 174573 "BOOLEAN" 174817 T BOOLEAN (NIL) -8 NIL NIL) (-106 173005 173383 173436 "BMODULE" 173441 NIL BMODULE (NIL T T) -9 NIL 173505) (-105 168815 172803 172876 "BITS" 172952 T BITS (NIL) -8 NIL NIL) (-104 167912 168347 168499 "BINFILE" 168683 T BINFILE (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 14519fd0..7c106a3d 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,1389 +1,1181 @@
-(721991 . 3409435992)
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199))
- (-5 *2 (-952)) (-5 *1 (-682)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1162)) (-5 *1 (-437)))))
+(722241 . 3409486834)
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2791 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7))
+ (-5 *3 (-377 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-527 *7 *8)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))
+ (-4 *2 (-421))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2))
+ (-4 *4 (-1134 (-377 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-421))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1065 *3 *2))
+ (-4 *2 (-1134 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-215)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-844)) (-4 *1 (-212 *3 *4)) (-4 *4 (-963))
- (-4 *4 (-1111))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156))
- (-4 *5 (-212 (-3535 *3) (-703)))
- (-14 *6
- (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *5))
- (-2 (|:| -2812 *2) (|:| -2121 *5))))
- (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779))
- (-4 *7 (-872 *4 *5 (-789 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1005)) (-4 *5 (-1005))
- (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-725))
- (-4 *5 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *6 (-509))
- (-5 *2 (-2 (|:| -2948 (-875 *6)) (|:| -2890 (-875 *6))))
- (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-872 (-377 (-875 *6)) *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1076)))
- (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1076)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1057 (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1061 *4))
- (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-963)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779))
- (-5 *1 (-555 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *5 (-977 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1111)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-866 *5)) (-5 *3 (-703)) (-4 *5 (-963))
- (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)) (-4 *2 (-779))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-963)) (-5 *2 (-1157 *4))
- (-5 *1 (-1077 *4))))
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-964)) (-4 *1 (-1134 *3)))))
+(((*1 *1) (-4 *1 (-319)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4))
+ (-4 *4 (-13 (-509) (-779) (-134)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1073 *5)))
+ (|:| |prim| (-1073 *5))))
+ (-5 *1 (-402 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-134)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1073 *3))
+ (|:| |pol2| (-1073 *3)) (|:| |prim| (-1073 *3))))
+ (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-876 *5)) (-5 *4 (-1077)) (-4 *5 (-13 (-333) (-134)))
+ (-5 *2
+ (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517))
+ (|:| |prim| (-1073 *5))))
+ (-5 *1 (-883 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-5 *2 (-1157 *3)) (-5 *1 (-1077 *3))
- (-4 *3 (-963)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6))
- (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4))))
- (-5 *1 (-1083 *6)) (-5 *5 (-583 *4)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1076)) (-5 *2 (-556 *6))
- (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1148 *4))
- (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1057 *4) (-1057 *4)))
- (-5 *1 (-1150 *4 *5)))))
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077)))
+ (-4 *5 (-13 (-333) (-134)))
+ (-5 *2
+ (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *5)))
+ (|:| |prim| (-1073 *5))))
+ (-5 *1 (-883 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-5 *5 (-1077))
+ (-4 *6 (-13 (-333) (-134)))
+ (-5 *2
+ (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *6)))
+ (|:| |prim| (-1073 *6))))
+ (-5 *1 (-883 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964))
+ (-5 *2 (-583 (-583 (-583 (-703))))))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-961)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1059)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-236)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+ (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5))
+ (-5 *2 (-383 *4 (-377 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1158 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4)))
+ (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *3 (-278))
+ (-5 *1 (-383 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-845))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-845))
+ (-5 *1 (-487 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *3 (-583 (-236)))
- (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-236))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-437))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-437)))))
+ (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112))
+ (-14 *4 (-517)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4194 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2))
- (-4 *2 (-963)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1133 *2))
- (-4 *4 (-621 *2 *5 *6)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-798))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 *3))))
+ (-5 *4 (-703)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964))
+ (-4 *3 (-509))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-4 *6 (-421))
+ (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333))
+ (-4 *5 (-13 (-333) (-777))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-387 *4)))))
+ (-12 (-4 *1 (-819))
+ (-5 *3
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060))
+ (|:| |tol| (-199))))
+ (-5 *2 (-953)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-945 *5 *6 *7 *8)))))
+ (-5 *1 (-945 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-583 *8))
+ (|:| |towers| (-583 (-1048 *5 *6 *7 *8)))))
+ (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1006)) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1006)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779))
+ (-4 *5 (-725)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1073 *3) (-1073 *3)))
+ (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509)))
+ (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111))
- (-4 *3 (-1005)) (-5 *2 (-703))))
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112))
+ (-4 *3 (-1006)) (-5 *2 (-703))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4192)) (-4 *1 (-456 *4))
- (-4 *4 (-1111)) (-5 *2 (-703)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963))))
- ((*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-963)) (-4 *3 (-775)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1105 *4 *5 *6 *7))
- (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-107)))))
+ (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4))
+ (-4 *4 (-1112)) (-5 *2 (-703)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1133 *4)) (-5 *1 (-741 *4 *2 *3 *5))
- (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2))
- (-4 *5 (-593 (-377 *2))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777)))
- (-5 *2 (-583 (-2 (|:| -1510 (-583 *3)) (|:| -3110 *5))))
- (-5 *1 (-162 *5 *3)) (-4 *3 (-1133 (-153 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-333) (-777)))
- (-5 *2 (-583 (-2 (|:| -1510 (-583 *3)) (|:| -3110 *4))))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
+ (-12 (-4 *4 (-779)) (-5 *2 (-1085 (-583 *4))) (-5 *1 (-1084 *4))
+ (-5 *3 (-583 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-2 (|:| -1724 (-583 *6)) (|:| -3676 (-583 *6)))))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1112 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1023)) (-4 *4 (-319))
- (-5 *1 (-487 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1076)) (-5 *6 (-583 (-556 *3)))
- (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *7)))
- (-4 *7 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3)))
- (-5 *1 (-510 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-278))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517)))
+ (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $))
+ (-15 -2082 ((-1029 *3 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *3 (-556 $))))))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1066 *4 *5))
+ (-14 *4 (-845)) (-4 *5 (-964)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2544 (-583 *7))))
+ (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199))))
((*1 *1 *1) (-4 *1 (-502)))
((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1023)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1024)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-107))
- (-5 *2
- (-2 (|:| |contp| (-517))
- (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517)))))))
- (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-107))
- (-5 *2
- (-2 (|:| |contp| (-517))
- (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517)))))))
- (-5 *1 (-1122 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072 *1)) (-4 *1 (-930)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2370 (-714 *3)) (|:| |coef1| (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-2 (|:| -2370 *1) (|:| |coef1| *1)))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5))
- (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
- (-5 *1 (-287 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7))
- (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
- (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7))
- (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
- (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8))
- (-5 *6 (-583 *8)) (-4 *8 (-400 *7))
- (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
- (-5 *1 (-287 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7))
- (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
- (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8)))
- (-4 *8 (-400 *7)) (-5 *5 (-265 *8))
- (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
- (-5 *1 (-287 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6))
- (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
- (-5 *1 (-287 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6))
- (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
- (-5 *1 (-287 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6))
- (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
- (-5 *1 (-287 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3))
- (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493))))
- (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1072 *4))) (-5 *3 (-1072 *4))
- (-4 *4 (-832)) (-5 *1 (-600 *4)))))
+ (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509))
+ (-4 *8 (-873 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *3)))
+ (-5 *1 (-877 *5 *6 *7 *8 *3)) (-5 *4 (-703))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8))))))))
+(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4)))
+ (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))))
(((*1 *2 *3)
- (-12
+ (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1006)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1006)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-517))
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-725)) (-4 *2 (-872 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2))
- (-4 *4 (-421)) (-4 *6 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1157 (-517))) (-5 *3 (-517)) (-5 *1 (-1015))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1157 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517))
- (-5 *1 (-1015)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-952)) (-5 *1 (-276))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-952))) (-5 *2 (-952)) (-5 *1 (-276))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1) (-5 *1 (-975)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1057 (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1054 *4))
- (-4 *4 (-1111))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-844))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1097) (-881))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5))
- (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))))
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779))
+ (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-953)) (-5 *1 (-276))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-953))) (-5 *2 (-953)) (-5 *1 (-276))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1 *1) (-5 *1 (-976)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1055 *4))
+ (-4 *4 (-1112))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963))
- (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256)))
- (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-4 *5 (-963))
- (-4 *2 (-13 (-374) (-954 *5) (-333) (-1097) (-256)))
- (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1133 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-51)) (-5 *1 (-815 *4))
- (-4 *4 (-1005)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1005))
- (-5 *1 (-98 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-98 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4))
- (-4 *3 (-150 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1111)) (-5 *2 (-703))
- (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4))
- (-4 *3 (-400 *4))))
- ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502))))
- ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4))
- (-4 *3 (-729 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-910 *3 *4))
- (-4 *3 (-911 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-914 *3 *4))
- (-4 *3 (-915 *4))))
- ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-929 *3)) (-4 *3 (-930))))
- ((*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-703))))
- ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-971 *3)) (-4 *3 (-972)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-703)) (-4 *6 (-1005)) (-4 *3 (-823 *6))
- (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3))
- (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4192)))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1179 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-156))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751 *3)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-963))))
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-921)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273))))
+ ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1134 *4))
+ (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1134 *5)) (-14 *6 (-845))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2 (-1057 (-199))) (-5 *1 (-168))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1076)))
- (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-271))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *4 (-583 (-1076)))
- (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-271)))))
-(((*1 *1) (-5 *1 (-407))))
+ (-12 (-5 *2 (-703)) (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-751 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112))
+ (-4 *2 (-779))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4196))
+ (-4 *1 (-343 *3)) (-4 *3 (-1112)))))
+(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))
- (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-952)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-866 *4))) (-4 *1 (-1037 *4)) (-4 *4 (-963))
- (-5 *2 (-703)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-941 *3))
- (-4 *3 (-13 (-777) (-333) (-939)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3))
- (-4 *3 (-1133 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-777) (-333)))
- (-4 *3 (-1133 *2)))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-920) (-1097)))
- (-4 *4 (-13 (-509) (-779)))
- (-4 *2 (-13 (-400 (-153 *4)) (-920) (-1097)))
- (-5 *1 (-546 *4 *5 *2)))))
+ (-12 (-5 *3 (-1001 (-772 (-349)))) (-5 *2 (-1001 (-772 (-199))))
+ (-5 *1 (-276)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
+ (-5 *1 (-1084 *4)) (-4 *4 (-779)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))))
(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-168))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-271))))
+ (-12 (-5 *3 (-1060))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1098) (-29 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333))
+ (-4 *5 (-964)) (-5 *2 (-107)) (-5 *1 (-947 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-493)))))
+ (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-964))
+ (-5 *2 (-107)) (-5 *1 (-947 *4)))))
(((*1 *2)
- (-12
- (-5 *2
- (-1157 (-583 (-2 (|:| -3121 (-833 *3)) (|:| -2812 (-1023))))))
- (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844))))
- ((*1 *2)
- (-12 (-5 *2 (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023))))))
- (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1072 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023))))))
- (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))))
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *1 *1) (-5 *1 (-199)))
+ ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1041))) ((*1 *1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1134 *4)) (-5 *1 (-741 *4 *2 *3 *5))
+ (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2))
+ (-4 *5 (-593 (-377 *2))))))
(((*1 *1)
- (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4183)))
- (-2479 (|has| *1 (-6 -4175)))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1005)) (-4 *2 (-779))))
+ (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186)))
+ (-2479 (|has| *1 (-6 -4178)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779))))
((*1 *1 *1 *1) (-4 *1 (-779)))
- ((*1 *2 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-779))))
- ((*1 *1) (-5 *1 (-1023))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-134))
- (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-685)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-297 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-480 *3 *4))
- (-14 *4 (-517)))))
-(((*1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779))))
+ ((*1 *1) (-5 *1 (-1024))))
(((*1 *2 *1)
- (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-906 *3 *4 *5 *2))
- (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1115)) (-4 *5 (-1133 (-377 *2)))
- (-4 *2 (-1133 *4)) (-5 *1 (-311 *3 *4 *2 *5))
- (-4 *3 (-312 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1115))
- (-4 *4 (-1133 (-377 *2))) (-4 *2 (-1133 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-1117 *4)) (-4 *4 (-963)) (-4 *4 (-509))
- (-5 *2 (-377 (-875 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-1117 *4)) (-4 *4 (-963)) (-4 *4 (-509))
- (-5 *2 (-377 (-875 *4))))))
+ (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964))
+ (-4 *2 (-421))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1134 (-517))) (-5 *2 (-583 (-517)))
+ (-5 *1 (-453 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-421)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1220 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-377 (-875 *5)) (-1066 (-1076) (-875 *5))))
- (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5)))))
- (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))))
-(((*1 *1) (-5 *1 (-142))))
+ (-12 (-5 *3 (-623 (-377 (-876 (-517)))))
+ (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *2))
+ (|:| |logand| (-1073 *2)))))
+ (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-333)) (-5 *1 (-534 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-107))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
+ (-12 (-5 *3 (-583 (-845))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798))
+ (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1162))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-107)) (-5 *1 (-1101 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-583 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-510 *6 *3)))))
-(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))))
-(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-670 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1005))))
- ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1005)))))
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-437))
+ (-5 *1 (-1162))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236)))
+ (-5 *2 (-437)) (-5 *1 (-1162)))))
+(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-5 *2 (-1163)) (-5 *1 (-1080))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077))
+ (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163))
+ (-5 *1 (-1080))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1077))
+ (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163))
+ (-5 *1 (-1080)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-777)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2283 (-388 *3))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-964)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1134 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077))
+ (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-623 *2)) (-5 *4 (-517))
+ (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199)))
+ (-5 *1 (-630)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-5 *2 (-517))
+ (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1134 *5))
+ (-4 *6 (-13 (-374) (-955 *5) (-333) (-1098) (-256)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
+ (-4 *3 (-1134 *4))
+ (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-278))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-278))
(-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6))
(-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779))
(-5 *1 (-416 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6))
(-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779))
(-5 *1 (-416 *4 *5 *6 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))))
(((*1 *1 *1) (-5 *1 (-107))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-954 (-517)))
- (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $))
- (-15 -2098 ((-1028 *3 (-556 $)) $))
- (-15 -2271 ($ (-1028 *3 (-556 $))))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3))
- (-4 *3 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1005)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-976)) (-5 *3 (-1060)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-689)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-690)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-388 *4)) (-4 *4 (-509)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *6 (-558 (-1076)))
- (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *2 (-1066 (-583 (-875 *4)) (-583 (-265 (-875 *4)))))
- (-5 *1 (-469 *4 *5 *6 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159))))
- ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1113)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-753)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5))
- (-14 *3 (-517)) (-14 *4 (-703)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-300)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-4 *7 (-873 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7))))
+ (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-583 (-1077))) (-4 *2 (-156))
+ (-4 *4 (-212 (-3573 *5) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *4))
+ (-2 (|:| -2803 *3) (|:| -1725 *4))))
+ (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779))
+ (-4 *7 (-873 *2 *4 (-789 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1162))
- (-5 *1 (-418 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-911 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3))
- (-4 *3 (-343 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-911 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 *5)) (-4 *5 (-911 *4)) (-4 *4 (-509))
- (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4)))
- (-5 *1 (-626 *4 *5))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-527 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| A (-623 *5))
+ (|:| |eqs|
+ (-583
+ (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5)) (|:| -3817 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5))
+ (-4 *6 (-593 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *6 (-1133 *5))
- (-5 *2 (-2 (|:| -3781 *7) (|:| |rh| (-583 (-377 *6)))))
- (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6)))
- (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-911 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1126 *4 *5 *3))
- (-4 *3 (-1133 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1107 *3))
- (-5 *1 (-722 *3)) (-4 *3 (-893))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-107))
- (-5 *1 (-1107 *2)) (-4 *2 (-893)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+ (-12 (-4 *5 (-333)) (-4 *6 (-593 *5))
+ (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5))))
+ (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *2 (-377 (-875 *4))) (-5 *1 (-847 *4 *5 *6 *3))
- (-4 *3 (-872 *4 *6 *5))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517)))))
+ (-4 *4 (-1134 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5))
- (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *2 (-623 (-377 (-875 *4))))
- (-5 *1 (-847 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5))
- (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *2 (-583 (-377 (-875 *4))))
- (-5 *1 (-847 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1072 *7))) (-5 *3 (-1072 *7))
- (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-832)) (-4 *5 (-725))
- (-4 *6 (-779)) (-5 *1 (-829 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1072 *5))) (-5 *3 (-1072 *5))
- (-4 *5 (-1133 *4)) (-4 *4 (-832)) (-5 *1 (-830 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-963)))
- (-5 *2 (-1059)) (-5 *1 (-758 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 *5)) (-5 *4 (-107))
- (-4 *5 (-13 (-760) (-779) (-963))) (-5 *2 (-1059))
- (-5 *1 (-758 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-754)) (-5 *4 (-286 *5))
- (-4 *5 (-13 (-760) (-779) (-963))) (-5 *2 (-1162))
- (-5 *1 (-758 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107))
- (-4 *6 (-13 (-760) (-779) (-963))) (-5 *2 (-1162))
- (-5 *1 (-758 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1059))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1059))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1162))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1162)))))
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-964))
+ (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-107)) (-5 *3 (-876 *6)) (-5 *4 (-1077))
+ (-5 *5 (-772 *7))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-4 *7 (-13 (-1098) (-29 *6))) (-5 *1 (-198 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1073 *6)) (-5 *4 (-772 *6))
+ (-4 *6 (-13 (-1098) (-29 *5)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-198 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023))))))
- (-4 *4 (-319)) (-5 *2 (-1162)) (-5 *1 (-487 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *5 (-977 *3 *4 *2)))))
-(((*1 *1) (-5 *1 (-407))))
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2)
- (-12 (-5 *2 (-623 (-833 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-844))
- (-14 *4 (-844))))
- ((*1 *2)
- (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319))
- (-14 *4
- (-3 (-1072 *3)
- (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319))
- (-14 *4 (-844)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-421))
- (-5 *2
- (-583
- (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1066 (-1076) (-875 *4))))
- (|:| |eigmult| (-703))
- (|:| |eigvec| (-583 (-623 (-377 (-875 *4))))))))
- (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-265 (-875 (-517))))
- (-5 *2
- (-2 (|:| |varOrder| (-583 (-1076)))
- (|:| |inhom| (-3 (-583 (-1157 (-703))) "failed"))
- (|:| |hom| (-583 (-1157 (-703))))))
- (-5 *1 (-210)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-772 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3868 (-1072 *6)) (|:| -2121 (-517)))))
- (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517))
- (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2212 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1133 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-873 *3 *5 *4))
+ (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077))))
+ (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-953)) (-5 *1 (-686)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-703)) (-4 *4 (-319))
- (-5 *1 (-487 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
- (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))
- (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1072 *7)))
- (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1072 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-421)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-388 *1)) (-4 *1 (-872 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3))
- (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421))
- (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1072 (-377 *7))))
- (-5 *1 (-1071 *4 *5 *6 *7)) (-5 *3 (-1072 (-377 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1115))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1136 *4 *3))
- (-4 *3 (-13 (-1133 *4) (-509) (-10 -8 (-15 -2370 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-14 *5 (-583 (-1076)))
+ (-12 (-5 *3 (-1077)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-128)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1158 *5)) (-5 *3 (-703)) (-5 *4 (-1024)) (-4 *5 (-319))
+ (-5 *1 (-487 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *2 (-1108 (-850)))
+ (-5 *1 (-288))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *7 (-1060))
+ (-5 *2 (-1108 (-850))) (-5 *1 (-288))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517))
+ (-5 *2 (-1108 (-850))) (-5 *1 (-288))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1060))
+ (-5 *2 (-1108 (-850))) (-5 *1 (-288)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1158 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-107)) (-5 *5 (-1008 (-703))) (-5 *6 (-703))
(-5 *2
- (-583 (-1047 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))))
- (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1072 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779))
- (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278))
- (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))))))
+ (-2 (|:| |contp| (-517))
+ (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517)))))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1134 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3))
+ (-5 *2 (-623 *3)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2157 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))))
+(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-337 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-377 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-13 (-333) (-134)))
- (-5 *1 (-369 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3))
- (-4 *3 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1694 *4))) (-5 *5 (-703))
- (-4 *4 (-872 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-418 *6 *7 *8 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-692)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
+ (-12 (-5 *2 (-583 *1)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-623 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *4)) (-4 *4 (-964)) (-4 *1 (-1027 *3 *4 *5 *6))
+ (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *1) (-4 *1 (-888))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-168)))))
(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *1) (-4 *1 (-793 *2))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| -3778 (-703))
+ (|:| |eqns|
+ (-583
+ (-2 (|:| |det| *8) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (|:| |fgb| (-583 *8)))))
+ (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-703)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-680)))))
(((*1 *2)
- (-12 (-4 *1 (-319))
- (-5 *2 (-583 (-2 (|:| -3868 (-517)) (|:| -2121 (-517))))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-866 *5)) (-4 *5 (-963)) (-5 *2 (-703))
- (-5 *1 (-1065 *4 *5)) (-14 *4 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1065 *4 *5))
- (-14 *4 (-844)) (-4 *5 (-963))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-963))
- (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963))
- (-5 *2 (-583 (-583 (-583 (-866 *3))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159))))
- ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *2 (-1157 (-286 (-349))))
- (-5 *1 (-276)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-692)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 (-1157 (-517)))) (-5 *3 (-844)) (-5 *1 (-435)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1111)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))
- ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-4 *1 (-887))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-844)) (-5 *1 (-947 *2))
- (-4 *2 (-13 (-1005) (-10 -8 (-15 -1678 ($ $ $))))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1076)))
- (-4 *6 (-13 (-509) (-954 *5))) (-4 *5 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *6)))))) (-5 *1 (-955 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-742 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-2 (|:| -1492 (-583 (-377 *6))) (|:| -3016 (-623 *5))))
- (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-742 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-2 (|:| -1492 (-583 (-377 *6))) (|:| -3016 (-623 *5))))
- (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3))
- (-4 *3 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-107))
- (-5 *1 (-907 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-107))
- (-5 *1 (-1012 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-509))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))))
+ (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4))
+ (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *1) (-4 *1 (-888))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-845)) (-5 *1 (-948 *2))
+ (-4 *2 (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $))))))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953))
+ (-5 *1 (-681)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1084 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4))))
- (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) ((*1 *1) (-4 *1 (-502)))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632))))
- ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *2)
- (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *1 *1) (-4 *1 (-972))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) ((*1 *1) (-4 *1 (-502)))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632))))
+ ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421))
+ (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421))
+ (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
- (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005))
- (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-963))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4))
- (-4 *4 (-1133 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-659))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
(-5 *2 (-107)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))
- ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-4 *1 (-887))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1059)) (-5 *5 (-623 (-199))) (-5 *6 (-199))
- (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1124 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-832)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3))))
+ (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1157 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333))
- (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1133 *5))
- (-5 *2 (-623 *5)))))
+ (-12 (-5 *3 (-583 (-1158 *5))) (-5 *4 (-517)) (-5 *2 (-1158 *5))
+ (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077))
+ (-5 *2 (-583 *4)) (-5 *1 (-1020 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963))
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964))
(-5 *2
- (-2 (|:| -1715 (-703)) (|:| |curves| (-703))
+ (-2 (|:| -1782 (-703)) (|:| |curves| (-703))
(|:| |polygons| (-703)) (|:| |constructs| (-703)))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-199) (-199) (-199)))
- (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined"))
- (-5 *5 (-1000 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1036 (-199)))
- (-5 *1 (-630)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1065 *4 *5))
- (-14 *4 (-844)) (-4 *5 (-963)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1005)) (-5 *2 (-812 *3 *4)) (-5 *1 (-808 *3 *4 *5))
- (-4 *3 (-1005)) (-4 *5 (-603 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
- (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-866 *4)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1057 (-1057 *4))) (-5 *2 (-1057 *4)) (-5 *1 (-1061 *4))
- (-4 *4 (-963)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-583
- (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 *2))
- (|:| |logand| (-1072 *2)))))
- (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-333)) (-5 *1 (-534 *2)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-689)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1006)) (-4 *2 (-824 *4)) (-5 *1 (-625 *4 *2 *5 *3))
+ (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4195)))))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4))
- (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
+ (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4))
- (-5 *2
- (-3 (|:| |overq| (-1072 (-377 (-517))))
- (|:| |overan| (-1072 (-47))) (|:| -3212 (-107))))
- (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-955 *4)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1157 *5)) (-4 *5 (-724)) (-5 *2 (-107))
- (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-866 (-199)))) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849))))
- ((*1 *2 *1) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1072 *6)) (-4 *6 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-1072 *7)) (-5 *1 (-291 *4 *5 *6 *7))
- (-4 *7 (-872 *6 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319))
- (-5 *2 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023))))))
- (-5 *1 (-316 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-866 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
+ (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $))
+ (-15 -2082 ((-1029 *3 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *3 (-556 $))))))))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-107)) (-5 *1 (-816 *4))
+ (-4 *4 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3))
+ (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199) (-199)))
+ (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077))
+ (-4 *4 (-13 (-509) (-955 (-517)) (-134))) (-5 *1 (-523 *4)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-953)) (-5 *1 (-687)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))) (-5 *2 (-107)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 *4))))
- (-5 *1 (-812 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))
- (-4 *7 (-1005)) (-5 *2 (-583 *1)) (-4 *1 (-1008 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5)
- (|:| |f4| (-583 *5))))
- (-5 *1 (-1083 *6)) (-5 *4 (-583 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-406)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1006)) (-4 *5 (-1006))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421))
+ (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7))
+ (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-14 *5 (-583 (-1076))) (-5 *2 (-583 (-583 (-941 (-377 *4)))))
- (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4)))
- (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *4))))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
- ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
+ (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156))
+ (-5 *2 (-1158 (-623 (-876 *4)))) (-5 *1 (-165 *4)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-689)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4))))
+ (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-400 *3) (-920))) (-5 *1 (-249 *3 *2))
- (-4 *3 (-13 (-779) (-509))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
+ (-12 (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))
+ (-4 *7 (-1006)) (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)))))
+(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1006)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-735)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882))))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2))
+ (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2))
+ (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1006) (-33)))
+ (-5 *2 (-107)) (-5 *1 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1097) (-400 *3)))
- (-14 *4 (-1076)) (-14 *5 *2)))
+ (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-4 *2 (-13 (-27) (-1097) (-400 *3) (-10 -8 (-15 -2271 ($ *4)))))
- (-4 *4 (-777))
- (-4 *5
- (-13 (-1135 *2 *4) (-333) (-1097)
- (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $)))))
- (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-902 *5)) (-14 *7 (-1076)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4193)) (-4 *1 (-928 *3))
- (-4 *3 (-1111)))))
-(((*1 *1) (-5 *1 (-131))))
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-891))
+ (-5 *3 (-583 (-517))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))
- ((*1 *1 *1) (-5 *1 (-1023))))
+ ((*1 *1 *1) (-5 *1 (-1024))))
(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-377 (-517))))
- (-5 *2 (-2 (|:| -1624 (-1057 *4)) (|:| -1635 (-1057 *4))))
- (-5 *1 (-1063 *4)) (-5 *3 (-1057 *4)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111))
- (-4 *3 (-1005)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-828 *4)) (-4 *4 (-1005)) (-5 *2 (-107))
- (-5 *1 (-827 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-844)) (-5 *2 (-107)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199)))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-686)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-872 *7 *5 *6))
- (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-278)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-134) (-27) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *5 (-1133 *4)) (-5 *2 (-1072 (-377 *5))) (-5 *1 (-559 *4 *5))
- (-5 *3 (-377 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-134) (-27) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-1072 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-963)) (-4 *2 (-1133 *5))
- (-5 *1 (-1151 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1148 *5)))))
+ (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-278))
+ (-5 *2 (-377 (-388 (-876 *4)))) (-5 *1 (-959 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199)))
+ (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-687)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116))
+ (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1133 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3))
- (-4 *3 (-1133 (-377 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-1065 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-1159))))
- ((*1 *2 *1) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-1159)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5))
- (-5 *2 (-383 *4 (-377 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1157 *6)) (-4 *6 (-13 (-379 *4 *5) (-954 *4)))
- (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-4 *3 (-278))
- (-5 *1 (-383 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163))
+ (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163))
+ (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6))
+ (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))
+ ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))
- ((*1 *1 *1 *1) (-5 *1 (-1023))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *1) (-5 *1 (-1024))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1112))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273))))
((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273))))
((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1093)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-123))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-331 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-356 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-586 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1072 *7)) (-4 *5 (-963))
- (-4 *7 (-963)) (-4 *2 (-1133 *5)) (-5 *1 (-466 *5 *2 *6 *7))
- (-4 *6 (-1133 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963))
- (-4 *4 (-1133 *5)) (-5 *2 (-1072 *7)) (-5 *1 (-466 *5 *4 *6 *7))
- (-4 *6 (-1133 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023))))))
- (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-844))
- (-14 *4 (-844))))
- ((*1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319))
- (-14 *4
- (-3 (-1072 *3)
- (-1157 (-583 (-2 (|:| -3121 *3) (|:| -2812 (-1023)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319))
- (-14 *4 (-844)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-953)) (-5 *1 (-681)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1111)) (-4 *1 (-212 *3 *4)))))
+ (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1112)) (-4 *1 (-212 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1005))
- (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3))))
- (-5 *2 (-583 (-985 *3 *4 *5))) (-5 *1 (-986 *3 *4 *5))
- (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33))))))
+ (-12 (-4 *3 (-1006))
+ (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3))))
+ (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-987 *3 *4 *5))
+ (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-787)) (-5 *1 (-1058 *3)) (-4 *3 (-1006))
+ (-4 *3 (-1112)))))
(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-286 *4))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4))))))
+ (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-623 (-377 (-875 (-517)))))
- (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-948)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
- ((*1 *1 *1 *1) (-5 *1 (-787))))
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333))
+ (-5 *2 (-1073 (-876 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))
- ((*1 *1 *1 *1) (-5 *1 (-1023))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1024))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964))
+ (-5 *1 (-1062 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964))
+ (-14 *4 (-1077)) (-14 *5 *3))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1133 *4)) (-4 *4 (-1115))
- (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1133 (-377 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-156))
- (-4 *1 (-337 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-156))
- (-4 *1 (-340 *4 *5)) (-4 *5 (-1133 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4))
- (-4 *4 (-1133 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-706)) (-5 *1 (-109)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-688)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115))
- (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))))
+ (-12 (-4 *4 (-964)) (-4 *3 (-1134 *4)) (-4 *2 (-1149 *4))
+ (-5 *1 (-1152 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-1129 *4 *3))
+ (-4 *3 (-1134 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-286 *4))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4))))))
+ (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4))))))
((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))))
-(((*1 *1 *1) (-5 *1 (-975))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-583
- (-2
- (|:| -2585
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199))))
- (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199)))
- (|:| |g| (-286 (-199))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (|:| -1859
- (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
- (|:| |expense| (-349)) (|:| |accuracy| (-349))
- (|:| |intermediateResults| (-349)))))))
- (-5 *1 (-735)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1078 (-377 (-517)))) (-5 *2 (-377 (-517)))
- (-5 *1 (-166)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1115))
- (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5)))
- (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-333)) (-4 *3 (-963))
- (-5 *1 (-1061 *3)))))
+ (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1098)))
+ (-5 *1 (-532 *4 *2))
+ (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-534 (-377 (-876 *4))))
+ (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-564 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107)))
+ (-517) *4))
+ (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *1 (-527 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-377 (-517)))
+ (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5))
+ (-4 *5 (-13 (-779) (-509) (-955 (-517))))
+ (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509))
- (-4 *3 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-1027 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+ (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-964))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-867 (-199))) (-5 *2 (-199)) (-5 *1 (-1109))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1112))
+ (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199)))
+ (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107))
+ (-5 *2 (-953)) (-5 *1 (-687)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))
- ((*1 *1 *1) (-4 *1 (-920)))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-930))))
- ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-930))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-703))))
- ((*1 *1 *1) (-4 *1 (-930))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199))
- (-5 *2 (-583 (-866 *4))) (-5 *1 (-1108)) (-5 *3 (-866 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ ((*1 *1 *1) (-4 *1 (-921)))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-931))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-931))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-703))))
+ ((*1 *1 *1) (-4 *1 (-931))))
+(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
+ (-5 *2 (-1073 *3)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-703)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5))
+ (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1155 *3)) (-4 *3 (-23)) (-4 *3 (-1111)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
+ (-12 (-5 *2 (-703)) (-4 *1 (-1156 *3)) (-4 *3 (-23)) (-4 *3 (-1112)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1079))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1079))))
+ (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1076))) (-5 *4 (-1076))
- (-5 *1 (-1079))))
+ (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *4 (-1077))
+ (-5 *1 (-1080))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1079))))
+ (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-407)) (-5 *3 (-1076)) (-5 *1 (-1080))))
+ (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1081))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1076))) (-5 *1 (-1080)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-952))
- (-5 *1 (-679)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)))))
+ (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *1 (-1081)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319))
+ (-4 *2
+ (-13 (-372)
+ (-10 -7 (-15 -2262 (*2 *4)) (-15 -4161 ((-845) *2))
+ (-15 -3700 ((-1158 *2) (-845))) (-15 -4115 (*2 *2)))))
+ (-5 *1 (-326 *2 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-319))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517)))))))
+ (-5 *1 (-191 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1006)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-963))
- (-14 *4 (-583 (-1076)))))
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-964))
+ (-14 *4 (-583 (-1077)))))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1) (-4 *1 (-256)))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *1 *2)
(-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779))
(-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5))
- (-14 *5 (-844))))
+ (-14 *5 (-845))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-13 (-963) (-650 (-377 (-517)))))
- (-4 *5 (-779)) (-5 *1 (-1171 *4 *5 *2)) (-4 *2 (-1176 *5 *4))))
+ (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517)))))
+ (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4))
+ (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4))
(-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1111))
- (-14 *4 (-517)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107))
+ (-5 *2 (-953)) (-5 *1 (-678)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1133 (-47)))))
+ (-4 *3 (-1134 (-47)))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47)))))
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725))
- (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-872 (-47) *6 *5))))
+ (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-873 (-47) *6 *5))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725))
- (-4 *7 (-872 (-47) *6 *5)) (-5 *2 (-388 (-1072 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1072 *7))))
+ (-4 *7 (-873 (-47) *6 *5)) (-5 *2 (-388 (-1073 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1073 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3))
- (-4 *3 (-1133 (-153 *4)))))
+ (-4 *3 (-1134 (-153 *4)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4)))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))
((*1 *2 *3 *4)
(-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4)))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4)))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3))
- (-4 *3 (-1133 *4))))
+ (-4 *3 (-1134 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
- (-4 *3 (-1133 (-517)))))
+ (-4 *3 (-1134 (-517)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
- (-4 *3 (-1133 (-517)))))
+ (-4 *3 (-1134 (-517)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3))
- (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
- (-4 *3 (-1133 (-517)))))
+ (-4 *3 (-1134 (-517)))))
((*1 *2 *3)
(-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415))
(-5 *3 (-153 (-517)))))
@@ -1391,1417 +1183,1373 @@
(-12
(-4 *4
(-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
(-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3))
(-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509))
- (-4 *3 (-872 *7 *5 *4))))
+ (-4 *3 (-873 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1072 *4))) (-5 *1 (-427 *4))
- (-5 *3 (-1072 *4))))
+ (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1073 *4))) (-5 *1 (-427 *4))
+ (-5 *3 (-1073 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333))
+ (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333))
(-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3))
- (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1133 *7))))
+ (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1134 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-388 (-1072 *7)) (-1072 *7)))
+ (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7)))
(-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725))
(-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3))
- (-4 *3 (-872 *7 *6 *5))))
+ (-4 *3 (-873 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-388 (-1072 *7)) (-1072 *7)))
+ (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7)))
(-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725))
- (-4 *8 (-872 *7 *6 *5)) (-5 *2 (-388 (-1072 *8)))
- (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1072 *8))))
+ (-4 *8 (-873 *7 *6 *5)) (-5 *2 (-388 (-1073 *8)))
+ (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1073 *8))))
((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *6 (-1133 *5)) (-5 *2 (-583 (-590 (-377 *6))))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *6 (-1134 *5)) (-5 *2 (-583 (-590 (-377 *6))))
(-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *5 (-1133 *4)) (-5 *2 (-583 (-590 (-377 *5))))
+ (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5))))
(-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5)))))
((*1 *2 *3)
(-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4)))
(-5 *1 (-608 *4))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3))
- (-4 *3 (-1133 *4))))
+ (-4 *3 (-1134 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3))
- (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4))))
+ (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319))
- (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1072 *7)))
- (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1072 *7))))
+ (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7)))
+ (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1073 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-725))
(-4 *5
(-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
(-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3))
- (-4 *3 (-872 (-875 *6) *4 *5))))
+ (-4 *3 (-873 (-876 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-725))
- (-4 *5 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *6 (-509))
+ (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509))
(-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3))
- (-4 *3 (-872 (-377 (-875 *6)) *4 *5))))
+ (-4 *3 (-873 (-377 (-876 *6)) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134)))
(-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3))
- (-4 *3 (-872 (-377 *6) *4 *5))))
+ (-4 *3 (-873 (-377 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134)))
(-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3))
- (-4 *3 (-872 *6 *5 *4))))
+ (-4 *3 (-873 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134)))
- (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1072 *7)))
- (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1072 *7))))
+ (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7)))
+ (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1073 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-925 *3))
- (-4 *3 (-1133 (-377 (-517))))))
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3))
+ (-4 *3 (-1134 (-377 (-517))))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-957 *3))
- (-4 *3 (-1133 (-377 (-875 (-517)))))))
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-958 *3))
+ (-4 *3 (-1134 (-377 (-876 (-517)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1133 (-377 (-517))))
+ (-12 (-4 *4 (-1134 (-377 (-517))))
(-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4)))
- (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1133 *5))))
+ (-5 *2 (-388 *3)) (-5 *1 (-989 *4 *5 *3)) (-4 *3 (-1134 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1133 (-377 (-875 (-517)))))
- (-4 *5 (-13 (-333) (-134) (-657 (-377 (-875 (-517))) *4)))
- (-5 *2 (-388 *3)) (-5 *1 (-990 *4 *5 *3)) (-4 *3 (-1133 *5))))
+ (-12 (-4 *4 (-1134 (-377 (-876 (-517)))))
+ (-4 *5 (-13 (-333) (-134) (-657 (-377 (-876 (-517))) *4)))
+ (-5 *2 (-388 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1134 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421))
- (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1072 (-377 *7))))
- (-5 *1 (-1071 *4 *5 *6 *7)) (-5 *3 (-1072 (-377 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1115))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
- (-4 *4 (-319)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1106 *6))
- (-5 *2 (-1 (-1057 *4) (-1057 *4))) (-5 *1 (-1165 *6))
- (-5 *5 (-1057 *4)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1133 *4)) (-5 *1 (-742 *4 *2))
- (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))))
+ (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7))))
+ (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116))))
((*1 *2 *3)
- (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1133 *4))
- (-5 *1 (-742 *4 *2))
- (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517))))))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1059)) (-5 *4 (-153 (-199))) (-5 *5 (-517))
- (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963))
- (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134)))
- (-5 *1 (-1127 *4 *2)) (-4 *2 (-1133 *4)))))
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333))
+ (-5 *2 (-703)) (-5 *1 (-869 *5 *6)) (-4 *6 (-1134 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
- (-4 *7 (-911 *4)) (-4 *2 (-621 *7 *8 *9))
- (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6))
- (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963))
- (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
- (-4 *2 (-621 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-963))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1026 *2 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1083 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-1005) (-33)))
- (-4 *5 (-13 (-1005) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *4 *5)))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-168))))
+ ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-271))))
+ ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-276)))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517))))
((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-844))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-845))))
((*1 *1 *1 *1)
(-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
(-4 *4 (-156))))
((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-142))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-142))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097)))
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098)))
(-5 *1 (-201 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1111)) (-4 *2 (-659))))
+ (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1111)) (-4 *2 (-659))))
+ (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-265 *2)) (-4 *2 (-1017)) (-4 *2 (-1111))))
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-265 *2)) (-4 *2 (-1017)) (-4 *2 (-1111))))
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-123))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1005))))
+ (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-963)) (-4 *2 (-779))))
+ (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1005))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005))))
+ (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156))
- (-4 *6 (-212 (-3535 *3) (-703)))
+ (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156))
+ (-4 *6 (-212 (-3573 *3) (-703)))
(-14 *7
- (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *6))
- (-2 (|:| -2812 *5) (|:| -2121 *6))))
+ (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6))
+ (-2 (|:| -2803 *5) (|:| -1725 *6))))
(-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779))
- (-4 *2 (-872 *4 *6 (-789 *3)))))
+ (-4 *2 (-873 *4 *6 (-789 *3)))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
((*1 *1 *2 *1)
(-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
((*1 *1 *1 *1)
(-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
- (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
((*1 *1 *1 *1) (-5 *1 (-493)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-963))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-963))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-963))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-970))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-971))))
((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-1 *7 *5))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-1 *7 *5))
(-5 *1 (-618 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-343 *3))
+ (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-964)) (-4 *2 (-343 *3))
(-4 *4 (-343 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-343 *3))
+ (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-343 *3))
(-4 *2 (-343 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *1 *1) (-4 *1 (-653)))
((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-509))
- (-5 *1 (-889 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-969 *2)) (-4 *2 (-970))))
- ((*1 *1 *1 *1) (-4 *1 (-1017)))
+ (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509))
+ (-5 *1 (-890 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-970 *2)) (-4 *2 (-971))))
+ ((*1 *1 *1 *1) (-4 *1 (-1018)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-212 *3 *4))
+ (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *2 (-212 *3 *4))
(-4 *5 (-212 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1026 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-212 *3 *4))
+ (-12 (-4 *1 (-1027 *3 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4))
(-4 *2 (-212 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-779)) (-5 *1 (-1029 *3 *4 *2))
- (-4 *2 (-872 *3 (-489 *4) *4))))
+ (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2))
+ (-4 *2 (-873 *3 (-489 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-866 (-199))) (-5 *3 (-199)) (-5 *1 (-1108))))
+ (-12 (-5 *2 (-867 (-199))) (-5 *3 (-199)) (-5 *1 (-1109))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-659))))
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-659))))
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-517)) (-4 *1 (-1155 *3)) (-4 *3 (-1111)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-517)) (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963))))
+ (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-779)) (-4 *2 (-963))))
+ (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-963)) (-4 *3 (-775)))))
+ (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-1077)) (-4 *6 (-400 *5))
+ (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1116)) (-4 *5 (-1134 *3)) (-4 *6 (-1134 (-377 *5)))
+ (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-517)))))
+ (-4 *2 (-509)) (-5 *1 (-388 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-517))
+ (|:| -2283 (-583 (-2 (|:| |irr| *4) (|:| -1332 (-517)))))))
+ (-4 *4 (-1134 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-278))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3))))
- (-5 *1 (-356 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3371 (-703)) (|:| -2946 (-703))))
- (-5 *1 (-703))))
+ (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777)))
+ (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *5))))
+ (-5 *1 (-162 *5 *3)) (-4 *3 (-1134 (-153 *5)))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-952)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
- (-4 *4 (-13 (-779) (-509))))))
+ (-12 (-4 *4 (-13 (-333) (-777)))
+ (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *4))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-517)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-107))
+ (-5 *1 (-813 *4 *5)) (-4 *5 (-1006))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-5 *2 (-107))
+ (-5 *1 (-814 *5 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006))
+ (-4 *6 (-1112)) (-5 *2 (-107)) (-5 *1 (-814 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-964)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
(-4 *4 (-319)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-517)) (-5 *1 (-215))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-517)) (-5 *1 (-215)))))
-(((*1 *2)
- (-12 (-4 *3 (-1115)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))
- (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3))
- (-5 *2
- (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-623 *3))))
- (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5))
+ (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1134 *5))
+ (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1073 (-517)))) (-5 *3 (-1073 (-517)))
+ (-5 *1 (-525))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1073 *1))) (-5 *3 (-1073 *1))
+ (-4 *1 (-833)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-583 (-876 *4)))))
((*1 *2)
- (-12 (-4 *3 (-1133 (-517)))
- (-5 *2
- (-2 (|:| -1492 (-623 (-517))) (|:| |basisDen| (-517))
- (|:| |basisInv| (-623 (-517)))))
- (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-583 (-876 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
((*1 *2)
- (-12 (-4 *3 (-319)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 *4))
- (-5 *2
- (-2 (|:| -1492 (-623 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-623 *4))))
- (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5))))
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-876 *3)))))
((*1 *2)
- (-12 (-4 *3 (-319)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 *4))
- (-5 *2
- (-2 (|:| -1492 (-623 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-623 *4))))
- (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1005)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *1)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162))
- (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162))
- (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-4 *1 (-826 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4)))
- (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1407 (-109)) (|:| |arg| (-583 (-815 *3)))))
- (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-815 *4)))
- (-5 *1 (-815 *4)) (-4 *4 (-1005)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-703)) (-4 *5 (-156))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-703)) (-4 *5 (-156))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
- (-221 *4 (-377 (-517)))))
- (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1076))) (-14 *5 (-703))
- (-5 *1 (-470 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952))
- (-5 *1 (-681)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156))))
- ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2))))
- ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-963))
- (-4 *3 (-509))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-47)))) (-5 *1 (-47))))
+ (-12 (-5 *2 (-583 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-876 *4)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156))
+ (-14 *5 (-845)) (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964))
+ (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-51)) (-5 *1 (-816 *4))
+ (-4 *4 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4))
- (-5 *2 (-1157 *6)) (-5 *1 (-383 *3 *4 *5 *6))
- (-4 *6 (-13 (-379 *4 *5) (-954 *4)))))
+ (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4))
+ (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6))
+ (-4 *6 (-13 (-379 *4 *5) (-955 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *3 (-779)) (-5 *2 (-1028 *3 (-556 *1)))
+ (-12 (-4 *3 (-964)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1)))
(-4 *1 (-400 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460))))
((*1 *2 *1)
(-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-659) *3))))
((*1 *2 *1)
(-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-659) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
- ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-265 (-765 *3)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 (-765 (-875 *5)))) (-4 *5 (-421))
- (-5 *2 (-765 (-377 (-875 *5)))) (-5 *1 (-577 *5))
- (-5 *3 (-377 (-875 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5)))
- (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3))
- (-4 *3 (-13 (-374) (-1097)))))
- ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-992 *3)) (-4 *3 (-124)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1023))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-703)) (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1) (-5 *1 (-735))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-623 (-377 (-875 (-517)))))
- (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-948)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-421))
- (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))
- (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963))))
+ (-12 (-4 *1 (-768))
+ (-5 *3
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (-5 *2 (-953))))
((*1 *2 *3)
- (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156))
- (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
- (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-583
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-517)))))
- (-5 *1 (-388 *3)) (-4 *3 (-509))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1133 *3))
- (-5 *2 (-583 (-1072 *3))) (-5 *1 (-463 *3 *5 *6))
- (-4 *6 (-1133 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1005))
- (-4 *2 (-123)))))
-(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1023))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1142 *3 *4 *5)) (-4 *3 (-13 (-333) (-779)))
- (-14 *4 (-1076)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-956)) (-5 *3 (-349)))))
-(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1157 (-3 (-437) "undefined"))) (-5 *1 (-1158)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
- (-4 *3 (-1005)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1157 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1005)))))
+ (-12 (-4 *1 (-768))
+ (-5 *3
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))
+ (-5 *2 (-953)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1157 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509))
- (-5 *2 (-1157 *4)) (-5 *1 (-578 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-517))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-12 (-4 *4 (-319)) (-5 *2 (-881 (-1073 *4))) (-5 *1 (-327 *4))
+ (-5 *3 (-1073 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-685)))))
+(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-993 *3)) (-4 *3 (-124)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1089 *4 *5))
- (-4 *4 (-1005)) (-4 *5 (-1005)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-1005)) (-5 *2 (-583 *1))
- (-4 *1 (-352 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-659))))
+ (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-872 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-4 *3 (-1133 *4)) (-4 *2 (-1148 *4))
- (-5 *1 (-1151 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1005))
- (-5 *1 (-613 *2)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-973 (-941 *3) (-1072 (-941 *3))))
- (-5 *1 (-941 *3)) (-4 *3 (-13 (-777) (-333) (-939))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3300 *7) (|:| |sol?| (-107)))
- (-517) *7))
- (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1133 *7))
- (-5 *3 (-377 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-527 *7 *8)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1076)) (-4 *5 (-558 (-815 (-517))))
- (-4 *5 (-809 (-517)))
- (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-520 *5 *3)) (-4 *3 (-569))
- (-4 *3 (-13 (-27) (-1097) (-400 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1076)) (-5 *4 (-772 *2)) (-4 *2 (-1040))
- (-4 *2 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517)))
- (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517))))
- (-5 *1 (-520 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-517)) (|has| *1 (-6 -4183)) (-4 *1 (-374))
- (-5 *2 (-844)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
- (-5 *1 (-302)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-684)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333))
- (-5 *2 (-623 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1157 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-623 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-1157 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
- (-4 *5 (-1133 *4)) (-5 *2 (-623 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
- (-4 *5 (-1133 *4)) (-5 *2 (-1157 *4))))
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703))))
((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156))
- (-4 *5 (-1133 *4)) (-5 *2 (-623 *4))))
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3))
- (-5 *2 (-1157 *3))))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
+ (-5 *2 (-703)))))
+(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1024))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156))
- (-5 *2 (-623 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1157 *3))))
+ (-12 (-4 *4 (-156)) (-4 *2 (-1134 *4)) (-5 *1 (-159 *4 *2 *3))
+ (-4 *3 (-657 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333))
- (-5 *2 (-1157 *5)) (-5 *1 (-993 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
- (-5 *2 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005))
- (-5 *2 (-703))))
+ (-12 (-5 *3 (-623 (-377 (-876 *5)))) (-5 *4 (-1077))
+ (-5 *2 (-876 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-5 *2 (-876 *4))
+ (-5 *1 (-263 *4)) (-4 *4 (-421))))
((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-659)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349)))
- (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162))
- (-5 *1 (-720)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779))
- (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-872 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-583 (-2 (|:| -3868 (-1072 *9)) (|:| -2121 (-517)))))))
- (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1072 *9)))))
-(((*1 *1) (-5 *1 (-975))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-623 *2)) (-5 *4 (-703))
- (-4 *2 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *5 (-1133 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-889 *4 *2))
- (-4 *2 (-1133 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952))
- (-5 *1 (-681)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-517)) (-5 *5 (-1059)) (-5 *6 (-623 (-199)))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1059)) (-5 *1 (-276)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1072 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517))))
- (-5 *2 (-2 (|:| -1295 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3868 *3) (|:| -3647 *4))))
- (-5 *1 (-629 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240))))
- ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240))))
+ (-12 (-5 *3 (-623 (-153 (-377 (-517)))))
+ (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1077))
+ (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *5))
+ (-4 *5 (-13 (-333) (-777)))))
((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
+ (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-876 (-377 (-517))))
+ (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1077))
+ (-5 *2 (-876 (-377 (-517)))) (-5 *1 (-711 *5))
+ (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-954 (-517)))
- (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1072 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-556 *1)) (-4 *1 (-963)) (-4 *1 (-273))
- (-5 *2 (-1072 *1)))))
-(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-948)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
+ (-12 (-5 *3 (-703)) (-5 *2 (-623 (-876 *4))) (-5 *1 (-946 *4))
+ (-4 *4 (-964)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))
- (-5 *2 (-1157 *6)) (-5 *1 (-306 *3 *4 *5 *6))
- (-4 *6 (-312 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-1150 *4 *2))
- (-4 *4 (-37 (-377 (-517)))))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4))
+ (-4 *4 (-1112)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2589 *4))) (-5 *1 (-890 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))))
+(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1024))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *6 (-1133 *5))
- (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3781 *3))))
- (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6))
- (-4 *7 (-593 (-377 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *6 (-1133 *5))
- (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3781 (-591 *6 (-377 *6))))))
- (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
-(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-908))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-998 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
- (-5 *2 (-1076))))
- ((*1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1153 *3)) (-14 *3 *2))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1072 *3)) (-4 *3 (-963)) (-4 *1 (-1133 *3)))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
- (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
- (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-920)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273))))
- ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
- (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
- (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-920) (-1097))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1111)) (-4 *2 (-963))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
- ((*1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-1108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-963)))))
+ (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517))
+ (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1058 *3)) (-4 *3 (-1006))
+ (-4 *3 (-1112)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156))
+ (|partial| -12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156))
+ (|partial| -12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 (-349)))
+ (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349)))
(-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963))
+ (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509))
+ (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509))
+ (|partial| -12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844))
+ (|partial| -12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845))
(-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
(-5 *1 (-717 *5))))
((*1 *2 *3)
(|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509))
+ (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
(-5 *1 (-717 *5))))
((*1 *2 *3)
(|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
(-5 *1 (-717 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1006))
+ (-5 *1 (-613 *2)))))
+(((*1 *2)
+ (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7))))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-908 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7))))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4))
+ (-14 *3 (-845)) (-4 *4 (-964))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1058 *4))) (-4 *4 (-333))
+ (-4 *4 (-964)) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-4 *3 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1133 *5))
- (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1133 *6))
- (-14 *7 (-844)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3))
- (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2))
- (-4 *2 (-621 *3 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-974 (-942 *3) (-1073 (-942 *3))))
+ (-5 *1 (-942 *3)) (-4 *3 (-13 (-777) (-333) (-940))))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349)))
+ ((*1 *1) (-5 *1 (-349))))
(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779)))
+ (-14 *3 (-583 (-1077))))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-725)) (-4 *3 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
+ (-5 *1 (-418 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-908 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-1013 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5)))
+ (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6))
+ (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-209 *3))))
+ ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3))
+ (-4 *3 (-13 (-400 *4) (-921))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-1169 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1169 *4 *5 *6 *7)))
+ (-5 *1 (-1169 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509))
+ (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1169 *6 *7 *8 *9)))
+ (-5 *1 (-1169 *6 *7 *8 *9)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3))
+ (-4 *3 (-1006)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-909))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-999 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
+ (-5 *2 (-1077))))
+ ((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-919 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4))
+ (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6))
+ (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517)
+ *6))
+ (-4 *6 (-333)) (-4 *7 (-1134 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6))
+ (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed"))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752))
+ (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))))
(((*1 *2 *1)
(-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
(-14 *4 *2) (-4 *5 (-156))))
((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-844)) (-5 *1 (-149 *3 *4))
+ (-12 (-4 *4 (-156)) (-5 *2 (-845)) (-5 *1 (-149 *3 *4))
(-4 *3 (-150 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-844))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-845))))
((*1 *2)
- (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3))
- (-5 *2 (-844))))
+ (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3))
+ (-5 *2 (-845))))
((*1 *2 *3)
(-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
(-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-333))
+ (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333))
(-5 *2 (-703)) (-5 *1 (-604 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193))))
- (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-5 *2 (-703))
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196))))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-703))
(-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
(-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703))))
((*1 *2 *3)
(-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
(-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3))
(-4 *3 (-621 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
(-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
(-5 *2 (-703)))))
-(((*1 *1 *1) (-5 *1 (-1075)))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))))
+(((*1 *1 *1) (-5 *1 (-1076)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *2 *2)
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134)))
+ (-5 *1 (-369 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
+ (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
+ (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517))
+ (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
+ (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-687)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-623 *3))))
- (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
+ (-583
+ (-583
+ (-3 (|:| -2981 (-1077))
+ (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))))
+ (-5 *1 (-1081)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3))
- (-4 *3 (-1133 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1015)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-134))
- (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1124 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1015)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779))
- (-4 *4 (-725)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1022))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1076))) (-4 *4 (-421))
- (-5 *1 (-841 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-689)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159))))
- ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-890)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349))))
- ((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-349)))))
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *2)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1005))
- (-4 *3 (-1111)) (-4 *3 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-812 *4 *5)) (-5 *3 (-812 *4 *6)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-603 *5)) (-5 *1 (-808 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-583 *4))) (-4 *4 (-779))
- (-5 *2 (-583 (-583 *4))) (-5 *1 (-1083 *4)))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107)))))
+ (-4 *2 (-13 (-400 *4) (-921))) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-249 *4 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-832)) (-4 *6 (-725))
- (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-388 (-1072 *8)))
- (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-1072 *8))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1077))) (-5 *1 (-757)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *2
+ (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4))
+ (|:| |genIdeal| (-469 *4 *5 *6 *7))))
+ (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
((*1 *2 *3)
- (-12 (-4 *4 (-832)) (-4 *5 (-1133 *4)) (-5 *2 (-388 (-1072 *5)))
- (-5 *1 (-830 *4 *5)) (-5 *3 (-1072 *5)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1057 *3))) (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)))))
-(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-927 *3)) (-4 *3 (-955 (-377 (-517)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3)))))
+ (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123))
+ (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4))))
+ (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1084 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159))))
- ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2157 *3) (|:| |coef2| (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))))
-(((*1 *1 *1) (-5 *1 (-199)))
- ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
+ (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
+ (-5 *2 (-1058 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
(-4 *2 (-400 *3))))
- ((*1 *1 *1) (-4 *1 (-1040))) ((*1 *1 *1 *1) (-4 *1 (-1040))))
+ ((*1 *1 *1 *1) (-4 *1 (-1041))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-964)) (-4 *3 (-333))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333))
+ (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-955 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-815 *6)))
- (-5 *5 (-1 (-812 *6 *8) *8 (-815 *6) (-812 *6 *8))) (-4 *6 (-1005))
- (-4 *8 (-13 (-963) (-558 (-815 *6)) (-954 *7))) (-5 *2 (-812 *6 *8))
- (-4 *7 (-13 (-963) (-779))) (-5 *1 (-864 *6 *7 *8)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1))))
+ (-4 *1 (-337 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-422 *3 *4 *5 *6))
+ (|:| -3700 (-583 (-422 *3 *4 *5 *6)))))
+ (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1158 *4))) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
+ (-5 *2 (-583 (-1158 *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787)))
- (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787)))
+ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787)))
+ (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787)))
(|:| |args| (-583 (-787)))))
- (-5 *1 (-1076)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1043 *3 *4)) (-14 *3 (-844)) (-4 *4 (-333))
- (-5 *1 (-912 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-209 *3))
- (-4 *3 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1029 *4 *3 *5))) (-4 *4 (-37 (-377 (-517))))
- (-4 *4 (-963)) (-4 *3 (-779)) (-5 *1 (-1029 *4 *3 *5))
- (-4 *5 (-872 *4 (-489 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1106 *4))) (-5 *3 (-1076)) (-5 *1 (-1106 *4))
- (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
- ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))))
+ (-5 *1 (-1077)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *4 (-583 (-1076)))
- (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181))))
+ (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5))
+ (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1149 *5))
+ (-5 *1 (-1151 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3))
+ (-4 *3 (-585 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))))
+(((*1 *2)
+ (-12 (-4 *1 (-319))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-109))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-4 *6 (-823 *5)) (-5 *2 (-623 *6))
- (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6))
- (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4))
- (-5 *1 (-240)))))
+ (-12 (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3 *4))
+ (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-810 *5)) (-4 *5 (-1006))
+ (-5 *2 (-107)) (-5 *1 (-811 *5 *6 *4)) (-4 *4 (-558 (-816 *5))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1134 (-153 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1134 (-153 *2))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963))
- (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256)))
- (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4))))
+ (-12 (-4 *4 (-964))
+ (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4))))
((*1 *1 *1) (-4 *1 (-502)))
- ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1111)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1109 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-817 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1112)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1110 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921))
+ (-4 *2 (-964)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502))
+ (-4 *3 (-509))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-920))
- (-4 *2 (-963)))))
+ (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502))
+ (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502))
+ (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) (-4 *3 (-955 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3337 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
+ (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199)))
+ (-5 *1 (-276)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1015 *3 *4 *5 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1059)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1005))
- (-4 *4 (-1005))))
+ (-12 (-5 *3 (-1060)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1006))
+ (-4 *4 (-1006))))
((*1 *1 *2)
- (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131)))
- ((*1 *1 *1) (-4 *1 (-1045))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-850))
- (-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
- (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))))
- (-5 *1 (-140))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517)))
- (-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
- (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))))
- (-5 *1 (-140))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
- (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))))
- (-5 *1 (-140)) (-5 *3 (-583 (-866 (-199))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
- (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))))
- (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 (-199)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3))
- (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
- (-4 *3 (-1133 (-153 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779))
- (-4 *8 (-872 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1157 (-377 *8)) "failed"))
- (|:| -1492 (-583 (-1157 (-377 *8))))))
- (-5 *1 (-606 *5 *6 *7 *8)))))
-(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5))
+ (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8))
+ (-5 *6 (-583 *8)) (-4 *8 (-400 *7))
+ (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8)))
+ (-4 *8 (-400 *7)) (-5 *5 (-265 *8))
+ (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6))
+ (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6))
+ (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6))
+ (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3))
+ (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1157 *4)) (-5 *1 (-487 *4))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
(-4 *4 (-319)))))
+(((*1 *1) (-4 *1 (-319))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3))
+ (-4 *3 (-983 *4 *5 *6 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *2 (-751 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-963)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-1150 *4 *2))
- (-4 *4 (-37 (-377 (-517)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 (-153 (-517))))) (-5 *2 (-583 (-153 *4)))
- (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517))))))
- (-5 *4 (-583 (-1076))) (-5 *2 (-583 (-583 (-153 *5))))
- (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-754)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6))
- (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6))
- (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+ (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107))
+ (-5 *1 (-327 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-107))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-5 *2 (-437)) (-5 *1 (-1159)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1059)) (|:| -2989 (-1059))))
- (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273))))
- ((*1 *1 *1) (-4 *1 (-273)))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
- ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1111)) (-5 *2 (-583 *1)) (-4 *1 (-928 *3)))))
-(((*1 *1) (-5 *1 (-1159))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509))))
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-896 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156))))
+ ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2))))
+ ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-687)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
(-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724))))
+ (-2 (|:| |solns| (-583 *5))
+ (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1032 *3 *5)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1073 (-377 (-517))))
+ (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))))
+ (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -2791 (-377 *6)) (|:| |coeff| (-377 *6))))
+ (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1158 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278))
+ (-4 *3 (-509)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-845)) (-4 *4 (-333)) (-5 *2 (-1158 *1))
+ (-4 *1 (-299 *4))))
+ ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1158 *1)) (-4 *1 (-299 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *1))
+ (-4 *1 (-379 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963))
- (-14 *4 (-583 (-1076)))))
+ (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4))
+ (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6))
+ (-4 *6 (-13 (-379 *4 *5) (-955 *4)))))
((*1 *2 *1)
- (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779)))
- (-14 *4 (-583 (-1076)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779))
- (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248))))
+ (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4))
+ (-5 *2 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))
+ (-4 *6 (-379 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-387 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 *4))) (-5 *1 (-487 *4))
+ (-4 *4 (-319)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-583 (-1077)))
+ (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-941)) (-5 *5 (-349))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4)))))
+ (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779))
- (-4 *8 (-872 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-963))
- (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
- (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4))
- (-4 *4 (-1133 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-963)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-963)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *3 (-779)) (-5 *2 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-892 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *2 (-724))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1148 *3))
- (-5 *2 (-517))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1117 *3))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *2 (-703)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-876 *4)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517))))
+ (-5 *1 (-276)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3))
+ (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134)))
+ (-5 *1 (-1054 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4192)) (-4 *1 (-456 *4))
- (-4 *4 (-1111)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-377 (-1072 (-286 *3)))) (-4 *3 (-13 (-509) (-779)))
- (-5 *1 (-1033 *3)))))
+ (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-738 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-98 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-681)))))
+ (-12 (-5 *2 (-388 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1066 3 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
- (-14 *4 (-703)) (-4 *5 (-156)))))
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374))))
+ ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374))))
+ ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1058 (-517))))))
+(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1) (-5 *1 (-572))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
- (-4 *4 (-13 (-779) (-509))))))
+ (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-964))
+ (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-873 *2 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *4 (-1077))
+ (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
- (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-963))
- (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1133 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-963))
- (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-963))
- (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4))
+ (-4 *4 (-1134 *2)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1133 *4))
- (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1133 *5)) (-14 *6 (-844))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
- ((*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3))))
- (-5 *1 (-356 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3))))
- (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2370 *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1076))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-583 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2212 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1097) (-27) (-400 *8)))
- (-4 *8 (-13 (-421) (-779) (-134) (-954 *3) (-579 *3)))
- (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-932 *8 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))
- ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1) (-4 *1 (-793 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-724))
- (-4 *4 (-779)))))
-(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1023))))
+ (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703))
- (-5 *1 (-868 *4 *5)) (-4 *5 (-1133 *4)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1059)) (-5 *3 (-517)) (-5 *1 (-975)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655)))
((*1 *1) (-4 *1 (-659)))
- ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005))))
- ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779))
- (-4 *5 (-954 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-400 *5))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *5 (-556 $)) $))
- (-15 -2098 ((-1028 *5 (-556 $)) $))
- (-15 -2271 ($ (-1028 *5 (-556 $))))))))))
+ ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))
+ ((*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))))
+(((*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725))
+ (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9))))
+ (-5 *1 (-908 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
+ (-4 *4 (-983 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725))
+ (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9))))
+ (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
+ (-4 *4 (-983 *6 *7 *8 *9)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1058 *3))) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)))))
+(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1024))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278))
+ (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5))
+ (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-278)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964))
+ (-4 *2 (-1149 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437)))))
+(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-493)))
+ ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-964))))
+ ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))))
(((*1 *2 *3)
(-12 (-5 *3 (-701))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))
(-5 *1 (-518))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-701)) (-5 *4 (-975))
+ (-12 (-5 *3 (-701)) (-5 *4 (-976))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))
(-5 *1 (-518))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-719)) (-5 *3 (-975))
+ (-12 (-4 *1 (-719)) (-5 *3 (-976))
(-5 *4
(-2 (|:| |fn| (-286 (-199)))
- (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199))
+ (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))
- (|:| |extra| (-952))))))
+ (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))
+ (|:| |extra| (-953))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-719)) (-5 *3 (-975))
+ (-12 (-4 *1 (-719)) (-5 *3 (-976))
(-5 *4
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))
- (|:| |extra| (-952))))))
+ (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))
+ (|:| |extra| (-953))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-732)) (-5 *3 (-975))
+ (-12 (-4 *1 (-732)) (-5 *3 (-976))
(-5 *4
(-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
(|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
(|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))))))
+ (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))))))
((*1 *2 *3)
(-12 (-5 *3 (-740))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
(-5 *1 (-737))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-740)) (-5 *4 (-975))
+ (-12 (-5 *3 (-740)) (-5 *4 (-976))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
(-5 *1 (-737))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-768)) (-5 *3 (-975))
+ (-12 (-4 *1 (-768)) (-5 *3 (-976))
(-5 *4
- (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))
- (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))))))
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))
+ (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-768)) (-5 *3 (-975))
+ (-12 (-4 *1 (-768)) (-5 *3 (-976))
(-5 *4
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
(|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
(|:| |ub| (-583 (-772 (-199))))))
- (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))))))
+ (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))))))
((*1 *2 *3)
(-12 (-5 *3 (-770))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
(-5 *1 (-769))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-770)) (-5 *4 (-975))
+ (-12 (-5 *3 (-770)) (-5 *4 (-976))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
(-5 *1 (-769))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-818)) (-5 *3 (-975))
+ (-12 (-4 *1 (-819)) (-5 *3 (-976))
(-5 *4
(-2 (|:| |pde| (-583 (-286 (-199))))
(|:| |constraints|
@@ -2809,486 +2557,511 @@
(-2 (|:| |start| (-199)) (|:| |finish| (-199))
(|:| |grid| (-703)) (|:| |boundaryType| (-517))
(|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
- (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060))
(|:| |tol| (-199))))
- (-5 *2 (-2 (|:| -3617 (-349)) (|:| |explanations| (-1059))))))
+ (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))))))
((*1 *2 *3)
- (-12 (-5 *3 (-821))
+ (-12 (-5 *3 (-822))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
- (-5 *1 (-820))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
+ (-5 *1 (-821))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-821)) (-5 *4 (-975))
+ (-12 (-5 *3 (-822)) (-5 *4 (-976))
(-5 *2
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
- (-5 *1 (-820)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-123))
- (-4 *3 (-724)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-333)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1318 *1)))
- (-4 *1 (-781 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-493)))
- ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1057 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-735)))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
+ (-5 *1 (-821)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199))
+ (-5 *2 (-953)) (-5 *1 (-682)))))
+(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080)))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *1))))
- (-4 *1 (-982 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-4 *1 (-569)))
+ (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156))
+ (-4 *5 (-212 (-3573 *3) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5))
+ (-2 (|:| -2803 *2) (|:| -1725 *5))))
+ (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-873 *4 *5 (-789 *3))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6))
+ (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4))))
+ (-5 *1 (-1084 *6)) (-5 *5 (-583 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953))
+ (-5 *1 (-681)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5))))
+ (-5 *1 (-1033 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5))))
+ (-5 *1 (-1033 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-265 (-377 (-876 *4))))
+ (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4))))
+ (-5 *1 (-1033 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077)))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-377 (-876 *4))))
+ (-4 *4 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-265 (-377 (-876 *5))))) (-5 *4 (-583 (-1077)))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-265 (-377 (-876 *4)))))
+ (-4 *4 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1107 *6))
+ (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1166 *6))
+ (-5 *5 (-1058 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517))))
+ (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920) (-1097))))))
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-517))
+ (-5 *6
+ (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))))
+ (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349)))
+ (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163))
+ (-5 *1 (-720))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-517))
+ (-5 *6
+ (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))))
+ (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349)))
+ (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163))
+ (-5 *1 (-720)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517))
+ (-5 *2 (-623 *6)) (-5 *1 (-947 *6)) (-4 *6 (-333)) (-4 *6 (-964))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-947 *4))
+ (-4 *4 (-333)) (-4 *4 (-964))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5))
+ (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-964)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1077))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-583 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1098) (-27) (-400 *8)))
+ (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3)))
+ (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-933 *8 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1106 *5 *6 *7 *3))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-1134 (-153 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1108)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4192)) (-4 *1 (-456 *4))
- (-4 *4 (-1111)) (-5 *2 (-107)))))
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779))
+ (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-5 *2 (-1073 *3)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1005)))))
-(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-502))))
- ((*1 *1 *1) (-4 *1 (-972))))
+ (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-583 *5))
+ (-5 *1 (-814 *4 *5)) (-4 *5 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1006) (-955 *5)))
+ (-4 *5 (-810 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5))
+ (-5 *1 (-855 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-534 *3) *3 (-1077)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1077)))
+ (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-955 *4)) (-4 *3 (-400 *7))
+ (-5 *4 (-1077)) (-4 *7 (-558 (-816 (-517)))) (-4 *7 (-421))
+ (-4 *7 (-810 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3))
+ (-5 *1 (-526 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(((*1 *1 *1 *1) (-4 *1 (-130)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-845)) (-4 *1 (-212 *3 *4)) (-4 *4 (-964))
+ (-4 *4 (-1112))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156))
+ (-4 *5 (-212 (-3573 *3) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5))
+ (-2 (|:| -2803 *2) (|:| -1725 *5))))
+ (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779))
+ (-4 *7 (-873 *4 *5 (-789 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1057 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1162)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-686)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1005)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1005)))))
+ (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4)))
- (-5 *2 (-2 (|:| |num| (-1157 *4)) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-775)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| -1582 *4) (|:| -3371 *3) (|:| -2946 *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-977 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| -1582 *3) (|:| -3371 *1) (|:| -2946 *1)))
- (-4 *1 (-1133 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1015)))))
-(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1162)) (-5 *1 (-1039)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1076))
- (-4 *5 (-13 (-509) (-954 (-517)) (-134)))
- (-5 *2
- (-2 (|:| -2212 (-377 (-875 *5))) (|:| |coeff| (-377 (-875 *5)))))
- (-5 *1 (-523 *5)) (-5 *3 (-377 (-875 *5))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199))
- (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-684)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2212 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-333)) (-4 *7 (-1133 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6))
- (-2 (|:| -2212 (-377 *7)) (|:| |coeff| (-377 *7))) "failed"))
- (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-509)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-406)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-685)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4))
- (-5 *1 (-389 *4))))
- ((*1 *1 *1) (-5 *1 (-849)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849))))
- ((*1 *1 *1) (-5 *1 (-850)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))
- (-5 *4 (-377 (-517))) (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))
- (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))
- (-5 *4 (-377 (-517))) (-5 *1 (-938 *3)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))
- (-5 *1 (-938 *3)) (-4 *3 (-1133 (-377 (-517))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3))
- (-4 *3 (-1133 *2)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-218 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-278))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1318 *1)))
- (-4 *1 (-278)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134)))
- (-5 *1 (-1127 *4 *2)) (-4 *2 (-1133 *4)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-517)) (-5 *1 (-215))))
+ (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-751 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-92)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-753)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517)))))
+ (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517))
+ (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-131))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1059))) (-5 *3 (-517)) (-5 *4 (-1059))
+ (-12 (-5 *2 (-583 (-1060))) (-5 *3 (-517)) (-5 *4 (-1060))
(-5 *1 (-215))))
((*1 *1 *1) (-5 *1 (-787)))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
- ((*1 *2 *1) (-12 (-4 *1 (-1135 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964))
+ (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1158 *4))
+ (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779))
- (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924))))
- ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
+ (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333))
+ (-4 *5 (-509)) (-5 *2 (-1158 *5)) (-5 *1 (-578 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5))
+ (-2479 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1158 (-377 *5)))
+ (-5 *1 (-578 *5 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1076))) (-4 *4 (-13 (-278) (-134)))
- (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725))
- (-5 *2 (-583 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7))
- (-4 *7 (-872 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-131))))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+ (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8))
- (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-107)) (-5 *1 (-896 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+ (-12 (-5 *3 (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5))))
+ (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5)))))
+ (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-286 (-199))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))))
+ (-5 *1 (-181)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-815 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1005))
- (-4 *5 (-1111)) (-5 *1 (-813 *4 *5))))
+ (-12 (-5 *2 (-816 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1006))
+ (-4 *5 (-1112)) (-5 *1 (-814 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-815 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1005))
- (-4 *5 (-1111)) (-5 *1 (-813 *4 *5))))
+ (-12 (-5 *2 (-816 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1006))
+ (-4 *5 (-1112)) (-5 *1 (-814 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-815 *5)) (-5 *3 (-583 (-1076)))
- (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1005)) (-4 *6 (-1111))
- (-5 *1 (-813 *5 *6))))
+ (-12 (-5 *2 (-816 *5)) (-5 *3 (-583 (-1077)))
+ (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1006)) (-4 *6 (-1112))
+ (-5 *1 (-814 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1111)) (-4 *4 (-779))
- (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4))))
+ (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1112)) (-4 *4 (-779))
+ (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1111)) (-4 *4 (-779))
- (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4))))
+ (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) (-4 *4 (-779))
+ (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1111))
- (-5 *2 (-286 (-517))) (-5 *1 (-861 *5))))
+ (-12 (-5 *3 (-1077)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1112))
+ (-5 *2 (-286 (-517))) (-5 *1 (-862 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1111))
- (-5 *2 (-286 (-517))) (-5 *1 (-861 *5))))
+ (-12 (-5 *3 (-1077)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1112))
+ (-5 *2 (-286 (-517))) (-5 *1 (-862 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-1 (-107) (-583 *6)))
- (-4 *6 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))) (-4 *4 (-1005))
- (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4))))
- (-5 *1 (-985 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1 (-107) (-583 *6)))
+ (-4 *6 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) (-4 *4 (-1006))
+ (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4))))
+ (-5 *1 (-986 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-319)) (-4 *2 (-964)) (-5 *1 (-645 *2 *3))
+ (-4 *3 (-1134 *2)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1073 *6)) (-1073 *6)))
+ (-4 *6 (-333))
+ (-5 *2
+ (-583
+ (-2 (|:| |outval| *7) (|:| |outmult| (-517))
+ (|:| |outvect| (-583 (-623 *7))))))
+ (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *2 (-751 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-963)))))
+ (|partial| -12
+ (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)))
+ (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)))
+ (-5 *2 (-772 *4)) (-5 *1 (-1144 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077))
+ (-14 *6 *4))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-718)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-509)) (-4 *4 (-911 *3)) (-5 *1 (-129 *3 *4 *2))
- (-4 *2 (-343 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-911 *4)) (-4 *2 (-343 *4))
- (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 *5)) (-4 *5 (-911 *4)) (-4 *4 (-509))
- (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-509)) (-4 *4 (-911 *3)) (-5 *1 (-1126 *3 *4 *2))
- (-4 *2 (-1133 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1995 (-703))))
- (-5 *1 (-714 *3)) (-4 *3 (-963))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1995 (-703))))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *6 (-1133 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7))
- (-5 *5 (-1 (-388 *7) *7))
- (-4 *6 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *7 (-1133 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *6 (-1133 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7))
- (-5 *5 (-1 (-388 *7) *7))
- (-4 *6 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *7 (-1133 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7))))
+ (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-167)) (-5 *3 (-517))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156))))
((*1 *2 *3)
- (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1133 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5))))
+ (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-732))
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-953)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5))))
+ (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5))
+ (-4 *6 (-593 (-377 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6))
- (-4 *6 (-1133 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4))))
+ (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4))
+ (-4 *6 (-593 (-377 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1133 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5))))
+ (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5))))
+ (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5))
+ (-4 *3 (-593 (-377 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6))
- (-4 *6 (-1133 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-906 (-377 (-517)) (-789 *3) (-214 *4 (-703))
- (-221 *3 (-377 (-517)))))
- (-14 *3 (-583 (-1076))) (-14 *4 (-703)) (-5 *1 (-905 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1005))
- (-4 *3 (-150 *6)) (-4 (-875 *6) (-809 *5))
- (-4 *6 (-13 (-809 *5) (-156))) (-5 *1 (-160 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-812 *4 *1)) (-5 *3 (-815 *4)) (-4 *1 (-809 *4))
- (-4 *4 (-1005))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1005))
- (-4 *6 (-13 (-1005) (-954 *3))) (-4 *3 (-809 *5))
- (-5 *1 (-854 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1005))
- (-4 *3 (-13 (-400 *6) (-558 *4) (-809 *5) (-954 (-556 $))))
- (-5 *4 (-815 *5)) (-4 *6 (-13 (-509) (-779) (-809 *5)))
- (-5 *1 (-855 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 (-517) *3)) (-5 *4 (-815 (-517))) (-4 *3 (-502))
- (-5 *1 (-856 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1005))
- (-4 *6 (-13 (-779) (-954 (-556 $)) (-558 *4) (-809 *5)))
- (-5 *4 (-815 *5)) (-5 *1 (-857 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-808 *5 *6 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1005))
- (-4 *6 (-809 *5)) (-4 *3 (-603 *6)) (-5 *1 (-858 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-812 *6 *3) *8 (-815 *6) (-812 *6 *3)))
- (-4 *8 (-779)) (-5 *2 (-812 *6 *3)) (-5 *4 (-815 *6))
- (-4 *6 (-1005)) (-4 *3 (-13 (-872 *9 *7 *8) (-558 *4)))
- (-4 *7 (-725)) (-4 *9 (-13 (-963) (-779) (-809 *6)))
- (-5 *1 (-859 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1005))
- (-4 *3 (-13 (-872 *8 *6 *7) (-558 *4))) (-5 *4 (-815 *5))
- (-4 *7 (-809 *5)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *8 (-13 (-963) (-779) (-809 *5))) (-5 *1 (-859 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-911 *6))
- (-4 *6 (-13 (-509) (-809 *5) (-558 *4))) (-5 *4 (-815 *5))
- (-5 *1 (-862 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-812 *5 (-1076))) (-5 *3 (-1076)) (-5 *4 (-815 *5))
- (-4 *5 (-1005)) (-5 *1 (-863 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-583 (-815 *7))) (-5 *5 (-1 *9 (-583 *9)))
- (-5 *6 (-1 (-812 *7 *9) *9 (-815 *7) (-812 *7 *9))) (-4 *7 (-1005))
- (-4 *9 (-13 (-963) (-558 (-815 *7)) (-954 *8))) (-5 *2 (-812 *7 *9))
- (-5 *3 (-583 *9)) (-4 *8 (-13 (-963) (-779)))
- (-5 *1 (-864 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1133 *4))
- (-5 *1 (-845 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1133 (-517))))))
+ (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4))))
+ (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4))
+ (-4 *3 (-593 (-377 *4))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-13 (-27) (-1097) (-400 (-153 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517))))
- (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))))
+ (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845))
+ (-14 *4 (-845)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006)))))
+(((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131)))
+ ((*1 *1 *1) (-4 *1 (-1046))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-33)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-775)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6))
+ (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-876 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6))
+ (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1160))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1060)) (-5 *1 (-1160))))
+ ((*1 *1 *1) (-5 *1 (-1160))))
+(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-985 *3 *4 *5))) (-4 *3 (-1005))
- (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3))))
- (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3))))
- (-5 *1 (-986 *3 *4 *5)))))
+ (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1006))
+ (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3))))
+ (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))
+ (-5 *1 (-987 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-828 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4))
- (-5 *1 (-945 *5)) (-4 *5 (-963))))
+ (-12 (-5 *3 (-829 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4))
+ (-5 *1 (-946 *5)) (-4 *5 (-964))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-945 *4))
- (-4 *4 (-963))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-946 *4))
+ (-4 *4 (-964))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-828 (-517)))) (-5 *4 (-517))
- (-5 *2 (-583 (-623 *4))) (-5 *1 (-945 *5)) (-4 *5 (-963))))
+ (-12 (-5 *3 (-583 (-829 (-517)))) (-5 *4 (-517))
+ (-5 *2 (-583 (-623 *4))) (-5 *1 (-946 *5)) (-4 *5 (-964))))
((*1 *2 *3)
(-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517))))
- (-5 *1 (-945 *4)) (-4 *4 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4192)) (-4 *1 (-33)) (-5 *2 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-517))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-775)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1510 (-583 (-2 (|:| |irr| *10) (|:| -1992 (-517)))))))
- (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278))
- (-4 *10 (-872 *3 *9 *8)) (-4 *9 (-725))
- (-5 *2
- (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-583 (-1072 *3)))))
- (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1072 *3))))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1076))
- (-4 *4 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-528 *4 *2))
- (-4 *2 (-13 (-1097) (-881) (-1040) (-29 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-1035 *4 *2))
- (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4192) (-6 -4193))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-779)) (-4 *3 (-1111)) (-5 *1 (-1035 *3 *2))
- (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4192) (-6 -4193)))))))
+ (-5 *1 (-946 *4)) (-4 *4 (-964)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *1 *1) (-5 *1 (-976))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1134 (-377 *2)))
+ (-4 *2 (-1134 *5)) (-5 *1 (-190 *5 *2 *6 *3))
+ (-4 *3 (-312 *5 *2 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *7 (-1134 *5)) (-4 *4 (-657 *5 *7))
+ (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5))))
+ (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-583 (-1077))) (-14 *5 (-703))
+ (-5 *2
+ (-583
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517))))))
+ (-5 *1 (-470 *4 *5))
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1001 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107))
+ (-5 *1 (-276))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1010)) (-5 *3 (-706)) (-5 *1 (-51)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
+ (-5 *2 (-1073 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1009)) (-5 *3 (-706)) (-5 *1 (-51)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
- (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3)))))
+(((*1 *1) (-5 *1 (-142))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-377 *5)) (-4 *4 (-1115)) (-4 *5 (-1133 *4))
- (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-5 *3 (-377 *5)) (-4 *4 (-1116)) (-4 *5 (-1134 *4))
+ (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1134 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1078 (-377 (-517)))) (-5 *2 (-377 (-517)))
+ (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517)))
(-5 *1 (-166))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1076)))
- (-5 *4 (-1157 (-286 (-199)))) (-5 *1 (-181))))
+ (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1077)))
+ (-5 *4 (-1158 (-286 (-199)))) (-5 *1 (-181))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1005))
- (-4 *3 (-1111)) (-5 *1 (-265 *3))))
+ (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1006))
+ (-4 *3 (-1112)) (-5 *1 (-265 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-280 *2)) (-4 *2 (-1005)) (-4 *2 (-1111))
+ (-12 (-4 *2 (-280 *2)) (-4 *2 (-1006)) (-4 *2 (-1112))
(-5 *1 (-265 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273))))
@@ -3300,20 +3073,20 @@
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273))))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273))))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-1 *1 (-583 *1))))
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 (-583 *1))))
(-4 *1 (-273))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273))))
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1006))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1078 (-377 (-517))))
+ (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1079 (-377 (-517))))
(-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517))))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5))
@@ -3321,758 +3094,1078 @@
((*1 *1 *1 *2 *1)
(-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-963))))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1)))
- (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-963))))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1)))
+ (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-703)))
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703)))
(-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779))
- (-4 *5 (-963))))
+ (-4 *5 (-964))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-583 (-703)))
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703)))
(-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779))
- (-4 *5 (-963))))
+ (-4 *5 (-964))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1076))
+ (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1077))
(-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-1076)) (-4 *1 (-400 *4)) (-4 *4 (-779))
+ (-12 (-5 *2 (-109)) (-5 *3 (-1077)) (-4 *1 (-400 *4)) (-4 *4 (-779))
(-4 *4 (-558 (-493)))))
((*1 *1 *1)
(-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-1076))) (-4 *1 (-400 *3)) (-4 *3 (-779))
+ (-12 (-5 *2 (-583 (-1077))) (-4 *1 (-400 *3)) (-4 *3 (-779))
(-4 *3 (-558 (-493)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779))
(-4 *3 (-558 (-493)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1111))))
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1112))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5))
- (-4 *4 (-1005)) (-4 *5 (-1111))))
+ (-4 *4 (-1006)) (-4 *5 (-1112))))
((*1 *2 *1 *2)
(-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3))))
((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1005))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1076)) (-4 *4 (-509))
- (-5 *1 (-959 *4))))
+ (-12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) (-4 *4 (-509))
+ (-5 *1 (-960 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1076))) (-5 *4 (-583 (-377 (-875 *5))))
- (-5 *2 (-377 (-875 *5))) (-4 *5 (-509)) (-5 *1 (-959 *5))))
+ (-12 (-5 *3 (-583 (-1077))) (-5 *4 (-583 (-377 (-876 *5))))
+ (-5 *2 (-377 (-876 *5))) (-4 *5 (-509)) (-5 *1 (-960 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-265 (-377 (-875 *4)))) (-5 *2 (-377 (-875 *4)))
- (-4 *4 (-509)) (-5 *1 (-959 *4))))
+ (-12 (-5 *3 (-265 (-377 (-876 *4)))) (-5 *2 (-377 (-876 *4)))
+ (-4 *4 (-509)) (-5 *1 (-960 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-265 (-377 (-875 *4))))) (-5 *2 (-377 (-875 *4)))
- (-4 *4 (-509)) (-5 *1 (-959 *4))))
+ (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) (-5 *2 (-377 (-876 *4)))
+ (-4 *4 (-509)) (-5 *1 (-960 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1057 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4))
- (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1072 *1)) (-5 *3 (-1076)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1076)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509)))))
+ (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1058 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-845)) (-4 *3 (-333))
+ (-14 *4 (-913 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1 *1) (|partial| -4 *1 (-655)))
+ ((*1 *1 *1) (|partial| -4 *1 (-659)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *2)) (-5 *4 (-1076)) (-4 *2 (-400 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1072 *1)) (-5 *3 (-844)) (-4 *1 (-930))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1072 *1)) (-5 *3 (-844)) (-5 *4 (-787))
- (-4 *1 (-930))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-844)) (-4 *4 (-13 (-777) (-333)))
- (-4 *1 (-979 *4 *2)) (-4 *2 (-1133 *4)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-212 *3 *4))
- (-4 *2 (-212 *3 *4)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1059)) (-5 *5 (-623 (-199))) (-5 *6 (-199))
- (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-689)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333)))
+ (-4 *2 (-1134 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1125 *3)) (-4 *3 (-1112)))))
(((*1 *2)
- (-12 (-5 *2 (-1157 (-1006 *3 *4))) (-5 *1 (-1006 *3 *4))
- (-14 *3 (-844)) (-14 *4 (-844)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421))
- (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1006)) (-4 *5 (-1006))
+ (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4))
(-4 *4 (-779))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1162)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116))
+ (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156))
+ (-4 *1 (-337 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156))
+ (-4 *1 (-340 *4 *5)) (-4 *5 (-1134 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4))
+ (-4 *4 (-1134 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517))))
+ (-5 *2 (-2 (|:| -3319 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))
- (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7))
- (-4 *3 (-1133 *6)) (-4 *7 (-872 *6 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-1045))))
+ (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3))))
+ (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1059)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+ (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006))
+ (-4 *2 (-779)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953))
+ (-5 *1 (-681)))))
+(((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 *2))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *4 (-1076))
- (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-4 *2 (-1006)) (-5 *1 (-615 *5 *6 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833))
+ (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-873 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833))
+ (-5 *1 (-830 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-833)) (-5 *1 (-831 *2 *3)) (-4 *3 (-1134 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-4 *2 (-1005)) (-5 *1 (-615 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-813 *4 *3))
- (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-690)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724))))
- ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-963)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-963)) (-5 *2 (-703))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *3 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-215)) (-5 *3 (-1059))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-215))))
- ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+ (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779))
+ (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8))
+ (-4 *8 (-873 *3 *7 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4))
+ (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107))))
+ (-5 *1 (-934 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1134 (-153 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) (-5 *1 (-383 *3 *2 *4 *5))
+ (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-955 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3))
+ (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4))
+ (-14 *6 (-1158 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-845)) (-4 *5 (-964))
+ (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-583 (-556 (-460))))
+ (-5 *1 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319))
+ (-5 *1 (-487 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1134 *4))
+ (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1134 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1073 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-31 *4 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-937 *4))
- (-4 *4 (-1133 (-517))))))
+ (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)) (-5 *3 (-1060))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1041))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-1159))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1112 *2))
- (-4 *2 (-1005))))
+(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1006)) (-5 *2 (-703)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060))
+ (|:| |tol| (-199))))
+ (-5 *2 (-107)) (-5 *1 (-186)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-107))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-779))
- (-5 *1 (-1112 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
+ (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-107)) (-5 *1 (-1102 *4 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953))
+ (-5 *1 (-681)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1134 (-377 (-517)))) (-5 *1 (-837 *3 *2))
+ (-4 *2 (-1134 (-377 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 *4))
+ (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703))))
+ (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3))
(-4 *3 (-387 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098)))))
+ ((*1 *1 *1 *1) (-4 *1 (-725))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1134 *4)) (-5 *2 (-517))))
((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
+ (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421)))
+ (-5 *2 (-517)) (-5 *1 (-1021 *4 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421)))
+ (-5 *2 (-517)) (-5 *1 (-1021 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-1060))
+ (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421)))
+ (-5 *2 (-517)) (-5 *1 (-1021 *6 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-517))
+ (-5 *1 (-1022 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 (-377 (-876 *6))))
+ (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-517))
+ (-5 *1 (-1022 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-1077))
+ (-5 *5 (-1060)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-851))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 (-199)))))
+ (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))))
+ (-5 *1 (-140))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517)))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 (-199)))))
+ (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))))
+ (-5 *1 (-140))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 (-199)))))
+ (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))))
+ (-5 *1 (-140)) (-5 *3 (-583 (-867 (-199))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 (-199)))))
+ (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))))
+ (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 (-199)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1134 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6))))
- (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1148 *5)) (-5 *2 (-583 *6))
- (-5 *1 (-1150 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1072 *1)) (-5 *3 (-1076)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27))))
+ (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1191 *4))))
+ (-5 *1 (-629 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1076)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1111))
- (-4 *5 (-343 *4)) (-4 *2 (-343 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-963))
- (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *2 (-952)) (-5 *1 (-684)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
- (-4 *4 (-319)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1076))) (-4 *4 (-1005))
- (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))))
-(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))))
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2357 (-517)) (|:| -1510 (-583 *3))))
- (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1072 *9)))
- (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703)))
- (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-872 *9 *10 *11))
- (-4 *10 (-725)) (-5 *2 (-583 (-1072 *12)))
- (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1072 *12)))))
-(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-517)) (-5 *5 (-1059)) (-5 *6 (-623 (-199)))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107))))
+ (-12 (-5 *3 (-1060)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
+ (|:| |wcond| (-583 (-876 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *4))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))))))
+ (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-509) (-955 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| -2791 (-377 (-876 *5))) (|:| |coeff| (-377 (-876 *5)))))
+ (-5 *1 (-523 *5)) (-5 *3 (-377 (-876 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-873 *4 *6 *5)) (-4 *4 (-421))
+ (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-907 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2))
+ (-4 *2 (-1006))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1006))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006))
+ (-5 *1 (-108 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-107))
- (-5 *1 (-327 *4)))))
+ (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4)))
+ (-5 *1 (-108 *4)) (-4 *4 (-1006))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964))
+ (-5 *1 (-647 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6)))
+ (-5 *1 (-568 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
(((*1 *1)
- (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4183)))
- (-2479 (|has| *1 (-6 -4175)))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1005)) (-4 *2 (-779))))
+ (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186)))
+ (-2479 (|has| *1 (-6 -4178)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779))))
((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1023))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2157 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1024))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1966 *1) (|:| -4182 *1) (|:| |associate| *1)))
+ (-4 *1 (-509)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-881 (-1024)))
+ (-5 *1 (-316 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1000 *3)) (-4 *3 (-872 *7 *6 *4)) (-4 *6 (-725))
+ (-12 (-5 *5 (-1001 *3)) (-4 *3 (-873 *7 *6 *4)) (-4 *6 (-725))
(-4 *4 (-779)) (-4 *7 (-509))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517))))
(-5 *1 (-541 *6 *4 *7 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517))))
- (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4))))
+ (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4))))
((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
((*1 *1 *1) (-5 *1 (-787)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1068 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1097)))))
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1069 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1097)))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1068 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-779) (-954 (-517))))
- (-5 *2 (-377 (-875 *5))) (-5 *1 (-1069 *5)) (-5 *3 (-875 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-779) (-954 (-517))))
- (-5 *2 (-3 (-377 (-875 *5)) (-286 *5))) (-5 *1 (-1069 *5))
- (-5 *3 (-377 (-875 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-998 (-875 *5))) (-5 *3 (-875 *5))
- (-4 *5 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-377 *3))
- (-5 *1 (-1069 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-998 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5)))
- (-4 *5 (-13 (-509) (-779) (-954 (-517)))) (-5 *2 (-3 *3 (-286 *5)))
- (-5 *1 (-1069 *5)))))
+ (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098)))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1069 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517))))
+ (-5 *2 (-377 (-876 *5))) (-5 *1 (-1070 *5)) (-5 *3 (-876 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517))))
+ (-5 *2 (-3 (-377 (-876 *5)) (-286 *5))) (-5 *1 (-1070 *5))
+ (-5 *3 (-377 (-876 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-999 (-876 *5))) (-5 *3 (-876 *5))
+ (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-377 *3))
+ (-5 *1 (-1070 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-999 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5)))
+ (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-3 *3 (-286 *5)))
+ (-5 *1 (-1070 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349)))
+ (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163))
+ (-5 *1 (-720)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077)))
+ (-4 *6 (-13 (-509) (-955 *5))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *6)))))) (-5 *1 (-956 *5 *6)))))
(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1085 *3)) (-4 *3 (-1006)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158))))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-943 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *1 *1 *1) (-5 *1 (-199)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957))))
+ ((*1 *1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517)))))
(-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3))))
+ (-583
+ (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517))
+ (|:| |outvect| (-583 (-623 (-153 *4)))))))
+ (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1) (-5 *1 (-787)))
((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))))
+ (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-4 *4 (-421))
- (-5 *2 (-583 (-3 (-377 (-875 *4)) (-1066 (-1076) (-875 *4)))))
- (-5 *1 (-263 *4)))))
+ (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240))))
+ ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964))
+ (-4 *6 (-1134 *5)) (-5 *2 (-1073 (-1073 *7)))
+ (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1134 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2370 (-714 *3)) (|:| |coef2| (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-2 (|:| -2370 *1) (|:| |coef2| *1)))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374))))
+ ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632))))
+ ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))))
(((*1 *2)
- (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5)))
- (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-930))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-930))))
- ((*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-930)) (-5 *2 (-583 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1072 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-930))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1072 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-930))))
- ((*1 *2 *3) (-12 (-5 *3 (-1072 *1)) (-4 *1 (-930)) (-5 *2 (-583 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1133 *4)) (-5 *2 (-583 *1))
- (-4 *1 (-979 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-388 (-1072 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1072 *1))
- (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1072 *1))) (-5 *3 (-1072 *1)))))
-(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-890)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273))))
- ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-387 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4)))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4183)) (-4 *1 (-374))))
- ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632))))
- ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-583 (-875 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-583 (-875 *4))) (-5 *1 (-386 *3 *4))
- (-4 *3 (-387 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-875 *3)))))
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163))
+ (-5 *1 (-908 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-583 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3)))))
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163))
+ (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1158 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333))
+ (-5 *1 (-604 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-333))
+ (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4196))))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196))))
+ (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333))
+ (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-875 *4)))
- (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156))
- (-14 *5 (-844)) (-14 *6 (-583 (-1076))) (-14 *7 (-1157 (-623 *4))))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))))
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517)))
+ (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $))
+ (-15 -2082 ((-1029 *3 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *3 (-556 $))))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *5))
- (-4 *5 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *5 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-377 (-517)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517)))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6))
- (-4 *6 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *6 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1124 (-517)))
- (-4 *7 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517)))
+ (-4 *7 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-517)))
- (-4 *3 (-13 (-27) (-1097) (-400 *7)))
- (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517)))
+ (-4 *3 (-13 (-27) (-1098) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *7 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8))
- (-5 *5 (-1124 (-377 (-517)))) (-5 *6 (-377 (-517)))
- (-4 *8 (-13 (-27) (-1097) (-400 *7)))
- (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517)))
+ (-4 *8 (-13 (-27) (-1098) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-377 (-517))))
- (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *8)))
- (-4 *8 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517))))
+ (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8)))
+ (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *3))))
- (-4 *3 (-963)) (-5 *1 (-542 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-543 *3))))
+ (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3))))
+ (-4 *3 (-964)) (-5 *1 (-542 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-543 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *3))))
- (-4 *3 (-963)) (-4 *1 (-1117 *3))))
+ (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3))))
+ (-4 *3 (-964)) (-4 *1 (-1118 *3))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-703))
- (-5 *3 (-1057 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4))))
- (-4 *4 (-963)) (-4 *1 (-1138 *4))))
+ (-5 *3 (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4))))
+ (-4 *4 (-964)) (-4 *1 (-1139 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-4 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-4 *1 (-1149 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1057 (-2 (|:| |k| (-703)) (|:| |c| *3))))
- (-4 *3 (-963)) (-4 *1 (-1148 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-963)) (-4 *1 (-1037 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-983 *5 *6 *7 *3 *4))
- (-4 *4 (-982 *5 *6 *7 *3))))
+ (-12 (-5 *2 (-1058 (-2 (|:| |k| (-703)) (|:| |c| *3))))
+ (-4 *3 (-964)) (-4 *1 (-1149 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517)))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-1158 (-623 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 (-623 *3)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779))
- (-5 *2 (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -2946 *1)))
- (-4 *1 (-977 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -2946 *1)))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5))
- (-14 *5 (-583 (-1076))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6))
- (-4 *6 (-421))))
+ (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333))
+ (-5 *2 (-1158 (-623 (-377 (-876 *5))))) (-5 *1 (-994 *5))
+ (-5 *4 (-623 (-377 (-876 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5))
- (-14 *5 (-583 (-1076))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6))
- (-4 *6 (-421)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1000 (-199)))
- (-5 *2 (-1159)) (-5 *1 (-230)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1000 (-199)))
- (-5 *5 (-107)) (-5 *2 (-1159)) (-5 *1 (-230)))))
+ (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333))
+ (-5 *2 (-1158 (-623 (-876 *5)))) (-5 *1 (-994 *5))
+ (-5 *4 (-623 (-876 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333))
+ (-5 *2 (-1158 (-623 *4))) (-5 *1 (-994 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4))
- (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4))))
+ (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-742 *4 *2))
+ (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1134 *4))
+ (-5 *1 (-742 *4 *2))
+ (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-623 (-377 (-876 (-517)))))
+ (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949))
+ (-5 *3 (-286 (-517))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-510 *6 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1058 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3177
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-953)) (-5 *1 (-276)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2576
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1846
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1058 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3177
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-512))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2576
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (|:| -1846
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349))))))
+ (-5 *1 (-735))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333))
- (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-960 *5 *6))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4)))
- (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-960 *4 *5))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-333)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1318 *1)))
- (-4 *1 (-781 *3)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-889 *3 *2))
- (-4 *2 (-1133 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097)))))
+ (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3))
+ (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1077)) (-5 *2 (-556 *6))
+ (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098)))))
((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1133 (-517))) (-5 *1 (-453 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1057 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-963))
- (-5 *1 (-1061 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-761)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199)))
+ (-5 *4 (-1 (-199) (-199) (-199) (-199)))
+ (-5 *2 (-1 (-867 (-199)) (-199) (-199))) (-5 *1 (-630)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-944 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-964)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *2 (-1162))
+ (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *2 (-1163))
(-5 *1 (-437))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-963)) (-4 *1 (-899 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-866 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-963)) (-4 *1 (-1037 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-867 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-867 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108)) (-5 *3 (-199)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4))
- (-4 *3 (-1133 (-153 (-517)))) (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4)))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4)))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)) (-5 *3 (-199)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2283 (-583 (-2 (|:| |irr| *10) (|:| -1332 (-517)))))))
+ (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278))
+ (-4 *10 (-873 *3 *9 *8)) (-4 *9 (-725))
+ (-5 *2
+ (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-583 (-1073 *3)))))
+ (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1073 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *1 (-236))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *2 (-1163)) (-5 *1 (-1160))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *1 (-1160))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *3 *3 *3)
+ (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *3 *3)
(-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509))
- (-4 *7 (-872 *3 *5 *6))
- (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *8) (|:| |radicand| *8)))
- (-5 *1 (-876 *5 *6 *3 *7 *8)) (-5 *4 (-703))
- (-4 *8
- (-13 (-333)
- (-10 -8 (-15 -3826 (*7 $)) (-15 -2098 (*7 $)) (-15 -2271 ($ *7))))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1076))
- (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1076))
- (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517))
- (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1157 *5)) (-4 *5 (-278))
- (-4 *5 (-963)) (-5 *2 (-623 *5)) (-5 *1 (-946 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-787))))
- ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-884)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-509)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107))
- (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-952)) (-5 *1 (-689)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5)))
- (-5 *1 (-1032 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076)))
- (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5))))
- (-5 *1 (-1032 *5)))))
-(((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-517))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-952)))))
+ (-12 (-5 *3 (-1158 (-286 (-199))))
+ (-5 *2
+ (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517))
+ (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))))
+ (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1060))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-953))
+ (-5 *1 (-683)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-787))))
+ ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-885)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-955 (-517)))
+ (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1073 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-556 *1)) (-4 *1 (-964)) (-4 *1 (-273))
+ (-5 *2 (-1073 *1)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703)))
+ (-5 *1 (-828 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
- (-4 *3 (-1005)))))
+ (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-703)) (-4 *4 (-319))
+ (-5 *1 (-487 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
+ (-12 (-5 *4 (-845)) (-5 *2 (-1073 *3)) (-5 *1 (-1087 *3))
+ (-4 *3 (-333)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112))
+ (-5 *2 (-107)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-872 *4 *6 *5)) (-4 *4 (-421))
- (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-906 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1111)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-400 *3) (-920))) (-5 *1 (-249 *3 *2))
- (-4 *3 (-13 (-779) (-509))))))
+ (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-4 *1 (-1046))))
+(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))))
+ (-5 *1 (-754)))))
+(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1058 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-1112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-4 *5 (-333)) (-5 *2 (-583 (-1106 *5)))
- (-5 *1 (-1165 *5)) (-5 *4 (-1106 *5)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-517))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779))
- (-5 *1 (-418 *5 *6 *7 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-742 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5))))
+ (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-742 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5))))
+ (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163))
+ (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163))
+ (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (-12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (-12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (-12 (-5 *2 (-1076)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2))
+ (-12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2))
(-14 *4 (-583 *2)) (-4 *5 (-357))))
((*1 *1 *2)
(-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5))
- (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076)))))
- ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354))))
- ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354))))
- ((*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354))))
- ((*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354))))
+ (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354))))
((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354))))
((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354))))
- ((*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366))))
- ((*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366))))
- ((*1 *1 *2) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-366))))
- ((*1 *1 *2) (-12 (-5 *2 (-875 (-349))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-876 (-349))) (-4 *1 (-366))))
((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366))))
((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-377 (-875 (-517))))) (-4 *1 (-410))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-377 (-875 (-349))))) (-4 *1 (-410))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-875 (-517)))) (-4 *1 (-410))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-875 (-349)))) (-4 *1 (-410))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-286 (-517)))) (-4 *1 (-410))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-286 (-349)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(|:| |mdnia|
(-2 (|:| |fn| (-286 (-199)))
- (|:| -2758 (-583 (-1000 (-772 (-199)))))
+ (|:| -3177 (-583 (-1001 (-772 (-199)))))
(|:| |abserr| (-199)) (|:| |relerr| (-199))))))
(-5 *1 (-701))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
(|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
(|:| |abserr| (-199)) (|:| |relerr| (-199))))
(-5 *1 (-740))))
@@ -4081,13 +4174,13 @@
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
(|:| |lb| (-583 (-772 (-199))))
(|:| |cf| (-583 (-286 (-199))))
(|:| |ub| (-583 (-772 (-199))))))
(|:| |lsa|
(-2 (|:| |lfn| (-583 (-286 (-199))))
- (|:| -2587 (-583 (-199)))))))
+ (|:| -2578 (-583 (-199)))))))
(-5 *1 (-770))))
((*1 *2 *1)
(-12
@@ -4098,90 +4191,113 @@
(-2 (|:| |start| (-199)) (|:| |finish| (-199))
(|:| |grid| (-703)) (|:| |boundaryType| (-517))
(|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
- (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060))
(|:| |tol| (-199))))
- (-5 *1 (-821))))
+ (-5 *1 (-822))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-895 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-896 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
- (-3747
- (-12 (-5 *2 (-875 *3))
+ (-3786
+ (-12 (-5 *2 (-876 *3))
(-12 (-2479 (-4 *3 (-37 (-377 (-517)))))
- (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725))
+ (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725))
(-4 *5 (-779)))
- (-12 (-5 *2 (-875 *3))
+ (-12 (-5 *2 (-876 *3))
(-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517)))))
- (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725))
(-4 *5 (-779)))
- (-12 (-5 *2 (-875 *3))
- (-12 (-2479 (-4 *3 (-911 (-517)))) (-4 *3 (-37 (-377 (-517))))
- (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725))
+ (-12 (-5 *2 (-876 *3))
+ (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517))))
+ (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725))
(-4 *5 (-779)))))
((*1 *1 *2)
- (-3747
- (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5))
+ (-3786
+ (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5))
(-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517)))
- (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))
- (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))))
+ (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))
+ (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-977 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))) (-4 *3 (-963))
+ (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964))
(-4 *4 (-725)) (-4 *5 (-779)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-964)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
(-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
(|:| |success| (-107))))
(-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-685)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-414 *3)) (-4 *3 (-963)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1072 *7)) (-5 *3 (-517)) (-4 *7 (-872 *6 *4 *5))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963))
- (-5 *1 (-291 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-517))))
- (-4 *4 (-13 (-1133 *3) (-509) (-10 -8 (-15 -2370 ($ $ $)))))
- (-4 *3 (-509)) (-5 *1 (-1136 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-974))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-974)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-875 *5)) (-4 *5 (-963)) (-5 *2 (-449 *4 *5))
- (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1076))))))
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1)))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
+ (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
+ (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
+ (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
+ (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1014 *5 *6 *7 *8))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-107))
- (-5 *1 (-539 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-623 *5)) (-4 *5 (-964)) (-5 *1 (-968 *3 *4 *5))
+ (-14 *3 (-703)) (-14 *4 (-703)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964))
+ (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502))
+ (-4 *3 (-509))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502))
+ (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502))
+ (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3))
+ (-4 *3 (-955 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -4194,491 +4310,441 @@
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
(-5 *1 (-300)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1) (-5 *1 (-991))))
-(((*1 *1)
- (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
- (-4 *4 (-156)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (|has| *4 (-6 (-4194 "*")))
- (-4 *4 (-963)) (-5 *1 (-945 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $))
+ (-15 -2082 ((-1029 *3 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *3 (-556 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $))
+ (-15 -2082 ((-1029 *3 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *3 (-556 $)))))))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844))
- (|has| *4 (-6 (-4194 "*"))) (-4 *4 (-963)) (-5 *1 (-945 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
- (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-583 (-377 (-875 *6))))
- (-5 *3 (-377 (-875 *6)))
- (-4 *6 (-13 (-509) (-954 (-517)) (-134)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-523 *6)))))
+ (-12 (-5 *3 (-583 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $))
+ (-15 -2082 ((-1029 *4 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *4 (-556 $)))))))
+ (-4 *4 (-509)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-556 *2)))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $))
+ (-15 -2082 ((-1029 *4 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *4 (-556 $)))))))
+ (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
+(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-833)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+ (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964))
+ (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5)))))
+(((*1 *1) (-5 *1 (-131)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-236)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1060)) (-5 *1 (-51)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1076))) (-5 *1 (-186))
- (-5 *3 (-1076))))
+ (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1077))) (-5 *1 (-186))
+ (-5 *3 (-1077))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1076)))
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1077)))
(-5 *1 (-240))))
((*1 *2 *1)
(-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
(-5 *2 (-583 *3))))
((*1 *2 *1)
(-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))
((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779))))
((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
+ (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
(-5 *2 (-583 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832))
- (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-872 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832))
- (-5 *1 (-829 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-832)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1133 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1)))
- (-4 *1 (-982 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1094)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517))))
- (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 (-153 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-153 *3)) (-5 *1 (-1101 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806))
- (-5 *3 (-583 (-517)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806))
- (-5 *3 (-583 (-517))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *8 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-944 *5 *6 *7 *8)))))
- (-5 *1 (-944 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *8 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-583 *8))
- (|:| |towers| (-583 (-1047 *5 *6 *7 *8)))))
- (-5 *1 (-1047 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+ (-12 (-5 *2 (-583 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1128 *3 *2))
+ (-4 *2 (-1134 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-815 *4))
- (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1005)) (-4 *3 (-150 *5))))
+ (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-816 *4))
+ (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1006)) (-4 *3 (-150 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1000 (-772 (-349)))))
- (-5 *2 (-583 (-1000 (-772 (-199))))) (-5 *1 (-276))))
+ (-12 (-5 *3 (-583 (-1001 (-772 (-349)))))
+ (-5 *2 (-583 (-1001 (-772 (-199))))) (-5 *1 (-276))))
((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349))))
((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4))
- (-4 *4 (-1133 *3))))
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4))
+ (-4 *4 (-1134 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3))
- (-5 *2 (-1157 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1157 *3))))
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3))
+ (-5 *2 (-1158 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509))
(-4 *3 (-779))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-963))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964))
(-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-493))))
- ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-493))))
+ ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
- (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-963)) (-4 *1 (-899 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-974))))
+ (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 *3)) (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5))
- (-4 *5 (-558 (-1076))) (-4 *4 (-725)) (-4 *5 (-779))))
+ (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5))
+ (-4 *5 (-558 (-1077))) (-4 *4 (-725)) (-4 *5 (-779))))
((*1 *1 *2)
- (-3747
- (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5))
+ (-3786
+ (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5))
(-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517)))
- (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))
- (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))))
+ (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))
+ (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-977 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))) (-4 *3 (-963))
+ (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964))
(-4 *4 (-725)) (-4 *5 (-779))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1059))
- (-5 *1 (-980 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-991))))
- ((*1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060))
+ (-5 *1 (-981 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-992))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *2)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))
((*1 *1 *2)
- (-12 (-4 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *2 (-1005)) (-4 *6 (-1005))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *2 (-1006)) (-4 *6 (-1006))))
((*1 *1 *2)
- (-12 (-4 *1 (-1008 *3 *4 *2 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *2 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))))
+ (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *2 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))
((*1 *1 *2)
- (-12 (-4 *1 (-1008 *3 *2 *4 *5 *6)) (-4 *3 (-1005)) (-4 *2 (-1005))
- (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))))
+ (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *2 (-1006))
+ (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))
((*1 *1 *2)
- (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005))
- (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))))
+ (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006))
+ (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005))
- (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1014 *4 *5 *6 *7)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1059))
- (-5 *1 (-1046 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1081))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1092))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1092))))
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006))
+ (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1015 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060))
+ (-5 *1 (-1047 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1082))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093))))
((*1 *2 *3)
(-12 (-5 *3 (-712 *4 (-789 *5)))
- (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *5 (-583 (-1076)))
- (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *6 (-583 (-1076)))))
+ (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077)))
+ (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *6 (-583 (-1077)))))
((*1 *2 *3)
- (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-875 (-941 (-377 *4)))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076)))))
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077)))))
((*1 *2 *3)
(-12 (-5 *3 (-712 *4 (-789 *6)))
- (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *6 (-583 (-1076)))
- (-5 *2 (-875 (-941 (-377 *4)))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076)))))
+ (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077)))
+ (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1072 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-1072 (-941 (-377 *4)))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076)))))
+ (-12 (-5 *3 (-1073 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-1073 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1047 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))
- (-4 *4 (-13 (-777) (-278) (-134) (-939))) (-14 *6 (-583 (-1076)))
- (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-623 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
- (-4 *2 (-400 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1076))))
- (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-872 *3 *5 *4)))))
+ (-5 *3 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))
+ (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077)))
+ (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725))
+ (-4 *6 (-509)) (-4 *7 (-873 *6 *5 *3))
+ (-5 *1 (-431 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-955 (-377 (-517))) (-333)
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $))
+ (-15 -2082 (*7 $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1057 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-168))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1057 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-271))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1057 (-199))) (-5 *2 (-583 (-1059))) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
- (-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
+ (-12 (-5 *3 (-1158 *4)) (-4 *4 (-964)) (-4 *2 (-1134 *4))
+ (-5 *1 (-413 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-377 (-1073 (-286 *5)))) (-5 *3 (-1158 (-286 *5)))
+ (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1034 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964))
+ (-5 *1 (-647 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-757)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1057 (-199)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2758
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-952)) (-5 *1 (-276)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-954 *4)) (-4 *3 (-278))
- (-4 *4 (-911 *3)) (-4 *5 (-1133 *4)) (-4 *6 (-379 *4 *5))
- (-14 *7 (-1157 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1157 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-911 *3))
- (-4 *5 (-1133 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-4 *4 (-421))
+ (-5 *2 (-583 (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))))
+ (-5 *1 (-263 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1158 (-3 (-437) "undefined"))) (-5 *1 (-1159)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1076)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349))))
- ((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-349)))))
+ (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-300)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-1169 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-278) (-134)))
- (-4 *2 (-872 *4 *6 *5)) (-5 *1 (-847 *4 *5 *6 *2))
- (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3985 *3) (|:| -2121 (-703)))) (-5 *1 (-535 *3))
- (-4 *3 (-502)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1150 *3 *2))
- (-4 *2 (-1148 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-509))
- (-5 *2 (-2 (|:| -3016 (-623 *5)) (|:| |vec| (-1157 (-583 (-844))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))))
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1112)) (-5 *2 (-1163)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4))))
+ (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 *4))))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4))
- (-4 *4 (-963))))
+ (-4 *4 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964))))
((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703))))
((*1 *1 *1) (-4 *1 (-207)))
((*1 *1 *1 *2)
(-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))
- (-4 *4 (-1133 *3))))
+ (-4 *4 (-1134 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3))
- (-4 *3 (-1133 *2))))
- ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963))))
+ (-4 *3 (-1134 *2))))
+ ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4))
- (-4 *4 (-1005))))
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4))
+ (-4 *4 (-1006))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1005))))
+ (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1005))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1076))) (-4 *5 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1492 (-583 *6)))
- *7 *6))
- (-4 *6 (-333)) (-4 *7 (-593 *6))
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6))
+ (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33)))
+ (-5 *2 (-107)) (-5 *1 (-1042 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-955 *4)) (-4 *3 (-278))
+ (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *6 (-379 *4 *5))
+ (-14 *7 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1158 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-912 *3))
+ (-4 *5 (-1134 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-876 *8))))
+ (-5 *5 (-703)) (-5 *6 (-1060)) (-4 *8 (-13 (-278) (-134)))
+ (-4 *11 (-873 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1077))))
+ (-4 *10 (-725))
(-5 *2
- (-2 (|:| |particular| (-3 (-1157 *6) "failed"))
- (|:| -1492 (-583 (-1157 *6)))))
- (-5 *1 (-745 *6 *7)) (-5 *4 (-1157 *6)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1160)))))
+ (-2
+ (|:| |rgl|
+ (-583
+ (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11))
+ (|:| |wcond| (-583 (-876 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *8))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *8))))))))))
+ (|:| |rgsz| (-517))))
+ (-5 *1 (-848 *8 *9 *10 *11)) (-5 *7 (-517)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1072 *4)) (-5 *1 (-487 *4))
- (-4 *4 (-319)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-528 *4 *2))
+ (-4 *2 (-13 (-1098) (-882) (-1041) (-29 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-974 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953))
+ (-5 *1 (-681)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-5 *2 (-107)))))
+ (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))
+ (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6))
+ (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199))
+ (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-889 *2 *3))
- (-4 *3 (-1133 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-680)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1015)) (-5 *3 (-517)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-107)) (-5 *1 (-815 *4))
- (-4 *4 (-1005)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-5 *2 (-107))
- (-5 *1 (-812 *4 *5)) (-4 *5 (-1005))))
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-815 *5)) (-4 *5 (-1005)) (-5 *2 (-107))
- (-5 *1 (-813 *5 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-908 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1005))
- (-4 *6 (-1111)) (-5 *2 (-107)) (-5 *1 (-813 *5 *6)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1059)) (-5 *4 (-153 (-199))) (-5 *5 (-517))
- (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-1013 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-684)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134))
+ (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1148 *4))
- (-4 *4 (-37 (-377 (-517))))
- (-5 *2 (-1 (-1057 *4) (-583 (-1057 *4)))) (-5 *1 (-1150 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-569)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920) (-1097))))))
+ (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3))
+ (-4 *3 (-1134 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-509)) (-4 *8 (-872 *7 *5 *6))
- (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *9) (|:| |radicand| *9)))
- (-5 *1 (-876 *5 *6 *7 *8 *9)) (-5 *4 (-703))
- (-4 *9
- (-13 (-333)
- (-10 -8 (-15 -3826 (*8 $)) (-15 -2098 (*8 $)) (-15 -2271 ($ *8))))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-388 (-1072 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1072 *1))
- (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-583 *3))
+ (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1015 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134)))
+ (-5 *2
+ (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5))))))
+ (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5)))
+ (-14 *6 (-583 (-1077)))))
((*1 *2 *3)
- (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1072 *1))) (-5 *3 (-1072 *1)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-4 *3 (-823 *5)) (-5 *2 (-1157 *3))
- (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3))
- (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725))
- (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-948)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *1)) (-5 *4 (-1076)) (-4 *1 (-27))
- (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1072 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1133 (-517))) (-5 *1 (-453 *3)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-963))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-885 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509))
- (-4 *3 (-963)) (-4 *2 (-724))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-1072 *3)) (-4 *3 (-963))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-890)) (-4 *2 (-123)) (-5 *1 (-1078 *3)) (-4 *3 (-509))
- (-4 *3 (-963))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-1130 *4 *3)) (-14 *4 (-1076))
- (-4 *3 (-963)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-818))
- (-5 *3
- (-2 (|:| |pde| (-583 (-286 (-199))))
- (|:| |constraints|
- (-583
- (-2 (|:| |start| (-199)) (|:| |finish| (-199))
- (|:| |grid| (-703)) (|:| |boundaryType| (-517))
- (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
- (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059))
- (|:| |tol| (-199))))
- (-5 *2 (-952)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-4 *7 (-872 *4 *6 *5))
+ (-12 (-4 *4 (-13 (-278) (-134)))
(-5 *2
- (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7))))
- (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-963))
- (-5 *1 (-1061 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-517)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963))
- (-14 *4 (-1076)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3300 *6) (|:| |sol?| (-107))) (-517)
- *6))
- (-4 *6 (-333)) (-4 *7 (-1133 *6))
+ (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4))))))
+ (-5 *1 (-988 *4 *5)) (-5 *3 (-583 (-876 *4)))
+ (-14 *5 (-583 (-1077)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134)))
(-5 *2
- (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6))
- (-2 (|:| -2212 (-377 *7)) (|:| |coeff| (-377 *7))) "failed"))
- (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4))
- (-4 *4 (-1133 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 (-517)))
- (-5 *2 (-1157 (-377 (-517)))) (-5 *1 (-1182 *4)))))
+ (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5))))))
+ (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5)))
+ (-14 *6 (-583 (-1077))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
+ (-12 (-4 *3 (-964)) (-4 *4 (-1134 *3)) (-5 *1 (-148 *3 *4 *2))
+ (-4 *2 (-1134 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-5 *1 (-407)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
- (|:| |lb| (-583 (-772 (-199))))
- (|:| |cf| (-583 (-286 (-199))))
- (|:| |ub| (-583 (-772 (-199))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-583 (-286 (-199))))
- (|:| -2587 (-583 (-199)))))))
- (-5 *2 (-583 (-1059))) (-5 *1 (-240)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-956)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-725)) (-4 *2 (-873 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2))
+ (-4 *4 (-421)) (-4 *6 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1006))
+ (-4 *3 (-1006)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-4 *1 (-827 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1) (-4 *1 (-273)))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-963))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-964))
(-4 *4 (-724))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-49 *3 *4))
- (-14 *4 (-583 (-1076)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-583 (-1077)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517))
(-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156))
@@ -4687,51 +4753,51 @@
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156))
(-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-963) (-779)))
- (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1076)))))
+ (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-964) (-779)))
+ (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-214 *5 *7))
+ (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-214 *5 *7))
(-5 *1 (-213 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-265 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-265 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1059)) (-5 *5 (-556 *6))
- (-4 *6 (-273)) (-4 *2 (-1111)) (-5 *1 (-268 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1060)) (-5 *5 (-556 *6))
+ (-4 *6 (-273)) (-4 *2 (-1112)) (-5 *1 (-268 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273))
(-4 *2 (-273)) (-5 *1 (-269 *5 *2))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-963))
- (-4 *6 (-963)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779))
(-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333))
- (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *8 (-312 *5 *6 *7))
- (-4 *9 (-333)) (-4 *10 (-1133 *9)) (-4 *11 (-1133 (-377 *10)))
+ (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7))
+ (-4 *9 (-333)) (-4 *10 (-1134 *9)) (-4 *11 (-1134 (-377 *10)))
(-5 *2 (-306 *9 *10 *11 *12))
(-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-312 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1115)) (-4 *8 (-1115))
- (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6))) (-4 *9 (-1133 *8))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1116)) (-4 *8 (-1116))
+ (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *9 (-1134 *8))
(-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1133 (-377 *9)))))
+ (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1134 (-377 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112))
(-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-1005))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-1006))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509))
(-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6))))
@@ -4740,37 +4806,37 @@
(-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278))
- (-4 *6 (-911 *5)) (-4 *7 (-1133 *6))
- (-4 *8 (-13 (-379 *6 *7) (-954 *6))) (-4 *9 (-278))
- (-4 *10 (-911 *9)) (-4 *11 (-1133 *10))
+ (-4 *6 (-912 *5)) (-4 *7 (-1134 *6))
+ (-4 *8 (-13 (-379 *6 *7) (-955 *6))) (-4 *9 (-278))
+ (-4 *10 (-912 *9)) (-4 *11 (-1134 *10))
(-5 *2 (-383 *9 *10 *11 *12))
(-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-379 *10 *11) (-954 *10)))))
+ (-4 *12 (-13 (-379 *10 *11) (-955 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156))
(-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-963) (-779)))
- (-4 *6 (-13 (-963) (-779))) (-4 *2 (-400 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-964) (-779)))
+ (-4 *6 (-13 (-964) (-779))) (-4 *2 (-400 *6))
(-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006))
(-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1112))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1005))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1006))
(-4 *4 (-779))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333))
(-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2212 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2791 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-333)) (-4 *6 (-333))
- (-5 *2 (-2 (|:| -2212 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -2791 *6) (|:| |coeff| *6)))
(-5 *1 (-533 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -4790,818 +4856,999 @@
(-583 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
(-5 *1 (-533 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-547 *8))
+ (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-547 *8))
(-5 *1 (-545 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1057 *6)) (-5 *5 (-547 *7))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-1057 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-547 *7))
+ (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8))
(-5 *1 (-545 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1057 *7))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-1057 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1058 *7))
+ (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8))
(-5 *1 (-545 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-583 *8))
+ (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-583 *8))
(-5 *1 (-582 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1112))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-964)) (-4 *8 (-964))
(-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10))
(-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7))
(-4 *9 (-343 *8)) (-4 *10 (-343 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963))
- (-4 *8 (-963)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-964))
+ (-4 *8 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5))
(-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2))
(-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509))
- (-4 *6 (-1133 *5)) (-4 *2 (-1133 (-377 *8)))
- (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1133 (-377 *6)))
- (-4 *8 (-1133 *7))))
+ (-4 *6 (-1134 *5)) (-4 *2 (-1134 (-377 *8)))
+ (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1134 (-377 *6)))
+ (-4 *8 (-1134 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-779))
- (-4 *6 (-725)) (-4 *2 (-872 *9 *7 *5))
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-964)) (-4 *9 (-964)) (-4 *5 (-779))
+ (-4 *6 (-725)) (-4 *2 (-873 *9 *7 *5))
(-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725))
- (-4 *4 (-872 *8 *6 *5))))
+ (-4 *4 (-873 *8 *6 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725))
- (-4 *9 (-963)) (-4 *2 (-872 *9 *8 *6))
+ (-4 *9 (-964)) (-4 *2 (-873 *9 *8 *6))
(-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725))
- (-4 *4 (-872 *9 *7 *5))))
+ (-4 *4 (-873 *9 *7 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-963))
- (-4 *6 (-963)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7))
(-5 *1 (-667 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-668 *3 *4))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-668 *3 *4))
(-4 *4 (-659))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-963))
- (-4 *6 (-963)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156))
(-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *1 (-764 *5 *6))))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-764 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))
((*1 *2 *3 *4 *2 *2)
(-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *1 (-771 *5 *6))))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-771 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-801 *6)) (-5 *1 (-800 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-812 *5 *6)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-812 *5 *7))
- (-5 *1 (-811 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-813 *5 *6)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-813 *5 *7))
+ (-5 *1 (-812 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-5 *2 (-815 *6)) (-5 *1 (-814 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1006))
+ (-4 *6 (-1006)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-963))
- (-4 *6 (-963)) (-5 *2 (-875 *6)) (-5 *1 (-869 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-5 *2 (-876 *6)) (-5 *1 (-870 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779))
- (-4 *8 (-963)) (-4 *6 (-725))
+ (-4 *8 (-964)) (-4 *6 (-725))
(-4 *2
- (-13 (-1005)
- (-10 -8 (-15 -1678 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))))))
- (-5 *1 (-874 *6 *7 *8 *5 *2)) (-4 *5 (-872 *8 *6 *7))))
+ (-13 (-1006)
+ (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))))))
+ (-5 *1 (-875 *6 *7 *8 *5 *2)) (-4 *5 (-873 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-963))
- (-4 *6 (-963)) (-5 *2 (-866 *6)) (-5 *1 (-900 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-5 *2 (-867 *6)) (-5 *1 (-901 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-875 *4))) (-4 *4 (-963))
- (-4 *2 (-872 (-875 *4) *5 *6)) (-4 *5 (-725))
+ (-12 (-5 *3 (-1 *2 (-876 *4))) (-4 *4 (-964))
+ (-4 *2 (-873 (-876 *4) *5 *6)) (-4 *5 (-725))
(-4 *6
(-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
- (-5 *1 (-903 *4 *5 *6 *2))))
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
+ (-5 *1 (-904 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509))
- (-4 *2 (-911 *6)) (-5 *1 (-909 *5 *6 *4 *2)) (-4 *4 (-911 *5))))
+ (-4 *2 (-912 *6)) (-5 *1 (-910 *5 *6 *4 *2)) (-4 *4 (-912 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156))
- (-4 *2 (-915 *6)) (-5 *1 (-916 *4 *5 *2 *6)) (-4 *4 (-915 *5))))
+ (-4 *2 (-916 *6)) (-5 *1 (-917 *4 *5 *2 *6)) (-4 *4 (-916 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7))
- (-4 *5 (-963)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7))
+ (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
(-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-964)) (-4 *10 (-964))
(-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7))
- (-4 *9 (-212 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12))
- (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10))
+ (-4 *9 (-212 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12))
+ (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10))
(-4 *12 (-212 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1000 *6)) (-5 *1 (-996 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-1001 *6)) (-5 *1 (-997 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-777))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-583 *6))
- (-5 *1 (-996 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-777))
+ (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-583 *6))
+ (-5 *1 (-997 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-998 *6)) (-5 *1 (-997 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-999 *6)) (-5 *1 (-998 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-777))
- (-4 *2 (-1050 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777))
+ (-4 *2 (-1051 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1057 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1057 *6)) (-5 *1 (-1055 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-1058 *6)) (-5 *1 (-1056 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1057 *6)) (-5 *5 (-1057 *7))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-4 *8 (-1111)) (-5 *2 (-1057 *8))
- (-5 *1 (-1056 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-1058 *7))
+ (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8))
+ (-5 *1 (-1057 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-963))
- (-4 *6 (-963)) (-5 *2 (-1072 *6)) (-5 *1 (-1070 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-5 *2 (-1073 *6)) (-5 *1 (-1071 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1088 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1089 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5 *7 *9)) (-4 *5 (-963))
- (-4 *6 (-963)) (-14 *7 (-1076)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1121 *6 *8 *10)) (-5 *1 (-1116 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1076))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5 *7 *9)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1122 *6 *8 *10)) (-5 *1 (-1117 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1077))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1124 *6)) (-5 *1 (-1123 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-1125 *6)) (-5 *1 (-1124 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-777))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1057 *6))
- (-5 *1 (-1123 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-777))
+ (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1058 *6))
+ (-5 *1 (-1124 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1130 *5 *6)) (-14 *5 (-1076))
- (-4 *6 (-963)) (-4 *8 (-963)) (-5 *2 (-1130 *7 *8))
- (-5 *1 (-1125 *5 *6 *7 *8)) (-14 *7 (-1076))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1131 *5 *6)) (-14 *5 (-1077))
+ (-4 *6 (-964)) (-4 *8 (-964)) (-5 *2 (-1131 *7 *8))
+ (-5 *1 (-1126 *5 *6 *7 *8)) (-14 *7 (-1077))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963))
- (-4 *2 (-1133 *6)) (-5 *1 (-1131 *5 *4 *6 *2)) (-4 *4 (-1133 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964))
+ (-4 *2 (-1134 *6)) (-5 *1 (-1132 *5 *4 *6 *2)) (-4 *4 (-1134 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1142 *5 *7 *9)) (-4 *5 (-963))
- (-4 *6 (-963)) (-14 *7 (-1076)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1142 *6 *8 *10)) (-5 *1 (-1137 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1076))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5 *7 *9)) (-4 *5 (-964))
+ (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1143 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1077))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963))
- (-4 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6 *4 *2)) (-4 *4 (-1148 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964))
+ (-4 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6 *4 *2)) (-4 *4 (-1149 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1157 *6)) (-5 *1 (-1156 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1112))
+ (-4 *6 (-1112)) (-5 *2 (-1158 *6)) (-5 *1 (-1157 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1157 *5))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1157 *6))
- (-5 *1 (-1156 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1158 *5))
+ (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1158 *6))
+ (-5 *1 (-1157 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-963))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-964))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-1178 *3 *4))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-1179 *3 *4))
(-4 *4 (-775)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005))
- (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-278)) (-4 *3 (-911 *2)) (-4 *4 (-1133 *3))
- (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-954 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006))
+ (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107))
+ (-5 *2 (-953)) (-5 *1 (-678)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1161))))
+ ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1161)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517))
+ (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
+ (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))))
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))
+ (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 *7)))
+ (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1073 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-421)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-388 *1)) (-4 *1 (-873 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3))
+ (-5 *1 (-899 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421))
+ (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7))))
+ (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1137 *4 *3))
+ (-4 *3 (-13 (-1134 *4) (-509) (-10 -8 (-15 -2361 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-14 *5 (-583 (-1077)))
+ (-5 *2
+ (-583 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))))
+ (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077)))))
+ (-5 *1 (-1114)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1142 *4 *5 *6))
- (|:| |%expon| (-289 *4 *5 *6))
- (|:| |%expTerms|
- (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4))))))
- (|:| |%type| (-1059))))
- (-5 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1097) (-400 *3)))
- (-14 *5 (-1076)) (-14 *6 *4))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *5 (-725)) (-4 *2 (-239 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1111))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953))
+ (-5 *1 (-679)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112))))
((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779))))
((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
((*1 *1 *1) (-5 *1 (-787)))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3))
- (-4 *3 (-1133 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1134 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006))
+ (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3315 (-583 *3)) (|:| -2370 (-583 *3))))
+ (-5 *1 (-1113 *3)) (-4 *3 (-1006)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005))
- (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
- (-4 *4 (-319)))))
-(((*1 *2 *1)
- (-12
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
+ (-4 *2 (-1134 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-999 (-772 *3))) (-4 *3 (-13 (-1098) (-882) (-29 *5)))
+ (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
(-5 *2
- (-583
- (-583
- (-3 (|:| -2989 (-1076))
- (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517))))))))))
- (-5 *1 (-1080)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725))
- (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3781 (-583 *9)) (|:| -3834 *4) (|:| |ineq| (-583 *9))))
- (-5 *1 (-907 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
- (-4 *4 (-982 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725))
- (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3781 (-583 *9)) (|:| -3834 *4) (|:| |ineq| (-583 *9))))
- (-5 *1 (-1012 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
- (-4 *4 (-982 *6 *7 *8 *9)))))
+ (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-193 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-999 (-772 *3))) (-5 *5 (-1060))
+ (-4 *3 (-13 (-1098) (-882) (-29 *6)))
+ (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-193 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-999 (-772 (-286 *5))))
+ (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-999 (-772 (-286 *6))))
+ (-5 *5 (-1060))
+ (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-999 (-772 (-377 (-876 *5))))) (-5 *3 (-377 (-876 *5)))
+ (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-999 (-772 (-377 (-876 *6))))) (-5 *5 (-1060))
+ (-5 *3 (-377 (-876 *6)))
+ (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3))
+ (-4 *3 (-13 (-1098) (-882) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349))))
+ (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349))))
+ (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349))))
+ (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349))))
+ (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349)))))
+ (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349)))))
+ (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349)))))
+ (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349)))))
+ (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349))))
+ (-5 *5 (-1060)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349))))
+ (-5 *5 (-1077)) (-5 *2 (-953)) (-5 *1 (-518))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4))
+ (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779))
+ (-4 *3 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1077)) (-5 *1 (-876 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-4 *3 (-964))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-4 *2 (-779))
+ (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-873 *3 (-489 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-3786
+ (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964))
+ (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098))
+ (-4 *3 (-37 (-377 (-517))))))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964))
+ (-12 (|has| *3 (-15 -2080 ((-583 *2) *3)))
+ (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1118 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-3786
+ (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964))
+ (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098))
+ (-4 *3 (-37 (-377 (-517))))))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964))
+ (-12 (|has| *3 (-15 -2080 ((-583 *2) *3)))
+ (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1139 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3786
+ (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964))
+ (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098))
+ (-4 *3 (-37 (-377 (-517))))))
+ (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964))
+ (-12 (|has| *3 (-15 -2080 ((-583 *2) *3)))
+ (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2 (-517)) (-5 *1 (-180)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-872 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1)))
- (-4 *1 (-1133 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-583 (-1076))) (-4 *2 (-156))
- (-4 *3 (-212 (-3535 *4) (-703)))
- (-14 *6
- (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *3))
- (-2 (|:| -2812 *5) (|:| -2121 *3))))
- (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779))
- (-4 *7 (-872 *2 *3 (-789 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1111))))
+ (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517))))
+ (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-153 *3)) (-5 *1 (-1102 *4 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1077)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *5 (-725)) (-4 *2 (-239 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3))))
+ (-5 *1 (-542 *3)) (-4 *3 (-964)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-517)) (-5 *1 (-1016))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517))
+ (-5 *1 (-1016)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112))))
((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779))))
((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
((*1 *1 *1) (-5 *1 (-787)))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3))
- (-4 *3 (-1133 *2)))))
-(((*1 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))))
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1134 *2)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-757)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
- (-4 *2 (-1133 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-333)) (-4 *7 (-1134 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6))
+ (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed"))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *5)) (-4 *5 (-1134 *3)) (-4 *3 (-278))
+ (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1162)) (-5 *1 (-1079))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1162))
- (-5 *1 (-1079))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1162))
- (-5 *1 (-1079)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *1 *1) (-5 *1 (-199)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
+ ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963))
- (-5 *2 (-583 (-583 (-583 (-703))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-963)) (-5 *2 (-517))
- (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1133 *5))
- (-4 *6 (-13 (-374) (-954 *5) (-333) (-1097) (-256)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
- (-4 *3 (-1133 *4))
- (-4 *5 (-13 (-374) (-954 *4) (-333) (-1097) (-256))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))
- (-4 *4 (-1133 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *5))
- (-4 *5 (-1133 (-377 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1124 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1111)))))
+ (-12 (-4 *3 (-1134 (-377 (-517))))
+ (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))
+ (-5 *1 (-837 *3 *4)) (-4 *4 (-1134 (-377 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3))
+ (-4 *3 (-1134 (-377 *4))))))
+(((*1 *2)
+ (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1134 *3)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1106 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134)))
+ (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1005))
- (-4 *2 (-779)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1134 (-153 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077)))
+ (-4 *5 (-509)) (-5 *2 (-583 (-583 (-876 *5)))) (-5 *1 (-1083 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-583 (-1076))) (-4 *5 (-421))
- (-5 *2
- (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517)))))
- (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+ (-12 (-5 *3 (-377 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-509))
+ (-4 *4 (-964)) (-4 *2 (-1149 *4)) (-5 *1 (-1152 *4 *5 *6 *2))
+ (-4 *6 (-593 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077))
+ (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
- (-4 *4 (-13 (-779) (-509))))))
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1042 *5 *6)) (-5 *4 (-1 (-107) *6 *6))
+ (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33)))
+ (-5 *2 (-107)) (-5 *1 (-1043 *5 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-703)) (-5 *3 (-867 *5)) (-4 *5 (-964))
+ (-5 *1 (-1066 *4 *5)) (-14 *4 (-845))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5))
+ (-14 *4 (-845)) (-4 *5 (-964))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964))
+ (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1111))
- (-4 *5 (-343 *4)) (-4 *2 (-343 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-963))
- (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
+ (-12
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107))
+ (-5 *1 (-470 *4 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *3 (-876 (-517)))
+ (-5 *1 (-300))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *1 (-300)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107))
+ (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963))
- (-14 *4 (-583 (-1076)))))
+ (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-129 *3 *4 *2))
+ (-4 *2 (-343 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1111))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779)))
- (-14 *4 (-583 (-1076)))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-4 *2 (-343 *4))
+ (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509))
+ (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-1127 *3 *4 *2))
+ (-4 *2 (-1134 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1149 *4))
+ (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-1058 *4)))
+ (-5 *1 (-1151 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-5 *2 (-1157 *3)) (-5 *1 (-645 *3 *4))
- (-4 *4 (-1133 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-924)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *7 (-1133 *5)) (-4 *4 (-657 *5 *7))
- (-5 *2 (-2 (|:| -3016 (-623 *6)) (|:| |vec| (-1157 *5))))
- (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-761)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156))))
- ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2))))
- ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-845))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333)))
+ (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *7 (-312 *4 *5 *6))
+ (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-845)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4))
+ (-4 *4 (-1134 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-964))
+ (-4 *3 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) (-4 *3 (-779))
+ (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4))
+ (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6)))
+ (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517))))
+ (-5 *2 (-703)) (-5 *1 (-835 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
+ (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4)))
+ (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703))
+ (-5 *1 (-836 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333))
+ (-4 *7 (-1134 *6)) (-4 *4 (-1134 (-377 *7))) (-4 *8 (-312 *6 *7 *4))
+ (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703))
+ (-5 *1 (-937 *6 *7 *4 *8 *9))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1105 *5 *6 *7 *3))
- (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1111))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2585
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (|:| -1859
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1057 (-199)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2758
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-512))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2585
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (|:| -1859
- (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
- (|:| |expense| (-349)) (|:| |accuracy| (-349))
- (|:| |intermediateResults| (-349))))))
- (-5 *1 (-735))))
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)) (-5 *2 (-703))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2361 *1) (|:| |coef2| *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1158 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333))
+ (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1134 *5))
+ (-5 *2 (-623 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10))
+ (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8))
+ (-4 *10 (-1015 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-963))
- (-5 *1 (-647 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-766 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-945 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-963)) (-5 *1 (-945 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-945 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-963)) (-5 *1 (-945 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-387 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1041 *4 *5))) (-5 *3 (-1 (-107) *5 *5))
- (-4 *4 (-13 (-1005) (-33))) (-4 *5 (-13 (-1005) (-33)))
- (-5 *1 (-1042 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-1041 *3 *4))) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1133 *3))
- (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1148 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-13 (-509) (-134)))
- (-5 *1 (-1053 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 *2))
- (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6)))
+ (-5 *1 (-568 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963))
- (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509))
- (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1077)))
+ (-5 *2
+ (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6)))))
+ (-5 *1 (-568 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6)))
+ (-5 *1 (-961 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
- (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
- (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509))
- (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349))
- (-5 *1 (-717 *5)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1124 (-517))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-1106 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2))
+ (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2))
+ (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196)))))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))
+ (-4 *2 (-13 (-779) (-21))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 (-517)))
- (-5 *2 (-1157 (-517))) (-5 *1 (-1182 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1097))))
- ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+ (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4))
+ (-5 *3 (-583 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2))
+ (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1077)) (-5 *1 (-611 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-104)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4))
+ (-14 *3 (-845)) (-4 *4 (-964)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-5 *1 (-632))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-333)) (-5 *1 (-898 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1060)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4))))
+ (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-1125 (-517))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006))
+ (-5 *2 (-107)))))
+(((*1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333))
+ (-5 *2 (-1073 (-876 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1111))))
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (|partial| -12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-349))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (|partial| -12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5))
- (-4 *5 (-954 (-517))) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-309 *3 *4 *5))
+ (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5))
(-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357))
- (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076)))))
+ (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354))))
+ (|partial| -12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354))))
+ (|partial| -12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354))))
+ (|partial| -12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354))))
+ (|partial| -12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366))))
+ (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-517))) (-4 *1 (-366))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-349))) (-4 *1 (-366))))
+ (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-517))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-349))) (-4 *1 (-366))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1157 (-377 (-875 (-517))))) (-4 *1 (-410))))
+ (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1157 (-377 (-875 (-349))))) (-4 *1 (-410))))
+ (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1157 (-875 (-517)))) (-4 *1 (-410))))
+ (|partial| -12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1157 (-875 (-349)))) (-4 *1 (-410))))
+ (|partial| -12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1157 (-286 (-517)))) (-4 *1 (-410))))
+ (|partial| -12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1157 (-286 (-349)))) (-4 *1 (-410))))
+ (|partial| -12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1133 *5))
- (-5 *2 (-1072 (-1072 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7))
- (-4 *3 (-1133 *6)) (-14 *7 (-844))))
+ (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5))
+ (-5 *2 (-1073 (-1073 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7))
+ (-4 *3 (-1134 *6)) (-14 *7 (-845))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *1 (-895 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1111))))
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *1 (-896 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-955 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
- (|partial| -3747
- (-12 (-5 *2 (-875 *3))
+ (|partial| -3786
+ (-12 (-5 *2 (-876 *3))
(-12 (-2479 (-4 *3 (-37 (-377 (-517)))))
- (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725))
+ (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725))
(-4 *5 (-779)))
- (-12 (-5 *2 (-875 *3))
+ (-12 (-5 *2 (-876 *3))
(-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517)))))
- (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725))
(-4 *5 (-779)))
- (-12 (-5 *2 (-875 *3))
- (-12 (-2479 (-4 *3 (-911 (-517)))) (-4 *3 (-37 (-377 (-517))))
- (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-725))
+ (-12 (-5 *2 (-876 *3))
+ (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517))))
+ (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725))
(-4 *5 (-779)))))
((*1 *1 *2)
- (|partial| -3747
- (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5))
+ (|partial| -3786
+ (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5))
(-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517)))
- (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))
- (-12 (-5 *2 (-875 (-517))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))))
- (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)))))
+ (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))
+ (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))))
+ (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-977 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1076))) (-4 *3 (-963))
+ (|partial| -12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964))
(-4 *4 (-725)) (-4 *5 (-779)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421))
- (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-689)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-963)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-377 (-875 *6)) (-1066 (-1076) (-875 *6))))
- (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *6)))))
- (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-875 *6))))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-556 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-5 *5 (-1073 *2))
+ (-4 *2 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-556 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077)))
+ (-5 *5 (-377 (-1073 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5)))
+ (-5 *1 (-1033 *5))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-377 (-875 *5)) (-1066 (-1076) (-875 *5))))
- (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4))))
- (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5)))))
- (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1162)) (-5 *1 (-788)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1157 *4))
- (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
+ (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077)))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5))))
+ (-5 *1 (-1033 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1163)) (-5 *1 (-788)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-286 (-517))) (|:| -1725 (-286 (-349)))
- (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1075))))
- (-5 *1 (-1075)))))
+ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076))))
+ (-5 *1 (-1076)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006))
+ (-4 *4 (-603 *3))))
+ ((*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
+ (-5 *2 (-1073 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
+ (-5 *2 (-1073 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1115)) (-4 *5 (-1133 *4))
- (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703))))
- (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1133 (-377 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *1) (-5 *1 (-131)))
+ (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-107))
+ (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1077)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-236)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1076)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
+ (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421))
+ (-14 *5 (-583 (-1077))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
(-5 *1 (-688)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-493)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-703)) (-4 *3 (-1111)) (-4 *1 (-55 *3 *4 *5))
+ (-12 (-5 *2 (-703)) (-4 *3 (-1112)) (-4 *1 (-55 *3 *4 *5))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1) (-5 *1 (-155)))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-359))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359))))
((*1 *1) (-5 *1 (-364)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1112))))
((*1 *1)
- (-12 (-4 *3 (-1005)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1005))
- (-4 *4 (-603 *3))))
- ((*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))
- ((*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963))))
- ((*1 *1 *1) (-5 *1 (-1076))) ((*1 *1) (-5 *1 (-1076)))
- ((*1 *1) (-5 *1 (-1092))))
-(((*1 *1)
- (-12 (-4 *3 (-1005)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1005))
+ (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006))
(-4 *4 (-603 *3))))
- ((*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-4 *1 (-374))))
+ ((*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))
+ ((*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))
+ ((*1 *1 *1) (-5 *1 (-1077))) ((*1 *1) (-5 *1 (-1077)))
+ ((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-876 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-4 *1 (-374))))
((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374))))
((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-768))
- (-5 *3
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
- (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
- (|:| |ub| (-583 (-772 (-199))))))
- (-5 *2 (-952))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-768))
- (-5 *3
- (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))
- (-5 *2 (-952)))))
+ (-12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107))
+ (-5 *1 (-1183 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-897 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5))
- (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1148 *5))
- (-5 *1 (-1150 *5 *2)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1059)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1162))
- (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-982 *6 *7 *8 *4)))))
+ (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51))
+ (-5 *1 (-924)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1073 *7))
+ (-4 *5 (-964)) (-4 *7 (-964)) (-4 *2 (-1134 *5))
+ (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1134 *2)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -2585 *3) (|:| -1859 *4))))
- (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *1 (-1088 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -2576 *3) (|:| -1846 *4))))
+ (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *1 (-1089 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-623 (-1072 *8))) (-4 *5 (-963)) (-4 *8 (-963))
- (-4 *6 (-1133 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8))
- (-4 *7 (-1133 *6)))))
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-377 (-517))) (-4 *4 (-954 (-517)))
+ (-12 (-5 *3 (-377 (-517))) (-4 *4 (-955 (-517)))
(-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4))))
((*1 *1 *1 *1) (-5 *1 (-125)))
((*1 *2 *2 *2)
@@ -5611,1522 +5858,1474 @@
((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3))
- (-4 *5 (-1148 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1119 *4 *5))))
+ (-4 *5 (-1149 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1120 *4 *5))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3))
- (-4 *5 (-1117 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1140 *4 *5))
- (-4 *6 (-902 *5))))
+ (-4 *5 (-1118 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1141 *4 *5))
+ (-4 *6 (-903 *5))))
((*1 *1 *1 *1) (-4 *1 (-256)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1005))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006))))
((*1 *1 *1 *1) (-5 *1 (-349)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1005))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1006))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1017))))
+ (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1018))))
((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-517)) (-4 *4 (-319))
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319))
(-5 *1 (-487 *4))))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493))))
((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1005))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1006))
(-5 *1 (-616 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
+ (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-963))
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964))
(-5 *1 (-624 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *3 (-963)) (-5 *1 (-647 *3 *4))
+ (-12 (-5 *2 (-517)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4))
(-4 *4 (-585 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-963))
+ (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-964))
(-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845))))
((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703))))
((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703))))
((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-963))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-964))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-963))))
+ (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-964))))
((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-377 (-517)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-844))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-377 (-517)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-1026 *3 *4 *5 *6)) (-4 *4 (-963))
+ (-12 (-5 *2 (-517)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *4 (-964))
(-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-338))
+ (-5 *2 (-703)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1134 *3)) (-5 *1 (-369 *3 *2))
+ (-4 *3 (-13 (-333) (-134))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-876 (-517))) (-5 *3 (-1077))
+ (-5 *4 (-1001 (-377 (-517)))) (-5 *1 (-30)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-543 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-659))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-5 *2 (-1058 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-319))
+ (-12 (-5 *4 (-107))
(-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517)))))))
- (-5 *1 (-191 *5 *3)) (-4 *3 (-1133 *5)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6))
- (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1148 *5)) (-4 *6 (-1133 *5)))))
+ (-2 (|:| |contp| (-517))
+ (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517)))))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107))
+ (-5 *2
+ (-2 (|:| |contp| (-517))
+ (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517)))))))
+ (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
- (-4 *4 (-156))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
- (-4 *2 (-400 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-998 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
- (-5 *1 (-143 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-145))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1076))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-156)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-1084 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-963) (-779)))
- (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1076))))))
+ (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097)))))
+ (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1162)) (-5 *1 (-1158))))
+ (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33))))))
+(((*1 *1) (-5 *1 (-976))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-377 (-517))))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1133 *3)) (-5 *1 (-369 *3 *2))
- (-4 *3 (-13 (-333) (-134))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-930)) (-5 *2 (-787)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964))
+ (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779)))
+ (-14 *4 (-583 (-1077))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-779))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-900 *3)) (-4 *3 (-964))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1072 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-963)) (-5 *2 (-1072 *6))
- (-5 *1 (-291 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-975))))
-(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1005)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1096)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
+ (-4 *3 (-1134 *4))
+ (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))))
+(((*1 *1 *1) (-4 *1 (-1046))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199)))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-683)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *1 *1) (-4 *1 (-973))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333))
- (-4 *5 (-963)) (-5 *2 (-107)) (-5 *1 (-946 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-963))
- (-5 *2 (-107)) (-5 *1 (-946 *4)))))
+ (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1134 *5))
+ (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *5)) (-5 *1 (-809 *3 *4 *5))
+ (-4 *3 (-1006)) (-4 *5 (-603 *4)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
+ (-12 (-5 *3 (-845))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-168)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1076))) (-5 *1 (-757)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-963)) (-4 *4 (-1133 *3)) (-5 *1 (-148 *3 *4 *2))
- (-4 *2 (-1133 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-4 *1 (-102 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2157 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6))
- (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1148 *5)) (-4 *6 (-1133 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1149 *5 *6 *7)) (-4 *5 (-333))
- (-14 *6 (-1076)) (-14 *7 *5) (-5 *2 (-377 (-1130 *6 *5)))
- (-5 *1 (-792 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1149 *5 *6 *7)) (-4 *5 (-333))
- (-14 *6 (-1076)) (-14 *7 *5) (-5 *2 (-377 (-1130 *6 *5)))
- (-5 *1 (-792 *5 *6 *7)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-349)) (-5 *1 (-975)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-556 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1076))) (-5 *5 (-1072 *2))
- (-4 *2 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1005))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-556 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1076)))
- (-5 *5 (-377 (-1072 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1005)))))
-(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (-3 (-1073 *4)
+ (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))))
+ (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107))
+ (-5 *1 (-186)))))
(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5))
- (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-920) (-1097)))
- (-4 *3 (-13 (-400 (-153 *4)) (-920) (-1097))))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1005)) (-5 *2 (-812 *3 *5)) (-5 *1 (-808 *3 *4 *5))
- (-4 *3 (-1005)) (-4 *5 (-603 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1076))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-4 *4 (-13 (-29 *6) (-1097) (-881)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1492 (-583 *4))))
- (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1111))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1111))
- (-14 *4 (-517)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *6))))
- (-5 *4 (-943 (-772 (-517)))) (-5 *5 (-1076)) (-5 *7 (-377 (-517)))
- (-4 *6 (-963)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-683)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725))
- (-4 *9 (-779)) (-4 *3 (-977 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725))
- (-4 *9 (-779)) (-4 *3 (-977 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-1046 *7 *8 *9 *3 *4)) (-4 *4 (-1014 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-333)) (-5 *1 (-942 *3 *2)) (-4 *2 (-593 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3781 *3) (|:| -1407 (-583 *5))))
- (-5 *1 (-942 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-155))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-333))
- (-5 *2 (-107)) (-5 *1 (-604 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193))))
- (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4193)))) (-5 *2 (-107))
- (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-956)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2)
(-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-583 (-517)))
- (|:| |cols| (-583 (-517)))))
- (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-875 *9))))
- (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517))
- (-4 *9 (-13 (-278) (-134))) (-4 *12 (-872 *9 *11 *10))
- (-4 *10 (-13 (-779) (-558 (-1076)))) (-4 *11 (-725))
(-5 *2
- (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12))
- (|:| |wcond| (-583 (-875 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *9))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *9)))))))))
- (-5 *1 (-847 *9 *10 *11 *12)))))
+ (-1158 (-583 (-2 (|:| -3112 (-834 *3)) (|:| -2803 (-1024))))))
+ (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))
+ (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))
+ (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))))
+(((*1 *1) (-5 *1 (-992))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
+ (-4 *3 (-1134 *4))
+ (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-953)) (-5 *1 (-686)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1076))
- (-5 *1 (-235 *2)) (-4 *2 (-1111))))
+ (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077))
+ (-5 *1 (-235 *2)) (-4 *2 (-1112))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1076)) (-5 *2 (-51))
+ (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-51))
(-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-44 (-1059) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-687)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109)))))
(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491))))
- ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5))
- (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1076)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-779)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-333)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 (-377 *3)))
- (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1133 *2))
- (-4 *5 (-1133 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6))
- (-4 *6 (-312 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-333)) (-4 *3 (-1133 *2)) (-4 *4 (-1133 (-377 *3)))
- (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))
- (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333))
- (-4 *1 (-305 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-889 *4 *2))
- (-4 *2 (-1133 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-623 *3))
- (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-787)))))
+ ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)) (-5 *3 (-1060)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *1 *1) (-5 *1 (-976))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-872 *5 *7 *6))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076))))
- (-4 *7 (-725))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333))
(-5 *2
- (-583
- (-2 (|:| |det| *8) (|:| |rows| (-583 (-517)))
- (|:| |cols| (-583 (-517))))))
- (-5 *1 (-847 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5)))
- (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517)))))
- (-14 *6 (-844)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+ (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077))
+ (-14 *4 *2))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4))
+ (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491))))
- ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1005)))))
+ ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-517)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 (-1072 *7))) (-5 *3 (-1072 *7))
- (-4 *7 (-872 *5 *6 *4)) (-4 *5 (-832)) (-4 *6 (-725))
- (-4 *4 (-779)) (-5 *1 (-829 *5 *6 *4 *7)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1045)) (-5 *3 (-517)) (-5 *2 (-107)))))
+ (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1077)))
+ (-4 *2 (-13 (-400 (-153 *5)) (-921) (-1098)))
+ (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2))
+ (-4 *6 (-13 (-400 *5) (-921) (-1098))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4))
- (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6)))
- (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-954 (-517))))
- (-5 *2 (-2 (|:| -1395 (-703)) (|:| -2227 *8)))
- (-5 *1 (-834 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
- (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-1133 (-377 *4)))
- (-4 *6 (-312 (-377 (-517)) *4 *5))
- (-5 *2 (-2 (|:| -1395 (-703)) (|:| -2227 *6)))
- (-5 *1 (-835 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5))
- (|:| |c2| (-377 *5)) (|:| |deg| (-703))))
- (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1133 (-377 *5))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-963)) (-5 *1 (-542 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1117 *3)) (-4 *3 (-963))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1148 *3)) (-4 *3 (-963)))))
+ (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1073 *4))
+ (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5)))
+ (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-779)) (-5 *1 (-853 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-1060)) (-5 *2 (-286 (-517)))
+ (-5 *1 (-854)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-367)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278))
- (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1072 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5))
- (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-278)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+ (|partial| -12 (-4 *3 (-333)) (-5 *1 (-820 *2 *3))
+ (-4 *2 (-1134 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
+ (-12 (-4 *3 (-13 (-333) (-134)))
+ (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4))))
+ (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1133 (-377 *2)))
- (-4 *2 (-1133 *5)) (-5 *1 (-190 *5 *2 *6 *3))
- (-4 *3 (-312 *5 *2 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1072 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
- (-5 *1 (-31 *4 *2)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111))
- (-5 *2 (-107)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-5 *1 (-407)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4))
+ (-5 *1 (-240)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-517)) (-5 *1 (-866)))))
+(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1134 *2))
+ (-4 *2 (-156))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1134 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4))
+ (-4 *3 (-379 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1134 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4))
+ (-4 *4 (-379 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156)))))
(((*1 *2 *2)
(-12
(-5 *2
(-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3)
(-221 *3 (-377 (-517)))))
- (-14 *3 (-583 (-1076))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509))
- (-4 *3 (-872 *7 *5 *6))
- (-5 *2
- (-2 (|:| -2121 (-703)) (|:| -1582 *3) (|:| |radicand| (-583 *3))))
- (-5 *1 (-876 *5 *6 *7 *3 *8)) (-5 *4 (-703))
- (-4 *8
- (-13 (-333)
- (-10 -8 (-15 -3826 (*3 $)) (-15 -2098 (*3 $)) (-15 -2271 ($ *3))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-109))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-779)) (-5 *1 (-852 *4 *2))
- (-4 *2 (-400 *4))))
+ (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-282)) (-5 *1 (-267))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-1059)) (-5 *2 (-286 (-517)))
- (-5 *1 (-853)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1059) (-706))) (-5 *1 (-109)))))
+ (-12 (-5 *4 (-583 (-1060))) (-5 *3 (-1060)) (-5 *2 (-282))
+ (-5 *1 (-267)))))
(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786))))
- ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-908))))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-909))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-1112))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1005) (-33))) (-5 *1 (-1041 *2 *3))
- (-4 *3 (-13 (-1005) (-33))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1076))) (-4 *6 (-421))
- (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333))
- (-4 *5 (-13 (-333) (-777))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963))
- (-4 *2 (-421))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1133 (-517))) (-5 *2 (-583 (-517)))
- (-5 *1 (-453 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-421))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *3 (-421)))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115))
- (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
+ (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *2 *3))
+ (-4 *3 (-13 (-1006) (-33))))))
+(((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3))
+ (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2))
+ (-4 *2 (-621 *3 *5 *6)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-623 *2)) (-5 *4 (-703))
+ (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725))
+ (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-931)) (-5 *2 (-787)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+ (-12 (-4 *1 (-844)) (-5 *2 (-2 (|:| -1570 (-583 *1)) (|:| -1306 *1)))
+ (-5 *3 (-583 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3700 (-583 *6)))
+ *7 *6))
+ (-4 *6 (-333)) (-4 *7 (-593 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1158 *6) "failed"))
+ (|:| -3700 (-583 (-1158 *6)))))
+ (-5 *1 (-745 *6 *7)) (-5 *4 (-1158 *6)))))
(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-5 *2 (-349)) (-5 *1 (-717 *3))
+ (-12 (-5 *4 (-845)) (-5 *2 (-349)) (-5 *1 (-717 *3))
(-4 *3 (-558 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 *2))
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2))
(-5 *2 (-349)) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963))
+ (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964))
(-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2))
+ (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2))
(-5 *2 (-349)) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
(-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779))
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779))
(-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-27) (-400 *4)))
- (-4 *4 (-13 (-779) (-509) (-954 (-517))))
- (-4 *7 (-1133 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2))
- (-4 *2 (-312 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-267))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-282)) (-5 *1 (-267))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-267))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1059))) (-5 *3 (-1059)) (-5 *2 (-282))
- (-5 *1 (-267)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-1157 (-623 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-1162))
- (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2 (-107)) (-5 *1 (-271)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-583 (-155)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278))
- (-5 *1 (-161 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *8))
- (-5 *4
- (-583
- (-2 (|:| -1492 (-623 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-623 *7)))))
- (-5 *5 (-703)) (-4 *8 (-1133 *7)) (-4 *7 (-1133 *6)) (-4 *6 (-319))
- (-5 *2
- (-2 (|:| -1492 (-623 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-623 *7))))
- (-5 *1 (-463 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1170 (-1076) *3)) (-4 *3 (-963)) (-5 *1 (-1177 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *1 (-1179 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1158))))
- ((*1 *1 *1) (-5 *1 (-1158))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-844))
- (-5 *2 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023))))))
- (-5 *1 (-316 *4)) (-4 *4 (-319)))))
-(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333)))
- (-4 *3 (-1133 *4)) (-5 *2 (-107)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1059)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-236))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1076)) (-5 *5 (-1000 (-199))) (-5 *2 (-850))
- (-5 *1 (-848 *3)) (-4 *3 (-558 (-493)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-5 *2 (-850)) (-5 *1 (-848 *3))
- (-4 *3 (-558 (-493)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1072 *3))
- (-4 *3 (-13 (-400 *7) (-27) (-1097)))
- (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1005))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3))
- (-5 *6 (-377 (-1072 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1097)))
- (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1005)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3868 *4) (|:| -3647 (-517)))))
- (-4 *4 (-1133 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| -1570 (-517)) (|:| |var| (-556 *1))))
+ (-4 *1 (-400 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1112))
+ (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076))))
- (-4 *7 (-725))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-875 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *5))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *5))))))))))
- (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-583 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1076))) (-4 *8 (-872 *5 *7 *6))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076))))
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-873 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077))))
(-4 *7 (-725))
(-5 *2
(-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-875 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *5))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *5))))))))))
- (-5 *1 (-847 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5))
- (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
- (|:| |wcond| (-583 (-875 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *4))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *4))))))))))
- (-5 *1 (-847 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *9)) (-5 *5 (-844)) (-4 *9 (-872 *6 *8 *7))
- (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1076))))
- (-4 *8 (-725))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
- (|:| |wcond| (-583 (-875 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *6))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *6))))))))))
- (-5 *1 (-847 *6 *7 *8 *9)) (-5 *4 (-583 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1076))) (-5 *5 (-844))
- (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
- (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
- (|:| |wcond| (-583 (-875 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *6))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *6))))))))))
- (-5 *1 (-847 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *8)) (-5 *4 (-844)) (-4 *8 (-872 *5 *7 *6))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076))))
- (-4 *7 (-725))
+ (-2 (|:| |det| *8) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (-5 *1 (-848 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-107))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7)))))
+ (-4 *7 (-777))
+ (-4 *8
+ (-13 (-1136 *3 *7) (-333) (-1098)
+ (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $)))))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-875 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *5))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *5))))))))))
- (-5 *1 (-847 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1059))
- (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
- (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-517))
- (-5 *1 (-847 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1076))) (-5 *5 (-1059))
- (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
- (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-517))
- (-5 *1 (-847 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *8)) (-5 *4 (-1059)) (-4 *8 (-872 *5 *7 *6))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076))))
- (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-844))
- (-5 *6 (-1059)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134)))
- (-4 *8 (-13 (-779) (-558 (-1076)))) (-4 *9 (-725)) (-5 *2 (-517))
- (-5 *1 (-847 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1076))) (-5 *5 (-844))
- (-5 *6 (-1059)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134)))
- (-4 *8 (-13 (-779) (-558 (-1076)))) (-4 *9 (-725)) (-5 *2 (-517))
- (-5 *1 (-847 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *9)) (-5 *4 (-844)) (-5 *5 (-1059))
- (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
- (-4 *7 (-13 (-779) (-558 (-1076)))) (-4 *8 (-725)) (-5 *2 (-517))
- (-5 *1 (-847 *6 *7 *8 *9)))))
-(((*1 *2)
- (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *1)) (-5 *4 (-1076)) (-4 *1 (-27))
- (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1072 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1076)))
- (-5 *5 (-1000 (-772 (-199)))) (-5 *2 (-1057 (-199))) (-5 *1 (-271)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))))
+ (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8))
+ (-14 *10 (-1077)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3))
+ (-4 *3 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3)))
+ (-4 *3 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3))
- (-5 *2
- (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-623 *3))))
- (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-1133 *3))
- (-5 *2
- (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-623 *3))))
- (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 *3))
- (-5 *2
- (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-623 *3))))
- (-5 *1 (-904 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-4 *3 (-1133 *4)) (-4 *5 (-1133 *3))
- (-5 *2
- (-2 (|:| -1492 (-623 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-623 *3))))
- (-5 *1 (-1166 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *3 (-583 (-517)))
- (-5 *1 (-806)))))
+ (-12 (-5 *3 (-1060)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-531)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
+ (-4 *2 (-1134 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2))
+ (-4 *4 (-37 (-377 (-517)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6))
- (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1133 *3))
- (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1148 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-13 (-509) (-134)))
- (-5 *1 (-1053 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-534 *3) *3 (-1076)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1076)))
- (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-954 *4)) (-4 *3 (-400 *7))
- (-5 *4 (-1076)) (-4 *7 (-558 (-815 (-517)))) (-4 *7 (-421))
- (-4 *7 (-809 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3))
- (-5 *1 (-526 *7 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779))
- (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1006)) (-4 *4 (-1006))
+ (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-623 (-377 (-875 (-517)))))
- (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-948))
- (-5 *3 (-286 (-517))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
- ((*1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3))))
- ((*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *5 (-1133 *4)) (-5 *2 (-583 (-590 (-377 *5))))
- (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-844))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-844))
- (-5 *1 (-487 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
- (-5 *5 (-1000 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1036 (-199)))
- (-5 *1 (-630)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1076))
- (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *1 (-1079)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2157 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199)))
- (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-688)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1057 *4)) (-4 *4 (-37 *3)) (-4 *4 (-963))
- (-5 *3 (-377 (-517))) (-5 *1 (-1061 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *1 *1) (-4 *1 (-509))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-985 *4 *5 *2))) (-4 *4 (-1005))
- (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4))))
- (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-583 (-985 *5 *6 *2))) (-5 *4 (-844)) (-4 *5 (-1005))
- (-4 *6 (-13 (-963) (-809 *5) (-779) (-558 (-815 *5))))
- (-4 *2 (-13 (-400 *6) (-809 *5) (-558 (-815 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-338))
- (-5 *2 (-703)))))
-(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-583 (-1130 *5 *4)))
- (-5 *1 (-1019 *4 *5)) (-5 *3 (-1130 *5 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1005))
- (-5 *1 (-613 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1005)) (-5 *1 (-616 *3)))))
+ (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1087 *2)) (-4 *2 (-333)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1134 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278))
+ (-4 *10 (-873 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-583 (-1073 *10)))
+ (|:| |dterm|
+ (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10))))
+ (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1073 *10)) (-5 *4 (-583 *6))
+ (-5 *5 (-583 *10)))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006))))
+ ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1006)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-100)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1157 (-1076))) (-5 *3 (-1157 (-422 *4 *5 *6 *7)))
- (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844))
- (-14 *6 (-583 (-1076))) (-14 *7 (-1157 (-623 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-422 *4 *5 *6 *7)))
- (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844))
- (-14 *6 (-583 *2)) (-14 *7 (-1157 (-623 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076)))
- (-14 *6 (-1157 (-623 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-1076))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1076)))
- (-14 *6 (-1157 (-623 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1076)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156))
- (-14 *4 (-844)) (-14 *5 (-583 *2)) (-14 *6 (-1157 (-623 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-844))
- (-14 *4 (-583 (-1076))) (-14 *5 (-1157 (-623 *2))))))
+ (-12 (-5 *2 (-813 *4 *5)) (-5 *3 (-813 *4 *6)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-603 *5)) (-5 *1 (-809 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-1133 (-153 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1081))) (-5 *1 (-1081)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-387 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-703)) (-5 *3 (-866 *5)) (-4 *5 (-963))
- (-5 *1 (-1065 *4 *5)) (-14 *4 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1065 *4 *5))
- (-14 *4 (-844)) (-4 *5 (-963))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-963))
- (-5 *1 (-1065 *4 *5)) (-14 *4 (-844)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))
- (-4 *2 (-13 (-779) (-21))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-207)) (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-239 *4))
- (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725))
- (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134))
+ (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-1163)) (-5 *1 (-763)))))
+(((*1 *1 *1) (-5 *1 (-976))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1) (|partial| -4 *1 (-655))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
- (-5 *1 (-1083 *4)) (-4 *4 (-779)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952))
- (-5 *1 (-681)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107))
- (-5 *2 (-952)) (-5 *1 (-678)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-918 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-963)) (-4 *1 (-1037 *3))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3112 *4) (|:| -3546 (-517)))))
+ (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-936 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1077)))
+ (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-964))
+ (-4 *5 (-212 (-3573 *3) (-703)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))))
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-964)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-583 *11))
+ (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11))))))
+ (-5 *6 (-703))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11))))
+ (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9))
+ (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-5 *1 (-981 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-583 *11))
+ (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11))))))
+ (-5 *6 (-703))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11))))
+ (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9))
+ (-4 *11 (-1015 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-5 *1 (-1047 *7 *8 *9 *10 *11)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107))
+ (-5 *2 (-953)) (-5 *1 (-686)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-156))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1176 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-963)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-684)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952))
- (-5 *1 (-679)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-89 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-196 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-4 *1 (-227 *3))))
- ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3))
+ (-4 *3 (-333)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1108 *3))
+ (-5 *1 (-722 *3)) (-4 *3 (-894))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-107))
+ (-5 *1 (-1108 *2)) (-4 *2 (-894)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-964))
+ (-5 *1 (-947 *4)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-388 *2)) (-4 *2 (-509)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-844)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-333)) (-14 *5 (-912 *3 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-828 *4)) (-4 *4 (-1005)) (-5 *2 (-583 (-703)))
- (-5 *1 (-827 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-114 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-13 (-333) (-779)))
+ (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-963))
- (-5 *1 (-946 *4)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-844)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797))
- (-5 *2 (-1162)) (-5 *1 (-1158)))))
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *3 (-583 (-517)))
+ (-5 *1 (-807)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
+ (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-5 *2 (-1060)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2))
+ (-4 *2 (-621 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-1158 (-286 (-349))))
+ (-5 *1 (-276)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-826 *3)) (-4 *3 (-1005)) (-5 *2 (-1007 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1005)) (-5 *2 (-1007 (-583 *4))) (-5 *1 (-827 *4))
- (-5 *3 (-583 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1005)) (-5 *2 (-1007 (-1007 *4))) (-5 *1 (-827 *4))
- (-5 *3 (-1007 *4))))
+ (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-964)) (-4 *4 (-779))
+ (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517))))
+ (-4 *1 (-400 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1007 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
- (-5 *2 (-1072 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-107))))
+ (|partial| -12 (-5 *3 (-109)) (-4 *4 (-964)) (-4 *4 (-779))
+ (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517))))
+ (-4 *1 (-400 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199)))
- (-5 *1 (-276)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-907 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-1012 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162))
- (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162))
- (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160))))
- ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+ (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517))))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-703))))
+ (-5 *1 (-816 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-703))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964))
+ (-4 *7 (-873 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-517))))
+ (-5 *1 (-874 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $))
+ (-15 -2082 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-509) (-134)))
+ (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-1128 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123))
+ (-4 *3 (-724)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-953))
+ (-5 *1 (-679)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-1073 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $))
+ (-15 -2082 ((-1029 *4 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *4 (-556 $))))))))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1077))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2))
+ (-4 *2 (-1134 *4)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-142)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1133 *5))
+ (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1134 *5))
(-5 *2
(-583
- (-2 (|:| -1492 (-623 *6)) (|:| |basisDen| *6)
+ (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6)
(|:| |basisInv| (-623 *6)))))
(-5 *1 (-463 *5 *6 *7))
(-5 *3
- (-2 (|:| -1492 (-623 *6)) (|:| |basisDen| *6)
+ (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6)
(|:| |basisInv| (-623 *6))))
- (-4 *7 (-1133 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-703))
- (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-843)))))
+ (-4 *7 (-1134 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1078 (-377 (-517))))
- (-5 *1 (-166)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-828 *3)))))
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-963))
- (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3))
- (-4 *3 (-781 *5)))))
+ (-12
+ (-5 *2
+ (-2 (|:| -1570 *3) (|:| |gap| (-703)) (|:| -2773 (-714 *3))
+ (|:| -3292 (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-5 *2
+ (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1)
+ (|:| -3292 *1)))
+ (-4 *1 (-978 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2
+ (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1)
+ (|:| -3292 *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-123))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-331 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-356 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-586 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9))
+ (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725))
+ (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *9))))
+ (-5 *3 (-583 *9)) (-4 *1 (-1106 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *8))))
+ (-5 *3 (-583 *8)) (-4 *1 (-1106 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-556 *4)) (-5 *6 (-1077))
+ (-4 *4 (-13 (-400 *7) (-27) (-1098)))
+ (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-845)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-333)) (-14 *5 (-913 *3 *4)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509))))
- ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
+ (-5 *2 (-107))))
((*1 *2 *1)
- (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006))
+ (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964))))
((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1005))))
+ (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4))
+ (-4 *4 (-1134 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-659))))
((*1 *2 *1)
- (-12 (-4 *1 (-915 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-107)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-790 *4 *5 *6 *7))
+ (-4 *4 (-964)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-926 *3)) (-4 *3 (-954 (-377 (-517)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-583
- (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1072 *3))
- (|:| |logand| (-1072 *3)))))
- (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+ (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-4 *5 (-779)) (-4 *6 (-725))
+ (-14 *8 (-583 *5)) (-5 *2 (-1163))
+ (-5 *1 (-1168 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-873 *4 *6 *5))
+ (-14 *9 (-583 *3)) (-14 *10 *3))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1057 *7))) (-4 *6 (-779))
- (-4 *7 (-872 *5 (-489 *6) *6)) (-4 *5 (-963))
- (-5 *2 (-1 (-1057 *7) *7)) (-5 *1 (-1029 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1078 (-377 (-517))))
- (-5 *1 (-166)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2
- (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
- (|:| |expense| (-349)) (|:| |accuracy| (-349))
- (|:| |intermediateResults| (-349))))
- (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5))
- (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1083 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-109))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-189 *4))
+ (-4 *4
+ (-13 (-779)
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $))
+ (-15 -3012 (*2 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-1005))))
- ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-408 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-984 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1076))))
+ (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $))
+ (-15 -3012 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6))
+ (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333))
+ (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5)))
+ (-5 *1 (-792 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333))
+ (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5)))
+ (-5 *1 (-792 *5 *6 *7)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1060)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *2)
+ (-12 (-5 *2 (-623 (-834 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-845))
+ (-14 *4 (-845))))
+ ((*1 *2)
+ (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319))
+ (-14 *4
+ (-3 (-1073 *3)
+ (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-845)))))
+(((*1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333)))
- (-4 *3 (-1133 *4)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1694 *3))))
- (-5 *4 (-703)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725))
- (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509))
- (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))
- ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
- ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1057 *4))) (-4 *4 (-333))
- (-4 *4 (-963)) (-5 *2 (-1057 *4)) (-5 *1 (-1061 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-954 (-517)))))
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-517))
- (-5 *6
- (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))))
- (-5 *7 (-1 (-1162) (-1157 *5) (-1157 *5) (-349)))
- (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162))
- (-5 *1 (-720))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-517))
- (-5 *6
- (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3464 (-349))))
- (-5 *7 (-1 (-1162) (-1157 *5) (-1157 *5) (-349)))
- (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162))
- (-5 *1 (-720)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-680)))))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1057 (-517))) (-5 *1 (-1061 *4)) (-4 *4 (-963))
- (-5 *3 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)) (-4 *2 (-333))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2))
- (-4 *2 (-593 *4)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5)))
+ (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517)))))
+ (-14 *6 (-845)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-684)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-689)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-333) (-134) (-954 (-517))))
- (-4 *5 (-1133 *4))
- (-5 *2 (-2 (|:| -2212 (-377 *5)) (|:| |coeff| (-377 *5))))
- (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-680)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-1048 (-1059))) (-5 *1 (-361)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1059)) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1080)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1059)) (-5 *1 (-908))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1000 *4)) (-4 *4 (-1111))
- (-5 *1 (-998 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-1115))
- (-4 *6 (-1133 (-377 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-312 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (|has| *1 (-6 -4193)) (-4 *1 (-1145 *3))
- (-4 *3 (-1111)))))
-(((*1 *1) (-5 *1 (-407))))
+ (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-5 *2 (-1059)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349)))))
+ (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-820 *2 *4))
+ (-4 *2 (-1134 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
(((*1 *2 *3)
- (-12 (-4 *4 (-421))
- (-5 *2
- (-583
- (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1066 (-1076) (-875 *4))))
- (|:| |geneigvec| (-583 (-623 (-377 (-875 *4))))))))
- (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-502))))
- ((*1 *1 *1) (-4 *1 (-972))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134)))
- (-5 *2 (-1066 (-583 (-286 *5)) (-583 (-265 (-286 *5)))))
- (-5 *1 (-1032 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134)))
- (-5 *2 (-1066 (-583 (-286 *5)) (-583 (-265 (-286 *5)))))
- (-5 *1 (-1032 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1005)) (-5 *2 (-107)) (-5 *1 (-808 *3 *4 *5))
- (-4 *3 (-1005)) (-4 *5 (-603 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1014 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
- (-4 *4 (-156)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517))))
+ (-5 *1 (-166)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7)))
+ (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5)))
+ (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
(-4 *2 (-400 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
(-4 *2 (-400 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1076))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077))))
((*1 *1 *1) (-4 *1 (-145))))
-(((*1 *1) (-5 *1 (-1158))))
-(((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517)))
+ (-5 *2 (-1158 (-517))) (-5 *1 (-1183 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-199))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 *4))))
+ (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4))))
+ (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319))
+ (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))
+ (-5 *1 (-316 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779))
+ (-5 *1 (-1084 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
+ (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077))
+ (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-953)) (-5 *1 (-686)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-1058 (-1058 (-876 *5))))
+ (-5 *1 (-1166 *5)) (-5 *4 (-1058 (-876 *5))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1098) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-168)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-155)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-109))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-1006))))
+ ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-408 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-985 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1077))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-876 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *5))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *5))))))))))
+ (-5 *4 (-1060)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-873 *5 *7 *6))
+ (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-517))
+ (-5 *1 (-848 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-982 *3 *4 *5 *6)) (-4 *2 (-1014 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097)))))
- ((*1 *1 *1 *1) (-4 *1 (-725))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1059))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-952))
- (-5 *1 (-683)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-895 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-51)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-787)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-685)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1073 *3))
+ (-4 *3 (-13 (-400 *7) (-27) (-1098)))
+ (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3))
+ (-5 *6 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1098)))
+ (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4))
- (-4 *4 (-13 (-333) (-777))))))
+ (-12 (-5 *3 (-623 (-377 (-517))))
+ (-5 *2
+ (-583
+ (-2 (|:| |outval| *4) (|:| |outmult| (-517))
+ (|:| |outvect| (-583 (-623 *4))))))
+ (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1115)) (-4 *5 (-1133 *3)) (-4 *6 (-1133 (-377 *5)))
- (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005))
- (-4 *6 (-1005)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-849)))))
+ (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4)))
+ (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4)))))
+(((*1 *1) (-5 *1 (-735))))
+(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4))
- (-5 *2 (-2 (|:| -1582 (-377 *5)) (|:| |poly| *3)))
- (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1133 (-377 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-844)) (-5 *1 (-718)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-724)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2))
+ (-4 *3 (-13 (-779) (-509))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-1107 *3))
- (-4 *3 (-893)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (-4 *4 (-963))
- (-5 *1 (-945 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844)) (-4 *4 (-963))
- (-5 *1 (-945 *4)))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
+ (-4 *2 (-1134 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-873 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))
+ ((*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-517)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338))
- (-4 *6 (-963)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-946 *6))
- (-5 *3 (-583 (-623 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-963))
- (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-946 *4))
- (-5 *3 (-583 (-623 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-963))
- (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5))
- (-5 *3 (-583 (-623 *5)))))
+ (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *7 (-824 *6))
+ (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7))
+ (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851))
+ (-5 *1 (-849 *3)) (-4 *3 (-558 (-493)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-963))
- (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5))
- (-5 *3 (-583 (-623 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703))
- (-14 *4 (-703)) (-4 *5 (-156)))))
+ (-12 (-5 *4 (-1077)) (-5 *2 (-851)) (-5 *1 (-849 *3))
+ (-4 *3 (-558 (-493)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-851))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3))
+ (-4 *3 (-13 (-333) (-134) (-955 (-517)))) (-5 *1 (-521 *3 *4)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-909))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1001 *4)) (-4 *4 (-1112))
+ (-5 *1 (-999 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-583 *3)) (-5 *1 (-883 *3)) (-4 *3 (-502)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-556 *4)) (-5 *6 (-1072 *4))
- (-4 *4 (-13 (-400 *7) (-27) (-1097)))
- (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1005))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1072 *4)))
- (-4 *4 (-13 (-400 *7) (-27) (-1097)))
- (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1005)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107))
- (-5 *1 (-186)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142))))
- ((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-890 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3))
+ (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1134 *2)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+ (-12 (-5 *3 (-623 *1)) (-5 *4 (-1158 *1)) (-4 *1 (-579 *5))
+ (-4 *5 (-964))
+ (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-964))
+ (-5 *2 (-623 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517)))))
+ (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| -1725 (-703)) (|:| -1570 *5) (|:| |radicand| (-583 *5))))
+ (-5 *1 (-290 *5)) (-5 *4 (-703))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006))
+ (-4 *3 (-150 *6)) (-4 (-876 *6) (-810 *5))
+ (-4 *6 (-13 (-810 *5) (-156))) (-5 *1 (-160 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-813 *4 *1)) (-5 *3 (-816 *4)) (-4 *1 (-810 *4))
+ (-4 *4 (-1006))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006))
+ (-4 *6 (-13 (-1006) (-955 *3))) (-4 *3 (-810 *5))
+ (-5 *1 (-855 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006))
+ (-4 *3 (-13 (-400 *6) (-558 *4) (-810 *5) (-955 (-556 $))))
+ (-5 *4 (-816 *5)) (-4 *6 (-13 (-509) (-779) (-810 *5)))
+ (-5 *1 (-856 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 (-517) *3)) (-5 *4 (-816 (-517))) (-4 *3 (-502))
+ (-5 *1 (-857 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1006))
+ (-4 *6 (-13 (-779) (-955 (-556 $)) (-558 *4) (-810 *5)))
+ (-5 *4 (-816 *5)) (-5 *1 (-858 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-809 *5 *6 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006))
+ (-4 *6 (-810 *5)) (-4 *3 (-603 *6)) (-5 *1 (-859 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-813 *6 *3) *8 (-816 *6) (-813 *6 *3)))
+ (-4 *8 (-779)) (-5 *2 (-813 *6 *3)) (-5 *4 (-816 *6))
+ (-4 *6 (-1006)) (-4 *3 (-13 (-873 *9 *7 *8) (-558 *4)))
+ (-4 *7 (-725)) (-4 *9 (-13 (-964) (-779) (-810 *6)))
+ (-5 *1 (-860 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006))
+ (-4 *3 (-13 (-873 *8 *6 *7) (-558 *4))) (-5 *4 (-816 *5))
+ (-4 *7 (-810 *5)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-13 (-964) (-779) (-810 *5))) (-5 *1 (-860 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-912 *6))
+ (-4 *6 (-13 (-509) (-810 *5) (-558 *4))) (-5 *4 (-816 *5))
+ (-5 *1 (-863 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-813 *5 (-1077))) (-5 *3 (-1077)) (-5 *4 (-816 *5))
+ (-4 *5 (-1006)) (-5 *1 (-864 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-583 (-816 *7))) (-5 *5 (-1 *9 (-583 *9)))
+ (-5 *6 (-1 (-813 *7 *9) *9 (-816 *7) (-813 *7 *9))) (-4 *7 (-1006))
+ (-4 *9 (-13 (-964) (-558 (-816 *7)) (-955 *8))) (-5 *2 (-813 *7 *9))
+ (-5 *3 (-583 *9)) (-4 *8 (-13 (-964) (-779)))
+ (-5 *1 (-865 *7 *8 *9)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085 (-583 *4))) (-4 *4 (-779))
+ (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-51)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
+ (-12 (-4 *3 (-558 (-816 *3))) (-4 *3 (-810 *3))
+ (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-558 (-816 *3))) (-4 *2 (-810 *3))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-890 *2 *4))
+ (-4 *4 (-1134 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
-(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-131)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-1073 *6))
+ (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-897 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-827 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1)))
+ (-4 *1 (-781 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-690)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-153 (-377 (-517)))))
- (-5 *2
- (-583
- (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517))
- (|:| |outvect| (-583 (-623 (-153 *4)))))))
- (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *1 *1) (-4 *1 (-502))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-845)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-798))
+ (-5 *2 (-1163)) (-5 *1 (-1159)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))))
-(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 (-153 (-517))))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517))))))
+ (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 (-153 *5))))
+ (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-703))
+ (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517))))))
+ (-5 *1 (-220 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))
+ (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-421)) (-4 *4 (-779))
+ (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (|has| *4 (-6 (-4197 "*")))
+ (-4 *4 (-964)) (-5 *1 (-946 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845))
+ (|has| *4 (-6 (-4197 "*"))) (-4 *4 (-964)) (-5 *1 (-946 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1161)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-963))
- (-4 *5 (-779)) (-5 *2 (-875 *4))))
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964))
+ (-4 *5 (-779)) (-5 *2 (-876 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-963))
- (-4 *5 (-779)) (-5 *2 (-875 *4))))
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964))
+ (-4 *5 (-779)) (-5 *2 (-876 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-1148 *4)) (-4 *4 (-963))
- (-5 *2 (-875 *4))))
+ (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964))
+ (-5 *2 (-876 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-1148 *4)) (-4 *4 (-963))
- (-5 *2 (-875 *4)))))
+ (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964))
+ (-5 *2 (-876 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1157 (-1157 (-517)))) (-5 *1 (-435)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349))))
+ (-5 *1 (-735)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-963))))
- ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-1036 (-199))) (-5 *1 (-1095)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *5 (-509))
- (-5 *2
- (-2 (|:| |minor| (-583 (-844))) (|:| -3781 *3)
- (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-131)))))
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1098) (-882))))))
+(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1073 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-583
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-725)) (-4 *6 (-872 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779))
- (-5 *1 (-418 *4 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3))
- (-4 *3 (-1133 *4)))))
+ (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517))))
+ (-4 *2 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-297 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-480 *3 *4))
+ (-14 *4 (-517)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1060))
+ (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *1 *1 *1) (-5 *1 (-199)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956))))
- ((*1 *1 *1 *1) (-4 *1 (-1040))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1076)) (-5 *1 (-611 *3)) (-4 *3 (-1005)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-512)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3))
+ (-4 *3 (-13 (-1098) (-29 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6))
+ (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *2 (-1162)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2)
- (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5)))
- (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-703)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-5 *2 (-107)))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-867 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3))
+ (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-897 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953))
+ (-5 *1 (-681)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-867 *5)) (-5 *3 (-703)) (-4 *5 (-964))
+ (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4))))
((*1 *2 *3 *3)
(-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
+(((*1 *1) (-5 *1 (-1159))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-973)) (-4 *3 (-1098))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-286 (-517))))
+ (-5 *1 (-949)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2589 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421))
+ (-5 *2
+ (-583
+ (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4))))
+ (|:| |eigmult| (-703))
+ (|:| |eigvec| (-583 (-623 (-377 (-876 *4))))))))
+ (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| |minor| (-583 (-845))) (|:| -3817 *3)
+ (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517)))))
+ (-4 *4 (-1134 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4))))
+ (-5 *1 (-1166 *4)) (-4 *4 (-333)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
(((*1 *2 *1)
(-12
(-5 *2
(-583
(-2
- (|:| -2585
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| -2576
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
- (|:| -1859
+ (|:| -1846
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -7139,10 +7338,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1057 (-199)))
+ (-3 (|:| |str| (-1058 (-199)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2758
+ (|:| -3177
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -7152,1261 +7351,1165 @@
(|:| |notEvaluated| "Range not yet evaluated"))))))))
(-5 *1 (-512))))
((*1 *2 *1)
- (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111))
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112))
(-5 *2 (-583 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156))
- (-14 *6
- (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *2))
- (-2 (|:| -2812 *5) (|:| -2121 *2))))
- (-4 *2 (-212 (-3535 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-779)) (-4 *7 (-872 *4 *2 (-789 *3))))))
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4)))
+ (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1049 *3)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-107)) (-5 *1 (-761)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
- (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
-(((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-333)) (-5 *1 (-819 *2 *3))
- (-4 *2 (-1133 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-684)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-972)) (-4 *3 (-1097))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-12 (-5 *3 (-703)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4))
+ (-4 *4 (-319)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *2 (-583 *3)) (-5 *1 (-896 *4 *5 *6 *3))
- (-4 *3 (-977 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1079)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1048 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
- (-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-724)) (-4 *3 (-156)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-333))
- (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-419 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333))
- (-5 *2
- (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6))))
- (-5 *1 (-897 *6)) (-5 *3 (-623 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1059)) (-5 *1 (-718)))))
+ (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374))
+ (-5 *2 (-845)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7))
+ (-4 *7 (-873 *5 *6 *4)) (-4 *5 (-833)) (-4 *6 (-725))
+ (-4 *4 (-779)) (-5 *1 (-830 *5 *6 *4 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779))
- (-5 *2 (-2 (|:| -1582 (-517)) (|:| |var| (-556 *1))))
- (-4 *1 (-400 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-4 *5 (-333)) (-5 *2 (-1057 (-1057 (-875 *5))))
- (-5 *1 (-1165 *5)) (-5 *4 (-1057 (-875 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-963)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703))))
- ((*1 *1 *1) (-4 *1 (-372))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333))
- (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))
- (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156))
- (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-107))))
((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
- (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4194 "*"))) (-4 *2 (-963)))))
-(((*1 *1 *1) (-4 *1 (-972)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4183)) (-4 *1 (-374))))
- ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-963)))))
-(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1133 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278))
- (-4 *10 (-872 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-583 (-1072 *10)))
- (|:| |dterm|
- (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10))))
- (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1072 *10)) (-5 *4 (-583 *6))
- (-5 *5 (-583 *10)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1097) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-134))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
- (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1160)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-775)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1098))))
+ ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-623 (-377 (-876 (-517)))))
+ (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-944 (-772 (-517))))
+ (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-964))
+ (-5 *1 (-542 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1005))
- (-4 *2 (-1111)))))
-(((*1 *1 *1) (-5 *1 (-975))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333))
- (-4 *7 (-1133 (-377 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2997 *3)))
- (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333))
- (-5 *2
- (-2 (|:| |answer| (-377 *6)) (|:| -2997 (-377 *6))
- (|:| |specpart| (-377 *6)) (|:| |polypart| *6)))
- (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1006))
+ (-4 *2 (-1112)))))
+(((*1 *2)
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -2735 (-583 (-787))) (|:| -2948 (-583 (-787)))
- (|:| |presup| (-583 (-787))) (|:| -1324 (-583 (-787)))
+ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787)))
+ (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787)))
(|:| |args| (-583 (-787)))))
- (-5 *1 (-1076))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1076)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ (-5 *1 (-1077))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1077)))))
+(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779))
+ (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-845))))
+ ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-684)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-973))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
(-4 *2 (-400 *3))))
- ((*1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
- (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
- (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
- ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *1 *1) (-4 *1 (-1045))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-4 *3 (-1005))
- (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2212 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1133 *7))
- (-5 *3 (-377 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-527 *7 *8)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-963)) (-14 *3 (-583 (-1076)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-963) (-779)))
- (-14 *3 (-583 (-1076))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-973))))
+ ((*1 *1 *1) (-4 *1 (-777)))
+ ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)) (-4 *2 (-973))))
+ ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *1) (-4 *1 (-1041))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2 (-2 (|:| -1407 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9))))
- (-5 *5 (-107)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8))
- (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779))
- (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3834 *9))))
- (-5 *1 (-983 *6 *7 *4 *8 *9)))))
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *2 (-377 (-876 *4))) (-5 *1 (-848 *4 *5 *6 *3))
+ (-4 *3 (-873 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *2 (-623 (-377 (-876 *4))))
+ (-5 *1 (-848 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *2 (-583 (-377 (-876 *4))))
+ (-5 *1 (-848 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| -1724 *1) (|:| -3676 (-583 *7)))))
- (-5 *3 (-583 *7)) (-4 *1 (-1105 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-361)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+ (-12 (-4 *4 (-13 (-509) (-779)))
+ (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098)))
+ (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-921) (-1098))))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-215))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-517)) (-5 *1 (-215)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-779)) (-5 *2 (-1084 (-583 *4))) (-5 *1 (-1083 *4))
- (-5 *3 (-583 *4)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-955 (-517))) (-4 *3 (-13 (-779) (-509)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1073 *4)) (-5 *1 (-149 *3 *4))
+ (-4 *3 (-150 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-964)) (-4 *1 (-273))))
+ ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3))))
+ ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333)))
+ (-4 *2 (-1134 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-377 (-876 (-517))))) (-5 *4 (-583 (-1077)))
+ (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5))
+ (-4 *5 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421))
+ (-5 *2
+ (-583
+ (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4))))
+ (|:| |geneigvec| (-583 (-623 (-377 (-876 *4))))))))
+ (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4)))))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1157 *1)) (-4 *1 (-337 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1111))
- (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-4 *3 (-509)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-493)) (-5 *1 (-492 *4))
- (-4 *4 (-1111)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509))
- (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1111))
- (-5 *2 (-583 *3)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-556 *3))
- (-4 *3 (-13 (-400 *5) (-27) (-1097)))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3)))
- (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1005)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *1) (-5 *1 (-976))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-692)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1073 (-1073 *5))))
+ (-5 *1 (-1111 *5)) (-5 *3 (-1073 (-1073 *5))))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131)))
+ ((*1 *1 *1) (-4 *1 (-1046))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5))
+ (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1084 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-833)) (-4 *6 (-725))
+ (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-388 (-1073 *8)))
+ (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-1073 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5)))
+ (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))))
(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118)))
((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517))))
((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517))))
((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-844)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-338))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199)))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)))))
+(((*1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-338))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1157 *4)) (-5 *1 (-487 *4))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4))
(-4 *4 (-319))))
((*1 *2 *1)
- (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1005))
+ (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1006))
(-14 *4
- (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *3))
- (-2 (|:| -2812 *2) (|:| -2121 *3)))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-963)) (-4 *3 (-333))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333))
- (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))
- (-5 *2 (-1157 *6)) (-5 *1 (-306 *3 *4 *5 *6))
- (-4 *6 (-312 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2157 *3) (|:| |coef1| (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1157 (-583 *3))) (-4 *4 (-278))
- (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1072 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1072 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
- (-4 *3 (-1133 (-153 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
- ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1133 *2)) (-4 *2 (-156))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1133 *2)) (-4 *2 (-911 *3)) (-5 *1 (-383 *3 *2 *4 *5))
- (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-954 *2)))))
+ (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3))
+ (-2 (|:| -2803 *2) (|:| -1725 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509))
+ (-4 *7 (-873 *3 *5 *6))
+ (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *8) (|:| |radicand| *8)))
+ (-5 *1 (-877 *5 *6 *3 *7 *8)) (-5 *4 (-703))
+ (-4 *8
+ (-13 (-333)
+ (-10 -8 (-15 -3858 (*7 $)) (-15 -2082 (*7 $)) (-15 -2262 ($ *7))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))
((*1 *2 *1)
- (-12 (-4 *4 (-1133 *2)) (-4 *2 (-911 *3))
- (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4))
- (-14 *6 (-1157 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-4 *5 (-963))
- (-4 *2 (-13 (-374) (-954 *5) (-333) (-1097) (-256)))
- (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1133 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1072 (-460))) (-5 *3 (-583 (-556 (-460))))
- (-5 *1 (-460))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1072 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-844)) (-4 *4 (-319))
- (-5 *1 (-487 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1133 *4))
- (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1133 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156))))
- ((*1 *1 *1) (-4 *1 (-972))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9))
+ (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-5 *1 (-897 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6))
+ (-4 *6 (-421)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-963)))))
+ (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703))
+ (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
- (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3))
- (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1014 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5))))))
- (-5 *1 (-987 *5 *6)) (-5 *3 (-583 (-875 *5)))
- (-14 *6 (-583 (-1076)))))
+ (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
+ (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-703))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077)))))
+ (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010))
+ (-5 *1 (-367))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077)))))
+ (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010))
+ (-5 *1 (-367))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-583 (-1077))) (-5 *5 (-1080)) (-5 *3 (-1077))
+ (-5 *2 (-1010)) (-5 *1 (-367)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2))
+ (-4 *2 (-1149 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3)))
+ (-4 *5 (-1134 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2))
+ (-4 *2 (-1149 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3)))
+ (-5 *1 (-499 *4 *2)) (-4 *2 (-1149 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134)))
+ (-5 *1 (-1054 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-993 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-993 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-4 *5 (-1116)) (-4 *6 (-1134 *5))
+ (-4 *7 (-1134 (-377 *6))) (-5 *2 (-583 (-876 *5)))
+ (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-278) (-134)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *4)) (|:| -3784 (-583 (-875 *4))))))
- (-5 *1 (-987 *4 *5)) (-5 *3 (-583 (-875 *4)))
- (-14 *5 (-583 (-1076)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5))))))
- (-5 *1 (-987 *5 *6)) (-5 *3 (-583 (-875 *5)))
- (-14 *6 (-583 (-1076))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
+ (-12 (-5 *3 (-1077)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116))
+ (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *4 (-333))
+ (-5 *2 (-583 (-876 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-331 (-109))) (-4 *2 (-963)) (-5 *1 (-647 *2 *4))
- (-4 *4 (-585 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-963)))))
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-770)) (-5 *4 (-975)) (-5 *2 (-952)) (-5 *1 (-769))))
- ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-952)) (-5 *1 (-769))))
+ (-12 (-5 *3 (-770)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-769))))
+ ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769))))
((*1 *2 *3 *4 *5 *6 *5)
(-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349))))
- (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-952))
+ (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-953))
(-5 *1 (-769))))
((*1 *2 *3 *4 *5 *5)
(-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349)))
- (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-952)) (-5 *1 (-769))))
+ (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-953)) (-5 *1 (-769))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-952))
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-953))
(-5 *1 (-769))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349)))
- (-5 *2 (-952)) (-5 *1 (-769)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-812 *4 *3))
- (-4 *3 (-1005)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4))
- (-4 *4 (-156)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4)))))
- ((*1 *1 *1) (-5 *1 (-349)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-685)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076))
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-952)) (-5 *1 (-686)))))
+ (-5 *2 (-953)) (-5 *1 (-769)))))
+(((*1 *1) (-5 *1 (-1080))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-844)) (-5 *1 (-411 *2))
- (-4 *2 (-1133 (-517)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-844)) (-5 *4 (-703)) (-5 *1 (-411 *2))
- (-4 *2 (-1133 (-517)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2))
- (-4 *2 (-1133 (-517)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703))
- (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703))
- (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1133 (-517)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-388 *2)) (-4 *2 (-1133 *5))
- (-5 *1 (-413 *5 *2)) (-4 *5 (-963)))))
-(((*1 *2)
- (-12 (-5 *2 (-1162)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
- (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1094 *3)) (-4 *3 (-963)))))
-(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1005)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-828 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-583 (-1076))) (-4 *2 (-156))
- (-4 *4 (-212 (-3535 *5) (-703)))
- (-14 *6
- (-1 (-107) (-2 (|:| -2812 *3) (|:| -2121 *4))
- (-2 (|:| -2812 *3) (|:| -2121 *4))))
- (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779))
- (-4 *7 (-872 *2 *4 (-789 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779))
- (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107)))))
- (-4 *2 (-13 (-400 *4) (-920))) (-4 *4 (-13 (-779) (-509)))
- (-5 *1 (-249 *4 *2)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3)))
- (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-633 *3))
- (-4 *3 (-278)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-844)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1072 *1))
- (-4 *1 (-299 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1072 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333))
- (-4 *2 (-1133 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-1072 *4))
- (-5 *1 (-487 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
- ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *5 (-844))
- (-5 *2 (-1162)) (-5 *1 (-437))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1162)) (-5 *1 (-437))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-797)) (-5 *5 (-844))
- (-5 *2 (-1162)) (-5 *1 (-437)))))
-(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -2370 (-714 *3)) (|:| |coef1| (-714 *3))
- (|:| |coef2| (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-963))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-2 (|:| -2370 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517))))
- (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *6 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1076))
- (-4 *5 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1111))
- (-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1005))
- (-4 *2 (-1111)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-377 (-517))))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-349)))) (-5 *1 (-236)))))
+ (-583
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-517)))))
+ (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1134 *3))
+ (-5 *2 (-583 (-1073 *3))) (-5 *1 (-463 *3 *5 *6))
+ (-4 *6 (-1134 *5)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349)))
+ (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163))
+ (-5 *1 (-720))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349)))
+ (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163))
+ (-5 *1 (-720)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953))
+ (-5 *1 (-681)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-1072 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *4 (-556 $)) $))
- (-15 -2098 ((-1028 *4 (-556 $)) $))
- (-15 -2271 ($ (-1028 *4 (-556 $))))))))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1059))
- (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333))
- (-5 *2 (-2 (|:| -2212 (-377 *6)) (|:| |coeff| (-377 *6))))
- (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-4 *3 (-509)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1134 *4))
+ (-5 *1 (-846 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703))
- (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2)
(-12
- (-5 *2 (-2 (|:| -2998 (-583 (-1076))) (|:| -4068 (-583 (-1076)))))
- (-5 *1 (-1113)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779)))
- (-4 *2 (-13 (-400 *4) (-920) (-1097))) (-5 *1 (-546 *4 *2 *3))
- (-4 *3 (-13 (-400 (-153 *4)) (-920) (-1097))))))
-(((*1 *2 *3)
+ (-5 *3
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060)))))
+ (-5 *2 (-953)) (-5 *1 (-276))))
+ ((*1 *2 *3)
(-12
(-5 *3
- (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
- (-221 *4 (-377 (-517)))))
- (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-107))
- (-5 *1 (-470 *4 *5)))))
+ (-2 (|:| -3661 (-349)) (|:| -2981 (-1060))
+ (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))
+ (-5 *2 (-953)) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
- (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-199)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4193)) (-4 *1 (-456 *3))
- (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-400 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
- (-4 *3 (-1005))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5))))
+ (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1158 *1))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963))
- (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3))
- (-5 *1 (-873 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $))
- (-15 -2098 (*7 $))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-583 (-1081))) (-5 *1 (-803)))))
+ (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-833))
+ (-5 *2 (-1158 *1)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-974 (-942 *4) (-1073 (-942 *4)))) (-5 *3 (-787))
+ (-5 *1 (-942 *4)) (-4 *4 (-13 (-777) (-333) (-940))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-753)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1072 *7))
- (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1133 *5))
- (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1133 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-107))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-4 *3 (-13 (-27) (-1097) (-400 *6) (-10 -8 (-15 -2271 ($ *7)))))
- (-4 *7 (-777))
- (-4 *8
- (-13 (-1135 *3 *7) (-333) (-1097)
- (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $)))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1077)))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))))
- (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-902 *8))
- (-14 *10 (-1076)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1057 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+ (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6)))))
+ (-5 *1 (-568 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797)))
- (-5 *1 (-437)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806))
- (-5 *3 (-583 (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1000 (-199))))))
-(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300))))
- ((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-143 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1005)) (-4 *5 (-1005))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-623 *3))
- (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-623 *3))
- (-4 *3 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *4 (-1133 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-4 *2 (-1005))
- (-5 *1 (-812 *4 *2)))))
+ (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4))
+ (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6)))
+ (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517))))
+ (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *8)))
+ (-5 *1 (-835 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
+ (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4)))
+ (-4 *6 (-312 (-377 (-517)) *4 *5))
+ (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *6)))
+ (-5 *1 (-836 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
(((*1 *2 *2)
- (-12
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077))))
+ (-4 *7 (-725))
(-5 *2
(-583
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779))
- (-5 *1 (-418 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
- (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
- (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
- (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1119 *3 *2)) (-4 *3 (-963))
- (-4 *2 (-1148 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-1000 (-199)))))
- ((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1000 (-199))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
- (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3))
- (-4 *3 (-621 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
- (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-300)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1015)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1076)) (-4 *5 (-400 *4))
- (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-345 *4 *2))
- (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-583 (-1076))) (|:| |pred| (-51))))
- (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-952)) (-5 *1 (-769))))
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-876 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *5))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *5))))))))))
+ (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-583 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349)))
- (-5 *2 (-952)) (-5 *1 (-769)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3))
- (-4 *3 (-1133 *4))))
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1077))) (-4 *8 (-873 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-876 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *5))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *5))))))))))
+ (-5 *1 (-848 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
- (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
- (-4 *3 (-1133 (-517)))))
+ (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
+ (|:| |wcond| (-583 (-876 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *4))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))))))
+ (-5 *1 (-848 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3))
- (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
- (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-925 *3))
- (-4 *3 (-1133 (-377 (-517))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-349))))
- ((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-349)))))
-(((*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-1000 (-199)))))
- ((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1000 (-199))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-895 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-623 (-377 (-875 (-517)))))
+ (-12 (-5 *3 (-623 *9)) (-5 *5 (-845)) (-4 *9 (-873 *6 *8 *7))
+ (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077))))
+ (-4 *8 (-725))
(-5 *2
(-583
- (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517))
- (|:| |radvect| (-583 (-623 (-286 (-517))))))))
- (-5 *1 (-948)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
+ (|:| |wcond| (-583 (-876 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *6))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *6))))))))))
+ (-5 *1 (-848 *6 *7 *8 *9)) (-5 *4 (-583 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-845))
+ (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725))
(-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-404)) (-4 *5 (-779))
- (-5 *1 (-1011 *5 *4)) (-4 *4 (-400 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-531)))))
-(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+ (-583
+ (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
+ (|:| |wcond| (-583 (-876 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *6))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *6))))))))))
+ (-5 *1 (-848 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-845)) (-4 *8 (-873 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-876 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *5))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *5))))))))))
+ (-5 *1 (-848 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1060))
+ (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517))
+ (-5 *1 (-848 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-1060))
+ (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517))
+ (-5 *1 (-848 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-1060)) (-4 *8 (-873 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077))))
+ (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-845))
+ (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134)))
+ (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517))
+ (-5 *1 (-848 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1077))) (-5 *5 (-845))
+ (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134)))
+ (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517))
+ (-5 *1 (-848 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-845)) (-5 *5 (-1060))
+ (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517))
+ (-5 *1 (-848 *6 *7 *8 *9)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112))
+ (-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006))
+ (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4))
+ (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
(((*1 *2 *3 *2 *4)
(-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421))
- (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1076))) (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076))
+ (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1077))) (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))
+ (-14 *4 (-1077)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-4 *2 (-13 (-27) (-1098) (-400 *3) (-10 -8 (-15 -2262 ($ *4)))))
+ (-4 *4 (-777))
+ (-4 *5
+ (-13 (-1136 *2 *4) (-333) (-1098)
+ (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $)))))
+ (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-903 *5)) (-14 *7 (-1077)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1042 *3 *2)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *2 (-13 (-1006) (-33))))))
+(((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3))
+ (-4 *3 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3)))
+ (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3)))
+ (-4 *3 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3)))
+ (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4196)) (-4 *1 (-456 *3))
+ (-4 *3 (-1112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2)
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))
+ (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3))
(-5 *2
- (-2 (|:| |zeros| (-1057 (-199))) (|:| |ones| (-1057 (-199)))
- (|:| |singularities| (-1057 (-199)))))
- (-5 *1 (-100)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-509)) (-4 *2 (-872 *3 *5 *4))
- (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-875 *6))) (-4 *5 (-725))
- (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-982 *6 *7 *8 *9))
- (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8))
+ (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1134 (-517)))
(-5 *2
- (-583
- (-2 (|:| -3781 (-583 *9)) (|:| -3834 *10) (|:| |ineq| (-583 *9)))))
- (-5 *1 (-907 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-982 *6 *7 *8 *9))
- (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-977 *6 *7 *8))
+ (-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517))
+ (|:| |basisInv| (-623 (-517)))))
+ (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4))
(-5 *2
- (-583
- (-2 (|:| -3781 (-583 *9)) (|:| -3834 *10) (|:| |ineq| (-583 *9)))))
- (-5 *1 (-1012 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1162)) (-5 *1 (-189 *4))
- (-4 *4
- (-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 (*2 $))
- (-15 -2691 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1162)) (-5 *1 (-189 *3))
- (-4 *3
- (-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 (*2 $))
- (-15 -2691 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-467)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1111)) (-4 *3 (-963))
- (-5 *2 (-623 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1157 *4))) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
+ (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-623 *4))))
+ (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
- (-5 *2 (-583 (-1157 *3))))))
+ (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4))
+ (-5 *2
+ (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-623 *4))))
+ (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-963)) (-5 *2 (-1072 *3)))))
+ (-12 (-5 *2 (-867 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-954 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1079))))
- ((*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1093))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1093)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724))
- (-4 *2 (-421))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-1133 *2))
- (-4 *4 (-1133 (-377 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-421))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *3 (-421))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-421))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1064 *3 *2))
- (-4 *2 (-1133 *3)))))
+ (|partial| -12
+ (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1143 *4 *5 *6))
+ (|:| |%expon| (-289 *4 *5 *6))
+ (|:| |%expTerms|
+ (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4))))))
+ (|:| |%type| (-1060))))
+ (-5 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3)))
+ (-14 *5 (-1077)) (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3868 *4) (|:| -3647 (-517)))))
- (-4 *4 (-1133 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-388 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-963))
- (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
+ (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5))
+ (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-921) (-1098)))
+ (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319))
- (-4 *2
- (-13 (-372)
- (-10 -7 (-15 -2271 (*2 *4)) (-15 -3072 ((-844) *2))
- (-15 -1492 ((-1157 *2) (-844))) (-15 -3629 (*2 *2)))))
- (-5 *1 (-326 *2 *4)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
+ (-12 (-5 *3 (-265 (-876 (-517))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-583 (-1077)))
+ (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed"))
+ (|:| |hom| (-583 (-1158 (-703))))))
+ (-5 *1 (-210)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-102 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-907 *3 *4 *5 *2))
+ (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199))
+ (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27))
+ (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1005)) (-5 *2 (-1162))
- (-5 *1 (-1112 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1005)) (-5 *2 (-1162))
- (-5 *1 (-1112 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-1080)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797))
- (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-1158))
- (-5 *1 (-1161))))
+ (-12 (-4 *4 (-319))
+ (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *3))))
+ (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1006))
+ (-5 *1 (-613 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1006)) (-5 *1 (-616 *3)))))
+(((*1 *1 *1) (-5 *1 (-976))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-725)) (-4 *6 (-873 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779))
+ (-5 *1 (-418 *4 *3 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236)))
- (-5 *2 (-1158)) (-5 *1 (-1161)))))
-(((*1 *1) (-5 *1 (-755))))
+ (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517))
+ (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1006)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-517)) (-5 *1 (-1094 *4))
- (-4 *4 (-963)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-779))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *1 (-899 *3)) (-4 *3 (-963))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-168)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
(-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))))
+ (-4 *7 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
(-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *7))))
+ (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
(-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1076)) (-4 *4 (-963)) (-4 *4 (-779))
- (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2121 (-517))))
- (-4 *1 (-400 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-109)) (-4 *4 (-963)) (-4 *4 (-779))
- (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2121 (-517))))
- (-4 *1 (-400 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1017)) (-4 *3 (-779))
- (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2121 (-517))))
- (-4 *1 (-400 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2121 (-703))))
- (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2121 (-703))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963))
- (-4 *7 (-872 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -2121 (-517))))
- (-5 *1 (-873 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $))
- (-15 -2098 (*7 $))))))))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1097) (-881))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1015)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+ (-12 (-4 *4 (-13 (-333) (-955 (-377 *2)))) (-5 *2 (-517))
+ (-5 *1 (-110 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-876 (-517)))) (-5 *1 (-407))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-199))) (-5 *2 (-1010))
+ (-5 *1 (-692))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-517))) (-5 *2 (-1010))
+ (-5 *1 (-692)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1149 *4))
+ (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-1 (-1058 *4) (-1058 *4) (-1058 *4))) (-5 *1 (-1151 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1134 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7))
+ (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-833)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-5 *1 (-830 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5))
+ (-4 *5 (-1134 *4)) (-4 *4 (-833)) (-5 *1 (-831 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-689)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-404)) (-4 *5 (-779))
+ (-5 *1 (-1012 *5 *4)) (-4 *4 (-400 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3))
+ (-4 *3 (-1006)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *5))))
+ (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5))
+ (-5 *1 (-191 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| -3896 *5) (|:| -1191 (-517)))))
+ (-5 *4 (-517)) (-4 *5 (-1134 *4)) (-5 *2 (-583 *5))
+ (-5 *1 (-629 *5)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-964))
+ (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1134 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964))
+ (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964))
+ (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725))
+ (-5 *2 (-583 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7))
+ (-4 *7 (-873 *4 *6 *5)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))))
+ (|partial| -12 (-5 *3 (-845)) (-5 *1 (-411 *2))
+ (-4 *2 (-1134 (-517)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-845)) (-5 *4 (-703)) (-5 *1 (-411 *2))
+ (-4 *2 (-1134 (-517)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2))
+ (-4 *2 (-1134 (-517)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703))
+ (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703))
+ (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-388 *2)) (-4 *2 (-1134 *5))
+ (-5 *1 (-413 *5 *2)) (-4 *5 (-964)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1097)))
- (-5 *1 (-532 *4 *2))
- (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-534 (-377 (-875 *4))))
- (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
- (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1111)) (-4 *2 (-779))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-888 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4))
- (-14 *3 (-844)) (-4 *4 (-963))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))))
+ (-12 (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-2 (|:| -1459 (-1058 *4)) (|:| -1471 (-1058 *4))))
+ (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-964))
+ (-5 *2 (-623 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787)))
+ ((*1 *1)
+ (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725))
+ (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3))))
+ ((*1 *1)
+ (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33)))))
+ ((*1 *1) (-5 *1 (-1080))) ((*1 *1) (-5 *1 (-1081))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-107))
+ (-5 *1 (-236)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-844)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077))
+ (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077))
+ (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1158 (-1158 (-517)))) (-5 *3 (-845)) (-5 *1 (-435)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-4 *4 (-1112)) (-5 *2 (-107))
+ (-5 *1 (-1058 *4)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
(-4 *2 (-400 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
+ ((*1 *1 *1 *1) (-4 *1 (-1041))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1007 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1007 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1097) (-881)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-963)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))))
+ (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1134 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5))
+ (|:| |c2| (-377 *5)) (|:| |deg| (-703))))
+ (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-690)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-421))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-426 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-833)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-128)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-866 (-199)))))
- (-5 *2 (-583 (-1000 (-199)))) (-5 *1 (-851)))))
+ (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5))
+ (-4 *4 (-1006)) (-4 *5 (-1006)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4))))
- (-5 *1 (-1083 *4)) (-5 *3 (-583 (-583 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
- (-4 *2 (-400 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-998 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
- (-5 *1 (-143 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-145))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1076)))))
+ (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3))
+ (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134)))
+ (-5 *1 (-1054 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *4)) (-4 *4 (-963)) (-4 *2 (-1133 *4))
- (-5 *1 (-413 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-377 (-1072 (-286 *5)))) (-5 *3 (-1157 (-286 *5)))
- (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1033 *5)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-897 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9))
- (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725))
- (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2553 (-583 *9))))
- (-5 *3 (-583 *9)) (-4 *1 (-1105 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 (-377 (-876 *6))))
+ (-5 *3 (-377 (-876 *6)))
+ (-4 *6 (-13 (-509) (-955 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-523 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1016)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1006)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517))))
+ (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953))
+ (-5 *1 (-689)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2)))
+ (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5))
+ (-4 *3 (-312 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116))
+ (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-845)) (-5 *1 (-950 *2))
+ (-4 *2 (-13 (-1006) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-945 *5 *6 *7 *3))) (-5 *1 (-945 *5 *6 *7 *3))
+ (-4 *3 (-978 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3))
+ (-4 *3 (-978 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-687)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333))
+ (-4 *7 (-1134 (-377 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2249 *3)))
+ (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2553 (-583 *8))))
- (-5 *3 (-583 *8)) (-4 *1 (-1105 *5 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |answer| (-377 *6)) (|:| -2249 (-377 *6))
+ (|:| |specpart| (-377 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4196)) (-4 *1 (-929 *3))
+ (-4 *3 (-1112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-583 (-1081))) (-5 *1 (-1038)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107))
- (-5 *2 (-952)) (-5 *1 (-678)))))
+ (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-1039)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-845)) (-4 *5 (-509)) (-5 *2 (-623 *5))
+ (-5 *1 (-879 *5 *3)) (-4 *3 (-593 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107))
+ (-5 *1 (-327 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-875 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199))
+ (-5 *2 (-953)) (-5 *1 (-682)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1059))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1097) (-29 *4))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-689)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5)))))
+ (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *5 (-1134 *4))
+ (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3817 *5))))
+ (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5))
+ (-4 *6 (-593 (-377 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 (-876 *6))) (-4 *6 (-509))
+ (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2))
+ (-4 *5 (-725))
+ (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))))))
(((*1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
- (-4 *5 (-1133 *4)) (-5 *2 (-623 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3))
- (-5 *2 (-623 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1059)) (-5 *1 (-168))))
- ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1059)) (-5 *1 (-271))))
- ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1059)) (-5 *1 (-276)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1093)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1005) (-954 *5)))
- (-4 *5 (-809 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-107) *5))
- (-5 *1 (-854 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703))))
+ ((*1 *1 *1) (-4 *1 (-372))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1059)) (-5 *1 (-168))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-404))
- (-5 *2
+ (-12
+ (-5 *3
(-583
- (-3 (|:| -2989 (-1076))
- (|:| |bounds| (-583 (-3 (|:| S (-1076)) (|:| P (-875 (-517)))))))))
- (-5 *1 (-1080)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+ (-2 (|:| -3778 (-703))
+ (|:| |eqns|
+ (-583
+ (-2 (|:| |det| *7) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (|:| |fgb| (-583 *7)))))
+ (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703))
+ (-5 *1 (-848 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142))))
+ ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-798))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1106 *5 *6 *7 *8)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-963))
- (-5 *2 (-1157 (-1157 *5))) (-5 *1 (-946 *5)) (-5 *4 (-1157 *5)))))
+ (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-107)) (-5 *1 (-897 *5 *6 *7 *8)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199))
- (-5 *7 (-623 (-517)))
- (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-686)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-109)) (-4 *4 (-964)) (-5 *1 (-647 *4 *2))
+ (-4 *2 (-585 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-964)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-779))
+ (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779))
(-4 *4 (-239 *3)) (-4 *5 (-725)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1076)) (-5 *6 (-107))
- (-4 *7 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-4 *3 (-13 (-1097) (-881) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-13 (-963) (-650 (-377 (-517)))))
- (-4 *5 (-779)) (-5 *1 (-1171 *4 *5 *2)) (-4 *2 (-1176 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-1133 (-377 *3))) (-5 *2 (-844))
- (-5 *1 (-836 *4 *5)) (-4 *5 (-1133 (-377 *4))))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-895 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *3 (-779)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4193)) (-4 *4 (-333)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3))
- (-4 *3 (-621 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4193)) (-4 *4 (-509)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)) (-4 *7 (-911 *4)) (-4 *8 (-343 *7))
- (-4 *9 (-343 *7)) (-5 *2 (-583 *6))
- (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6))
- (-4 *10 (-621 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3))
- (-4 *3 (-621 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
- (-5 *2 (-583 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-333) (-134) (-954 (-517)))) (-4 *5 (-1133 *4))
- (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107))))
- (-5 *1 (-933 *4 *5)) (-5 *3 (-377 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9))))
- (-5 *4 (-703)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1162))
- (-5 *1 (-980 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9))))
- (-5 *4 (-703)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1162))
- (-5 *1 (-1046 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-278))
- (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
-(((*1 *1 *1) (-5 *1 (-493))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *3 (-583 (-236)))
- (-5 *1 (-234))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6))
- (-14 *5 (-583 (-1076))) (-4 *6 (-421)) (-5 *2 (-1157 *6))
- (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1086 *2)) (-4 *2 (-333)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-359)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199)))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1111))
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112))
(-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2))
- (-4 *5 (-343 *2)) (-4 *2 (-1111))))
+ (-4 *5 (-343 *2)) (-4 *2 (-1112))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1112))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2))
(-14 *4 (-517)) (-14 *5 (-703))))
@@ -8426,29 +8529,29 @@
(-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517))
(-14 *4 (-703))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-219 (-1059))) (-5 *1 (-189 *4))
+ (-12 (-5 *3 (-1077)) (-5 *2 (-219 (-1060))) (-5 *1 (-189 *4))
(-4 *4
(-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ *3)) (-15 -1757 ((-1162) $))
- (-15 -2691 ((-1162) $)))))))
+ (-10 -8 (-15 -2612 ((-1060) $ *3)) (-15 -1744 ((-1163) $))
+ (-15 -3012 ((-1163) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-908)) (-5 *1 (-189 *3))
+ (-12 (-5 *2 (-909)) (-5 *1 (-189 *3))
(-4 *3
(-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $))
- (-15 -2691 ((-1162) $)))))))
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $))
+ (-15 -3012 ((-1163) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779))))
((*1 *1 *1 *2)
(-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1133 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1134 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273))))
@@ -8457,1907 +8560,1773 @@
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-1133 *2))
- (-4 *4 (-1133 (-377 *3)))))
+ (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2))
+ (-4 *4 (-1134 (-377 *3)))))
((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1059)) (-5 *1 (-467))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-51)) (-5 *1 (-572))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1060)) (-5 *1 (-467))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-51)) (-5 *1 (-572))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1124 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1005))))
+ (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
+ (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-583 (-815 *4))) (-5 *1 (-815 *4))
- (-4 *4 (-1005))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1005))))
+ (-12 (-5 *2 (-109)) (-5 *3 (-583 (-816 *4))) (-5 *1 (-816 *4))
+ (-4 *4 (-1006))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4))
- (-4 *4 (-1005))))
+ (-12 (-5 *3 (-703)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4))
+ (-4 *4 (-1006))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-844)) (-4 *2 (-333))
- (-5 *1 (-912 *4 *2))))
+ (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-845)) (-4 *2 (-333))
+ (-5 *1 (-913 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-928 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 "value") (-4 *1 (-929 *2)) (-4 *2 (-1112))))
+ ((*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-963))
+ (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-964))
(-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *2 *6 *7))
- (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-963))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-844)) (-4 *4 (-1005))
- (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4))))
- (-5 *1 (-985 *4 *5 *2))
- (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))))
+ (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7))
+ (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-844)) (-4 *4 (-1005))
- (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4))))
+ (-12 (-5 *3 (-845)) (-4 *4 (-1006))
+ (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4))))
(-5 *1 (-986 *4 *5 *2))
- (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))))
+ (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-845)) (-4 *4 (-1006))
+ (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4))))
+ (-5 *1 (-987 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1008 *3 *4 *5 *6 *7))
- (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))
- (-4 *7 (-1005))))
+ (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1009 *3 *4 *5 *6 *7))
+ (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))
+ (-4 *7 (-1006))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005))
- (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005))))
- ((*1 *1 *1 *1) (-4 *1 (-1045)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076))))
+ (-12 (-5 *2 (-517)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006))
+ (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006))))
+ ((*1 *1 *1 *1) (-4 *1 (-1046)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-377 *1)) (-4 *1 (-1133 *2)) (-4 *2 (-963))
+ (-12 (-5 *3 (-377 *1)) (-4 *1 (-1134 *2)) (-4 *2 (-964))
(-4 *2 (-333))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-377 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-963))
+ (-12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964))
(-4 *3 (-509))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1135 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963))))
+ (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1145 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 "last") (-4 *1 (-1146 *2)) (-4 *2 (-1112))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1145 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1146 *3)) (-4 *3 (-1112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-907 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-367)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1158 (-1077))) (-5 *3 (-1158 (-422 *4 *5 *6 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-422 *4 *5 *6 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845))
+ (-14 *6 (-583 *2)) (-14 *7 (-1158 (-623 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1158 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077)))
+ (-14 *6 (-1158 (-623 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1158 (-1077))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077)))
+ (-14 *6 (-1158 (-623 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1077)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156))
+ (-14 *4 (-845)) (-14 *5 (-583 *2)) (-14 *6 (-1158 (-623 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-845))
+ (-14 *4 (-583 (-1077))) (-14 *5 (-1158 (-623 *2))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3))
- (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1133 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-5 *2 (-1157 *3)) (-5 *1 (-645 *3 *4))
- (-4 *4 (-1133 *3)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-964)) (-5 *2 (-1158 *4))
+ (-5 *1 (-1078 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-845)) (-5 *2 (-1158 *3)) (-5 *1 (-1078 *3))
+ (-4 *3 (-964)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9))))
+ (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163))
+ (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9))))
+ (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163))
+ (-5 *1 (-1047 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *1 *1) (-5 *1 (-493))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-542 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1118 *3)) (-4 *3 (-964))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1149 *3)) (-4 *3 (-964)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
+ (-4 *4 (-779)) (-5 *1 (-1084 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-107))
+ (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5)))))
+ (-5 *1 (-1033 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5)))))
+ (-5 *1 (-1033 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4))
+ (-4 *4 (-964)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6))
+ (-4 *6 (-13 (-27) (-400 *5)))
+ (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7)))
+ (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3))
+ (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1006)) (-4 *2 (-779))
+ (-5 *1 (-108 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))
+ ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-890 *2 *3))
+ (-4 *3 (-1134 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779))
+ (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509))
+ (-5 *2 (-377 (-876 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509))
+ (-5 *2 (-377 (-876 *4))))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2212 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-333)) (-4 *7 (-1133 *6))
+ (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-333)) (-4 *7 (-1134 *6))
(-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
(-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-300)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1133 *2)) (-4 *2 (-1115)) (-5 *1 (-135 *2 *4 *3))
- (-4 *3 (-1133 (-377 *4))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1133 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107))
- (-4 *4 (-13 (-1097) (-29 *6)))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-198 *6 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2553 (-583 *7))))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1083 *3)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131)))
- ((*1 *1 *1) (-4 *1 (-1045))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2370 *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
+ (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1133 *4)) (-5 *2 (-1162))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1133 (-377 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333))
- (-4 *5 (-509)) (-5 *2 (-1157 *5)) (-5 *1 (-578 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1157 *4)) (-4 *4 (-579 *5))
- (-2479 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1157 (-377 *5)))
- (-5 *1 (-578 *5 *4)))))
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517))
+ (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3))
+ (-4 *3 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1041))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *3 (-1134 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3))
+ (-4 *5 (-593 (-377 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-377 *5))
+ (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4))
+ (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1077)))
+ (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
(-4 *4 (-779))))
- ((*1 *1) (-4 *1 (-1052))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
+ ((*1 *1) (-4 *1 (-1053))))
+(((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1158))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1159)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-725))
- (-4 *3 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *5 (-509))
- (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *3
- (-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
- (-5 *1 (-903 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *6))
- (-4 *6
- (-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
- (-4 *4 (-963)) (-4 *5 (-725)) (-5 *1 (-903 *4 *5 *6 *2))
- (-4 *2 (-872 (-875 *4) *5 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1097) (-881) (-29 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-964))
+ (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4)))
- (-5 *2 (-2 (|:| |num| (-1157 *4)) (|:| |den| *4))))))
+ (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-868 *2 *3))
- (-4 *3 (-1133 *2)))))
+ (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1006)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *2))
+ (-2 (|:| -2803 *5) (|:| -1725 *2))))
+ (-4 *2 (-212 (-3573 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-779)) (-4 *7 (-873 *4 *2 (-789 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076))
- (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-123)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1160)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *5)) (-4 *5 (-1133 *3)) (-4 *3 (-278))
- (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-300)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-880 (-1072 *4))) (-5 *1 (-327 *4))
- (-5 *3 (-1072 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2370 *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1112)) (-5 *1 (-797 *3 *2)) (-4 *3 (-1112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-623 (-286 (-199))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))))
- (-5 *1 (-181)))))
+ (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3))
+ (-4 *3 (-978 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-891)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1134 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1134 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703)))
+ (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1057 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-4 *3 (-509)))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199))))
+ (-5 *2 (-953)) (-5 *1 (-688)))))
+(((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163))
+ (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163))
+ (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2))
- (-4 *5 (-343 *2)) (-4 *2 (-1111))))
+ (-4 *5 (-343 *2)) (-4 *2 (-1112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-966 *4 *5 *2 *6 *7))
- (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1065 3 *3)) (-4 *3 (-963)) (-4 *1 (-1037 *3))))
- ((*1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-333)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-963))
- (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3))
- (-4 *3 (-781 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-300)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-844)) (-4 *3 (-333))
- (-14 *4 (-912 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1133 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
- ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
- ((*1 *1 *1) (|partial| -4 *1 (-655)))
- ((*1 *1 *1) (|partial| -4 *1 (-659)))
+ (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7))
+ (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| -3778 (-703))
+ (|:| |eqns|
+ (-583
+ (-2 (|:| |det| *7) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (|:| |fgb| (-583 *7)))))
+ (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703))
+ (-5 *1 (-848 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-886 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509))
+ (-4 *3 (-964)) (-4 *2 (-724))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1073 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-891)) (-4 *2 (-123)) (-5 *1 (-1079 *3)) (-4 *3 (-509))
+ (-4 *3 (-964))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1131 *4 *3)) (-14 *4 (-1077))
+ (-4 *3 (-964)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333))
+ (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5)))))
+ (-5 *1 (-898 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-377 (-876 *6)) (-1067 (-1077) (-876 *6))))
+ (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *6)))))
+ (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-876 *6))))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-777) (-333)))
- (-4 *2 (-1133 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1485 *1) (|:| -4179 *1) (|:| |associate| *1)))
- (-4 *1 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5))))
+ (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4))))
+ (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5)))))
+ (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421))
+ (-5 *1 (-842 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *5 (-1115)) (-4 *6 (-1133 *5))
- (-4 *7 (-1133 (-377 *6))) (-5 *2 (-583 (-875 *5)))
- (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1115))
- (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-4 *4 (-333))
- (-5 *2 (-583 (-875 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-5 *1 (-976))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-963) (-779)))
- (-14 *3 (-583 (-1076))))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-952)) (-5 *1 (-686)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-349)) (-5 *1 (-718)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-343 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779)))
+ (-14 *3 (-583 (-1077))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-107))
- (-5 *1 (-327 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-107))
- (-5 *1 (-487 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-686)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))))
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4))))
+ (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-1035 *4 *2))
- (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4192) (-6 -4193))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-779)) (-4 *3 (-1111)) (-5 *1 (-1035 *3 *2))
- (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4192) (-6 -4193)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (-4 *4 (-964))
+ (-5 *1 (-946 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) (-4 *4 (-964))
+ (-5 *1 (-946 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-199)))
- (-5 *1 (-437)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-963))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-1133 *4)))))
+ (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333))
+ (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))
+ (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156))
+ (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199))
+ (-5 *2 (-583 (-867 *4))) (-5 *1 (-1109)) (-5 *3 (-867 *4)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-953)) (-5 *1 (-684)))))
(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-319))
- (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3765 *3))))
- (-5 *1 (-191 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142))))
- ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797))))
- ((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349)))
+ (-5 *2 (-953)) (-5 *1 (-769)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-893)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963))
- (-5 *2 (-449 *4 *5)) (-5 *1 (-867 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1115)) (-4 *5 (-1133 (-377 *2)))
- (-4 *2 (-1133 *4)) (-5 *1 (-311 *3 *4 *2 *5))
- (-4 *3 (-312 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1115))
- (-4 *4 (-1133 (-377 *2))) (-4 *2 (-1133 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1083 *4))
- (-5 *3 (-583 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-761)) (-5 *3 (-1059)))))
+ (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-5 *2 (-1162)) (-5 *1 (-1079))))
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7))
+ (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112))
+ (-4 *7 (-1112))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076))
- (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *2 (-1162))
- (-5 *1 (-1079))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1076))
- (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void"))) (-5 *2 (-1162))
- (-5 *1 (-1079)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-963)) (-5 *1 (-623 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 *4)) (-4 *4 (-963)) (-4 *1 (-1026 *3 *4 *5 *6))
- (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1005) (-33)))
- (-5 *2 (-107)) (-5 *1 (-1041 *4 *5)) (-4 *4 (-13 (-1005) (-33))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))))
-(((*1 *2)
- (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5)))
- (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6))
- (-4 *3 (-312 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
+ (-12 (-5 *4 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6))
+ (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-809 *3 *4 *5))
+ (-4 *3 (-1006)) (-4 *5 (-603 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-953)) (-5 *1 (-689)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1005)) (-5 *2 (-703)))))
+ (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-964)) (-4 *4 (-156))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))
+ (-4 *3 (-156)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
+ (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006))
+ (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-659)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-1157 (-623 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-1157 (-623 *4))) (-5 *1 (-386 *3 *4))
- (-4 *3 (-387 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1157 (-623 *3)))))
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-964)))
+ (-5 *2 (-1060)) (-5 *1 (-758 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1076))) (-4 *5 (-333))
- (-5 *2 (-1157 (-623 (-377 (-875 *5))))) (-5 *1 (-993 *5))
- (-5 *4 (-623 (-377 (-875 *5))))))
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-107))
+ (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1060))
+ (-5 *1 (-758 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1076))) (-4 *5 (-333))
- (-5 *2 (-1157 (-623 (-875 *5)))) (-5 *1 (-993 *5))
- (-5 *4 (-623 (-875 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333))
- (-5 *2 (-1157 (-623 *4))) (-5 *1 (-993 *4)))))
+ (-12 (-5 *3 (-754)) (-5 *4 (-286 *5))
+ (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1163))
+ (-5 *1 (-758 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107))
+ (-4 *6 (-13 (-760) (-779) (-964))) (-5 *2 (-1163))
+ (-5 *1 (-758 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1060))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1060))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1163))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1163)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1073 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163))
+ (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-867 *4)) (-4 *4 (-964)) (-5 *1 (-1066 *3 *4))
+ (-14 *3 (-845)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502))
- (-4 *3 (-509))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502))
- (-4 *3 (-1005))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502))
- (-4 *3 (-1005))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-915 *3)) (-4 *3 (-156)) (-4 *3 (-502))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-926 *3))
- (-4 *3 (-954 *2)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-998 (-875 (-517)))) (-5 *3 (-875 (-517)))
- (-5 *1 (-300))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-998 (-875 (-517)))) (-5 *1 (-300)))))
+ (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112))
+ (-5 *2 (-107)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1076))
- (|:| |arrayIndex| (-583 (-875 (-517))))
+ (-2 (|:| |var| (-1077))
+ (|:| |arrayIndex| (-583 (-876 (-517))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787))))))
+ (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1076)) (|:| |rand| (-787))
+ (-2 (|:| |var| (-1077)) (|:| |rand| (-787))
(|:| |ints2Floats?| (-107))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1075)) (|:| |thenClause| (-300))
+ (-2 (|:| |switch| (-1076)) (|:| |thenClause| (-300))
(|:| |elseClause| (-300))))
(|:| |returnBranch|
- (-2 (|:| -2394 (-107))
- (|:| -3121
- (-2 (|:| |ints2Floats?| (-107)) (|:| -3713 (-787))))))
+ (-2 (|:| -1754 (-107))
+ (|:| -3112
+ (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787))))))
(|:| |blockBranch| (-583 (-300)))
- (|:| |commentBranch| (-583 (-1059))) (|:| |callBranch| (-1059))
+ (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060))
(|:| |forBranch|
- (-2 (|:| -2758 (-998 (-875 (-517))))
- (|:| |span| (-875 (-517))) (|:| |body| (-300))))
- (|:| |labelBranch| (-1023))
- (|:| |loopBranch| (-2 (|:| |switch| (-1075)) (|:| |body| (-300))))
+ (-2 (|:| -3177 (-999 (-876 (-517))))
+ (|:| |span| (-876 (-517))) (|:| |body| (-300))))
+ (|:| |labelBranch| (-1024))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| (-300))))
(|:| |commonBranch|
- (-2 (|:| -2989 (-1076)) (|:| |contents| (-583 (-1076)))))
+ (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077)))))
(|:| |printBranch| (-583 (-787)))))
(-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112))))
((*1 *2 *1)
- (-12 (-4 *3 (-1005))
- (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3))))
- (-5 *1 (-985 *3 *4 *2))
- (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3))))))
+ (-12 (-4 *3 (-1006))
+ (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))
+ (-5 *1 (-986 *3 *4 *2))
+ (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1005)) (-5 *1 (-1066 *3 *2)) (-4 *3 (-1005)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1005)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4194 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2))
- (-4 *2 (-963)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1133 *2))
- (-4 *4 (-621 *2 *5 *6)))))
+ (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *3 *2)) (-4 *3 (-1006)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-976)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-155)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-623 (-875 *4))) (-5 *1 (-945 *4))
- (-4 *4 (-963)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3))
- (-4 *3 (-982 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1157 *6)) (-5 *4 (-1157 (-517))) (-5 *5 (-517))
- (-4 *6 (-1005)) (-5 *2 (-1 *6)) (-5 *1 (-935 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-278))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1)))
+ (-4 *1 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-891)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112))))
((*1 *2 *1)
- (-12 (-4 *3 (-1005))
- (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3))))
- (-5 *1 (-985 *3 *4 *2))
- (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3))))))
+ (-12 (-4 *3 (-1006))
+ (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))
+ (-5 *1 (-986 *3 *4 *2))
+ (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1005)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-509))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-752)) (-14 *5 (-1076)) (-5 *2 (-583 (-1130 *5 *4)))
- (-5 *1 (-1019 *4 *5)) (-5 *3 (-1130 *5 *4)))))
+ (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1158 *5)) (-4 *5 (-278))
+ (-4 *5 (-964)) (-5 *2 (-623 *5)) (-5 *1 (-947 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1030 *4 *3 *5))) (-4 *4 (-37 (-377 (-517))))
+ (-4 *4 (-964)) (-4 *3 (-779)) (-5 *1 (-1030 *4 *3 *5))
+ (-4 *5 (-873 *4 (-489 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1107 *4))) (-5 *3 (-1077)) (-5 *1 (-1107 *4))
+ (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
- (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-5 *2 (-107)))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5))))
- (-5 *1 (-1032 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-13 (-278) (-779) (-134)))
- (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5))))
- (-5 *1 (-1032 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-265 (-377 (-875 *4))))
- (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4))))
- (-5 *1 (-1032 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076)))
- (-4 *5 (-13 (-278) (-779) (-134)))
- (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-377 (-875 *4))))
- (-4 *4 (-13 (-278) (-779) (-134)))
- (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1032 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-265 (-377 (-875 *5))))) (-5 *4 (-583 (-1076)))
- (-4 *5 (-13 (-278) (-779) (-134)))
- (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-265 (-377 (-875 *4)))))
- (-4 *4 (-13 (-278) (-779) (-134)))
- (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1032 *4)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-556 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1076)))
- (-4 *2 (-13 (-400 *5) (-27) (-1097)))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1005)))))
+ (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-623 *3))
+ (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))))
+(((*1 *1 *1) (-4 *1 (-509))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517))
(-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156))
(-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *9)) (-4 *9 (-963)) (-4 *5 (-779)) (-4 *6 (-725))
- (-4 *8 (-963)) (-4 *2 (-872 *9 *7 *5))
+ (-12 (-5 *3 (-583 *9)) (-4 *9 (-964)) (-4 *5 (-779)) (-4 *6 (-725))
+ (-4 *8 (-964)) (-4 *2 (-873 *9 *7 *5))
(-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725))
- (-4 *4 (-872 *8 *6 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-1112 *3)) (-4 *3 (-779))
- (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1)))
- (-4 *1 (-982 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1117 *3))
- (-5 *2 (-377 (-517))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-199) (-199) (-199)))
- (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined"))
- (-5 *5 (-1000 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1036 (-199)))
- (-5 *1 (-630))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-199)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-630))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1036 (-199))) (-5 *3 (-1 (-866 (-199)) (-199) (-199)))
- (-5 *4 (-1000 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
- (-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
- (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-872 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1081)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
- ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
- ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
+ (-4 *4 (-873 *8 *6 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5))
+ (-5 *2 (-583 (-2 (|:| -1373 *5) (|:| -3817 *3))))
+ (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6))
+ (-4 *7 (-593 (-377 *6))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1) (-4 *1 (-888))) ((*1 *1 *1) (-5 *1 (-1024))))
(((*1 *2 *1)
(-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
(-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *1 (-949 *2))
- (-4 *2 (-13 (-1005) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1134 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-406)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))
+ (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-703)) (-5 *3 (-867 *4)) (-4 *1 (-1038 *4))
+ (-4 *4 (-964))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-867 (-199))) (-5 *2 (-1163))
+ (-5 *1 (-1160)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-1095 *4))
+ (-4 *4 (-964)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3))
+ (-4 *3 (-1134 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3))
+ (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3))
+ (-4 *3 (-1134 (-377 (-517))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-844))
- (-14 *4 (-844)))))
-(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509))))
- ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *1 (-534 *2)) (-4 *2 (-954 *3))
- (-4 *2 (-333))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2))
- (-4 *2 (-13 (-400 *4) (-920) (-1097)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-998 *2)) (-4 *2 (-13 (-400 *4) (-920) (-1097)))
- (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-881)) (-5 *2 (-1076))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-998 *1)) (-4 *1 (-881)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1157 *5)) (-4 *5 (-724)) (-5 *2 (-107))
- (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+ (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-838 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-388 (-876 *6))) (-5 *5 (-1077)) (-5 *3 (-876 *6))
+ (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076))
- (-14 *4 *2))))
-(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118)))
- ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-4 *1 (-887)))
- ((*1 *1 *1) (-5 *1 (-1023))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1059)) (-5 *1 (-92))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1059)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-690)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
- (-14 *6 (-583 (-1076)))
+ (-12
(-5 *2
- (-583 (-1047 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6)))))
- (-5 *1 (-568 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952))
- (-5 *1 (-681)))))
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (-5 *1 (-240)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-583 *3)) (-5 *5 (-845)) (-4 *3 (-1134 *4))
+ (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437))))
((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1162)) (-5 *1 (-1158))))
+ (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
+ (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-282)) (-5 *1 (-761)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-377 (-517)))
- (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5))
- (-4 *5 (-13 (-779) (-509) (-954 (-517))))
- (-5 *2 (-1072 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))))
+ (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845))
+ (-14 *4 (-845)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
- (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1086 (-845) (-703))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-583 (-1072 *13))) (-5 *3 (-1072 *13))
- (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13))
- (-5 *7 (-583 (-583 (-2 (|:| -2487 (-703)) (|:| |pcoef| *13)))))
- (-5 *8 (-583 (-703))) (-5 *9 (-1157 (-583 (-1072 *10))))
- (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-872 *10 *11 *12))
- (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-107))
- (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1076)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421))
- (-14 *5 (-583 (-1076))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-908 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27))
+ (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077)))
+ (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))))
(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109)))
((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502)))
- ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963))))
+ ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964))))
((*1 *1 *1)
- (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *2 (-952)) (-5 *1 (-684)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-107)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
- (-5 *2 (-952)) (-5 *1 (-689)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-209 *3))
- (-4 *3 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-209 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)) (-4 *2 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1111))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1005))
- (-5 *1 (-670 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1023)) (-5 *2 (-1162)) (-5 *1 (-763)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111))
- (-4 *2 (-1005)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558 (-815 *3))) (-4 *3 (-809 *3))
- (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-558 (-815 *3))) (-4 *2 (-809 *3))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1111)) (-5 *2 (-703)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787)))
- ((*1 *1)
- (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725))
- (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3))))
- ((*1 *1)
- (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33)))))
- ((*1 *1) (-5 *1 (-1079))) ((*1 *1) (-5 *1 (-1080))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421)))
- (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1097) (-400 *3))) (-14 *5 (-1076))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421)))
- (-5 *2 (-772 *4)) (-5 *1 (-1143 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1097) (-400 *3))) (-14 *5 (-1076))
- (-14 *6 *4))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2))
- (-4 *2 (-1005))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1005))
- (-5 *1 (-108 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005))
- (-5 *1 (-108 *4))))
+ (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338))
+ (-4 *6 (-964)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-947 *6))
+ (-5 *3 (-583 (-623 *6)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4)))
- (-5 *1 (-108 *4)) (-4 *4 (-1005))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-963))
- (-5 *1 (-647 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-766 *3)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1005)))))
+ (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-964))
+ (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-947 *4))
+ (-5 *3 (-583 (-623 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5))
+ (-5 *3 (-583 (-623 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-845)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5))
+ (-5 *3 (-583 (-623 *5))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787))
+ (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1006)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-964))
+ (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-787))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1073 *3)) (-4 *3 (-964)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-517))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779))
+ (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112))
+ (-4 *2 (-1006)))))
+(((*1 *2)
+ (-12 (-4 *1 (-319))
+ (-5 *2 (-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1158 (-583 *3))) (-4 *4 (-278))
+ (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517)))))
+ (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-876 *9))))
+ (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517))
+ (-4 *9 (-13 (-278) (-134))) (-4 *12 (-873 *9 *11 *10))
+ (-4 *10 (-13 (-779) (-558 (-1077)))) (-4 *11 (-725))
+ (-5 *2
+ (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12))
+ (|:| |wcond| (-583 (-876 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *9))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *9)))))))))
+ (-5 *1 (-848 *9 *10 *11 *12)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1006)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-706)) (-5 *1 (-109)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1111))
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112))
(-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4193)) (-4 *1 (-114 *3))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3))
+ (-4 *3 (-1112))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4193)) (-4 *1 (-114 *3))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3))
+ (-4 *3 (-1112))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1005))
- (-4 *2 (-1111))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1076)) (-5 *1 (-572))))
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006))
+ (-4 *2 (-1112))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1077)) (-5 *1 (-572))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1124 (-517))) (|has| *1 (-6 -4193)) (-4 *1 (-588 *2))
- (-4 *2 (-1111))))
+ (-12 (-5 *3 (-1125 (-517))) (|has| *1 (-6 -4196)) (-4 *1 (-588 *2))
+ (-4 *2 (-1112))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
+ (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4193)) (-4 *1 (-928 *2))
- (-4 *2 (-1111))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4196)) (-4 *1 (-929 *2))
+ (-4 *2 (-1112))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))
+ (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2))
- (-4 *2 (-1111))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2))
+ (-4 *2 (-1112))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4193)) (-4 *1 (-1145 *3))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3))
+ (-4 *3 (-1112))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2))
- (-4 *2 (-1111)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-963)) (-4 *3 (-1005)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-4 *3 (-1005))
- (-5 *2 (-107)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2))
+ (-4 *2 (-1112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-449 *4 *5))
+ (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077))))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6))
- (-4 *6 (-1133 *5)) (-4 *5 (-13 (-333) (-134) (-954 (-517))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-521 *5 *6)))))
+ (-12 (-5 *3 (-845)) (-5 *4 (-388 *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-964)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))))
(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *2 (-509))
- (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-977 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509))
+ (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1145 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2157 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3))))
+ (-5 *1 (-829 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964))
+ (-5 *1 (-1062 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964))
+ (-14 *4 (-1077)) (-14 *5 *3))))
(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1072 (-1072 *5))))
- (-5 *1 (-1110 *5)) (-5 *3 (-1072 (-1072 *5))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1005)) (-4 *4 (-1111)) (-5 *2 (-107))
- (-5 *1 (-1057 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-779))
- (-4 *4 (-239 *3)) (-4 *5 (-725)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278))
+ (-5 *1 (-161 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 *8))
+ (-5 *4
+ (-583
+ (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-623 *7)))))
+ (-5 *5 (-703)) (-4 *8 (-1134 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-319))
+ (-5 *2
+ (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-623 *7))))
+ (-5 *1 (-463 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199)))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1005)) (-4 *3 (-779))
- (-4 *2 (-1111))))
+ (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) (-4 *3 (-779))
+ (-4 *2 (-1112))))
((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5))))
+ (-12 (-4 *2 (-1112)) (-5 *1 (-797 *2 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1145 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1111))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-57 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-583 *7) *7 (-1072 *7))) (-5 *5 (-1 (-388 *7) *7))
- (-4 *7 (-1133 *6)) (-4 *6 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3781 *3))))
- (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7))
- (-4 *8 (-593 (-377 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-5 *2
- (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3781 (-591 *6 (-377 *6))))))
- (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+ (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4))
+ (-4 *4 (-793 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-4 *1 (-1120 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-1149 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1120 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1149 *2)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-688)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752))
+ (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1005))))
+ (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-517)) (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3))
- (-4 *3 (-963))))
+ (-12 (-5 *4 (-517)) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3))
+ (-4 *3 (-964))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1172 *4 *3))
- (-4 *3 (-963)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
- ((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1076)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-357)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1072 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3))
- (-4 *3 (-333)))))
-(((*1 *1) (-5 *1 (-755))))
+ (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1173 *4 *3))
+ (-4 *3 (-964)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199)))
+ (-5 *5 (-107)) (-5 *2 (-1160)) (-5 *1 (-230)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963))
- (-5 *2 (-107))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-775)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1005)) (-4 *4 (-1005))
- (-4 *6 (-1005)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-199))
- (-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 *4))))
- (|:| |xValues| (-1000 *4)) (|:| |yValues| (-1000 *4))))
- (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 *4)))))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-703))
- (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517))))))
- (-5 *1 (-220 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-684)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1072 *3))
- (-4 *3 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3)))
- (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1072 *3)))
- (-4 *3 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-2 (|:| -2212 *3) (|:| |coeff| *3)))
- (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005)))))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-5 *2 (-107)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-583
- (-2 (|:| -3737 (-703))
- (|:| |eqns|
- (-583
- (-2 (|:| |det| *7) (|:| |rows| (-583 (-517)))
- (|:| |cols| (-583 (-517))))))
- (|:| |fgb| (-583 *7)))))
- (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134)))
- (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-703))
- (-5 *1 (-847 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3))))
- (-5 *1 (-828 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-963)) (-5 *1 (-1129 *4 *2))
- (-4 *2 (-1133 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-107))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-4 *3 (-13 (-27) (-1097) (-400 *6) (-10 -8 (-15 -2271 ($ *7)))))
- (-4 *7 (-777))
- (-4 *8
- (-13 (-1135 *3 *7) (-333) (-1097)
- (-10 -8 (-15 -2060 ($ $)) (-15 -2356 ($ $)))))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-517)) (-5 *1 (-180)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))))
- (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-902 *8))
- (-14 *10 (-1076)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-218 *2)) (-4 *2 (-1111)))))
+ (-3 (-772 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-772 *3) "failed")))
+ "failed"))
+ (-5 *1 (-576 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1060))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-772 (-876 *5)))) (-4 *5 (-421))
+ (-5 *2
+ (-3 (-772 (-377 (-876 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-772 (-377 (-876 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-577 *5)) (-5 *3 (-377 (-876 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5)))
+ (-4 *5 (-421))
+ (-5 *2
+ (-3 (-772 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-772 *3) "failed")))
+ "failed"))
+ (-5 *1 (-577 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-265 (-377 (-876 *6)))) (-5 *5 (-1060))
+ (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3))
+ (-5 *1 (-577 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517)))
+ (-5 *2 (-1158 (-377 (-517)))) (-5 *1 (-1183 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112))
+ (-14 *4 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6))
+ (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-683)))))
(((*1 *2)
- (-12 (-4 *4 (-333)) (-5 *2 (-844)) (-5 *1 (-298 *3 *4))
- (-4 *3 (-299 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-333)) (-5 *2 (-765 (-844))) (-5 *1 (-298 *3 *4))
- (-4 *3 (-299 *4))))
- ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844))))
- ((*1 *2)
- (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-844)) (-4 *1 (-1135 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-724))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1138 *3)) (-4 *3 (-963)))))
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006))
+ (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134))
+ (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))))
+ (-5 *1 (-1058 *4)) (-4 *4 (-1112)) (-5 *3 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1006))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5))
+ (-4 *4 (-1006)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 *6)) (-4 *5 (-1116)) (-4 *6 (-1134 *5))
+ (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *6)))
+ (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1134 *3)))))
+(((*1 *1 *1) (-5 *1 (-976))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-639 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
+ (-5 *1 (-639 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1111)) (-5 *2 (-703))
+ (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703))
(-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-123))
+ (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123))
(-5 *2 (-703))))
((*1 *2)
(-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4))
(-4 *3 (-299 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1005))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1006))))
((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1005))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1006))))
((*1 *2)
- (-12 (-4 *4 (-1005)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4))
+ (-12 (-4 *4 (-1006)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4))
(-4 *3 (-395 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005))
+ (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-703))
+ (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-703))
(-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5))))
((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779))))
- ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-973 *2 *3))
- (-4 *3 (-1133 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-107))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-3 (|:| |%expansion| (-283 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))))
- (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1097) (-400 *5)))
- (-14 *6 (-1076)) (-14 *7 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-703)) (-5 *4 (-1157 *2)) (-4 *5 (-278))
- (-4 *6 (-911 *5)) (-4 *2 (-13 (-379 *6 *7) (-954 *6)))
- (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1133 *6)))))
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1134 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-957)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))))
(((*1 *1) (-5 *1 (-107))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107))
- (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *1 *1 *1) (-5 *1 (-146)))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7))
+ (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112))
+ (-4 *7 (-1112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))
+ ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *1) (-4 *1 (-793 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724))
+ (-4 *4 (-779)))))
+(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703)))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1005) (-33))) (-5 *1 (-1041 *3 *2))
- (-4 *3 (-13 (-1005) (-33))))))
+ (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *3 *2))
+ (-4 *3 (-13 (-1006) (-33))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6))
+ (-4 *6 (-13 (-27) (-400 *5)))
+ (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7)))
+ (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3))
+ (-4 *3 (-312 *6 *7 *8)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1015)) (-5 *3 (-517)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3))
- (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2))
- (-4 *2 (-621 *3 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-954 (-517))) (-4 *3 (-13 (-779) (-509)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-1072 *4)) (-5 *1 (-149 *3 *4))
- (-4 *3 (-150 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-273))))
- ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1072 *3))))
- ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1133 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-777) (-333)))
- (-4 *2 (-1133 *3)))))
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349)))
+ (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163))
+ (-5 *1 (-720)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963))
+ (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-964))
(-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-680)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779))
(-5 *1 (-526 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1072 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8))
- (-4 *7 (-779)) (-4 *8 (-963)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725))
- (-5 *2 (-1072 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3))
- (-5 *1 (-1127 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703)))
- ((*1 *1 *1 *1) (-5 *1 (-787))))
+ (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-972))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-972))))
- ((*1 *1 *1) (-4 *1 (-777)))
- ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)) (-4 *2 (-972))))
- ((*1 *1 *1) (-4 *1 (-972))) ((*1 *1 *1) (-4 *1 (-1040))))
+ (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1113 *2))
+ (-4 *2 (-1006))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-779))
+ (-5 *1 (-1113 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-1130 *4 *2))
+ (-4 *2 (-1134 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-869 *2 *3))
+ (-4 *3 (-1134 *2)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-963))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-964))
(-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963))
+ (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-964))
(-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))))
((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-963)) (-14 *3 (-583 (-1076)))))
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077)))))
((*1 *1 *1)
- (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-963) (-779)))
- (-14 *3 (-583 (-1076)))))
- ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1005))))
+ (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779)))
+ (-14 *3 (-583 (-1077)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006))))
((*1 *1 *1)
- (-12 (-14 *2 (-583 (-1076))) (-4 *3 (-156))
- (-4 *5 (-212 (-3535 *2) (-703)))
+ (-12 (-14 *2 (-583 (-1077))) (-4 *3 (-156))
+ (-4 *5 (-212 (-3573 *2) (-703)))
(-14 *6
- (-1 (-107) (-2 (|:| -2812 *4) (|:| -2121 *5))
- (-2 (|:| -2812 *4) (|:| -2121 *5))))
+ (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5))
+ (-2 (|:| -2803 *4) (|:| -1725 *5))))
(-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779))
- (-4 *7 (-872 *3 *5 (-789 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-779))))
+ (-4 *7 (-873 *3 *5 (-789 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779))))
((*1 *1 *1)
- (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1133 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-963))))
+ (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964))))
((*1 *1 *1)
- (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-963))
+ (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-964))
(-4 *3 (-659))))
- ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963))))
+ ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
(-4 *2 (-779))))
- ((*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-963)) (-4 *3 (-775)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1076))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-583 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2212 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1097) (-27) (-400 *8)))
- (-4 *8 (-13 (-421) (-779) (-134) (-954 *3) (-579 *3)))
- (-5 *3 (-517))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3300 *4) (|:| |sol?| (-107))))
- (-5 *1 (-931 *8 *4)))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-168))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5))
(-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787))))
((*1 *2 *1)
- (-12 (-5 *2 (-1043 *3 *4)) (-5 *1 (-912 *3 *4)) (-14 *3 (-844))
+ (-12 (-5 *2 (-1044 *3 *4)) (-5 *1 (-913 *3 *4)) (-14 *3 (-845))
(-4 *4 (-333))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-963))
- (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5))
+ (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-964))
+ (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5))
(-4 *7 (-212 *3 *5)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421))))
((*1 *1 *1 *1) (-4 *1 (-421)))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1133 (-517)))))
+ (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3))))
((*1 *1 *1 *1) (-5 *1 (-703)))
((*1 *2 *2 *2)
(-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278))
- (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4))))
+ (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5))
- (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5))
+ (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779))
(-4 *6 (-278))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1072 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1072 *7))) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-278)) (-5 *2 (-1072 *7)) (-5 *1 (-839 *4 *5 *6 *7))
- (-4 *7 (-872 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-844)))
+ (-12 (-5 *3 (-583 (-1073 *7))) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-278)) (-5 *2 (-1073 *7)) (-5 *1 (-840 *4 *5 *6 *7))
+ (-4 *7 (-873 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-845)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-889 *3 *2))
- (-4 *2 (-1133 *3))))
+ (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2))
+ (-4 *2 (-1134 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
(-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *2 (-703))
+ (-5 *1 (-1066 *4 *5)) (-14 *4 (-845))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5))
+ (-14 *4 (-845)) (-4 *5 (-964))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964))
+ (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-387 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-1157 *4))) (-4 *4 (-963)) (-5 *2 (-623 *4))
- (-5 *1 (-946 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-844)) (-4 *5 (-278)) (-4 *3 (-1133 *5))
- (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5)))
- (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1005))
- (-5 *1 (-108 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005))
- (-5 *1 (-108 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4))))
- (-5 *1 (-108 *4)) (-4 *4 (-1005)))))
-(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-828 *3)) (-4 *3 (-1005))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333)))
- (-4 *3 (-1133 *4)) (-5 *2 (-517))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-509) (-779) (-954 *2) (-579 *2) (-421)))
- (-5 *2 (-517)) (-5 *1 (-1020 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-772 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-509) (-779) (-954 *2) (-579 *2) (-421)))
- (-5 *2 (-517)) (-5 *1 (-1020 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-1059))
- (-4 *6 (-13 (-509) (-779) (-954 *2) (-579 *2) (-421)))
- (-5 *2 (-517)) (-5 *1 (-1020 *6 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-517))
- (-5 *1 (-1021 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-772 (-377 (-875 *6))))
- (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-517))
- (-5 *1 (-1021 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-1076))
- (-5 *5 (-1059)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1021 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1094 *3)) (-4 *3 (-963)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-872 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
- ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-998 (-772 *3))) (-4 *3 (-13 (-1097) (-881) (-29 *5)))
- (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-193 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-998 (-772 *3))) (-5 *5 (-1059))
- (-4 *3 (-13 (-1097) (-881) (-29 *6)))
- (-4 *6 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-193 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-998 (-772 (-286 *5))))
- (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-194 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-998 (-772 (-286 *6))))
- (-5 *5 (-1059))
- (-4 *6 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-194 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-998 (-772 (-377 (-875 *5))))) (-5 *3 (-377 (-875 *5)))
- (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-194 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-998 (-772 (-377 (-875 *6))))) (-5 *5 (-1059))
- (-5 *3 (-377 (-875 *6)))
- (-4 *6 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
+ (-12
+ (-5 *3
+ (-2 (|:| -3725 (-623 (-377 (-876 *4))))
+ (|:| |vec| (-583 (-377 (-876 *4)))) (|:| -3778 (-703))
+ (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725))
(-5 *2
- (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-194 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3))
- (-4 *3 (-13 (-1097) (-881) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-443 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349))))
- (-5 *5 (-349)) (-5 *6 (-975)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349))))
- (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349))))
- (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1000 (-772 (-349))))
- (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349)))))
- (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349)))))
- (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349)))))
- (-5 *5 (-349)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1000 (-772 (-349)))))
- (-5 *5 (-349)) (-5 *6 (-975)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349))))
- (-5 *5 (-1059)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349))))
- (-5 *5 (-1076)) (-5 *2 (-952)) (-5 *1 (-518))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-134) (-954 (-517)))) (-4 *5 (-1133 *4))
- (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *4))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))
+ (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1134 *5))
+ (-5 *1 (-739 *5 *2 *3 *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *3 (-593 *2)) (-4 *6 (-593 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076)) (-4 *5 (-134))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
- (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-963)) (-4 *2 (-779))
- (-4 *3 (-37 (-377 (-517))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1076)) (-5 *1 (-875 *3)) (-4 *3 (-37 (-377 (-517))))
- (-4 *3 (-963))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-4 *2 (-779))
- (-5 *1 (-1029 *3 *2 *4)) (-4 *4 (-872 *3 (-489 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963))
- (-5 *1 (-1061 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1067 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1073 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1074 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *1 (-1106 *3)) (-4 *3 (-37 (-377 (-517))))
- (-4 *3 (-963))))
- ((*1 *1 *1 *2)
- (-3747
- (-12 (-5 *2 (-1076)) (-4 *1 (-1117 *3)) (-4 *3 (-963))
- (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1097))
- (-4 *3 (-37 (-377 (-517))))))
- (-12 (-5 *2 (-1076)) (-4 *1 (-1117 *3)) (-4 *3 (-963))
- (-12 (|has| *3 (-15 -2097 ((-583 *2) *3)))
- (|has| *3 (-15 -2356 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1117 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1121 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517))))))
- ((*1 *1 *1 *2)
- (-3747
- (-12 (-5 *2 (-1076)) (-4 *1 (-1138 *3)) (-4 *3 (-963))
- (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1097))
- (-4 *3 (-37 (-377 (-517))))))
- (-12 (-5 *2 (-1076)) (-4 *1 (-1138 *3)) (-4 *3 (-963))
- (-12 (|has| *3 (-15 -2097 ((-583 *2) *3)))
- (|has| *3 (-15 -2356 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1138 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1142 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3747
- (-12 (-5 *2 (-1076)) (-4 *1 (-1148 *3)) (-4 *3 (-963))
- (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1097))
- (-4 *3 (-37 (-377 (-517))))))
- (-12 (-5 *2 (-1076)) (-4 *1 (-1148 *3)) (-4 *3 (-963))
- (-12 (|has| *3 (-15 -2097 ((-583 *2) *3)))
- (|has| *3 (-15 -2356 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1148 *2)) (-4 *2 (-963)) (-4 *2 (-37 (-377 (-517))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-963)) (-14 *5 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517))))
- (-4 *2 (-156)))))
+ (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1134 *5))
+ (-5 *1 (-739 *5 *2 *3 *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2))
+ (-4 *6 (-593 (-377 *2))))))
(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703)))
((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-4 *6 (-312 *3 *4 *5))
- (-5 *2
- (-2 (|:| -3186 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -1387 (-377 *6))
- (|:| |special| (-377 *6))))
- (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-819 *3 *4))
- (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333))
- (-5 *2 (-2 (|:| -3288 *3) (|:| -3300 *3))) (-5 *1 (-819 *3 *5))
- (-4 *3 (-1133 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1046 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-703)) (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *5))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-963)) (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
- (-4 *5 (-212 *3 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-963))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-509)) (-5 *1 (-889 *3 *2)) (-4 *2 (-1133 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
(-4 *4 (-779)) (-4 *2 (-509))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *1))))
- (-4 *1 (-982 *4 *5 *6 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5))
+ (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-873 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3))))
+ (-5 *1 (-751 *3)) (-4 *3 (-779))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-556 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077)))
+ (-4 *2 (-13 (-400 *5) (-27) (-1098)))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1006)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-1077)) (|:| |c| (-1178 *3)))))
+ (-5 *1 (-1178 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1180 *3 *4)))))
+ (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6))
+ (|:| -1701 *6)))
+ (-5 *1 (-934 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1112))))
((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964))))
((*1 *2 *1)
- (-12 (-4 *2 (-963)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1076)))))
+ (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077)))))
((*1 *2 *1)
(-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4))
- (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076)))))
- ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-963))))
+ (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964))))
((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1076))) (-4 *5 (-212 (-3535 *3) (-703)))
+ (-12 (-14 *3 (-583 (-1077))) (-4 *5 (-212 (-3573 *3) (-703)))
(-14 *6
- (-1 (-107) (-2 (|:| -2812 *4) (|:| -2121 *5))
- (-2 (|:| -2812 *4) (|:| -2121 *5))))
+ (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5))
+ (-2 (|:| -2803 *4) (|:| -1725 *5))))
(-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779))
- (-4 *7 (-872 *2 *5 (-789 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1005))))
+ (-4 *7 (-873 *2 *5 (-789 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1006))))
((*1 *2 *1)
- (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1133 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-963))))
+ (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964))))
((*1 *2 *1)
- (-12 (-4 *2 (-963)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779))
+ (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779))
(-4 *3 (-659))))
- ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964))))
((*1 *2 *1)
- (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779))
- (-4 *2 (-963))))
+ (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779))
+ (-4 *2 (-964))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
(-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-875 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *1 *1) (-5 *1 (-975))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-875 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *5))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *5))))))))))
- (-5 *4 (-1059)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-872 *5 *7 *6))
- (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-517))
- (-5 *1 (-847 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1160)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-732))
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2 (-952)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3))))
- (-5 *1 (-751 *3)) (-4 *3 (-779))))
- ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1093)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1005))
- (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3))))
- (-5 *2 (-583 (-1076))) (-5 *1 (-985 *3 *4 *5))
- (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-719)) (-5 *2 (-952))
- (-5 *3
- (-2 (|:| |fn| (-286 (-199)))
- (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-719)) (-5 *2 (-952))
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199)))))))
+ (-12 (-4 *4 (-725))
+ (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509))
+ (-5 *2 (-2 (|:| -3505 (-876 *6)) (|:| -2720 (-876 *6))))
+ (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-873 (-377 (-876 *6)) *4 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))
+ (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-509)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964))
+ (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-703)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509))
+ (-5 *1 (-890 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964))
+ (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-338)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-1047 *7 *8 *9 *3 *4)) (-4 *4 (-1015 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1006)) (-5 *2 (-107))
+ (-5 *1 (-1113 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 (-867 *4))) (-4 *1 (-1038 *4)) (-4 *4 (-964))
+ (-5 *2 (-703)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-583 *2)) (-4 *2 (-1005)) (-4 *2 (-1111)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724))))
- ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1005))))
+ (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006))))
((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156))
- (-4 *6 (-212 (-3535 *3) (-703)))
+ (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156))
+ (-4 *6 (-212 (-3573 *3) (-703)))
(-14 *7
- (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *6))
- (-2 (|:| -2812 *5) (|:| -2121 *6))))
+ (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6))
+ (-2 (|:| -2803 *5) (|:| -1725 *6))))
(-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-779)) (-4 *8 (-872 *4 *6 (-789 *3)))))
+ (-4 *5 (-779)) (-4 *8 (-873 *4 *6 (-789 *3)))))
((*1 *2 *1)
(-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2))
- (-4 *3 (-963))))
+ (-4 *3 (-964))))
((*1 *1 *1)
- (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-724))
+ (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724))
(-4 *4 (-779)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
(-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-963)) (-4 *2 (-1005)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-964)) (-4 *2 (-1006)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421))))
((*1 *1 *1 *1) (-4 *1 (-421))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -4068 (-583 *3)) (|:| -2998 (-583 *3))))
- (-5 *1 (-1112 *3)) (-4 *3 (-1005)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5))
+ (-14 *3 (-517)) (-14 *4 (-703)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1134 *4)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
- (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724))
- (-4 *2 (-509))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-509)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963))
- (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-703)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-509))))
- ((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-509))
- (-5 *1 (-889 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-963))
- (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-688))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358))
- (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-688)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-345 *4 *2))
- (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-899 *2)) (-4 *2 (-963))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-963)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4))
+ (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333))
+ (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5)
+ (|:| |f4| (-583 *5))))
+ (-5 *1 (-1084 *6)) (-5 *4 (-583 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1006))
+ (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3))))
+ (-5 *2 (-583 (-1077))) (-5 *1 (-986 *3 *4 *5))
+ (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *3))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3))
+ (-4 *3 (-1112))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1105 *4 *5 *3 *2)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-977 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1106 *4 *5 *3 *2)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-978 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1076)))))
+ (-12 (-5 *3 (-703)) (-5 *1 (-1110 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))))
+(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1077)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107))
- (-5 *1 (-907 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7))
- (-4 *4 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111))
- (-4 *7 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963))))
+ (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517)))
+ (-5 *1 (-166)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964))))
((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333))
- (-5 *2 (-703)) (-5 *1 (-868 *5 *6)) (-4 *6 (-1133 *5)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-687)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *2)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-724)) (-4 *3 (-156)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-623 *4)) (-4 *4 (-963)) (-5 *1 (-1043 *3 *4))
- (-14 *3 (-703)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3))
- (-4 *3 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-952)) (-5 *1 (-682))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-358)) (-5 *2 (-952)) (-5 *1 (-682)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-349)) (-5 *1 (-975)))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333))
+ (-4 *7 (-1134 *6))
+ (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-685)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116))
+ (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5)))
+ (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-873 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1)))
+ (-4 *1 (-1134 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
+ (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724))
(-5 *2 (-107))))
((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-300)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1057 *4))) (-5 *1 (-257 *4 *5))
- (-5 *3 (-1057 *4)) (-4 *5 (-1148 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1006))
+ (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4))))
+ (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-845)) (-4 *5 (-1006))
+ (-4 *6 (-13 (-964) (-810 *5) (-779) (-558 (-816 *5))))
+ (-4 *2 (-13 (-400 *6) (-810 *5) (-558 (-816 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2))
- (-4 *2 (-1148 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3)))
- (-4 *5 (-1133 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2))
- (-4 *2 (-1148 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3)))
- (-5 *1 (-499 *4 *2)) (-4 *2 (-1148 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134)))
- (-5 *1 (-1053 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-805 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1005)) (-5 *1 (-827 *3)))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1112))
+ (-4 *5 (-343 *4)) (-4 *2 (-343 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-964))
+ (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7)))
+ (-4 *7 (-1134 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *6 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-107)) (-5 *1 (-753)))))
(((*1 *1 *1) (-4 *1 (-217)))
((*1 *1 *1)
(-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1133 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-3747 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1111)))
- (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1111)))))
+ (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112)))
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112)))))
((*1 *1 *1) (-4 *1 (-442)))
- ((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-844)) (-5 *1 (-718)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-725)) (-4 *5 (-963)) (-4 *6 (-872 *5 *4 *2))
- (-4 *2 (-779)) (-5 *1 (-873 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-333)
- (-10 -8 (-15 -2271 ($ *6)) (-15 -3826 (*6 $))
- (-15 -2098 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509))
- (-5 *2 (-1076)) (-5 *1 (-959 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *2)
+ (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-313 *3 *4)) (-14 *3 (-845))
+ (-14 *4 (-845))))
+ ((*1 *2)
+ (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-1073 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-845)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-4 *6 (-13 (-509) (-779)))
+ (-12 (-5 *4 (-845)) (-4 *6 (-13 (-509) (-779)))
(-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6))
- (-4 *5 (-963))))
+ (-4 *5 (-964))))
((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509))))
((*1 *2 *3)
- (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1097)))
- (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
+ (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1098)))
+ (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
(-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-534 (-377 (-875 *4))))
- (-4 *4 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
+ (-12 (-5 *3 (-534 (-377 (-876 *4))))
+ (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
(-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1001 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1050 *3))))
+ (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1051 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-1001 *4 *2)) (-4 *4 (-777))
- (-4 *2 (-1050 *4))))
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777))
+ (-4 *2 (-1051 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097)))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1170 (-1076) *3)) (-5 *1 (-1177 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-1171 (-1077) *3)) (-5 *1 (-1178 *3)) (-4 *3 (-964))))
((*1 *2 *1)
- (-12 (-5 *2 (-1170 *3 *4)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-963)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
+ (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1180 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-964)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-1134 (-153 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077))
+ (-14 *4 *2))))
(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))
- ((*1 *1 *1 *1) (-5 *1 (-1023))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1043 *4 *2)) (-14 *4 (-844))
- (-4 *2 (-13 (-963) (-10 -7 (-6 (-4194 "*"))))) (-5 *1 (-825 *4 *2)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1024))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
- (-5 *2 (-1072 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1162)) (-5 *1 (-790 *4 *5 *6 *7))
- (-4 *4 (-963)) (-14 *5 (-583 (-1076))) (-14 *6 (-583 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-963)) (-4 *5 (-779)) (-4 *6 (-725))
- (-14 *8 (-583 *5)) (-5 *2 (-1162))
- (-5 *1 (-1167 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-872 *4 *6 *5))
- (-14 *9 (-583 *3)) (-14 *10 *3))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-992 *3)) (-4 *3 (-124)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-4 *1 (-138 *3))))
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-517)))))
+ (-5 *1 (-331 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703)))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1725 (-517)))))
+ (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703)))))
+ (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-779)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1016)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-993 *3)) (-4 *3 (-124)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-138 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-583 (-2 (|:| -2121 (-703)) (|:| -3569 *4) (|:| |num| *4))))
- (-4 *4 (-1133 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))))
+ (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4))))
+ (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-107)) (-5 *1 (-407))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-107)) (-5 *1 (-407))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-5 *3 (-583 (-1076))) (-5 *4 (-107)) (-5 *1 (-407))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-5 *3 (-583 (-1077))) (-5 *4 (-107)) (-5 *1 (-407))))
((*1 *2 *1)
- (-12 (-5 *2 (-1057 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1058 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1112))))
((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4))
@@ -10369,183 +10338,197 @@
(-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4))
(-4 *4 (-156))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1005))
+ (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1006))
(-5 *1 (-611 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1005))
+ (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1006))
(-14 *4
- (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *3))
- (-2 (|:| -2812 *2) (|:| -2121 *3))))))
+ (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3))
+ (-2 (|:| -2803 *2) (|:| -1725 *3))))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 *4))))
- (-4 *4 (-1005)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4))))
+ (-4 *4 (-1006)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1005) (-33)))
- (-5 *2 (-583 (-1041 *3 *5))) (-5 *1 (-1041 *3 *5))
- (-4 *3 (-13 (-1005) (-33)))))
+ (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1006) (-33)))
+ (-5 *2 (-583 (-1042 *3 *5))) (-5 *1 (-1042 *3 *5))
+ (-4 *3 (-13 (-1006) (-33)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3834 *5))))
- (-4 *4 (-13 (-1005) (-33))) (-4 *5 (-13 (-1005) (-33)))
- (-5 *2 (-583 (-1041 *4 *5))) (-5 *1 (-1041 *4 *5))))
+ (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3864 *5))))
+ (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33)))
+ (-5 *2 (-583 (-1042 *4 *5))) (-5 *1 (-1042 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3834 *4)))
- (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33)))
- (-5 *1 (-1041 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3864 *4)))
+ (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33)))
+ (-5 *1 (-1042 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33)))))
+ (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33)))))
+ (-12 (-5 *4 (-107)) (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1005) (-33)))
- (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1005) (-33)))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1006) (-33)))
+ (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1041 *2 *3))) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33))) (-5 *1 (-1042 *2 *3))))
+ (-12 (-5 *4 (-583 (-1042 *2 *3))) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33))) (-5 *1 (-1043 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1042 *2 *3))) (-5 *1 (-1042 *2 *3))
- (-4 *2 (-13 (-1005) (-33))) (-4 *3 (-13 (-1005) (-33)))))
+ (-12 (-5 *4 (-583 (-1043 *2 *3))) (-5 *1 (-1043 *2 *3))
+ (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4))))
+ (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1066 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-952)) (-5 *1 (-681)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162))
- (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162))
- (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-887))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-866 *4)) (-4 *4 (-963)) (-5 *1 (-1065 *3 *4))
- (-14 *3 (-844)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))))
- (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1014 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1072 *1))) (-5 *3 (-1072 *1)))))
+ (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-107)) (-5 *1 (-1081))))
+ (-12 (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-107)) (-5 *1 (-1082))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1076))) (-5 *2 (-107)) (-5 *1 (-1081))))
+ (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-107)) (-5 *1 (-1082))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1081))))
+ (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1082))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1081)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-1023)) (-5 *2 (-107)) (-5 *1 (-753)))))
+ (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1082)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077)))
+ (-4 *5 (-421))
+ (-5 *2
+ (-2 (|:| |gblist| (-583 (-221 *4 *5)))
+ (|:| |gvlist| (-583 (-517)))))
+ (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *1 *1 *1) (-4 *1 (-888))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-851)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1072 *6)) (-1072 *6)))
- (-4 *6 (-333))
+ (-12 (-5 *4 (-107))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7)))))
+ (-4 *7 (-777))
+ (-4 *8
+ (-13 (-1136 *3 *7) (-333) (-1098)
+ (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))))
+ (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8))
+ (-14 *10 (-1077)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964))
+ (-5 *3 (-517)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
(-583
- (-2 (|:| |outval| *7) (|:| |outmult| (-517))
- (|:| |outvect| (-583 (-623 *7))))))
- (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779))
+ (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-222)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-779))
+ (-4 *3 (-1006)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-685)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1134 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-333)) (-14 *6 (-1157 (-623 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-844)) (-14 *5 (-583 (-1076)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1028 (-517) (-556 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-14 *6 (-1158 (-623 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-845)) (-14 *5 (-583 (-1077)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1112))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'JINT 'X 'ELAM) (-2288) (-632))))
- (-5 *1 (-59 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'JINT 'X 'ELAM) (-2279) (-632))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 'XC) (-632))))
- (-5 *1 (-61 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'XC) (-632))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-2288 'X) (-2288) (-632))) (-5 *1 (-62 *3))
- (-14 *3 (-1076))))
+ (-12 (-5 *2 (-309 (-2279 'X) (-2279) (-632))) (-5 *1 (-62 *3))
+ (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-623 (-309 (-2288) (-2288 'X 'HESS) (-632))))
- (-5 *1 (-63 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-623 (-309 (-2279) (-2279 'X 'HESS) (-632))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-2288) (-2288 'XC) (-632))) (-5 *1 (-64 *3))
- (-14 *3 (-1076))))
+ (-12 (-5 *2 (-309 (-2279) (-2279 'XC) (-632))) (-5 *1 (-64 *3))
+ (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'X) (-2288 '-2011) (-632))))
- (-5 *1 (-69 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'X) (-2279 '-1318) (-632))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 'X) (-632))))
- (-5 *1 (-72 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'X) (-632))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'X 'EPS) (-2288 '-2011) (-632))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1076)) (-14 *4 (-1076))
- (-14 *5 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'X 'EPS) (-2279 '-1318) (-632))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077))
+ (-14 *5 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'EPS) (-2288 'YA 'YB) (-632))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1076)) (-14 *4 (-1076))
- (-14 *5 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'EPS) (-2279 'YA 'YB) (-632))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077))
+ (-14 *5 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-2288) (-2288 'X) (-632))) (-5 *1 (-75 *3))
- (-14 *3 (-1076))))
+ (-12 (-5 *2 (-309 (-2279) (-2279 'X) (-632))) (-5 *1 (-75 *3))
+ (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-2288) (-2288 'X) (-632))) (-5 *1 (-76 *3))
- (-14 *3 (-1076))))
+ (-12 (-5 *2 (-309 (-2279) (-2279 'X) (-632))) (-5 *1 (-76 *3))
+ (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 'XC) (-632))))
- (-5 *1 (-77 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'XC) (-632))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 'X) (-632))))
- (-5 *1 (-78 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'X) (-632))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288) (-2288 'X) (-632))))
- (-5 *1 (-79 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'X) (-632))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'X '-2011) (-2288) (-632))))
- (-5 *1 (-80 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'X '-1318) (-2279) (-632))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-623 (-309 (-2288 'X '-2011) (-2288) (-632))))
- (-5 *1 (-81 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-623 (-309 (-2279 'X '-1318) (-2279) (-632))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-623 (-309 (-2288 'X) (-2288) (-632)))) (-5 *1 (-82 *3))
- (-14 *3 (-1076))))
+ (-12 (-5 *2 (-623 (-309 (-2279 'X) (-2279) (-632)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'X) (-2288) (-632))))
- (-5 *1 (-83 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'X) (-2279) (-632))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-309 (-2288 'X) (-2288 '-2011) (-632))))
- (-5 *1 (-84 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-1158 (-309 (-2279 'X) (-2279 '-1318) (-632))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-623 (-309 (-2288 'XL 'XR 'ELAM) (-2288) (-632))))
- (-5 *1 (-85 *3)) (-14 *3 (-1076))))
+ (-12 (-5 *2 (-623 (-309 (-2279 'XL 'XR 'ELAM) (-2279) (-632))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1077))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-2288 'X) (-2288 '-2011) (-632))) (-5 *1 (-87 *3))
- (-14 *3 (-1076))))
- ((*1 *2 *1) (-12 (-5 *2 (-922 2)) (-5 *1 (-103))))
+ (-12 (-5 *2 (-309 (-2279 'X) (-2279 '-1318) (-632))) (-5 *1 (-87 *3))
+ (-14 *3 (-1077))))
+ ((*1 *2 *1) (-12 (-5 *2 (-923 2)) (-5 *1 (-103))))
((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
((*1 *1 *2)
(-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5))
@@ -10554,45 +10537,45 @@
(-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5))
(-14 *3 (-517)) (-14 *4 (-703))))
((*1 *1 *2)
- (-12 (-5 *2 (-1043 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156))
+ (-12 (-5 *2 (-1044 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156))
(-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))))
((*1 *1 *2)
(-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156))
(-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))))
((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-623 *4))) (-4 *4 (-156))
- (-5 *2 (-1157 (-623 (-377 (-875 *4))))) (-5 *1 (-165 *4))))
+ (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156))
+ (-5 *2 (-1158 (-623 (-377 (-876 *4))))) (-5 *1 (-165 *4))))
((*1 *1 *2)
(-12 (-5 *2 (-583 *3))
(-4 *3
(-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $))
- (-15 -2691 ((-1162) $)))))
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $))
+ (-15 -3012 ((-1163) $)))))
(-5 *1 (-189 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-922 10)) (-5 *1 (-192))))
+ ((*1 *2 *1) (-12 (-5 *2 (-923 10)) (-5 *1 (-192))))
((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))
((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779))))
((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-998 (-286 *4)))
- (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-998 (-349)))
+ (-12 (-5 *3 (-999 (-286 *4)))
+ (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-999 (-349)))
(-5 *1 (-231 *4))))
((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248))))
((*1 *2 *1)
- (-12 (-4 *2 (-1133 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1134 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7))
(-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1142 *4 *5 *6)) (-4 *4 (-13 (-27) (-1097) (-400 *3)))
- (-14 *5 (-1076)) (-14 *6 *4)
- (-4 *3 (-13 (-779) (-954 (-517)) (-579 (-517)) (-421)))
+ (-12 (-5 *2 (-1143 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3)))
+ (-14 *5 (-1077)) (-14 *6 *4)
+ (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)))
(-5 *1 (-283 *3 *4 *5 *6))))
((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300))))
((*1 *2 *1)
(-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5))
- (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-1076))) (-4 *5 (-357))))
+ (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
((*1 *2 *3)
(-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2))
(-4 *3 (-299 *4))))
@@ -10601,96 +10584,96 @@
(-4 *3 (-299 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
- (-5 *2 (-1179 *3 *4))))
+ (-5 *2 (-1180 *3 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
- (-5 *2 (-1170 *3 *4))))
+ (-5 *2 (-1171 *3 *4))))
((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))
(-4 *1 (-353))))
((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353))))
((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))
(-4 *1 (-354))))
((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354))))
- ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-359))))
- ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1005))))
+ ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359))))
+ ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1006))))
((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))
(-4 *1 (-366))))
((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366))))
((*1 *1 *2)
(-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))
- (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076))
- (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))
+ (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077))
+ (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6))
- (-14 *3 (-1076)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
- (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1076))
- (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2044 "void")))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1080))))
+ (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077))
+ (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void")))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))
((*1 *1 *2)
(-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21)))
(-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))))
@@ -10698,79 +10681,79 @@
(-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517)))))
(-4 *3 (-13 (-779) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-377 (-875 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779))
+ (-12 (-5 *2 (-377 (-876 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779))
(-4 *1 (-400 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779))
+ (-12 (-5 *2 (-876 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779))
(-4 *1 (-400 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779))
(-4 *1 (-400 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1028 *3 (-556 *1))) (-4 *3 (-963)) (-4 *3 (-779))
+ (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-964)) (-4 *3 (-779))
(-4 *1 (-400 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1009)) (-5 *1 (-404))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-404))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-404))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-404))))
((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407))))
((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))
(-4 *1 (-409))))
((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157 (-632))) (-4 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158 (-632))) (-4 *1 (-409))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1080)) (|:| -2516 (-583 (-300)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))
(-4 *1 (-410))))
((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410))))
((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 (-377 (-875 *3)))) (-4 *3 (-156))
- (-14 *6 (-1157 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-14 *4 (-844)) (-14 *5 (-583 (-1076)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437))))
+ (-12 (-5 *2 (-1158 (-377 (-876 *3)))) (-4 *3 (-156))
+ (-14 *6 (-1158 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-14 *4 (-845)) (-14 *5 (-583 (-1077)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437))))
((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437))))
((*1 *1 *2)
- (-12 (-5 *2 (-1142 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1076))
+ (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077))
(-14 *5 *3) (-5 *1 (-443 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-443 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-922 16)) (-5 *1 (-454))))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-923 16)) (-5 *1 (-454))))
((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))
- ((*1 *1 *2) (-12 (-5 *2 (-1028 (-517) (-556 (-460)))) (-5 *1 (-460))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-467))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-467))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333))
(-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6))))
((*1 *1 *2)
(-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-963))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-964))))
((*1 *2 *1)
- (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))
((*1 *2 *1)
- (-12 (-5 *2 (-1170 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))
((*1 *1 *2)
(-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3))))
((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
((*1 *2 *1)
- (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-5 *1 (-611 *3))
- (-4 *3 (-1005))))
+ (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-5 *1 (-611 *3))
+ (-4 *3 (-1006))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-4 *3 (-1005))
+ (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-4 *3 (-1006))
(-5 *1 (-611 *3))))
((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1005))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3))
+ (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3))
(-4 *2 (-343 *3))))
((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627))))
((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627))))
@@ -10781,26 +10764,26 @@
((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632))))
((*1 *2 *3)
(-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634))))
- ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1005))))
+ ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1006))))
((*1 *2 *1)
(-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2812 *3) (|:| -2121 *4)))
- (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1005))
+ (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4)))
+ (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1006))
(-14 *5 (-1 (-107) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -2812 *3) (|:| -2121 *4))) (-4 *3 (-779))
- (-4 *4 (-1005)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) (-4 *3 (-779))
+ (-4 *4 (-1006)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2))))
((*1 *2 *1)
(-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -1582 *3) (|:| -2425 *4)))) (-4 *3 (-963))
+ (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) (-4 *3 (-964))
(-4 *4 (-659)) (-5 *1 (-668 *3 *4))))
((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696))))
((*1 *1 *2)
@@ -10808,90 +10791,90 @@
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(|:| |mdnia|
(-2 (|:| |fn| (-286 (-199)))
- (|:| -2758 (-583 (-1000 (-772 (-199)))))
+ (|:| -3177 (-583 (-1001 (-772 (-199)))))
(|:| |abserr| (-199)) (|:| |relerr| (-199))))))
(-5 *1 (-701))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-286 (-199)))
- (|:| -2758 (-583 (-1000 (-772 (-199))))) (|:| |abserr| (-199))
+ (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(-5 *1 (-701))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(-5 *1 (-701))))
((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701))))
- ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1112))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
(|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
(|:| |abserr| (-199)) (|:| |relerr| (-199))))
(-5 *1 (-740))))
((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740))))
((*1 *2 *1)
- (-12 (-4 *2 (-823 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1005))
+ (-12 (-4 *2 (-824 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1006))
(-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1005)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4))
- (-4 *2 (-823 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-756))))
+ (-12 (-4 *3 (-1006)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4))
+ (-4 *2 (-824 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-756))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
(|:| |lb| (-583 (-772 (-199))))
(|:| |cf| (-583 (-286 (-199))))
(|:| |ub| (-583 (-772 (-199))))))
(|:| |lsa|
(-2 (|:| |lfn| (-583 (-286 (-199))))
- (|:| -2587 (-583 (-199)))))))
+ (|:| -2578 (-583 (-199)))))))
(-5 *1 (-770))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))
(-5 *1 (-770))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
(|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
(|:| |ub| (-583 (-772 (-199))))))
(-5 *1 (-770))))
((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *3)) (-14 *3 (-1076)) (-5 *1 (-784 *3 *4 *5 *6))
- (-4 *4 (-963)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
+ (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-784 *3 *4 *5 *6))
+ (-4 *4 (-964)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786))))
((*1 *1 *2)
- (-12 (-5 *2 (-875 *3)) (-4 *3 (-963)) (-5 *1 (-790 *3 *4 *5 *6))
- (-14 *4 (-583 (-1076))) (-14 *5 (-583 (-703))) (-14 *6 (-703))))
+ (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-790 *3 *4 *5 *6))
+ (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703))))
((*1 *2 *1)
- (-12 (-5 *2 (-875 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-963))
- (-14 *4 (-583 (-1076))) (-14 *5 (-583 (-703))) (-14 *6 (-703))))
- ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))
+ (-12 (-5 *2 (-876 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-964))
+ (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))
((*1 *2 *3)
- (-12 (-5 *3 (-875 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798))))
+ (-12 (-5 *3 (-876 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-799))))
((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 (-47)))) (-5 *2 (-286 (-517)))
- (-5 *1 (-798))))
- ((*1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
+ (-12 (-5 *3 (-377 (-876 (-47)))) (-5 *2 (-286 (-517)))
+ (-5 *1 (-799))))
+ ((*1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779))))
((*1 *1 *2)
(-12
(-5 *2
@@ -10901,502 +10884,392 @@
(-2 (|:| |start| (-199)) (|:| |finish| (-199))
(|:| |grid| (-703)) (|:| |boundaryType| (-517))
(|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
- (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060))
(|:| |tol| (-199))))
- (-5 *1 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-821))))
+ (-5 *1 (-822))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-822))))
((*1 *2 *1)
- (-12 (-5 *2 (-1098 *3)) (-5 *1 (-824 *3)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-1099 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1006))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1005)) (-5 *1 (-827 *3))))
+ (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-828 *3))))
+ (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-828 *3))))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-837 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278))))
+ (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-838 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278))))
((*1 *2 *3)
- (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-842 *4))
+ (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-843 *4))
(-4 *4 (-13 (-779) (-509)))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-890))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891))))
((*1 *2 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517))))
- ((*1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *1 (-950 *3)) (-4 *3 (-1111))))
- ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-950 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-951 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-951 *2)) (-4 *2 (-1112))))
((*1 *1 *2)
(-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5))
+ (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5))
(-14 *6 (-583 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112))))
((*1 *2 *3)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-959 *3)) (-4 *3 (-509))))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-963))))
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-960 *3)) (-4 *3 (-509))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-964))))
((*1 *2 *1)
- (-12 (-5 *2 (-623 *5)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-703))
- (-14 *4 (-703)) (-4 *5 (-963))))
+ (-12 (-5 *2 (-623 *5)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-703))
+ (-14 *4 (-703)) (-4 *5 (-964))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *4 (-779)) (-5 *1 (-1029 *3 *4 *2))
- (-4 *2 (-872 *3 (-489 *4) *4))))
+ (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2))
+ (-4 *2 (-873 *3 (-489 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *2 (-779)) (-5 *1 (-1029 *3 *2 *4))
- (-4 *4 (-872 *3 (-489 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-787))))
+ (-12 (-4 *3 (-964)) (-4 *2 (-779)) (-5 *1 (-1030 *3 *2 *4))
+ (-4 *4 (-873 *3 (-489 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-787))))
((*1 *2 *1)
- (-12 (-5 *2 (-623 *4)) (-5 *1 (-1043 *3 *4)) (-14 *3 (-703))
- (-4 *4 (-963))))
- ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1045))))
+ (-12 (-5 *2 (-623 *4)) (-5 *1 (-1044 *3 *4)) (-14 *3 (-703))
+ (-4 *4 (-964))))
+ ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1046))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1057 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1067 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1073 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1074 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1130 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1076))
- (-14 *5 *3) (-5 *1 (-1074 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1075))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1076))))
- ((*1 *2 *1) (-12 (-5 *2 (-1085 (-1076) (-407))) (-5 *1 (-1080))))
- ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1081))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1081))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1081))))
- ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1081))))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1084 *3)) (-4 *3 (-1005))))
- ((*1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *1 (-1091 *3)) (-4 *3 (-1005))))
- ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1092))))
- ((*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-963)) (-5 *1 (-1106 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1106 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077))
+ (-14 *5 *3) (-5 *1 (-1075 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1076))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1077))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1086 (-1077) (-407))) (-5 *1 (-1081))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082))))
+ ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1082))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1085 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *1 (-1092 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1093))))
+ ((*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-1107 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-964))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 *3)) (-4 *3 (-1111)) (-5 *1 (-1109 *3))))
+ (-12 (-5 *2 (-881 *3)) (-4 *3 (-1112)) (-5 *1 (-1110 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *1 (-1119 *3 *2)) (-4 *2 (-1148 *3))))
+ (-12 (-4 *3 (-964)) (-4 *1 (-1120 *3 *2)) (-4 *2 (-1149 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1121 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1111)) (-5 *1 (-1124 *3))))
+ (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1112)) (-5 *1 (-1125 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *3)) (-14 *3 (-1076)) (-5 *1 (-1130 *3 *4))
- (-4 *4 (-963))))
+ (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-1131 *3 *4))
+ (-4 *4 (-964))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *1 (-1140 *3 *2)) (-4 *2 (-1117 *3))))
+ (-12 (-4 *3 (-964)) (-4 *1 (-1141 *3 *2)) (-4 *2 (-1118 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1142 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1130 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1076))
- (-14 *5 *3) (-5 *1 (-1149 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1153 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158))))
- ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1158)) (-5 *1 (-1161))))
- ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1162))))
+ (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077))
+ (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159))))
+ ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1159)) (-5 *1 (-1162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1163))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4))
- (-5 *1 (-1167 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-872 *3 *5 *4))
+ (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4))
+ (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-873 *3 *5 *4))
(-14 *7 (-583 (-703))) (-14 *8 (-703))))
((*1 *2 *1)
- (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-1167 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-963)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4))
+ (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4))
(-14 *7 (-583 (-703))) (-14 *8 (-703))))
- ((*1 *1 *2) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-963))))
- ((*1 *1 *2) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-964))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))
((*1 *2 *1)
- (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779))
+ (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779))
(-4 *4 (-156))))
((*1 *2 *1)
- (-12 (-5 *2 (-1170 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779))
+ (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779))
(-4 *4 (-156))))
((*1 *1 *2)
(-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
- (-5 *1 (-1175 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1178 *3 *2)) (-4 *3 (-963)) (-4 *2 (-775)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963))
- (-4 *6 (-1133 *5)) (-5 *2 (-1072 (-1072 *7)))
- (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1133 *6)))))
+ (-5 *1 (-1176 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)) (-4 *2 (-775)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1057 *3))) (-5 *1 (-1057 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-954 *2))))
+ (-12 (-5 *2 (-1171 (-1077) *3)) (-4 *3 (-964)) (-5 *1 (-1178 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *1 (-1180 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703))
+ (-5 *1 (-869 *4 *5)) (-4 *5 (-1134 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *2 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-684)))))
+ (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1157 (-583 (-517)))) (-5 *1 (-448))))
+ (-12 (-5 *3 (-703)) (-5 *2 (-1158 (-583 (-517)))) (-5 *1 (-448))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-547 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1111)) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10))
- (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8))
- (-4 *10 (-1014 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
- (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-960 *5 *6)))
- (-5 *1 (-568 *5 *6))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-788))))
+ ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-788))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
- (-14 *6 (-583 (-1076)))
- (-5 *2
- (-583 (-1047 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6)))))
- (-5 *1 (-568 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
- (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-960 *5 *6)))
- (-5 *1 (-960 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-1105 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-788))))
- ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-788))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-787)) (-5 *2 (-1162)) (-5 *1 (-788))))
+ (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-788))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-1057 *4))
- (-4 *4 (-1005)) (-4 *4 (-1111)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-517))) (-5 *4 (-828 (-517)))
- (-5 *2 (-623 (-517))) (-5 *1 (-538))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517))))
- (-5 *1 (-538))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-828 (-517))))
- (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333))
- (-4 *7 (-1133 *6))
- (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
- (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
- (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7))
- (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-963)) (-5 *1 (-94 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-94 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-94 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-827 *4))
- (-4 *4 (-1005))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
- (-4 *4 (-343 *2)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4))
- (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
+ (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1058 *4))
+ (-4 *4 (-1006)) (-4 *4 (-1112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-942 *3))
+ (-4 *3 (-13 (-777) (-333) (-940)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1134 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333)))
+ (-4 *3 (-1134 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2))
+ (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2))
+ (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-884 *3)) (-4 *3 (-502)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *3))
+ (|:| |logand| (-1073 *3)))))
+ (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964))
+ (-5 *1 (-1062 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3121 *4) (|:| -3077 (-517)))))
- (-4 *4 (-1005)) (-5 *2 (-1 *4)) (-5 *1 (-935 *4)))))
+ (-12 (-5 *2 (-2 (|:| -3374 (-517)) (|:| -2283 (-583 *3))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-404))
+ (-5 *2
+ (-583
+ (-3 (|:| -2981 (-1077))
+ (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))))
+ (-5 *1 (-1081)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-876 *4)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-961 *4 *5))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *2 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517))))
- (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517))))
- (-5 *4 (-286 (-349))) (-5 *1 (-300))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517))))
- (-5 *4 (-286 (-517))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-153 (-349)))))
- (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-349)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-517)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-153 (-349)))))
- (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-349))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-517))) (-5 *1 (-300))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517))))
- (-5 *4 (-286 (-627))) (-5 *1 (-300))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517))))
- (-5 *4 (-286 (-632))) (-5 *1 (-300))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-875 (-517))))
- (-5 *4 (-286 (-634))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-627)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-632)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-286 (-634)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-627))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-632))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-1157 (-634))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-627))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-632))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-623 (-634))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-627))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-632))) (-5 *1 (-300))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-286 (-634))) (-5 *1 (-300))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-1059)) (-5 *1 (-300))))
- ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
+ (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-509) (-779) (-954 (-517))))
- (-4 *5 (-400 *4)) (-5 *2 (-388 (-1072 (-377 (-517)))))
- (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779))
- (-4 *5 (-725)) (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))))
+ (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4))
+ (-5 *1 (-487 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1140 *3 *2)) (-4 *3 (-963))
- (-4 *2 (-1117 *3)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1052))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964))
+ (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779)))
+ (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-817 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163))
+ (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-963)))))
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-953)) (-5 *1 (-684)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1134 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077))
(-5 *2
- (-3 (-772 *3)
- (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-772 *3) "failed")))
- "failed"))
- (-5 *1 (-576 *5 *3))))
+ (-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199)))
+ (|:| |singularities| (-1058 (-199)))))
+ (-5 *1 (-100)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-333)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3)))
+ (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1134 *2))
+ (-4 *5 (-1134 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6))
+ (-4 *6 (-312 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-333)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3)))
+ (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))
+ (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *1 (-305 *3 *4 *5 *6)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1015 *5 *6 *7 *8))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-539 *5 *6 *7 *8 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5)))
+ (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-333))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-419 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1059))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 (-772 (-875 *5)))) (-4 *5 (-421))
- (-5 *2
- (-3 (-772 (-377 (-875 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-772 (-377 (-875 *5))) "failed")))
- "failed"))
- (-5 *1 (-577 *5)) (-5 *3 (-377 (-875 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5)))
- (-4 *5 (-421))
+ (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333))
(-5 *2
- (-3 (-772 *3)
- (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-772 *3) "failed")))
- "failed"))
- (-5 *1 (-577 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-265 (-377 (-875 *6)))) (-5 *5 (-1059))
- (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3))
- (-5 *1 (-577 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-692)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421))
- (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-977 *4 *5 *6))
- (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-896 *4 *5 *6 *7)))))
+ (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6))))
+ (-5 *1 (-898 *6)) (-5 *3 (-623 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-873 *7 *5 *6))
+ (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-278)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
- (-4 *4 (-343 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-943 (-772 (-517))))
- (-5 *3 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-963))
- (-5 *1 (-542 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1105 *5 *6 *7 *8)) (-4 *5 (-509))
- (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-977 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-349)) (-5 *1 (-975)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1076))) (-5 *3 (-1076)) (-5 *1 (-493))))
+ (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1077)) (-5 *1 (-493))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
+ (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
+ (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1076)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
+ (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-583 (-1076))) (-5 *2 (-1076)) (-5 *1 (-638 *3))
+ (-12 (-5 *4 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-638 *3))
(-4 *3 (-558 (-493))))))
-(((*1 *1) (-5 *1 (-512))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))))
-(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-142)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517))))
- (-4 *2 (-156)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-952))
- (-5 *1 (-689)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-98 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1005)))))
-(((*1 *1 *1) (-5 *1 (-975))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1159))))
+ ((*1 *1 *1) (-5 *1 (-1159))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1072 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-875 (-517))) (-5 *3 (-1076))
- (-5 *4 (-1000 (-377 (-517)))) (-5 *1 (-30)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1162)) (-5 *1 (-1039)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
+ (-12 (-4 *3 (-333)) (-5 *1 (-943 *3 *2)) (-4 *2 (-593 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3817 *3) (|:| -1395 (-583 *5))))
+ (-5 *1 (-943 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1000 *3)) (-5 *1 (-998 *3)) (-4 *3 (-1111))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1111)))))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-703)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1148 *4))
- (-4 *4 (-37 (-377 (-517))))
- (-5 *2 (-1 (-1057 *4) (-1057 *4) (-1057 *4))) (-5 *1 (-1150 *4 *5)))))
+ (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098)))
+ (-4 *4 (-13 (-509) (-779)))
+ (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098)))
+ (-5 *1 (-546 *4 *5 *2)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1)))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
+ (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077)))
+ (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
- (-5 *2 (-1072 *3)))))
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1073 *9)))
+ (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703)))
+ (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-873 *9 *10 *11))
+ (-4 *10 (-725)) (-5 *2 (-583 (-1073 *12)))
+ (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1073 *12)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1001 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1)))
+ (-4 *1 (-781 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-123)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *1)) (-5 *4 (-1157 *1)) (-4 *1 (-579 *5))
- (-4 *5 (-963))
- (-5 *2 (-2 (|:| -3016 (-623 *5)) (|:| |vec| (-1157 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-963))
- (-5 *2 (-623 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-875 (-517)))) (-5 *1 (-407))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-623 (-199))) (-5 *2 (-1009))
- (-5 *1 (-692))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-623 (-517))) (-5 *2 (-1009))
- (-5 *1 (-692)))))
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509))
+ (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3)
(-5 *3 (-517))))
@@ -11407,1866 +11280,2211 @@
((*1 *2 *1 *3)
(-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5))
(-5 *3 (-517)) (-4 *5 (-793 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-930)) (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-931)) (-5 *2 (-377 (-517)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-777) (-333)))
- (-4 *3 (-1133 *2))))
+ (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333)))
+ (-4 *3 (-1134 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1135 *2 *3)) (-4 *3 (-724))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2271 (*2 (-1076))))
- (-4 *2 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-963))
- (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-872 *2 *4 *5)))))
+ (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2262 (*2 (-1077))))
+ (-4 *2 (-964)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
(-4 *4 (-319))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4))
(-4 *4 (-319))))
((*1 *1) (-4 *1 (-338)))
((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1157 *4)) (-5 *1 (-487 *4))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4))
(-4 *4 (-319))))
((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502)))
((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703)))
- ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1005))))
+ ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4))
- (-4 *4 (-1005))))
- ((*1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-1059)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-680)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-684)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1111)) (-5 *2 (-583 *1)) (-4 *1 (-928 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4))
- (-14 *3 (-844)) (-4 *4 (-963)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-333) (-134)))
- (-5 *2 (-583 (-2 (|:| -2121 (-703)) (|:| -3569 *4) (|:| |num| *4))))
- (-5 *1 (-369 *3 *4)) (-4 *4 (-1133 *3)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-703)) (-4 *6 (-1005)) (-4 *7 (-823 *6))
- (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7))
- (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4192)))))))
+ (-12 (-5 *3 (-517)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4))
+ (-4 *4 (-1006))))
+ ((*1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779)))
- (-4 *2 (-13 (-400 (-153 *4)) (-920) (-1097)))
- (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-920) (-1097))))))
-(((*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-583 (-583 (-866 (-199)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-583 (-583 (-866 (-199))))))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
- ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
- ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
- (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-952))
- (-5 *1 (-679)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6))
- (-4 *5 (-13 (-1005) (-33))) (-4 *6 (-13 (-1005) (-33)))
- (-5 *2 (-107)) (-5 *1 (-1041 *5 *6)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-104)))))
+ (-12 (-5 *3 (-623 (-377 (-876 (-517)))))
+ (-5 *2
+ (-583
+ (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517))
+ (|:| |radvect| (-583 (-623 (-286 (-517))))))))
+ (-5 *1 (-949)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199))))
+ (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-583 (-286 (-199))))
+ (|:| -2578 (-583 (-199)))))))
+ (-5 *2 (-583 (-1060))) (-5 *1 (-240)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-688))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358))
+ (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-963)) (-5 *1 (-645 *3 *4))
- (-4 *4 (-1133 *3)))))
+ (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517))))
+ (-5 *1 (-1016)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964))
+ (-5 *2 (-583 (-583 (-583 (-867 *3))))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *1 *1) (-4 *1 (-887))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963)) (-4 *2 (-333))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2))
- (-4 *2 (-593 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3))
- (-4 *3 (-558 (-493)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1076)) (-5 *2 (-1 (-199) (-199) (-199)))
- (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
-(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-953)) (-5 *1 (-681)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2)))
+ (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5))
+ (-4 *3 (-312 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116))
+ (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-845)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-765 (-845))) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073 *4))
+ (-4 *4 (-13 (-400 *7) (-27) (-1098)))
+ (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1073 *4)))
+ (-4 *4 (-13 (-400 *7) (-27) (-1098)))
+ (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1077)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-976)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4))))))
+ (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2))
+ (-4 *2 (-1134 *4)))))
+(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))))
(((*1 *1 *1) (-4 *1 (-569)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920) (-1097))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1133 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1005) (-33)))
- (-4 *3 (-13 (-1005) (-33))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-209 *3))))
- ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2)
- (-12
+ (-4 *2 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2))
+ (-4 *2 (-1134 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421))
(-5 *2
- (-583
- (-2
- (|:| -2585
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (|:| -1859
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1057 (-199)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2758
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-512)))))
+ (-2 (|:| |dpolys| (-583 (-221 *5 *6)))
+ (|:| |coords| (-583 (-517)))))
+ (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1130 *5 *4)) (-5 *1 (-1074 *4 *5 *6))
- (-4 *4 (-963)) (-14 *5 (-1076)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1130 *5 *4)) (-5 *1 (-1149 *4 *5 *6))
- (-4 *4 (-963)) (-14 *5 (-1076)) (-14 *6 *4))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1076)) (-5 *5 (-1000 (-199))) (-5 *2 (-850))
- (-5 *1 (-848 *3)) (-4 *3 (-558 (-493)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1076)) (-5 *5 (-1000 (-199))) (-5 *2 (-850))
- (-5 *1 (-848 *3)) (-4 *3 (-558 (-493)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-849))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-849))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-849))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-199))) (-5 *1 (-850))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-963)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3868 (-1072 *6)) (|:| -2121 (-517)))))
- (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-963)))))
-(((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1111)) (-5 *2 (-517)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-1116))
+ (-4 *6 (-1134 (-377 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-312 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-583 (-1073 *11))) (-5 *3 (-1073 *11))
+ (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703)))
+ (-5 *7 (-1158 (-583 (-1073 *8)))) (-4 *10 (-779))
+ (-4 *8 (-278)) (-4 *11 (-873 *8 *9 *10)) (-4 *9 (-725))
+ (-5 *1 (-641 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1076))) (-4 *6 (-333))
- (-5 *2 (-583 (-265 (-875 *6)))) (-5 *1 (-495 *5 *6 *7))
- (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-343 *3)) (-4 *3 (-1111)) (-4 *3 (-779)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1111))
- (-5 *2 (-107)))))
+ (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1112)) (-5 *2 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *5 (-1134 *4)) (-5 *2 (-1073 (-377 *5))) (-5 *1 (-559 *4 *5))
+ (-5 *3 (-377 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-1073 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *5))
- (-4 *5 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *5 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-377 (-517)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517)))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8))
- (-5 *5 (-1124 (-377 (-517)))) (-5 *6 (-377 (-517)))
- (-4 *8 (-13 (-27) (-1097) (-400 *7)))
- (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517)))
+ (-4 *8 (-13 (-27) (-1098) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-377 (-517))))
- (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1097) (-400 *8)))
- (-4 *8 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517))))
+ (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8)))
+ (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-377 (-517))) (-4 *4 (-963)) (-4 *1 (-1140 *4 *3))
- (-4 *3 (-1117 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-517))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779))
- (-5 *1 (-418 *5 *6 *7 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1111)) (-4 *2 (-779))))
+ (-12 (-5 *2 (-377 (-517))) (-4 *4 (-964)) (-4 *1 (-1141 *4 *3))
+ (-4 *3 (-1118 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-829 *3)) (-4 *3 (-1006))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779))
- (-4 *6 (-977 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2961 *1) (|:| |upper| *1)))
- (-4 *1 (-895 *4 *5 *3 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-956)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
- ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
- ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+ (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-4 *6 (-978 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2713 *1) (|:| |upper| *1)))
+ (-4 *1 (-896 *4 *5 *3 *6)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964))
+ (-5 *1 (-624 *4)))))
+(((*1 *1 *1) (-4 *1 (-973)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-155))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509))
+ (-4 *3 (-964)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107))
+ (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-953)) (-5 *1 (-689)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1148 *3)))))
+ (-12 (-5 *2 (-1073 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517))))
- (-5 *1 (-1015)))))
-(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *3 (-156))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-509)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-509))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1133 *4)) (-5 *1 (-739 *4 *2 *3 *5))
- (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2))
- (-4 *5 (-593 (-377 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1133 *4)) (-5 *1 (-739 *4 *2 *5 *3))
- (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-593 *2))
- (-4 *3 (-593 (-377 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1133 *5))
- (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *5))
- (-4 *5 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *5 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-954 *4) (-579 *4)))
+ (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-955 *4) (-579 *4)))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-421) (-779) (-954 *5) (-579 *5))) (-5 *5 (-517))
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-955 *5) (-579 *5))) (-5 *5 (-517))
(-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1124 (-517)))
- (-4 *7 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517)))
+ (-4 *7 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-517)))
- (-4 *3 (-13 (-27) (-1097) (-400 *7)))
- (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517)))
+ (-4 *3 (-13 (-27) (-1098) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-517)) (-4 *4 (-963)) (-4 *1 (-1119 *4 *3))
- (-4 *3 (-1148 *4))))
+ (-12 (-5 *2 (-517)) (-4 *4 (-964)) (-4 *1 (-1120 *4 *3))
+ (-4 *3 (-1149 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1117 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-889 *2 *4))
- (-4 *4 (-1133 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1162)) (-5 *1 (-1113))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-1076))) (-5 *2 (-1162)) (-5 *1 (-1113)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *5 *6))
- (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1076)) (-5 *2 (-107))
- (-5 *1 (-236)))))
+ (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-583
- (-2 (|:| -3737 (-703))
- (|:| |eqns|
- (-583
- (-2 (|:| |det| *7) (|:| |rows| (-583 (-517)))
- (|:| |cols| (-583 (-517))))))
- (|:| |fgb| (-583 *7)))))
- (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134)))
- (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-703))
- (-5 *1 (-847 *4 *5 *6 *7)))))
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349))))
+ (-5 *2 (-953)) (-5 *1 (-276)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7))
- (-4 *5 (-13 (-333) (-134) (-954 (-517)) (-954 (-377 (-517)))))
- (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-738 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077)))
+ (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1006)) (-4 *6 (-824 *5)) (-5 *2 (-623 *6))
+ (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9))
+ (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6))
+ (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964))
+ (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-964))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1027 *2 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1084 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4)))))
+ (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-876 *4)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *5))
- (-4 *5 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *5 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *4 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *4)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-703))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *5)))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-265 *3)) (-5 *5 (-703))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6))
- (-4 *6 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-4 *6 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3))
- (-4 *3 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1124 (-703)))
- (-4 *7 (-13 (-27) (-1097) (-400 *6)))
- (-4 *6 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-703)))
+ (-4 *7 (-13 (-27) (-1098) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1076)) (-5 *5 (-265 *3)) (-5 *6 (-1124 (-703)))
- (-4 *3 (-13 (-27) (-1097) (-400 *7)))
- (-4 *7 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
+ (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-703)))
+ (-4 *3 (-13 (-27) (-1098) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
(-5 *2 (-51)) (-5 *1 (-428 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1148 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-130)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1005)))))
+ (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779))
+ (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1023))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349))))
((*1 *1 *1 *1) (-4 *1 (-502)))
((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1111)) (-14 *4 *2))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-954 (-517)))
- (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $))
- (-15 -2098 ((-1028 *3 (-556 $)) $))
- (-15 -2271 ($ (-1028 *3 (-556 $))))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
+ (|partial| -12 (-5 *3 (-845))
+ (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))
+ (-5 *1 (-316 *4)) (-4 *4 (-319)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
- (-4 *5 (-1133 *4)) (-5 *2 (-623 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-4 *5 (-1133 *4)) (-5 *2 (-623 *4))
- (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1133 *3))
- (-5 *2 (-623 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963))))
- ((*1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-349)))) (-5 *2 (-1000 (-772 (-199))))
- (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-787)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))))
-(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491))))
- ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1005)))))
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1006))
+ (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964))
+ (-5 *2 (-583 (-583 (-867 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) (-4 *4 (-964))
+ (-4 *1 (-1038 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 (-867 *3)))) (-4 *3 (-964))
+ (-4 *1 (-1038 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107))
+ (-4 *1 (-1038 *4)) (-4 *4 (-964))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107))
+ (-4 *1 (-1038 *4)) (-4 *4 (-964))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155)))
+ (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-583 (-867 *5)))) (-5 *3 (-583 (-155)))
+ (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1007 *3)) (-5 *1 (-828 *3)) (-4 *3 (-338))
- (-4 *3 (-1005)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278))
- (-4 *9 (-872 *8 *6 *7))
- (-5 *2 (-2 (|:| -1694 (-1072 *9)) (|:| |polval| (-1072 *8))))
- (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1072 *9)) (-5 *4 (-1072 *8)))))
+ (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3))
+ (-5 *2 (-377 (-517))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1134 *6))
+ (-4 *6 (-13 (-333) (-134) (-955 *4))) (-5 *4 (-517))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107))))
+ (|:| -3817
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-934 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4))
+ (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2
+ (|:| -2576
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199))))
+ (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199)))
+ (|:| |g| (-286 (-199))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1846
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349)))))))
+ (-5 *1 (-735)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123))
+ (-4 *2 (-1006))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1006))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-1006)) (-5 *1 (-586 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-845)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-724))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1139 *3)) (-4 *3 (-964)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491))))
+ ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1006)) (-4 *2 (-824 *5)) (-5 *1 (-625 *5 *2 *3 *4))
+ (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5))
+ (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7))
+ (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-107))
+ (-5 *1 (-835 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
+ (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4)))
+ (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107))
+ (-5 *1 (-836 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1142 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5))
- (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1076)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1005)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779))
- (-14 *4
- (-1 (-107) (-2 (|:| -2812 *3) (|:| -2121 *2))
- (-2 (|:| -2812 *3) (|:| -2121 *2)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1107 *3)) (-4 *3 (-893)))))
+ (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-963))
- (-5 *1 (-1061 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-517)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963))
- (-14 *4 (-1076)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1059)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517)))
- (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-690)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4))
+ (-5 *1 (-389 *4))))
+ ((*1 *1 *1) (-5 *1 (-850)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *1) (-5 *1 (-851)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))
+ (-5 *4 (-377 (-517))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))
+ (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))
+ (-5 *4 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))
+ (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1134 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-400 *3) (-920))) (-5 *1 (-249 *3 *2))
+ (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2))
(-4 *3 (-13 (-779) (-509)))))
((*1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
- ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1097))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
+ ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1098))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2))
+ (-4 *2 (-593 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1133 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-222)))))
+ (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1098) (-921))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3)))
+ (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964))
+ (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-1115)) (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5)))
- (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-703)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107))
- (-5 *2 (-952)) (-5 *1 (-686)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349)))
- (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162))
- (-5 *1 (-720))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349)))
- (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162))
- (-5 *1 (-720)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1133 *3))
- (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1148 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-13 (-509) (-134)))
- (-5 *1 (-1053 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-844))
- (-14 *4 (-844)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199))
- (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
- (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
- (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199))
- (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
- (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
- (-5 *1 (-236))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199))
- (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
- (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
- (-5 *2 (-1162)) (-5 *1 (-1159))))
- ((*1 *2 *1)
- (-12
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1073 *4))) (-5 *3 (-1073 *4))
+ (-4 *4 (-833)) (-5 *1 (-600 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-964))
+ (-5 *2 (-1158 (-1158 *5))) (-5 *1 (-947 *5)) (-5 *4 (-1158 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33)))
+ (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1043 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1134 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-905 *4 *2 *3 *5))
+ (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1131 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1077))
+ (-4 *5 (-333)) (-5 *1 (-847 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1073 *5))
+ (-5 *1 (-847 *4 *5)) (-14 *4 (-1077))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333))
+ (-5 *2 (-377 (-876 *6))) (-5 *1 (-965 *5 *6)) (-14 *5 (-1077)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779)))
+ (-4 *2 (-13 (-400 *4) (-921) (-1098))) (-5 *1 (-546 *4 *2 *3))
+ (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5))
(-5 *2
- (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3934 (-199))
- (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
- (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
- (-5 *1 (-1159))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-349)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1057 (-2 (|:| |k| (-517)) (|:| |c| *3))))
- (-5 *1 (-542 *3)) (-4 *3 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
- (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-47)))) (-5 *1 (-47))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-1028 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-4 *3 (-911 *2)) (-4 *4 (-1133 *3)) (-4 *2 (-278))
- (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-954 *3)))))
+ (-12 (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) (-4 *2 (-278))
+ (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1028 *3 (-556 *1)))
+ (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1)))
(-4 *1 (-400 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1028 (-517) (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460))))
((*1 *2 *1)
(-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4))
(-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4))))
((*1 *2 *1)
(-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4))
(-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))))
+(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))
- (-5 *2 (-583 (-1076))) (-5 *1 (-240))))
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))
+ (-5 *2 (-583 (-1077))) (-5 *1 (-240))))
((*1 *2 *3)
- (-12 (-5 *3 (-1072 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-963)) (-5 *2 (-583 *5))
+ (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-583 *5))
(-5 *1 (-291 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2)
+ (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2)
(-14 *4 *2) (-4 *5 (-357))))
((*1 *2 *1)
- (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1076)))))
+ (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1077)))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1005))))
+ (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))
((*1 *2 *1)
- (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
+ (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
(-4 *5 (-779)) (-5 *2 (-583 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963))
- (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *5))
- (-5 *1 (-873 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964))
+ (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *5))
+ (-5 *1 (-874 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $)))))))
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-724))
+ (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724))
(-4 *5 (-779)) (-5 *2 (-583 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1076)))
- (-5 *1 (-959 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))))
+ (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1077)))
+ (-5 *1 (-960 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-14 *5 (-583 (-1076)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *4)) (|:| -3784 (-583 (-875 *4))))))
- (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5))))))
- (-5 *1 (-1181 *5 *6 *7)) (-5 *3 (-583 (-875 *5)))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5))))))
- (-5 *1 (-1181 *5 *6 *7)) (-5 *3 (-583 (-875 *5)))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-583 (-199)))
+ (-5 *1 (-437)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *3 (-583 (-236)))
+ (-5 *1 (-234))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *5)) (|:| -3784 (-583 (-875 *5))))))
- (-5 *1 (-1181 *5 *6 *7)) (-5 *3 (-583 (-875 *5)))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2
- (-583 (-2 (|:| -3666 (-1072 *4)) (|:| -3784 (-583 (-875 *4))))))
- (-5 *1 (-1181 *4 *5 *6)) (-5 *3 (-583 (-875 *4)))
- (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
- ((*1 *1 *1) (|partial| -4 *1 (-655))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 *5)) (-4 *5 (-509))
- (-5 *2
- (-2 (|:| -2121 (-703)) (|:| -1582 *5) (|:| |radicand| (-583 *5))))
- (-5 *1 (-290 *5)) (-5 *4 (-703))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-920)) (-5 *2 (-517)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9))
- (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779))
- (-5 *1 (-896 *6 *7 *8 *9)))))
+ (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6))
+ (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-1158 *6))
+ (-5 *1 (-571 *5 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374))))
+ ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-953)) (-5 *1 (-688)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 (-875 *6))) (-4 *6 (-509))
- (-4 *2 (-872 (-377 (-875 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2))
- (-4 *5 (-725))
- (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-963))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-327 *4))
- (-4 *4 (-319)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-975)) (-5 *3 (-1059)))))
+ (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *3 *5))
+ (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2))
+ (-4 *5 (-593 (-377 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *5 *3))
+ (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-593 *2))
+ (-4 *3 (-593 (-377 *2))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3))
+ (-4 *3 (-1112)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1072 (-377 (-1072 *2)))) (-5 *4 (-556 *2))
- (-4 *2 (-13 (-400 *5) (-27) (-1097)))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1005))))
+ (-12 (-5 *3 (-1073 (-377 (-1073 *2)))) (-5 *4 (-556 *2))
+ (-4 *2 (-13 (-400 *5) (-27) (-1098)))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1006))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1072 *1)) (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-963))
+ (-12 (-5 *2 (-1073 *1)) (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964))
(-4 *5 (-725)) (-4 *3 (-779))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1072 *4)) (-4 *4 (-963)) (-4 *1 (-872 *4 *5 *3))
+ (-12 (-5 *2 (-1073 *4)) (-4 *4 (-964)) (-4 *1 (-873 *4 *5 *3))
(-4 *5 (-725)) (-4 *3 (-779))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-1072 *2))) (-4 *5 (-725)) (-4 *4 (-779))
- (-4 *6 (-963))
+ (-12 (-5 *3 (-377 (-1073 *2))) (-4 *5 (-725)) (-4 *4 (-779))
+ (-4 *6 (-964))
(-4 *2
(-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $)))))
- (-5 *1 (-873 *5 *4 *6 *7 *2)) (-4 *7 (-872 *6 *5 *4))))
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $)))))
+ (-5 *1 (-874 *5 *4 *6 *7 *2)) (-4 *7 (-873 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-1072 (-377 (-875 *5))))) (-5 *4 (-1076))
- (-5 *2 (-377 (-875 *5))) (-5 *1 (-959 *5)) (-4 *5 (-509)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6))
- (-4 *4 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3))
- (-4 *3 (-13 (-400 *4) (-920))))))
+ (-12 (-5 *3 (-377 (-1073 (-377 (-876 *5))))) (-5 *4 (-1077))
+ (-5 *2 (-377 (-876 *5))) (-5 *1 (-960 *5)) (-4 *5 (-509)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1058 *4))) (-5 *1 (-257 *4 *5))
+ (-5 *3 (-1058 *4)) (-4 *5 (-1149 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4)))
+ (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3))
+ (-5 *1 (-95 *4 *3)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-13 (-421) (-134)))
+ (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-1133 *4)) (-5 *2 (-1 *6 (-583 *6)))
- (-5 *1 (-1151 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1148 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199)))
- (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-952))
- (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779))
+ (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-873 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-583 (-2 (|:| -3896 (-1073 *9)) (|:| -1725 (-517)))))))
+ (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-844))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-844))
- (-4 *2 (-333)) (-14 *5 (-912 *4 *2))))
+ (-12 (-5 *3 (-583 (-845))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-845))
+ (-4 *2 (-333)) (-14 *5 (-913 *4 *2))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779))
- (-4 *6 (-212 (-3535 *4) (-703)))
+ (-4 *6 (-212 (-3573 *4) (-703)))
(-14 *7
- (-1 (-107) (-2 (|:| -2812 *5) (|:| -2121 *6))
- (-2 (|:| -2812 *5) (|:| -2121 *6))))
- (-14 *4 (-583 (-1076))) (-4 *2 (-156))
- (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-872 *2 *6 (-789 *4)))))
+ (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6))
+ (-2 (|:| -2803 *5) (|:| -1725 *6))))
+ (-14 *4 (-583 (-1077))) (-4 *2 (-156))
+ (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-873 *2 *6 (-789 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-779))))
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4))
- (-4 *4 (-1133 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-963))))
+ (-4 *4 (-1134 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-963)) (-4 *3 (-659))))
+ (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-964)) (-4 *3 (-659))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5))
- (-4 *4 (-963)) (-4 *5 (-779))))
+ (-4 *4 (-964)) (-4 *5 (-779))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-963))
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964))
(-4 *2 (-779))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-963))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6))
- (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779))))
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6))
+ (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-963))
+ (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964))
(-4 *5 (-725)) (-4 *2 (-779))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-892 *4 *5 *6))
- (-4 *4 (-963)) (-4 *5 (-724)) (-4 *6 (-779))))
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-893 *4 *5 *6))
+ (-4 *4 (-964)) (-4 *5 (-724)) (-4 *6 (-779))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-892 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-724))
+ (-12 (-4 *1 (-893 *4 *3 *2)) (-4 *4 (-964)) (-4 *3 (-724))
(-4 *2 (-779)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
-(((*1 *1 *1) (-5 *1 (-975))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-377 (-875 (-517))))) (-5 *4 (-583 (-1076)))
- (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5))
- (-4 *5 (-13 (-777) (-333)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1158 (-1007 *3 *4))) (-5 *1 (-1007 *3 *4))
+ (-14 *3 (-845)) (-14 *4 (-845)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1006)) (-4 *6 (-810 *5)) (-5 *2 (-809 *5 *6 (-583 *6)))
+ (-5 *1 (-811 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-816 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-13 (-777) (-333))))))
+ (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-811 *5 *3 *4))
+ (-4 *3 (-955 (-1077))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 (-876 *3))))
+ (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-964))
+ (-2479 (-4 *3 (-955 (-1077)))) (-4 *3 (-810 *5))
+ (-4 *4 (-558 (-816 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1006)) (-5 *2 (-813 *5 *3)) (-5 *1 (-811 *5 *3 *4))
+ (-2479 (-4 *3 (-955 (-1077)))) (-2479 (-4 *3 (-964)))
+ (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953))
+ (-5 *1 (-687)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779))
+ (-5 *1 (-555 *2 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-509)) (-4 *2 (-873 *3 *5 *4))
+ (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-876 *6))) (-4 *5 (-725))
+ (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))))))
(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3834 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5))
- (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-278) (-134)))
- (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725)) (-5 *2 (-107))
- (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))))
+ (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-1024)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5))
+ (-4 *4 (-1006)) (-4 *5 (-1006)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-107)) (-5 *1 (-109))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1076)) (-5 *2 (-107))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-5 *2 (-107)) (-5 *1 (-810 *5 *3 *4))
- (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5)))))
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517)))
+ (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-809 *5)) (-4 *5 (-1005))
- (-5 *2 (-107)) (-5 *1 (-810 *5 *6 *4)) (-4 *4 (-558 (-815 *5))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1133 *5))
- (-5 *1 (-739 *5 *2 *3 *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *3 (-593 *2)) (-4 *6 (-593 *4))))
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-377 (-517)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-377 (-517)))
+ (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-938 *3))
+ (-4 *3 (-1134 (-517))) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1133 *5))
- (-5 *1 (-739 *5 *2 *3 *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *3 (-593 *2))
- (-4 *6 (-593 (-377 *2))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1133 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-904 *4 *2 *3 *5))
- (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517))))
+ (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-377 (-517)))
+ (-5 *2 (-583 (-2 (|:| -3287 *4) (|:| -3302 *4)))) (-5 *1 (-939 *3))
+ (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-377 (-517)))
+ (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-939 *3))
+ (-4 *3 (-1134 *5)) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1058 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-964))
+ (-5 *1 (-1062 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-719)) (-5 *2 (-953))
+ (-5 *3
+ (-2 (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-719)) (-5 *2 (-953))
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199)))))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4))
- (-4 *4 (-963))))
+ (-4 *4 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964))))
((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703))))
((*1 *1 *1) (-4 *1 (-207)))
((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779))))
((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115))
- (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116))
+ (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))
- (-4 *4 (-1133 *3))))
+ (-4 *4 (-1134 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3))
- (-4 *3 (-1133 *2))))
+ (-4 *3 (-1134 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-443 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-333)) (-4 *2 (-823 *3)) (-5 *1 (-534 *2))
- (-5 *3 (-1076))))
+ (-12 (-4 *2 (-333)) (-4 *2 (-824 *3)) (-5 *1 (-534 *2))
+ (-5 *3 (-1077))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333))))
((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4))
- (-4 *4 (-1005))))
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4))
+ (-4 *4 (-1006))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1005))))
+ (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1005))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1005))))
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1067 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1073 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1074 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1121 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-964))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1142 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1153 *4)) (-14 *4 (-1076)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-963)) (-14 *5 *3))))
-(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4)))
- (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6))
- (-4 *6 (-421)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517))))
- (-4 *2 (-156)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1076)))
- (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-114 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5))
+ (-4 *3 (-964)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-2 (|:| -1612 (-1058 *4)) (|:| -1622 (-1058 *4))))
+ (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4))))
+ (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1112)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3))
+ (-4 *3 (-610 *4)))))
+(((*1 *1 *1) (-4 *1 (-130)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-283 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))))
+ (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))
+ (-14 *6 (-1077)) (-14 *7 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779))
+ (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4))
+ (-4 *3 (-1134 (-153 (-517)))) (-4 *4 (-13 (-333) (-777)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517))
- (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1111))
- (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1111)) (-5 *1 (-1157 *3)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-826 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))))
-(((*1 *1) (-5 *1 (-1162))))
-(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))
- ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))
- ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-278))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517))))
- ((*1 *1 *1) (-4 *1 (-972))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1158 *3)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1220 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ (-12 (-5 *3 (-1158 (-1158 *4))) (-4 *4 (-964)) (-5 *2 (-623 *4))
+ (-5 *1 (-947 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *6))))
+ (-5 *4 (-944 (-772 (-517)))) (-5 *5 (-1077)) (-5 *7 (-377 (-517)))
+ (-4 *6 (-964)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
+(((*1 *1) (-5 *1 (-1163))))
+(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107))
+ (-5 *1 (-470 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-884 *3)) (-4 *3 (-502))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-107)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1076))) (-4 *4 (-1005))
- (-4 *5 (-13 (-963) (-809 *4) (-779) (-558 (-815 *4))))
- (-5 *1 (-985 *4 *5 *2))
- (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))))
+ (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006))
+ (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4))))
+ (-5 *1 (-986 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1005))
- (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 (-815 *3))))
- (-5 *1 (-985 *3 *4 *2))
- (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
+ (-12 (-4 *3 (-1006))
+ (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3))))
+ (-5 *1 (-986 *3 *4 *2))
+ (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-278))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2773 (-703)) (|:| -3292 (-703))))
+ (-5 *1 (-703))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509))
+ (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
+ (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *6))
+ (-4 *6
+ (-13 (-779)
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
+ (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2))
+ (-4 *2 (-873 (-876 *4) *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1006))
+ (-4 *2 (-123)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077))))
+ (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *2)) (-4 *2 (-873 *3 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
+ (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))
+ (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *5))
+ (-4 *5 (-1134 (-377 *4))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-953))
+ (-5 *1 (-679)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199)))
+ (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined"))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199)))
+ (-5 *1 (-630))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-199)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1 (-867 (-199)) (-199) (-199)))
+ (-5 *4 (-1001 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-265 (-765 *3)))
+ (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1000 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107))
- (-5 *1 (-276))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1005)))))
+ (-12 (-5 *4 (-265 (-765 (-876 *5)))) (-4 *5 (-421))
+ (-5 *2 (-765 (-377 (-876 *5)))) (-5 *1 (-577 *5))
+ (-5 *3 (-377 (-876 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5)))
+ (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-278) (-134)))
- (-4 *5 (-13 (-779) (-558 (-1076)))) (-4 *6 (-725))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
- (|:| |wcond| (-583 (-875 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *4))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *4))))))))))
- (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-286 (-199))))
- (-5 *2
- (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517))
- (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))))
- (-5 *1 (-276)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1111)) (-5 *2 (-1162)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))
- (-4 *2 (-13 (-779) (-21))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3300 *6) (|:| |sol?| (-107))) (-517)
- *6))
- (-4 *6 (-333)) (-4 *7 (-1133 *6))
- (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
- (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162))
- (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1059)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1162))
- (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
+ (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964))
+ (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-850))
+ (-12 (-5 *3 (-517)) (-4 *4 (-1134 (-377 *3))) (-5 *2 (-845))
+ (-5 *1 (-837 *4 *5)) (-4 *5 (-1134 (-377 *4))))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1077))
+ (-4 *2 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *5 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-925)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517))))
+ (-4 *5 (-1134 *4))
+ (-5 *2 (-2 (|:| -2791 (-377 *5)) (|:| |coeff| (-377 *5))))
+ (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1077))
+ (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *1 (-1080)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-876 (-517)))))
+ (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-265 (-377 (-876 (-517))))))
+ (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 (-265 (-876 *4))))
+ (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-876 (-517)))))
+ (-5 *2 (-583 (-265 (-876 *4)))) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1077))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-4 *4 (-13 (-29 *6) (-1098) (-882)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4))))
+ (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1098) (-882)))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-333))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
- (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))))
- (-5 *1 (-140))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517)))
+ (-2 (|:| |particular| (-3 (-1158 *5) "failed"))
+ (|:| -3700 (-583 (-1158 *5)))))
+ (-5 *1 (-604 *5)) (-5 *4 (-1158 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
- (|:| |xValues| (-1000 (-199))) (|:| |yValues| (-1000 (-199)))))
- (-5 *1 (-140)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1072 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8)))
- (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725))
+ (-2 (|:| |particular| (-3 (-1158 *5) "failed"))
+ (|:| -3700 (-583 (-1158 *5)))))
+ (-5 *1 (-604 *5)) (-5 *4 (-1158 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-333))
(-5 *2
- (-2 (|:| |upol| (-1072 *8)) (|:| |Lval| (-583 *8))
- (|:| |Lfact|
- (-583 (-2 (|:| -3868 (-1072 *8)) (|:| -2121 (-517)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-675 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-517)) (-4 *4 (-319))
- (-5 *1 (-487 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1080)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
- (-5 *1 (-302))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-998 (-875 (-517)))) (-5 *2 (-300))
- (-5 *1 (-302))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-963)) (-4 *3 (-1005)))))
-(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *1 *1) (-4 *1 (-1040))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1097))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1072 *5))) (-5 *3 (-1072 *5))
- (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1133 *5))
- (-4 *5 (-1133 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1072 (-517)))) (-5 *3 (-1072 (-517)))
- (-5 *1 (-525))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1072 *1))) (-5 *3 (-1072 *1))
- (-4 *1 (-832)))))
-(((*1 *2 *3)
- (-12
+ (-583
+ (-2 (|:| |particular| (-3 (-1158 *5) "failed"))
+ (|:| -3700 (-583 (-1158 *5))))))
+ (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333))
(-5 *2
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517)))))
+ (-583
+ (-2 (|:| |particular| (-3 (-1158 *5) "failed"))
+ (|:| -3700 (-583 (-1158 *5))))))
+ (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5)))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196))))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196))))
(-5 *2
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517)))
- (-5 *4 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4))))
+ (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196))))
+ (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4196))))
(-5 *2
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *1 (-937 *3)) (-4 *3 (-1133 (-517))) (-5 *4 (-377 (-517)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-377 (-517)))
- (-5 *2 (-583 (-2 (|:| -3288 *5) (|:| -3300 *5)))) (-5 *1 (-937 *3))
- (-4 *3 (-1133 (-517))) (-5 *4 (-2 (|:| -3288 *5) (|:| -3300 *5)))))
+ (-583
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3700 (-583 *7)))))
+ (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7))
+ (-4 *3 (-621 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *1 (-938 *3)) (-4 *3 (-1133 (-377 (-517))))))
+ (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1077))
+ (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1098) (-882)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1077))
+ (-4 *7 (-13 (-29 *6) (-1098) (-882)))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7)))))
+ (-5 *1 (-734 *6 *7)) (-5 *4 (-1158 *7))))
((*1 *2 *3 *4)
- (-12
+ (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1077))
+ (-4 *6 (-13 (-29 *5) (-1098) (-882)))
+ (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-1158 *6))) (-5 *1 (-734 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109)))
+ (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882)))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7)))))
+ (-5 *1 (-734 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109)))
+ (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882)))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7)))))
+ (-5 *1 (-734 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1077))
+ (-4 *7 (-13 (-29 *6) (-1098) (-882)))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
(-5 *2
- (-583 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517))))))
- (-5 *1 (-938 *3)) (-4 *3 (-1133 (-377 (-517))))
- (-5 *4 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))))
+ (-3 (-2 (|:| |particular| *7) (|:| -3700 (-583 *7))) *7 "failed"))
+ (-5 *1 (-734 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-109)) (-5 *5 (-1077))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -3700 (-583 *3))) *3 "failed"))
+ (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1098) (-882)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-5 *1 (-734 *6 *2))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1098) (-882)))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-734 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-953)) (-5 *1 (-737))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-377 (-517)))
- (-5 *2 (-583 (-2 (|:| -3288 *4) (|:| -3300 *4)))) (-5 *1 (-938 *3))
- (-4 *3 (-1133 *4))))
+ (-12 (-5 *3 (-740)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
+ (-5 *2 (-953)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
+ (-5 *2 (-953)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349)))
+ (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
+ (-5 *2 (-953)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349)))
+ (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349)))
+ (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-377 (-517)))
- (-5 *2 (-583 (-2 (|:| -3288 *5) (|:| -3300 *5)))) (-5 *1 (-938 *3))
- (-4 *3 (-1133 *5)) (-5 *4 (-2 (|:| -3288 *5) (|:| -3300 *5))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1076)) (-4 *5 (-558 (-815 (-517))))
- (-4 *5 (-809 (-517)))
- (-4 *5 (-13 (-779) (-954 (-517)) (-421) (-579 (-517))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-520 *5 *3)) (-4 *3 (-569))
- (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-954 (-47)))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4))
- (-5 *2 (-388 (-1072 (-47)))) (-5 *1 (-405 *4 *5 *3))
- (-4 *3 (-1133 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3))
- (-4 *3 (-343 *4))))
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -3700 (-583 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-333)) (-4 *7 (-593 *6))
+ (-5 *2 (-2 (|:| |particular| (-1158 *6)) (|:| -3700 (-623 *6))))
+ (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-953)) (-5 *1 (-821))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-822)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-821))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060))
+ (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349))
+ (-5 *2 (-953)) (-5 *1 (-821))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060))
+ (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-953))
+ (-5 *1 (-821))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 (-349)))
+ (-5 *1 (-941)) (-5 *4 (-349))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-941))
+ (-5 *4 (-349))))
((*1 *2 *3)
- (-12 (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3))
- (-4 *5 (-343 *2)) (-4 *3 (-343 *4))))
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-623 *4)) (-4 *4 (-911 *2)) (-4 *2 (-509))
- (-5 *1 (-626 *2 *4))))
+ (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4))
+ (-5 *3 (-286 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-911 *2)) (-4 *2 (-509)) (-5 *1 (-1126 *2 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-844))
- (-5 *2
- (-3 (-1072 *4)
- (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023)))))))
- (-5 *1 (-316 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1057 *4) (-1057 *4))) (-5 *2 (-1057 *4))
- (-5 *1 (-1180 *4)) (-4 *4 (-1111))))
+ (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4))
+ (-5 *3 (-265 (-286 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-583 (-1057 *5)) (-583 (-1057 *5)))) (-5 *4 (-517))
- (-5 *2 (-583 (-1057 *5))) (-5 *1 (-1180 *5)) (-4 *5 (-1111)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5))
+ (-5 *3 (-265 (-286 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5))
+ (-5 *3 (-286 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1077)))
+ (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1035 *5))
+ (-5 *3 (-583 (-265 (-286 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077)))
+ (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5))))))
+ (-5 *1 (-1083 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1077))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-1083 *5))
+ (-5 *3 (-583 (-265 (-377 (-876 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-377 (-876 *4)))) (-4 *4 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-1083 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4))))))
+ (-5 *1 (-1083 *4)) (-5 *3 (-583 (-265 (-377 (-876 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077)) (-4 *5 (-509))
+ (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5))
+ (-5 *3 (-377 (-876 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077)) (-4 *5 (-509))
+ (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5))
+ (-5 *3 (-265 (-377 (-876 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4)))))
+ (-5 *1 (-1083 *4)) (-5 *3 (-377 (-876 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4)))))
+ (-5 *1 (-1083 *4)) (-5 *3 (-265 (-377 (-876 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1134 *4)) (-5 *2 (-107)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
+ (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333))))
((*1 *2 *1)
- (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1133 *2)) (-4 *2 (-156))))
+ (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1157 *4)) (-5 *3 (-844)) (-4 *4 (-319))
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319))
(-5 *1 (-487 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
- (-4 *5 (-212 *3 *2)) (-4 *2 (-963)))))
+ (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (-4 *2 (-964)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517))))
+ (-4 *5 (-1134 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-935 *4 *5))
+ (-5 *3 (-377 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3))
- (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-896 *4 *5 *6 *3))))
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7))
- (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-896 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
+ (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2))
+ (-4 *2 (-1112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517))))
- (-5 *1 (-276)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
+ (-12 (-4 *4 (-964))
+ (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-143 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1133 (-377 (-517))))
- (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))
- (-5 *1 (-836 *3 *4)) (-4 *4 (-1133 (-377 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1133 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3))
- (-4 *3 (-1133 (-377 *4))))))
+ (-12 (-5 *3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))
+ (-5 *2 (-377 (-517))) (-5 *1 (-938 *4)) (-4 *4 (-1134 (-517))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953))
+ (-5 *1 (-689)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-278)) (-4 *3 (-912 *2)) (-4 *4 (-1134 *3))
+ (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3))
- (-5 *1 (-95 *4 *3)) (-4 *3 (-1133 *4))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2361 *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517))))
+ (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3302 *7) (|:| |sol?| (-107)))
+ (-517) *7))
+ (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7))
+ (-5 *3 (-377 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-527 *7 *8)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-964))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3))))
+ (-5 *1 (-116 *3)) (-4 *3 (-779))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1098)))
+ (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
+ (-5 *1 (-532 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-534 (-377 (-876 *3))))
+ (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517))))
+ (-5 *1 (-537 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-13 (-421) (-134)))
- (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-963)) (-4 *2 (-621 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1133 *4)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1105 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725))
- (-4 *3 (-779)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -1375 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-4 *5 (-964))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5))
+ (-5 *3 (-583 (-623 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1158 (-1158 *5))) (-4 *5 (-333)) (-4 *5 (-964))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5))
+ (-5 *3 (-583 (-623 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1046))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1046)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-543 *3)) (-4 *3 (-963))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-659))))
- ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-963)) (-5 *2 (-583 *3))))
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
((*1 *2 *1)
- (-12 (-4 *1 (-1148 *3)) (-4 *3 (-963)) (-5 *2 (-1057 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-817 *2 *3)) (-4 *2 (-1133 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-890))
- (-5 *3 (-583 (-517))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-333)) (-4 *3 (-963))
- (-5 *1 (-1061 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-872 *3 *5 *4))
- (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1076))))
- (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4))
- (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-963)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4))
- (-4 *4 (-1133 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-388 *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-963)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3016 (-623 (-377 (-875 *4))))
- (|:| |vec| (-583 (-377 (-875 *4)))) (|:| -3737 (-703))
- (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))
- (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725))
- (-5 *2
- (-2 (|:| |partsol| (-1157 (-377 (-875 *4))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *4)))))))
- (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1016)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
+(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
(((*1 *2 *1)
- (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1005))
+ (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006))
(-4 *2 (-779)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787))
- (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1005)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-963))
- (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-787))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-787))))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1072 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
- (|:| |expense| (-349)) (|:| |accuracy| (-349))
- (|:| |intermediateResults| (-349))))
- (-5 *2 (-952)) (-5 *1 (-276)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1089 *4 *5))
- (-4 *4 (-1005)) (-4 *5 (-1005)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5))
- (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-421)) (-4 *4 (-779))
- (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1076)))))
- (-5 *6 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1009))
- (-5 *1 (-367))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1076)))))
- (-5 *6 (-583 (-1076))) (-5 *3 (-1076)) (-5 *2 (-1009))
- (-5 *1 (-367))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-583 (-1076))) (-5 *5 (-1079)) (-5 *3 (-1076))
- (-5 *2 (-1009)) (-5 *1 (-367)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
- (-4 *4 (-343 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1133 *6))
- (-4 *6 (-13 (-27) (-400 *5)))
- (-4 *5 (-13 (-779) (-509) (-954 (-517)))) (-4 *8 (-1133 (-377 *7)))
- (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3))
- (-4 *3 (-312 *6 *7 *8)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-975)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1111)) (-5 *1 (-163 *3 *2))
- (-4 *2 (-610 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1057 (-517))) (-5 *1 (-1061 *4)) (-4 *4 (-963))
- (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-703)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-775)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-155)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199))
+ (-5 *7 (-623 (-517)))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-686)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1))))
+ (-4 *1 (-337 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-422 *3 *4 *5 *6))
+ (|:| -3700 (-583 (-422 *3 *4 *5 *6)))))
+ (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
(-4 *4 (-779)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-437)) (-5 *1 (-1158)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
- (-14 *6 (-583 (-1076))) (-5 *2 (-583 (-960 *5 *6)))
- (-5 *1 (-568 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $))
- (-15 -2098 ((-1028 *3 (-556 $)) $))
- (-15 -2271 ($ (-1028 *3 (-556 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $))
- (-15 -2098 ((-1028 *3 (-556 $)) $))
- (-15 -2271 ($ (-1028 *3 (-556 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *4 (-556 $)) $))
- (-15 -2098 ((-1028 *4 (-556 $)) $))
- (-15 -2271 ($ (-1028 *4 (-556 $)))))))
- (-4 *4 (-509)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-556 *2)))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-5 *2 (-1 (-1073 (-876 *4)) (-876 *4)))
+ (-5 *1 (-1166 *4)) (-4 *4 (-333)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779))
+ (-4 *5 (-955 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-400 *5))
(-4 *2
(-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *4 (-556 $)) $))
- (-15 -2098 ((-1028 *4 (-556 $)) $))
- (-15 -2271 ($ (-1028 *4 (-556 $)))))))
- (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-963)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4))
- (-4 *4 (-1133 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
+ (-10 -8 (-15 -3858 ((-1029 *5 (-556 $)) $))
+ (-15 -2082 ((-1029 *5 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *5 (-556 $))))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-964)) (-4 *6 (-873 *5 *4 *2))
+ (-4 *2 (-779)) (-5 *1 (-874 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2262 ($ *6)) (-15 -3858 (*6 $))
+ (-15 -2082 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509))
+ (-5 *2 (-1077)) (-5 *1 (-960 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-954 *4)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-107)))))
+ (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8))
+ (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134)))
+ (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-107))
+ (-5 *1 (-848 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-4 *6 (-809 *5)) (-5 *2 (-808 *5 *6 (-583 *6)))
- (-5 *1 (-810 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-815 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-810 *5 *3 *4))
- (-4 *3 (-954 (-1076))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-5 *2 (-583 (-265 (-875 *3))))
- (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-963))
- (-2479 (-4 *3 (-954 (-1076)))) (-4 *3 (-809 *5))
- (-4 *4 (-558 (-815 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-5 *2 (-812 *5 *3)) (-5 *1 (-810 *5 *3 *4))
- (-2479 (-4 *3 (-954 (-1076)))) (-2479 (-4 *3 (-963)))
- (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2157 *4)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ (-12 (-5 *3 (-703)) (-5 *4 (-1158 *2)) (-4 *5 (-278))
+ (-4 *6 (-912 *5)) (-4 *2 (-13 (-379 *6 *7) (-955 *6)))
+ (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1134 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3))
- (-4 *3 (-13 (-1097) (-29 *5)))))
+ (-12 (-4 *4 (-509)) (-4 *5 (-912 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3))
+ (-4 *3 (-343 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-912 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4)))
+ (-5 *1 (-626 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-4 *5 (-13 (-509) (-954 (-517)) (-134)))
- (-5 *2 (-534 (-377 (-875 *5)))) (-5 *1 (-523 *5))
- (-5 *3 (-377 (-875 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-51)) (-5 *1 (-1090)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1072 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
-(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
+ (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-4 *6 (-1134 *5))
+ (-5 *2 (-2 (|:| -3817 *7) (|:| |rh| (-583 (-377 *6)))))
+ (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6)))
+ (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-912 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1127 *4 *5 *3))
+ (-4 *3 (-1134 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1097))) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-777) (-333)))
- (-4 *3 (-1133 *4)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-493)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-583 (-1072 *11))) (-5 *3 (-1072 *11))
- (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703)))
- (-5 *7 (-1157 (-583 (-1072 *8)))) (-4 *10 (-779))
- (-4 *8 (-278)) (-4 *11 (-872 *8 *9 *10)) (-4 *9 (-725))
- (-5 *1 (-641 *9 *10 *8 *11)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-5 *1 (-632))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-333)) (-5 *1 (-897 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5)) (-4 *5 (-333))
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1712 (-583 *6)) (|:| -3723 (-583 *6)))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
+ (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-338))
+ (-4 *3 (-1006)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-556 *4)) (-5 *6 (-1076))
- (-4 *4 (-13 (-400 *7) (-27) (-1097)))
- (-4 *7 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
+ (-583
+ (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9)))))
+ (-5 *1 (-908 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952))
- (-5 *1 (-681)))))
+ (-583
+ (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9)))))
+ (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112))
+ (-4 *3 (-1006)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-107))
+ (-5 *1 (-828 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-845)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-1014 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9))))
+ (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779))
+ (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9))))
+ (-5 *1 (-1014 *6 *7 *4 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-897 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5))
+ (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1134 *6))
+ (-14 *7 (-845)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *2)) (-4 *2 (-873 (-377 (-876 *6)) *5 *4))
+ (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725))
+ (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)))))
+ (-4 *6 (-509)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107))))
+ (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 (-845))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5))
+ (-14 *4 (-845)) (-14 *5 (-913 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4))
+ (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077)))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-421))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1072 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *5 (-832)) (-5 *1 (-426 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1072 *1)) (-4 *1 (-832)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-319)) (-4 *2 (-963)) (-5 *1 (-645 *2 *3))
- (-4 *3 (-1133 *2)))))
+ (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4))
+ (-4 *4 (-1134 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5))
+ (-4 *4 (-964)) (-4 *5 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964))
+ (-4 *2 (-779))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6))
+ (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *2 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *2 (-873 *4 (-489 *5) *5))
+ (-5 *1 (-1030 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-876 *4)) (-5 *1 (-1107 *4))
+ (-4 *4 (-964)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-493)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *1) (-5 *1 (-437))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-583 (-286 (-199))))
- (|:| |constraints|
- (-583
- (-2 (|:| |start| (-199)) (|:| |finish| (-199))
- (|:| |grid| (-703)) (|:| |boundaryType| (-517))
- (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
- (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1059))
- (|:| |tol| (-199))))
- (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-583 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-963)) (-5 *1 (-624 *3)))))
+ (-12 (-4 *4 (-964)) (-4 *5 (-1134 *4)) (-5 *2 (-1 *6 (-583 *6)))
+ (-5 *1 (-1152 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1005))
- (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))
+ (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517))))
+ (-4 *5 (-810 (-517)))
+ (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-520 *5 *3)) (-4 *3 (-569))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
+(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-89 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1058 *7))) (-4 *6 (-779))
+ (-4 *7 (-873 *5 (-489 *6) *6)) (-4 *5 (-964))
+ (-5 *2 (-1 (-1058 *7) *7)) (-5 *1 (-1030 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1006))
+ (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1005))
- (-4 *2 (-1111)) (-5 *1 (-580 *5 *2))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006))
+ (-4 *2 (-1112)) (-5 *1 (-580 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1005))
- (-4 *5 (-1111)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1006))
+ (-4 *5 (-1112)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1005))
- (-4 *2 (-1111)) (-5 *1 (-580 *5 *2))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006))
+ (-4 *2 (-1112)) (-5 *1 (-580 *5 *2))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6))
- (-4 *5 (-1005)) (-4 *6 (-1111)) (-5 *1 (-580 *5 *6))))
+ (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *1 (-580 *5 *6))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1005)) (-4 *2 (-1111)) (-5 *1 (-580 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1045)) (-5 *3 (-131)) (-5 *2 (-703)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-509)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-963))
- (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3))
- (-4 *3 (-781 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1160))))
- ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1160)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-400 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-703)) (-5 *1 (-109))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-109))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4))
- (-4 *4 (-400 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-109)) (-5 *1 (-147))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4))
- (-4 *4 (-13 (-400 *3) (-920)))))
- ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273))))
- ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4))
- (-4 *3 (-400 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4))
- (-4 *4 (-400 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4))
- (-4 *4 (-13 (-400 *3) (-920) (-1097))))))
+ (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-703)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-377 (-1073 (-286 *3)))) (-4 *3 (-13 (-509) (-779)))
+ (-5 *1 (-1034 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
- (-221 *4 (-377 (-517)))))
- (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-107))
- (-5 *1 (-470 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-954 (-517)))
- (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $))
- (-15 -2098 ((-1028 *3 (-556 $)) $))
- (-15 -2271 ($ (-1028 *3 (-556 $))))))))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
- (-5 *5 (-1000 (-199))) (-5 *6 (-517)) (-5 *2 (-1107 (-849)))
- (-5 *1 (-288))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
- (-5 *5 (-1000 (-199))) (-5 *6 (-517)) (-5 *7 (-1059))
- (-5 *2 (-1107 (-849))) (-5 *1 (-288))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
- (-5 *5 (-1000 (-199))) (-5 *6 (-199)) (-5 *7 (-517))
- (-5 *2 (-1107 (-849))) (-5 *1 (-288))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
- (-5 *5 (-1000 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1059))
- (-5 *2 (-1107 (-849))) (-5 *1 (-288)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-13 (-27) (-1097) (-400 (-153 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1111)) (-5 *2 (-107)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-123))
- (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 *4))))))
+ (-12 (-5 *3 (-851))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 (-199)))))
+ (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))))
+ (-5 *1 (-140))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517)))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-867 (-199)))))
+ (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))))
+ (-5 *1 (-140)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-685)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-421))
+ (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-845)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1073 *1))
+ (-4 *1 (-299 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -1582 *3) (|:| -2425 *4))))
- (-5 *1 (-668 *3 *4)) (-4 *3 (-963)) (-4 *4 (-659))))
+ (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333))
+ (-4 *2 (-1134 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-377 (-517)))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-963)) (-4 *4 (-724))
- (-5 *2 (-1057 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
- (-4 *4 (-779)) (-5 *1 (-1083 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-954 *2)))))
-(((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3))
+ (-4 *4 (-343 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1044 *2 *3)) (-14 *2 (-703)) (-4 *3 (-964)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4))
- (-4 *3 (-13 (-1005) (-33))) (-4 *4 (-13 (-1005) (-33))))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1157 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333))
- (-5 *1 (-604 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-333))
- (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4193))))
- (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193))))
- (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333))
- (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
+ (-12 (-5 *2 (-583 *4)) (-5 *1 (-1043 *3 *4))
+ (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-908 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-1013 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-1079))))
- ((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1079)))))
-(((*1 *1 *1 *1) (-4 *1 (-130)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))
- ((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-961))
- (-5 *3 (-517)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1133 *4))
- (-5 *2 (-1157 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1072 (-517))) (-5 *2 (-517)) (-5 *1 (-865)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1133 *3))
- (-4 *3 (-13 (-333) (-134) (-954 (-517)))) (-5 *1 (-521 *3 *4)))))
+ (-12 (-4 *1 (-628 *3)) (-4 *3 (-1006))
+ (-5 *2 (-583 (-2 (|:| -1846 *3) (|:| -4140 (-703))))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1006))
+ (-5 *1 (-98 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-98 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421))
+ (-5 *1 (-842 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-142)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-331 (-109))) (-4 *2 (-964)) (-5 *1 (-647 *2 *4))
+ (-4 *4 (-585 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-964)))))
(((*1 *2)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1076)) (-5 *1 (-493)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
+ (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1077)) (-5 *1 (-493)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *3 (-1133 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3))
- (-4 *5 (-593 (-377 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-377 *5))
- (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *5 (-1133 *4))
- (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-847 *4 *5 *6 *3))
- (-4 *3 (-872 *4 *6 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1111))))
+ (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134)))
+ (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-407)) (-5 *1 (-1081)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6))
+ (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112))))
((*1 *2 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23))
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-623 *2)) (-5 *4 (-517))
- (-4 *2 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-4 *5 (-1133 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1076))) (-4 *6 (-421))
- (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7))
- (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752))
- (-14 *5 (-1076)) (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))))
+ (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-953))
+ (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-953)) (-5 *1 (-689)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-984 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-512)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3))
+ (-4 *3 (-13 (-374) (-1098)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-215))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1163)) (-5 *1 (-215)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-60 *3)) (-14 *3 (-1077))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-67 *3)) (-14 *3 (-1077))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-70 *3)) (-14 *3 (-1077))))
+ ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1163))))
+ ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-367))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040))))
+ ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1005)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (|has| *1 (-6 -4193)) (-4 *1 (-343 *3))
- (-4 *3 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-215))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1162)) (-5 *1 (-215)))))
-(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-60 *3)) (-14 *3 (-1076))))
- ((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-67 *3)) (-14 *3 (-1076))))
- ((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-70 *3)) (-14 *3 (-1076))))
- ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1162))))
- ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1162)) (-5 *1 (-367))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039))))
- ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1162)) (-5 *1 (-1039))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1162)) (-5 *1 (-1039)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-1133 *4)) (-4 *4 (-963))
- (-5 *2 (-1157 *4)))))
+ (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-556 *3)) (-5 *5 (-1072 *3))
- (-4 *3 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1072 *3)))
- (-4 *3 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1005)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
- (-4 *2 (-1133 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-387 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+ (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-623 *4)) (-4 *4 (-964)) (-5 *1 (-1044 *3 *4))
+ (-14 *3 (-703)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-844)) (-4 *5 (-509)) (-5 *2 (-623 *5))
- (-5 *1 (-878 *5 *3)) (-4 *3 (-593 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-682)))))
+ (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517))))
+ (-4 *5 (-810 (-517)))
+ (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-520 *5 *3)) (-4 *3 (-569))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1077)) (-5 *4 (-772 *2)) (-4 *2 (-1041))
+ (-4 *2 (-13 (-27) (-1098) (-400 *5)))
+ (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517)))
+ (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517))))
+ (-5 *1 (-520 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *5 (-977 *2 *3 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1157 *5)) (-5 *3 (-703)) (-5 *4 (-1023)) (-4 *5 (-319))
- (-5 *1 (-487 *5)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-300)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1005)))))
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-5 *2 (-493)) (-5 *1 (-492 *4))
+ (-4 *4 (-1112)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964))
+ (-4 *2 (-1118 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *2 (-873 *4 *6 *5)) (-5 *1 (-848 *4 *5 *6 *2))
+ (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3))))
- ((*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-361)))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-361)))))
(((*1 *2 *1)
(-12
(-5 *2
(-583
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199)))))
(-5 *1 (-512))))
((*1 *2 *1)
- (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))
(-5 *2 (-583 *3))))
((*1 *2 *1)
(-12
(-5 *2
(-583
(-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
(|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
(|:| |abserr| (-199)) (|:| |relerr| (-199)))))
(-5 *1 (-735)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-963))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-724))
- (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1005))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5))
- (-4 *4 (-1005)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| -1570 *4) (|:| -2773 *3) (|:| -3292 *3)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| -1570 *3) (|:| -2773 *1) (|:| -3292 *1)))
+ (-4 *1 (-1134 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-333) (-134) (-954 (-517))))
- (-4 *5 (-1133 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-934 *4 *5))
- (-5 *3 (-377 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4))
- (-14 *3 (-583 (-1076))) (-4 *4 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1076)))
- (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-963))
- (-4 *5 (-212 (-3535 *3) (-703)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4))
- (-14 *3 (-583 (-1076))) (-4 *4 (-963)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
+ (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2
+ (|:| -2576
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1846
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1058 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3177
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-512)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))
+ (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6))
+ (-4 *6 (-312 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-517)) (|has| *1 (-6 -4183)) (-4 *1 (-374))
- (-5 *2 (-844)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1077)) (-5 *6 (-107))
+ (-4 *7 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-1098) (-882) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-954 (-377 *2)))) (-5 *2 (-517))
- (-5 *1 (-110 *4 *3)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1162)) (-5 *1 (-361))))
- ((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-361)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-168)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1077)) (-4 *5 (-400 *4))
+ (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-109)) (-4 *4 (-963)) (-5 *1 (-647 *4 *2))
- (-4 *2 (-585 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-963)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
- (-5 *2 (-952)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1160)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1076))
- (-5 *2 (-583 *4)) (-5 *1 (-1019 *4 *5)))))
-(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-907 *4 *5 *6 *7 *3))
- (-4 *3 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-963))))
- ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-361))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-361)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1177 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-964)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
+ ((*1 *1 *1 *1) (-4 *1 (-442)))
+ ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-807))))
+ ((*1 *1 *1) (-5 *1 (-891)))
+ ((*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116))
+ (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752))
- (-14 *5 (-1076)) (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1023)) (-5 *2 (-107)) (-5 *1 (-753)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964))
+ (-5 *2 (-221 *4 *5)) (-5 *1 (-868 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(-5 *2
(-2
@@ -13281,10 +13499,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1057 (-199)))
+ (-3 (|:| |str| (-1058 (-199)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2758
+ (|:| -3177
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -13292,668 +13510,701 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-512)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703))
- (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-703)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-845)) (-5 *2 (-703)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7))
- (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1))
- (-4 *1 (-982 *4 *5 *6 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *5 (-1133 *4))
- (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3781 *5))))
- (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5))
- (-4 *6 (-593 (-377 *5))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199))))
- (-5 *2 (-952)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-199)) (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779))
- (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8))
- (-4 *8 (-872 *3 *7 *6)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *1 *1) (-5 *1 (-199)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
- ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -2585 (-1076)) (|:| -1859 (-407)))))
- (-5 *1 (-1080)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-1111)) (-5 *2 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502))
- (-4 *3 (-509))))
- ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502))
- (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502))
- (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-915 *3)) (-4 *3 (-156)) (-4 *3 (-502))
- (-5 *2 (-377 (-517)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-926 *3)) (-4 *3 (-954 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
- ((*1 *1 *1 *1) (-4 *1 (-442)))
- ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-806))))
- ((*1 *1 *1) (-5 *1 (-890)))
- ((*1 *1 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1157 (-377 (-875 *4))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *4)))))))
- (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134)))
- (-4 *7 (-872 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1076))))
- (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))))
+ (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1149 *4))
+ (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-1 (-1058 *4) (-583 (-1058 *4)))) (-5 *1 (-1151 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-888))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+ (-12 (-4 *4 (-964)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3))
+ (-4 *3 (-1134 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1072 (-1072 *4))))
- (-5 *1 (-1110 *4)) (-5 *3 (-1072 (-1072 *4))))))
+ (-12 (-5 *3 (-583 (-583 (-867 (-199)))))
+ (-5 *2 (-583 (-1001 (-199)))) (-5 *1 (-852)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278))
+ (-4 *9 (-873 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2242 (-1073 *9)) (|:| |polval| (-1073 *8))))
+ (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)) (-5 *4 (-1073 *8)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2587 (-583 (-199)))))
- (-5 *2 (-349)) (-5 *1 (-240))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509))
- (-4 *8 (-872 *7 *5 *6))
- (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *3) (|:| |radicand| *3)))
- (-5 *1 (-876 *5 *6 *7 *8 *3)) (-5 *4 (-703))
- (-4 *3
- (-13 (-333)
- (-10 -8 (-15 -3826 (*8 $)) (-15 -2098 (*8 $)) (-15 -2271 ($ *8))))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703))
+ (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5))
- (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-1168 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1168 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407)))))
+ (-5 *1 (-1081)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3))
- (-4 *3 (-1133 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107)))))
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1158 *6)) (-5 *4 (-1158 (-517))) (-5 *5 (-517))
+ (-4 *6 (-1006)) (-5 *2 (-1 *6)) (-5 *1 (-936 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-961)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1157 *5)) (-4 *5 (-724)) (-5 *2 (-107))
- (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-917 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+ (|partial| -12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509))
+ (-5 *2 (-1158 *4)) (-5 *1 (-578 *4 *5)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-199)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1059)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-849))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-849))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-1000 (-199)))
- (-5 *1 (-850)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
- ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-388 *4)) (-4 *4 (-509)))))
-(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-142)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
+ (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-221 *4 *5))
+ (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077))))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3))
+ (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2))
+ (-4 *2 (-621 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (-517) (-199) (-1076) (-1059) (-1081)))
- (-5 *1 (-1081)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-973 *4 *3))
- (-4 *3 (-1133 *4)))))
+ (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4))
+ (-4 *3 (-150 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703))
+ (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4))
+ (-4 *3 (-400 *4))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502))))
+ ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4))
+ (-4 *3 (-729 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-911 *3 *4))
+ (-4 *3 (-912 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-915 *3 *4))
+ (-4 *3 (-916 *4))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-930 *3)) (-4 *3 (-931))))
+ ((*1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-703))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1157 *1))))
+ (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-832))
- (-5 *2 (-1157 *1)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199))
- (-5 *3 (-517)) (-5 *2 (-952)) (-5 *1 (-685)))))
+ (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2 (-349)) (-5 *1 (-168)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 *4))))
- (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163))
+ (-5 *1 (-1113 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163))
+ (-5 *1 (-1113 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-27) (-400 *4)))
+ (-4 *4 (-13 (-779) (-509) (-955 (-517))))
+ (-4 *7 (-1134 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2))
+ (-4 *2 (-312 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-623 *2)) (-4 *4 (-1133 *2))
- (-4 *2 (-13 (-278) (-10 -8 (-15 -4018 ((-388 $) $)))))
- (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
- (-4 *5 (-212 *3 *2)) (-4 *2 (-963)))))
+ (|partial| -12 (-4 *5 (-955 (-47)))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4))
+ (-5 *2 (-388 (-1073 (-47)))) (-5 *1 (-405 *4 *5 *3))
+ (-4 *3 (-1134 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-896 *4 *5 *3 *6)) (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3)))
+ (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-633 *3))
+ (-4 *3 (-278)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199)))
+ (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-953))
+ (-5 *1 (-687)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-517))) (-5 *4 (-829 (-517)))
+ (-5 *2 (-623 (-517))) (-5 *1 (-538))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517))))
+ (-5 *1 (-538))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-829 (-517))))
+ (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-623 *4))) (-4 *4 (-156))
- (-5 *2 (-1157 (-623 (-875 *4)))) (-5 *1 (-165 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-2 (|:| -1395 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1163)))))
(((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1111)) (-5 *2 (-703))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1112)) (-5 *2 (-703))))
((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703))))
((*1 *2 *3)
- (-12 (-4 *4 (-963))
- (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256)))
- (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4))))
+ (-12 (-4 *4 (-964))
+ (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4))))
((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
- (-5 *2 (-952)) (-5 *1 (-689)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-977 *4 *5 *6))
- (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-896 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 *6)) (-4 *5 (-1115)) (-4 *6 (-1133 *5))
- (-5 *2 (-2 (|:| -2121 (-703)) (|:| -1582 *3) (|:| |radicand| *6)))
- (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1133 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072 *1)) (-4 *1 (-930)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-1076)) (|:| |c| (-1177 *3)))))
- (-5 *1 (-1177 *3)) (-4 *3 (-963))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1179 *3 *4)))))
- (-5 *1 (-1179 *3 *4)) (-4 *3 (-779)) (-4 *4 (-963)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779))
- (-5 *1 (-1083 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1111)) (-5 *1 (-345 *4 *2))
- (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4193)))))))
+ (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-973 (-941 *4) (-1072 (-941 *4)))) (-5 *3 (-787))
- (-5 *1 (-941 *4)) (-4 *4 (-13 (-777) (-333) (-939))))))
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116))
+ (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-896 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-703)) (-5 *3 (-866 *4)) (-4 *1 (-1037 *4))
- (-4 *4 (-963))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-703)) (-5 *4 (-866 (-199))) (-5 *2 (-1162))
- (-5 *1 (-1159)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3)))))
-(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1160)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123))
- (-4 *2 (-1005))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1005))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1005))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *2 (-1005)) (-5 *1 (-586 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1) (-5 *1 (-1079))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199))
- (-5 *2 (-952)) (-5 *1 (-682)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1107 *3)) (-4 *3 (-893)))))
-(((*1 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162))
- (-5 *1 (-907 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162))
- (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-1133 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
- (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
+ (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517))))
+ (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-199) (-199)))
+ (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-196 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-227 *3))))
+ ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3179 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-1014 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
- (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797))
- (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1161))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1375 (-377 *6))
+ (|:| |special| (-377 *6))))
+ (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-437))
- (-5 *1 (-1161))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236)))
- (-5 *2 (-437)) (-5 *1 (-1161)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199)))
- (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-952)) (-5 *1 (-687)))))
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-820 *3 *4))
+ (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-820 *3 *5))
+ (-4 *3 (-1134 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *3 (-583 (-236)))
+ (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437)))))
(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-1057 *3)) (-4 *3 (-1005))
- (-4 *3 (-1111)))))
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))
+ (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156))
+ (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3288 (-377 (-517))) (|:| -3300 (-377 (-517)))))
- (-5 *2 (-377 (-517))) (-5 *1 (-937 *4)) (-4 *4 (-1133 (-517))))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4))
+ (-5 *2 (-2 (|:| -1570 (-377 *5)) (|:| |poly| *3)))
+ (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
+ (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517)))
+ (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $))
+ (-15 -2082 ((-1029 *3 (-556 $)) $))
+ (-15 -2262 ($ (-1029 *3 (-556 $))))))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-104))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1006))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094)))))
+(((*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1133 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1133 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703)))
- (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1133 *3)))))
+ (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1085 (-844) (-703))))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-107)) (|:| -4026 (-703)) (|:| |period| (-703))))
- (-5 *1 (-1057 *4)) (-4 *4 (-1111)) (-5 *3 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-954 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1076)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1133 *6))
- (-4 *6 (-13 (-333) (-134) (-954 *4))) (-5 *4 (-517))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107))))
- (|:| -3781
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-933 *6 *3)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
+ (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5))
+ (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1075 *4 *5 *6))
+ (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1150 *4 *5 *6))
+ (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-517) (-199) (-1077) (-1060) (-1082)))
+ (-5 *1 (-1082)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-414 *3)) (-4 *3 (-964)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3))
+ (-4 *3 (-1006)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509))
+ (-4 *3 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107))
+ (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-843)) (-5 *2 (-2 (|:| -1582 (-583 *1)) (|:| -1318 *1)))
- (-5 *3 (-583 *1)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)))))
+ (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374))
+ (-5 *2 (-845)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1057 (-875 *4)) (-1057 (-875 *4))))
- (-5 *1 (-1165 *4)) (-4 *4 (-333)))))
+ (-12
+ (-5 *3
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-938 *4))
+ (-4 *4 (-1134 (-517))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-57 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3))
+ (-4 *3 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-209 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006))
+ (-5 *1 (-670 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1005))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517))
- (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1005)))))
-(((*1 *1) (-4 *1 (-319))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-953)) (-5 *1 (-689)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199)))
+ (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined"))
+ (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199)))
+ (-5 *1 (-630)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109))))
((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-5 *2 (-1162)) (-5 *1 (-189 *3))
+ (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3))
(-4 *3
(-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 (*2 $))
- (-15 -2691 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-364))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-364))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-467))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1092))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1162)) (-5 *1 (-1092)))))
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $))
+ (-15 -3012 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-364))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-364))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1093))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1093)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3))
+ (-4 *3 (-1006))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964))
+ (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3))
+ (-5 *1 (-874 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $))
+ (-15 -2082 (*7 $))))))))
(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-815 *3)) (|:| |den| (-815 *3))))
- (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1036 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1159))))
+ (-5 *2 (-2 (|:| |num| (-816 *3)) (|:| |den| (-816 *3))))
+ (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1036 (-199))) (-5 *3 (-1059)) (-5 *1 (-1159))))
- ((*1 *1 *1) (-5 *1 (-1159))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-218 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1097))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1097) (-920)))
- (-5 *1 (-158 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-1080)) (-5 *1 (-1079)))))
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-1082))) (-5 *1 (-1082)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-953))
+ (-5 *1 (-682)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-816 *6)))
+ (-5 *5 (-1 (-813 *6 *8) *8 (-816 *6) (-813 *6 *8))) (-4 *6 (-1006))
+ (-4 *8 (-13 (-964) (-558 (-816 *6)) (-955 *7))) (-5 *2 (-813 *6 *8))
+ (-4 *7 (-13 (-964) (-779))) (-5 *1 (-865 *6 *7 *8)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1111)))))
-(((*1 *2) (-12 (-5 *2 (-1048 (-1059))) (-5 *1 (-361)))))
+ (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1112)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5))
- (-14 *4 (-583 (-1076))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-583
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-517)))))
- (-4 *2 (-509)) (-5 *1 (-388 *2))))
+ (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502))))
((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4003 *3) (|:| -1725 (-703)))) (-5 *1 (-535 *3))
+ (-4 *3 (-502)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |contp| (-517))
- (|:| -1510 (-583 (-2 (|:| |irr| *4) (|:| -1992 (-517)))))))
- (-4 *4 (-1133 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+ (-5 *2
+ (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1762 (-703))))
+ (-5 *1 (-714 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1762 (-703))))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107))
+ (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798)))
+ (-5 *4 (-583 (-845))) (-5 *5 (-583 (-236))) (-5 *1 (-437))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798)))
+ (-5 *4 (-583 (-845))) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437))))
+ ((*1 *1 *1) (-5 *1 (-437))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *3 (-199))
+ (-5 *2 (-953)) (-5 *1 (-681)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1143 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5))
+ (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1006)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779))
+ (-14 *4
+ (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *2))
+ (-2 (|:| -2803 *3) (|:| -1725 *2)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1168 *4 *5 *6 *7)))
- (-5 *1 (-1168 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-509))
- (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1168 *6 *7 *8 *9)))
- (-5 *1 (-1168 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8))
- (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134)))
- (-4 *6 (-13 (-779) (-558 (-1076)))) (-4 *7 (-725)) (-5 *2 (-107))
- (-5 *1 (-847 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-5 *2 (-1072 *3)) (-5 *1 (-1086 *3))
- (-4 *3 (-333)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
+ (-12 (-5 *3 (-1044 *4 *2)) (-14 *4 (-845))
+ (-4 *2 (-13 (-964) (-10 -7 (-6 (-4197 "*"))))) (-5 *1 (-826 *4 *2)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1091)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-922 *3)) (-14 *3 (-517)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-583 *1)) (-4 *1 (-1037 *3)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199)))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-683)))))
-(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-992 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-992 *2)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199)))
+ (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1024)) (-4 *4 (-319))
+ (-5 *1 (-487 *4)))))
+(((*1 *1) (-5 *1 (-1160))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *1 *1) (-5 *1 (-975))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1158
+ (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517))
+ (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517))
+ (|:| |axesColor| (-798)) (|:| -2464 (-517))
+ (|:| |unitsColor| (-798)) (|:| |showing| (-517)))))
+ (-5 *1 (-1159)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-349)) (-5 *1 (-976)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1072 *3) (-1072 *3)))
- (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509)))
- (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-107)) (-5 *5 (-1007 (-703))) (-5 *6 (-703))
- (-5 *2
- (-2 (|:| |contp| (-517))
- (|:| -1510 (-583 (-2 (|:| |irr| *3) (|:| -1992 (-517)))))))
- (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-421))
- (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349)))
- ((*1 *1) (-5 *1 (-349))))
-(((*1 *2)
- (-12 (-4 *1 (-319))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-963)) (-4 *2 (-621 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1133 *4)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1158)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1015)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-956)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
- (-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2))
+ (-4 *2 (-593 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-343 *3))
+ (-4 *3 (-1112)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1115)) (-4 *3 (-1133 *4))
- (-4 *5 (-1133 (-377 *3))) (-5 *2 (-107))))
+ (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3))
+ (-4 *3 (-343 *4))))
((*1 *2 *3)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6)
- (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1713 *6)))
- (-5 *1 (-934 *5 *6)) (-5 *3 (-377 *6)))))
+ (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3))
+ (-4 *5 (-343 *2)) (-4 *3 (-343 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *4)) (-4 *4 (-912 *2)) (-4 *2 (-509))
+ (-5 *1 (-626 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-1127 *2 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006))
+ (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 (-583 (-2 (|:| -3121 *4) (|:| -2812 (-1023))))))
- (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-963)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-690)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116))
+ (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 (-816 *3)))))
+ (-5 *1 (-816 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-816 *4)))
+ (-5 *1 (-816 *4)) (-4 *4 (-1006)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-583 *7) *7 (-1073 *7))) (-5 *5 (-1 (-388 *7) *7))
+ (-4 *7 (-1134 *6)) (-4 *6 (-13 (-333) (-134) (-955 (-377 (-517)))))
+ (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3817 *3))))
+ (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7))
+ (-4 *8 (-593 (-377 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2
+ (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3817 (-591 *6 (-377 *6))))))
+ (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-963)) (-4 *3 (-724))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))
(-4 *2 (-333))))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199))))
((*1 *1 *1 *1)
- (-3747 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1111)))
- (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1111)))))
+ (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112)))
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112)))))
((*1 *1 *1 *1) (-4 *1 (-333)))
((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1028 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779))
+ (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779))
(-4 *1 (-400 *3))))
((*1 *1 *1 *1) (-4 *1 (-442)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
((*1 *1 *1 *1) (-5 *1 (-493)))
((*1 *1 *2 *3)
(-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4))
@@ -13969,1184 +14220,1206 @@
(-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4))
(-4 *2 (|SubsetCategory| (-659) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2)) (-4 *2 (-333))))
((*1 *1 *1 *1) (-5 *1 (-787)))
((*1 *1 *1 *1)
(|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333))
- (-4 *2 (-963)) (-14 *3 (-583 (-1076))) (-14 *4 (-583 (-703)))
+ (-4 *2 (-964)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-703)))
(-14 *5 (-703))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-963))
+ (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964))
(-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-333))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-333))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-333)) (-4 *2 (-963)) (-4 *3 (-779))
+ (|partial| -12 (-4 *2 (-333)) (-4 *2 (-964)) (-4 *3 (-779))
(-4 *4 (-725)) (-14 *6 (-583 *3))
- (-5 *1 (-1167 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-872 *2 *4 *3))
+ (-5 *1 (-1168 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-873 *2 *4 *3))
(-14 *7 (-583 (-703))) (-14 *8 (-703))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-333)) (-4 *2 (-963))
+ (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-333)) (-4 *2 (-964))
(-4 *3 (-775)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1005)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-517)) (-5 *1 (-1057 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1005)) (-5 *1 (-828 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-156)) (-4 *2 (-1133 *4)) (-5 *1 (-159 *4 *2 *3))
- (-4 *3 (-657 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-377 (-875 *5)))) (-5 *4 (-1076))
- (-5 *2 (-875 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-5 *2 (-875 *4))
- (-5 *1 (-263 *4)) (-4 *4 (-421))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1133 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 (-153 (-377 (-517)))))
- (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *4))
- (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1076))
- (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *5))
- (-4 *5 (-13 (-333) (-777)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-875 (-377 (-517))))
- (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1076))
- (-5 *2 (-875 (-377 (-517)))) (-5 *1 (-711 *5))
- (-4 *5 (-13 (-333) (-777))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703)))
+ (-5 *1 (-828 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807))
+ (-5 *3 (-583 (-517))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1005)) (-4 *2 (-338)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *4)) (-4 *4 (-319)) (-5 *2 (-1072 *4))
- (-5 *1 (-487 *4)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
- (-5 *1 (-302)))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6))))
+ (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1149 *5)) (-5 *2 (-583 *6))
+ (-5 *1 (-1151 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1158 (-377 (-876 *4))))
+ (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))
+ (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *7 (-873 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-583 (-1077))) (-4 *5 (-421))
+ (-5 *2
+ (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517)))))
+ (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-125)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-189 *2))
(-4 *2
(-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $))
- (-15 -2691 ((-1162) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1111))))
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $))
+ (-15 -3012 ((-1163) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-21)))))
-(((*1 *1 *1) (-4 *1 (-130)))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-107) *5))
- (-5 *1 (-813 *4 *5)) (-4 *5 (-1111)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-963))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-963)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1076)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-844))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5))
- (-14 *4 (-844)) (-14 *5 (-912 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4))
- (-4 *3 (-13 (-963) (-779))) (-14 *4 (-583 (-1076)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-123))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-963))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4))
- (-4 *4 (-1133 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-963))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-963)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5))
- (-4 *4 (-963)) (-4 *5 (-779))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-963))
- (-4 *2 (-779))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-963))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6))
- (-4 *4 (-963)) (-4 *5 (-725)) (-4 *6 (-779))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *2 (-779))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-4 *2 (-872 *4 (-489 *5) *5))
- (-5 *1 (-1029 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-779))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-875 *4)) (-5 *1 (-1106 *4))
- (-4 *4 (-963)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1582 *3) (|:| |gap| (-703)) (|:| -3371 (-714 *3))
- (|:| -2946 (-714 *3))))
- (-5 *1 (-714 *3)) (-4 *3 (-963))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779))
- (-5 *2
- (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -3371 *1)
- (|:| -2946 *1)))
- (-4 *1 (-977 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2
- (-2 (|:| -1582 *1) (|:| |gap| (-703)) (|:| -3371 *1)
- (|:| -2946 *1)))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-779) (-134) (-954 (-517)) (-579 (-517))))
- (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3))
- (-4 *3 (-13 (-1097) (-29 *5))))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059)))))
- (-5 *2 (-952)) (-5 *1 (-276))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3617 (-349)) (|:| -2989 (-1059))
- (|:| |explanations| (-583 (-1059))) (|:| |extra| (-952))))
- (-5 *2 (-952)) (-5 *1 (-276)))))
+ (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5))
+ (-5 *1 (-814 *4 *5)) (-4 *5 (-1112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-897 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
(((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1080)) (-5 *3 (-1077)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-377 (-517))))
- (-5 *2 (-2 (|:| -1471 (-1057 *4)) (|:| -1483 (-1057 *4))))
- (-5 *1 (-1063 *4)) (-5 *3 (-1057 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ (-12 (|has| *6 (-6 -4196)) (-4 *4 (-333)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4196)) (-4 *4 (-509)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *8 (-343 *7))
+ (-4 *9 (-343 *7)) (-5 *2 (-583 *6))
+ (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6))
+ (-4 *10 (-621 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
+ (-5 *2 (-583 *7)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1) (-4 *1 (-458)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-333))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-527 *5 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-1072 (-875 *4))) (-5 *1 (-386 *3 *4))
- (-4 *3 (-387 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333))
- (-5 *2 (-1072 (-875 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -1375 (-388 *3)) (|:| |special| (-388 *3))))
+ (-5 *1 (-660 *5 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *3 (-824 *6))
+ (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3))
+ (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195)))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-189 *2))
(-4 *2
(-13 (-779)
- (-10 -8 (-15 -2609 ((-1059) $ (-1076))) (-15 -1757 ((-1162) $))
- (-15 -2691 ((-1162) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1111))))
+ (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $))
+ (-15 -3012 ((-1163) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-123))))
+ (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2))
- (-4 *2 (-1133 *3))))
+ (-4 *2 (-1134 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
((*1 *1 *1 *1)
(-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
- (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))
((*1 *1 *1 *1) (-5 *1 (-493)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
(-4 *4 (-343 *2))))
((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1005))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1108))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-25)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-583
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-725)) (-4 *3 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
- (-5 *1 (-418 *4 *5 *6 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-156)) (-4 *2 (-963)) (-5 *1 (-647 *2 *3))
- (-4 *3 (-585 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779))
- (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1179 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-156))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-25)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-751 *3)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1133 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1133 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-963))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+ (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -2242 *4))) (-5 *5 (-703))
+ (-4 *4 (-873 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-418 *6 *7 *8 *4)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *5 (-845))
+ (-5 *2 (-1163)) (-5 *1 (-437))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-798)) (-5 *5 (-845))
+ (-5 *2 (-1163)) (-5 *1 (-437)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1158))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1158))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1158))))
+ (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1159))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1159))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1159)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1) (-4 *1 (-458)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-4 *2 (-823 *5)) (-5 *1 (-625 *5 *2 *3 *4))
- (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-963))
- (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256)))
- (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3))
+ (|:| |genIdeal| (-469 *3 *4 *5 *6))))
+ (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-963)))))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 (-517)))) (-5 *1 (-435)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-845)) (-4 *5 (-278)) (-4 *3 (-1134 *5))
+ (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1072 *4)) (-4 *4 (-319)) (-5 *2 (-880 (-1023)))
- (-5 *1 (-316 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-134))
- (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1059)))))
-(((*1 *1) (-5 *1 (-975))))
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1)))
+ (-4 *1 (-978 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1077))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-583 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1098) (-27) (-400 *8)))
+ (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3)))
+ (-5 *3 (-517))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107))))
+ (-5 *1 (-932 *8 *4)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1) (-4 *1 (-458)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4))))
- (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-1128 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-963)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-952))
- (-5 *1 (-682)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-400 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
- (-4 *3 (-1005))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963))
- (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3))
- (-5 *1 (-873 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $))
- (-15 -2098 (*7 $))))))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1042 *4 *5))) (-5 *3 (-1 (-107) *5 *5))
+ (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33)))
+ (-5 *1 (-1043 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-1042 *3 *4))) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851))
+ (-5 *1 (-849 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851))
+ (-5 *1 (-849 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199)))
+ (-5 *1 (-851)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1072 *7)))
- (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1072 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-832)) (-4 *5 (-1133 *4)) (-5 *2 (-388 (-1072 *5)))
- (-5 *1 (-830 *4 *5)) (-5 *3 (-1072 *5)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-583 (-866 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-963)) (-4 *1 (-1037 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-215)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1158))))
- ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1159)))))
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4))))
+ (-5 *1 (-1166 *4)) (-4 *4 (-333)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-278))
+ (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-680)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1073 *7)) (-5 *3 (-517)) (-4 *7 (-873 *6 *4 *5))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964))
+ (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1053))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *1 *1) (-4 *1 (-458)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1076)) (-5 *2 (-107))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-278))
- (-5 *2 (-377 (-388 (-875 *4)))) (-5 *1 (-958 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-421)) (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3337 *4))) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-754)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1098) (-882) (-29 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-964)) (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-4 *2 (-1006))
+ (-5 *1 (-813 *4 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-866 (-199)) (-199) (-199)))
- (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-509))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-896 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
- ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-1085 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
- (-4 *3 (-1133 *4))
- (-4 *5 (-13 (-374) (-954 *4) (-333) (-1097) (-256))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-819 *2 *4))
- (-4 *2 (-1133 *4)))))
+ (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *1 *1) (-4 *1 (-458)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-286 (-517))))
- (-5 *1 (-948)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-952))
- (-5 *1 (-687)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199))))
+ (-5 *2 (-953)) (-5 *1 (-687)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-867 (-199)))) (-5 *1 (-1159)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-684)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-388 (-1072 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-100)))))
-(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1059)) (-5 *1 (-51)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1044 *3 *4)) (-14 *3 (-845)) (-4 *4 (-333))
+ (-5 *1 (-913 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107))
+ (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798)))
+ (-5 *1 (-437)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *1 *1) (-4 *1 (-458)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703))
- (-14 *4 (-703)) (-4 *5 (-156)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199))
+ (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-684)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
- (-4 *3 (-1133 *4))
- (-4 *5 (-13 (-374) (-954 *4) (-333) (-1097) (-256))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1081))) (-5 *1 (-1081))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1076)) (-5 *3 (-583 (-1081))) (-5 *1 (-1081)))))
+ (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1006)) (-5 *2 (-1 *4))
+ (-5 *1 (-936 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1001 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-962)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4))
+ (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-725))
- (-4 *3 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $))))) (-4 *5 (-509))
- (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725))
- (-4 *3
- (-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
- (-5 *1 (-903 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *6))
- (-4 *6
- (-13 (-779)
- (-10 -8 (-15 -3359 ((-1076) $))
- (-15 -3752 ((-3 $ "failed") (-1076))))))
- (-4 *4 (-963)) (-4 *5 (-725)) (-5 *1 (-903 *4 *5 *6 *2))
- (-4 *2 (-872 (-875 *4) *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159))))
- ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1159)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952))
- (-5 *1 (-689)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-907 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3834 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-421))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
- (-5 *1 (-1012 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1057 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-509)) (-4 *8 (-873 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *9) (|:| |radicand| *9)))
+ (-5 *1 (-877 *5 *6 *7 *8 *9)) (-5 *4 (-703))
+ (-4 *9
+ (-13 (-333)
+ (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1005)) (-5 *2 (-107))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1005))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-107)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-1133 (-153 *3))))))
+ (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1006))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4))))
+ (-5 *1 (-108 *4)) (-4 *4 (-1006)))))
(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-895 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-5 *2 (-107)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-880 *3)) (-5 *1 (-1064 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952))
- (-5 *1 (-688)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-496 *4 *2 *5 *6))
- (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1081)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1108 *2)) (-4 *2 (-894)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4))
+ (-4 *4 (-156)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1007 (-1007 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1005)) (-4 *3 (-823 *5)) (-5 *2 (-623 *3))
- (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3))
- (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4192)))))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-812 *4 *3))
- (-4 *3 (-1005)))))
-(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-963)))))
-(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517))))
+ (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517))))
+ (-5 *4 (-286 (-349))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517))))
+ (-5 *4 (-286 (-517))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-153 (-349)))))
+ (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-517)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-153 (-349)))))
+ (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-349))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-517))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517))))
+ (-5 *4 (-286 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517))))
+ (-5 *4 (-286 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517))))
+ (-5 *4 (-286 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-627)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-632)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-634)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-300))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51))
- (-5 *1 (-923)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
+ (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7))
+ (-5 *5 (-1 (-388 *7) *7))
+ (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7))
+ (-5 *5 (-1 (-388 *7) *7))
+ (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6))
+ (-4 *6 (-1134 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6))
+ (-4 *6 (-1134 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4))
+ (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-419 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-419 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779))
- (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-844))))
- ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
- ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
- ((*1 *1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
- ((*1 *1 *1) (|partial| -4 *1 (-655))))
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421))
+ (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1077)) (-5 *6 (-583 (-556 *3)))
+ (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *7)))
+ (-4 *7 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3)))
+ (-5 *1 (-510 *7 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-583 (-1076)))
- (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-940)) (-5 *5 (-349))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-14 *5 (-583 (-1076))) (-5 *2 (-583 (-583 (-941 (-377 *4)))))
- (-5 *1 (-1181 *4 *5 *6)) (-14 *6 (-583 (-1076)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
- (-4 *5 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *5))))) (-5 *1 (-1181 *5 *6 *7))
- (-14 *6 (-583 (-1076))) (-14 *7 (-583 (-1076)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4)))
- (-4 *4 (-13 (-777) (-278) (-134) (-939)))
- (-5 *2 (-583 (-583 (-941 (-377 *4))))) (-5 *1 (-1181 *4 *5 *6))
- (-14 *5 (-583 (-1076))) (-14 *6 (-583 (-1076))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *5 (-1133 *4)) (-5 *2 (-583 (-2 (|:| -3569 *5) (|:| -2968 *5))))
- (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5))
- (-4 *6 (-593 (-377 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *4 (-1133 *5)) (-5 *2 (-583 (-2 (|:| -3569 *4) (|:| -2968 *4))))
- (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4))
- (-4 *6 (-593 (-377 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *5 (-1133 *4)) (-5 *2 (-583 (-2 (|:| -3569 *5) (|:| -2968 *5))))
- (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5))
- (-4 *3 (-593 (-377 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517)))))
- (-4 *4 (-1133 *5)) (-5 *2 (-583 (-2 (|:| -3569 *4) (|:| -2968 *4))))
- (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4))
- (-4 *3 (-593 (-377 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
- (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
- (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
- (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
- (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
- (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
- (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1006)) (-4 *6 (-1006))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1006)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357))))
+ ((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077)))
+ (-14 *4 (-583 (-1077))) (-4 *5 (-357)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112))))
((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
((*1 *1 *1 *1) (-5 *1 (-787)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-943 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517))))))
- (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4))
- (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-265 (-377 (-875 (-153 (-517)))))))
- (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4))
- (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 (-153 (-517)))))
- (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4))
- (-4 *4 (-13 (-333) (-777)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 (-377 (-875 (-153 (-517))))))
- (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4))
- (-4 *4 (-13 (-333) (-777))))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-944 *3)) (-4 *3 (-1112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1134 *2)) (-4 *2 (-1116)) (-5 *1 (-135 *2 *4 *3))
+ (-4 *3 (-1134 (-377 *4))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1179 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779))
+ (-12 (-5 *3 (-1180 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779))
(-4 *2 (-156))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-779)) (-4 *2 (-963))))
+ (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-751 *4)) (-4 *1 (-1172 *4 *2)) (-4 *4 (-779))
- (-4 *2 (-963))))
+ (-12 (-5 *3 (-751 *4)) (-4 *1 (-1173 *4 *2)) (-4 *4 (-779))
+ (-4 *2 (-964))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-963)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-775)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107))
- (-5 *1 (-608 *4)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1160)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
- (-5 *2 (-952)) (-5 *1 (-687)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-685)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3))
+ (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))
+ (-4 *4 (-319)) (-5 *2 (-1163)) (-5 *1 (-487 *4)))))
(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *1 *1 *1) (-5 *1 (-349)))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-952))
- (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
- (-5 *2 (-952)) (-5 *1 (-689)))))
+ (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1163)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8))
+ (-4 *7 (-779)) (-4 *8 (-964)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725))
+ (-5 *2 (-1073 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725))
+ (-5 *2 (-107)) (-5 *1 (-907 *3 *4 *5 *6))
+ (-4 *6 (-873 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
(((*1 *2)
(-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
(-4 *3 (-337 *4))))
((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1005)) (-4 *2 (-779))
- (-5 *1 (-108 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1107 *3)) (-4 *3 (-893)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725))
- (-5 *2 (-107)) (-5 *1 (-906 *3 *4 *5 *6))
- (-4 *6 (-872 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-509))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *2 (-952)) (-5 *1 (-684)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-963))
- (-5 *1 (-624 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1072 *4))
- (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3))
+ (-4 *3 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1006)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4))))
+ (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-978 *6 *7 *8))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9))))
+ (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779))
+ (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9))))
+ (-5 *1 (-984 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199))))
+ (-5 *2 (-953)) (-5 *1 (-687)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-724)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1117 *3)))))
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-753)))))
-(((*1 *1 *1) (-4 *1 (-569)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920) (-1097))))))
-(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-167)) (-5 *3 (-517))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1133 (-377 (-517)))) (-5 *1 (-836 *3 *2))
- (-4 *2 (-1133 (-377 *3))))))
-(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-787)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1157 (-632))) (-5 *1 (-276)))))
+ (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6))
+ (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-521 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1036 (-199))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1037 (-199))) (-5 *1 (-228))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-802 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236)))
- (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199)))
+ (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199)))
(-5 *1 (-232 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-802 *5)) (-5 *4 (-998 (-349)))
- (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199)))
+ (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199)))
(-5 *1 (-232 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236)))
- (-5 *2 (-1036 (-199))) (-5 *1 (-232 *3))
- (-4 *3 (-13 (-558 (-493)) (-1005)))))
+ (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236)))
+ (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1006)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-998 (-349))) (-5 *2 (-1036 (-199))) (-5 *1 (-232 *3))
- (-4 *3 (-13 (-558 (-493)) (-1005)))))
+ (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1006)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-805 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236)))
- (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199)))
+ (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199)))
(-5 *1 (-232 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-805 *5)) (-5 *4 (-998 (-349)))
- (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1036 (-199)))
+ (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199)))
(-5 *1 (-232 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1076)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
- (-5 *1 (-302)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2))
+ (-4 *2 (-610 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-814 *4 *3))
+ (-4 *3 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1063 *3)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1) (-4 *1 (-793 *2))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-787)) (-5 *1 (-1057 *3)) (-4 *3 (-1005))
- (-4 *3 (-1111)))))
-(((*1 *2)
- (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517)))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1063 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1076))
- (-4 *2 (-13 (-27) (-1097) (-400 *5)))
- (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *5 *2)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1076)) (-5 *2 (-407)) (-5 *1 (-1080)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-684)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1073 *7)) (-4 *5 (-964))
+ (-4 *7 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-466 *5 *2 *6 *7))
+ (-4 *6 (-1134 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964))
+ (-4 *4 (-1134 *5)) (-5 *2 (-1073 *7)) (-5 *1 (-466 *5 *4 *6 *7))
+ (-4 *6 (-1134 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163))
+ (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163))
+ (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1077))) (-14 *5 (-703))
+ (-5 *1 (-470 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112))))
((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
(-4 *4 (-779))))
- ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1023)) (-5 *1 (-104))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1005))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1093)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))))
-(((*1 *2)
- (-12 (-14 *4 (-703)) (-4 *5 (-1111)) (-5 *2 (-125))
- (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4))
- (-4 *3 (-299 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-156))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
- (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-963)) (-5 *2 (-844))))
- ((*1 *2) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1097)))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1005)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1076)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7))
- (-4 *3 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111))
- (-4 *7 (-1111))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6))
- (-4 *3 (-558 (-493))) (-4 *5 (-1111)) (-4 *6 (-1111)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-517))))
+ (-4 *4 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $)))))
+ (-4 *3 (-509)) (-5 *1 (-1137 *3 *4)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3))
+ (-4 *3 (-1006)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
(-4 *5 (-343 *3)) (-5 *2 (-583 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-456 *3)) (-4 *3 (-1111))
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112))
(-5 *2 (-583 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1111))
- (-4 *5 (-1111)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703))
- (-4 *7 (-1111)) (-4 *5 (-1111)) (-5 *2 (-214 *6 *5))
- (-5 *1 (-213 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1111)) (-4 *5 (-1111))
- (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1005)) (-4 *5 (-1005))
- (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1111))
- (-4 *5 (-1111)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-880 *6)) (-4 *6 (-1111))
- (-4 *5 (-1111)) (-5 *2 (-880 *5)) (-5 *1 (-879 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1057 *6)) (-4 *6 (-1111))
- (-4 *3 (-1111)) (-5 *2 (-1057 *3)) (-5 *1 (-1055 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1157 *6)) (-4 *6 (-1111))
- (-4 *5 (-1111)) (-5 *2 (-1157 *5)) (-5 *1 (-1156 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797))))
- ((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-901 *2)) (-4 *2 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6))
- (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1076))))
- (-4 *7 (-725))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1) (-4 *1 (-1101))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3))
+ (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134)))
+ (-5 *1 (-1054 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
(-5 *2
- (-583
- (-2 (|:| -3737 (-703))
- (|:| |eqns|
- (-583
- (-2 (|:| |det| *8) (|:| |rows| (-583 (-517)))
- (|:| |cols| (-583 (-517))))))
- (|:| |fgb| (-583 *8)))))
- (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-703)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
+ (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2))
- (-4 *2 (-1111)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-628 *3)) (-4 *3 (-1005))
- (-5 *2 (-583 (-2 (|:| -1859 *3) (|:| -4137 (-703))))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3))
- (|:| |genIdeal| (-469 *3 *4 *5 *6))))
- (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-755)) (-5 *1 (-754)))))
+ (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))))
+(((*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-583 (-583 (-867 (-199)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-583 (-583 (-867 (-199))))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-703)) (-4 *1 (-903 *2)) (-4 *2 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3))
+ (-4 *3 (-13 (-1098) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-955 (-517)) (-134)))
+ (-5 *2 (-534 (-377 (-876 *5)))) (-5 *1 (-523 *5))
+ (-5 *3 (-377 (-876 *5))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-964)))))
+(((*1 *1) (-5 *1 (-407))))
(((*1 *1 *1) (-5 *1 (-47)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1111))
- (-4 *2 (-1111)) (-5 *1 (-56 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1112))
+ (-4 *2 (-1112)) (-5 *1 (-56 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (|has| *1 (-6 -4192))
- (-4 *1 (-138 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (|has| *1 (-6 -4195))
+ (-4 *1 (-138 *2)) (-4 *2 (-1112))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *2))
- (-4 *2 (-1111))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2))
+ (-4 *2 (-1112))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *2))
- (-4 *2 (-1111))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2))
+ (-4 *2 (-1112))))
((*1 *2 *3)
- (-12 (-4 *4 (-963))
- (-5 *2 (-2 (|:| -1694 (-1072 *4)) (|:| |deg| (-844))))
- (-5 *1 (-195 *4 *5)) (-5 *3 (-1072 *4)) (-4 *5 (-13 (-509) (-779)))))
+ (-12 (-4 *4 (-964))
+ (-5 *2 (-2 (|:| -2242 (-1073 *4)) (|:| |deg| (-845))))
+ (-5 *1 (-195 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-13 (-509) (-779)))))
((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703))
- (-4 *6 (-1111)) (-4 *2 (-1111)) (-5 *1 (-213 *5 *6 *2))))
+ (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-213 *5 *6 *2))))
((*1 *1 *2 *3)
(-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1133 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-4 *2 (-1134 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779))))
((*1 *1 *1)
- (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1133 *2))
- (-4 *4 (-1133 (-377 *3))) (-4 *5 (-312 *2 *3 *4))))
+ (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1134 *2))
+ (-4 *4 (-1134 (-377 *3))) (-4 *5 (-312 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1111)) (-4 *2 (-1111))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112))
(-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1005)) (-4 *2 (-1005))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1006)) (-4 *2 (-1006))
(-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2))))
((*1 *1 *1) (-5 *1 (-460)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1111))
- (-4 *2 (-1111)) (-5 *1 (-581 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1112))
+ (-4 *2 (-1112)) (-5 *1 (-581 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-964)) (-4 *2 (-964))
(-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2))
(-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10))
(-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9))))
@@ -15155,1685 +15428,1354 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3))))
((*1 *1 *2 *3)
(-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1133 *3)) (-4 *3 (-333))
+ (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-333))
(-4 *3 (-156)) (-4 *1 (-657 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1133 *3))))
+ (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-880 *5)) (-4 *5 (-1111))
- (-4 *2 (-1111)) (-5 *1 (-879 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-881 *5)) (-4 *5 (-1112))
+ (-4 *2 (-1112)) (-5 *1 (-880 *5 *2))))
((*1 *1 *2)
(-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5))
+ (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5))
(-14 *6 (-583 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-964)) (-4 *2 (-964))
(-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7))
(-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2))
- (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11))))
+ (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1057 *5)) (-4 *5 (-1111))
- (-4 *2 (-1111)) (-5 *1 (-1055 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1058 *5)) (-4 *5 (-1112))
+ (-4 *2 (-1112)) (-5 *1 (-1056 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2))
- (-4 *1 (-1105 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725))
- (-4 *7 (-779)) (-4 *2 (-977 *5 *6 *7))))
+ (-4 *1 (-1106 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *2 (-978 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1111))
- (-4 *2 (-1111)) (-5 *1 (-1156 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1112))
+ (-4 *2 (-1112)) (-5 *1 (-1157 *5 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1111)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3))
- (-4 *3 (-610 *4)))))
+ (-12
+ (-5 *3
+ (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))
+ (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-583 (-1076))) (-5 *1 (-1079)) (-5 *3 (-1076)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3)))
- (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-333)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| -3371 *1) (|:| -2946 *1))) (-4 *1 (-781 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-963))
- (-5 *2 (-2 (|:| -3371 *3) (|:| -2946 *3))) (-5 *1 (-782 *5 *3))
- (-4 *3 (-781 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-377 (-875 (-517)))))
- (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4))
- (-4 *4 (-13 (-777) (-333)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-265 (-377 (-875 (-517))))))
- (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4))
- (-4 *4 (-13 (-777) (-333)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 (-265 (-875 *4))))
- (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 (-377 (-875 (-517)))))
- (-5 *2 (-583 (-265 (-875 *4)))) (-5 *1 (-350 *4))
- (-4 *4 (-13 (-777) (-333)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1076))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-4 *4 (-13 (-29 *6) (-1097) (-881)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1492 (-583 *4))))
- (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1076)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1097) (-881)))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *5)) (-4 *5 (-333))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1157 *5) "failed"))
- (|:| -1492 (-583 (-1157 *5)))))
- (-5 *1 (-604 *5)) (-5 *4 (-1157 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1157 *5) "failed"))
- (|:| -1492 (-583 (-1157 *5)))))
- (-5 *1 (-604 *5)) (-5 *4 (-1157 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 *5)) (-4 *5 (-333))
- (-5 *2
- (-583
- (-2 (|:| |particular| (-3 (-1157 *5) "failed"))
- (|:| -1492 (-583 (-1157 *5))))))
- (-5 *1 (-604 *5)) (-5 *4 (-583 (-1157 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333))
- (-5 *2
- (-583
- (-2 (|:| |particular| (-3 (-1157 *5) "failed"))
- (|:| -1492 (-583 (-1157 *5))))))
- (-5 *1 (-604 *5)) (-5 *4 (-583 (-1157 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193))))
- (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4193))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1492 (-583 *4))))
- (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4193))))
- (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4193))))
- (-5 *2
- (-583
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1492 (-583 *7)))))
- (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7))
- (-4 *3 (-621 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1076))) (-4 *5 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1076))
- (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1097) (-881)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1076))
- (-4 *7 (-13 (-29 *6) (-1097) (-881)))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2
- (-2 (|:| |particular| (-1157 *7)) (|:| -1492 (-583 (-1157 *7)))))
- (-5 *1 (-734 *6 *7)) (-5 *4 (-1157 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1076))
- (-4 *6 (-13 (-29 *5) (-1097) (-881)))
- (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-583 (-1157 *6))) (-5 *1 (-734 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109)))
- (-5 *5 (-1076)) (-4 *7 (-13 (-29 *6) (-1097) (-881)))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2
- (-2 (|:| |particular| (-1157 *7)) (|:| -1492 (-583 (-1157 *7)))))
- (-5 *1 (-734 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109)))
- (-5 *5 (-1076)) (-4 *7 (-13 (-29 *6) (-1097) (-881)))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2
- (-2 (|:| |particular| (-1157 *7)) (|:| -1492 (-583 (-1157 *7)))))
- (-5 *1 (-734 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1076))
- (-4 *7 (-13 (-29 *6) (-1097) (-881)))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1492 (-583 *7))) *7 "failed"))
- (-5 *1 (-734 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-109)) (-5 *5 (-1076))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1492 (-583 *3))) *3 "failed"))
- (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1097) (-881)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1097) (-881))) (-5 *1 (-734 *6 *2))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1097) (-881)))
- (-4 *6 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *1 (-734 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-740)) (-5 *4 (-975)) (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1157 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
- (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1157 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
- (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1157 (-286 *4))) (-5 *5 (-583 (-349)))
- (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1157 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
- (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1157 (-286 *4))) (-5 *5 (-583 (-349)))
- (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1157 (-286 *4))) (-5 *5 (-583 (-349)))
- (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-952)) (-5 *1 (-737))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -1492 (-583 *6))) "failed")
- *7 *6))
- (-4 *6 (-333)) (-4 *7 (-593 *6))
- (-5 *2 (-2 (|:| |particular| (-1157 *6)) (|:| -1492 (-623 *6))))
- (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1157 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-952)) (-5 *1 (-820))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-821)) (-5 *4 (-975)) (-5 *2 (-952)) (-5 *1 (-820))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1059))
- (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349))
- (-5 *2 (-952)) (-5 *1 (-820))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1059))
- (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-952))
- (-5 *1 (-820))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 (-349)))
- (-5 *1 (-940)) (-5 *4 (-349))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-940))
- (-5 *4 (-349))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1133 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1034 *4))
- (-5 *3 (-286 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1034 *4))
- (-5 *3 (-265 (-286 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1034 *5))
- (-5 *3 (-265 (-286 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1034 *5))
- (-5 *3 (-286 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1076)))
- (-4 *5 (-13 (-779) (-278) (-954 (-517)) (-579 (-517)) (-134)))
- (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1034 *5))
- (-5 *3 (-583 (-265 (-286 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076)))
- (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5))))))
- (-5 *1 (-1082 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1076))) (-4 *5 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-1082 *5))
- (-5 *3 (-583 (-265 (-377 (-875 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-377 (-875 *4)))) (-4 *4 (-509))
- (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-1082 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4))))))
- (-5 *1 (-1082 *4)) (-5 *3 (-583 (-265 (-377 (-875 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-4 *5 (-509))
- (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1082 *5))
- (-5 *3 (-377 (-875 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-4 *5 (-509))
- (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1082 *5))
- (-5 *3 (-265 (-377 (-875 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4)))))
- (-5 *1 (-1082 *4)) (-5 *3 (-377 (-875 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4)))))
- (-5 *1 (-1082 *4)) (-5 *3 (-265 (-377 (-875 *4)))))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1) (-4 *1 (-1101))))
(((*1 *1 *1) (-5 *1 (-787)))
((*1 *2 *1)
- (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005))))
- ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1058))))
- ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1076)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7)))
- (-4 *7 (-1133 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-527 *6 *7)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2))
- (-4 *2 (-621 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-924)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 (-517)))))
- (-5 *1 (-331 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 (-703)))))
- (-5 *1 (-356 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3868 *3) (|:| -2121 (-517)))))
- (-5 *1 (-388 *3)) (-4 *3 (-509))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 (-703)))))
- (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+ (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1059))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1077)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-964))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-684)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964))
+ (-5 *1 (-1062 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964))
+ (-14 *4 (-1077)) (-14 *5 *3))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1066 *4 *5))
+ (-14 *4 (-845)) (-4 *5 (-964)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1097)))
- (-4 *5 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-1072 (-377 (-1072 *6)))) (-5 *1 (-513 *5 *6 *7))
- (-5 *3 (-1072 *6)) (-4 *7 (-1005))))
+ (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1098)))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-1073 (-377 (-1073 *6)))) (-5 *1 (-513 *5 *6 *7))
+ (-5 *3 (-1073 *6)) (-4 *7 (-1006))))
((*1 *2 *1)
- (-12 (-4 *2 (-1133 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-963))))
+ (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964))))
((*1 *2 *1)
- (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1133 *3))))
+ (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1072 *11)) (-5 *6 (-583 *10))
+ (|partial| -12 (-5 *4 (-1073 *11)) (-5 *6 (-583 *10))
(-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779))
- (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-872 *11 *9 *10))
- (-5 *2 (-583 (-1072 *5))) (-5 *1 (-675 *9 *10 *11 *5))
- (-5 *3 (-1072 *5))))
+ (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-873 *11 *9 *10))
+ (-5 *2 (-583 (-1073 *5))) (-5 *1 (-675 *9 *10 *11 *5))
+ (-5 *3 (-1073 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-872 *3 *4 *5)) (-5 *1 (-951 *3 *4 *5 *2 *6))
+ (-12 (-4 *2 (-873 *3 *4 *5)) (-5 *1 (-952 *3 *4 *5 *2 *6))
(-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-406)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963))
- (-5 *2 (-583 (-583 (-866 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107)) (-4 *4 (-963))
- (-4 *1 (-1037 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 (-866 *3)))) (-4 *3 (-963))
- (-4 *1 (-1037 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107))
- (-4 *1 (-1037 *4)) (-4 *4 (-963))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107))
- (-4 *1 (-1037 *4)) (-4 *4 (-963))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155)))
- (-5 *4 (-155)) (-4 *1 (-1037 *5)) (-4 *5 (-963))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-866 *5)))) (-5 *3 (-583 (-155)))
- (-5 *4 (-155)) (-4 *1 (-1037 *5)) (-4 *5 (-963)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1) (-4 *1 (-1101))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1087 *2)) (-4 *2 (-333)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-963)) (-4 *4 (-156))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-779)) (-4 *3 (-963))
- (-4 *3 (-156)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-837 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1076))
- (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-388 (-875 *6))) (-5 *5 (-1076)) (-5 *3 (-875 *6))
- (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *6)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
- (-4 *2 (-1133 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1133 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1158)) (-5 *1 (-228))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-1058 (-199))) (-5 *1 (-168))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1158)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077)))
+ (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349)))
+ (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077)))
+ (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921))
+ (-4 *2 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-918 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-4 *4 (-1134 *3))
+ (-5 *2
+ (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-1134 *3))
+ (-5 *2
+ (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3))
+ (-5 *2
+ (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-905 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3))
+ (-5 *2
+ (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-1167 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349)))
(-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-1000 (-349)))
+ (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349)))
(-5 *2 (-1159)) (-5 *1 (-228))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349)))
+ (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349)))
(-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-1000 (-349)))
+ (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349)))
(-5 *2 (-1159)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1160)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1159)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1159)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-1000 (-349)))
- (-5 *2 (-1159)) (-5 *1 (-228))))
+ (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349)))
+ (-5 *2 (-1160)) (-5 *1 (-228))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-265 *7)) (-5 *4 (-1076)) (-5 *5 (-583 (-236)))
- (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-954 (-517))))
- (-5 *2 (-1158)) (-5 *1 (-229 *6 *7))))
+ (-12 (-5 *3 (-265 *7)) (-5 *4 (-1077)) (-5 *5 (-583 (-236)))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-955 (-517))))
+ (-5 *2 (-1159)) (-5 *1 (-229 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158))
- (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005)))))
+ (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159))
+ (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-998 (-349))) (-5 *2 (-1158)) (-5 *1 (-232 *3))
- (-4 *3 (-13 (-558 (-493)) (-1005)))))
+ (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1159)) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1006)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-800 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236)))
- (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1158))
+ (-12 (-5 *3 (-801 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159))
(-5 *1 (-232 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-800 *5)) (-5 *4 (-998 (-349)))
- (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1158))
+ (-12 (-5 *3 (-801 *5)) (-5 *4 (-999 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159))
(-5 *1 (-232 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-802 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236)))
- (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159))
+ (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160))
(-5 *1 (-232 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-802 *5)) (-5 *4 (-998 (-349)))
- (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159))
+ (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160))
(-5 *1 (-232 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159))
- (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1005)))))
+ (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160))
+ (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-998 (-349))) (-5 *2 (-1159)) (-5 *1 (-232 *3))
- (-4 *3 (-13 (-558 (-493)) (-1005)))))
+ (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1160)) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1006)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-805 *6)) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236)))
- (-4 *6 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159))
+ (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160))
(-5 *1 (-232 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-805 *5)) (-5 *4 (-998 (-349)))
- (-4 *5 (-13 (-558 (-493)) (-1005))) (-5 *2 (-1159))
+ (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160))
(-5 *1 (-232 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158)) (-5 *1 (-233))))
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1159)) (-5 *1 (-233))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1158))
+ (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1159))
(-5 *1 (-233))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *2 (-1158)) (-5 *1 (-233))))
+ (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *2 (-1159)) (-5 *1 (-233))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-583 (-236)))
- (-5 *2 (-1158)) (-5 *1 (-233))))
+ (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-583 (-236)))
+ (-5 *2 (-1159)) (-5 *1 (-233))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1159)) (-5 *1 (-233))))
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1160)) (-5 *1 (-233))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1159))
+ (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1160))
(-5 *1 (-233)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
- (|:| |relerr| (-199))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-168)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-944 *5 *6 *7 *3))) (-5 *1 (-944 *5 *6 *7 *3))
- (-4 *3 (-977 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-583 (-1047 *5 *6 *7 *3))) (-5 *1 (-1047 *5 *6 *7 *3))
- (-4 *3 (-977 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1157 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278))
- (-4 *3 (-509)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-4 *4 (-333)) (-5 *2 (-1157 *1))
- (-4 *1 (-299 *4))))
- ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1157 *1)) (-4 *1 (-299 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-156)) (-4 *4 (-1133 *3)) (-5 *2 (-1157 *1))
- (-4 *1 (-379 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4))
- (-5 *2 (-1157 *6)) (-5 *1 (-383 *3 *4 *5 *6))
- (-4 *6 (-13 (-379 *4 *5) (-954 *4)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1) (-4 *1 (-1101))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-964)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -1725 (-517)))) (-4 *1 (-400 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-278)) (-4 *4 (-911 *3)) (-4 *5 (-1133 *4))
- (-5 *2 (-1157 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))
- (-4 *6 (-379 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1157 *1)) (-4 *1 (-387 *3))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-816 *3))))
+ (-5 *1 (-816 *3)) (-4 *3 (-1006))))
((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1157 (-1157 *4))) (-5 *1 (-487 *4))
- (-4 *4 (-319)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *4 (-1005)) (-5 *2 (-583 *5))
- (-5 *1 (-813 *4 *5)) (-4 *5 (-1111)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-583 (-1076))) (-14 *5 (-703))
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964))
+ (-4 *7 (-873 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -1725 (-517))))
+ (-5 *1 (-874 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $))
+ (-15 -2082 (*7 $))))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3))
+ (-4 *3 (-1006)))))
+(((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
(-583
- (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
- (-221 *4 (-377 (-517))))))
- (-5 *1 (-470 *4 *5))
- (-5 *3
- (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
- (-221 *4 (-377 (-517))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1157 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115))
- (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4))))))
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779))
+ (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1058 *4)) (-4 *4 (-37 *3)) (-4 *4 (-964))
+ (-5 *3 (-377 (-517))) (-5 *1 (-1062 *4)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-583 (-1073 *13))) (-5 *3 (-1073 *13))
+ (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13))
+ (-5 *7 (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *13)))))
+ (-5 *8 (-583 (-703))) (-5 *9 (-1158 (-583 (-1073 *10))))
+ (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-873 *10 *11 *12))
+ (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-1149 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-1163))
+ (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *1 (-1031 *3 *2)) (-4 *3 (-1133 *2)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199))))
- (-5 *2 (-952)) (-5 *1 (-687)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-963)) (-4 *3 (-779))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2121 (-517)))) (-4 *1 (-400 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1) (-4 *1 (-1101))))
+(((*1 *2)
+ (-12 (-14 *4 (-703)) (-4 *5 (-1112)) (-5 *2 (-125))
+ (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-156))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2121 (-815 *3))))
- (-5 *1 (-815 *3)) (-4 *3 (-1005))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-963))
- (-4 *7 (-872 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -2121 (-517))))
- (-5 *1 (-873 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $))
- (-15 -2098 (*7 $))))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1076)))
- (-4 *2 (-13 (-400 (-153 *5)) (-920) (-1097)))
- (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2))
- (-4 *6 (-13 (-400 *5) (-920) (-1097))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-1092)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-964)) (-5 *2 (-845))))
+ ((*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3765 *5))))
- (-4 *5 (-1133 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5))
- (-5 *1 (-191 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| -3868 *5) (|:| -3647 (-517)))))
- (-5 *4 (-517)) (-4 *5 (-1133 *4)) (-5 *2 (-583 *5))
- (-5 *1 (-629 *5)))))
+ (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-804)))))
+(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1134 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-963))
- (-4 *2 (-13 (-374) (-954 *4) (-333) (-1097) (-256)))
- (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1133 *4)))))
+ (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2))
+ (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2))
+ (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))))
+(((*1 *1 *1 *1) (-4 *1 (-130)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962))
+ (-5 *3 (-517)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517))))
+ (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *6 *5)))))
(((*1 *1) (-5 *1 (-300))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-952))
- (-5 *1 (-681)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-199) (-199) (-199)))
- (-5 *4 (-1 (-199) (-199) (-199) (-199)))
- (-5 *2 (-1 (-866 (-199)) (-199) (-199))) (-5 *1 (-630)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-1072 (-875 *4))) (-5 *1 (-386 *3 *4))
- (-4 *3 (-387 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333))
- (-5 *2 (-1072 (-875 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-583 (-1072 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1076)))
- (-4 *5 (-509)) (-5 *2 (-583 (-583 (-875 *5)))) (-5 *1 (-1082 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-131)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1065 *4 *5))
- (-14 *4 (-844)) (-4 *5 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1157 *5))) (-5 *4 (-517)) (-5 *2 (-1157 *5))
- (-5 *1 (-946 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-963)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *1 *1) (-4 *1 (-569)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920) (-1097))))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
+ ((*1 *1 *1) (-4 *1 (-1101))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))
- (-5 *2 (-2 (|:| -2585 *3) (|:| -1859 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
- (-5 *2
- (-2 (|:| |solns| (-583 *5))
- (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1031 *3 *5)) (-4 *3 (-1133 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-5 *2 (-2 (|:| -2576 *3) (|:| -1846 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517)))))
+ (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))))
+(((*1 *1 *1 *1) (-5 *1 (-146)))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 *2)) (-4 *4 (-1134 *2))
+ (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))))
+ (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (-4 *2 (-964)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *2)) (-5 *4 (-1077)) (-4 *2 (-400 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-4 *1 (-931))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-5 *4 (-787))
+ (-4 *1 (-931))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-845)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *1 (-980 *4 *2)) (-4 *2 (-1134 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1057 (-875 *4)) (-1057 (-875 *4))))
- (-5 *1 (-1165 *4)) (-4 *4 (-333)))))
+ (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1))
+ (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798))
+ (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-1159))
+ (-5 *1 (-1162))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236)))
+ (-5 *2 (-1159)) (-5 *1 (-1162)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-964) (-779)))
+ (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-963)) (-5 *1 (-1061 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1076))
- (-14 *4 *2))))
-(((*1 *1 *1) (-5 *1 (-975))))
+ (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077))
+ (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))))
+ ((*1 *1 *1) (-5 *1 (-349)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4))))
+ (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-963)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112))
+ (-5 *2 (-583 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *6 (-558 (-1077)))
+ (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *2 (-1067 (-583 (-876 *4)) (-583 (-265 (-876 *4)))))
+ (-5 *1 (-469 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-907 (-377 (-517)) (-789 *3) (-214 *4 (-703))
+ (-221 *3 (-377 (-517)))))
+ (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-906 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1005))
- (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-400 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))
- (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3))
+ (-4 *3 (-1006))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-816 *3)) (-4 *3 (-779)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1045)) (-5 *3 (-131)) (-5 *2 (-107)))))
+ (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964))
+ (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3))
+ (-5 *1 (-874 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $))
+ (-15 -2082 (*7 $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1005)) (-4 *2 (-823 *4)) (-5 *1 (-625 *4 *2 *5 *3))
- (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4192)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-1076)) (-4 *6 (-400 *5))
- (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
-(((*1 *1) (-5 *1 (-107))))
-(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-977 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-1145 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-815 *4)) (-4 *4 (-1005)) (-5 *1 (-812 *4 *3))
- (-4 *3 (-1005)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1492 (-583 *1))))
- (-4 *1 (-337 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-422 *3 *4 *5 *6))
- (|:| -1492 (-583 (-422 *3 *4 *5 *6)))))
- (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-278))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963))
- (-5 *2 (-221 *4 *5)) (-5 *1 (-867 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *3 (-199))
- (-5 *2 (-952)) (-5 *1 (-681)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
+ (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964))
+ (-5 *2 (-449 *4 *5)) (-5 *1 (-868 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5))
+ (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6))
+ (-4 *6 (-421))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5))
+ (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6))
+ (-4 *6 (-421)))))
+(((*1 *1) (-5 *1 (-107))))
+(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333))
+ (-5 *2 (-107)) (-5 *1 (-604 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196))))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-107))
+ (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1098))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8)))
+ (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725))
+ (-5 *2
+ (-2 (|:| |upol| (-1073 *8)) (|:| |Lval| (-583 *8))
+ (|:| |Lfact|
+ (-583 (-2 (|:| -3896 (-1073 *8)) (|:| -1725 (-517)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-675 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-1108 *3))
+ (-4 *3 (-894)))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779))
- (-4 *4 (-509)) (-5 *2 (-377 (-1072 *1)))))
+ (-4 *4 (-509)) (-5 *2 (-377 (-1073 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1097)))
- (-4 *6 (-13 (-421) (-954 (-517)) (-779) (-134) (-579 (-517))))
- (-5 *2 (-1072 (-377 (-1072 *3)))) (-5 *1 (-513 *6 *3 *7))
- (-5 *5 (-1072 *3)) (-4 *7 (-1005))))
+ (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098)))
+ (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-1073 (-377 (-1073 *3)))) (-5 *1 (-513 *6 *3 *7))
+ (-5 *5 (-1073 *3)) (-4 *7 (-1006))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1153 *5)) (-14 *5 (-1076)) (-4 *6 (-963))
- (-5 *2 (-1130 *5 (-875 *6))) (-5 *1 (-870 *5 *6)) (-5 *3 (-875 *6))))
+ (-12 (-5 *4 (-1154 *5)) (-14 *5 (-1077)) (-4 *6 (-964))
+ (-5 *2 (-1131 *5 (-876 *6))) (-5 *1 (-871 *5 *6)) (-5 *3 (-876 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-1072 *3))))
+ (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-1073 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-963)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1072 *1))
- (-4 *1 (-872 *4 *5 *3))))
+ (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1073 *1))
+ (-4 *1 (-873 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-963))
- (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-377 (-1072 *3)))
- (-5 *1 (-873 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964))
+ (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-377 (-1073 *3)))
+ (-5 *1 (-874 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $)))))))
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1072 *3))
+ (-12 (-5 *2 (-1073 *3))
(-4 *3
(-13 (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $)) (-15 -2098 (*7 $)))))
- (-4 *7 (-872 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-963))
- (-5 *1 (-873 *5 *4 *6 *7 *3))))
+ (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $)))))
+ (-4 *7 (-873 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964))
+ (-5 *1 (-874 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076)) (-4 *5 (-509))
- (-5 *2 (-377 (-1072 (-377 (-875 *5))))) (-5 *1 (-959 *5))
- (-5 *3 (-377 (-875 *5))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-844)) (-4 *3 (-963)))))
+ (-12 (-5 *4 (-1077)) (-4 *5 (-509))
+ (-5 *2 (-377 (-1073 (-377 (-876 *5))))) (-5 *1 (-960 *5))
+ (-5 *3 (-377 (-876 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107))
- (-5 *1 (-1182 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1086 *2)) (-4 *2 (-333)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-109)))))
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))
+ (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7))
+ (-4 *3 (-1134 *6)) (-4 *7 (-873 *6 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-333))
- (-5 *2
- (-2 (|:| A (-623 *5))
- (|:| |eqs|
- (-583
- (-2 (|:| C (-623 *5)) (|:| |g| (-1157 *5)) (|:| -3781 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1157 *5))
- (-4 *6 (-593 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-333)) (-4 *6 (-593 *5))
- (-5 *2 (-2 (|:| -3016 (-623 *6)) (|:| |vec| (-1157 *5))))
- (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1157 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1076))
- (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1492 (-583 *1))))
- (-4 *1 (-337 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-422 *3 *4 *5 *6))
- (|:| -1492 (-583 (-422 *3 *4 *5 *6)))))
- (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1078 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1041 *3 *2)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *2 (-13 (-1005) (-33))))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-875 *8))))
- (-5 *5 (-703)) (-5 *6 (-1059)) (-4 *8 (-13 (-278) (-134)))
- (-4 *11 (-872 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1076))))
- (-4 *10 (-725))
- (-5 *2
- (-2
- (|:| |rgl|
- (-583
- (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11))
- (|:| |wcond| (-583 (-875 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1157 (-377 (-875 *8))))
- (|:| -1492 (-583 (-1157 (-377 (-875 *8))))))))))
- (|:| |rgsz| (-517))))
- (-5 *1 (-847 *8 *9 *10 *11)) (-5 *7 (-517)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1072 *7)))
- (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1072 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-832)) (-4 *5 (-1133 *4)) (-5 *2 (-388 (-1072 *5)))
- (-5 *1 (-830 *4 *5)) (-5 *3 (-1072 *5)))))
-(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
- (-5 *2 (-1072 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
- (-5 *2 (-1072 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+ (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4192)) (-4 *1 (-138 *2)) (-4 *2 (-1111))
- (-4 *2 (-1005))))
+ (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112))
+ (-4 *2 (-1006))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4192)) (-4 *1 (-138 *3))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3))
+ (-4 *3 (-1112))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1005))
+ (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006))
(-5 *1 (-670 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1005))))
+ (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1041 *3 *4)) (-4 *3 (-13 (-1005) (-33)))
- (-4 *4 (-13 (-1005) (-33))) (-5 *1 (-1042 *3 *4)))))
+ (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33)))
+ (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1134 *4))
+ (-5 *2 (-2 (|:| -3191 (-564 *4 *5)) (|:| -3119 (-377 *5))))
+ (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4))
+ (-14 *3 (-845)) (-4 *4 (-964))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-421)) (-4 *3 (-964))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1134 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-681)))))
+(((*1 *1) (-5 *1 (-512))))
(((*1 *1 *1) (-4 *1 (-569)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920) (-1097))))))
+ (-4 *2 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1001 (-772 (-199)))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
+ (-12 (-5 *2 (-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))))
+ (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3))
(-4 *5 (-343 *3)) (-5 *2 (-703))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
(-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-343 *2)) (-4 *2 (-1111))
- (-4 *2 (-779))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4193))
- (-4 *1 (-343 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1133 *4)) (-4 *4 (-1115))
- (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1133 (-377 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-517)) (-5 *1 (-215)))))
(((*1 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162))
- (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1162))
- (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1133 *6))
- (-4 *6 (-13 (-27) (-400 *5)))
- (-4 *5 (-13 (-779) (-509) (-954 (-517)))) (-4 *8 (-1133 (-377 *7)))
- (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3))
- (-4 *3 (-312 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-286 (-199))) (|:| -2587 (-583 (-199)))
- (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
- (|:| |ub| (-583 (-772 (-199))))))
- (-5 *1 (-240)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-895 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *5 (-977 *3 *4 *2)))))
+ (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006))
+ (-4 *4 (-1006)))))
+(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))
+ ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-953)) (-5 *1 (-682))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-358)) (-5 *2 (-953)) (-5 *1 (-682)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-881 *3)) (-5 *1 (-1065 *4 *3))
+ (-4 *3 (-1134 *4)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))))
+(((*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509))
- (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+ (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *2 (-1163))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1134 (-377 *5))) (-14 *7 *6))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1112))
+ (-4 *5 (-343 *4)) (-4 *2 (-343 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-964))
+ (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-107))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-963))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
- (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-156)) (-4 *2 (-963)) (-5 *1 (-647 *2 *3))
- (-4 *3 (-585 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-156)) (-4 *2 (-963)) (-5 *1 (-647 *2 *3))
- (-4 *3 (-585 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-963))))
- ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-963)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
+ (-12 (-4 *3 (-964)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| -1712 *1) (|:| -3723 (-583 *7)))))
+ (-5 *3 (-583 *7)) (-4 *1 (-1106 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *1 (-601 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1176 *3 *4))
+ (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1016)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-975))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975)))))
(((*1 *2 *3)
(-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-844)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3))
+ (-12 (-5 *4 (-845)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3))
(-4 *3 (-558 (-349)))))
((*1 *2 *3)
(-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349)))
(-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-153 *5)) (-5 *4 (-844)) (-4 *5 (-156))
+ (-12 (-5 *3 (-153 *5)) (-5 *4 (-845)) (-4 *5 (-156))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349)))
+ (-12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349)))
(-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156))
+ (-12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-875 *4)) (-4 *4 (-963)) (-4 *4 (-558 (-349)))
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349)))
(-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-963))
+ (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349)))
+ (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349)))
(-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509))
+ (-12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779))
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779))
(-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779))
(-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509))
(-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
(-5 *1 (-717 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779))
- (-4 *4 (-779)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
- (-5 *2 (-952)) (-5 *1 (-687)))))
-(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1111)) (-4 *2 (-1005))))
- ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1005)))))
+ (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964))
+ (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273))))
((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
((*1 *1 *2 *3 *4)
(-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779))
(-5 *1 (-556 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-623 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4))
- (-4 *3 (-387 *4))))
- ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-779))
- (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-779))
- (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-844))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333)))
- (-4 *5 (-1133 *4)) (-4 *6 (-1133 (-377 *5))) (-4 *7 (-312 *4 *5 *6))
- (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-844)))))
- ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-963))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-963))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4))
- (-4 *4 (-1133 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-963))
- (-4 *3 (-779))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-963)) (-4 *3 (-779))
- (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1005))))
+ (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2))
+ (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4))
- (-4 *6 (-1133 *5)) (-4 *7 (-1133 (-377 *6)))
- (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-954 (-517))))
- (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6 *7 *8))))
+ (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509))
+ (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
- (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-1133 (-377 *4)))
- (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703))
- (-5 *1 (-835 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333))
- (-4 *7 (-1133 *6)) (-4 *4 (-1133 (-377 *7))) (-4 *8 (-312 *6 *7 *4))
- (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703))
- (-5 *1 (-936 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-963)) (-4 *3 (-509)) (-5 *2 (-703))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724))))
- ((*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-963)) (-4 *2 (-724)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
- (-4 *4 (-156))))
- ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1076))))
-(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1072 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
- (-5 *2
- (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4))
- (|:| |genIdeal| (-469 *4 *5 *6 *7))))
- (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517))
- (-5 *2 (-623 *6)) (-5 *1 (-946 *6)) (-4 *6 (-333)) (-4 *6 (-963))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-946 *4))
- (-4 *4 (-333)) (-4 *4 (-963))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5))
- (-5 *1 (-946 *5)) (-4 *5 (-333)) (-4 *5 (-963)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509))
+ (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349))
+ (-5 *1 (-717 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1098)))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
(-12 (-5 *3 (-199)) (-5 *4 (-517))
- (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1725)))) (-5 *2 (-952))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953))
(-5 *1 (-681)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-4 *2 (-1134 *5))
+ (-5 *1 (-1152 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6))
+ (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-897 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517)))
+ (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-690)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-349))) (-5 *1 (-956)) (-5 *3 (-349)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))))
+ (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))))
+(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-617 *4 *5)) (-4 *4 (-1005))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-617 *4 *5)) (-4 *4 (-1006))))
((*1 *2 *2)
- (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3))))
+ (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-286 (-517))) (-5 *1 (-853))))
- ((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-779)) (-4 *2 (-963))))
- ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-775)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-952))
- (-5 *1 (-681)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
- (|:| |fn| (-1157 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
- (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
- (|:| |abserr| (-199)) (|:| |relerr| (-199))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))))
- (-5 *1 (-181)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
- (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))
+ (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964))))
+ ((*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236))))
((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
- (-4 *7 (-911 *4)) (-4 *2 (-621 *7 *8 *9))
- (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6))
- (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
- (-4 *4 (-343 *2)) (-4 *2 (-278))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
- (-4 *2 (-621 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *2 (-952)) (-5 *1 (-685)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-907 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-1012 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1133 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3))))
- (-5 *1 (-116 *3)) (-4 *3 (-779))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1097)))
- (-4 *3 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
- (-5 *1 (-532 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-534 (-377 (-875 *3))))
- (-4 *3 (-13 (-421) (-954 (-517)) (-779) (-579 (-517))))
- (-5 *1 (-537 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-333))
- (-5 *2 (-2 (|:| -1387 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1157 *5)) (-4 *5 (-333)) (-4 *5 (-963))
- (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5))
- (-5 *3 (-583 (-623 *5)))))
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1158 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-1158 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1134 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1134 *4)) (-5 *2 (-1158 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1134 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3))
+ (-5 *2 (-1158 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1157 (-1157 *5))) (-4 *5 (-333)) (-4 *5 (-963))
- (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-946 *5))
- (-5 *3 (-583 (-623 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1045))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1045)))))
+ (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333))
+ (-5 *2 (-1158 *5)) (-5 *1 (-994 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-876 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1060)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1163))
+ (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-875 *5)) (-4 *5 (-963)) (-5 *2 (-221 *4 *5))
- (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1076))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
- (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4))
- (-14 *4 (-583 (-1076)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6))
- (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-419 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1059)) (-4 *7 (-872 *4 *5 *6))
- (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-5 *1 (-419 *4 *5 *6 *7))))
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4))
+ (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3))
+ (-4 *3 (-585 *2))))
((*1 *1 *1)
- (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
- (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421))
- (-14 *4 (-583 (-1076))) (-5 *1 (-568 *3 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-333))
- (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1157 *5)))))
- (-5 *1 (-897 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1157 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-333) (-134) (-954 (-377 (-517))))) (-4 *6 (-1133 *5))
- (-5 *2 (-583 (-2 (|:| -1385 *5) (|:| -3781 *3))))
- (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6))
- (-4 *7 (-593 (-377 *6))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3))
+ (-4 *3 (-585 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964))))
+ ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))))
+(((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163))
+ (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163))
+ (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-361)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2))
+ (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *4)) (-5 *1 (-809 *3 *4 *5))
+ (-4 *3 (-1006)) (-4 *5 (-603 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
+ (-5 *2 (-1073 *3)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-583
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779))
- (-5 *1 (-418 *3 *4 *5 *6)))))
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-107)) (-5 *1 (-271)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-509))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-889 *4 *3)) (-4 *3 (-1133 *4)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1077))) (-4 *6 (-333))
+ (-5 *2 (-583 (-265 (-876 *6)))) (-5 *1 (-495 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-688)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-828 *4))
+ (-4 *4 (-1006))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1133 *5))
- (-4 *7 (-1133 (-377 *6))) (-4 *8 (-312 *5 *6 *7))
- (-4 *4 (-13 (-779) (-509) (-954 (-517)))) (-5 *2 (-107))
- (-5 *1 (-834 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168))))
((*1 *2 *3)
- (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
- (-4 *4 (-1133 (-377 (-517)))) (-4 *5 (-1133 (-377 *4)))
- (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107))
- (-5 *1 (-835 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1059))) (-5 *1 (-364)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963))
- (-14 *4 (-583 (-1076)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779)))
- (-14 *4 (-583 (-1076))))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
-(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))
- ((*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-509)) (-4 *2 (-278))))
- ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-671)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1059))
- (-5 *3 (-199)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+ (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-828 *4)) (-4 *4 (-1005)) (-5 *2 (-583 (-703)))
- (-5 *1 (-827 *4)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5))
- (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
- (-5 *1 (-1168 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-509))
- (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1168 *5 *6 *7 *8)))))
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4))))
+ (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-333) (-777)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1510 (-388 *3))))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-1133 (-153 *4))))))
+ (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517))))))
+ (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-265 (-377 (-876 (-153 (-517)))))))
+ (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-876 (-153 (-517)))))
+ (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-876 (-153 (-517))))))
+ (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-685)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-671)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))))
+ (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3))
+ (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))))
+(((*1 *1 *1) (-5 *1 (-976))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 *6)) (-4 *6 (-964)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-1073 *7)) (-5 *1 (-291 *4 *5 *6 *7))
+ (-4 *7 (-873 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1109)))))
+(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-333) (-273)
- (-10 -8 (-15 -3826 ((-1028 *3 (-556 $)) $))
- (-15 -2098 ((-1028 *3 (-556 $)) $))
- (-15 -2271 ($ (-1028 *3 (-556 $))))))))))
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1134 *4))
+ (-5 *2 (-1158 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
(((*1 *2 *3)
(-12 (-4 *4 (-779))
(-5 *2
(-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4))))
(|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4))))))
- (-5 *1 (-1083 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-107)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
- (-4 *3 (-977 *6 *7 *8))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-1013 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3834 *9))))
- (-5 *5 (-107)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8))
- (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779))
- (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3834 *9))))
- (-5 *1 (-1013 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-623 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4))
- (-4 *3 (-387 *4))))
- ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1090)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1007 *4)) (-4 *4 (-1005)) (-5 *2 (-1 *4))
- (-5 *1 (-935 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-349))) (-5 *1 (-956)) (-5 *3 (-349))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1000 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-961)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1015)) (-5 *3 (-517)))))
+ (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-1134 *4)) (-4 *4 (-964))
+ (-5 *2 (-1158 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1133 *4))
- (-5 *2 (-2 (|:| -3190 (-564 *4 *5)) (|:| -2198 (-377 *5))))
- (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4))
- (-14 *3 (-844)) (-4 *4 (-963))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-421)) (-4 *3 (-963))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1133 *3)))))
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2)
+ (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1134 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-963) (-809 *3) (-779) (-558 *2)))
- (-5 *2 (-815 *3)) (-5 *1 (-985 *3 *4 *5))
- (-4 *5 (-13 (-400 *4) (-809 *3) (-558 *2))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1076))) (-4 *4 (-421))
- (-5 *1 (-841 *4)))))
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1077)) (-5 *1 (-534 *2)) (-4 *2 (-955 *3))
+ (-4 *2 (-333))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2))
+ (-4 *2 (-13 (-400 *4) (-921) (-1098)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-921) (-1098)))
+ (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-882)) (-5 *2 (-1077))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-882)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 *2)))
+ (-5 *2 (-816 *3)) (-5 *1 (-986 *3 *4 *5))
+ (-4 *5 (-13 (-400 *4) (-810 *3) (-558 *2))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199)))
+ (-5 *2 (-1160)) (-5 *1 (-230)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4))
- (-4 *4 (-793 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-517)) (-4 *1 (-1119 *3 *4)) (-4 *3 (-963))
- (-4 *4 (-1148 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1119 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1148 *2)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1133 *5))
- (-4 *5 (-13 (-333) (-134) (-954 (-517))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6))
- (|:| -1713 *6)))
- (-5 *1 (-933 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1076)) (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+ (-12 (-4 *5 (-509))
+ (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 (-583 (-845))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-509))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-896 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-400 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *1 (-109))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-109))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4))
+ (-4 *4 (-400 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-109)) (-5 *1 (-147))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4))
+ (-4 *4 (-13 (-400 *3) (-921)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273))))
+ ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4))
+ (-4 *3 (-400 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4))
+ (-4 *4 (-400 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4))
+ (-4 *4 (-13 (-400 *3) (-921) (-1098))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
(-5 *1 (-680)))))
-(((*1 *2 *1)
- (-12
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-1158 *3))
+ (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-1137 *3 *2))
+ (-4 *2 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $))))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509))
+ (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
+ (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *6))
+ (-4 *6
+ (-13 (-779)
+ (-10 -8 (-15 -3367 ((-1077) $))
+ (-15 -3791 ((-3 $ "failed") (-1077))))))
+ (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2))
+ (-4 *2 (-873 (-876 *4) *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))))
+(((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1058 *4) (-1058 *4))) (-5 *2 (-1058 *4))
+ (-5 *1 (-1181 *4)) (-4 *4 (-1112))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-583 (-1058 *5)) (-583 (-1058 *5)))) (-5 *4 (-517))
+ (-5 *2 (-583 (-1058 *5))) (-5 *1 (-1181 *5)) (-4 *5 (-1112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-14 *5 (-583 (-1077)))
(-5 *2
- (-1157
- (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199))
- (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1715 (-517))
- (|:| -3904 (-517)) (|:| |spline| (-517)) (|:| -3843 (-517))
- (|:| |axesColor| (-797)) (|:| -2473 (-517))
- (|:| |unitsColor| (-797)) (|:| |showing| (-517)))))
- (-5 *1 (-1158)))))
+ (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4))))))
+ (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2
+ (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5))))))
+ (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5)))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2
+ (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5))))))
+ (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5)))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2
+ (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5))))))
+ (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5)))
+ (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-777) (-278) (-134) (-940)))
+ (-5 *2
+ (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4))))))
+ (-5 *1 (-1182 *4 *5 *6)) (-5 *3 (-583 (-876 *4)))
+ (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))))
+(((*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-844))
- (-4 *4 (-963)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-952)) (-5 *3 (-1076)) (-5 *1 (-240)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-999 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1130 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1076))
- (-4 *5 (-333)) (-5 *1 (-846 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1072 *5))
- (-5 *1 (-846 *4 *5)) (-14 *4 (-1076))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333))
- (-5 *2 (-377 (-875 *6))) (-5 *1 (-964 *5 *6)) (-14 *5 (-1076)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1059)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
+ (-12 (-5 *2 (-517)) (-4 *1 (-1000 *3)) (-4 *3 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1133 *4)) (-5 *1 (-496 *4 *2 *5 *6))
- (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1112 *3)) (-4 *3 (-1005))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1005)) (-5 *2 (-107))
- (-5 *1 (-1112 *3)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1041 *5 *6)) (-5 *4 (-1 (-107) *6 *6))
- (-4 *5 (-13 (-1005) (-33))) (-4 *6 (-13 (-1005) (-33)))
- (-5 *2 (-107)) (-5 *1 (-1042 *5 *6)))))
+ (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3))
+ (-5 *1 (-1128 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3))
+ (-4 *3 (-1134 (-377 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517))))
+ (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1081)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-963))
- (-14 *4 (-583 (-1076)))))
+ (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964))
+ (-14 *4 (-583 (-1077)))))
((*1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-963) (-779)))
- (-14 *4 (-583 (-1076)))))
+ (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779)))
+ (-14 *4 (-583 (-1077)))))
((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333))
- (-4 *4 (-1133 *3)) (-4 *5 (-1133 (-377 *4)))
+ (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))
(-4 *2 (-312 *3 *4 *5))))
((*1 *1 *2)
(-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-156))))
- ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1133 *2)))))
+ ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1134 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-964))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2133 *4)))
+ (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158 (-632))) (-5 *1 (-276)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7)))
+ (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5)))
+ (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 *1))
+ (-4 *1 (-352 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-964))
+ (-4 *4 (-659))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-873 *3 *4 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-583 (-1077))) (-4 *2 (-156))
+ (-4 *3 (-212 (-3573 *4) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *3))
+ (-2 (|:| -2803 *5) (|:| -1725 *3))))
+ (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779))
+ (-4 *7 (-873 *2 *3 (-789 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4))
+ (-4 *2 (-212 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5))))
+ (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-623 (-377 (-517))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779))
+ (-4 *8 (-873 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725))
(-5 *2
- (-583
- (-2 (|:| |outval| *4) (|:| |outmult| (-517))
- (|:| |outvect| (-583 (-623 *4))))))
- (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-583 *3)) (-5 *5 (-844)) (-4 *3 (-1133 *4))
- (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-1133 *3))
- (-4 *5 (-1133 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+ (-2 (|:| |particular| (-3 (-1158 (-377 *8)) "failed"))
+ (|:| -3700 (-583 (-1158 (-377 *8))))))
+ (-5 *1 (-606 *5 *6 *7 *8)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-801 *2)) (-4 *2 (-1112))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-803 *2)) (-4 *2 (-1112))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-806 *2)) (-4 *2 (-1112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-703)) (-4 *5 (-509))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-889 *5 *3)) (-4 *3 (-1133 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963))
- (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3834 *7))))
- (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-907 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3834 *7))))
- (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-421))
- (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1012 *3 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1005))
- (-4 *4 (-1005)))))
+ (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006))
+ (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))))
(((*1 *2)
- (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4))
- (-4 *3 (-299 *4))))
- ((*1 *2) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
-(((*1 *1) (-4 *1 (-319)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4))
- (-4 *4 (-13 (-509) (-779) (-134)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1072 *5)))
- (|:| |prim| (-1072 *5))))
- (-5 *1 (-402 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-134)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1072 *3))
- (|:| |pol2| (-1072 *3)) (|:| |prim| (-1072 *3))))
- (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1076)) (-4 *5 (-13 (-333) (-134)))
- (-5 *2
- (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517))
- (|:| |prim| (-1072 *5))))
- (-5 *1 (-882 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1076)))
- (-4 *5 (-13 (-333) (-134)))
- (-5 *2
- (-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 *5)))
- (|:| |prim| (-1072 *5))))
- (-5 *1 (-882 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1076))) (-5 *5 (-1076))
- (-4 *6 (-13 (-333) (-134)))
- (-5 *2
- (-2 (|:| -1582 (-583 (-517))) (|:| |poly| (-583 (-1072 *6)))
- (|:| |prim| (-1072 *6))))
- (-5 *1 (-882 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-509) (-779) (-954 (-517)))) (-4 *5 (-400 *4))
- (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1133 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703))))
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1112))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1112))))
((*1 *2 *1)
- (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
- (-4 *3 (-1133 (-153 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
- (-4 *3 (-1133 (-153 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421))
- (-4 *6 (-725)) (-4 *7 (-779))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-418 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
- (-4 *3 (-13 (-333) (-1097) (-920))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517)))
- (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-952)) (-5 *1 (-686)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-623 *5)) (-4 *5 (-963)) (-5 *1 (-967 *3 *4 *5))
- (-14 *3 (-703)) (-14 *4 (-703)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1005))
- (-4 *3 (-1005)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-703)) (-4 *5 (-156))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
- (-4 *4 (-156))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-343 *2))
- (-4 *4 (-343 *2))))
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3)))))
((*1 *1 *2)
- (-12 (-4 *3 (-963)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3))
- (-4 *4 (-343 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1043 *2 *3)) (-14 *2 (-703)) (-4 *3 (-963)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
- (-5 *2 (-623 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1133 *5)) (-4 *5 (-333))
- (-5 *2 (-2 (|:| -1387 (-388 *3)) (|:| |special| (-388 *3))))
- (-5 *1 (-660 *5 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-963)) (-5 *2 (-107)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-902 *2)) (-4 *2 (-1097)))))
+ (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))))
+ (-5 *1 (-181)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5)))
+ (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3))
+ (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1076)) (|:| |fn| (-286 (-199)))
- (|:| -2758 (-1000 (-772 (-199)))) (|:| |abserr| (-199))
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
(|:| |relerr| (-199))))
(-5 *2
(-2
@@ -16848,10 +16790,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1057 (-199)))
+ (-3 (|:| |str| (-1058 (-199)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2758
+ (|:| -3177
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -16859,1192 +16801,1260 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-512)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1072 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))
+ (-4 *2 (-13 (-779) (-21))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1077))
+ (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)))
+ (-4 *4 (-13 (-29 *6) (-1098) (-882)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4))))
+ (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1079)))))
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-536 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1134 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4))
+ (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3))
+ (-5 *2 (-623 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1162) (-1157 *5) (-1157 *5) (-349)))
- (-5 *3 (-1157 (-349))) (-5 *5 (-349)) (-5 *2 (-1162))
- (-5 *1 (-720)))))
+ (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1077))
+ (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3)))
+ (|:| |vals| (-583 *3))))
+ (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6)
+ (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1701 *6)))
+ (-5 *1 (-935 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156))))
+ ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2))))
+ ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4))
+ (-4 *4 (-1112)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779))
+ (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278))
+ (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-300)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1103 *3 *2))
- (-4 *2 (-13 (-400 *3) (-1097))))))
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-921))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-222)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-377 *5)) (-4 *5 (-1133 *4)) (-4 *4 (-509))
- (-4 *4 (-963)) (-4 *2 (-1148 *4)) (-5 *1 (-1151 *4 *5 *6 *2))
- (-4 *6 (-593 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-377 (-517)))
- (-4 *4 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))))
+ (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))
+ (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-845))
+ (-14 *4 (-845))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319))
+ (-14 *4
+ (-3 (-1073 *3)
+ (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-845)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953))
+ (-5 *1 (-688)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1059)) (-5 *1 (-718)))))
-(((*1 *1) (-5 *1 (-407))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199)))
+ (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-583 (-1107 *5)))
+ (-5 *1 (-1166 *5)) (-5 *4 (-1107 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509))
+ (-4 *3 (-873 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| (-583 *3))))
+ (-5 *1 (-877 *5 *6 *7 *3 *8)) (-5 *4 (-703))
+ (-4 *8
+ (-13 (-333)
+ (-10 -8 (-15 -3858 (*3 $)) (-15 -2082 (*3 $)) (-15 -2262 ($ *3))))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1133 (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+ (-12 (-4 *4 (-964))
+ (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-845)) (-4 *5 (-964))
+ (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256)))
+ (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-1008 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-828 *4))
+ (-5 *3 (-583 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-828 *4))
+ (-5 *3 (-1008 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1080))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163))
+ (-5 *1 (-1080))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163))
+ (-5 *1 (-1080)))))
+(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300))))
+ ((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-556 *3))
+ (-4 *3 (-13 (-400 *5) (-27) (-1098)))
+ (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3)))
+ (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953))
+ (-5 *1 (-680)))))
(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
- (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807))
+ (-5 *3 (-583 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807))
+ (-5 *3 (-583 (-517))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1112))
+ (-4 *5 (-1112)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703))
+ (-4 *7 (-1112)) (-4 *5 (-1112)) (-5 *2 (-214 *6 *5))
+ (-5 *1 (-213 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112))
+ (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1006)) (-4 *5 (-1006))
+ (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1112))
+ (-4 *5 (-1112)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-881 *6)) (-4 *6 (-1112))
+ (-4 *5 (-1112)) (-5 *2 (-881 *5)) (-5 *1 (-880 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1058 *6)) (-4 *6 (-1112))
+ (-4 *3 (-1112)) (-5 *2 (-1058 *3)) (-5 *1 (-1056 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1158 *6)) (-4 *6 (-1112))
+ (-4 *5 (-1112)) (-5 *2 (-1158 *5)) (-5 *1 (-1157 *6 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6))
- (-5 *1 (-906 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1005))))
- ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1005)))))
+ (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-1066 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1005)) (-4 *6 (-1005))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1005)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1000 (-772 (-199)))) (-5 *1 (-276)))))
-(((*1 *2)
- (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-222)))))
+ (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107))
+ (-5 *1 (-608 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-623 (-1073 *8))) (-4 *5 (-964)) (-4 *8 (-964))
+ (-4 *6 (-1134 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8))
+ (-4 *7 (-1134 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-844)) (-5 *2 (-1072 *4)) (-5 *1 (-536 *4))
- (-4 *4 (-319)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
- ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-107)) (-5 *3 (-875 *6)) (-5 *4 (-1076))
- (-5 *5 (-772 *7))
- (-4 *6 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-4 *7 (-13 (-1097) (-29 *6))) (-5 *1 (-198 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1072 *6)) (-5 *4 (-772 *6))
- (-4 *6 (-13 (-1097) (-29 *5)))
- (-4 *5 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-198 *5 *6)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
- (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-952)) (-5 *1 (-681)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415))))
+ (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931))))
+ ((*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931))))
((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-583 *1))
+ (-4 *1 (-980 *4 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *2 *3)
(-12
(-5 *3
(-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
(-221 *4 (-377 (-517)))))
- (-14 *4 (-583 (-1076))) (-14 *5 (-703)) (-5 *2 (-107))
- (-5 *1 (-470 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-883 *3)) (-4 *3 (-502))))
- ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
- (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *4))))
- (-5 *1 (-1013 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-963)) (-4 *2 (-333)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
- (-5 *1 (-601 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1175 *3 *4))
- (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-963))
- (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *5 (-779)) (-5 *2 (-107))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
- (-4 *5 (-779)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-107))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1105 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
- (-4 *6 (-779)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-107)))))
+ (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107))
+ (-5 *1 (-470 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1130 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1076))
- (-5 *2 (-517)) (-5 *1 (-1019 *4 *5)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1059)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199))))
- (-5 *2 (-952)) (-5 *1 (-687)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072 *2)) (-4 *2 (-872 (-377 (-875 *6)) *5 *4))
- (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725))
- (-4 *4 (-13 (-779) (-10 -8 (-15 -3359 ((-1076) $)))))
- (-4 *6 (-509)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-509) (-779) (-954 (-517)))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-13 (-27) (-1097) (-400 (-153 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-13 (-509) (-779) (-954 (-517))))
- (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 (-153 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076))
- (-4 *4 (-13 (-421) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *1 (-1101 *4 *2)) (-4 *2 (-13 (-27) (-1097) (-400 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1) (-5 *1 (-572))))
-(((*1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1005)))))
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 (-517))))
+ (-4 *5 (-400 *4)) (-5 *2 (-388 (-1073 (-377 (-517)))))
+ (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1072 (-1072 *4))))
- (-5 *1 (-1110 *4)) (-5 *3 (-1072 (-1072 *4))))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-583 *11))
- (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3834 *11))))))
- (-5 *6 (-703))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3834 *11))))
- (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9))
- (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725))
- (-4 *9 (-779)) (-5 *1 (-980 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
(-12
- (-5 *5
- (-2 (|:| |done| (-583 *11))
- (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3834 *11))))))
- (-5 *6 (-703))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3834 *11))))
- (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9))
- (-4 *11 (-1014 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725))
- (-4 *9 (-779)) (-5 *1 (-1046 *7 *8 *9 *10 *11)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725))
- (-4 *6 (-509)) (-4 *7 (-872 *6 *5 *3))
- (-5 *1 (-431 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-954 (-377 (-517))) (-333)
- (-10 -8 (-15 -2271 ($ *7)) (-15 -3826 (*7 $))
- (-15 -2098 (*7 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1081)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1111)) (-4 *2 (-920))
- (-4 *2 (-963)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1076)) (-4 *4 (-509)) (-4 *4 (-779))
- (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-564 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3300 *4) (|:| |sol?| (-107)))
- (-517) *4))
- (-4 *4 (-333)) (-4 *5 (-1133 *4)) (-5 *1 (-527 *4 *5)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797)))
- (-5 *4 (-583 (-844))) (-5 *5 (-583 (-236))) (-5 *1 (-437))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797)))
- (-5 *4 (-583 (-844))) (-5 *1 (-437))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437))))
- ((*1 *1 *1) (-5 *1 (-437))))
-(((*1 *1 *2) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1005)) (-5 *1 (-1098 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1098 *2))) (-5 *1 (-1098 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421))
- (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1076)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421))
- (-14 *4 (-583 (-1076))) (-5 *1 (-568 *3 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-400 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1040))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1057 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3))))
+ (-5 *3
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))
+ (-5 *2 (-349)) (-5 *1 (-240))))
((*1 *2 *3)
- (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517))))
- (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+ (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076)) (-5 *2 (-1 (-1072 (-875 *4)) (-875 *4)))
- (-5 *1 (-1165 *4)) (-4 *4 (-333)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-956)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1076)))
- (-4 *5 (-421))
- (-5 *2
- (-2 (|:| |gblist| (-583 (-221 *4 *5)))
- (|:| |gvlist| (-583 (-517)))))
- (-5 *1 (-571 *4 *5)))))
+ (-4 *2 (-13 (-400 *3) (-921))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1076))) (-4 *6 (-421))
- (-5 *2
- (-2 (|:| |dpolys| (-583 (-221 *5 *6)))
- (|:| |coords| (-583 (-517)))))
- (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5))
+ (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 *3))))
+ (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6))
+ (-4 *7 (-593 (-377 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))
+ (-4 *6 (-1134 *5))
+ (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 (-591 *6 (-377 *6))))))
+ (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-1099 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-583 (-1099 *2))) (-5 *1 (-1099 *2)) (-4 *2 (-1006)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920)))))
+ (-4 *2 (-13 (-400 *3) (-921)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1148 *3))
- (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1119 *3 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1117 *3))
- (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1140 *3 *4)) (-4 *5 (-902 *4))))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))
((*1 *1 *1) (-4 *1 (-256)))
((*1 *2 *3)
(-12 (-5 *3 (-388 *4)) (-4 *4 (-509))
- (-5 *2 (-583 (-2 (|:| -1582 (-703)) (|:| |logand| *4))))
+ (-5 *2 (-583 (-2 (|:| -1570 (-703)) (|:| |logand| *4))))
(-5 *1 (-290 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1076)))
- (-14 *3 (-583 (-1076))) (-4 *4 (-357))))
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077)))
+ (-14 *3 (-583 (-1077))) (-4 *4 (-357))))
((*1 *2 *1)
(-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
- (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
- (-5 *1 (-1062 *3))))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))
((*1 *2 *2)
- (-12 (-5 *2 (-1057 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
(-5 *1 (-1063 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1064 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-703)) (-4 *4 (-13 (-963) (-650 (-377 (-517)))))
- (-4 *5 (-779)) (-5 *1 (-1171 *4 *5 *2)) (-4 *2 (-1176 *5 *4))))
+ (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517)))))
+ (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4))
+ (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4))
(-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-963)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)) (-4 *2 (-421))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
- (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3834 *1))))
- (-4 *1 (-982 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1115)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-509)) (-5 *1 (-1136 *3 *2))
- (-4 *2 (-13 (-1133 *3) (-509) (-10 -8 (-15 -2370 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107))
+ (-4 *4 (-13 (-1098) (-29 *6)))
+ (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517))))
+ (-5 *1 (-198 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006))
+ (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-817 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-817 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1076))) (-4 *5 (-963))
- (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))))
-(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1157 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1133 *2))
- (-4 *2 (-156))))
- ((*1 *2)
- (-12 (-4 *4 (-1133 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4))
- (-4 *3 (-379 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1133 *2)) (-4 *2 (-156))))
- ((*1 *2)
- (-12 (-4 *3 (-1133 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4))
- (-4 *4 (-379 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779)) (-4 *3 (-156))))
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1058 *3)) (-4 *3 (-1112))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))
((*1 *2 *3)
- (-12 (-4 *2 (-509)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1133 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-963)) (-4 *2 (-156)))))
+ (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4))
+ (-4 *4 (-319)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-509) (-134)))
- (-5 *2 (-2 (|:| -3288 *3) (|:| -3300 *3))) (-5 *1 (-1127 *4 *3))
- (-4 *3 (-1133 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-952)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076))
- (-4 *5 (-13 (-509) (-779) (-954 (-517)) (-579 (-517))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3)))
- (|:| |vals| (-583 *3))))
- (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1097) (-400 *5))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3870 *4))))
- (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
- (-4 *2 (-13 (-400 *3) (-920))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-104))))
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077))))
+ (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-848 *4 *5 *6 *3))
+ (-4 *3 (-873 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517)
+ *6))
+ (-4 *6 (-333)) (-4 *7 (-1134 *6))
+ (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1106 *4 *5 *6 *7))
+ (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-107)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1081)) (-5 *1 (-1080)))))
+(((*1 *1) (-5 *1 (-976))))
+(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-104))))
((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1111))
- (-4 *3 (-1005))))
+ (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1112))
+ (-4 *3 (-1006))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-343 *3)) (-4 *3 (-1111)) (-4 *3 (-1005))
+ (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-1006))
(-5 *2 (-517))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1111))
+ (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112))
(-5 *2 (-517))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-517)) (-5 *3 (-128))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-517)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-952)) (-5 *3 (-1076)) (-5 *1 (-168)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199)))
- (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107))
- (-5 *2 (-952)) (-5 *1 (-687)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
- (-5 *2
- (-2 (|:| -3121 *4) (|:| -3110 *4) (|:| |totalpts| (-517))
- (|:| |success| (-107))))
- (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1076))) (-4 *4 (-156))
- (-4 *5 (-212 (-3535 *3) (-703)))
- (-14 *6
- (-1 (-107) (-2 (|:| -2812 *2) (|:| -2121 *5))
- (-2 (|:| -2812 *2) (|:| -2121 *5))))
- (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-872 *4 *5 (-789 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-343 *3))
- (-4 *5 (-343 *3)) (-5 *2 (-517))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-963))
- (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2)
- (-12 (-5 *2 (-880 (-1023))) (-5 *1 (-313 *3 *4)) (-14 *3 (-844))
- (-14 *4 (-844))))
- ((*1 *2)
- (-12 (-5 *2 (-880 (-1023))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319))
- (-14 *4 (-1072 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-880 (-1023))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319))
- (-14 *4 (-844)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-952))
- (-5 *1 (-680)))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)) (-5 *3 (-128))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-953)) (-5 *1 (-680)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1006)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199))
+ (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-670 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006))))
+ ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517))))
+ (-5 *1 (-166)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1072 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
- (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
- (-14 *5 (-583 (-1076))) (-14 *6 (-1157 (-623 *3))))))
+ (-12 (-4 *3 (-207)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4))
+ (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725))
+ (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-953)) (-5 *1 (-684)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
- ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-725))
- (-4 *2 (-779))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-725))
- (-4 *4 (-779)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1162)) (-5 *1 (-1159)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1005))))
- ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1005)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+ (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1162))
- (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-387 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1076))
- (-4 *4 (-13 (-509) (-954 (-517)) (-134))) (-5 *1 (-523 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6))
+ (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9))
+ (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6))
+ (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)) (-4 *2 (-278))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1077)) (-5 *4 (-999 (-876 (-517)))) (-5 *2 (-300))
+ (-5 *1 (-302))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1))
+ (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1133 *3)) (-4 *3 (-963)))))
-(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374))))
- ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374))))
- ((*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4183)) (-4 *1 (-374))))
- ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1057 (-517))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1057 *4)) (-5 *3 (-517)) (-4 *4 (-963))
- (-5 *1 (-1061 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-517)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-963))
- (-14 *4 (-1076)) (-14 *5 *3))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4193)) (-4 *1 (-928 *2)) (-4 *2 (-1111)))))
-((-1189 . 721908) (-1190 . 721835) (-1191 . 721619) (-1192 . 721304)
- (-1193 . 721218) (-1194 . 721159) (-1195 . 721015) (-1196 . 720920)
- (-1197 . 720781) (-1198 . 720702) (-1199 . 720586) (-1200 . 720516)
- (-1201 . 720443) (-1202 . 720244) (-1203 . 720107) (-1204 . 719920)
- (-1205 . 719817) (-1206 . 719519) (-1207 . 719275) (-1208 . 718988)
- (-1209 . 718769) (-1210 . 718565) (-1211 . 718491) (-1212 . 717970)
- (-1213 . 717863) (-1214 . 717720) (-1215 . 717647) (-1216 . 717529)
- (-1217 . 717271) (-1218 . 717184) (-1219 . 717026) (-1220 . 716325)
- (-1221 . 716199) (-1222 . 716114) (-1223 . 715870) (-1224 . 715426)
- (-1225 . 715338) (-1226 . 714101) (-1227 . 713851) (-1228 . 713644)
- (-1229 . 713559) (-1230 . 713510) (-1231 . 713392) (-1232 . 713290)
- (-1233 . 713183) (-1234 . 712674) (-1235 . 712431) (-1236 . 712173)
- (-1237 . 711955) (-1238 . 711570) (-1239 . 711352) (-1240 . 711237)
- (-1241 . 711145) (-1242 . 711092) (-1243 . 710787) (-1244 . 709989)
- (-1245 . 709867) (-1246 . 709810) (-1247 . 709725) (-1248 . 709134)
- (-1249 . 708930) (-1250 . 708783) (-1251 . 708755) (-1252 . 708637)
- (-1253 . 708116) (-1254 . 707892) (-1255 . 707576) (-1256 . 707402)
- (-1257 . 707186) (-1258 . 707130) (-1259 . 706741) (-1260 . 706668)
- (-1261 . 706474) (-1262 . 706016) (-1263 . 705887) (-1264 . 705793)
- (-1265 . 705740) (-1266 . 705582) (-1267 . 705515) (-1268 . 705375)
- (-1269 . 705235) (-1270 . 705094) (-1271 . 704853) (-1272 . 704798)
- (-1273 . 704637) (-1274 . 704609) (-1275 . 704541) (-1276 . 704457)
- (-1277 . 704287) (-1278 . 704125) (-1279 . 704016) (-1280 . 703837)
- (-1281 . 703743) (-1282 . 703692) (-1283 . 703607) (-1284 . 703533)
- (-1285 . 702237) (-1286 . 702024) (-1287 . 701958) (-1288 . 701875)
- (-1289 . 701804) (-1290 . 701752) (-1291 . 701584) (-1292 . 701413)
- (-1293 . 700927) (-1294 . 700878) (-1295 . 700779) (-1296 . 700663)
- (-1297 . 700384) (-1298 . 700141) (-1299 . 700027) (-1300 . 699832)
- (-1301 . 699627) (-1302 . 699386) (-1303 . 699238) (-1304 . 698073)
- (-1305 . 697914) (-1306 . 697821) (-1307 . 697396) (-1308 . 697343)
- (-1309 . 697277) (-1310 . 697145) (-1311 . 696985) (-1312 . 696919)
- (-1313 . 696808) (-1314 . 696734) (-1315 . 696610) (-1316 . 696486)
- (-1317 . 696269) (-1318 . 695660) (-1319 . 695483) (-1320 . 695222)
- (-1321 . 695064) (-1322 . 695012) (-1323 . 694867) (-1324 . 694833)
- (-1325 . 694780) (-1326 . 694391) (-1327 . 694317) (-1328 . 694246)
- (-1329 . 694141) (-1330 . 693781) (-1331 . 693678) (-1332 . 693537)
- (-1333 . 693485) (-1334 . 693413) (-1335 . 693140) (-1336 . 692546)
- (-1337 . 692459) (-1338 . 692348) (-1339 . 692168) (-1340 . 691747)
- (-1341 . 691664) (-1342 . 691413) (-1343 . 691359) (-1344 . 691100)
- (-1345 . 690574) (-1346 . 690489) (-1347 . 690394) (-1348 . 690157)
- (-1349 . 689929) (-1350 . 689772) (-1351 . 689674) (-1352 . 689600)
- (-1353 . 689513) (-1354 . 689139) (-1355 . 689035) (-1356 . 688955)
- (-1357 . 688870) (-1358 . 688817) (-1359 . 688680) (-1360 . 688548)
- (-1361 . 688479) (-1362 . 688410) (-1363 . 688184) (-1364 . 688132)
- (-1365 . 688104) (-1366 . 687890) (-1367 . 687830) (-1368 . 687397)
- (-1369 . 687255) (-1370 . 687016) (-1371 . 686945) (-1372 . 686692)
- (-1373 . 686530) (-1374 . 686475) (-1375 . 685658) (-1376 . 685420)
- (-1377 . 685294) (-1378 . 684191) (-1379 . 683844) (-1380 . 683771)
- (-1381 . 683653) (-1382 . 682838) (-1383 . 682479) (-1384 . 682376)
- (-1385 . 681966) (-1386 . 681843) (-1387 . 681766) (-1388 . 681601)
- (-1389 . 681188) (-1390 . 680934) (-1391 . 680823) (-1392 . 680680)
- (-1393 . 680484) (-1394 . 680389) (-1395 . 678142) (-1396 . 678035)
- (-1397 . 677776) (-1398 . 677469) (-1399 . 677343) (-1400 . 677212)
- (-1401 . 676935) (-1402 . 676839) (-1403 . 674709) (-1404 . 674616)
- (-1405 . 674037) (-1406 . 673647) (-1407 . 673569) (-1408 . 673454)
- (-1409 . 673328) (-1410 . 673066) (-1411 . 672847) (-1412 . 672792)
- (-1413 . 672545) (-1414 . 672437) (-1415 . 672100) (-1416 . 672029)
- (-1417 . 671922) (-1418 . 671788) (-1419 . 671736) (-1420 . 671528)
- (-1421 . 671284) (-1422 . 671140) (-1423 . 670541) (-1424 . 670479)
- (-1425 . 670277) (-1426 . 670210) (-1427 . 669914) (-1428 . 669294)
- (-1429 . 669186) (-1430 . 669116) (-1431 . 668708) (-1432 . 668623)
- (-1433 . 668502) (-1434 . 668030) (-1435 . 667786) (-1436 . 667730)
- (-1437 . 667656) (-1438 . 667554) (-1439 . 667477) (-1440 . 666076)
- (-1441 . 666003) (-1442 . 665810) (-1443 . 665681) (-1444 . 665273)
- (-1445 . 665169) (-1446 . 664848) (-1447 . 664820) (-1448 . 664677)
- (-1449 . 664524) (-1450 . 664450) (-1451 . 664341) (-1452 . 663958)
- (-1453 . 663844) (-1454 . 663813) (-1455 . 663642) (-1456 . 663517)
- (-1457 . 663455) (-1458 . 663199) (-1459 . 663061) (-1460 . 662917)
- (-1461 . 662865) (-1462 . 662712) (-1463 . 662589) (-1464 . 662479)
- (-1465 . 662328) (-1466 . 662244) (-1467 . 661862) (-1468 . 661795)
- (-1469 . 661625) (-1470 . 661455) (-1471 . 660714) (-1472 . 660607)
- (-1473 . 660579) (-1474 . 660438) (-1475 . 660126) (-1476 . 660074)
- (-1477 . 659955) (-1478 . 659731) (-1479 . 659579) (-1480 . 658996)
- (-1481 . 658858) (-1482 . 658725) (-1483 . 657984) (-1484 . 657853)
- (-1485 . 657664) (-1486 . 657579) (-1487 . 657498) (-1488 . 657425)
- (-1489 . 657373) (-1490 . 657088) (-1491 . 656972) (-1492 . 656107)
- (-1493 . 655455) (-1494 . 654767) (-1495 . 654194) (-1496 . 654075)
- (-1497 . 654022) (-1498 . 653967) (-1499 . 649915) (-1500 . 649865)
- (-1501 . 649763) (-1502 . 649577) (-1503 . 649220) (-1504 . 649013)
- (-1505 . 648876) (-1506 . 648076) (-1507 . 647500) (-1508 . 647431)
- (-1509 . 646585) (-1510 . 646133) (-1511 . 646084) (-1512 . 645946)
- (-1513 . 645793) (-1514 . 645490) (-1515 . 645220) (-1516 . 635690)
- (-1517 . 635281) (-1518 . 635172) (-1519 . 635090) (-1520 . 634514)
- (-1521 . 634417) (-1522 . 630807) (-1523 . 630693) (-1524 . 630622)
- (-1525 . 630386) (-1526 . 630303) (-1527 . 630188) (-1528 . 630088)
- (-1529 . 630003) (-1530 . 629589) (-1531 . 629466) (-1532 . 628285)
- (-1533 . 627709) (-1534 . 627490) (-1535 . 627178) (-1536 . 626965)
- (-1537 . 626231) (-1538 . 626092) (-1539 . 626040) (-1540 . 625851)
- (-1541 . 625646) (-1542 . 625574) (-1543 . 625360) (-1544 . 625205)
- (-1545 . 625112) (-1546 . 625078) (-1547 . 625014) (-1548 . 624328)
- (-1549 . 624230) (-1550 . 621891) (-1551 . 621807) (-1552 . 621734)
- (-1553 . 621679) (-1554 . 621545) (-1555 . 621441) (-1556 . 621218)
- (-1557 . 621113) (-1558 . 620969) (-1559 . 620916) (-1560 . 620829)
- (-1561 . 620749) (-1562 . 620063) (-1563 . 619917) (-1564 . 619844)
- (-1565 . 619739) (-1566 . 619612) (-1567 . 619431) (-1568 . 619281)
- (-1569 . 619006) (-1570 . 618935) (-1571 . 618831) (-1572 . 618758)
- (-1573 . 618600) (-1574 . 618445) (-1575 . 618348) (-1576 . 617599)
- (-1577 . 617420) (-1578 . 617299) (-1579 . 617171) (-1580 . 617070)
- (-1581 . 616977) (-1582 . 616622) (-1583 . 615970) (-1584 . 615702)
- (-1585 . 614938) (-1586 . 614867) (-1587 . 613983) (-1588 . 612733)
- (-1589 . 612159) (-1590 . 612038) (-1591 . 611665) (-1592 . 611558)
- (-1593 . 611492) (-1594 . 611396) (-1595 . 611319) (-1596 . 611252)
- (-1597 . 611145) (-1598 . 610971) (-1599 . 610886) (-1600 . 610312)
- (-1601 . 610167) (-1602 . 610061) (-1603 . 609990) (-1604 . 609886)
- (-1605 . 609727) (-1606 . 609553) (-1607 . 609451) (-1608 . 609145)
- (-1609 . 608888) (-1610 . 608435) (-1611 . 608326) (-1612 . 608225)
- (-1613 . 607651) (-1614 . 607569) (-1615 . 606914) (-1616 . 606831)
- (-1617 . 606779) (-1618 . 606692) (-1619 . 606548) (-1620 . 606439)
- (-1621 . 606310) (-1622 . 606154) (-1623 . 606041) (-1624 . 605354)
- (-1625 . 605287) (-1626 . 605230) (-1627 . 605147) (-1628 . 605018)
- (-1629 . 604934) (-1630 . 604775) (-1631 . 604702) (-1632 . 604589)
- (-1633 . 604537) (-1634 . 604430) (-1635 . 603743) (-1636 . 603643)
- (-1637 . 603487) (-1638 . 603434) (-1639 . 603335) (-1640 . 603173)
- (-1641 . 603046) (-1642 . 602959) (-1643 . 602906) (-1644 . 602844)
- (-1645 . 602696) (-1646 . 602579) (-1647 . 602455) (-1648 . 601768)
- (-1649 . 601662) (-1650 . 601612) (-1651 . 601163) (-1652 . 600867)
- (-1653 . 600262) (-1654 . 600178) (-1655 . 599978) (-1656 . 599901)
- (-1657 . 599819) (-1658 . 599671) (-1659 . 599491) (-1660 . 598916)
- (-1661 . 598888) (-1662 . 598834) (-1663 . 598660) (-1664 . 598580)
- (-1665 . 598478) (-1666 . 598391) (-1667 . 598209) (-1668 . 598068)
- (-1669 . 597915) (-1670 . 597340) (-1671 . 597287) (-1672 . 596893)
- (-1673 . 596183) (-1674 . 595629) (-1675 . 595508) (-1676 . 595344)
- (-1677 . 595105) (-1678 . 593921) (-1679 . 593539) (-1680 . 593381)
- (-1681 . 593307) (-1682 . 592732) (-1683 . 592488) (-1684 . 592333)
- (-1685 . 592305) (-1686 . 591972) (-1687 . 591787) (-1688 . 591246)
- (-1689 . 589671) (-1690 . 589550) (-1691 . 589374) (-1692 . 588196)
- (-1693 . 588098) (-1694 . 588000) (-1695 . 587929) (-1696 . 587844)
- (-1697 . 587270) (-1698 . 587057) (-1699 . 585972) (-1700 . 585889)
- (-1701 . 585674) (-1702 . 585512) (-1703 . 585424) (-1704 . 583226)
- (-1705 . 583107) (-1706 . 583051) (-1707 . 582910) (-1708 . 582876)
- (-1709 . 582302) (-1710 . 581991) (-1711 . 581739) (-1712 . 581520)
- (-1713 . 581448) (-1714 . 581358) (-1715 . 581265) (-1716 . 581109)
- (-1717 . 581018) (-1718 . 580933) (-1719 . 580771) (-1720 . 580537)
- (-1721 . 580348) (-1722 . 579774) (-1723 . 579743) (-1724 . 579584)
- (-1725 . 579507) (-1726 . 579479) (-1727 . 579312) (-1728 . 579253)
- (-1729 . 579154) (-1730 . 578948) (-1731 . 578874) (-1732 . 578353)
- (-1733 . 578238) (-1734 . 578158) (-1735 . 577584) (-1736 . 577385)
- (-1737 . 577306) (-1738 . 577208) (-1739 . 577135) (-1740 . 577080)
- (-1741 . 577024) (-1742 . 576800) (-1743 . 576385) (-1744 . 576014)
- (-1745 . 575875) (-1746 . 575817) (-1747 . 575661) (-1748 . 575588)
- (-1749 . 575489) (-1750 . 575436) (-1751 . 575364) (-1752 . 575255)
- (-1753 . 574894) (-1754 . 574696) (-1755 . 574625) (-1756 . 574421)
- (-1757 . 573734) (-1758 . 573706) (-1759 . 573501) (-1760 . 573376)
- (-1761 . 573309) (-1762 . 573199) (-1763 . 573114) (-1764 . 572772)
- (-1765 . 572709) (-1766 . 572516) (-1767 . 572353) (-1768 . 572269)
- (-1769 . 571979) (-1770 . 571767) (-1771 . 571656) (-1772 . 571545)
- (-1773 . 571465) (-1774 . 571310) (-1775 . 571220) (-1776 . 571038)
- (-1777 . 570671) (-1778 . 570575) (-1779 . 570155) (-1780 . 570043)
- (-1781 . 569706) (-1782 . 569632) (-1783 . 569388) (-1784 . 569335)
- (-1785 . 569306) (-1786 . 569221) (-1787 . 569112) (-1788 . 568976)
- (-1789 . 568484) (-1790 . 568383) (-1791 . 568303) (-1792 . 568103)
- (-1793 . 568024) (-1794 . 567865) (-1795 . 567724) (-1796 . 567587)
- (-1797 . 567473) (-1798 . 567366) (-1799 . 567187) (-1800 . 566933)
- (-1801 . 566867) (-1802 . 566784) (-1803 . 566728) (-1804 . 566517)
- (-1805 . 566275) (-1806 . 565968) (-1807 . 565725) (-1808 . 565595)
- (-1809 . 565170) (-1810 . 565015) (-1811 . 564941) (-1812 . 564822)
- (-1813 . 564545) (-1814 . 564402) (-1815 . 563998) (-1816 . 563788)
- (-1817 . 563615) (-1818 . 563424) (-1819 . 563311) (-1820 . 563217)
- (-1821 . 563140) (-1822 . 563088) (-1823 . 562968) (-1824 . 562869)
- (-1825 . 562452) (-1826 . 562375) (-1827 . 562323) (-1828 . 562169)
- (-1829 . 562053) (-1830 . 561969) (-1831 . 561763) (-1832 . 561519)
- (-1833 . 561145) (-1834 . 561093) (-1835 . 561034) (-1836 . 560703)
- (-1837 . 560485) (-1838 . 560363) (-1839 . 560115) (-1840 . 560052)
- (-1841 . 559758) (-1842 . 559479) (-1843 . 558768) (-1844 . 558694)
- (-1845 . 558592) (-1846 . 558485) (-1847 . 558303) (-1848 . 558194)
- (-1849 . 557997) (-1850 . 557945) (-1851 . 557876) (-1852 . 557696)
- (-1853 . 557523) (-1854 . 557374) (-1855 . 557146) (-1856 . 556531)
- (-1857 . 556422) (-1858 . 556311) (-1859 . 555109) (-1860 . 555038)
- (-1861 . 554902) (-1862 . 554779) (-1863 . 554432) (-1864 . 554365)
- (-1865 . 554241) (-1866 . 554183) (-1867 . 554037) (-1868 . 553867)
- (-1869 . 553732) (-1870 . 553612) (-1871 . 553518) (-1872 . 553445)
- (-1873 . 553074) (-1874 . 552897) (-1875 . 552802) (-1876 . 552768)
- (-1877 . 552616) (-1878 . 552536) (-1879 . 552176) (-1880 . 551997)
- (-1881 . 551886) (-1882 . 551291) (-1883 . 551241) (-1884 . 551112)
- (-1885 . 551039) (-1886 . 550926) (-1887 . 550810) (-1888 . 550686)
- (-1889 . 550393) (-1890 . 550263) (-1891 . 550208) (-1892 . 550113)
- (-1893 . 550010) (-1894 . 549520) (-1895 . 549440) (-1896 . 549342)
- (-1897 . 549241) (-1898 . 548690) (-1899 . 548638) (-1900 . 548493)
- (-1901 . 548389) (-1902 . 548361) (-1903 . 548188) (-1904 . 548055)
- (-1905 . 547989) (-1906 . 547790) (-1907 . 547599) (-1908 . 547375)
- (-1909 . 547197) (-1910 . 546846) (-1911 . 546763) (-1912 . 546686)
- (-1913 . 546510) (-1914 . 546370) (-1915 . 546293) (-1916 . 546133)
- (-1917 . 545813) (-1918 . 545694) (-1919 . 545562) (-1920 . 545455)
- (-1921 . 545368) (-1922 . 545302) (-1923 . 544719) (-1924 . 544596)
- (-1925 . 544540) (-1926 . 544455) (-1927 . 544334) (-1928 . 543955)
- (-1929 . 543884) (-1930 . 543608) (-1931 . 542854) (-1932 . 542553)
- (-1933 . 542355) (-1934 . 541319) (-1935 . 541203) (-1936 . 540919)
- (-1937 . 540046) (-1938 . 539965) (-1939 . 539891) (-1940 . 539463)
- (-1941 . 539366) (-1942 . 539295) (-1943 . 539036) (-1944 . 538515)
- (-1945 . 538351) (-1946 . 538035) (-1947 . 537813) (-1948 . 537619)
- (-1949 . 537274) (-1950 . 537222) (-1951 . 537159) (-1952 . 536912)
- (-1953 . 536835) (-1954 . 536756) (-1955 . 536688) (-1956 . 536339)
- (-1957 . 536201) (-1958 . 536051) (-1959 . 535981) (-1960 . 535276)
- (-1961 . 535199) (-1962 . 535070) (-1963 . 534945) (-1964 . 534838)
- (-1965 . 534731) (-1966 . 533767) (-1967 . 533596) (-1968 . 533482)
- (-1969 . 533411) (-1970 . 533352) (-1971 . 533256) (-1972 . 533161)
- (-1973 . 533054) (-1974 . 532988) (-1975 . 532917) (-1976 . 532818)
- (-1977 . 532723) (-1978 . 532667) (-1979 . 532420) (-1980 . 532315)
- (-1981 . 531712) (-1982 . 531582) (-1983 . 531383) (-1984 . 531355)
- (-1985 . 531239) (-1986 . 531146) (-1987 . 530927) (-1988 . 530367)
- (-1989 . 530272) (-1990 . 529824) (-1991 . 529688) (-1992 . 529581)
- (-1993 . 529442) (-1994 . 529257) (-1995 . 529159) (-1996 . 529066)
- (-1997 . 528906) (-1998 . 528403) (-1999 . 528192) (-2000 . 528036)
- (-2001 . 527984) (-2002 . 527738) (-2003 . 527464) (-2004 . 527384)
- (-2005 . 527300) (-2006 . 527207) (-2007 . 527122) (-2008 . 526374)
- (-2009 . 525949) (-2010 . 525820) (-2011 . 525551) (-2012 . 525385)
- (-2013 . 525312) (-2014 . 525154) (-2015 . 524732) (-2016 . 524527)
- (-2017 . 524210) (-2018 . 522786) (-2019 . 522298) (-2020 . 522229)
- (-2021 . 521998) (-2022 . 521699) (-2023 . 521577) (-2024 . 521480)
- (-2025 . 521114) (-2026 . 521044) (-2027 . 520948) (-2028 . 520550)
- (-2029 . 520472) (-2030 . 520085) (-2031 . 519927) (-2032 . 519647)
- (-2033 . 519528) (-2034 . 519404) (-2035 . 519191) (-2036 . 518764)
- (-2037 . 518702) (-2038 . 518358) (-2039 . 517970) (-2040 . 517823)
- (-2041 . 517475) (-2042 . 517382) (-2043 . 517323) (-2044 . 517294)
- (-2045 . 517217) (-2046 . 517143) (-2047 . 517028) (-2048 . 516951)
- (-2049 . 516828) (-2050 . 516652) (-2051 . 516567) (-2052 . 516419)
- (-2053 . 516336) (-2054 . 516221) (-2055 . 516115) (-2056 . 515935)
- (-2057 . 515850) (-2058 . 515741) (-2059 . 515676) (-2060 . 513524)
- (-2061 . 513396) (-2062 . 513303) (-2063 . 513124) (-2064 . 512723)
- (-2065 . 512665) (-2066 . 512010) (-2067 . 511958) (-2068 . 511905)
- (-2069 . 511778) (-2070 . 511640) (-2071 . 511249) (-2072 . 511027)
- (-2073 . 510740) (-2074 . 510685) (-2075 . 510654) (-2076 . 510561)
- (-2077 . 510438) (-2078 . 508819) (-2079 . 508763) (-2080 . 508690)
- (-2081 . 508504) (-2082 . 508352) (-2083 . 508265) (-2084 . 508143)
- (-2085 . 508003) (-2086 . 507142) (-2087 . 507061) (-2088 . 506967)
- (-2089 . 506812) (-2090 . 506601) (-2091 . 506374) (-2092 . 506144)
- (-2093 . 506023) (-2094 . 504727) (-2095 . 504598) (-2096 . 504525)
- (-2097 . 503237) (-2098 . 502560) (-2099 . 502505) (-2100 . 502342)
- (-2101 . 502290) (-2102 . 502179) (-2103 . 500839) (-2104 . 500724)
- (-2105 . 500621) (-2106 . 500175) (-2107 . 500105) (-2108 . 499743)
- (-2109 . 499709) (-2110 . 499558) (-2111 . 499285) (-2112 . 499232)
- (-2113 . 498932) (-2114 . 498854) (-2115 . 498802) (-2116 . 498537)
- (-2117 . 498384) (-2118 . 498168) (-2119 . 498114) (-2120 . 497993)
- (-2121 . 497512) (-2122 . 497262) (-2123 . 497167) (-2124 . 497049)
- (-2125 . 496942) (-2126 . 496834) (-2127 . 496693) (-2128 . 496608)
- (-2129 . 496539) (-2130 . 496437) (-2131 . 496268) (-2132 . 496183)
- (-2133 . 495850) (-2134 . 495777) (-2135 . 495706) (-2136 . 495553)
- (-2137 . 495489) (-2138 . 495195) (-2139 . 494894) (-2140 . 494750)
- (-2141 . 494587) (-2142 . 494338) (-2143 . 494266) (-2144 . 494081)
- (-2145 . 492253) (-2146 . 491962) (-2147 . 491569) (-2148 . 491471)
- (-2149 . 491306) (-2150 . 491147) (-2151 . 491044) (-2152 . 490962)
- (-2153 . 490853) (-2154 . 489352) (-2155 . 489230) (-2156 . 488890)
- (-2157 . 488509) (-2158 . 488453) (-2159 . 488359) (-2160 . 488277)
- (-2161 . 488131) (-2162 . 488064) (-2163 . 487635) (-2164 . 487382)
- (-2165 . 485842) (-2166 . 485651) (-2167 . 485463) (-2168 . 485392)
- (-2169 . 485132) (-2170 . 485077) (-2171 . 483897) (-2172 . 483627)
- (-2173 . 482181) (-2174 . 482125) (-2175 . 482016) (-2176 . 481891)
- (-2177 . 481786) (-2178 . 481707) (-2179 . 481655) (-2180 . 481511)
- (-2181 . 481458) (-2182 . 481224) (-2183 . 481047) (-2184 . 481013)
- (-2185 . 480855) (-2186 . 480754) (-2187 . 480698) (-2188 . 480514)
- (-2189 . 480335) (-2190 . 480283) (-2191 . 480139) (-2192 . 480024)
- (-2193 . 479951) (-2194 . 479805) (-2195 . 479661) (-2196 . 479494)
- (-2197 . 479299) (-2198 . 479132) (-2199 . 478951) (-2200 . 478839)
- (-2201 . 478708) (-2202 . 478058) (-2203 . 477920) (-2204 . 477247)
- (-2205 . 476987) (-2206 . 476878) (-2207 . 476623) (-2208 . 476529)
- (-2209 . 476386) (-2210 . 476219) (-2211 . 476030) (-2212 . 475975)
- (-2213 . 475908) (-2214 . 475763) (-2215 . 475678) (-2216 . 475605)
- (-2217 . 475484) (-2218 . 475324) (-2219 . 475293) (-2220 . 475122)
- (-2221 . 475000) (-2222 . 474921) (-2223 . 474815) (-2224 . 474766)
- (-2225 . 474686) (-2226 . 474658) (-2227 . 474212) (-2228 . 474125)
- (-2229 . 474054) (-2230 . 473852) (-2231 . 473795) (-2232 . 473649)
- (-2233 . 473575) (-2234 . 473470) (-2235 . 473136) (-2236 . 473083)
- (-2237 . 473030) (-2238 . 471720) (-2239 . 471611) (-2240 . 471556)
- (-2241 . 471415) (-2242 . 471337) (-2243 . 471295) (-2244 . 471216)
- (-2245 . 471120) (-2246 . 470965) (-2247 . 470779) (-2248 . 470680)
- (-2249 . 467899) (-2250 . 467826) (-2251 . 467688) (-2252 . 467557)
- (-2253 . 467174) (-2254 . 467146) (-2255 . 467062) (-2256 . 466960)
- (-2257 . 466792) (-2258 . 466563) (-2259 . 465611) (-2260 . 465368)
- (-2261 . 465340) (-2262 . 465015) (-2263 . 464987) (-2264 . 464655)
- (-2265 . 462703) (-2266 . 462388) (-2267 . 462282) (-2268 . 462073)
- (-2269 . 461990) (-2270 . 461816) (-2271 . 439071) (-2272 . 439019)
- (-2273 . 438729) (-2274 . 438637) (-2275 . 438305) (-2276 . 438221)
- (-2277 . 438134) (-2278 . 437578) (-2279 . 437477) (-2280 . 437412)
- (-2281 . 437075) (-2282 . 436945) (-2283 . 436857) (-2284 . 436791)
- (-2285 . 436739) (-2286 . 436597) (-2287 . 436406) (-2288 . 433732)
- (-2289 . 433664) (-2290 . 433286) (-2291 . 433234) (-2292 . 433140)
- (-2293 . 433007) (-2294 . 432909) (-2295 . 432803) (-2296 . 431798)
- (-2297 . 431323) (-2298 . 431224) (-2299 . 431156) (-2300 . 430420)
- (-2301 . 430337) (-2302 . 430270) (-2303 . 430052) (-2304 . 429527)
- (-2305 . 429380) (-2306 . 429213) (-2307 . 429136) (-2308 . 429006)
- (-2309 . 428953) (-2310 . 428792) (-2311 . 428718) (-2312 . 428177)
- (-2313 . 428122) (-2314 . 427775) (-2315 . 427677) (-2316 . 427510)
- (-2317 . 427404) (-2318 . 427253) (-2319 . 427116) (-2320 . 427057)
- (-2321 . 426931) (-2322 . 426766) (-2323 . 426387) (-2324 . 426272)
- (-2325 . 425786) (-2326 . 425592) (-2327 . 425455) (-2328 . 424919)
- (-2329 . 424064) (-2330 . 423923) (-2331 . 423807) (-2332 . 423720)
- (-2333 . 423455) (-2334 . 423421) (-2335 . 422783) (-2336 . 422706)
- (-2337 . 422301) (-2338 . 422099) (-2339 . 422045) (-2340 . 421992)
- (-2341 . 421829) (-2342 . 421537) (-2343 . 421422) (-2344 . 420974)
- (-2345 . 420943) (-2346 . 420869) (-2347 . 419709) (-2348 . 419589)
- (-2349 . 419512) (-2350 . 419064) (-2351 . 418834) (-2352 . 417265)
- (-2353 . 417158) (-2354 . 417061) (-2355 . 416955) (-2356 . 410009)
- (-2357 . 409925) (-2358 . 409840) (-2359 . 409726) (-2360 . 408361)
- (-2361 . 408033) (-2362 . 407956) (-2363 . 407928) (-2364 . 407827)
- (-2365 . 407748) (-2366 . 407566) (-2367 . 407461) (-2368 . 407359)
- (-2369 . 407261) (-2370 . 406161) (-2371 . 405731) (-2372 . 405212)
- (-2373 . 404089) (-2374 . 404002) (-2375 . 403614) (-2376 . 403117)
- (-2377 . 403065) (-2378 . 402978) (-2379 . 402881) (-2380 . 402767)
- (-2381 . 402684) (-2382 . 402478) (-2383 . 402426) (-2384 . 402065)
- (-2385 . 401817) (-2386 . 401691) (-2387 . 401197) (-2388 . 401067)
- (-2389 . 400911) (-2390 . 400828) (-2391 . 400723) (-2392 . 400639)
- (-2393 . 400487) (-2394 . 400182) (-2395 . 400030) (-2396 . 400002)
- (-2397 . 399819) (-2398 . 399491) (-2399 . 398489) (-2400 . 398359)
- (-2401 . 398109) (-2402 . 397778) (-2403 . 397695) (-2404 . 397204)
- (-2405 . 397097) (-2406 . 396972) (-2407 . 396901) (-2408 . 396788)
- (-2409 . 396395) (-2410 . 396329) (-2411 . 396174) (-2412 . 396060)
- (-2413 . 395953) (-2414 . 395353) (-2415 . 395241) (-2416 . 395095)
- (-2417 . 394877) (-2418 . 394734) (-2419 . 394548) (-2420 . 394520)
- (-2421 . 394423) (-2422 . 394371) (-2423 . 394262) (-2424 . 394009)
- (-2425 . 393736) (-2426 . 393165) (-2427 . 393021) (-2428 . 392966)
- (-2429 . 392429) (-2430 . 392137) (-2431 . 392020) (-2432 . 391906)
- (-2433 . 391766) (-2434 . 391714) (-2435 . 391648) (-2436 . 391490)
- (-2437 . 391360) (-2438 . 391296) (-2439 . 390870) (-2440 . 390562)
- (-2441 . 390467) (-2442 . 390404) (-2443 . 390316) (-2444 . 390250)
- (-2445 . 388949) (-2446 . 388883) (-2447 . 388800) (-2448 . 388738)
- (-2449 . 388138) (-2450 . 387687) (-2451 . 387593) (-2452 . 387270)
- (-2453 . 387198) (-2454 . 386997) (-2455 . 386898) (-2456 . 386826)
- (-2457 . 386083) (-2458 . 385946) (-2459 . 385875) (-2460 . 385742)
- (-2461 . 385689) (-2462 . 385363) (-2463 . 385312) (-2464 . 385050)
- (-2465 . 384629) (-2466 . 384530) (-2467 . 384292) (-2468 . 384221)
- (-2469 . 383931) (-2470 . 383860) (-2471 . 383751) (-2472 . 383593)
- (-2473 . 383209) (-2474 . 383045) (-2475 . 382930) (-2476 . 382707)
- (-2477 . 382579) (-2478 . 382438) (-2479 . 382292) (-2480 . 382121)
- (-2481 . 382005) (-2482 . 381971) (-2483 . 381442) (-2484 . 381319)
- (-2485 . 381216) (-2486 . 381079) (-2487 . 380969) (-2488 . 380853)
- (-2489 . 380746) (-2490 . 380600) (-2491 . 380392) (-2492 . 380121)
- (-2493 . 379902) (-2494 . 379357) (-2495 . 379252) (-2496 . 379094)
- (-2497 . 378932) (-2498 . 378533) (-2499 . 378257) (-2500 . 376972)
- (-2501 . 376816) (-2502 . 376757) (-2503 . 376610) (-2504 . 376475)
- (-2505 . 376419) (-2506 . 376334) (-2507 . 376153) (-2508 . 375844)
- (-2509 . 375704) (-2510 . 375545) (-2511 . 375445) (-2512 . 375261)
- (-2513 . 375173) (-2514 . 374869) (-2515 . 374560) (-2516 . 373378)
- (-2517 . 373212) (-2518 . 372397) (-2519 . 372317) (-2520 . 371619)
- (-2521 . 371548) (-2522 . 371477) (-2523 . 371389) (-2524 . 371334)
- (-2525 . 371023) (-2526 . 370967) (-2527 . 370815) (-2528 . 370377)
- (-2529 . 370004) (-2530 . 369926) (-2531 . 369822) (-2532 . 369435)
- (-2533 . 369306) (-2534 . 369250) (-2535 . 369158) (-2536 . 369106)
- (-2537 . 368933) (-2538 . 368794) (-2539 . 368698) (-2540 . 368356)
- (-2541 . 368198) (-2542 . 368076) (-2543 . 367976) (-2544 . 367924)
- (-2545 . 367628) (-2546 . 367441) (-2547 . 367311) (-2548 . 367040)
- (-2549 . 366815) (-2550 . 366747) (-2551 . 366691) (-2552 . 366515)
- (-2553 . 366458) (-2554 . 366403) (-2555 . 366303) (-2556 . 366189)
- (-2557 . 365837) (-2558 . 365784) (-2559 . 365678) (-2560 . 364466)
- (-2561 . 364413) (-2562 . 364129) (-2563 . 363999) (-2564 . 363925)
- (-2565 . 363873) (-2566 . 363539) (-2567 . 363377) (-2568 . 363294)
- (-2569 . 363141) (-2570 . 362991) (-2571 . 362935) (-2572 . 362830)
- (-2573 . 362777) (-2574 . 362659) (-2575 . 362542) (-2576 . 362485)
- (-2577 . 362384) (-2578 . 362314) (-2579 . 362143) (-2580 . 362046)
- (-2581 . 361880) (-2582 . 361809) (-2583 . 361635) (-2584 . 360980)
- (-2585 . 360826) (-2586 . 360769) (-2587 . 360646) (-2588 . 360327)
- (-2589 . 360232) (-2590 . 360158) (-2591 . 360002) (-2592 . 359907)
- (-2593 . 359777) (-2594 . 359691) (-2595 . 359608) (-2596 . 359368)
- (-2597 . 359136) (-2598 . 358913) (-2599 . 358253) (-2600 . 358138)
- (-2601 . 358085) (-2602 . 358019) (-2603 . 357759) (-2604 . 357658)
- (-2605 . 357592) (-2606 . 357479) (-2607 . 357419) (-2608 . 357036)
- (-2609 . 351937) (-2610 . 351878) (-2611 . 351804) (-2612 . 351459)
- (-2613 . 351372) (-2614 . 351341) (-2615 . 351223) (-2616 . 351008)
- (-2617 . 350935) (-2618 . 350435) (-2619 . 350246) (-2620 . 349362)
- (-2621 . 349221) (-2622 . 349152) (-2623 . 349022) (-2624 . 348870)
- (-2625 . 348529) (-2626 . 348412) (-2627 . 348009) (-2628 . 347957)
- (-2629 . 347808) (-2630 . 347742) (-2631 . 347558) (-2632 . 347423)
- (-2633 . 347257) (-2634 . 347149) (-2635 . 347085) (-2636 . 346885)
- (-2637 . 346665) (-2638 . 346634) (-2639 . 346507) (-2640 . 346479)
- (-2641 . 346277) (-2642 . 346108) (-2643 . 346025) (-2644 . 345907)
- (-2645 . 345828) (-2646 . 345312) (-2647 . 345059) (-2648 . 344723)
- (-2649 . 344605) (-2650 . 344497) (-2651 . 344431) (-2652 . 344276)
- (-2653 . 344172) (-2654 . 344062) (-2655 . 343975) (-2656 . 343919)
- (-2657 . 343848) (-2658 . 343507) (-2659 . 343355) (-2660 . 343218)
- (-2661 . 342975) (-2662 . 342443) (-2663 . 342135) (-2664 . 342006)
- (-2665 . 341927) (-2666 . 341872) (-2667 . 341782) (-2668 . 341658)
- (-2669 . 341468) (-2670 . 340397) (-2671 . 339211) (-2672 . 339158)
- (-2673 . 339066) (-2674 . 339038) (-2675 . 338758) (-2676 . 338704)
- (-2677 . 338643) (-2678 . 338450) (-2679 . 338343) (-2680 . 338315)
- (-2681 . 338089) (-2682 . 337825) (-2683 . 337234) (-2684 . 337125)
- (-2685 . 336935) (-2686 . 336742) (-2687 . 336604) (-2688 . 336527)
- (-2689 . 336327) (-2690 . 336229) (-2691 . 335807) (-2692 . 335184)
- (-2693 . 334991) (-2694 . 334925) (-2695 . 334748) (-2696 . 334588)
- (-2697 . 334537) (-2698 . 334485) (-2699 . 334432) (-2700 . 334363)
- (-2701 . 334286) (-2702 . 334167) (-2703 . 334112) (-2704 . 334052)
- (-2705 . 333833) (-2706 . 333621) (-2707 . 333434) (-2708 . 333290)
- (-2709 . 333172) (-2710 . 333056) (-2711 . 332259) (-2712 . 332083)
- (-2713 . 331963) (-2714 . 331580) (-2715 . 331443) (-2716 . 331358)
- (-2717 . 331233) (-2718 . 331143) (-2719 . 331090) (-2720 . 330511)
- (-2721 . 330393) (-2722 . 330297) (-2723 . 329917) (-2724 . 329858)
- (-2725 . 329622) (-2726 . 329508) (-2727 . 329454) (-2728 . 329383)
- (-2729 . 329042) (-2730 . 328921) (-2731 . 328865) (-2732 . 328488)
- (-2733 . 328428) (-2734 . 328331) (-2735 . 328297) (-2736 . 328194)
- (-2737 . 328142) (-2738 . 328057) (-2739 . 327916) (-2740 . 327837)
- (-2741 . 327346) (-2742 . 327150) (-2743 . 327072) (-2744 . 327020)
- (-2745 . 326413) (-2746 . 326186) (-2747 . 326133) (-2748 . 326021)
- (-2749 . 325823) (-2750 . 325656) (-2751 . 325546) (-2752 . 325474)
- (-2753 . 325336) (-2754 . 325133) (-2755 . 324884) (-2756 . 324744)
- (-2757 . 324497) (-2758 . 324358) (-2759 . 324126) (-2760 . 324019)
- (-2761 . 323778) (-2762 . 323571) (-2763 . 323221) (-2764 . 322894)
- (-2765 . 322803) (-2766 . 322428) (-2767 . 322391) (-2768 . 322271)
- (-2769 . 322055) (-2770 . 321758) (-2771 . 321649) (-2772 . 321458)
- (-2773 . 321347) (-2774 . 321068) (-2775 . 320775) (-2776 . 320483)
- (-2777 . 320400) (-2778 . 320332) (-2779 . 320249) (-2780 . 319954)
- (-2781 . 319860) (-2782 . 319110) (-2783 . 318887) (-2784 . 318804)
- (-2785 . 318634) (-2786 . 318463) (-2787 . 318336) (-2788 . 317793)
- (-2789 . 317697) (-2790 . 317593) (-2791 . 316921) (-2792 . 316735)
- (-2793 . 316680) (-2794 . 316621) (-2795 . 316480) (-2796 . 316393)
- (-2797 . 316215) (-2798 . 316171) (-2799 . 316116) (-2800 . 315984)
- (-2801 . 315124) (-2802 . 315034) (-2803 . 313255) (-2804 . 313181)
- (-2805 . 313036) (-2806 . 312881) (-2807 . 312746) (-2808 . 312616)
- (-2809 . 312560) (-2810 . 312400) (-2811 . 312191) (-2812 . 311864)
- (-2813 . 311815) (-2814 . 311742) (-2815 . 311470) (-2816 . 311199)
- (-2817 . 311101) (-2818 . 311000) (-2819 . 310908) (-2820 . 310856)
- (-2821 . 310694) (-2822 . 310571) (-2823 . 310500) (-2824 . 309926)
- (-2825 . 309821) (-2826 . 309743) (-2827 . 309693) (-2828 . 309488)
- (-2829 . 308964) (-2830 . 308891) (-2831 . 308622) (-2832 . 308503)
- (-2833 . 308322) (-2834 . 308262) (-2835 . 307795) (-2836 . 307700)
- (-2837 . 307644) (-2838 . 307612) (-2839 . 307513) (-2840 . 307093)
- (-2841 . 307044) (-2842 . 306813) (-2843 . 306535) (-2844 . 306084)
- (-2845 . 306053) (-2846 . 305845) (-2847 . 305794) (-2848 . 305451)
- (-2849 . 305042) (-2850 . 304949) (-2851 . 304891) (-2852 . 304702)
- (-2853 . 304514) (-2854 . 303992) (-2855 . 303908) (-2856 . 303850)
- (-2857 . 303797) (-2858 . 303657) (-2859 . 303510) (-2860 . 303442)
- (-2861 . 303307) (-2862 . 302948) (-2863 . 302834) (-2864 . 302612)
- (-2865 . 302535) (-2866 . 302484) (-2867 . 302297) (-2868 . 302210)
- (-2869 . 302095) (-2870 . 302015) (-2871 . 301856) (-2872 . 301790)
- (-2873 . 301657) (-2874 . 301525) (-2875 . 301416) (-2876 . 301318)
- (-2877 . 301206) (-2878 . 301145) (-2879 . 301089) (-2880 . 301034)
- (-2881 . 300962) (-2882 . 300850) (-2883 . 300782) (-2884 . 300649)
- (-2885 . 300621) (-2886 . 300534) (-2887 . 300303) (-2888 . 300220)
- (-2889 . 299936) (-2890 . 299867) (-2891 . 298325) (-2892 . 298034)
- (-2893 . 297875) (-2894 . 297533) (-2895 . 297463) (-2896 . 297392)
- (-2897 . 297238) (-2898 . 297129) (-2899 . 297079) (-2900 . 296999)
- (-2901 . 296965) (-2902 . 296615) (-2903 . 296532) (-2904 . 296429)
- (-2905 . 296377) (-2906 . 296138) (-2907 . 296028) (-2908 . 295789)
- (-2909 . 295545) (-2910 . 295487) (-2911 . 295352) (-2912 . 295265)
- (-2913 . 295180) (-2914 . 294758) (-2915 . 294692) (-2916 . 294615)
- (-2917 . 294584) (-2918 . 294346) (-2919 . 294269) (-2920 . 294159)
- (-2921 . 294089) (-2922 . 294012) (-2923 . 293903) (-2924 . 293866)
- (-2925 . 293779) (-2926 . 293656) (-2927 . 293549) (-2928 . 293478)
- (-2929 . 292826) (-2930 . 292748) (-2931 . 292635) (-2932 . 291966)
- (-2933 . 291769) (-2934 . 291672) (-2935 . 291572) (-2936 . 291504)
- (-2937 . 291338) (-2938 . 291272) (-2939 . 291129) (-2940 . 290844)
- (-2941 . 290721) (-2942 . 290669) (-2943 . 290616) (-2944 . 290564)
- (-2945 . 290463) (-2946 . 290257) (-2947 . 290012) (-2948 . 289911)
- (-2949 . 289877) (-2950 . 289690) (-2951 . 289656) (-2952 . 289627)
- (-2953 . 289339) (-2954 . 289287) (-2955 . 289192) (-2956 . 288082)
- (-2957 . 287941) (-2958 . 287306) (-2959 . 287097) (-2960 . 286716)
- (-2961 . 286617) (-2962 . 286375) (-2963 . 286307) (-2964 . 286211)
- (-2965 . 286183) (-2966 . 286081) (-2967 . 285855) (-2968 . 285629)
- (-2969 . 285601) (-2970 . 285540) (-2971 . 285472) (-2972 . 285382)
- (-2973 . 285324) (-2974 . 285271) (-2975 . 285146) (-2976 . 284932)
- (-2977 . 284755) (-2978 . 284668) (-2979 . 284569) (-2980 . 284441)
- (-2981 . 283898) (-2982 . 283618) (-2983 . 283470) (-2984 . 283244)
- (-2985 . 283005) (-2986 . 282801) (-2987 . 282714) (-2988 . 282467)
- (-2989 . 282057) (-2990 . 281914) (-2991 . 281435) (-2992 . 281341)
- (-2993 . 281151) (-2994 . 281078) (-2995 . 280961) (-2996 . 280859)
- (-2997 . 280681) (-2998 . 280625) (-2999 . 280472) (-3000 . 279824)
- (-3001 . 279540) (-3002 . 279466) (-3003 . 279410) (-3004 . 279313)
- (-3005 . 279230) (-3006 . 279162) (-3007 . 278995) (-3008 . 278720)
- (-3009 . 278391) (-3010 . 278284) (-3011 . 278183) (-3012 . 277796)
- (-3013 . 277724) (-3014 . 277640) (-3015 . 277293) (-3016 . 277189)
- (-3017 . 277025) (-3018 . 276931) (-3019 . 276718) (-3020 . 276637)
- (-3021 . 276603) (-3022 . 276231) (-3023 . 276122) (-3024 . 275905)
- (-3025 . 275747) (-3026 . 275641) (-3027 . 275558) (-3028 . 275417)
- (-3029 . 275364) (-3030 . 275260) (-3031 . 275145) (-3032 . 274948)
- (-3033 . 274875) (-3034 . 274716) (-3035 . 274632) (-3036 . 274523)
- (-3037 . 274455) (-3038 . 274264) (-3039 . 273932) (-3040 . 273858)
- (-3041 . 273740) (-3042 . 273573) (-3043 . 273455) (-3044 . 273091)
- (-3045 . 272972) (-3046 . 272608) (-3047 . 272513) (-3048 . 272454)
- (-3049 . 272393) (-3050 . 272340) (-3051 . 272238) (-3052 . 271242)
- (-3053 . 271052) (-3054 . 270958) (-3055 . 270823) (-3056 . 270753)
- (-3057 . 270596) (-3058 . 270482) (-3059 . 270430) (-3060 . 270328)
- (-3061 . 269888) (-3062 . 269857) (-3063 . 269713) (-3064 . 269591)
- (-3065 . 269536) (-3066 . 269388) (-3067 . 269258) (-3068 . 269145)
- (-3069 . 269010) (-3070 . 268869) (-3071 . 268692) (-3072 . 268548)
- (-3073 . 268341) (-3074 . 268285) (-3075 . 268070) (-3076 . 267928)
- (-3077 . 267492) (-3078 . 267116) (-3079 . 266670) (-3080 . 266561)
- (-3081 . 266412) (-3082 . 266315) (-3083 . 266197) (-3084 . 266132)
- (-3085 . 266045) (-3086 . 265166) (-3087 . 264592) (-3088 . 264483)
- (-3089 . 264328) (-3090 . 260168) (-3091 . 259963) (-3092 . 259161)
- (-3093 . 258780) (-3094 . 258507) (-3095 . 258384) (-3096 . 258304)
- (-3097 . 258006) (-3098 . 257947) (-3099 . 257790) (-3100 . 257753)
- (-3101 . 257643) (-3102 . 257459) (-3103 . 257401) (-3104 . 256815)
- (-3105 . 256728) (-3106 . 256518) (-3107 . 256397) (-3108 . 256311)
- (-3109 . 256187) (-3110 . 255878) (-3111 . 255627) (-3112 . 255572)
- (-3113 . 255428) (-3114 . 254509) (-3115 . 254372) (-3116 . 254277)
- (-3117 . 254146) (-3118 . 254076) (-3119 . 253697) (-3120 . 253503)
- (-3121 . 253243) (-3122 . 253174) (-3123 . 252923) (-3124 . 252596)
- (-3125 . 252416) (-3126 . 252363) (-3127 . 252234) (-3128 . 252141)
- (-3129 . 251983) (-3130 . 251885) (-3131 . 251782) (-3132 . 251682)
- (-3133 . 251567) (-3134 . 251404) (-3135 . 251251) (-3136 . 251199)
- (-3137 . 250788) (-3138 . 250541) (-3139 . 250308) (-3140 . 249761)
- (-3141 . 249687) (-3142 . 249494) (-3143 . 249387) (-3144 . 249290)
- (-3145 . 249149) (-3146 . 248976) (-3147 . 248670) (-3148 . 248615)
- (-3149 . 248563) (-3150 . 248393) (-3151 . 248290) (-3152 . 247532)
- (-3153 . 247458) (-3154 . 247328) (-3155 . 247221) (-3156 . 247155)
- (-3157 . 246932) (-3158 . 246298) (-3159 . 246191) (-3160 . 246142)
- (-3161 . 245827) (-3162 . 245747) (-3163 . 245516) (-3164 . 243798)
- (-3165 . 243662) (-3166 . 243588) (-3167 . 243380) (-3168 . 243216)
- (-3169 . 242958) (-3170 . 242836) (-3171 . 242771) (-3172 . 242586)
- (-3173 . 242515) (-3174 . 242420) (-3175 . 242367) (-3176 . 242297)
- (-3177 . 241693) (-3178 . 241619) (-3179 . 241083) (-3180 . 240933)
- (-3181 . 240859) (-3182 . 240701) (-3183 . 240621) (-3184 . 240130)
- (-3185 . 239884) (-3186 . 239828) (-3187 . 239797) (-3188 . 239633)
- (-3189 . 239571) (-3190 . 239476) (-3191 . 239231) (-3192 . 239113)
- (-3193 . 239029) (-3194 . 238934) (-3195 . 238860) (-3196 . 238252)
- (-3197 . 238093) (-3198 . 237894) (-3199 . 237777) (-3200 . 237669)
- (** . 234592) (-3202 . 234365) (-3203 . 234163) (-3204 . 234077)
- (-3205 . 233880) (-3206 . 233739) (-3207 . 233665) (-3208 . 233378)
- (-3209 . 233232) (-3210 . 232864) (-3211 . 232602) (-3212 . 232434)
- (-3213 . 231811) (-3214 . 231708) (-3215 . 231631) (-3216 . 231565)
- (-3217 . 231514) (-3218 . 231346) (-3219 . 231239) (-3220 . 231049)
- (-3221 . 230877) (-3222 . 230740) (-3223 . 230666) (-3224 . 230181)
- (-3225 . 230099) (-3226 . 229993) (-3227 . 229831) (-3228 . 225310)
- (-3229 . 225115) (-3230 . 224992) (-3231 . 224793) (-3232 . 224726)
- (-3233 . 223888) (-3234 . 223442) (-3235 . 223132) (-3236 . 223077)
- (-3237 . 222979) (-3238 . 222667) (-3239 . 222560) (-3240 . 222380)
- (-3241 . 219965) (-3242 . 219909) (-3243 . 219836) (-3244 . 219420)
- (-3245 . 219225) (-3246 . 219143) (-3247 . 219086) (-3248 . 219052)
- (-3249 . 218840) (-3250 . 218772) (-3251 . 218706) (-3252 . 218482)
- (-3253 . 218333) (-3254 . 218232) (-3255 . 218118) (-3256 . 218065)
- (-3257 . 217980) (-3258 . 217478) (-3259 . 217228) (-3260 . 217046)
- (-3261 . 216934) (-3262 . 216826) (-3263 . 216714) (-3264 . 216524)
- (-3265 . 216471) (-3266 . 216299) (-3267 . 216247) (-3268 . 216049)
- (-3269 . 215997) (-3270 . 215939) (-3271 . 215844) (-3272 . 215639)
- (-3273 . 215544) (-3274 . 215372) (-3275 . 215216) (-3276 . 215037)
- (-3277 . 214820) (-3278 . 214492) (-3279 . 214395) (-3280 . 214300)
- (-3281 . 214020) (-3282 . 213940) (-3283 . 213874) (-3284 . 213771)
- (-3285 . 213711) (-3286 . 213539) (-3287 . 213483) (-3288 . 213146)
- (-3289 . 213091) (-3290 . 212798) (-3291 . 212548) (-3292 . 212338)
- (-3293 . 211703) (-3294 . 211523) (-3295 . 211429) (-3296 . 211355)
- (-3297 . 211217) (-3298 . 211045) (-3299 . 210983) (-3300 . 210646)
- (-3301 . 210529) (-3302 . 210388) (-3303 . 210252) (-3304 . 209777)
- (-3305 . 209678) (-3306 . 209609) (-3307 . 209454) (-3308 . 209311)
- (-3309 . 209173) (-3310 . 195115) (-3311 . 195066) (-3312 . 194667)
- (-3313 . 194560) (-3314 . 194427) (-3315 . 194326) (-3316 . 193976)
- (-3317 . 193760) (-3318 . 193496) (-3319 . 193068) (-3320 . 192576)
- (-3321 . 192493) (-3322 . 192063) (-3323 . 191990) (-3324 . 191881)
- (-3325 . 191758) (-3326 . 191583) (-3327 . 191366) (-3328 . 191028)
- (-3329 . 190884) (-3330 . 190717) (-3331 . 190504) (-3332 . 190385)
- (-3333 . 190010) (-3334 . 189909) (-3335 . 189826) (-3336 . 189701)
- (-3337 . 189601) (-3338 . 189445) (-3339 . 189351) (-3340 . 189236)
- (-3341 . 188632) (-3342 . 187803) (-3343 . 187633) (-3344 . 187534)
- (-3345 . 187482) (-3346 . 187292) (-3347 . 187114) (-3348 . 186998)
- (-3349 . 186917) (-3350 . 186557) (-3351 . 185493) (-3352 . 185274)
- (-3353 . 185222) (-3354 . 184971) (-3355 . 184814) (-3356 . 184720)
- (-3357 . 184671) (-3358 . 184500) (-3359 . 179799) (-3360 . 179298)
- (-3361 . 179109) (-3362 . 179031) (-3363 . 178706) (-3364 . 178547)
- (-3365 . 178389) (-3366 . 178079) (-3367 . 177264) (-3368 . 177215)
- (-3369 . 177101) (-3370 . 176776) (-3371 . 176526) (-3372 . 176273)
- (-3373 . 176178) (-3374 . 176150) (-3375 . 176013) (-3376 . 175498)
- (-3377 . 175398) (-3378 . 175189) (-3379 . 175080) (-3380 . 174954)
- (-3381 . 174744) (-3382 . 174641) (-3383 . 174406) (-3384 . 174243)
- (-3385 . 174175) (-3386 . 174072) (-3387 . 173850) (-3388 . 173798)
- (-3389 . 173642) (-3390 . 168325) (-3391 . 168069) (-3392 . 167944)
- (-3393 . 167840) (-3394 . 167783) (-3395 . 167639) (-3396 . 167528)
- (-3397 . 167441) (-3398 . 167342) (-3399 . 167290) (-3400 . 167046)
- (-3401 . 167015) (-3402 . 166690) (-3403 . 166418) (-3404 . 166344)
- (-3405 . 166270) (-3406 . 166151) (-3407 . 166011) (-3408 . 165873)
- (-3409 . 165599) (-3410 . 165283) (-3411 . 165159) (-3412 . 164862)
- (-3413 . 164685) (-3414 . 164298) (-3415 . 164239) (-3416 . 163613)
- (-3417 . 163507) (-3418 . 163424) (-3419 . 163258) (-3420 . 163152)
- (-3421 . 163009) (-3422 . 162371) (-3423 . 162121) (-3424 . 161975)
- (-3425 . 161909) (-3426 . 161781) (-3427 . 161460) (-3428 . 161381)
- (-3429 . 161052) (-3430 . 160943) (-3431 . 160555) (-3432 . 160223)
- (-3433 . 157315) (-3434 . 157214) (-3435 . 156546) (-3436 . 156328)
- (-3437 . 156162) (-3438 . 156067) (-3439 . 155927) (-3440 . 155815)
- (-3441 . 155703) (-3442 . 155486) (-3443 . 154906) (-3444 . 154633)
- (-3445 . 154336) (-3446 . 154227) (-3447 . 154069) (-3448 . 153916)
- (-3449 . 153694) (-3450 . 153608) (-3451 . 153456) (-3452 . 153337)
- (-3453 . 153179) (-3454 . 151718) (-3455 . 151588) (-3456 . 151467)
- (-3457 . 151221) (-3458 . 150942) (-3459 . 150798) (-3460 . 150657)
- (-3461 . 150270) (-3462 . 150112) (-3463 . 150001) (-3464 . 149945)
- (-3465 . 149892) (-3466 . 149783) (-3467 . 149684) (-3468 . 149611)
- (-3469 . 149538) (-3470 . 149207) (-3471 . 149085) (-3472 . 149029)
- (-3473 . 148825) (-3474 . 148731) (-3475 . 148598) (-3476 . 148348)
- (-3477 . 148018) (-3478 . 147965) (-3479 . 147794) (-3480 . 147660)
- (-3481 . 147565) (-3482 . 147494) (-3483 . 147292) (-3484 . 147140)
- (-3485 . 147039) (-3486 . 146961) (-3487 . 146824) (-3488 . 146775)
- (-3489 . 146201) (-3490 . 146022) (-3491 . 145836) (-3492 . 145378)
- (-3493 . 145275) (-3494 . 145219) (-3495 . 145048) (-3496 . 144876)
- (-3497 . 144779) (-3498 . 144722) (-3499 . 144648) (-3500 . 144505)
- (-3501 . 144439) (-3502 . 144368) (-3503 . 144223) (-3504 . 144149)
- (-3505 . 144097) (-3506 . 143998) (-3507 . 143845) (-3508 . 143813)
- (-3509 . 143643) (-3510 . 143570) (-3511 . 143490) (-3512 . 143419)
- (-3513 . 143010) (-3514 . 142848) (-3515 . 142740) (-3516 . 142647)
- (-3517 . 142541) (-3518 . 142467) (-3519 . 142269) (-3520 . 142157)
- (-3521 . 142057) (-3522 . 141282) (-3523 . 141030) (-3524 . 137042)
- (-3525 . 136919) (-3526 . 136866) (-3527 . 136778) (-3528 . 136708)
- (-3529 . 136629) (-3530 . 136522) (-3531 . 136432) (-3532 . 136136)
- (-3533 . 135932) (-3534 . 135481) (-3535 . 135165) (-3536 . 135113)
- (-3537 . 134647) (-3538 . 134437) (-3539 . 133846) (-3540 . 133769)
- (-3541 . 133686) (-3542 . 133583) (-3543 . 133476) (-3544 . 131224)
- (-3545 . 131097) (-3546 . 130851) (-3547 . 130671) (-3548 . 128909)
- (-3549 . 128596) (-3550 . 128487) (-3551 . 128352) (-3552 . 127912)
- (-3553 . 127829) (-3554 . 127777) (-3555 . 127697) (-3556 . 127534)
- (-3557 . 127365) (-3558 . 126210) (-3559 . 126161) (-3560 . 125974)
- (-3561 . 125871) (-3562 . 125653) (-3563 . 125580) (-3564 . 125490)
- (-3565 . 125419) (-3566 . 125320) (-3567 . 125193) (-3568 . 125051)
- (-3569 . 124723) (-3570 . 124593) (-3571 . 124482) (-3572 . 124269)
- (-3573 . 124186) (-3574 . 123121) (-3575 . 123036) (-3576 . 122924)
- (-3577 . 122826) (-3578 . 122776) (-3579 . 122694) (-3580 . 122364)
- (-3581 . 122138) (-3582 . 122064) (-3583 . 121998) (-3584 . 121843)
- (-3585 . 121791) (-3586 . 121710) (-3587 . 121471) (-3588 . 121326)
- (-3589 . 121243) (-3590 . 120819) (-3591 . 120564) (-3592 . 120342)
- (-3593 . 120176) (-3594 . 120099) (-3595 . 119966) (-3596 . 119896)
- (-3597 . 119809) (-3598 . 119726) (-3599 . 119627) (-3600 . 119575)
- (-3601 . 119435) (-3602 . 119311) (-3603 . 119227) (-3604 . 119083)
- (-3605 . 118758) (-3606 . 118677) (-3607 . 118524) (-3608 . 118474)
- (-3609 . 118393) (-3610 . 118222) (-3611 . 118137) (-3612 . 118030)
- (-3613 . 117977) (-3614 . 117869) (-3615 . 117726) (-3616 . 117629)
- (-3617 . 114344) (-3618 . 114004) (-3619 . 113757) (-3620 . 113705)
- (-3621 . 113619) (-3622 . 113489) (-3623 . 113429) (-3624 . 113112)
- (-3625 . 112592) (-3626 . 112518) (-3627 . 112388) (-3628 . 112097)
- (-3629 . 111795) (-3630 . 111713) (-3631 . 111676) (-3632 . 111567)
- (-3633 . 111109) (-3634 . 110983) (-3635 . 110871) (-3636 . 110748)
- (-3637 . 110595) (-3638 . 110496) (-3639 . 110418) (-3640 . 110348)
- (-3641 . 110056) (-3642 . 109943) (-3643 . 109872) (-3644 . 109748)
- (-3645 . 109570) (-3646 . 109536) (-3647 . 107436) (-3648 . 107217)
- (-3649 . 107077) (-3650 . 106990) (-3651 . 106792) (-3652 . 106566)
- (-3653 . 106508) (-3654 . 106435) (-3655 . 106350) (-3656 . 106321)
- (-3657 . 106247) (-3658 . 106194) (-3659 . 106024) (-3660 . 105930)
- (-3661 . 105816) (-3662 . 105521) (-3663 . 105456) (-3664 . 105403)
- (-3665 . 105269) (-3666 . 104954) (-3667 . 104830) (-3668 . 104661)
- (-3669 . 104502) (-3670 . 104224) (-3671 . 104122) (-3672 . 104050)
- (-3673 . 103906) (-3674 . 102990) (-3675 . 102904) (-3676 . 102730)
- (-3677 . 102600) (-3678 . 102516) (-3679 . 102445) (-3680 . 102280)
- (-3681 . 102063) (-3682 . 101392) (-3683 . 101285) (-3684 . 101211)
- (-3685 . 100912) (-3686 . 100841) (-3687 . 100770) (-3688 . 100671)
- (-3689 . 100358) (-3690 . 100167) (-3691 . 100042) (-3692 . 99941)
- (-3693 . 99674) (-3694 . 99400) (-3695 . 99322) (-3696 . 99285)
- (-3697 . 99215) (-3698 . 99119) (-3699 . 99017) (-3700 . 98630)
- (-3701 . 98500) (-3702 . 98399) (-3703 . 98296) (-3704 . 97950)
- (-3705 . 97816) (-3706 . 97681) (-3707 . 97578) (-3708 . 97261)
- (-3709 . 97149) (-3710 . 97003) (-3711 . 96926) (-3712 . 96790)
- (-3713 . 96652) (-3714 . 96536) (-3715 . 96434) (-3716 . 96349)
- (-3717 . 96297) (-3718 . 96223) (-3719 . 96164) (-3720 . 96105)
- (-3721 . 96004) (-3722 . 95895) (-3723 . 95784) (-3724 . 95732)
- (-3725 . 95400) (-3726 . 95348) (-3727 . 95292) (-3728 . 95136)
- (-3729 . 94959) (-3730 . 94872) (-3731 . 94777) (-3732 . 94692)
- (-3733 . 94583) (-3734 . 94337) (-3735 . 94264) (-3736 . 94065)
- (-3737 . 92818) (-3738 . 92765) (-3739 . 92554) (-3740 . 92469)
- (-3741 . 92384) (-3742 . 92228) (-3743 . 92063) (-3744 . 91990)
- (-3745 . 90136) (-3746 . 89822) (-3747 . 89650) (-3748 . 89458)
- (-3749 . 89351) (-3750 . 88447) (-3751 . 88370) (-3752 . 87952)
- (-3753 . 87436) (-3754 . 87329) (-3755 . 87211) (-3756 . 87104)
- (-3757 . 86944) (-12 . 86772) (-3759 . 86706) (-3760 . 86462)
- (-3761 . 86171) (-3762 . 86039) (-3763 . 85826) (-3764 . 85752)
- (-3765 . 85655) (-3766 . 85587) (-3767 . 85266) (-3768 . 85217)
- (-3769 . 85052) (-3770 . 84904) (-3771 . 84831) (-3772 . 84728)
- (-3773 . 84540) (-3774 . 84512) (-3775 . 84194) (-3776 . 84142)
- (-3777 . 84015) (-3778 . 83941) (-3779 . 83868) (-3780 . 83683)
- (-3781 . 83527) (-3782 . 83493) (-3783 . 83217) (-3784 . 82026)
- (-3785 . 81931) (-3786 . 81828) (-3787 . 81730) (-3788 . 81636)
- (-3789 . 81038) (-3790 . 80552) (-3791 . 80416) (-3792 . 80315)
- (-3793 . 80189) (-3794 . 79876) (-3795 . 79763) (-3796 . 79697)
- (-3797 . 79453) (-3798 . 79321) (-3799 . 79240) (-3800 . 79141)
- (-3801 . 78862) (-3802 . 78700) (-3803 . 78649) (-3804 . 78446)
- (-3805 . 78380) (-3806 . 78283) (-3807 . 77948) (-3808 . 77882)
- (-3809 . 77487) (-3810 . 77358) (-3811 . 77159) (-3812 . 77039)
- (-3813 . 77011) (-3814 . 76924) (-3815 . 76838) (-3816 . 76752)
- (-3817 . 76686) (-3818 . 76599) (-3819 . 76529) (-3820 . 76474)
- (-3821 . 76241) (-3822 . 75739) (-3823 . 75639) (-3824 . 75551)
- (-3825 . 75498) (-3826 . 74799) (-3827 . 74533) (-3828 . 74482)
- (-3829 . 74287) (-3830 . 74122) (-3831 . 73682) (-3832 . 73426)
- (-3833 . 73342) (-3834 . 73280) (-3835 . 73200) (-3836 . 73006)
- (-3837 . 72943) (-3838 . 72806) (-3839 . 72728) (-3840 . 72645)
- (-3841 . 72258) (-3842 . 72168) (-3843 . 71914) (-3844 . 71858)
- (-3845 . 71701) (-3846 . 71624) (-3847 . 70626) (-3848 . 70483)
- (-3849 . 70389) (-3850 . 70277) (-3851 . 70190) (-3852 . 70020)
- (-3853 . 69585) (* . 65062) (-3855 . 64917) (-3856 . 63954)
- (-3857 . 63827) (-3858 . 63701) (-3859 . 63582) (-3860 . 63456)
- (-3861 . 63142) (-3862 . 63090) (-3863 . 63012) (-3864 . 62854)
- (-3865 . 62760) (-3866 . 62673) (-3867 . 62497) (-3868 . 56991)
- (-3869 . 56827) (-3870 . 55617) (-3871 . 55547) (-3872 . 55365)
- (-3873 . 55288) (-3874 . 54802) (-3875 . 54693) (-3876 . 54621)
- (-3877 . 54415) (-3878 . 54349) (-3879 . 54207) (-3880 . 53819)
- (-3881 . 53608) (-3882 . 53505) (-3883 . 53447) (-3884 . 53349)
- (-3885 . 53165) (-3886 . 53007) (-3887 . 52854) (-3888 . 52774)
- (-3889 . 52677) (-3890 . 52606) (-3891 . 52557) (-3892 . 52011)
- (-3893 . 51980) (-3894 . 51527) (-3895 . 51396) (-3896 . 51266)
- (-3897 . 51192) (-3898 . 50595) (-3899 . 50303) (-3900 . 50222)
- (-3901 . 50167) (-3902 . 50075) (-3903 . 49984) (-3904 . 49891)
- (-3905 . 49777) (-3906 . 49430) (-3907 . 49325) (-3908 . 49115)
- (-3909 . 49035) (-3910 . 48556) (-3911 . 48226) (-3912 . 47856)
- (-3913 . 47641) (-3914 . 47588) (-3915 . 47309) (-3916 . 47217)
- (-3917 . 46740) (-3918 . 46470) (-3919 . 46355) (-3920 . 46211)
- (-3921 . 45782) (-3922 . 45620) (-3923 . 45555) (-3924 . 45331)
- (-3925 . 45015) (-3926 . 44860) (-3927 . 44774) (-3928 . 44746)
- (-3929 . 44642) (-3930 . 44126) (-3931 . 43974) (-3932 . 43870)
- (-3933 . 43626) (-3934 . 43347) (-3935 . 42473) (-3936 . 42404)
- (-3937 . 42179) (-3938 . 41957) (-3939 . 41830) (-3940 . 41447)
- (-3941 . 41292) (-3942 . 41003) (-3943 . 40861) (-3944 . 40772)
- (-3945 . 40677) (-3946 . 40581) (-3947 . 40474) (-3948 . 40369)
- (-3949 . 40224) (-3950 . 40068) (-3951 . 39904) (-3952 . 39786)
- (-3953 . 39719) (-3954 . 39603) (-3955 . 39517) (-3956 . 39278)
- (-3957 . 39026) (-3958 . 38883) (-3959 . 38742) (-3960 . 38496)
- (-3961 . 38443) (-3962 . 38336) (-3963 . 38238) (-3964 . 38126)
- (-3965 . 38064) (-3966 . 37937) (-3967 . 37815) (-3968 . 37692)
- (-3969 . 37637) (-3970 . 37417) (-3971 . 37352) (-3972 . 37178)
- (-3973 . 37019) (-3974 . 36890) (-3975 . 36831) (-3976 . 36759)
- (-3977 . 36636) (-3978 . 36584) (-3979 . 36401) (-3980 . 36273)
- (-3981 . 36188) (-3982 . 35658) (-3983 . 35627) (-3984 . 35533)
- (-3985 . 35290) (-3986 . 35074) (-3987 . 34914) (-3988 . 34186)
- (-3989 . 33166) (-3990 . 32972) (-3991 . 32906) (-3992 . 32792)
- (-3993 . 32664) (-3994 . 32555) (-3995 . 32472) (-3996 . 32384)
- (-3997 . 32334) (-3998 . 32110) (-3999 . 32008) (-4000 . 31921)
- (-4001 . 31820) (-4002 . 31720) (-4003 . 31661) (-4004 . 31300)
- (-4005 . 31203) (-4006 . 31172) (-4007 . 31099) (-4008 . 31049)
- (-4009 . 30983) (-4010 . 30693) (-4011 . 30346) (-4012 . 30262)
- (-4013 . 30149) (-4014 . 29988) (-4015 . 29954) (-4016 . 29831)
- (-4017 . 29625) (-4018 . 28355) (-4019 . 28258) (-4020 . 28077)
- (-4021 . 27874) (-4022 . 27802) (-4023 . 27585) (-4024 . 27317)
- (-4025 . 26958) (-4026 . 26896) (-4027 . 26868) (-4028 . 26742)
- (-4029 . 26689) (-4030 . 26637) (-4031 . 26495) (-4032 . 25686)
- (-4033 . 25614) (-4034 . 25283) (-4035 . 24676) (-4036 . 24617)
- (-4037 . 24386) (-4038 . 23517) (-4039 . 23432) (-4040 . 23345)
- (-4041 . 23185) (-4042 . 23074) (-4043 . 22958) (-4044 . 22905)
- (-4045 . 22854) (-4046 . 22802) (-4047 . 22701) (-4048 . 22634)
- (-4049 . 22579) (-4050 . 22506) (-4051 . 22279) (-4052 . 21907)
- (-4053 . 21855) (-4054 . 21554) (-4055 . 21523) (-4056 . 21365)
- (-4057 . 21152) (-4058 . 21067) (-4059 . 20975) (-4060 . 20879)
- (-4061 . 20754) (-4062 . 20288) (-4063 . 20109) (-4064 . 19930)
- (-4065 . 19830) (-4066 . 19777) (-4067 . 19743) (-4068 . 19687)
- (-4069 . 19617) (-4070 . 19551) (-4071 . 19203) (-4072 . 19150)
- (-4073 . 18791) (-4074 . 18763) (-4075 . 18570) (-4076 . 18443)
- (-4077 . 18204) (-4078 . 17929) (-4079 . 17806) (-4080 . 17651)
- (-4081 . 17481) (-4082 . 17363) (-4083 . 17189) (-4084 . 16909)
- (-4085 . 16469) (-4086 . 16416) (-4087 . 16168) (-4088 . 16034)
- (-4089 . 15846) (-4090 . 15543) (-4091 . 15439) (-4092 . 15387)
- (-4093 . 15259) (-4094 . 15173) (-4095 . 15145) (-4096 . 14631)
- (-4097 . 14077) (-4098 . 13885) (-4099 . 13029) (-4100 . 12848)
- (-4101 . 12758) (-4102 . 12654) (-4103 . 12602) (-4104 . 12336)
- (-4105 . 12253) (-4106 . 11955) (-4107 . 11831) (-4108 . 11660)
- (-4109 . 11577) (-4110 . 10953) (-4111 . 10775) (-4112 . 10584)
- (-4113 . 10528) (-4114 . 10305) (-4115 . 10184) (-4116 . 10129)
- (-4117 . 8278) (-4118 . 7981) (-4119 . 7915) (-4120 . 7819)
- (-4121 . 7747) (-4122 . 7610) (-4123 . 7231) (-4124 . 7175)
- (-4125 . 6977) (-4126 . 6833) (-4127 . 6540) (-4128 . 6439)
- (-4129 . 6370) (-4130 . 6186) (-4131 . 6087) (-4132 . 5741)
- (-4133 . 5660) (-4134 . 5492) (-4135 . 5314) (-4136 . 5168)
- (-4137 . 4929) (-4138 . 4834) (-4139 . 4653) (-4140 . 4512)
- (-4141 . 4217) (-4142 . 4139) (-4143 . 4008) (-4144 . 3947)
- (-4145 . 3794) (-4146 . 3657) (-4147 . 3504) (-4148 . 3420)
- (-4149 . 3274) (-4150 . 3203) (-4151 . 3154) (-4152 . 2956)
- (-4153 . 2762) (-4154 . 2615) (-4155 . 2397) (-4156 . 2275)
- (-4157 . 2193) (-4158 . 2141) (-4159 . 2015) (-4160 . 1935)
- (-4161 . 1826) (-4162 . 1691) (-4163 . 1638) (-4164 . 1495)
- (-4165 . 1443) (-4166 . 1204) (-4167 . 1052) (-4168 . 928)
- (-4169 . 810) (-4170 . 373) (-4171 . 293) (-4172 . 30)) \ No newline at end of file
+ (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845))
+ (-4 *4 (-964)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964))
+ (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779)))
+ (-14 *4 (-583 (-1077)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779))
+ (-4 *8 (-873 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-964))
+ (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4))
+ (-4 *4 (-1134 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-893 *3 *2 *4)) (-4 *3 (-964)) (-4 *4 (-779))
+ (-4 *2 (-724))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1149 *3))
+ (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))
+ (-5 *2 (-703)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33)))
+ (-4 *3 (-13 (-1006) (-33))))))
+((-1190 . 722136) (-1191 . 720036) (-1192 . 719938) (-1193 . 719867)
+ (-1194 . 719787) (-1195 . 719570) (-1196 . 719271) (-1197 . 718456)
+ (-1198 . 718311) (-1199 . 718228) (-1200 . 718095) (-1201 . 717977)
+ (-1202 . 717840) (-1203 . 717476) (-1204 . 717379) (-1205 . 717200)
+ (-1206 . 717002) (-1207 . 716915) (-1208 . 716775) (-1209 . 716650)
+ (-1210 . 716129) (-1211 . 716062) (-1212 . 716034) (-1213 . 715961)
+ (-1214 . 715924) (-1215 . 715855) (-1216 . 715759) (-1217 . 715581)
+ (-1218 . 715497) (-1219 . 715217) (-1220 . 715084) (-1221 . 714906)
+ (-1222 . 714747) (-1223 . 714585) (-1224 . 714500) (-1225 . 714370)
+ (-1226 . 713987) (-1227 . 713891) (-1228 . 713668) (-1229 . 713373)
+ (-1230 . 713283) (-1231 . 713185) (-1232 . 711948) (-1233 . 711730)
+ (-1234 . 711647) (-1235 . 711131) (-1236 . 711024) (-1237 . 710806)
+ (-1238 . 710751) (-1239 . 710565) (-1240 . 710512) (-1241 . 710375)
+ (-1242 . 710177) (-1243 . 710030) (-1244 . 709450) (-1245 . 709223)
+ (-1246 . 709130) (-1247 . 708860) (-1248 . 708782) (-1249 . 708727)
+ (-1250 . 707546) (-1251 . 707357) (-1252 . 707257) (-1253 . 707206)
+ (-1254 . 706935) (-1255 . 706783) (-1256 . 706539) (-1257 . 706162)
+ (-1258 . 705882) (-1259 . 705510) (-1260 . 705212) (-1261 . 704885)
+ (-1262 . 704807) (-1263 . 704682) (-1264 . 704440) (-1265 . 704334)
+ (-1266 . 703855) (-1267 . 703781) (-1268 . 703728) (-1269 . 703621)
+ (-1270 . 703568) (-1271 . 703362) (-1272 . 703238) (-1273 . 703130)
+ (-1274 . 702935) (-1275 . 702624) (-1276 . 702366) (-1277 . 702267)
+ (-1278 . 701934) (-1279 . 701840) (-1280 . 701739) (-1281 . 701637)
+ (-1282 . 701379) (-1283 . 701305) (-1284 . 701198) (-1285 . 701128)
+ (-1286 . 701009) (-1287 . 699713) (-1288 . 699440) (-1289 . 699081)
+ (-1290 . 698632) (-1291 . 698553) (-1292 . 698460) (-1293 . 698302)
+ (-1294 . 698149) (-1295 . 697931) (-1296 . 697653) (-1297 . 697446)
+ (-1298 . 697334) (-1299 . 697041) (-1300 . 696728) (-1301 . 696432)
+ (-1302 . 696339) (-1303 . 696255) (-1304 . 696125) (-1305 . 695931)
+ (-1306 . 695322) (-1307 . 695200) (-1308 . 695091) (-1309 . 694582)
+ (-1310 . 694467) (-1311 . 694370) (-1312 . 694256) (-1313 . 694178)
+ (-1314 . 694125) (-1315 . 694048) (-1316 . 693993) (-1317 . 692697)
+ (-1318 . 692428) (-1319 . 692372) (-1320 . 692226) (-1321 . 691571)
+ (-1322 . 691127) (-1323 . 690952) (-1324 . 690852) (-1325 . 689816)
+ (-1326 . 689646) (-1327 . 689518) (-1328 . 689338) (-1329 . 688809)
+ (-1330 . 688695) (-1331 . 688275) (-1332 . 688168) (-1333 . 688097)
+ (-1334 . 688002) (-1335 . 687904) (-1336 . 687667) (-1337 . 687594)
+ (-1338 . 687434) (-1339 . 687333) (-1340 . 687247) (-1341 . 687146)
+ (-1342 . 687045) (-1343 . 686961) (-1344 . 686797) (-1345 . 686766)
+ (-1346 . 686614) (-1347 . 686565) (-1348 . 686449) (-1349 . 686208)
+ (-1350 . 686139) (-1351 . 686012) (-1352 . 685960) (-1353 . 685895)
+ (-1354 . 685243) (-1355 . 685121) (-1356 . 684873) (-1357 . 684705)
+ (-1358 . 684645) (-1359 . 684533) (-1360 . 684345) (-1361 . 683962)
+ (-1362 . 683752) (-1363 . 683658) (-1364 . 683536) (-1365 . 683432)
+ (-1366 . 683382) (-1367 . 683045) (-1368 . 682466) (-1369 . 682214)
+ (-1370 . 682017) (-1371 . 681943) (-1372 . 680752) (-1373 . 680342)
+ (-1374 . 680275) (-1375 . 680198) (-1376 . 680045) (-1377 . 679975)
+ (-1378 . 679668) (-1379 . 679524) (-1380 . 679359) (-1381 . 679306)
+ (-1382 . 679093) (-1383 . 678255) (-1384 . 678182) (-1385 . 677875)
+ (-1386 . 677822) (-1387 . 677723) (-1388 . 675593) (-1389 . 675490)
+ (-1390 . 675407) (-1391 . 675183) (-1392 . 675095) (-1393 . 674972)
+ (-1394 . 674767) (-1395 . 674689) (-1396 . 674554) (-1397 . 674304)
+ (-1398 . 674148) (-1399 . 674011) (-1400 . 673937) (-1401 . 673863)
+ (-1402 . 673790) (-1403 . 673722) (-1404 . 673694) (-1405 . 673590)
+ (-1406 . 673049) (-1407 . 672948) (-1408 . 672854) (-1409 . 672610)
+ (-1410 . 672466) (-1411 . 672414) (-1412 . 672352) (-1413 . 672232)
+ (-1414 . 672091) (-1415 . 672041) (-1416 . 671988) (-1417 . 671921)
+ (-1418 . 671777) (-1419 . 671749) (-1420 . 671650) (-1421 . 671229)
+ (-1422 . 670985) (-1423 . 670386) (-1424 . 670257) (-1425 . 670116)
+ (-1426 . 669975) (-1427 . 669805) (-1428 . 668404) (-1429 . 668307)
+ (-1430 . 667941) (-1431 . 667832) (-1432 . 667517) (-1433 . 667446)
+ (-1434 . 667418) (-1435 . 667097) (-1436 . 667023) (-1437 . 666959)
+ (-1438 . 666830) (-1439 . 666775) (-1440 . 666631) (-1441 . 666561)
+ (-1442 . 665956) (-1443 . 665873) (-1444 . 665778) (-1445 . 665598)
+ (-1446 . 665454) (-1447 . 665133) (-1448 . 664906) (-1449 . 664808)
+ (-1450 . 664265) (-1451 . 664147) (-1452 . 663867) (-1453 . 663650)
+ (-1454 . 662875) (-1455 . 662598) (-1456 . 662514) (-1457 . 662254)
+ (-1458 . 662116) (-1459 . 661375) (-1460 . 661347) (-1461 . 661140)
+ (-1462 . 660820) (-1463 . 660697) (-1464 . 660485) (-1465 . 660408)
+ (-1466 . 660227) (-1467 . 660126) (-1468 . 660025) (-1469 . 659947)
+ (-1470 . 659213) (-1471 . 658472) (-1472 . 658351) (-1473 . 658252)
+ (-1474 . 658172) (-1475 . 657751) (-1476 . 657629) (-1477 . 657393)
+ (-1478 . 657337) (-1479 . 657238) (-1480 . 656908) (-1481 . 656325)
+ (-1482 . 655637) (-1483 . 651585) (-1484 . 651374) (-1485 . 651303)
+ (-1486 . 650424) (-1487 . 650270) (-1488 . 650145) (-1489 . 650046)
+ (-1490 . 649983) (-1491 . 649865) (-1492 . 649773) (-1493 . 649259)
+ (-1494 . 649185) (-1495 . 648609) (-1496 . 648507) (-1497 . 647661)
+ (-1498 . 647538) (-1499 . 647322) (-1500 . 647249) (-1501 . 647137)
+ (-1502 . 647059) (-1503 . 646399) (-1504 . 645951) (-1505 . 645780)
+ (-1506 . 645697) (-1507 . 645427) (-1508 . 644851) (-1509 . 644708)
+ (-1510 . 641098) (-1511 . 641070) (-1512 . 640992) (-1513 . 640643)
+ (-1514 . 640557) (-1515 . 640413) (-1516 . 640333) (-1517 . 640192)
+ (-1518 . 639973) (-1519 . 639918) (-1520 . 639472) (-1521 . 638896)
+ (-1522 . 638740) (-1523 . 638687) (-1524 . 638371) (-1525 . 638152)
+ (-1526 . 637769) (-1527 . 637662) (-1528 . 637427) (-1529 . 637222)
+ (-1530 . 637023) (-1531 . 636936) (-1532 . 636496) (-1533 . 636109)
+ (-1534 . 635779) (-1535 . 635676) (-1536 . 634990) (-1537 . 634818)
+ (-1538 . 634723) (-1539 . 632384) (-1540 . 632076) (-1541 . 631997)
+ (-1542 . 631897) (-1543 . 631798) (-1544 . 631651) (-1545 . 631595)
+ (-1546 . 631508) (-1547 . 630984) (-1548 . 630768) (-1549 . 630629)
+ (-1550 . 629943) (-1551 . 629887) (-1552 . 629515) (-1553 . 629430)
+ (-1554 . 629356) (-1555 . 629198) (-1556 . 629132) (-1557 . 629080)
+ (-1558 . 628805) (-1559 . 628753) (-1560 . 628547) (-1561 . 628492)
+ (-1562 . 628439) (-1563 . 628352) (-1564 . 627603) (-1565 . 627461)
+ (-1566 . 627406) (-1567 . 627056) (-1568 . 626535) (-1569 . 626462)
+ (-1570 . 626107) (-1571 . 625992) (-1572 . 625724) (-1573 . 625471)
+ (-1574 . 625331) (-1575 . 625244) (-1576 . 625124) (-1577 . 624550)
+ (-1578 . 624464) (-1579 . 623829) (-1580 . 623756) (-1581 . 623463)
+ (-1582 . 622646) (-1583 . 622594) (-1584 . 622510) (-1585 . 620748)
+ (-1586 . 620194) (-1587 . 617413) (-1588 . 616839) (-1589 . 616740)
+ (-1590 . 616644) (-1591 . 616559) (-1592 . 616503) (-1593 . 616449)
+ (-1594 . 616274) (-1595 . 615946) (-1596 . 615640) (-1597 . 615570)
+ (-1598 . 615232) (-1599 . 615180) (-1600 . 615107) (-1601 . 614533)
+ (-1602 . 614481) (-1603 . 614360) (-1604 . 614249) (-1605 . 614176)
+ (-1606 . 614089) (-1607 . 613837) (-1608 . 613782) (-1609 . 613630)
+ (-1610 . 613379) (-1611 . 613224) (-1612 . 612537) (-1613 . 612434)
+ (-1614 . 612315) (-1615 . 612199) (-1616 . 612098) (-1617 . 611957)
+ (-1618 . 611798) (-1619 . 611689) (-1620 . 611622) (-1621 . 611484)
+ (-1622 . 610797) (-1623 . 610652) (-1624 . 610598) (-1625 . 610461)
+ (-1626 . 610307) (-1627 . 610149) (-1628 . 610065) (-1629 . 610013)
+ (-1630 . 609926) (-1631 . 609852) (-1632 . 609738) (-1633 . 609640)
+ (-1634 . 609410) (-1635 . 609236) (-1636 . 608549) (-1637 . 608443)
+ (-1638 . 608388) (-1639 . 608346) (-1640 . 608183) (-1641 . 608052)
+ (-1642 . 607934) (-1643 . 607844) (-1644 . 607719) (-1645 . 606539)
+ (-1646 . 606229) (-1647 . 605654) (-1648 . 605135) (-1649 . 605067)
+ (-1650 . 604738) (-1651 . 604651) (-1652 . 604513) (-1653 . 604331)
+ (-1654 . 604150) (-1655 . 604078) (-1656 . 603993) (-1657 . 603941)
+ (-1658 . 603705) (-1659 . 603130) (-1660 . 602736) (-1661 . 602621)
+ (-1662 . 602294) (-1663 . 602004) (-1664 . 601830) (-1665 . 601756)
+ (-1666 . 600572) (-1667 . 600502) (-1668 . 600310) (-1669 . 600142)
+ (-1670 . 599567) (-1671 . 598683) (-1672 . 598601) (-1673 . 598573)
+ (-1674 . 598518) (-1675 . 598466) (-1676 . 598398) (-1677 . 598236)
+ (-1678 . 598115) (-1679 . 598042) (-1680 . 596864) (-1681 . 596666)
+ (-1682 . 596372) (-1683 . 596285) (-1684 . 596114) (-1685 . 595540)
+ (-1686 . 595335) (-1687 . 595238) (-1688 . 595134) (-1689 . 595054)
+ (-1690 . 594816) (-1691 . 594524) (-1692 . 592326) (-1693 . 591755)
+ (-1694 . 591499) (-1695 . 591339) (-1696 . 591161) (-1697 . 591030)
+ (-1698 . 590456) (-1699 . 590332) (-1700 . 590237) (-1701 . 590165)
+ (-1702 . 590104) (-1703 . 589682) (-1704 . 589578) (-1705 . 589401)
+ (-1706 . 588827) (-1707 . 588754) (-1708 . 588683) (-1709 . 588467)
+ (-1710 . 588433) (-1711 . 588073) (-1712 . 587914) (-1713 . 587829)
+ (-1714 . 587800) (-1715 . 587699) (-1716 . 587551) (-1717 . 587407)
+ (-1718 . 587163) (-1719 . 586816) (-1720 . 586788) (-1721 . 586734)
+ (-1722 . 586160) (-1723 . 586027) (-1724 . 585895) (-1725 . 585414)
+ (-1726 . 585221) (-1727 . 585110) (-1728 . 584725) (-1729 . 584585)
+ (-1730 . 584469) (-1731 . 584401) (-1732 . 584088) (-1733 . 583898)
+ (-1734 . 583742) (-1735 . 583690) (-1736 . 583595) (-1737 . 583321)
+ (-1738 . 583121) (-1739 . 583066) (-1740 . 582922) (-1741 . 582850)
+ (-1742 . 582646) (-1743 . 582039) (-1744 . 581352) (-1745 . 581273)
+ (-1746 . 581053) (-1747 . 580898) (-1748 . 580814) (-1749 . 580071)
+ (-1750 . 579927) (-1751 . 579804) (-1752 . 579625) (-1753 . 579531)
+ (-1754 . 579226) (-1755 . 579125) (-1756 . 579040) (-1757 . 578936)
+ (-1758 . 578868) (-1759 . 578774) (-1760 . 578690) (-1761 . 578594)
+ (-1762 . 578496) (-1763 . 578363) (-1764 . 578093) (-1765 . 578038)
+ (-1766 . 577929) (-1767 . 577820) (-1768 . 577747) (-1769 . 577597)
+ (-1770 . 577543) (-1771 . 577419) (-1772 . 577267) (-1773 . 577212)
+ (-1774 . 577023) (-1775 . 576722) (-1776 . 576556) (-1777 . 576472)
+ (-1778 . 576256) (-1779 . 575861) (-1780 . 575766) (-1781 . 575471)
+ (-1782 . 575378) (-1783 . 575334) (-1784 . 573765) (-1785 . 573568)
+ (-1786 . 573441) (-1787 . 573350) (-1788 . 573003) (-1789 . 572412)
+ (-1790 . 572328) (-1791 . 572036) (-1792 . 571902) (-1793 . 571731)
+ (-1794 . 571648) (-1795 . 571223) (-1796 . 571089) (-1797 . 570934)
+ (-1798 . 570863) (-1799 . 570700) (-1800 . 570666) (-1801 . 570586)
+ (-1802 . 570513) (-1803 . 570485) (-1804 . 570216) (-1805 . 569891)
+ (-1806 . 569705) (-1807 . 569408) (-1808 . 569267) (-1809 . 569215)
+ (-1810 . 569010) (-1811 . 568759) (-1812 . 568679) (-1813 . 568608)
+ (-1814 . 568415) (-1815 . 568341) (-1816 . 568279) (-1817 . 568031)
+ (-1818 . 567175) (-1819 . 567080) (-1820 . 566971) (-1821 . 566815)
+ (-1822 . 566689) (-1823 . 566615) (-1824 . 566546) (-1825 . 566462)
+ (-1826 . 566409) (-1827 . 566381) (-1828 . 566249) (-1829 . 566109)
+ (-1830 . 565850) (-1831 . 565769) (-1832 . 565667) (-1833 . 565529)
+ (-1834 . 565279) (-1835 . 565216) (-1836 . 565108) (-1837 . 564902)
+ (-1838 . 564615) (-1839 . 564559) (-1840 . 564525) (-1841 . 564358)
+ (-1842 . 564255) (-1843 . 564103) (-1844 . 563994) (-1845 . 563887)
+ (-1846 . 562685) (-1847 . 562600) (-1848 . 562471) (-1849 . 562341)
+ (-1850 . 562044) (-1851 . 561932) (-1852 . 561801) (-1853 . 561522)
+ (-1854 . 561416) (-1855 . 561225) (-1856 . 561090) (-1857 . 561012)
+ (-1858 . 560947) (-1859 . 560822) (-1860 . 560331) (-1861 . 560257)
+ (-1862 . 559916) (-1863 . 559818) (-1864 . 559658) (-1865 . 559572)
+ (-1866 . 558126) (-1867 . 558046) (-1868 . 557622) (-1869 . 557027)
+ (-1870 . 556977) (-1871 . 556848) (-1872 . 556764) (-1873 . 556651)
+ (-1874 . 556473) (-1875 . 556377) (-1876 . 556285) (-1877 . 556200)
+ (-1878 . 556042) (-1879 . 555886) (-1880 . 555779) (-1881 . 555181)
+ (-1882 . 555083) (-1883 . 555003) (-1884 . 554908) (-1885 . 554357)
+ (-1886 . 554212) (-1887 . 553979) (-1888 . 553929) (-1889 . 553541)
+ (-1890 . 553404) (-1891 . 553307) (-1892 . 553088) (-1893 . 553019)
+ (-1894 . 552795) (-1895 . 552658) (-1896 . 552517) (-1897 . 552445)
+ (-1898 . 552318) (-1899 . 552241) (-1900 . 552171) (-1901 . 552013)
+ (-1902 . 551827) (-1903 . 551771) (-1904 . 551694) (-1905 . 551583)
+ (-1906 . 551402) (-1907 . 551287) (-1908 . 550940) (-1909 . 550863)
+ (-1910 . 550740) (-1911 . 550254) (-1912 . 550010) (-1913 . 549840)
+ (-1914 . 549465) (-1915 . 549336) (-1916 . 549233) (-1917 . 549180)
+ (-1918 . 549152) (-1919 . 549017) (-1920 . 548619) (-1921 . 548463)
+ (-1922 . 548350) (-1923 . 548241) (-1924 . 547368) (-1925 . 547294)
+ (-1926 . 547104) (-1927 . 547031) (-1928 . 546924) (-1929 . 546869)
+ (-1930 . 546552) (-1931 . 546406) (-1932 . 546229) (-1933 . 546174)
+ (-1934 . 546121) (-1935 . 545969) (-1936 . 545941) (-1937 . 545886)
+ (-1938 . 545823) (-1939 . 544248) (-1940 . 544196) (-1941 . 543992)
+ (-1942 . 543827) (-1943 . 543761) (-1944 . 543599) (-1945 . 543571)
+ (-1946 . 543459) (-1947 . 543318) (-1948 . 542792) (-1949 . 542476)
+ (-1950 . 541853) (-1951 . 541765) (-1952 . 541670) (-1953 . 541432)
+ (-1954 . 541248) (-1955 . 540379) (-1956 . 540196) (-1957 . 539972)
+ (-1958 . 539497) (-1959 . 539157) (-1960 . 539039) (-1961 . 538898)
+ (-1962 . 538699) (-1963 . 538291) (-1964 . 538225) (-1965 . 537822)
+ (-1966 . 537633) (-1967 . 537301) (-1968 . 537046) (-1969 . 536951)
+ (-1970 . 536886) (-1971 . 536793) (-1972 . 536740) (-1973 . 536650)
+ (-1974 . 536406) (-1975 . 535303) (-1976 . 535181) (-1977 . 534695)
+ (-1978 . 534589) (-1979 . 534459) (-1980 . 534316) (-1981 . 534207)
+ (-1982 . 534052) (-1983 . 533444) (-1984 . 533303) (-1985 . 533203)
+ (-1986 . 532891) (-1987 . 532782) (-1988 . 532730) (-1989 . 532659)
+ (-1990 . 532482) (-1991 . 532057) (-1992 . 531759) (-1993 . 522229)
+ (-1994 . 522177) (-1995 . 522064) (-1996 . 521850) (-1997 . 521782)
+ (-1998 . 521568) (-1999 . 521438) (-2000 . 521312) (-2001 . 521259)
+ (-2002 . 521204) (-2003 . 521067) (-2004 . 521009) (-2005 . 520819)
+ (-2006 . 520782) (-2007 . 520280) (-2008 . 519735) (-2009 . 519553)
+ (-2010 . 519504) (-2011 . 519325) (-2012 . 519168) (-2013 . 519071)
+ (-2014 . 518416) (-2015 . 518360) (-2016 . 518292) (-2017 . 518243)
+ (-2018 . 517808) (-2019 . 517673) (-2020 . 517611) (-2021 . 517223)
+ (-2022 . 516834) (-2023 . 516782) (-2024 . 516689) (-2025 . 516637)
+ (-2026 . 516608) (-2027 . 516400) (-2028 . 516295) (-2029 . 516016)
+ (-2030 . 515939) (-2031 . 515884) (-2032 . 515726) (-2033 . 515547)
+ (-2034 . 515485) (-2035 . 515098) (-2036 . 514971) (-2037 . 514643)
+ (-2038 . 514467) (-2039 . 514370) (-2040 . 514248) (-2041 . 514093)
+ (-2042 . 511941) (-2043 . 511536) (-2044 . 511430) (-2045 . 511208)
+ (-2046 . 509784) (-2047 . 509668) (-2048 . 509576) (-2049 . 509524)
+ (-2050 . 509441) (-2051 . 509226) (-2052 . 509033) (-2053 . 508924)
+ (-2054 . 508850) (-2055 . 508765) (-2056 . 508652) (-2057 . 507947)
+ (-2058 . 507839) (-2059 . 506220) (-2060 . 506070) (-2061 . 505752)
+ (-2062 . 505615) (-2063 . 505369) (-2064 . 505317) (-2065 . 505244)
+ (-2066 . 505185) (-2067 . 505019) (-2068 . 504889) (-2069 . 504028)
+ (-2070 . 503926) (-2071 . 503586) (-2072 . 503533) (-2073 . 503403)
+ (-2074 . 503346) (-2075 . 503294) (-2076 . 503105) (-2077 . 502760)
+ (-2078 . 502659) (-2079 . 502559) (-2080 . 501271) (-2081 . 501221)
+ (-2082 . 500544) (-2083 . 500471) (-2084 . 500260) (-2085 . 500093)
+ (-2086 . 499704) (-2087 . 499576) (-2088 . 499431) (-2089 . 499330)
+ (-2090 . 499259) (-2091 . 499110) (-2092 . 499044) (-2093 . 498796)
+ (-2094 . 498730) (-2095 . 498609) (-2096 . 498514) (-2097 . 498105)
+ (-2098 . 498045) (-2099 . 497931) (-2100 . 497754) (-2101 . 497677)
+ (-2102 . 497412) (-2103 . 497242) (-2104 . 496177) (-2105 . 496123)
+ (-2106 . 495936) (-2107 . 495853) (-2108 . 495800) (-2109 . 495367)
+ (-2110 . 495214) (-2111 . 495107) (-2112 . 494977) (-2113 . 494727)
+ (-2114 . 494498) (-2115 . 494006) (-2116 . 493957) (-2117 . 493411)
+ (-2118 . 493276) (-2119 . 492934) (-2120 . 492829) (-2121 . 492777)
+ (-2122 . 491977) (-2123 . 491870) (-2124 . 491734) (-2125 . 491599)
+ (-2126 . 491442) (-2127 . 491193) (-2128 . 491141) (-2129 . 491088)
+ (-2130 . 490756) (-2131 . 488928) (-2132 . 488843) (-2133 . 488462)
+ (-2134 . 488385) (-2135 . 487995) (-2136 . 487121) (-2137 . 486158)
+ (-2138 . 485859) (-2139 . 485640) (-2140 . 484139) (-2141 . 483979)
+ (-2142 . 483707) (-2143 . 483604) (-2144 . 483547) (-2145 . 483467)
+ (-2146 . 483365) (-2147 . 483177) (-2148 . 483072) (-2149 . 482643)
+ (-2150 . 482584) (-2151 . 481044) (-2152 . 480615) (-2153 . 480542)
+ (-2154 . 480470) (-2155 . 480399) (-2156 . 480301) (-2157 . 480082)
+ (-2158 . 479737) (-2159 . 479511) (-2160 . 479377) (-2161 . 479127)
+ (-2162 . 479074) (-2163 . 479017) (-2164 . 478951) (-2165 . 478845)
+ (-2166 . 478745) (-2167 . 478658) (-2168 . 478514) (-2169 . 478461)
+ (-2170 . 478358) (-2171 . 478199) (-2172 . 477089) (-2173 . 477003)
+ (-2174 . 476950) (-2175 . 476298) (-2176 . 476232) (-2177 . 475901)
+ (-2178 . 475514) (-2179 . 475189) (-2180 . 474998) (-2181 . 474905)
+ (-2182 . 474868) (-2183 . 474768) (-2184 . 474716) (-2185 . 474622)
+ (-2186 . 474515) (-2187 . 473563) (-2188 . 473027) (-2189 . 472628)
+ (-2190 . 472416) (-2191 . 472364) (-2192 . 471714) (-2193 . 471627)
+ (-2194 . 470954) (-2195 . 470827) (-2196 . 470712) (-2197 . 470625)
+ (-2198 . 470524) (-2199 . 470490) (-2200 . 470347) (-2201 . 470205)
+ (-2202 . 470015) (-2203 . 469962) (-2204 . 469631) (-2205 . 469575)
+ (-2206 . 469396) (-2207 . 469258) (-2208 . 469155) (-2209 . 469012)
+ (-2210 . 468949) (-2211 . 468791) (-2212 . 468603) (-2213 . 468492)
+ (-2214 . 468261) (-2215 . 468192) (-2216 . 468082) (-2217 . 468011)
+ (-2218 . 467565) (-2219 . 467513) (-2220 . 467430) (-2221 . 467345)
+ (-2222 . 467183) (-2223 . 466824) (-2224 . 466551) (-2225 . 466342)
+ (-2226 . 466259) (-2227 . 465501) (-2228 . 465435) (-2229 . 465258)
+ (-2230 . 465163) (-2231 . 465036) (-2232 . 465008) (-2233 . 464926)
+ (-2234 . 464857) (-2235 . 464678) (-2236 . 464491) (-2237 . 464439)
+ (-2238 . 464279) (-2239 . 464205) (-2240 . 463703) (-2241 . 463630)
+ (-2242 . 463532) (-2243 . 463394) (-2244 . 462756) (-2245 . 462697)
+ (-2246 . 462513) (-2247 . 462391) (-2248 . 462293) (-2249 . 462115)
+ (-2250 . 462063) (-2251 . 461985) (-2252 . 461911) (-2253 . 461615)
+ (-2254 . 461541) (-2255 . 461238) (-2256 . 460906) (-2257 . 460591)
+ (-2258 . 460382) (-2259 . 460252) (-2260 . 460068) (-2261 . 459966)
+ (-2262 . 437221) (-2263 . 436511) (-2264 . 436399) (-2265 . 436327)
+ (-2266 . 436165) (-2267 . 436112) (-2268 . 435873) (-2269 . 435774)
+ (-2270 . 435283) (-2271 . 435231) (-2272 . 435197) (-2273 . 435109)
+ (-2274 . 434902) (-2275 . 434795) (-2276 . 434463) (-2277 . 434378)
+ (-2278 . 434185) (-2279 . 431433) (-2280 . 431365) (-2281 . 431309)
+ (-2282 . 431235) (-2283 . 430783) (-2284 . 430685) (-2285 . 430514)
+ (-2286 . 430412) (-2287 . 429407) (-2288 . 429109) (-2289 . 429050)
+ (-2290 . 428979) (-2291 . 428243) (-2292 . 428172) (-2293 . 428099)
+ (-2294 . 427796) (-2295 . 427546) (-2296 . 427465) (-2297 . 427298)
+ (-2298 . 427146) (-2299 . 427093) (-2300 . 426653) (-2301 . 426492)
+ (-2302 . 426242) (-2303 . 426058) (-2304 . 425946) (-2305 . 425800)
+ (-2306 . 425557) (-2307 . 425390) (-2308 . 425276) (-2309 . 425132)
+ (-2310 . 424951) (-2311 . 424825) (-2312 . 424752) (-2313 . 424655)
+ (-2314 . 424599) (-2315 . 424484) (-2316 . 424358) (-2317 . 423872)
+ (-2318 . 423670) (-2319 . 423445) (-2320 . 423195) (-2321 . 422948)
+ (-2322 . 422832) (-2323 . 422745) (-2324 . 422480) (-2325 . 421842)
+ (-2326 . 421765) (-2327 . 421661) (-2328 . 421400) (-2329 . 419682)
+ (-2330 . 419580) (-2331 . 419509) (-2332 . 419438) (-2333 . 418583)
+ (-2334 . 418344) (-2335 . 418235) (-2336 . 417075) (-2337 . 417014)
+ (-2338 . 416894) (-2339 . 416817) (-2340 . 416783) (-2341 . 416510)
+ (-2342 . 416256) (-2343 . 415980) (-2344 . 415901) (-2345 . 415738)
+ (-2346 . 415637) (-2347 . 415579) (-2348 . 415466) (-2349 . 415279)
+ (-2350 . 415165) (-2351 . 415035) (-2352 . 414958) (-2353 . 414732)
+ (-2354 . 414667) (-2355 . 414580) (-2356 . 414483) (-2357 . 414082)
+ (-2358 . 413634) (-2359 . 413334) (-2360 . 412973) (-2361 . 411873)
+ (-2362 . 411443) (-2363 . 411308) (-2364 . 410185) (-2365 . 409797)
+ (-2366 . 409700) (-2367 . 409593) (-2368 . 409508) (-2369 . 409399)
+ (-2370 . 409342) (-2371 . 409140) (-2372 . 409031) (-2373 . 408978)
+ (-2374 . 408617) (-2375 . 408489) (-2376 . 408363) (-2377 . 408178)
+ (-2378 . 408150) (-2379 . 408098) (-2380 . 407841) (-2381 . 407594)
+ (-2382 . 407489) (-2383 . 407392) (-2384 . 407075) (-2385 . 406910)
+ (-2386 . 406839) (-2387 . 406811) (-2388 . 406257) (-2389 . 406190)
+ (-2390 . 405188) (-2391 . 404926) (-2392 . 404796) (-2393 . 404765)
+ (-2394 . 404554) (-2395 . 404194) (-2396 . 404078) (-2397 . 403915)
+ (-2398 . 403738) (-2399 . 403625) (-2400 . 403421) (-2401 . 403297)
+ (-2402 . 403161) (-2403 . 403016) (-2404 . 402852) (-2405 . 402719)
+ (-2406 . 401409) (-2407 . 401310) (-2408 . 401100) (-2409 . 401002)
+ (-2410 . 400950) (-2411 . 400884) (-2412 . 400777) (-2413 . 400533)
+ (-2414 . 400387) (-2415 . 400237) (-2416 . 399964) (-2417 . 399828)
+ (-2418 . 399686) (-2419 . 399092) (-2420 . 398480) (-2421 . 398256)
+ (-2422 . 398034) (-2423 . 397952) (-2424 . 397366) (-2425 . 397314)
+ (-2426 . 397237) (-2427 . 397021) (-2428 . 396896) (-2429 . 396470)
+ (-2430 . 396353) (-2431 . 396258) (-2432 . 396122) (-2433 . 395900)
+ (-2434 . 395654) (-2435 . 395528) (-2436 . 394227) (-2437 . 394159)
+ (-2438 . 394076) (-2439 . 394014) (-2440 . 393380) (-2441 . 393331)
+ (-2442 . 393282) (-2443 . 393137) (-2444 . 393059) (-2445 . 392962)
+ (-2446 . 392863) (-2447 . 392610) (-2448 . 392428) (-2449 . 391868)
+ (-2450 . 391810) (-2451 . 391431) (-2452 . 390762) (-2453 . 390436)
+ (-2454 . 389862) (-2455 . 389704) (-2456 . 389670) (-2457 . 389217)
+ (-2458 . 388661) (-2459 . 388576) (-2460 . 388467) (-2461 . 388383)
+ (-2462 . 388225) (-2463 . 388122) (-2464 . 387738) (-2465 . 387644)
+ (-2466 . 387520) (-2467 . 387301) (-2468 . 386944) (-2469 . 386791)
+ (-2470 . 385994) (-2471 . 385960) (-2472 . 385868) (-2473 . 385668)
+ (-2474 . 385540) (-2475 . 385490) (-2476 . 385416) (-2477 . 385315)
+ (-2478 . 385199) (-2479 . 385082) (-2480 . 385016) (-2481 . 384763)
+ (-2482 . 384555) (-2483 . 384470) (-2484 . 384383) (-2485 . 384317)
+ (-2486 . 384234) (-2487 . 384149) (-2488 . 384083) (-2489 . 383684)
+ (-2490 . 383577) (-2491 . 383546) (-2492 . 383372) (-2493 . 383265)
+ (-2494 . 383133) (-2495 . 383105) (-2496 . 383050) (-2497 . 382737)
+ (-2498 . 382597) (-2499 . 382288) (-2500 . 382217) (-2501 . 382004)
+ (-2502 . 381712) (-2503 . 381625) (-2504 . 381554) (-2505 . 381498)
+ (-2506 . 381189) (-2507 . 380007) (-2508 . 379816) (-2509 . 379715)
+ (-2510 . 379576) (-2511 . 379496) (-2512 . 379444) (-2513 . 379365)
+ (-2514 . 378556) (-2515 . 378418) (-2516 . 378142) (-2517 . 377935)
+ (-2518 . 377789) (-2519 . 377716) (-2520 . 377506) (-2521 . 377297)
+ (-2522 . 377241) (-2523 . 376929) (-2524 . 376815) (-2525 . 376674)
+ (-2526 . 376582) (-2527 . 376406) (-2528 . 376333) (-2529 . 376281)
+ (-2530 . 376186) (-2531 . 376053) (-2532 . 375911) (-2533 . 375389)
+ (-2534 . 375192) (-2535 . 375113) (-2536 . 374970) (-2537 . 374884)
+ (-2538 . 374724) (-2539 . 374624) (-2540 . 374536) (-2541 . 374505)
+ (-2542 . 374449) (-2543 . 374421) (-2544 . 374364) (-2545 . 374227)
+ (-2546 . 373934) (-2547 . 373823) (-2548 . 373740) (-2549 . 373653)
+ (-2550 . 373168) (-2551 . 372949) (-2552 . 372896) (-2553 . 372734)
+ (-2554 . 372625) (-2555 . 372133) (-2556 . 371740) (-2557 . 371406)
+ (-2558 . 371069) (-2559 . 370920) (-2560 . 370676) (-2561 . 370521)
+ (-2562 . 370465) (-2563 . 370175) (-2564 . 370122) (-2565 . 370070)
+ (-2566 . 369911) (-2567 . 369779) (-2568 . 369672) (-2569 . 369388)
+ (-2570 . 369231) (-2571 . 369087) (-2572 . 368999) (-2573 . 368914)
+ (-2574 . 368773) (-2575 . 368527) (-2576 . 368373) (-2577 . 368316)
+ (-2578 . 368193) (-2579 . 368078) (-2580 . 367727) (-2581 . 367496)
+ (-2582 . 367305) (-2583 . 367167) (-2584 . 367084) (-2585 . 366824)
+ (-2586 . 366585) (-2587 . 366345) (-2588 . 366228) (-2589 . 366128)
+ (-2590 . 365780) (-2591 . 365676) (-2592 . 365429) (-2593 . 365320)
+ (-2594 . 365206) (-2595 . 364955) (-2596 . 364876) (-2597 . 364799)
+ (-2598 . 364692) (-2599 . 364311) (-2600 . 364252) (-2601 . 363861)
+ (-2602 . 363740) (-2603 . 363493) (-2604 . 363462) (-2605 . 363326)
+ (-2606 . 362826) (-2607 . 362632) (-2608 . 362538) (-2609 . 361542)
+ (-2610 . 361468) (-2611 . 361396) (-2612 . 356297) (-2613 . 356212)
+ (-2614 . 356160) (-2615 . 355839) (-2616 . 355811) (-2617 . 355694)
+ (-2618 . 355524) (-2619 . 355442) (-2620 . 355390) (-2621 . 355203)
+ (-2622 . 355001) (-2623 . 354828) (-2624 . 354745) (-2625 . 354693)
+ (-2626 . 354300) (-2627 . 354216) (-2628 . 354185) (-2629 . 353974)
+ (-2630 . 353746) (-2631 . 353483) (-2632 . 353399) (-2633 . 353244)
+ (-2634 . 353100) (-2635 . 352970) (-2636 . 352885) (-2637 . 352806)
+ (-2638 . 352702) (-2639 . 352251) (-2640 . 352111) (-2641 . 351967)
+ (-2642 . 351315) (-2643 . 351205) (-2644 . 351139) (-2645 . 350864)
+ (-2646 . 350742) (-2647 . 350689) (-2648 . 350637) (-2649 . 350531)
+ (-2650 . 350454) (-2651 . 350364) (-2652 . 350282) (-2653 . 349957)
+ (-2654 . 349798) (-2655 . 349702) (-2656 . 349595) (-2657 . 349525)
+ (-2658 . 349079) (-2659 . 348996) (-2660 . 348882) (-2661 . 348769)
+ (-2662 . 348660) (-2663 . 348573) (-2664 . 348314) (-2665 . 348240)
+ (-2666 . 348121) (-2667 . 347888) (-2668 . 347835) (-2669 . 347732)
+ (-2670 . 347639) (-2671 . 347392) (-2672 . 347149) (-2673 . 347035)
+ (-2674 . 346947) (-2675 . 346706) (-2676 . 346432) (-2677 . 346364)
+ (-2678 . 346266) (-2679 . 345943) (-2680 . 345822) (-2681 . 345724)
+ (-2682 . 345641) (-2683 . 345486) (-2684 . 344736) (-2685 . 344589)
+ (-2686 . 344371) (-2687 . 344262) (-2688 . 344157) (-2689 . 343699)
+ (-2690 . 343387) (-2691 . 343338) (-2692 . 343239) (-2693 . 343120)
+ (-2694 . 343042) (-2695 . 342989) (-2696 . 342883) (-2697 . 342727)
+ (-2698 . 342595) (-2699 . 342543) (-2700 . 342425) (-2701 . 342094)
+ (-2702 . 341872) (-2703 . 341771) (-2704 . 341604) (-2705 . 341344)
+ (-2706 . 341224) (-2707 . 341085) (-2708 . 341002) (-2709 . 340387)
+ (-2710 . 339814) (-2711 . 339609) (-2712 . 339491) (-2713 . 339392)
+ (-2714 . 339305) (-2715 . 339066) (-2716 . 338925) (-2717 . 338866)
+ (-2718 . 338750) (-2719 . 338679) (-2720 . 338610) (-2721 . 338579)
+ (-2722 . 338389) (-2723 . 338332) (-2724 . 338272) (-2725 . 338133)
+ (-2726 . 337703) (-2727 . 337520) (-2728 . 337397) (-2729 . 337323)
+ (-2730 . 337106) (-2731 . 336921) (-2732 . 336446) (-2733 . 336348)
+ (-2734 . 335350) (-2735 . 335174) (-2736 . 335117) (-2737 . 334890)
+ (-2738 . 334783) (-2739 . 334728) (-2740 . 334654) (-2741 . 334054)
+ (-2742 . 334020) (-2743 . 333912) (-2744 . 333396) (-2745 . 333236)
+ (-2746 . 333112) (-2747 . 332869) (-2748 . 332721) (-2749 . 332650)
+ (-2750 . 332418) (-2751 . 328258) (-2752 . 328151) (-2753 . 328072)
+ (-2754 . 327525) (-2755 . 327189) (-2756 . 326966) (-2757 . 326907)
+ (-2758 . 326849) (-2759 . 326762) (-2760 . 326671) (-2761 . 326618)
+ (-2762 . 326545) (-2763 . 326404) (-2764 . 326271) (-2765 . 326137)
+ (-2766 . 325972) (-2767 . 325781) (-2768 . 325670) (-2769 . 325618)
+ (-2770 . 325285) (-2771 . 325182) (-2772 . 324965) (-2773 . 324715)
+ (-2774 . 324553) (-2775 . 324470) (-2776 . 324411) (-2777 . 324285)
+ (-2778 . 324120) (-2779 . 323758) (-2780 . 323423) (-2781 . 323394)
+ (-2782 . 322722) (-2783 . 322623) (-2784 . 322271) (-2785 . 322053)
+ (-2786 . 321886) (-2787 . 321361) (-2788 . 320840) (-2789 . 320237)
+ (-2790 . 320070) (-2791 . 320015) (-2792 . 319943) (-2793 . 319799)
+ (-2794 . 319690) (-2795 . 319579) (-2796 . 319399) (-2797 . 319172)
+ (-2798 . 318950) (-2799 . 318831) (-2800 . 318794) (-2801 . 318742)
+ (-2802 . 318426) (-2803 . 318099) (-2804 . 318043) (-2805 . 317656)
+ (-2806 . 317384) (-2807 . 317067) (-2808 . 317010) (-2809 . 316848)
+ (-2810 . 316705) (-2811 . 316619) (-2812 . 316479) (-2813 . 316429)
+ (-2814 . 316398) (-2815 . 315824) (-2816 . 315582) (-2817 . 315295)
+ (-2818 . 315140) (-2819 . 314646) (-2820 . 314517) (-2821 . 314408)
+ (-2822 . 314296) (-2823 . 314188) (-2824 . 314045) (-2825 . 313960)
+ (-2826 . 313891) (-2827 . 313724) (-2828 . 313117) (-2829 . 312620)
+ (-2830 . 312508) (-2831 . 312442) (-2832 . 312368) (-2833 . 311995)
+ (-2834 . 311717) (-2835 . 311618) (-2836 . 311442) (-2837 . 311234)
+ (-2838 . 311017) (-2839 . 310871) (-2840 . 310751) (-2841 . 310655)
+ (-2842 . 310460) (-2843 . 310274) (-2844 . 310194) (-2845 . 310001)
+ (-2846 . 309949) (-2847 . 309898) (-2848 . 309804) (-2849 . 309710)
+ (-2850 . 309617) (-2851 . 309589) (-2852 . 309495) (-2853 . 309358)
+ (-2854 . 309263) (-2855 . 309115) (-2856 . 309000) (-2857 . 308923)
+ (-2858 . 308827) (-2859 . 308720) (-2860 . 308650) (-2861 . 308484)
+ (-2862 . 306942) (-2863 . 306890) (-2864 . 306765) (-2865 . 306560)
+ (-2866 . 306487) (-2867 . 306248) (-2868 . 306089) (-2869 . 305821)
+ (-2870 . 305760) (-2871 . 305707) (-2872 . 305630) (-2873 . 305407)
+ (-2874 . 305242) (-2875 . 305135) (-2876 . 304989) (-2877 . 304857)
+ (-2878 . 304790) (-2879 . 304705) (-2880 . 304676) (-2881 . 304617)
+ (-2882 . 304465) (-2883 . 304174) (-2884 . 304052) (-2885 . 303888)
+ (-2886 . 303140) (-2887 . 303039) (-2888 . 302934) (-2889 . 302776)
+ (-2890 . 302563) (-2891 . 302414) (-2892 . 302229) (-2893 . 302135)
+ (-2894 . 302069) (-2895 . 301982) (-2896 . 301842) (-2897 . 301718)
+ (-2898 . 301666) (-2899 . 301556) (-2900 . 301386) (-2901 . 301280)
+ (-2902 . 301137) (-2903 . 300947) (-2904 . 300468) (-2905 . 300046)
+ (-2906 . 299995) (-2907 . 299742) (-2908 . 299670) (-2909 . 299639)
+ (-2910 . 299509) (-2911 . 299368) (-2912 . 299258) (-2913 . 299112)
+ (-2914 . 298797) (-2915 . 298712) (-2916 . 298627) (-2917 . 298575)
+ (-2918 . 298417) (-2919 . 298361) (-2920 . 298274) (-2921 . 298206)
+ (-2922 . 297931) (-2923 . 297897) (-2924 . 297800) (-2925 . 297672)
+ (-2926 . 297529) (-2927 . 297455) (-2928 . 297257) (-2929 . 297093)
+ (-2930 . 296869) (-2931 . 296810) (-2932 . 296698) (-2933 . 296645)
+ (-2934 . 296542) (-2935 . 296341) (-2936 . 296289) (-2937 . 296177)
+ (-2938 . 296108) (-2939 . 293856) (-2940 . 293626) (-2941 . 293552)
+ (-2942 . 293499) (-2943 . 293347) (-2944 . 293292) (-2945 . 293219)
+ (-2946 . 293089) (-2947 . 292834) (-2948 . 292761) (-2949 . 292699)
+ (-2950 . 292617) (-2951 . 292550) (-2952 . 292133) (-2953 . 292021)
+ (-2954 . 291679) (-2955 . 291651) (-2956 . 291538) (-2957 . 291393)
+ (-2958 . 291286) (-2959 . 291213) (-2960 . 290987) (-2961 . 290847)
+ (-2962 . 290466) (-2963 . 290271) (-2964 . 290045) (-2965 . 289892)
+ (-2966 . 289621) (-2967 . 289518) (-2968 . 289407) (-2969 . 289288)
+ (-2970 . 289044) (-2971 . 288940) (-2972 . 288828) (-2973 . 288713)
+ (-2974 . 288685) (-2975 . 288550) (-2976 . 288333) (-2977 . 287531)
+ (-2978 . 287413) (-2979 . 287304) (-2980 . 286856) (-2981 . 286446)
+ (-2982 . 286351) (-2983 . 286141) (-2984 . 285798) (-2985 . 285658)
+ (-2986 . 285488) (-2987 . 285371) (-2988 . 285154) (-2989 . 285036)
+ (-2990 . 284895) (-2991 . 284781) (-2992 . 284636) (-2993 . 284418)
+ (-2994 . 284295) (-2995 . 284007) (-2996 . 283711) (-2997 . 283617)
+ (-2998 . 283358) (-2999 . 283305) (-3000 . 283146) (-3001 . 283046)
+ (-3002 . 282966) (-3003 . 282884) (-3004 . 282775) (-3005 . 282666)
+ (-3006 . 282493) (-3007 . 282249) (-3008 . 282154) (-3009 . 281795)
+ (-3010 . 281696) (-3011 . 281160) (-3012 . 280738) (-3013 . 280672)
+ (-3014 . 280514) (-3015 . 280387) (-3016 . 280302) (-3017 . 280268)
+ (-3018 . 279890) (-3019 . 279691) (-3020 . 279568) (-3021 . 279486)
+ (-3022 . 278956) (-3023 . 278815) (-3024 . 278700) (-3025 . 278384)
+ (-3026 . 277868) (-3027 . 277498) (-3028 . 276957) (-3029 . 276858)
+ (-3030 . 276743) (-3031 . 276614) (-3032 . 276365) (-3033 . 276295)
+ (-3034 . 275998) (-3035 . 275669) (-3036 . 275620) (-3037 . 275517)
+ (-3038 . 275321) (-3039 . 275074) (-3040 . 274895) (-3041 . 274798)
+ (-3042 . 274640) (-3043 . 274588) (-3044 . 273517) (-3045 . 273415)
+ (-3046 . 273319) (-3047 . 273166) (-3048 . 273070) (-3049 . 273036)
+ (-3050 . 272951) (-3051 . 272885) (-3052 . 272788) (-3053 . 272705)
+ (-3054 . 272502) (-3055 . 272379) (-3056 . 272270) (-3057 . 272171)
+ (-3058 . 272065) (-3059 . 271928) (-3060 . 271805) (-3061 . 271697)
+ (-3062 . 271466) (-3063 . 271369) (-3064 . 271218) (-3065 . 271165)
+ (-3066 . 270950) (-3067 . 270841) (-3068 . 270043) (-3069 . 269672)
+ (-3070 . 269541) (-3071 . 269420) (-3072 . 269333) (-3073 . 269282)
+ (-3074 . 269254) (-3075 . 269223) (-3076 . 269151) (-3077 . 268977)
+ (-3078 . 268831) (-3079 . 268774) (-3080 . 268704) (-3081 . 268578)
+ (-3082 . 268423) (-3083 . 268014) (-3084 . 267788) (-3085 . 267714)
+ (-3086 . 267441) (-3087 . 267354) (-3088 . 267211) (-3089 . 267087)
+ (-3090 . 267021) (-3091 . 266918) (-3092 . 266719) (-3093 . 266592)
+ (-3094 . 266523) (-3095 . 266418) (-3096 . 266341) (-3097 . 265851)
+ (-3098 . 265360) (-3099 . 265054) (-3100 . 264947) (-3101 . 264824)
+ (-3102 . 264677) (-3103 . 264462) (-3104 . 263543) (-3105 . 262939)
+ (-3106 . 262829) (-3107 . 262767) (-3108 . 262644) (-3109 . 262456)
+ (-3110 . 262300) (-3111 . 262269) (-3112 . 262009) (-3113 . 261700)
+ (-3114 . 261520) (-3115 . 260819) (-3116 . 260742) (-3117 . 260496)
+ (-3118 . 260389) (-3119 . 260222) (-3120 . 260124) (-3121 . 260064)
+ (-3122 . 259955) (-3123 . 259927) (-3124 . 259875) (-3125 . 259624)
+ (-3126 . 259525) (-3127 . 259399) (-3128 . 259057) (-3129 . 258911)
+ (-3130 . 258824) (-3131 . 258600) (-3132 . 258444) (-3133 . 258370)
+ (-3134 . 258297) (-3135 . 258190) (-3136 . 258138) (-3137 . 257997)
+ (-3138 . 257614) (-3139 . 257534) (-3140 . 257363) (-3141 . 257141)
+ (-3142 . 256620) (-3143 . 256568) (-3144 . 256537) (-3145 . 256428)
+ (-3146 . 256350) (-3147 . 256243) (-3148 . 256177) (-3149 . 256094)
+ (-3150 . 255963) (-3151 . 255740) (-3152 . 255570) (-3153 . 255414)
+ (-3154 . 255386) (-3155 . 254946) (-3156 . 254747) (-3157 . 254576)
+ (-3158 . 254518) (-3159 . 254425) (-3160 . 254318) (-3161 . 254152)
+ (-3162 . 254030) (-3163 . 253908) (-3164 . 253877) (-3165 . 253782)
+ (-3166 . 253705) (-3167 . 253499) (-3168 . 253412) (-3169 . 253380)
+ (-3170 . 253224) (-3171 . 253169) (-3172 . 253111) (-3173 . 252975)
+ (-3174 . 252895) (-3175 . 251709) (-3176 . 251495) (-3177 . 251356)
+ (-3178 . 251300) (-3179 . 251244) (-3180 . 251161) (-3181 . 251133)
+ (-3182 . 251015) (-3183 . 250770) (-3184 . 250685) (-3185 . 250306)
+ (-3186 . 249803) (-3187 . 249682) (-3188 . 249602) (-3189 . 249525)
+ (-3190 . 249221) (-3191 . 249126) (-3192 . 248969) (** . 245892)
+ (-3194 . 245714) (-3195 . 245512) (-3196 . 245413) (-3197 . 245217)
+ (-3198 . 245121) (-3199 . 245011) (-3200 . 244677) (-3201 . 244575)
+ (-3202 . 244313) (-3203 . 244230) (-3204 . 243607) (-3205 . 243554)
+ (-3206 . 243471) (-3207 . 243405) (-3208 . 243296) (-3209 . 243222)
+ (-3210 . 242960) (-3211 . 242758) (-3212 . 242590) (-3213 . 242418)
+ (-3214 . 242344) (-3215 . 242019) (-3216 . 241953) (-3217 . 241880)
+ (-3218 . 241828) (-3219 . 241224) (-3220 . 236703) (-3221 . 236321)
+ (-3222 . 236268) (-3223 . 236173) (-3224 . 236078) (-3225 . 236011)
+ (-3226 . 235925) (-3227 . 235788) (-3228 . 235645) (-3229 . 235529)
+ (-3230 . 235476) (-3231 . 235350) (-3232 . 235296) (-3233 . 235102)
+ (-3234 . 234921) (-3235 . 234865) (-3236 . 234785) (-3237 . 234667)
+ (-3238 . 234563) (-3239 . 234444) (-3240 . 234165) (-3241 . 234078)
+ (-3242 . 234005) (-3243 . 233940) (-3244 . 233644) (-3245 . 233557)
+ (-3246 . 231605) (-3247 . 231552) (-3248 . 231393) (-3249 . 231096)
+ (-3250 . 228849) (-3251 . 228696) (-3252 . 228643) (-3253 . 228203)
+ (-3254 . 228123) (-3255 . 228010) (-3256 . 227957) (-3257 . 227923)
+ (-3258 . 227868) (-3259 . 227752) (-3260 . 227586) (-3261 . 227388)
+ (-3262 . 227024) (-3263 . 226847) (-3264 . 226675) (-3265 . 226588)
+ (-3266 . 226417) (-3267 . 226288) (-3268 . 226126) (-3269 . 225975)
+ (-3270 . 225873) (-3271 . 225788) (-3272 . 225736) (-3273 . 225564)
+ (-3274 . 225434) (-3275 . 225223) (-3276 . 225116) (-3277 . 225037)
+ (-3278 . 224930) (-3279 . 224656) (-3280 . 224561) (-3281 . 224364)
+ (-3282 . 224257) (-3283 . 224184) (-3284 . 224066) (-3285 . 223736)
+ (-3286 . 223564) (-3287 . 223227) (-3288 . 223036) (-3289 . 222925)
+ (-3290 . 222854) (-3291 . 222799) (-3292 . 222593) (-3293 . 222476)
+ (-3294 . 222425) (-3295 . 222100) (-3296 . 215154) (-3297 . 215087)
+ (-3298 . 214901) (-3299 . 214729) (-3300 . 214613) (-3301 . 214475)
+ (-3302 . 214138) (-3303 . 213979) (-3304 . 213870) (-3305 . 213760)
+ (-3306 . 212490) (-3307 . 212434) (-3308 . 212315) (-3309 . 212199)
+ (-3310 . 212081) (-3311 . 211943) (-3312 . 197885) (-3313 . 197736)
+ (-3314 . 197566) (-3315 . 197509) (-3316 . 197438) (-3317 . 197368)
+ (-3318 . 197285) (-3319 . 197186) (-3320 . 197120) (-3321 . 196897)
+ (-3322 . 196823) (-3323 . 196751) (-3324 . 196658) (-3325 . 196592)
+ (-3326 . 196434) (-3327 . 195574) (-3328 . 195477) (-3329 . 195303)
+ (-3330 . 195197) (-3331 . 194469) (-3332 . 194296) (-3333 . 194230)
+ (-3334 . 193826) (-3335 . 193666) (-3336 . 193599) (-3337 . 193496)
+ (-3338 . 193383) (-3339 . 193331) (-3340 . 193127) (-3341 . 193032)
+ (-3342 . 192949) (-3343 . 192329) (-3344 . 191969) (-3345 . 191858)
+ (-3346 . 191674) (-3347 . 191521) (-3348 . 190692) (-3349 . 190502)
+ (-3350 . 190384) (-3351 . 190260) (-3352 . 190179) (-3353 . 189805)
+ (-3354 . 189655) (-3355 . 189574) (-3356 . 189412) (-3357 . 189254)
+ (-3358 . 189195) (-3359 . 189139) (-3360 . 189073) (-3361 . 188989)
+ (-3362 . 188929) (-3363 . 188857) (-3364 . 188677) (-3365 . 188424)
+ (-3366 . 188119) (-3367 . 183417) (-3368 . 183347) (-3369 . 183281)
+ (-3370 . 183169) (-3371 . 183085) (-3372 . 183032) (-3373 . 182960)
+ (-3374 . 182876) (-3375 . 182061) (-3376 . 181994) (-3377 . 181836)
+ (-3378 . 181802) (-3379 . 181699) (-3380 . 181531) (-3381 . 181405)
+ (-3382 . 181279) (-3383 . 181224) (-3384 . 181160) (-3385 . 181031)
+ (-3386 . 180067) (-3387 . 179552) (-3388 . 179500) (-3389 . 178685)
+ (-3390 . 178401) (-3391 . 178285) (-3392 . 178219) (-3393 . 178110)
+ (-3394 . 177346) (-3395 . 177318) (-3396 . 177266) (-3397 . 177214)
+ (-3398 . 177055) (-3399 . 176971) (-3400 . 176749) (-3401 . 176659)
+ (-3402 . 171342) (-3403 . 171065) (-3404 . 170678) (-3405 . 169658)
+ (-3406 . 169575) (-3407 . 169509) (-3408 . 169415) (-3409 . 169358)
+ (-3410 . 169326) (-3411 . 169273) (-3412 . 169196) (-3413 . 169098)
+ (-3414 . 169000) (-3415 . 168903) (-3416 . 168823) (-3417 . 168719)
+ (-3418 . 168567) (-3419 . 168323) (-3420 . 168257) (-3421 . 168138)
+ (-3422 . 167893) (-3423 . 167680) (-3424 . 167607) (-3425 . 167548)
+ (-3426 . 167254) (-3427 . 165914) (-3428 . 165791) (-3429 . 165340)
+ (-3430 . 165255) (-3431 . 165146) (-3432 . 164520) (-3433 . 164434)
+ (-3434 . 164264) (-3435 . 164193) (-3436 . 164027) (-3437 . 163881)
+ (-3438 . 163737) (-3439 . 161322) (-3440 . 160258) (-3441 . 159910)
+ (-3442 . 159768) (-3443 . 159699) (-3444 . 159565) (-3445 . 159251)
+ (-3446 . 159148) (-3447 . 159007) (-3448 . 158814) (-3449 . 158116)
+ (-3450 . 157958) (-3451 . 157679) (-3452 . 154771) (-3453 . 154470)
+ (-3454 . 153887) (-3455 . 153550) (-3456 . 153332) (-3457 . 153225)
+ (-3458 . 153051) (-3459 . 152970) (-3460 . 152679) (-3461 . 152620)
+ (-3462 . 152279) (-3463 . 152180) (-3464 . 151942) (-3465 . 151862)
+ (-3466 . 151512) (-3467 . 151360) (-3468 . 151014) (-3469 . 150861)
+ (-3470 . 150771) (-3471 . 150647) (-3472 . 150453) (-3473 . 150274)
+ (-3474 . 150221) (-3475 . 150150) (-3476 . 148689) (-3477 . 148587)
+ (-3478 . 148507) (-3479 . 148401) (-3480 . 148122) (-3481 . 148022)
+ (-3482 . 147907) (-3483 . 147736) (-3484 . 147684) (-3485 . 147632)
+ (-3486 . 147571) (-3487 . 147515) (-3488 . 147403) (-3489 . 147259)
+ (-3490 . 146659) (-3491 . 146515) (-3492 . 146276) (-3493 . 145849)
+ (-3494 . 145793) (-3495 . 145432) (-3496 . 145300) (-3497 . 145186)
+ (-3498 . 145005) (-3499 . 144910) (-3500 . 144839) (-3501 . 143923)
+ (-3502 . 142558) (-3503 . 142505) (-3504 . 142386) (-3505 . 142285)
+ (-3506 . 142187) (-3507 . 141997) (-3508 . 141945) (-3509 . 141841)
+ (-3510 . 141671) (-3511 . 141312) (-3512 . 141203) (-3513 . 141132)
+ (-3514 . 140704) (-3515 . 140633) (-3516 . 140584) (-3517 . 140010)
+ (-3518 . 139767) (-3519 . 139581) (-3520 . 139466) (-3521 . 139247)
+ (-3522 . 137468) (-3523 . 137279) (-3524 . 137099) (-3525 . 137047)
+ (-3526 . 136737) (-3527 . 136594) (-3528 . 136431) (-3529 . 136375)
+ (-3530 . 136210) (-3531 . 136115) (-3532 . 135695) (-3533 . 135542)
+ (-3534 . 135465) (-3535 . 135302) (-3536 . 135219) (-3537 . 135006)
+ (-3538 . 134868) (-3539 . 134271) (-3540 . 133862) (-3541 . 133608)
+ (-3542 . 133490) (-3543 . 133424) (-3544 . 133266) (-3545 . 133194)
+ (-3546 . 132758) (-3547 . 132653) (-3548 . 132566) (-3549 . 132481)
+ (-3550 . 131269) (-3551 . 131216) (-3552 . 127228) (-3553 . 127200)
+ (-3554 . 127106) (-3555 . 127032) (-3556 . 126938) (-3557 . 126868)
+ (-3558 . 126524) (-3559 . 126239) (-3560 . 126186) (-3561 . 125974)
+ (-3562 . 125811) (-3563 . 125780) (-3564 . 125646) (-3565 . 125180)
+ (-3566 . 124970) (-3567 . 124897) (-3568 . 124699) (-3569 . 124629)
+ (-3570 . 124555) (-3571 . 124260) (-3572 . 124146) (-3573 . 123830)
+ (-3574 . 123749) (-3575 . 123700) (-3576 . 123622) (-3577 . 123536)
+ (-3578 . 123377) (-3579 . 123305) (-3580 . 123202) (-3581 . 122318)
+ (-3582 . 122026) (-3583 . 121955) (-3584 . 121841) (-3585 . 121618)
+ (-3586 . 121519) (-3587 . 121389) (-3588 . 120938) (-3589 . 120827)
+ (-3590 . 120725) (-3591 . 120435) (-3592 . 120262) (-3593 . 120165)
+ (-3594 . 119010) (-3595 . 118857) (-3596 . 118750) (-3597 . 118557)
+ (-3598 . 118523) (-3599 . 118433) (-3600 . 118114) (-3601 . 117977)
+ (-3602 . 117693) (-3603 . 117644) (-3604 . 117567) (-3605 . 117239)
+ (-3606 . 117136) (-3607 . 117070) (-3608 . 117004) (-3609 . 116801)
+ (-3610 . 116748) (-3611 . 116699) (-3612 . 116626) (-3613 . 116556)
+ (-3614 . 116387) (-3615 . 116234) (-3616 . 116149) (-3617 . 116075)
+ (-3618 . 115945) (-3619 . 115889) (-3620 . 115775) (-3621 . 115666)
+ (-3622 . 115229) (-3623 . 115174) (-3624 . 114989) (-3625 . 114937)
+ (-3626 . 114561) (-3627 . 114395) (-3628 . 114213) (-3629 . 114155)
+ (-3630 . 114102) (-3631 . 113986) (-3632 . 113863) (-3633 . 113766)
+ (-3634 . 113689) (-3635 . 113568) (-3636 . 113494) (-3637 . 113347)
+ (-3638 . 113245) (-3639 . 112829) (-3640 . 112309) (-3641 . 112188)
+ (-3642 . 112085) (-3643 . 111672) (-3644 . 111129) (-3645 . 111058)
+ (-3646 . 110467) (-3647 . 110396) (-3648 . 110238) (-3649 . 108953)
+ (-3650 . 108782) (-3651 . 108655) (-3652 . 108491) (-3653 . 108404)
+ (-3654 . 108206) (-3655 . 108011) (-3656 . 107881) (-3657 . 107594)
+ (-3658 . 107439) (-3659 . 107388) (-3660 . 107144) (-3661 . 103859)
+ (-3662 . 103736) (-3663 . 103565) (-3664 . 103460) (-3665 . 103380)
+ (-3666 . 103284) (-3667 . 103169) (-3668 . 103075) (-3669 . 102664)
+ (-3670 . 102604) (-3671 . 102469) (-3672 . 102391) (-3673 . 101756)
+ (-3674 . 101701) (-3675 . 101454) (-3676 . 101340) (-3677 . 101258)
+ (-3678 . 101209) (-3679 . 101108) (-3680 . 100963) (-3681 . 100895)
+ (-3682 . 100830) (-3683 . 100692) (-3684 . 100607) (-3685 . 100292)
+ (-3686 . 100173) (-3687 . 100000) (-3688 . 99929) (-3689 . 99799)
+ (-3690 . 99620) (-3691 . 99536) (-3692 . 99245) (-3693 . 98799)
+ (-3694 . 98706) (-3695 . 97456) (-3696 . 97366) (-3697 . 97295)
+ (-3698 . 97082) (-3699 . 96999) (-3700 . 96134) (-3701 . 96083)
+ (-3702 . 95880) (-3703 . 95793) (-3704 . 95727) (-3705 . 95676)
+ (-3706 . 95437) (-3707 . 95181) (-3708 . 94986) (-3709 . 94909)
+ (-3710 . 94782) (-3711 . 94450) (-3712 . 94384) (-3713 . 94304)
+ (-3714 . 94233) (-3715 . 93962) (-3716 . 93803) (-3717 . 93735)
+ (-3718 . 93707) (-3719 . 93613) (-3720 . 93458) (-3721 . 93421)
+ (-3722 . 91570) (-3723 . 91396) (-3724 . 91209) (-3725 . 91105)
+ (-3726 . 90997) (-3727 . 90286) (-3728 . 89615) (-3729 . 89410)
+ (-3730 . 89273) (-3731 . 88618) (-3732 . 88405) (-3733 . 88333)
+ (-3734 . 88261) (-3735 . 88170) (-3736 . 88006) (-3737 . 87860)
+ (-3738 . 87593) (-3739 . 87380) (-3740 . 87236) (-3741 . 87036)
+ (-3742 . 86628) (-3743 . 86526) (-3744 . 86246) (-3745 . 86037)
+ (-3746 . 85794) (-3747 . 85415) (-3748 . 84767) (-3749 . 84712)
+ (-3750 . 84458) (-3751 . 84378) (-3752 . 84031) (-3753 . 83944)
+ (-3754 . 83864) (-3755 . 83673) (-3756 . 83535) (-3757 . 83461)
+ (-3758 . 83343) (-3759 . 83228) (-3760 . 83048) (-3761 . 82942)
+ (-3762 . 82871) (-3763 . 82781) (-3764 . 82625) (-3765 . 82552)
+ (-3766 . 82311) (-3767 . 82225) (-3768 . 82166) (-3769 . 82047)
+ (-3770 . 81915) (-3771 . 81535) (-3772 . 81456) (-3773 . 81357)
+ (-3774 . 81244) (-3775 . 81186) (-3776 . 80987) (-3777 . 80905)
+ (-3778 . 79658) (-3779 . 79502) (-3780 . 79369) (-3781 . 79284)
+ (-3782 . 78934) (-3783 . 78881) (-3784 . 78738) (-3785 . 78579)
+ (-3786 . 78407) (-3787 . 78355) (-3788 . 78103) (-3789 . 78025)
+ (-3790 . 77951) (-3791 . 77533) (-3792 . 77314) (-3793 . 77213)
+ (-3794 . 77185) (-3795 . 77081) (-12 . 76909) (-3797 . 76684)
+ (-3798 . 76551) (-3799 . 76463) (-3800 . 76048) (-3801 . 75937)
+ (-3802 . 75852) (-3803 . 75781) (-3804 . 75407) (-3805 . 75343)
+ (-3806 . 75212) (-3807 . 75090) (-3808 . 74965) (-3809 . 74778)
+ (-3810 . 74467) (-3811 . 74367) (-3812 . 74020) (-3813 . 73781)
+ (-3814 . 73600) (-3815 . 73515) (-3816 . 73379) (-3817 . 73223)
+ (-3818 . 72840) (-3819 . 72703) (-3820 . 72548) (-3821 . 72386)
+ (-3822 . 72045) (-3823 . 71897) (-3824 . 71365) (-3825 . 70940)
+ (-3826 . 70785) (-3827 . 70684) (-3828 . 70549) (-3829 . 68695)
+ (-3830 . 68622) (-3831 . 68532) (-3832 . 68356) (-3833 . 68304)
+ (-3834 . 68140) (-3835 . 68056) (-3836 . 67962) (-3837 . 67903)
+ (-3838 . 67837) (-3839 . 67786) (-3840 . 67678) (-3841 . 67608)
+ (-3842 . 67460) (-3843 . 67336) (-3844 . 67183) (-3845 . 67083)
+ (-3846 . 66941) (-3847 . 66870) (-3848 . 65785) (-3849 . 65719)
+ (-3850 . 65140) (-3851 . 65070) (-3852 . 64949) (-3853 . 64856)
+ (-3854 . 64797) (-3855 . 64692) (-3856 . 64549) (-3857 . 64181)
+ (-3858 . 63482) (-3859 . 63378) (-3860 . 63094) (-3861 . 62426)
+ (-3862 . 61938) (-3863 . 61886) (-3864 . 61824) (-3865 . 61730)
+ (-3866 . 61628) (-3867 . 61253) (-3868 . 61179) (-3869 . 61068)
+ (-3870 . 61016) (-3871 . 60924) (-3872 . 60578) (-3873 . 60501)
+ (-3874 . 60434) (-3875 . 60368) (-3876 . 60174) (-3877 . 59950)
+ (-3878 . 59579) (-3879 . 59449) (-3880 . 59393) (-3881 . 59108)
+ (-3882 . 58965) (* . 54442) (-3884 . 54242) (-3885 . 54214)
+ (-3886 . 54165) (-3887 . 54056) (-3888 . 53961) (-3889 . 53902)
+ (-3890 . 53807) (-3891 . 53755) (-3892 . 53594) (-3893 . 53511)
+ (-3894 . 53458) (-3895 . 53307) (-3896 . 47801) (-3897 . 47683)
+ (-3898 . 46473) (-3899 . 46400) (-3900 . 46201) (-3901 . 46060)
+ (-3902 . 45834) (-3903 . 45348) (-3904 . 45142) (-3905 . 45048)
+ (-3906 . 44947) (-3907 . 44892) (-3908 . 44504) (-3909 . 44399)
+ (-3910 . 44195) (-3911 . 44072) (-3912 . 43758) (-3913 . 43700)
+ (-3914 . 43410) (-3915 . 43192) (-3916 . 42884) (-3917 . 42813)
+ (-3918 . 42745) (-3919 . 42292) (-3920 . 42144) (-3921 . 42018)
+ (-3922 . 41802) (-3923 . 41636) (-3924 . 41495) (-3925 . 41407)
+ (-3926 . 41328) (-3927 . 41236) (-3928 . 40854) (-3929 . 40745)
+ (-3930 . 40583) (-3931 . 40236) (-3932 . 40143) (-3933 . 39933)
+ (-3934 . 39846) (-3935 . 39766) (-3936 . 39670) (-3937 . 39476)
+ (-3938 . 39403) (-3939 . 39124) (-3940 . 39032) (-3941 . 38806)
+ (-3942 . 38348) (-3943 . 38208) (-3944 . 37821) (-3945 . 37772)
+ (-3946 . 37617) (-3947 . 37486) (-3948 . 37304) (-3949 . 37187)
+ (-3950 . 37101) (-3951 . 37016) (-3952 . 36923) (-3953 . 36862)
+ (-3954 . 36684) (-3955 . 36408) (-3956 . 36278) (-3957 . 36126)
+ (-3958 . 36057) (-3959 . 35953) (-3960 . 35769) (-3961 . 35598)
+ (-3962 . 35548) (-3963 . 35480) (-3964 . 35191) (-3965 . 35139)
+ (-3966 . 34992) (-3967 . 34800) (-3968 . 34704) (-3969 . 34598)
+ (-3970 . 34479) (-3971 . 34405) (-3972 . 34206) (-3973 . 34085)
+ (-3974 . 33806) (-3975 . 33732) (-3976 . 33647) (-3977 . 33566)
+ (-3978 . 33438) (-3979 . 33331) (-3980 . 33187) (-3981 . 33135)
+ (-3982 . 32901) (-3983 . 32800) (-3984 . 32572) (-3985 . 32489)
+ (-3986 . 32360) (-3987 . 32265) (-3988 . 32124) (-3989 . 31971)
+ (-3990 . 31769) (-3991 . 31595) (-3992 . 31527) (-3993 . 31403)
+ (-3994 . 31337) (-3995 . 31184) (-3996 . 31045) (-3997 . 30754)
+ (-3998 . 30637) (-3999 . 30512) (-4000 . 30445) (-4001 . 30289)
+ (-4002 . 30031) (-4003 . 29788) (-4004 . 29685) (-4005 . 29632)
+ (-4006 . 29545) (-4007 . 29462) (-4008 . 29295) (-4009 . 29181)
+ (-4010 . 29128) (-4011 . 29031) (-4012 . 28961) (-4013 . 28902)
+ (-4014 . 28779) (-4015 . 28650) (-4016 . 28492) (-4017 . 28367)
+ (-4018 . 28230) (-4019 . 27816) (-4020 . 27756) (-4021 . 27722)
+ (-4022 . 27691) (-4023 . 27617) (-4024 . 27520) (-4025 . 27082)
+ (-4026 . 27011) (-4027 . 26977) (-4028 . 26757) (-4029 . 26523)
+ (-4030 . 26442) (-4031 . 26390) (-4032 . 26327) (-4033 . 25573)
+ (-4034 . 25457) (-4035 . 25350) (-4036 . 25240) (-4037 . 25187)
+ (-4038 . 25072) (-4039 . 24896) (-4040 . 24711) (-4041 . 24649)
+ (-4042 . 24576) (-4043 . 24363) (-4044 . 24192) (-4045 . 24077)
+ (-4046 . 23619) (-4047 . 23550) (-4048 . 23286) (-4049 . 22814)
+ (-4050 . 22685) (-4051 . 22578) (-4052 . 22420) (-4053 . 22386)
+ (-4054 . 22249) (-4055 . 21956) (-4056 . 21845) (-4057 . 21768)
+ (-4058 . 21504) (-4059 . 21364) (-4060 . 21240) (-4061 . 21122)
+ (-4062 . 20961) (-4063 . 20841) (-4064 . 20738) (-4065 . 20499)
+ (-4066 . 20369) (-4067 . 20288) (-4068 . 20022) (-4069 . 19991)
+ (-4070 . 19849) (-4071 . 19775) (-4072 . 19309) (-4073 . 18981)
+ (-4074 . 18804) (-4075 . 18613) (-4076 . 18492) (-4077 . 18332)
+ (-4078 . 18184) (-4079 . 18004) (-4080 . 17933) (-4081 . 17776)
+ (-4082 . 17720) (-4083 . 17347) (-4084 . 17116) (-4085 . 16749)
+ (-4086 . 16642) (-4087 . 16571) (-4088 . 16488) (-4089 . 16407)
+ (-4090 . 16161) (-4091 . 16047) (-4092 . 15989) (-4093 . 15862)
+ (-4094 . 15483) (-4095 . 15203) (-4096 . 15035) (-4097 . 14648)
+ (-4098 . 14553) (-4099 . 14307) (-4100 . 14138) (-4101 . 14065)
+ (-4102 . 13907) (-4103 . 13824) (-4104 . 13706) (-4105 . 13491)
+ (-4106 . 13389) (-4107 . 13280) (-4108 . 13179) (-4109 . 12971)
+ (-4110 . 12888) (-4111 . 12826) (-4112 . 12673) (-4113 . 12442)
+ (-4114 . 12273) (-4115 . 11971) (-4116 . 11067) (-4117 . 10443)
+ (-4118 . 10187) (-4119 . 10079) (-4120 . 10023) (-4121 . 9965)
+ (-4122 . 9888) (-4123 . 9805) (-4124 . 9741) (-4125 . 9606)
+ (-4126 . 9494) (-4127 . 9163) (-4128 . 9038) (-4129 . 8982)
+ (-4130 . 8784) (-4131 . 8705) (-4132 . 8650) (-4133 . 8418)
+ (-4134 . 8295) (-4135 . 7994) (-4136 . 7887) (-4137 . 7708)
+ (-4138 . 7656) (-4139 . 7551) (-4140 . 7312) (-4141 . 7123)
+ (-4142 . 6996) (-4143 . 6841) (-4144 . 6753) (-4145 . 6252)
+ (-4146 . 6218) (-4147 . 5790) (-4148 . 5596) (-4149 . 5473)
+ (-4150 . 5207) (-4151 . 5151) (-4152 . 4947) (-4153 . 4765)
+ (-4154 . 4642) (-4155 . 4561) (-4156 . 4269) (-4157 . 4105)
+ (-4158 . 3981) (-4159 . 3812) (-4160 . 3683) (-4161 . 3539)
+ (-4162 . 3062) (-4163 . 2968) (-4164 . 2894) (-4165 . 2797)
+ (-4166 . 2720) (-4167 . 2637) (-4168 . 2548) (-4169 . 1383)
+ (-4170 . 1306) (-4171 . 1256) (-4172 . 665) (-4173 . 580)
+ (-4174 . 497) (-4175 . 30)) \ No newline at end of file
diff --git a/src/testsuite/interpreter/1849734.input b/src/testsuite/interpreter/1849734.input
new file mode 100644
index 00000000..ca1eb28f
--- /dev/null
+++ b/src/testsuite/interpreter/1849734.input
@@ -0,0 +1,6 @@
+++ Contributed by Gabriel Dos Reis
+-- Issue: the interpreter should allow overload of logical operators.
+a := 2::OutputForm
+b := 4::OutputForm
+a and b
+